

アフターグロー法で形成したa-SiNx:H膜の内部応力発生と制御

東京農工大学大学院 工学研究科 電子情報工学専攻 電子応用工学講座

永吉 浩

目次

第1章 序論		
1-1 本研3	究の歴史的背景(応力に関する従来の研究)	1
1-2 本研3	究の目的と概要	3
第2章 各種原	戎膜法によるa−SiN _* :H膜の堆積と膜質の比較	
2-1 はじる	めに	7
2-1-1	成膜装置	7
2 - 1 - 2	応力の評価	8
2 - 1 - 3	赤外吸収法による膜質評価	12
2 - 1 - 4	ESCAによる膜質評価	14
2-2 77:	ターグロー法によるa-SiN _x :H膜成膜	
2 - 2 - 1	はじめに	24
2 - 2 - 2	マイクロ波NH ₃ アフターグロー法で形成した膜の堆積	25
2 - 2 - 3	マイクロ波Ngアフターグロー法で形成した膜の堆積	34
2-3 低圧;	水銀灯を光源とした光CVD法によるa-SiN _x :H膜の成膜	
2 - 3 - 1	はじめに	42
2 - 3 - 2	膜質の成膜条件依存性	43
2-4 真空:	紫外光源を用いた光CVD法によるa-SiN _x :H膜の成膜	
2 - 4 - 1	はじめに	51
2 - 4 - 2	成膜装置	51
2 - 4 - 3	膜質の成膜条件依存性	52
2 - 4 - 4	水銀増感UV光CVD法で形成した膜との比較	53
2-5 膜符		
2-5-1	残留応刀、水素結合状態の制御性	61
2-5-2	腺構造 約43世紀	62
2-5-3	把称行性	63
9-6 9音	0 t L W	0.4
2 0 2 单	少みこ の	64
参考文献		73

第3章	a-SiN _x :H膜における引っ張り応力の発生機構	
3 - 1	はじめに	76
3 - 2	薄膜に生じる応力の要因	76
3 - 3	PECVDで形成したa-SiN _x :H膜に発生する応力の一般的な傾向	79
3 - 4	a-SiN _x :H膜に生じる残留応力の要因	80
3 - 3	まとめ	88
参考文南	犬	102
第4章	残留応力のTFT特性への影響	
4 - 1	はじめに	105
4 - 2	デバイス構造	105
4 - 3	TaOx膜の内部応力特性	106
4 - 4	二層膜の全応力特性	107
4 - 5	デバイス特性	107
4 - 6	まとめ	109
参考文南	伏	124
第5章	総括	125

謝辞

and a

第一章 序論

1・1本研究の歴史的背景

集積回路の超高速化、大規模化、多層配線化が急速に進むにつれて配線材料、絶縁 材料にも一層厳しい条件が要求されている。このために近年の半導体デバイスおよび その作製プロセスは金属、半導体、および絶縁体各々の特徴を最大限に生かすよう研 究が続けられている。このうち絶縁膜についてはMOSFETのように半導体との界面を用 いる場合を除いて、これまでは単に絶縁的性質が要求される場合が多かった。しかし 近年の半導体プロセスでは、絶縁膜の絶縁的性質以外の膜質がデバイスの加工精度や 特性、信頼性に直接関与するようになり、高い絶縁性に加えて高度なステップカバレ ージ、マスク効果、応力制御性が要求されている。

半導体プロセスにおける代表的な絶縁膜はシリコン窒化膜(a-SiN_x:H)とシリコン 酸化膜(SiO₂)である。表1-1-1に両者の比較を示す。シリコン酸化膜はシリコンとの 優れた界面特性を示すが、一般に多孔質になりやすい。一方、シリコン窒化膜は高密 度、緻密であり不純物、特にアルカリイオンに対するブロッキング効果、湿気に対す る阻止能力が高い。このためデバイス保護層として特に重要である。また比誘電率も シリコン酸化膜の3.9に対して6.9と大きな値を示し、TFTのゲート絶縁膜に適している。 このような優れた特徴を有しているために半導体プロセスばかりでなく、多くの分野 で応用されており、a-SiN_x:H膜の産業分野へ果たす役割は極めて大きいといえる。 a-SiN_x:H膜の代表的な応用分野を表1-1-2に示す。

a-SiN_x:H膜自体の研究の歴史は比較的古く、1960年代初頭には既に光CVD法によ る成膜報告がなされている。1960年年代後半から半導体分野を中心に研究が活発にな り現在にいたるまで多くの報告がなされている。1450℃以上で形成した膜は多結晶と なり、αとβの2つの結晶タイプがある。多結晶質膜の応用としてはシリコン単結晶 育成用るつぼ壁へのコーティングとして用いた例があるが、一般に半導体プロセス等 で使われる薄膜は1200℃以下で形成した非晶質タイプである。

一方、バルクとしてのシリコン窒化物は耐熱性、高温における耐薬品性、高い機械 的強度を特徴とするセラミックス材料として有名であり、焼結体はガスタービンなど 高温部の機構部品として応用されている。

a-SiN_x:H膜を形成法によって分類すると表1-1-3に示すようになる。これまで a-SiN_x:H膜の形成は常圧CVD法または直接窒化法が多く用いられてきた。これらは 絶縁性、緻密性において良好な特性を示すが、700℃以上の形成温度を必要とする。近 年の半導体集積回路における高集積化に伴うshallow junction化、プロセス誘起欠陥 の防止の必要性、高速化に伴う不純物プロファイルの維持、多層配線化の要求から、 半導体プロセスの低温化がはかられている。さらにLCD用TFTやX線マスク用メ ンプレン等へ応用するにも膜形成温度を300℃程度に抑える必要がある。a-SiN_x:H膜の 低温形成法には光CVD法、スパッタ法、プラズマCVD法(PECVD)等があるが、この 中で容量結合型高周波プラズマCVD法が最も広く用いられている。これらの堆積法 で形成したa-SiN_x:H膜は低温成長のために高温形成膜に比べて膜の密度が低く、膜中 に多量の水素を含んでいる。しかし低温形成してもなおNa⁺イオンや水分のバリアとし ての特質を保持しており、A1配線後のLSIの最終保護膜層としての価値を高めて いる。特にLSIのコストダウンに大きな影響を及ぼすモールド・パッケージの使用 のためには最終保護膜としてのa-SiN_x:H膜は不可欠である。

熱CVD等の高温プロセスで形成されたa-SiN_x:H膜は強い応力を示すことが従来か ら知られている。応力の要因が熱応力に起因するのであれば、より低温で形成した膜 ほど低い応力特性を示すと予想される。しかし低温プロセスで形成した膜にも熱膨張 係数の違いから予測される値よりかなり大きな内部応(1~10×10°dyn/cm²)が発生す ることが指摘されている。プロセスの微細化、多層化に伴う膜厚の増加において膜中 に残留する応力とこれに起因するクラック発生は最も問題となる事項である。強い内 部応力の発生はa-SiN_x:H膜自体のクラックの発生や下層電極のノッチ、ヒロック、ス トレスマイグレーションなどの発生につながる。さらに界面特性、デバイス特性に影 響を与えることが示されている。X線マスク用メンブレンやLCDへ応用する場合で も内部応力の影響が重要な問題となっている。このように内部応力の抑制・制御は応 用上非常に重要な課題である。

内部応力は引っ張り応力と圧縮応力に分けることができる。図1-1-1に示すように薄膜が内側になるように基板が湾曲する場合を引っ張り応力、この逆が圧縮応力と定義されている。引っ張り応力特性の膜では膜中の原子同士が引き離される方向に力が加わっている。通常、熱CVD法で形成したa-SiNx:Hは10~12×10°dyn/cm²もの強い引っ張

-2-

り応力を示す。スパッタで形成した膜は圧縮特性(-10×10^edyn/cm²)、RFプラズマ CVDでは圧縮から引っ張り側(-10~10×10^edyn/cm²)まで広く変化する。

スパッタ法や容量結合型プラズマCVD法(PECVD)で形成した膜はイオン打ち込み の効果を含んでおり、これが圧縮応力発生の要因となっている可能性がある。 a-SiN_x:H中の内部欠陥密度、膜密度などは化学両論値付近で最も良くなり、この組成 を用いることが応用上好ましい。一方、この組成のa-SiN_x:H膜は非常に強い引っ張り 応力特性を示す傾向がある。この応力はバルクのSi₃N₄を1%近く変形させる力に匹敵す る程の大きさである。a-SiN_x:H膜はDRAM保護層として応用されているが、このような 強い応力の影響を避けるために組成をSiリッチにし、絶縁性、バリア特性等の膜質を 犠牲にしてでも応力の低減を優先させて用いているのが現状である。現在のa-SiN_x:H 膜の応力制御技術は経験的に最適条件を求めているに過ぎない。内部応力を低減させ るために酸素または炭素を混入させたSiON、SiCN膜の研究も行われているが、応力低 減の要因についての言及はなく、膜質の制御性、膜の品位にも疑問が残る。

プラズマCVD法で形成したa-SiN_x:H膜に発生する内部応力の成膜条件依存性はこ れまで多く報告されているが、応力の発生メカニズムについて触れているものは少な い。1985年にはClassenらが膜表面反応におけるH₂の脱離反応を提案した。1991年には Smithらが表面近傍からのNH₃の脱離反応を提案している。これらは主として引っ張り 応力の成膜温度依存性からの類推である。さらに1989年の大山等によるNH₃吸着モデル、 1990年のJ.W. Osenbachらによる格子不整モデル等がある。圧縮応力の要因としてはイ オン入射によるpeening効果の影響であるとの指摘がいくつかある。この他、膜を形成 している原子の大きさの違いが顕著なためであるとするサイズ効果、N-H結合による構 造産等が提案されている。シリコン窒化膜の物性には不明確な部分が多く、作製条件、 成膜装置依存性が大きいために成膜機構も含めて統一的な解釈はなされていない。従 来のPECVDでは膜表面へのイオン入射による膜質変化が複合されて内部応力を含む膜質 が成膜パラメータの変化に対して複雑になっている。この様なことがa-SiN_x:H膜の応 力発生の研究を難しくしていた要因であると考えられる。

1.2本研究の目的と概要

前述のようにa-SiN_x:H膜の応用範囲の広さ、研究報告の多さにもかかわらず、応力 に関する研究は少なく、その発生要因についての意見もまちまちである。本研究では イオン衝撃の無い成膜手段をもちいてa-SiN_x:H膜に発生する内部応力の発生要因を追 求し、膜構造、電気特性との関連を明らかにしていくことを目的にしている。以下で は本論文の構成に沿って具体的な目的を述べる。

第2章ではNH₃マイクロ波アフターグローCVD法、N₂マイクロ波アフターグローCVD法、 低圧水銀ランプ光源を用いた光CVD法(UV光CVD法)、窓無し光源を用いた光CVD法 (VUV光CVD法)の各成膜手法を用いてa-SiN_x:H膜を形成し、それぞれの成膜特性、膜 質の比較から応力に関する共通的性質、膜質制御の可能性について述べる。

第3章ではNH₃アフターグローCVD法で成膜した膜のデータ、およびアニールによる膜特性変化を詳細に調べ、引っ張り応力の発生メカニズムについて多角的に検討をする。

第4章ではa-SiN_x:H膜の主要な応用の一つであるTFTの特性とゲート絶縁膜、背面保護層の残留応力との関連について述べる。

第5章において本研究をまとめる。

表1-1-1 a-Si₃N₄膜とa-SiO₂膜の比較

	密度(g/cm ³)	屈折率	比誘電率	光学的バンドギャップ(eV)
SiOz	2.2	1.46	3.9	8
SigNa	3.1	2.05	6.9	5.1

表1-1-2 シリコン窒化膜とその応用分野

膜中捕獲準位	メモリー(MNOS)
	酸化マスク(LOCOS)
	拡散マスク
緻密、不純物の	熱処理用マスク
拡散阻止能	X線マスク用メンブレン
	パッシベーション層
高絶縁性	ゲート絶縁膜
高誘電率	埋め込み絶縁膜(S01)
屈折率	反射防止膜

表1-1-3 成膜法による分類

スパッタ法	低水素量であるが欠陥が多い
常圧CVD法 低水素量、ほぼストイキオメトリな組成で膜質	
	700℃以上の堆積温度が必要
熱窒化膜	良好な界面特性 D.R.低く膜厚に限界あり~20nm
プラズマCVD法	組成を連続的に制御可能、低温形成が可能、膜中水素量
光CVD法	が多い。今後の主流。

Si substrate

Compressive LIN COST

図1-1-1 薄膜の応力と基板の反る方向

第2章 各種成膜法による a-SiNx: H膜の堆積と膜質の比較

はじめに

本章ではNH₃マイクロ波アフターグローCVD法、N₂マイクロ波アフターグローCVD法で 形成した膜の成膜特性、膜質の評価結果について示す。これらの膜の比較をすること により残留応力、絶縁特性等の共通的性質を明らにし、応力の制御性について述べる。 さらに低圧水銀ランプ光源を用いた光CVD法(UV光CVD法)、121.6nm光を発することの できる窓無し光源を用いた光CVD法(VUV光CVD法)で形成した膜の結果も示す。

2-1 堆積·評価

2-1-1 堆積装置

図2-1-1に本研究で用いた成膜装置の概略図を示す。原料を分解するためのエネルギ ー源としての励起光源とマイクロ波放電部を有したロードロックタイプの成膜装置で ある。

光CVDを行う場合の励起光源は低圧水銀ランプを用いており、その照度は光入射窓直下において80mW(253.7nm)、12mW(184.9nm)である。184.9nm光を有効に導入できるようにランプ管壁、および光入射窓は合成石英でできており、ランプハウジング内は N_2 ガスによってパージされている。チャンパー部容積は6.91でありロータリーポンプによる荒引き用と、ターボ分子ポンプによる高真空排気用の二系統の排気系がある。成膜時はターボボンプ側のメインバルブによって排気コンダクタンスを変化させて圧力調整を行った。窒化膜を形成する場合、酸素は窒素に比べて2桁以上膜に取り込まれやすく、わずかなリークが膜質を大きく変化させる可能性がある。リーク等によるチャンパー内部の汚染を極力低く抑えるために到達真空度を常にモニターし、必要があればチャンバーの焼き出しを行って装置の状態を高度に保つように留意した。すべての原料ガスボンベからのライン、チャンパーを含めて得られる最高到達真空度は2×1 0^{-7} Torr (チャンパーにおける真空度)程度である。光入射窓内壁のへの膜成長による入射光量の低減を防止するために窓にはパーフルオロポリエーテル (商品名フォンプ

リン)を薄く塗布している。a-SiN_x:H膜の原料ガスはマスフローコントローラによっ て制御され、チャンバー内で混合される。通常の基板と光源間の距離は約8cmである。 成膜時の圧力モニターはキャパシタンスマノメータ(バラトロン)を用いた。基板温 度は室温から350℃まで制御することができる。基板温度は形成した薄膜の膜質に大き な影響を及ぼすために正確な制御が必要である。本成膜装置はロードロック方式を採 用しているために基板と基板温度の制御に用いる熱電対の位置がサセブタから離れた 設計となっている。このために制御系の温度補正が必要となる。基板温度はチャンバ ー内に導入するガスの種類や圧力によって大きく変化することから、正確なデータを 得るために成膜時と同一の条件の基板表面温度を赤外放射温度計を用いて測定した。 ガスを流してから実際の基板表面温度が安定するまでには30分が必要である。

2-1-2 応力の評価(1-3)

薄膜の応力の測定方法には種々の方法があるが、特殊なものを除いて原理的には薄 膜の応力によって生ずる基板の変形、格子間隔の変化に伴う物質または薄膜をのせて いる基板内部の物理的性質の変化を何らかの方法によって検出して評価を行う。応力 あるいは歪の評価技術は古く、機械工学の分野を中心として開発されてきた。薄膜の 応力は1900年のStoney以来多くの研究がなされ、基板の変形による応力測定の基礎理 論は1960年代にほぼ確立されて電気メッキ、光学材料等の分野で用いられてきた。半 導体の分野では主に光天秤法とX線回折、および最近ではラマン分光法を利用した格 子歪測定法および光弾性法が利用されている。光天秤法はSi02や金属などの薄膜内部 応力測定に用いられ、X線回折法、ラマン分光法はシリコン単結晶作製やウェハーの 熱処理過程で発生する結晶欠陥解析に関連して応用されている。光弾性法は樹脂モー ルドにより半導体チップに加わる応力、ウェハーの研削、ラップ、ダイシング時に生 じる残留応力評価に適用されている。ウェハー全体の応力を測定するのであれば標準 的なX線回折装置、ラマン分光装置の利用が考えられる。X線回折法による方法では わずかな格子定数の変化を求めるためにサンプルの装着、温度コントロールの制約が ある。ラマン分光法は比較的測定を行い易いが、幾つもの補正を行う必要がある。ど ちらの方法も堆積した膜の膜厚が薄い場合、膜をのせている基板の変形量がわずかで

-8-

あるために測定にかからない可能性もある。この様なことから1000A程度の薄膜の応力 測定にはウェハーの反り量から応力を検出する方法が適していると考えられる。この 原理の応力測定装置は既に市販されているが、使用する大面積基板を対象としている るので本成膜装置で形成した膜を測定する事ができない。そこで応力測定装置の開発 から始めた。使用した成膜装置では均一な膜のできる領域は2インチウェハー程度の大 きさであるのでこれよりも小さい基板を用いる必要がある。基板の変形量を求める方 法としては短冊基板の片側を固定して反対側の端の変位を測定する片持ち梁型と基板 の湾曲を光の干渉を利用して求めるニュートン環法がある。片持ち梁型は基板のサイ ズが大きいほど変位量が大きくなり精度が高くなるが、サイズが小さい場合は測定が 困難である。一方ニュートン環法は原理的には高精度な方法である。本研究ではこの 様な事情からニュートン環法を用いた。

製作した測定装置を図2-1-2に示す。光源にはNaランプを用いた。測定装置は P.B.Ghat等の報告を参考にした。光源からでた光は凸レンズおよびアクロマティック レンズを通して平行光線として基板に入射する。入射光と反射光の干渉によってガラ ス基板上に基板の反りに応じた干渉光が生じる。これを写真撮影してその縞の間隔か ら基板の反り量を求め、応力を算出する。基板が小さいために適度な干渉稿が得られ るような波長の光源が必要になるが、Naランプ(A=5896A)を用いて予備実験を行っ たところ、2.5cm角の基板で10~20本の干渉稿が得られたのでこれを用いる事にした。 基板は薄いほど薄膜の応力によって大きく変形するために、薄い基板を用いた方が測 定精度を上げる事ができる。このため一番薄い250µ厚の2インチSiウェハーを用いた。 市販の測定装置は3点支持によって中央部と辺部の高低差を検出して曲率半径を求め ている。図2-1-3に示すように本研究では測定誤差を最小限にとどめるために干渉稿が 同心円状に現れる基板を選別して用いた。多くのウェハーはいびつに歪んでおり、同 心円状に干渉稿が現れるものはロットによって大きく変わるが、全体の5%程度である。 2インチウェハーは手に入れにくい事から使用後は薄膜を除去して最利用している。初 期の実験では四角にカットした基板を用いていたが、それ以外は2インチウェハーをそ のまま測定に用いた。干渉稿が完全な同心円ではないので常に同じ位置の曲率を求め るように留意した。実際のデータは図2-1-4の矢印で示すような4方向の曲率を求めて その平均値を用いた。この方法で2×10⁸dyn/cm²程度の誤差範囲で再現性を得ることが 可能である。通常の測定に用いた薄膜の膜厚は1000Aである。

-9-

1)曲率半径の算出		
図2-1-5において		
$r^2=R^2-(R-d)^2=2Rd$		(2-1)
が成り立つ。光路差は2d	であるから	
$2d=r^{2}/R$		(2-2)
反射するとき位相は180度	変化するのでm番目の干渉稿の	半径をra、波長をλとすると
$r_m^2/R=2m \times \lambda/2=m \lambda$	$\mathbf{r}_{\mathbf{m}}^{\mathbf{z}} = \mathbf{m} \lambda \mathbf{R}$	(2-3)
これより		
$\lambda_{R} = (r^{2}_{m+n} - r_{m}^{2})/n$		(2-4)
したがってm番目とm+n番	目のrを測定する事によってRを	求めることができる。

2)応力の算出

応力の算出

図2-1-6より中立面の位置うは

$$\overline{y} = \left(\int_{0}^{d} E_{t} / (1 - \nu_{t}) y \, dy + \int_{0}^{D+d} E_{s} / (1 - \nu_{s}) y \, dy \right) / (E_{t} / (1 - \nu_{t}) d + E_{s} / (1 - \nu_{s}) D)$$

$$= \left(D (1 + 2t + et^{2}) \right) / (2(1 + et))$$
(2-5)

ここで

E』:基板のヤング率	E _r :膜のヤング率
ν":基板のポアソン比	ν:膜のポアソン比

t=d/D, $e=(E_t/(1-\nu_t))/(E_u(1-\nu_u))$

et²«1 とすれば

中立上にある一点のまわりの曲げモーメントを計算すると

$$\int_{0}^{9} ((E_{\tau}y^{2}/(1-\nu_{\tau})R)dy + \int_{-(9-d)}^{0} ((E_{\pi}y^{2}/(1-\nu_{\pi})R)dy + \int_{-9}^{-(9-d)} ((E_{\tau}y^{2}/(1-\nu_{\tau})R)dy + \int_{-9}^{-(9-d)} (2-7)$$

$$= \sigma d(\bar{y} - d + d/2)$$
(2-7)

No. Sector Print

Jを代入して

$$\frac{1}{R} = \frac{6\sigma d(1 - \nu_{s})}{(E_{s}D^{2})} = \frac{1 + t + 4et}{(1 + 3t + 5et)}$$
(2-8)

t «1 であるので

 $1/R = 6d\sigma(1 - \nu_s)/(E_s D^2)$ (2-9)

が得られる。したがって薄膜の応力は下地の元の曲率R'も考慮すると

$$\sigma = (E_{s}D^{2}(1/R-1/R'))/(6d\sigma(1-\nu_{s}))$$
(2-10)

となる。

3) 誤差の見積

応力の式はA,Bを定数として

 $\sigma = A/(D_{\circ}R) = B(d_{\circ}(r_{m+n}^{2}-r_{m}^{2}))$

(2-11)

(2-6)

(d.:膜厚)

の様に表される。両辺の対数をとると

 $\log\sigma = \log B - \log d_{a} (r_{m+n}^{2} - r_{m}^{2})$

(2-12)

よって

$\Delta \sigma / \sigma = \Delta d_{\bullet} / d_{\bullet} + \Delta (r_{m+n}^2 - r_m^2) / (r_{m+n}^2 - r_m^2) $	(2-13)
$\leq \Delta d_{o}/d_{o} + \{ \Delta (r_{m+n}^{2}) + \Delta (r_{m}^{2}) \}/(r_{m+n}^{2}-r_{m}^{2}) $	(2-14)
$\leq \Delta d_o/d_o + \{2r_{m+n} \Delta r_{m+n} + 2r_m \Delta r_m \} / (r_{m+n}^2 - r_m^2)$	(2-15)

これより($r_{m+n}^{2}-r_{m}^{2}$)が大きくなるようにすれば読みとり誤差の誤差の影響を小さくで きることがわかる。基板の大きさと干渉稿の大きさからくる制約を考慮して $r_{m+n}^{2}:r_{m}^{2}=3:1$ とすると

 $|\Delta\sigma/\sigma| = |\Delta d_o/d_o| + 4 |\Delta r_{m+1}| / 3r_m + |\Delta r_m| / 4r_m$ (2-16)

となる。干渉稿の中心部に近くなるほど干渉稿の間隔が広くぼやけてくるために読み とり誤差が大きくなるが(2-15)、(2-16)式よりr_{m+n}²:r_m²比を大きく取ることによって これを補償できる。

2-1-3赤外吸収法による膜質評価

赤外吸収特性からは膜中水素の結合様式、結合水素濃度、およびa-SiN_x:H膜における主要なネットワークであるSi-N結合について知ることができる。ここでは薄膜試料に対しても高感度の測定が可能なフーリエ変換型赤外吸収測定装置(FT-IR)を用いた。 使用した装置は日本電子JIR-100を用いた。表2-1-1に示すように400~4000cm⁻¹の間においてN-H、、N-H₂、Si-NH-Si、Si-H、Si-Nに対応する吸収がある。図2-1-7に典型的なa-SiN_x:H膜のFT-IRスペクトルを示す。膜中水素結合密度の算出には通常3350cm⁻¹に Si-Hストレッチングモード、2160cm⁻¹にSi-Hストレッチングモードの積分吸収モード が用いられる。a-SiN_x:H膜中の水素原子はSi-HまたはN-H振動子の分極効果を通じて赤 外誘電率の変化に寄与する。その虚数部分が赤外吸収係数(a(ω))を与え、水素濃度Nと 以下の式で結ばれる。

$$N=cn\omega\mu/(2\pi e_{\pi}^{*2})* \int \{\alpha(\omega)/\omega\}d\omega \qquad (2-17)$$

ここでµは振動子の換算質量、cは光速、nは屈折率である。e_{*}*は有効電荷であり、気相のシリコンハイドライドのデータe_{*}*から推定する。

 $e_{\pi}^{*}/\mu = c\omega\Gamma/(2\pi^2 N_A S)$

ここでN_Aはアボガドロ数、5は分子あたりの結合数であり、振動子強度Γは以下の式で 与えられる。

 $\Gamma = 1/N \int \{\alpha(\omega)/\omega\} d\omega$

Maxwell-Garnett型の局所電場を仮定して、

 $e_{s}^{*}=9\epsilon_{m}^{2}e_{g}^{2}/(1+2\epsilon_{m})^{2}$

ここでε_はSiの誘電率である。式(2-17)、(2-18)、(2-19)より

 $N = (1 + 2\varepsilon_{m})^{2} N_{A} n / \{9\varepsilon_{m}^{2}(\Gamma/\varsigma)\} * \int \{\alpha(\omega)/\omega\} d\omega \qquad (2-21)$

核反応法によって得られる水素の絶対定量と式(2-21)の比較からN-H、Si-Hに対して

5.3×10 ⁻¹⁸	(cm²)	(2-23)
7.4×10 ⁻¹⁸	(cm ²)	(2-24)

(2-19)

(2-18)

(2-20)

が得られている。積分吸収強度は図2-1-8に従って求めた。(4)

2-1-4光電子分光法による評価

光電子分光法によって水素を除く主要な構成元素の組成比(N/Si)、構成原子周辺の 結合状態に関する情報を得ることができる。⁽⁵⁾

内殻準位からの光電子スペクトル積分強度の解析から、窒素とシリコン原子の割合 を求め、内殻準位の化学シフトの変化をもとに化学結合状態に関する知見を得た。さ らに内殻準位からの光電子のプラズモン損失ピークの挙動からa-SiN_x:H膜中の原子密 度を決定し、化学結合状態について検討をした。⁽⁶⁾

使用した装置は島津製作所ESCA850である。X線源はMgKα線を用いた。ピーク位置は C_{1s}のピークによって補正を行った。分析を行う前に表面をArイオンでスパッタして (2kV, 90sec)、表面の酸化層を取り除いた。他の材料系ではスパッタによる前処理を 行うと、選択スパッタによって表面組成が変化する場合のあることが指摘されている。 この影響を調べるために熱CVD膜を用いて表面を5%フッ化水素酸で処理してからスパッ タ無しで評価した場合と、通常の操作によって評価した場合の比較を行った。スパッ タによるa-SiN_x:H組成比変化はほぼ無視できる値であることを確認した。光電子分光 法で組成比の定量を行うときは標準試料が不可欠である。本研究では熱CVD Si₃N₄膜を (SiH₂Cl₂+NH₃、700℃)を用い、装置から得た定量データを比例計算によって補正を行 った。補正量は10%程度である。

図2-1-9a-SiN_x:H膜のワイドレンジスペクトルを示す。(a)はPECVDの報告例、(b)は NH₃マイクロ波アフターグロー法で形成した膜のデータである。NH₃マイクロ波アフタ ーグロー法で形成した膜の酸素およびカーボンのピークはPECVDで形成した膜に比べて 相対的に低くなっており不純物混入の比較的少ない膜質が得られている。本装置にお ける他の成膜法で形成した膜も不純物混入量は同程度のものが得られている。

図2-1-10にプラズモンサテライトも含めたN₁s付近の光電子スペクトルを示す。メイ ンピークよりも約20eV高エネルギー側にブロードなプラズモンサテライトが現れてい る。プラズモンサテライトはN₁s、Si_{2P}両メインピークにあらわれる。プラズモンサテ ライトピークがブロードであることから正確なピーク位置を求めるために測定の積算 回数を40サイクル以上おこなった。ピークがブロードである場合、バックグラウンド 補正による評価ピーク位置のずれが無視できない値になるのでピーク位置を決定する 際にはバックグラウンド処理はしていない。ピーク位置はESCA850の波形分離処理機能 を利用して求めた。

プラズモンサテライトとメインピークのピーク間のエネルギー差がプラズモンエネ ルギーに相当し、次式のように定義される。

 $\hbar\omega_{p} = \hbar(4\pi ne^{2}/\epsilon_{o}m)^{1/2}$

(2 - 25)

ここでnはa-SiN_x:H膜中の総価電子密度、 ε_o は真空の誘電率、mは電子の質量である。 観測されたプラズモンエネルギーh ω_p から直ちにa-SiN_x:H膜中の総価電子密度nが得ら れる。プラズモンエネルギーはN₁₅、Si₂Pどちらから得てもほぼ同じ値を示した。この の結果からクラスターなどを含まない均一な膜質であることが示唆される。N原子は 5個、Si原子は4個、H原子は1個の価電子を有している。結晶Siを用いて得られたプラ ズモンエネルギーは16.40eVである。これから算出した密度は2.26g/cm³であり、ほぼ 妥当な値が得られることを確認した。水素原子数n_HをFT-1Rから求めた総水素結合密度 とすると、Si、Nの原子密度[Si]、[N]は以下のようになる。

$[Si]=(n-n_{H})/(5(X/1-X)+4)$	(2-26)
$[N] = (n - n_{H})X/(5(X/1 - X) + 4)$	(2-27)
X = [N] / [Si]	(2-28)

一般に内殻光電子スペクトルにおける化学シフトは化学結合に伴う電荷移動量によって決定される。第一次近似において最近接原子との電気陰性度差が化学シフト量と比例をする。XPSスペクトルで観測される化学シフトが隣接原子あるいは原子団の電気陰性度差によって生じているとして、SiとNの電気陰性度差を元にN1。、Si2pのピークエネルギーとN、Si原子周辺の結合状態の関係を求めることができる。(2.6.7.8.9) 文献によって基準とするSi3N4のピークが若干異なるので、改めて実測した熱CVD Si3N4と光CVDで形成したa-Si:Hを基準としてSiの取りうる結合状態とピークエネルギーの関係を得た結果を図2-1-11に示す。(7)

-15-

図2-1-2 応力評価装置

(a) いびつに歪んでいる場合

(b) 均一な 歪を 持つ 基板

図2-1-3 干涉稿

表	2-	1-	1
---	----	----	---

結合		波数(cm ⁻¹)
NH	stretching	3350,1175
NH2	scissors bend.	1150
SiH	stretching	2160
SiN	stretching	830~880

 $A = \log I_0 / I$ $\frac{A}{2} = \log I_0 / I'$ $I' = \sqrt{I_0 I}$

Determine $\Delta \nu$ at I' $\Delta \nu$ N-H ~ 110 cm⁻¹ Si-H ~ 130 cm⁻¹ Area ~ A $\Delta \nu$

図2-1-8 面積の算出法

-21-

図2-1-10 N1.付近のスペクトル

-23-

2-2 マイクロ波アフターグローCVD法によるa-SiNx:H膜堆積

2-2-1 はじめに

本節では、イオンダメージのない成膜方法の一つとして最近注目されているアフタ ーグロー法で形成した膜の特性について述べる。この成膜法は励起方式によって分類 するとRFアフターグロー法とマイクロ波アフターグロー法に大きく分けることができ る。同じ原料を用いても励起周波数がRFとマイクロ波では、形成された膜質の傾向は 大きく異なる。この要因は放電部で形成された励起種の励起エネルギー状態や量が大 きく異なっているためであると考えられる。a-SiN_x:H膜を形成する場合、放電部へ供 給するガスはNH₈、N₂のどちらを用いることもできる。特にN₂、Nの励起種は非常に長 い寿命を持つことが知られている。⁽¹⁰⁾類似の成膜法としてはこの他にH₂のアフタ ーグローを用いるものや、プラズマ流輸送法などが報告されている。^(11,12)

本節ではNH₃およびN₂のマイクロ波アフターグロー法を用いて成膜を行い、それぞれの成膜特性、膜質について述べる。

成膜装置は図2-1-1に示した。この方式では薄膜を放電空間外で形成するために原理 的にイオンダメージの効果が発生しない。NH₃アフターグロー法で形成する場合は放電 部へNH₃を供給する。N₂アフターグロー法の場合は放電部へN₂またはN₂+H₂を供給する。 チャンバー内でこれらのアフターグローとSiH₄が反応することによって成膜が行われ る。キャビティからの反射電力の割合が変化すると形成されるa-SiN_x:H膜の膜質に影 響を与える。このため反射電力の割合が常に一定になるように留意した。 2-2-2 マイクロ波NH₃アフターグロー法によるa-SiN_x:H膜の堆積

成膜機構

NH₃のアフターグローによるa-SiN_x:H膜の形成の報告は少ない。成膜反応について言及しているのはLucovskyのものがあり、N-Hの多い膜質になることが報告されている。 (13) 彼らはRFNH₃アフターグロー法によってa-SiN_x:H膜を形成し、SiH₄、PH₃、AsH₃, NH₃の混合気体を放電させる実験結果からの類推により、気相中でNHや(SiH₃)₂-NHや SiH₃-NH₂が形成されることを示唆している。ただし実験的に得られた結果ではない。

どの様な励起分子、ラジカルが放電部から供給されているのかははっきりしていないが、NH₃の分解生成物がSiH₄を分解するという点では、2-3で述べるUV光CVD法による反応メカニズムに類似していると考えられる。成膜条件を表2-2-1に示す。

成膜特性

図2-2-1にNH₃マイクロ波放電部の発光特性を示す。放電スペクトルにはNHの強い輝 線がみられ、水素原子の輝線がわずかに現れている。これは放電部においてNH₃は少な くともNHまで解離していることを示している。N₂の輝線は観測されない。原料ガスを 供給し、排気側のコンダクタンスバルブによって圧力調整をした後で放電を開始する とチャンパー内の圧力は30%程度増大する。圧力の増大率は0.05~1.0Torrの範囲でほ ぼ一定であった。流量30sccmにおける成膜圧力、NH発光強度のマイクロ波出力依存性 を図2-2-2に示す。両者はマイクロ波出力60Wでほぼ飽和しており、通常の成膜条件で あるマイクロ波出力100Wでは、ほとんどすべてのNH₃が解離していると考えられる。成 膜圧力は放電直後に再調整している。NH₃マイクロ波アフターグロー法では、N₂マイク ロ波アフターグロー法で観測されるようなチャンパー内部の発光は現れない。N₂マイ クロ波アフターグロー法では窒素の励起種の持つ励起エネルギーが直接SiH₄を分解し て発光させていると考えられるが、NH₃マイクロ波アフターグロー法の場合は放電部か ら供給されるNH等のラジカルとSiH₄が反応をすることによって気相反応が進んでいる と推定される。

NH₃RFアフターグロー法(13.56MHz)では成膜速度が非常に低いか(30A/min以下)またはまったく成膜しない。^(13.14)本装置で用いたマイクロ波NH₃アフターグロー法

(2.45GHz)の成膜速度は、本節で示した条件範囲内では25~400A/minであり、RFに比べて非常に高い成膜速度が得られている。

図2-2-3に残留応力、組成比、成膜速度、膜中水素結合量の原料ガス流量比に対する 変化を示す。本成膜法では、同じ原料を用いているUV光CVD法に比べて成膜速度が高く、 組成比、水素結合状態をより広い範囲に制御することが可能である。NHaRFアフターグ ロー法よりも非常に高い成膜速度が得られていることも考慮すると、本方式は原料の 分解効率が非常に高く、経済的に優れた方式であるといえる。残留応力は用いた条件 範囲内では常に引っ張り応力特性を示した。本方式を用いて形成したa-SiN_x:H膜の応 力特性は図2-2-3に示したように原料ガス流量比の変化に対してピークが現れることが わかった。PECVDにおけるこれまでのほとんどの報告では原料ガス流量比の変化に対し て応力が単調に変化しており、これらは図2-2-3のピークの片側だけを観測することに 対応していると考えられる。ピークの位置は原料ガス流量比を小さくしていったとき に、膜中のN-HとSi-Hの水素結合密度が急激に変化しはじめる条件で生じており、応力 と水素結合状態の変化の間に強い関連があることが示唆される。膜の組成比も同時に 変化するが、応力と直接的な相関のないことは2-5の議論で示される。総膜中水素結合 密度は4~5×10²²/cm³であり、PECVDに比べて膜中水素量の多い膜質になっている。 FT-IRから算出した総水素結合密度とESCAから算出したN+Si原子密度との比較から得ら れた水素の含有量は40~45at%である。膜中水素量がPECVDで形成した膜に比べて多く なるのは成膜中のイオン衝撃効果による水素の脱離がないことに基づくと思われる。 組成比は原料ガス流量比の増大にともなって増大し、化学両論値付近で飽和する傾向 を示している。原料ガス流量比を極端に大きくすると膜質がポーラスになる傾向があ 3.

図2-2-4残留応力、成膜速度、膜中水素結合量の成膜温度に対する依存性を示す。成 膜温度の上昇に対して応力は単調に増大し、同時に膜中水素量が減少をしている。結 合水素は、N-HとSi-Hの両者が減少している。PECVD(13.56MHz)でも同じ傾向が報告さ れている。成膜速度が成膜温度依存性を持たないのはUV、VUV光CVD膜と共通しており、 気相反応が成膜速度を律速していることを示唆している。

図2-2-5に膜特性の成膜圧力に対する依存性を示す。本方式では成膜圧力を0.05 Torrまで低下させても比較的高い成膜速度で膜を形成することができる。成膜速度を 低下させるほど反応プリカーサの拡散長が大きくなるために膜の均一性は良くなり、 0.3Torr以下では2インチウェハー全面をほぼ均一に成膜できるようになる。成膜圧力 2Torrでは均一に成膜される領域が直径1cm程度まで小さくなる。組成比は成膜圧力の 減少にともなって1.18から1.30へと増大する。水素結合状態はこの条件範囲内ではあ まり大きく変化せず、成膜圧力変化に対してN-H結合密度ととSi-H結合密度の大小関係 が入れ替わるN₂アフターグロー系と大きく異なる。

以上をまとめると

- 1) NH₃マイクロ波アフターグロー法を用いることによって非常に高い成膜速度で a-SiN_{*}:H膜の成膜を行えることがわかった。
- 2)内部応力は常に引っ張り特性であり、原料ガス流量比の変化に対してビーク特性 を示すことを見出した。この結果から水素結合状態と応力特性の間に強い相関の あることが示唆された。

表2-4-1 NH3マイクロ波アフターグロー法の成膜条		
基板温度	200~300	°C
成膜圧力	0.05~1.0	Torr
NH3流量	30	SCCM
SiH₄流量	0.5~4	SCCM
マイクロ波出力	100	₩

図2-2-2 放電部の発光強度、チャンバー内の圧力増大率 のマイクロ波出力依存性

図2-2-3 NH₃アフターグロー法で形成した膜の残留応力、成膜速度 組成比、水素結合密度の原料ガス流量比依存性

図2-2-4 NH₃アフターグロー法で形成した膜の残留応力、成膜速度 組成比、水素結合密度の成膜温度依存性

図2-2-5 NH₃アフターグロー法で形成した膜の残留応力、成膜速度 組成比、水素結合密度の成膜圧力依存性

2-2-3 マイクロ波Nzアフターグロー法によるa-SiNx:H膜の堆積

アフターグロー法によるa-SiNx:H膜の形成の多くはN2を原料として行われている。 Noアフターグロー法による膜形成では長寿命のN2*励起種がSiH4と反応をして膜を形成 していることが示唆されている。(15.16)N2の準安定状態で励起種として可能性が指摘 されているのはN₂(A³Σu⁺:6.17eV)である。この様な励起種がチャンバー内でSiH₄を分 解し、成膜反応が進行する。励起種の導入によってチャンバー内にはSiH4の分子発光 に基づくルミネッセンスが観測されており、スペクトルの解析からSi、SiN、N2(1+)の 存在することが示されている。気相中に(SiHa)aNの様な反応中間体が生じるとされて いるが、最近の報告では基板表面に到達する励起窒素が成膜反応を進めている可能性 が示されている。(17.18) N2マイクロ波アフターグロー法の場合は形成された膜の組 成比変化がNHa系に比べて小さくなるという報告があり、組成比が成膜条件によって敏 感に変化するNH₃系と大きく異なっている。組成比変化を低く抑えて応力と他の膜質と の関係を示すことができれば、応力の発生要因を明確に示すことが可能になる。Naマ イクロ波アフターグロー法似よる成膜では、膜組成が成膜パラメータの変化によって 一定になる傾向があるものと変化する場合の両者が報告されており、組成比の変化が 少ない状態にするには一定の成膜条件を満たしている必要があると思われる。高周波 N2アフターグロー法で形成した膜の水素結合状態はSi-Hで構成される。(18.19)

本実験で用いた成膜装置は図2-1-1で示した。放電部へ供給するガス以外はNH₃マイクロ波アフターグロー法で行った実験と同じである。放電部へはN₂およびN₂+H₂を供給した。成膜条件を表2-2-2に示す。

成膜特性

図2-2-6に成膜速度の成膜圧力依存性を示す。N2のみで成膜したときは0.2Torrにおいて10A/min以下になる。一方、放電部へ供給するN2にわずかな水素を添加することによって低圧における成膜速度が顕著に増大する効果を見出し、これによって膜質を広い範囲で制御することが可能になった。放電部へ供給するN2に1%以下のH2添加をすることによって0.2Torr付近における成膜速度は急激に増大し、0.2Torrでは成膜速度の

^増大は10²倍以上になる。H₂の僅かな添加によって成膜速度が急上昇すると同時にチャ ンバー内にSiH₄の発光に基づく白色のケミカルルミネッセンスが明確に現れる。H₂を 添加した場合でも成膜圧力が0.2Torrより低くなると成膜速度は急激に減少している。 HeをH₂と同様に添加しても顕著なD.R.の変化やルミネッセンスの増大は現れない。成 膜圧力の低下に伴う成膜速度の減少はN₂*の密度が低くなることに起因している。⁽¹⁵⁾ また成膜圧力の増大に対する成膜速度の減少は自己吸収によるN₂*またはN*の減少、励 起種の寿命の低下などが考えられる。

図2-2-7にH₂、N₂、N₂+H₂の各マイクロ波放電スペクトルを示す。図2-2-7(c)に示す ように、N₂にH₂を添加することによって放電部にNHの輝線が現れる。図2-2-7(b)の水 素マイクロ波放電のスペクトルに現れていた水素分子発光に基づくプロードなライン は図2-2-7(c)では消失している。図2-2-1で示したようにNH₃のマイクロ波放電部には NHの輝線だけが観測されており、放電部で形成されたNHが成膜反応を促進している可 能性がある。この効果を確かめるためにH₂のかわりにD₂を添加して成膜を行った。こ の結果添加したD₂は膜中にほとんど取り込まれていないことがわかった。したがって 水素添加による成膜速度の増大は放電部で形成されたNHが要因ではないことが確かめ られた。

チャンバー内に発生するケミカルルミネッセンスのスペクトルの解析から、Si、 SiN、N₂(1+)の存在することが示されている。水素添加によってチャンバー中のSiH₄の ルミネッセンスが増大したことを考慮すると、水素の添加がN₂の励起種の生成効率を 著しく高め、SiH₄を強く発光させていると考えられる。

水素の準安定状態はH₂*(c³ u:11.75eV)、H(2²S_{1/2}:10.20eV)があり、N₂の準安定状態で励起種として可能性が指摘されているのはN₂(A³Σu⁺:6.17eV)である。エネルギー 的にみると水素の準安定状態の方が窒素の準安定状態よりも高エネルギーであり、ペ ニング効果によるエネルギーの遷移が効率よく生じている可能性がある。

図2-2-8に添加水素流量による組成比、水素結合状態、成膜速度の変化を示す。成膜 圧力が0.2TorrではH₂を添加することによって成膜速度は急激に増大し、10sccmの添加 量で500ħ/minに達する。この様な成膜速度の増大にもかかわらずH₂添加による組成比 の変化はわずかであり、水素結合状態の変化も少ない。一方、0.5Torrの場合も水素添 加によって成膜速度は急激に増大するが、0.5sccmですでに飽和している。H₂添加によ り水素結合状態はSi-Hが多くシリコンリッチになる。成膜圧力を数Torrまで上昇させ ていくと、発光領域は石英管のノズル付近に収束していく。この結果は成膜圧力が増 大するにしたがって窒素励起種の寿命が短くなることを示している。成膜速度が高い 圧力でこの様に伸びないのは励起種のチャンバー内での寿命に関係があると思われる。 シリコンリッチな膜質になる要因は、成膜圧力の増大にともなって窒素励起種の気相 中に占める割合が減少した結果SiH₄のアミノ化が不十分なまま基板表面に入射するか、 SiH₄系ラジカル同士の気相中での重合確率が増大することなどが考えられる。

放電部への水素添加量を20sccm以上に増やすと、膜中のN-H結合がほとんど消失して N-Dに置き替わる。したがってNH₃アフターグロー法で形成された膜のN-H結合はほとん どNH₃に由来していると考えられる。これはLucovskyらのND₃を用いた結果と一致して いる。この結果はSiH₄の分解によって生じたHに比べて、放電部で形成されたNDまたは Dラジカルの気相中で占める割合が支配的になったためにa-SiN_x:H膜中に多く取り込ま れたと考えられる。通常のプラズマCVDではNH₃:SiH₄=100:1程度に取っているので、膜 中に含まれるN-HはNH₃から来たものである。これまでN₂アフターグロー法で形成した 腹にはN-H結合は見出されないとされてきた。図2-2-9の結果より、マイクロ波アフタ ーグロー法を用いると、水素のソースはSiH₄だけであるにもかかわらず、膜中水素結 合状態がN-Hで占められた膜を形成することができる。N-Hの多く含まれる膜が形成さ れる条件では気相中においてSiH₄がより高次まで分解され、SiH₄のアミノ化が速やか に進んでN-Hを多く含む中間種が気相中で形成されていると考えられる。

図2-2-8に示したように1sccm程度の水素添加では水素結合状態がわずかに影響を受けるのみで、本質的な膜質の相違はない。図2-2-9の成膜圧力依存性の結果は1sccmの水素を添加したデータを用いている。

図2-2-9に形成した膜の組成比、水素結合量、内部応力の成膜圧力依存性を示す。組 成比はここに示した条件範囲内では成膜圧力の変化に対してわずかな変動しか示さな い。一方、水素結合状態は成膜圧力の変化に対して大きく変化している。組成比の成 膜圧力依存性が少ないという点ではNH₃マイクロ波アフターグロー法の成膜特性に類似 している。一方、N-H/Si-H比の圧力依存性はNH₃マイクロ波アフターグロー法の場合に 比べて大きく変化している。膜中総水素結合量は4×10²²/cm³程度であり、NH₃アフタ ーグロー法で形成した膜よりやや少なくなっている。応力の変化はN-HとSi-Hの交差す る付近に現れており、NH₃アフターグロー法で形成した膜と共通的な性質が現れた。こ の結果からも水素結合状態が応力に大きくかかわっていることが示唆される。⁽²⁰⁾ 以上をまとめると

- 1) 放電部へ供給するN2へわずかなH2を供給することで成膜速度を高めることができ、 広い範囲で膜特性を変化させることが可能となる。
- 2) 適当な条件内では組成比を低く抑えたまま水素結合状態を広く制御できることが わかった。
- 3)残留応力は成膜圧力の変化に対してピークを持つ特性を示し、水素結合状態との 対応はNH₃マイクロ波アフターグロー法と類似した結果が得られた。

図2-2-6 N₂アフターグロー法における成膜速度の圧力依存性

Waveleng

-39-

図2-2-9 N₂アフターグロー法で形成した膜の成膜速度、組成比 水素結合密度の成膜圧力依存性

2-3 低圧水銀灯を光源とした光CVD法によるa-SiNx:H膜の堆積

2-3-1 はじめに

プラズマ損傷の無い低温成膜技術として光CVD法が提案され、種々の膜について最近 までに多くの報告がなされている。光CVD法によるa-SiN_x:H膜の成膜はすでに1969年に M.C.Cllet等によって検討されているが、半導体製造への適用を意図した光CVD法の開 発は1981年のJ.W.Petersの報告が最初である。⁽²⁰⁻²⁸⁾実用的な装置の大部分は光源と して低圧水銀灯を用いている。

本節では低圧水銀ランプを光源とした光CVD法(UV光CVD法)を用いて形成した a-SiN_x:H膜の成膜特性について述べる。

堆積メカニズム

UV光CVD法の原料ガスはNH₃+SiH₄が最も多く用いられ、良好な絶縁特性、ステップカ バレージを有する膜が得られている。この他にSi₂H₆を原料に用いたもの、水銀増感反 応を利用したもの等がある。NH₃の光吸収スペクトルを図2-3-1に示す。⁽²⁰⁾ 低圧水 銀ランプから発する光のうち反応に寄与するのはは185nmと254nmのスペクトルである。 このうちNH₃を効率よく分解できるのは吸収断面積の大きい185nm輝線であることが分 かる。^(27,20)

NH3の光化学一次過程は、以下が知られている。(30-31)

$NH_3 \rightarrow NH_2 + H$	<280nm	(2-29)
NH ₃ →NH +H ₂	<224 n m	(2-30)
$NH_3 \rightarrow NH + H + H$	<147nm	(2-31)

低圧水銀灯の光によって効率よく進行するのは(2-29)の反応である。実際の成膜時におけるNH₃の分解効率は20%程度といわれている。(28)

2次過程では

 $NH_3 + H \rightarrow NH_2 + H_2$

(2-32)

SiH₄	+	H→SiH ₃ +	Ha	2	the second set of the	(2-33)
SiH4	+	NH₂→SiH₃	+	NH3	A DER P START A DER	(2-34)
SiH3	+	NH₃→SiH₄	+	NH2		(2-35)

等が挙げられている。

a-Si:Hの形成反応ではSiH₃ラジカルの様な反応活性種による反応が考えられている。 一方、a-SiN_x:H膜の形成反応では比較的複雑な反応中間体が気相中で形成され、これ らが成膜に関与していることが質量分析計を用いて確かめられている。低圧水銀ラン プ光を用いた光CVDでは松波等の研究があり、反応プリカーサーとしてSi₂NH₇を提出し ている。この時の反応は以下のようになる。⁽³²⁾

$SiH_3 + NH_2 \rightarrow SiNH_5$	(2-36)
$SiNH_5 + SiH_4 \rightarrow Si_2NH_7$	(2-37)

2Si₂NH₇はポリマー状の物質{Si(NH)₂}/nを形成し、基板温度のアシストによってNH₃を 放出してSi₃N₄となる。基板温度の低い時はNH₃の放出が不十分なために膜中に水素を 多く含んだ膜質となる事が示唆される。

$2Si_2NH_7 \rightarrow 3SiH_4 + {Si(NH)_2}/n$	(2-38)
$3Si(NH)_2 \rightarrow Si_3N_4 + 2NH_3 \uparrow$	(2-39)

数値解析の結果からこの反応の律速反応は(2-32)であるとしている。a-SiN_{*}:Hは組成 比が連続的に変化すること、Si-Hが膜中に取り込まれることなどは現段階では説明さ れていない。

2-3-2 膜質の堆積条件依存性

成膜装置は図2-1-1で示した。成膜条件を表2-3-1に示す。図2-3-2に残留応力、 Si-Nの積分吸収強度、組成比、成膜速度、膜中水素結合量の原料ガス流量比依存性を 示す。SiH₄だけを原料に用いたa-Si:Hに発生する内部応力が0.6×10°dyn/cm²の弱い圧 縮応力であるのに対し、SiH₄にNH₃を加えることによって応力が急激に強い引っ張り応 力に変化していることがわかる。ここに示したa-Si:Hは水銀増感反応によって形成し たものである。他の堆積法で形成されたa-Si:Hの内部応力も10[®]dyn/cm²程度のオーダ ーである事が報告されている。⁽³³⁾ NH₃+SiH₄系PECVD(13.56MHz)においてもNH₃の 添加量の増大にともなって引っ張り応力が増大する傾向はこれまでにも示されており、 引っ張り応力の発生がUV光CVD、PECVDに共通的に働いていることが示唆される。⁽²⁹⁾

原料ガス流量比10~70の範囲では7~9×10^edyn/cm²の強い引っ張り応力特性を示し、 NH₃/SiH₄=30付近でピークが認められる。成膜速度はこの条件範囲では顕著な変化は現 れなかった。膜中には35~40%の多数の水素が含まれている。基板温度が比較的低いと いう事もあるが、PECVDのようなイオン衝撃の効果による化学スパッタリング効果等が ないためと考えられる。松波らもUV光CVD法を用いて同程度の水素含有量の膜ができる ことを報告している。⁽³²⁾ 他の物性がこの条件範囲内で顕著な変化をしていないの に対して水素結合状態は大きく変化しており、NH₃/SiH₄=30付近でN-HとSi-Hの大小関 係が入れ替わっている。

成膜速度の影響および光の効果を調べるために膜特性の光強度依存性を調べた結果 について述べる。結果を図2-3-3に示す。光強度は透過特性の分かっている石英板を複 数重ねることによって調節した。横軸の光強度は185nmに対するものであり、通常の成 膜条件を100%としている。光強度の変化によって変化するのは成膜速度だけであるこ とがわかる。膜特性が光強度に対してほとんど変化を受けず、成膜速度だけが変化す るのは気相中におけるNH₃の分解が反応律速になっている事を裏付けている。少なくと も8~45A/minの成膜速度の範囲では、残留応力の大きさは成膜速度の影響を受けてい ない。

御子柴らはN₂RFアフターグロー法と高圧キセノンランプを組み合わせてa-SiN_{*}:H膜の 形成をおこない、成膜中に強力な紫外光を成膜表面に照射する事によって応力が引っ 張り側へシフトすることを報告している。⁽³⁴⁾ N₂とSiH₄の組み合わせにするとキセ ノンランプ光(200~800nm)は気相中でほとんど吸収されずに直接基板表面に到達す る。照射された光は基板表面に到達して熱的、またはケミカルな効果を及ぼしている と考えられる。この結果から、応力の発生には表面反応が強くかかわっていることが 示唆される。 本装置のN₂アフターグローCVD法を用いた膜形成時にに低圧水銀ランプ光を同時照射 したところ、同時照射なしに比べて0.5~2.0×10°dyn/cm²の引っ張応力増大が観測さ れた。UV光CVDで残留応力の光強度依存性が現れないのは、照射した光は気相中で減衰 して応力の増大に寄与していないためだと思われる。2-2で示したように光の効果 のないアフターグローCVD法で形成したa-SiN_x:H膜でも同程度の強い残留応力を示した ことを考慮すると、UV光CVDで形成した膜の残留応力の発生には光の効果はほとんど含 まれていないと考えられる。

図2-3-4に膜質の堆積温度依存性を示す。応力は堆積温度の上昇につれて単調に上昇 している。膜中水素量は基板温度の上昇にともなって減少しており、水素の脱離反応 が基板温度の上昇にともなって増大していることを示している。成膜速度の成膜温度 依存性が現れないことからこの成膜反応が気相反応によって律速されていることを裏 付けている。

内部応力が成膜温度によって大きく変化することは以前から報告されているが、そ の解釈については意見が分かれている。一つは成膜温度の上昇にともなって引っ張り 応力が増加することから、成膜温度の上昇が膜中からの脱離反応を促進させるために 応力が増大しているという考え方と、初期応力特性が圧縮特性の膜について示されて いるのが、成膜温度を上昇させると膜の構造緩和が生じて応力が低下するという考え 方である。これらの解釈の妥当性は3章で述べる。

以上をまとめると

1) 成膜速度は応力発生に対して大きな影響を及ぼしていない。

2) UV光CVD法において低圧水銀ランプ光の応力に与える影響はほとんどない。

図2-3-1 UVランプスペクトルとNH₃、SiH₄吸収特性

	ムジル氏米什	
基板温度	200~350	°C
成膜圧力	1.0	Torr
NH ₃ 流量	100	SCCM
SiH₄流量	1~10	SCCM

図2-3-2 UV光CVD法で形成した膜の残留応力、成膜速度 組成比、水素結合密度の原料ガス流量比依存性

-48-

図2-3-3 UV光CVD法で形成した膜の残留応力、成膜速度 組成比、水素結合密度の185nm光強度依存性

図2-3-4 UV光CVD法で形成した膜の残留応力、成膜速度 組成比、水素結合密度の成膜温度依存性

-50-

2-4 真空紫外光源を用いた光CVD法によるa-SiNx:H膜の形成・評価

2-4-1 はじめに

応力との関連で重要なのは水素結合状態であると推定され、これを制御することが 膜質向上のために必要である。これまで波長が真空紫外域の光源を用いることによっ てより高品質なa-Si:H膜の得られることが報告されている。⁽³⁵⁾ a-SiN_x:H膜の場合 も光源の波長を変えることによって膜質を大きく制御できる可能性がある。この様な 観点から本研究室で開発された121nmの輝線をもつ窓無し光源を用いた光CVD法(VUV光 CVD法)によってa-SiN_x:H膜を堆積し、水素結合状態、絶縁特性等について評価を行っ た。⁽³⁰⁾

図2-3-1より121.5nm光は185nmに比べてNH₃に対する吸収効率が非常に高いことが分かる。図2-4-1にNH、NH₂発光強度の波長依存性を示す。^(эロ) 121.6nmにおけるNHと NH₂の発光強度比は2:1となっている。したがって121.6nm光によってNH₃のかなりの部 分がNHまで分解していると考えられる。図2-4-2にSiH₄、Si₂H₄の吸収スペクトルと窓 無し光源の発光スペクトルの関係を示す。低圧水銀ランプ光で分解できなかったSiH₄ も窓無し光源の波長を用いることによって直接分解することが可能になる。

2-3-2 成膜装置

成膜装置を図2-4-3に示す。低圧水銀ランプ光CVDで使用する石英窓の代わりにマイ クロ波放電を励起源とした光源部を取り付けている。光源部は1インチ石英管タイプの 放電管であり、キャビティへは同軸ケーブルによって2.45GHzのマイクロ波を供給して いる。

本装置で用いていた光源は窓無し方式のために光源部の圧力と光化学反応をする領 域の圧力が同じになる。したがって発光特性の最適条件を満たすと同時にa-SiN_x:H膜 形成の最適化をする必要がある。光源部の最適化をするに当たって、本装置のスペク トルアナライザーでは真空紫外光を直接測定することはできないので、121nm光の発光 強度と正の相関のあるH β 輝線の強度を測定することによって光源の最適条件を求めた。 図2-4-4に光源部におけるH β線(486.1nm)の発光強度と121.5nm輝線の相関関係、H β 線 発光強度の放電ガス混合比依存性を示す。121.5nm輝線はほぼH β 線の発光強度に比例 して増大していることが分かる。圧力の増大につれて混合比20%における発光強度が増 大していることがわかる。1.0Torr以上の圧力ではさらに発光強度が増加することが予 測されるが、これより高い成膜条件ではパーティクルの発生などの可能性が生じる。 成膜条件を表2-4-1に示す。

光源の発光強度を最適化すると共に、a-SiN_x:H膜の原料ガスであるNH₃やSiH₄が放電 部へ侵入しない条件で成膜を行う必要がある。放電部への原料ガスの侵入は、NH₃の分 解によって生じるNH(336.5nm)の発光をモニターすることによって知ることができる。 放電管下部の金属メッシュは反応ガスの放電部への侵入を制限するために設けてある。 メッシュの目の間隔は石英放電管直下部は2mmであり、外周は0.5mm程度のものを用い た。光強度はメッシュのために10%程度減少していると考えられるが、原料ガスの逆流 止に対する高い効果が得られた。NHの輝線をモニターすることによってNH₃が放電部 へ流入しているかどうかを知ることができる。これを利用してチャンバーに供給した NH₃が放電部へ与える影響を調べた結果を図2-4-5に示す。図2-4-5(C)に示すように、 光源へ供給する総ガス流量を75sccmまで増大させることによって、NH₃の光源部への侵 入をほぼ防いでいることがわかる。本装置の窓無し光源に用いた石英管は直径が 1inchであり、均一に形成される膜の面積も狭い範囲に制限されるために応力の評価は 行っていない。

2-4-3 膜質の堆積条件依存性

成膜速度、組成比、水素結合状態のSiH₄ガス流量に対する変化を図2-4-6に示す。 SiH₄ガス流量1.5sccm~3sccmの範囲では組成比、水素結合状態はほとんど変化してい ない。SiH₄流量3sccmにおけるNH₃/SiH₄流量比は10であり、同じ組成比を得るために原 料ガス流量比を50以上に設定する必要のあったUV光CVD法に比べてかなり低くなってお り、気相中でSiH₄のアミノ化が速やかに進行していると思われる。組成比が1.2付近に おける水素結合状態を比較すると、UV光CVD法で形成した膜ではSi-HがN-Hよりも多く なるのに対し、VUV光CVD法で形成した膜ではN-Hの比率の方が大きくなっている。UVU 光CVD法では水素がSi-Hの形で取り込まれにくくなっている。SiH₄ガス流量が4sccm以 上になると膜質が急激にシリコンリッチになり、Si-H結合が次第に増大する。光源か らは水素ラジカルが放出されている可能性があるが、これらが成膜に関与している比 率は無視できることが沢度らによって確かめられている。(37)UV光CVD膜に比べて膜中 の総水素結合密度は半減している。この様なイオンpeening効果のない系において膜中 水素量が減少する要因は、光が成膜表面到達して水素の脱離反応などを促進しているか、または気相反応自体が他の成膜法と著しく異なっている可能性がある。

成膜温度に対する変化を図2-4-7に示す。成膜速度は成膜温度にほとんど依存せず、 UV光CVDと類似している。組成比([N]/[Si])は成膜温度の上昇に伴なって増大し、窒 素過剰な膜質になる。水素結合密度は基板温度の変化に対する変化が少なく、温度に 対して安定な膜が得られている。

2-4-4 水銀増感UV光CVD法で形成した膜との比較

水銀増感反応を用いることによって気相中のSiH₄がNH₂等との2次反応を経ることな しに分解することができる。この点では水銀増感反応はVUV光CVD法と似ている。水銀 増感反応を用いた形成では、水銀増感なしに比べて膜特性が全体的にSiリッチな組成 の方向ヘシフトしたが組成比依存性について整理すると、両者に本質的な膜質の違い はなかった。一方、VUV光CVD法を用いて形成したa-SiN_x:H膜は2-5で示すようにUV 光CVD法で成膜した膜に比べて膜中水素量が少なく、同一組成に対してN-H結合の比率 が高くなっている。窓無し光CVD法を用いたことによるこのような顕著な膜質の違いは、 NH₃およびSiH₄がより高次に分解したためであると考えることができる。

以上をまとめると

- 1) VUV光CVD法で形成した膜の膜中水素結合密度はUV光CVD法を用いて形成した膜に比べて半減した。
- 2)同じ組成比において、低圧水銀ランプ光CVD法で形成した膜に比べて、N-H結合の 多い膜質が得られる。

図2-4-1 真空紫外域におけるNH3の吸収、NH2、NHの発光強度

-55-

図2-4-4 窓無し光源における水素希釈度と発光強度

-56-

表2-3-1 VUV元UVD投	いの成腺条件		
基板温度	200~350	°C	-
成膜圧力	1.0	Torr	
NH3流量	100	SCCM	
SiH₄流量	1~10	sccm	
マイクロ波出力	100	W	
He流量	60	SCCM	
H ₂ 流量	15	SCCM	

共2-3-1 VIIV光CVD社の世間タ 11

図2-4-6 成膜速度、組成比、水素結合密度のSiH₄流量依存性

図2-4-7 成膜速度、組成比、水素結合密度の成膜温度依存性

2-5 膜特性の比較

はじめに

これまでUV光CVD法、VUV光CVD法、NH₃マイクロ波アフターグローCVD法、N₂マイクロ 波アフターグローCVD法の各成膜法を用いて形成したたa-SiN_x:H膜の成膜特性を示して きた。この結果、水素結合状態、応力と組成比などの相関関係が成膜法によって異な る傾向が現れている。この節では特に組成比の変化を基準にして膜質の比較を行い、 これらの膜に現れる共通的性質を抽出する。さらに応力の変化と水素結合状態に相関 のあることに注目し、その制御の可能性について述べる。

2-5-1 残留応力、水素結合状態の制御性

これまでUV光CVD法、VUV光CVD法、NH₃マイクロ波アフターグロー法、N₂マイクロ波 アフターグロー法の各成膜法で形成した膜の成膜特性、膜質の特徴を述べてきた。こ れまでの結果から応力の制御性、成膜機構の鍵を握るのは水素結合状態であると考え られる。これまでの結果を比較するために組成比を軸として整理した結果を以下に示 す。

図2-5-1にNH₃アフターグロー法、N₂マイクロ波アフターグロー法およびUV光CVD法で 形成した膜の膜中水素結合量、内部応力の組成比依存性を示す。NH₃マイクロ波アフタ ーグロー法、UV光CVD法では原料ガス流量比をパラメータとした結果を示している。 N₂マイクロ波アフターグロー法の場合は成膜圧力をパラメータに用いる方が膜質を広 く制御し易かったためにパラメータとして圧力を用いた結果を示した。これらの特性 はマイクロ波出力などの他のパラメータを用いてもほぼ同じ特性を示す。この様に、 同じ成膜法であればパラメータの種類によらず残留応力、水素結合密度の組成比依存 性が一義的に決まる傾向はPECVDには見られず、ソフトな成膜法に共通した性質である。 一方、膜中水素結合状態、内部応力の組成比依存性は成膜法によって大きく異なる。 UV光CVD法を用いて形成した膜では膜中のSi-H結合の占める割合が同一組成のNH₃マイ クロ波アフターグロー法で形成した膜に比べて大きくなっている。同じマイクロ波ア フターグロー法でも原料がNH₃とN₂では膜質の傾向が異なる。図2-5-2にVUV光CVD法で 形成した膜の水素結合密度の組成比依存性を示す。VUV光CVD法で形成した膜は膜中水 素結合量が他の成膜法に比べて半減している。N-H/Si-H比はNH₃アフターグロー法に近い。VUV光CVD法、NH₃マイクロ波アフターグロー法に共通しているのはNH₃の分解効率が高い成膜法であるということである。高効率なNH₃の分解がN-Hを多く含むプリカー サを形成することにつながっていると考えられる。たとえばSmithらの示したような SiH₄のアミノ化が速やかに進んでいると推定される。

横軸にN-H/Si-Hをとって残留応力をプロットした結果を図2-5-3に示す。UV光CVDの 場合ややずれているが、NH₃マイクロ波アフターグロー法で形成した膜の特性とN₂マイ クロ波アフターグロー法で形成した膜のピーク位置が完全に一致している。両者は成 膜特性、気相反応が大きく異なっていると考えられるが応力の発生に関与する膜表面 の反応に共通的な機構が存在することを示唆している。UV光CVDの位置が他の成膜法と ずれる要因は未分解のNH₃が関与しているか、気相反応が不十分なことが要因であると 考えられる。

膜構造

a-SiN_x:H膜の結合はN-H、Si-H、Si-N、Si-Siによって構成されている。N-N結合は これまで検出されておらず、a-SiN_x:H膜中には存在しないと考えられている。

UV光CVD法、NH₃マイクロ波アフターグローCVD法で形成した膜のSi₂,ピーク、N₁,ピークエネルギーおよびN+Si原子密度の組成比に対する依存性を図2-5-4に示す。データは原料ガス流量比をパラメータとしたときのものを示してある。

N+Si原子密度は組成比の増大にともなって次第に増大している。これはN原子の大き さがSi原子に比較して小さいことに基づいている。膜中に多くの水素を含んでいるた めに化学量論値付近におけるN+Si原子密度は熱CVDに比べてやや低くなっている。化学 量論値付近におけるSi2rのピークエネルギーは101.7eVとなっており熱CVDSi3N4の値に 近い値が得られている。化学両論値付近と最もシリコンリッチな組成について、

図2-1-11で得られたデータを元にSi₂,スペクトルをピーク分離した結果を図2-5-6に示 す。これらの結果から化学量論値付近の組成比ではSiを中心とした構造はSi・N₄が支配 的になっていると考えられる。化学両論値付近ではNの原子密度は3.9×10²²/cm³であ り、ほぼN-H結合密度と同じであり、N原子に一つの水素が結合した構造となっている。 ESCAを用いた観測ではUV光CVDで形成した膜とNH₃アフターグロー法で形成した膜の間 に顕著な差は現れていない。 Si₂^pピークエネルギーおよびピーク分離の結果が示すように組成比1.0付近のときは 多数のSi-Si結合を含んでいることがわかる。この組成比では膜中の水素結合はSi-Hが 支配的になっている。この時のSi原子密度は2.9×10²²/cm³であるのに対して4×10²² /cm³程度のSi-H結合が算出されており、膜中にはかなりのSi-H₂結合が含まれていると 考えられる。清水らのNMR、ECR、TDSを用いた解析の結果などからも、Si-H₂含有量の 極大が化学両論値とa-Si:Hの組成比の間に現れることが示唆されている。

絶縁特性

一般的に組成比が化学量論値付近のa-SiN_x:H膜は絶縁特性が良好である。絶縁特性 にはSi-Si結合、Siのダングリングボンド、水素結合量(特にSi-H)、膜密度等が影響 を及ぼすと考えられている。a-SiN_x:H膜中の伝導はPool-Frenkel伝導であることが示 されている。残留応力との関連は報告されていない。

サンプルはMIS構造 (Al(1mm ϕ)/a-SiN_x:H/n⁺ c-Si)を用いた。図2-5-5にVUV光CVD 法で形成した膜の電流電圧特性をPool-Frenkelプロット(logl~E^{1/2})した例をしめす。 他の成膜法で形成した膜も類似した特性を示す。E^{1/2}~loglプロットの高電界域で直 線関係が得られており、PF型伝導をしていることが分かる。a-SiN_x:H膜の高電界域に おける電導特性は膜中のSi欠陥の量およびSi-N結合密度との相関が示されている。 (21.22)

図2-5-6、図2-5-7にNH₃マイクロ波アフターグローCVD法、N₂マイクロ波アフターグ ローCVD法、UV光CVDおよびVUV光CVDで形成した膜の絶縁破壊強度、抵抗率の組成比依 存性及びN-H/Si-H比依存性を示す。抵抗率は2MV/cmのときのデータから得た。伝導電 流が1×10⁻³A/cm²になったときの電界を絶縁破壊電界として示した。オーミック領域 における絶縁抵抗の減少は理論的、実験的な結果からSi-HまたはSi-Si結合の影響を強 く受けると考えられている。(23-25)

NH₃マイクロ波アフターグローCVD法、N₂マイクロ波アフターグローCVD法およびUV光 CVD法で形成した膜の絶縁破壊強度、抵抗率の組成比依存性はほとんど同じ特性を示し ている。これまでは絶縁特性にSi-H等が影響を与えると言う意見があったが、我々が 得たこれらの結果から総水素量が一定であるとき絶縁特性は組成比によってほぼ決定 され、水素結合状態、残留応力の影響は直接的には受けていないことが明確に示され た。絶縁特性の組成比依存性はSi-Si結合密度の影響を強く受けていると考えられる。 VUV光CVD法で形成した膜の絶縁特性は、化学量論値付近ではUV光CVD法、NH₃アフター グローCVD法で形成した膜とほぼ同じ特性を示している。一方、低電界域での絶縁破壊 電界、抵抗率は他の成膜法に比べて1桁程度高い特性を示している。この場合の絶縁特 性の向上はVUV光CVD法で形成した膜の総水素含有量が少ないことに基づいていると思 われる。

以上をまとめると

- UV光CVD法、NH₃マイクロ波アフターグロー法、N₂アフターグロー法で成膜した膜に共通して、残留応力は適度なSi-HとN-Hを含むときにピークを持つことがわかった。
- 2)水素結合状態、残留応力の組成比依存性は成膜法によって異なることを見出した。
- 3)総水素結合密度が同じ場合の絶縁特性は主として組成比に依存している。 N-H/Si-H比、ストレスの影響はほとんど無視できる。

2-6 2章のまとめ

NH₃マイクロ波アフターグロー法、N₂アフターグロー法を用いてa-SiN_{*}:H膜を形成した。 これらの膜の比較をすることによって残留応力と膜特性の関係、応力の制御性につい て検討を行った。また低圧水銀ランプ光CVD法、窓無し光CVD法による成膜を行い同様 な傾向の現れることを示した。

- 2)水素結合状態の組成比依存性は成膜法によって大きく異なり、組成比とは独立に 制御することが可能である。
- 1)残留応力は水素結合状態に大きく依存している。したがって膜中の水素結合状態 を制御することによって組成比と独立して膜の残留応力を制御できる。
- 3)総水素量が一定であるときの絶縁特性は水素結合状態、残留応力によってあまり 影響を受けず、主として組成比によって決定される。

図2-5-1 NH₃アフターグローCVD法、N₂アフターグローCVD法 で形成した膜の水素結合密度、残留応力の組成比依存性

図2-5-2 VUV光CVD法で形成した膜の水素結合密度の 組成比依存性

図2-5-3 残留応力のN-H/Si-H依存性

図2-5-4 Sizpピーク位置、N+Si原子密度の組成比依存性

図2-5-5 電流電圧特性

図2-5-6 光CVD、アフターグローCVD法で形成した膜の 絶縁破壊電界、抵抗率の組成比依存性

図2-5-7 N₂アフターグローCVD法で形成した膜の絶縁破壊電界、 抵抗率の成膜圧力依存性

参考文献

- (1) M.G.Collet: J.Electrochem. Soc. SOLID STATE SCIENCE 1 (1969) 110.
- (2) J.W.Peters: Proc. Int. Conf. IEEE IEDM (1981) 240.
- (3) J.W.Peters, F.L.Gebhart and T.C.Hall: Solid State Technol. 23 (1980) 121.
- (4) W.A.Lanford and M.J.Rand: J. Appl. Phys. 49 (1978) 2473.
- (6) Y.Katayama, T.Shimada and K.Usami: Phys. Rev. Lett. 27 (1981) 1146.
- (5) Y.Katayama, K.Usami and T.Shimada: Philosophical Magazine B 43 (1981) 283.

(6) G.Lukovsky: J.Vac. Sci Technol. 16 (1979) 1225.

- (7) M.Takakura, T.Orga, T.Hayashi and M.Hirose: Jpn. J. Appl. Phys. 27 (1988) L2213.
- (8) I.Umezu and K.Maeda: Jpn. J. Appl. Phys. 30 (1991) 2547.
- (9) R.Karcher, L.Ley and R.L.Johnson: Phys. Rev. B30 (1984) 1896.
- (10) "プラズマと成膜の基礎" 小沼光晴 日刊工業新聞社 (1986).
- (11) K.Yasui, M.Nasu, K.Komaki and S.Kaneda: Jpn.J.Appl.Phys., 29 (1990) 918.
- (12) T.Tsuchimoto: J.Vac.Sci.Technol., 15 (1978) 70.
- (13) D.V.Tsu, G.Lucovsky and M.J.Mantini: Phys.Rev.B, 33 (1986) 7069.
- (14) 山本、右高: 電気化学協会第56回大会 講演要旨 (1989,03) 267.

(15) S.Meikle and Y.Hatanaka: Appl.Phys.Lett., 57 (1990) 762.

(16) D.E.Shemansky: J.Ckem.Phys., 64 (1976) 565.

(17)D.Landheer, N.G.Skinner and T.E.Jackman: J.Vac.Sci.Technol., A9 (1991) 2 594.

(18) G.Lucovsky, P.D.Richard, D.V.Tsu, S.Y.Lin and R.J.Markunas: J.Vac.Sci.T echnol. A4 (1986) 681.

(19) M.Sato, T.Sugino and J.Shirafuji: IEICE Technical Report 90 (1990) 55. [in Japanese]

(20) H.Nagayoshi, C.H.Wong, T.Ueno, K.Kamisako, K.Kuroiwa, T.Shimada and Y.T

arui: Jpn.J.Appl.Phys., 31 (1992) L1628.

(21) K.Maeda, K.Fukuda, K.Matsumura and N.Ibaraki: Jpn.J.Appl.Phys., 28 (198
9) 1000.

(22) T.Oku, K.Kawabata, Y.Higaki, T.Matsui and H.Takano: IEICE Technical Rep ort 90 (1990) 37.

(23) J.W.Osenbach and W.R.Knolle: J.Appl.Phys., 60 (1986) 1408.

(24) J.Robertson: J.Appl.Phys. 54 (1983) 4490.

(25) H.Nagayoshi, H.Morinaka, K.Kamisako, K.Kuroiwa, T.Shimada and Y.Tarui: Jpn.J.Appl.Phys., 31 (1992) L867.

(26) H.Okabe; "Photo-Chemistry of Small Molecules" John Willey & Sons Inc.,N.Y. (1978).

(27) Y.Numasawa, K.Yamazaki and K.Hamano:

(28) H. Matsunami, M. Komoda and M. Yoshimoto: IEICE Technical Report 89 (1989)47.

(29) V.M.Donelly, A.P.Baronavski and J.R.Mcdonald: Chemical Physics 43 (197
9) 271.

(30) H.Okabe and M.Lenzi: J.Chem.Phys. 47 (1967) 5241.

(31) J.R.McNesby, I.Tanaka and H.Okabe: J.Chem.Phys. 36 (1962) 605.

(32) A.K.Shinha, H.J.Levinstein, T.E.Smith, G.Quintana and S.E.Haszko.: J.El ectrochem. Soc. 125 (1978) 601.

(33) H.Kakimuma, S.Nishikawa, T.Watanabe and K.Nihel: J.Appl.Phys. 59 (1986) 3110.

(34) N.Suzuki, T.Yoshikawa, K.Masu, K.Tsubouchi and N.Mikoshiba: Extended Ab stracts of the 21st Conf. on Solid State Device & Materials, Tokyo, (1989) 7
3.

(35) M.Yoshimoto, T.Kimoto, S.Yasuda, S.Okamoto, T.Fuyuki and H.Matsunami: I EICE Technical Report 87 (1987) 19. [in Japanese]

(36) K.Kroiwa, H.Yamazaki, S.Tsucthiya, K.Kamisako and Y.Tarui: Jpn.J.Appl.P hys., 31 (1992) 518.

(37) T.Ueno, H.Nagayoshi, H.Morinaka, K.Kuroiwa and Y.Tarui: Jpn.J.Appl.Phys.,

31 (1992): To be publised.

5 - 2 . Billion & bushonin

Constant of the state of the st

URACHANDUSACARDALISA STANALISA AND BETERSENSE URACHANDUSACARDISI AN ONLOPED DASEAT. DO NO-IN URACHANDUSACARDISI AN ONLOPED DASEAT. DO NO-IN URACHANDUSACARDISI AND BETERSENSE. DASEAT. CANDELUCE DE CONTRACTOR BERERSENSE TARBENSE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE NOTED E CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE NOTED E CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE NOTED E CONTRACTOR DE CON

の見た理論で

3章 a-SiNx:H膜中応力の発生要因

3-1 はじめに

2章ではpeening効果の無視できるNH₃マイクロ波アフターグローCVD法、N₂マイクロ 波アフターグロー法、UV光CVD法、VUV光CVD法を用いて残留応力と他の諸性質について 調べ、応力と膜特性の関連およびその制御性について述べた。本章ではこれらの結果 をもとにNH₃マイクロ波アフターグローCVD法で形成した膜の特性をアニール特性の結 果も含めてさらに詳細に検討し、残留応力の発生要因について考察を行う。

3-2 薄膜に生じる応力の要因

応力の発生要因は多岐にわたっていると考えられ、これまでいくつもの仮説が出さ れてきた。それぞれの仮説は妥当性を持っているが、実際の薄膜に発生する応力はい くつかの要因が複合し、競合しあっていると考えられる。また材料によって応力を支 配する要因は様々である。薄膜中に発生する内部応力の要因としてこれまで報告され たものを表3-1に示す。本節では薄膜に生じる応力の要因として提出されている仮説に ついて簡潔に説明を加える。

1) 原子、イオンのpeening効果

スパッタリングで薄膜に飛来して来る原子のエネルギーは10eV程度であり薄膜形成 の過程で結晶内部に空孔や格子間原子をつくり、体積増加をもたらす。また10²~10⁴ eVのエネルギーを持つ放電ガス中の加速イオンまたは中性化された加速原子が薄膜中 に不純物として取り込まれるほか、薄膜の表面原子を内部にたたき込む。これによっ ても体積増加が起こり圧縮応力を発生する。スパッタリングで形成した薄膜が圧縮応 力を持つ要因はこのpeening効果が大きいとされている。^(1,2)

a-SiN_{*}:H膜の形成においてもpeening効果を持つと考えられるPECVD法、スパッタ法 によって形成した膜は圧縮特性を持つ傾向がある。(3.4)

2)ガス吸着

薄膜を形成するときの雰囲気ガスが不純物として膜中に取り込まれると、一般に圧

縮応力を発生する。不純物が薄膜中に取り込まれる程度が大きいほど応力は大きくな る。また、粒界拡散によって低温でも不純物拡散が生じるがこれも圧縮応力の発生に 結びつく。さらしてあるガス雰囲気によって応力の変化のしかたに違いが現れ、この 場合の応力発生には表面、結晶粒界が重要であるとされる。⁽¹⁾PSG膜の成膜特性は a-SiN_x:Hに似ているが、大気中に曝しておくと圧縮側へ応力が変化していく。これは 膜が大気中のH₂Oを吸着することによる堆積膨張が要因である。⁽¹⁾a-SiN_x:H膜では膜 中に取り込まれたNH₃の脱離放出が引っ張り応力を発生するという仮説がある。⁽⁵⁾ 3)熱応力

いわゆる"バイメタル効果"と呼ばれるもので、成膜時の基板温度から室温に戻す際に熱膨張率の差によって応力が発生する。ほとんどのCVD薄膜,蒸着薄膜で生じる。 基板加熱を行わない場合でも蒸着源からの輻射熱、蒸着による凝縮熱等によって基板の表面温度が上昇して熱応力が生じる。⁽⁶⁾

4) 格子不整

基板の結晶構造と異なる結晶構造をもつ物質の薄膜が形成されるときに薄膜と基板 間の相互作用が大きいとその相互作用によって薄膜の結晶構造が基板の結晶構造に近 い疑似構造となった結果、薄膜内部に大きな歪を生じて内部応力を発生する。しかし 不一致転移の導入によって疑似構造が消滅して歪が緩和されても内部応力が生ずるこ とや、疑似構造をとらない薄膜内部にも内部応力が生じることからこれだけによって 説明をすることはできない。a-SiN_x:H膜の応力を格子不整によって説明しているもの がある。⁽⁷⁾

5) 膜中からの熱脱離反応

成膜中の表面反応に伴って膜の表面または内部からガスが脱離することによって応力 が発生する。スパッタリング膜において応力とアルゴンガス圧との関係から、可能性 が指摘されている。アルゴンガス中のスパッタリング膜において成膜中に一旦吸蔵さ れたアルゴンが基板温度等のアシストによって膜中を拡散し、格子間位置から移動し た原子が粒界を通じて表面から脱離して引っ張り応力を発生する。⁽²⁾a-SiN_x:H膜の場 合は応力の成膜温度依存性から、熱脱離反応の可能性が指摘されている。^(8.9) 6) 結晶粒界消失

結晶成長に伴って粒界が消失する際の体積変化によって張力が発生する。 これは応力の発生を理論づけることに成功した例である。このモデルによれば圧縮の場合も

も想定できるがその発生原因は明確ではない。(6.10.11)

7) 相転移

薄膜の形成過程において相転移が起こることが考えられ、確実に起こっているのは 気相から固相への転移である。物質によっては気相→液相→固相、気相→(液相)→ 固相→別の固相などの過程をとるものもある。相転移では体積変化が起こり、これが 応力の発生につながる。Gaは液相→固相の転移で体積膨張が生じて圧縮応力を生じる。 Sbは常温でアモルファスであるが厚さがある臨界値をこえると引っ張り応力へと変化 する。⁽¹²⁻¹⁵⁾

8) 空孔消滅

蒸着a-Geの場合、内部応力とESR信号との間に相関がみられ、膜内に存在するボイ ドが要因になっているとしている。薄膜中に非常に多くの空孔、ボイドが含まれてい る場合、アニールをすることによってボイドが表面に拡散して消滅する。このときの 体積収縮によって引っ張り応力が発生する。膜形成の過程ではこのアニールが自然に 生じていると考えられる。(13.16)

9) 表面張力

固体の表面張力は10²~10³dyne/cmであり、内部応力の一部を表面張力に帰すること が出来る。しかし薄膜の全応力の大きさは10⁴dyn/cmでありその寄与は小さいと考えら れる。また、内部応力の複雑な膜厚依存性も説明できない。特殊な例としてLiFは形成 のごく初期の過程で島状構造をとり、そのとき格子間隔がバルクのときよりも広がる。 これは表面張力が負になっているからで、そのために島が収縮しようとして膜全体と して引っ張り応力を生ずる。⁽¹²⁾

10) 島の結合成長に伴う応力発生

成膜初期において島が成長する際、表面拡散にともなう質量移動が生じて起こる原子の再配列が下地、界面などの影響で不完全になり歪むことによって応力が生ずる。(13.17)

11) 熱収縮

蒸着の場合薄膜形成の過程で蒸着原子が運んでくるエネルギーや蒸着原からの熱放 射のために薄膜の温度が上昇し周囲温度にまで冷却する過程で薄膜内の原子は動きに くくなる。この再結晶温度以下における熱収縮が応力発生の原因となる。⁽¹²⁾ 12)分散力 W薄膜などで柱状構造を有する場合に結晶粒界間に分散力が働き、引っ張り応力を 発生する。(18)

13) 表面層

薄膜表面に薄い特別な層が出来ているという見方がある。Cu表面に酸化層を形成させると圧縮応力を発生する。通常の真空条件でも表面が酸化される可能性はあり、応力発生の一因となりうる。(12)

これらのうちa-SiN_{*}:H膜の形成に強く関与している可能性のあるものは1)~5)である。a-SiN_{*}:H膜についてはこの他に以下の様なモデルが提出されている。これらの妥 当性については3-5で改めて議論を行う。

1) a-SiN_{*}:H膜の低密度と高水素含有量が圧縮応力につながる。

2) N-H結合が歪を引き起こし、圧縮応力に寄与している。(10)

3) プラズマ中のイオンが膜内に入射し、Si-N結合を切ることによって短距離秩序が 乱れて膜が膨張するために圧縮応力が発生する。(8)

4) ラマン散乱の結果から、N-H結合の増大が結晶化を阻み圧縮応力を残す。(20)

5) 膜中に過剰に含まれるSiが引っ張り応力の要因となる。(21)

6)サイズ効果による圧縮応力の発生。(22)

3-3 PECVD法で形成したa-SiN_x:H膜に発生する応力の一般的な傾向

図3-3-1にNH₃+SiH₄系PECVD法で形成した膜の典型的な成膜特性を示す。(a)~(c)は 励起周波数13.56MHzを用いたときの原料ガス流量比依存性、成膜圧力依存性、基板温 度依存性、高周波出力依存性、(d)は励起周波数310kHzを用いた場合の成膜温度依存性、 (e)は励起周波数依存性である。これらの特徴は

1)原料ガス流量比(NH₃/SiH₄)の増大に対して引っ張り応力特性が増大する傾向は 一般的に知られている。図3-3-1(a)では原料ガス流量比の変化に対して応力がピーク を持つことが示されており、2章で示した光CVD法、マイクロ波アフターグロー法の結 果に類似している。 2)13.56MHzで形成した膜の応力はほとんど引っ張り応力特性を示しているのに対し、
310kHzで形成した膜および高い高周波出力で形成した膜は圧縮特性を示す。
3)成膜温度の上昇にともなって応力は引っ張り応力側へシフトする。図3-3-1(e)では温度上昇にともなって圧縮特性から引っ張り特性にまで変化している。

いくつかの論文から残留応力と屈折率の関係を読みとって整理した結果を図3-3-2に 示す。a-SiN_x:H膜の屈折率はLorentz-Lorentzの関係から、密度と組成比に依存する。 PECVDで得られた報告および本研究で得られた結果からも、一定の成膜温度で形成した 膜の屈折率は組成比とほぼ比例関係が成り立つことがわかっている。一般的に屈折率 1.7~2.0で化学両論的組成比になる。この図から残留応力は成膜法によらず屈折率 1.8~2.1付近で最も引っ張り側へシフトしていることを読みとることができる。 ECRCVD法、低周波PECVDで形成した膜は全体的に圧縮特性を示している。

3-4 応力の要因

本節ではこれまで報告されている残留応力のデータ、有力と思われる仮説および本実験で得られた結果をもとにして応力の発生要因について議論を行う。

1) 熱応力

本実験で示しているデータは熱応力による成分を含んでいる。極率半径は熱応力成分を分離して示すと、

 $(1/R) = (1/R)_1 + (1/R)_T$ (3-1)

となる。ここで(1/R)は観測している基板の曲率半径であり、(1/R)_Tは熱応力による 成分、(1/R)₁は熱応力以外の要因によって生じる成分である。

熱応力の影響を確認するために基板温度を成膜温度付近まで上昇させて測定した結 果を図3-3-3に示す。室温における測定値と250℃における測定値の差は1×10° dyn/cm²未満であり、本実験で得られたデータの支配的な要因ではないことを実験的に 確認した。また組成比が化学量論値に近づくほど熱応力の影響が小さくなるという報 告もなされている。⁽²³⁾したがって熱応力は2章で観測された応力の支配的な因子に はならない。化学量論地付近におけるc-Si基板上に堆積したa-SiN_x:H膜の応力の大き さは実測されたヤング率、ポアソン比から0.2×10^edyn/cm²(圧縮)と算出されている。 (7)

2) peening効果

プラズマCVD法で応力発生要因の類推を困難にする要因の一つとしてプラズマ入 射による膜中水素量の減少があげられる。a-Si:Hの場合基本的な成膜反応は成膜表面 をターミネイトしている水素の引き抜きとSiH₃等の付着による2段階反応で説明され ている。一方NH₃とSiH₄を原料とする化学両論値付近のa-SiN_x:H膜の成膜反応は気相中 における比較的に複雑な構造をしたSi(NH₂)₃の様なプリカーサが膜表面に降り注ぎH₂、 NH₃等の脱離反応を伴って成膜が進んで行く。プラズマCVDにおけるイオン入射はこ の様な表面の脱離反応を促進する効果があると考えられる。

プラズマCVD法ではこのように応力の発生要因を不明確にする要因を含んでいるが、応力変化の成膜パラメータ依存性のある部分はpeening効果によってスマートに説明する事ができる。

H.Windschmannはスパッタ法で形成した膜のpeening効果について比較的詳細な検討 を行っている。⁽⁴⁾彼らの結果ではターゲットに入射するイオンの運動量と膜中に発生 する圧縮応力の間に相関のある事が示されている。これらの結果は結果的にはターゲ ットから放出される材料分子、原子の運動量が増大すると膜中に発生する圧縮応力が 大きくなる事を示している。プラズマCVDの場合も高エネルギーイオンが膜表面に 入射して圧縮応力が高くなっている可能性がある。この様なプラズマCVDにおける イオン入射による圧縮応力発生の可能性についてはClassenが指摘している。^(B)プラ ズマCVDにおける圧縮応力の発生は成膜圧力依存性、高周波出力依存性、出力周波 数依存性の傾向からpeenig効果の可能性が高い。すなわち成膜圧力が低くなるほど平 均自由工程の減少からイオンの運動エネルギーが高くなる。高周波出力の増大はイオ ンにかかる電界の増加を意味する。

応力の周波数依存性はpeening効果の一つの根拠となっている。低周波ではイオンは 電界の変化に追従することができるために高い運動エネルギーを持つことができると いうものである。実際、基板近傍のシース部におけるAr⁺の最大速度の周波数依存性が 調べられており、図3-3-4のようなデータが得られている。Ar⁺の場合1MHz程度からイ オンの速度が低下し始めている。プラズマ中にはAr⁺(質量数40)よりも質量の小さい N⁺(質量数14)やH⁺(質量数1)が存在しており、これらはAr⁺よりもさらに高い周波 数まで追従するものと考えられる。出力周波数が低くなるほどイオンは電界の動きの 追従するようになり、基板表面のシース部を高速で突き抜けて基板表面に達するよう になる。この結果は図3-3-1(e)で示したPECVDにおける残留応力の傾向と良く一致して いる。

以上のようにイオンのpeening効果を考えることによってPECVDの応力の成膜周波数、 高周波出力、成膜圧力依存性の傾向をを定性的に説明することができる。 一方、ど の様なイオン種がどの程度膜中に入り込むことによって応力が発生しているのかにつ いては議論されていない。最近13.56MHzのPECVDでもプラズマ気相中に原料ガスの4倍 程度のH2を混入すると残留応力が圧縮側へシフトすることが示された。一方N2の添加 ではこの様なシフトはみられない。(23.24)気相中へH2ラディカルを導入する事によっ ても同様な傾向が得られている。(25)加えたH2原子、ラジカルが成膜表面反応にケミ カルな作用を及ぼしている可能性もある。 水素添加の効果としてはイオン衝撃によ るpeening効果の可能性があるが、a-Si:Hの場合から類推すると、導入された水素ラジ カルが表面反応にケミカルな効果をもたらしている可能性がある。これらの効果の違 いを確認するために光CVDを行いながら同時に水素ラジカルを気相中に導入する実験を 行った。内部応力の添加水素ラジカル流量に対する変化を図3-3-5に示す。水素および 水素ラジカルの添加に対して応力の低減はなく、ほぼ一定値を示し、膜中水素量もあ まり変化していない。この結果より水素ラジカル添加による応力の低減効果、膜中水 素量の減少はPECVD特有の現象であるといえる。これらはイオン衝撃などの物理的な効 果に基づいていると考えられる。

これらの結果を考慮すると、13.56MHzにおけるH₂添加の効果は、気相中で発生した 水素原子または分子のイオン種がプラズマ電界によって運動量を獲得し、peening効果 を発生させたと考える事ができる。この事実から、水素イオンは13.56MHzでも圧縮応 力を発生させるだけの運動エネルギーを電界から獲得していると考えることができる。 また原子半径が小さいので比較的小さい速度でも膜内部に侵入できると思われる。

通常のSiH₄+NH₃プラズマ中でも水素イオンは形成されているはずであるが、形成された膜が圧縮特性にならないのは、量的な問題に着せられると考えられる。すなわち、 膜中に入り込むH₂原子の大きさが小さいので、かなり多量に膜表面に入射しないと応 力に影響を及ぼさないと推定する。

一方、プラズマ中に窒素を大量に添加しても応力は圧縮特性にならない。これはN⁺ が電界から十分なエネルギーを得ることができないか、または原子が大きいために膜 内部へ侵入しにくいことが考えられる。すなわち

通常のSiH₄+NH3プラズマ中では

低周波: N⁺等によるpeening効果→圧縮応力 高周波: peeningなし →引っ張り応力

このとき、水素は低周波でも高周波でも表面をたたいているが応力に関与するほどの数ではない。

一方、水素を添加したときは

低周波: N⁺, H⁺, H₂⁺等によるpeening効果→圧縮応力 高周波: H⁺, H₂⁺ によるpeening効果→圧縮応力

と考える事によって現象を説明できる。

イオンは基板表面付近で形成されるイオンシース部の電界で運動エネルギーを得る。 このイオンが膜表面をたたいて応力が発生するというものである。この考え方によれ ば、

 D.R.が遅いほどイオンにさらされる時間が長くなるので圧縮応力が大きくなる。
) 膜表面に入射するイオンは1原子層程度の深さまで潜り込むエネルギーを持って いれば十分応力の増大に寄与できる。

と予想される。したがってインプラで用いられるイオンエネルギーよりかなり低くて も応力発生に寄与しそうである。この様な低エネルギーイオンにはスパッタの効果も 現れることが予想される。実際、水素または水素ラジカルの添加によって膜中の水素 が顕著に減少するが、これは水素イオンの衝撃による脱離反応の促進が考えられる。 さらに同じくらいの質量の原子が相互作用しやすいことを考えると、 膜表面の水素が 水素イオンによってスパッタされている可能性もある。

イオン衝撃があれば膜構造が壊されて膜質が低下しそうであるが、堀田らの報告で は水素添加で応力を低下させた結果、この膜をゲート絶縁膜に用いたTFTの特性が向上 し、a-SiN_{*}:H膜中のESRスピン密度が低下したと報告している(組成は一定)。したが って応力に関与する程度のエネルギーを持った水素イオンの衝撃は膜特性に重大な影 響を及ぼさない可能性がある。一方低周波では応力の発生に重い原子がかかわってお り、この時は膜質が低下すると予想される。

これまでa-Si:Hに不純物ドーピングを行うと圧縮応力が発生することが報告されている。この要因は膜中への不純物混入が膜の構造変化を生じさせたためであると結論 された。しかし用いたドーピングガスが水素ガスで希釈されていることを考慮すると、 この場合の応力発生の要因は水素イオンのpeening効果である可能性が強い。(27)

3) 格子不整

Osenbachらはa-SiN_x:H膜に発生する圧縮応力を格子不整によって説明している。これは基本的にはSi-Si結合からなるa-Si:HからSi-N結合が主体のa-Si₃N₄:Hへと組成比が移るにつれて平均の原子間距離が変化して、同時にc-Si基板との格子不整の量も変化するとの推定である。⁽⁷⁾ しかし平均原子間距離の異なるc-Si基板とガラス基板に堆積した膜の測定された残留応力はほとんど同じであることが報告されている。⁽²⁹⁾

格子不整モデルでは組成比の変化に対して単調に応力の大きさが変化するはずであ る。しかし図2-5-1で示した応力の変化は組成比の変化に対しビーク特性を示しており、 格子不整で単純に説明することはできない。Osenbach等の示した狭い範囲内ではこの 仮定が成り立つが、引っ張り応力が生じる他の結果を説明するのは困難である。たと え界面付近で歪が生じても構造的に応力の緩和が成膜の初期段階で生じており、膜厚 も含めた全応力特性にはほとんど影響を与えないと考えられる。

以上のことから格子不整モデルは窒化膜に発生する応力を支配する要因としては不 適切であると判断する。

4) NH3吸着モデル

大山らはPECVDにおけるa-SiN_x:H膜の堆積条件依存性から、NH₃の吸着、膜中への混

入と、基板温度にともなう膜中からのNH₃脱離が引っ張り応力の要因になると推定をし ている。低周波ではNH₃が分解するために引っ張り応力を示さないとしている。この考 え方を用いれば内部応力の成膜温度依存性、周波数依存性を説明することができる。

図2-4-5で示したNH₃アフターグロー法でa-SiN_x:H膜を形成する場合の圧力依存性で は、成膜圧力が減少するにつれて内部応力が急減する。一方、NH₃の表面吸着率の圧力 依存性は一般に低圧で急減しており、圧力依存性を見る限りこれらに相関があるよう に見える。しかし図2-4-3に示したように、原料ガス流量比によっても応力は同様に減 少することや、アンモニアを含まないN₂アフターグロー法で形成したa-SiN_x:H膜でも 引っ張り応力が生じることを考慮すると、a-SiN_x:H窒化膜に発生する応力をアンモニ アの吸着によって説明するのは困難であると考えられる。

5) サイズ効果

清水らによって構造的な見地から応力の発生機構が議論されている。結晶Si₃N₄では N原子の周囲の結合状態はNSi₃となっている。N原子はSi原子に比較して小さいために N原子を取り囲むSi原子同士は互いにかなり接近しあっている。アモルファス構造にな ると構造のゆらぎのためにSi原子同士が接近しすぎるために互いに反発して圧縮応力 を発生すると推定される。⁽²²⁾この局所的な圧縮ストレスを緩和するためにN-H結合が 膜中に取り込まれるというものである。

ミクロスコピックに見た応力の要因としては妥当な考え方であり、膜中の欠陥など と関係があると考えられる。しかしN-Hの取り込みに対しては成膜反応機構を考慮すべ きであり、このモデルに基づく応力発生がどの程度実測される残留応力に関与してい るのかを説明するのは困難である。また、このモデルでは引っ張り応力の要因を説明 することができない。

以上のような点からサイズ効果による応力の発生機構はこれまで示してきた応力の 傾向を説明するには不十分であると考えられる。

6) 膜中からの熱脱離反応

通常のa-SiN_{*}:H膜は成膜温度の上昇にともなって引っ張り応力が大きくなる。この 現象を説明するために脱離反応モデルが提出されている。これは成膜表面反応におい て膜表面またはその近傍からNH₃またはH₂が脱離することにともなう膜収縮が要因であ るとしている。^(B. 9)このモデルによれば成膜温度上昇による膜中の水素結合量の減少 と残留応力の増大を説明することが可能である。

2章における結果から内部応力は水素結合状態の変化に応じて変化し、N-HとSi-Hが 適度に含まれるときにピークを持つことが示された。熱脱離反応が残留応力の発生に 結びついているのであれば応力が最大になるときに膜中の水素量が最も少なくと予想 される。この効果について調べるために膜質を広く制御できるNH₃マイクロ波アフター グロー法の膜特性をアニールによる結果も含めて詳細に検討した。

図3-3-6(c)にFT-IRから求めたSi-Nストレッチングモードの積分吸収強度1(Si-N)、 図3-3-6(d)に膜中総水素結合量、図3-3-6(e)に内部応力の[N]/[Si]依存性を示す。 I(Si-N)は[N]/[Si]の変化に対してビークを示し、ほぼ同じ[N]/[Si]で総水素量がディ ップを示し、さらに残留引っ張り応力がピークを示す[N]/[Si]がこれらと一致するこ とを見出した。N+Si原子密度はこの範囲であまり変化していないことから、総水素結 合量の減少分がSi-N結合の増大に対応していると考えられる。すなわち成膜表面反応 において水素結合量を減少させて同時にSi-N結合を増大させるような反応が生じてい ることになる。a-SiN_x:H膜形成の気相反応はa-Si:Hに比べて複雑であり反応プリカー サの形態などの統一的な見解はまだ得られていない。基本的な反応はSi(NH₂)₃のよう な反応プリカーサが気相中で形成されて膜表面に降り注ぎ、NH₃またはH₂が膜表面から 脱離して膜が形成される。これらの反応機構を考慮すると、Si-HまたはN-Hボンドが切 れて水素がH₂またはNH₃の形で脱離した後にSi-N結合が生じる反応を考えることができ る。この様な反応が1(Si-N)の大きくなる領域で盛んに生じていると考えられる。

図3-3-6の結果より総水素結合量が減少、I(Si-N)が増大するときに引っ張り応力が 増加することから、引っ張り応力がH2またはNH3の脱離を伴う表面反応によって生じて いると考えられる。すなわちガスの脱離が膜収縮の要因になっていると考えることが できる。

成膜温度以上のアニールをほどこすと引っ張り応力が増加するが、この結果も考慮 すると、膜中からのガス脱離が膜収縮を起こすには脱離反応が膜の最表面で起きるの ではなく、やや内側で生じていると考えるほうが自然である。NH₃が脱離すると考えた ときの模式的な図を図3-3-7に示す。成膜速度がある程度大きな場合、脱離反応が生じ ている間にも気相中から反応プリカーサが膜表面に入射してくるので脱離は膜表面の やや内側から生じていると考えることができる。すなわち成膜時に表面近傍からH₂ま たはNH₃が脱離する際に膜の収縮が起こり、引っ張り応力が発生していると考えられる。 引っ張り応力の強い膜表面は応力の低い膜に比べて荒れており、ドーム状の起伏が見 られるという報告がなされており、これらの結果も脱離反応が引っ張り応力につなが っていることを裏付けている。

a-SiN_x:H膜はa-Si:H膜と同様に成膜温度以上のアニール処理をほどこすことによっ て膜中に含まれる水素が脱離する。内部応力の発生が成膜時のガス脱離反応の結果で あるならば、アニール処理によるガス脱離によっても応力が変化するはずである。そ こでアニール処理による内部応力と膜中水素量の変化について評価を行った。

図3-3-8にアニールによる膜中水素量変化と応力の変化を示す。アニール条件は350 ℃、1TorrN₂雰囲気1時間である。アニールによる内部応力の増加量と膜中水素結合量 の変化が[N]/[Si]の変化に対して同じ傾向を示すことが分かった。さらに応力増加、 水素結合量の減少が最小になる[N]/[Si]は図3-3-6における引っ張り応力がビークを示 す位置に対応している。これらの結果は先に述べた脱離反応モデルを用いて説明する ことができる。引っ張り応力の最も強い膜ではガス脱離反応が成膜中に完了している ために膜中へ不安定な水素結合を残さない。このためにアニール処理を行っても膜中 の水素結合量の変化、内部応力の変化が生じにくい。一方、脱離反応が不十分で初期 応力の低い膜では図3-3-6に示した通り膜中水素結合量が多くなり、同時に多くの不安 定な水素結合が膜中に残留していると考えられる。これら膜中に残留している水素が アニールによって脱離するときに膜が収縮して引っ張り応力が増加する。

固体中に存在している水素の結合エネルギーは、結合の空間的配置によって大きく 変化することが理論的に導かれている。図3-3-9にSi-Hの空間配置とこのときの水素一 原子あたりの全エネルギーの関係を示す。真空中における水素原子の値を基準にして いる。Si-Hの空間配置によってSi-H単独で存在しているよりもかなり全エネルギーが 高くなっており、不安定な結合状態になっていることが示されている。この様な不安 定な位置関係にある水素原子が熱によって放出されると思われる。ここではSi-Hの場 合しか示されていないが、N-Hの場合も同様に考えることができる。(20)

アニール処理によって構造が緩和された結果応力が低下するという考え方がある。 しかしa-SiN_x:H膜の場合ではアニールをすることによって必ず引っ張り側へシフトす る。初期応力が圧縮応力の場合アニールによって応力が引っ張り側へシフトした結果、 応力が低下したように見えるが、実際にはアニールによって膜が収縮して引っ張り側 ヘシフトしたと考えるべきである。

N-H結合の多い膜よりもSi-Hの多い膜のほうが変化が顕著である。これは構造的な違いも考慮しなくてはならないが、主としてN-HとSi-Hの結合エネルギーの違いに由来すると思われる。実際、Si-Hは500℃程度のアニール温度でほとんど脱離してしまうが、N-Hは800℃でもかなりの量が膜中に残留することが報告されている。

このようにN-Hが支配的になるような膜は膜中水素量が非常に多いにもかかわらず熱的に比較的安定である。

どのようなa-SiN_x:H膜も成膜温度の上昇にともなって膜中水素量は減少し、応力は 引っ張り側ヘシフトする。このようなデータはこれまでにもいくつか報告されている が、さらにアニールとの関係を明らかにするために膜中水素量、内部応力の成膜温度 依存性およびそれぞれの膜のアニール前後の特性変化を調べた。結果を図3-3-10に示 す。膜中水素量は成膜温度の上昇にともなって大きく減少し、同時に内部応力が増大 している。一方、アニールによる応力変化は低温で形成した膜ほど顕著になることが 分かった。180℃で形成した膜では膜中水素結合量の減少が観測された。

これらの結果も応力発生のガス脱離反応モデルによって矛盾無く説明できる。基板 温度の上昇にともなって膜中水素量が減少し、内部応力が増大するのはガス脱離反応 が基板温度の上昇にともなって盛んになるためであると考えられる。成膜温度が170℃ 程度異なっただけでこの様に大きく膜中水素量が減少することから、ガス脱離反応の 活性化エネルギーはかなり低いと考えられる。また、このためにイオン衝撃や光照射 等の刺激によって脱離が容易に促進されるのだと考えられる。低温で形成した膜ほど 脱離反応が不十分になり膜中に不安定な結合が多く残留する。この結果低温で形成し た膜ほどアニールによる応力増大が顕著になる。

以上のようにガス脱離反応モデルを用いる事によってこれまでの実験結果を説明す る異ができる。さらにPECVDでpeening効果が大きい場合は応力特性が全体的に圧縮側 にシフトすると考えれば、これまでに報告されているほとんどすべてのデータを説明 することが可能である。残留応力の発生およびアニールの効果について模式的に説明 した図を図3-3-11に示す。

3章のまとめ

これまで提出されている残留応力発生機構モデルの妥当性について検討し、とくに熱脱離モデルに着目してNH₃マイクロ波アフターグロー法で形成した膜特性をアニールの結果も含めて詳細に調べた。

1) PECVDにおける圧縮応力の発生はイオンのpeening効果が要因である。

2)引っ張り応力の要因はH2またはNH3の脱離反応によって生じていることを膜中水素 結合量、I(Si-N)_{str}、残留応力の対応関係およびアニール特性の結果からつきと めた。

150

100

200 300 RF-POWER (WATTS)

(c)

▲ (g cm-3)

DENSITY

COMP'N (SI/NG

BC

PECVD法の成膜特性 図 3 - 3 - 1

-90-

-91-

-92-

図3-3-4 平行平板プラズマCVD装置基板表面付近における イオンエネルギーの周波数依存性

H₂,H Flow Rate (sccm)

図3-3-5 残留応力の水素、水素ラジカル希釈による変化

-96-

図3-3-7 脱離反応の模式図

図3-3-9 Si-Hの空間配置と結合エネルギー

図3-3-10 NH₃アフターグロー法で形成した膜のアニールによる 残留応力の増大および膜中水素密度の減少の成膜温度依存性

図3-3-11 残留応力発生、アニール効果の説明図

-101-

参考文献

(1) T.H.Tom Wu and Richard S. Roser: Solid State Technol., 35 (1992) 65.

(2) D.J.Hoffman and J.A.Thornton: J.Vac.Sci.Thechnol. 20 (1982) 355.

(3) 堀田定吉、第36回応用物理学関係連合講演会シンポジウムダイジェスト(1989)
 2.

(4) H.Windischmann: J.Appl.Phys., 62 (1987) 1800.

(5) 大山勝美、引間仁、第50回応用物理学会学術講演予稿集、 29pG12 (1989).

- (6) 馬来国粥: 応用物理、57 (1988) 1856.
- (7)J.W.Osenbach, J.L.Zell, W.R.Knolle and L.J.Howard: J.Appl.Phys., 67 (1990) 6830.

(8) W.A.P.Classen, W.G.J.N.Valkenburg, M.F.G.Willemesen and W.M.v.d.Wijgert: J.Electrochem.Soc., 4 (1985) 132.

(9) D.L.Smith, A.S.Alimonda, Chau-Chen Chen, S.E.Ready and B.Wacker: J.Elect rochem.Soc. 137 (1990) 239.

(10) J.C.Knights and R.A.Lujan: Appl.Phys.Lett., 35 (1979) 244.

(11) P.Chaudhari: J.Vac.Sci.Technol. 9 (1972) 520.

(12) 神山雅英 他 "薄膜ハンドブック" オーム社 (1983).

(13) 権田俊一 他 "薄膜の作製・評価とその応用技術ハンドブック" フジテクノシステム (1984).

(14) H.Horikoshi and N.Tamura: Jpn.J.Appl.Phys., 2 (1963) 328.

(15) H.Nikoh, Y.Hidaka and Y.Todokoro: ICICE Technical Report, 87 (1987) 61.

(16) 菊池 章、馬場 茂、金原 祭: 真空 24 (1981) 259.

(17) J.D.Wilcock, D.S.Cambell and J.C.Anderson: Thin Solid Films, 3 (1969) 13.

(18) 伊藤正光、堀 勝、瀬原壮一、森 一朗:第36回応用物理学関係連合講演予稿 集、 4p-K7 (1989).

(19) 安井寬治、金田重男: 真空、3 (1988) 31.

(20) P.M.Martin and G.J.Exarhos: J.Vac.Sci.Technol., A3 (1985) 3.

(21) 鎌田喜一郎: セラミックス、 5 (1989) 24.

(22) S.Hasegawa, M.Matsuda and Y.Kurata: Appl.Phys.Lett. 57 (1990) 2211.

(23) 天野祐司、土屋和彦、倉田喜博、猪熊孝夫、長谷川誠一: 第53回応用物理 学会学術講演予稿集、16pB6 (1992).

(24) I.Kobayashi, T.Ogawa and S.Hotta: Jpn.J.Appl.Phys., 31 (1992) 336.

(25)安井寬治、高橋尚志、赤羽正志: 第53回応用物理学会学術講演予稿集、17p ZW8 (1992).

(26) W.B. Jackson: 第17回アモルファスと物質の物性と応用セミナーテキスト、p75.

表1 応力の発生要因

1) peening効果

2) ガスの吸着

3) 熱応力

4)格子不整

5) 膜中からの熱脱離反応

6) 粒界消失

7) 相転移

8) 空孔消失

9) 表面張力不純物効果

10)島の結合成長に伴う応力発生

11) 熱収縮

12)分散力

13) 表面層
4章 残留応力のデバイス特性へ与える影響

4-1 はじめに

残留応力はクラックやストレスマイグレーションの発生要因となるが、この他にも ダイオード特性、MOS特性などに影響を及ぼすことが報告されている。⁽¹⁻⁸⁾本研究で はTaOxの内部応力が膜厚によって大きく変化することを利用してTaOx/a-SiN_x:H2 層膜 の応力特性と、これをゲート絶縁膜に用いたTFT特性との関係を調べた。さらに保護層 の膜厚とTFT特性の関係についても評価を行い、ゲート絶縁層、保護層の応力がTFTの サブスレッショルド特性、移動度に与える影響を評価した結果について述べる。⁽⁹⁾

4-2 デバイス構造

薄膜トランジスタ(TFT)は比較的低温で大面積の基板上に多数形成できるためにフラ ットパネルディスプレイセルの液晶駆動用としてすでに実用化されている。最近では 超LS1 のキャパシタ、密着型イメージセンサの駆動用、さらに3次元LS1へ応用するこ とを目的とした研究も行われており、単結晶中に形成したNチャネルのMOSFETとTFTで 形成したPチャネルMOSFETとの積層CMOS構造のSRAMやDRAM、EPROMなどが発表されるな ど応用範囲は広がっている。TFTの移動度、しきい値電圧、サブスレッショルドボルテ ージスウィング(S)は界面準位によって大きく支配されており、それらは成膜条件によ って大きく変化する。現在では活性層にa-Si:Hを用いた場合の移動度は1cm²/V・sec 程 度で、さらに動作特性を向上させるために活性層の多結晶化、ゲート絶縁膜への高誘 電率材料の導入などのアプローチがなされている。

高誘電率膜をゲート絶縁膜へ適用することによってTFTの特性向上を期待することが できるが、TaOx単層をゲート絶縁膜に適用しても良好なTFT特性は得られなかった。こ れはTFT特性を最も強く左右するゲート絶縁膜(TaOx)/活性層(a-Si:H)の界面特性 が悪いことに起因すると思われる。これを改善するためにTaOxとa-Si:Hとの間に a-SiN_x:H層をはさんだTaOx/a-SiN_x:H2層ゲート構造を導入することによって良好な TFT特性が得られるようになった。さらにTaOx/a-SiN_x:H2層ゲート構造を導入するこ とによってサブスレッショルドボルテージスイング(S値)がゲート絶縁膜容量の増 大から期待されるよりも小さくなることを見いだした。この要因としてTFT内部に残留 する応力に着目し、膜特性との関連を調べた。

a-SiN_{*}:H層、a-Si:H層の形成は2章で示したUV光CVD法によって形成した。TaOxの成 膜は本研究室で開発された光CVDプロセスを用いた。成膜装置を図4-2-1、図4-2-2に示 す。原料はTaCloを用い、基板温度300℃で形成を行った。TaOx成膜後に絶縁特性を向 上させる目的で基板温度400℃の光酸素アニールを行った。実験に使用したTFTの断面 構造を図4-2-3に示す。チャネル長30μm、チャネル幅350μmである。ここではTa0_膜 の十分な光-酸素アニール効果を引き出すためにn+シリコンウェハーを基板とした逆 スタガード型を用いた。最初にTaOx膜を形成、光-酸素アニールをおこなった後 a-SiN_x:H(20nm)、a-Si:H(20nm)、a-SiN_x:H(250nm)を形成した。形成条件を表4-2-1、 表4-2-2に示す。Ta0*を形成後サンプルはいったん大気中にさらされるがゲート側 a-SiN_x:H、活性層を形成するa-Si:H、および背面保護層であるa-SiN_x:H各層は真空を 破らずに連続成膜している。工程を図4-2-4に示す。背面側a-SiN,:Hのエッチングには 1%HFを使用した。a-SiN_x:Hは親水性、a-Si:Hは疎水性であることから、表面が疎水性 に変化したところをエッチングのエンドポイントと判断している。a-SiNx:Hパターニ ング用のレジストは、110℃H2S04にH202を数滴滴下して酸化性を強めた液体によって 酸化除去した。除去は2秒程度で終了する。このときa-Si:H表面も若干酸化されると考 えられるので3%程度のHFで軽く洗浄、エタノール中に保存し直ちにn+層形成に移した。 専用剝離液を用いなかったのは、剝離液中に重金属類が多く含まれていることと、有 機溶剤による剝離後の洗浄工程で表面に汚れが残留する可能性があるためである。Al 電極形成後の最終工程におけるレジスト除去には専用の剝離液を使用した。lps-Vgs特 性を図4-2-5に示す。

4-3 Ta0x膜の内部応力特性

図4-3-1にTa0*内部応力の成膜温度依存性を示す。ここで成膜した光プロセスTa0*膜 は圧縮応力を示し、成膜温度に対して直線的に増加する傾向を示した。成膜後に1時 間の光-酸素アニールを行ったが応力の変化はほとんど見られなかった。 膜厚に対 する応力の変化を図4-3-2に示す。内部応力は膜厚約30nmにおいて最大になり、その後 徐々に減少する傾向を示した。従って形成される膜は膜厚方向に対して完全に均質で はなく、膜の成長に伴ってなんらかの構造変化が生じている可能性がある。Ta0xの応 力に関する報告はほとんどないが、膜厚の増加にともなって応力が急増し、極大を示 した後次第に減少する傾向は、金属蒸着膜で報告されている特性に類似している。こ

-106-

こで用いたa-SiN_x:Hは2章で述べたUV光CVD法で形成しており、6×10[®]dyn/cm²の引っ 張り応力特性を示す。

4-4 二層膜の全応力

全応力と内部応力(σ)は次の関係で表される。

全応力=σ×d

(4-1)

d は膜厚である。二層膜の場合、膜厚方向に対して明らかに内部応力が異なるので全応力によって示した。全応力は基板の曲率半径に比例する量であり、薄膜を一つのまとまった表面層と見なしたときにそれが生じさせる表面張力に相当する量と考えられる。図4-4-1にa-SiN_x:H(20nm)とTaO_x2層構造薄膜の全応力のTaO_x膜厚依存性を示す。 a-SiN_x:H層は200A一定である。TaO_xの厚さが35nm以上では全応力は圧縮特性を示している。複合膜とすることによってTaO_x膜厚が70nm付近で最大値を示し、TaO_x単層の内部応力がピークを示す膜厚からシフトている。

4-5 デバイス特性

図4-2-1に示した2層ゲート構造において、a-SiN_x:H膜厚を20nm とし、TaO_xの膜厚 をパラメータとしたときの移動度の変化を図4-5-1に示す。移動度はTaO_xの膜厚によっ て大きく変化し、膜厚70nm付近で最大1.1(cm²/V.s)になる。この膜厚は全応力がピー クを示す位置に対応しており、内部応力との関連が示唆される。 サブスレッショル ドボルテージスイング(S)の値は単調に増大する傾向を示した。

TFTの動的、静的動作の解析的表現についてT.Lerouxが詳細な研究を行っている。 (10)この中で電流電圧特性が材料のパラメータと関連づけられ、バンド端の準位の分 布に大きく依存し、指数関数的なバンド端準位分布の特性温度により大きく影響され ることを導いている。ここで示されている1。とV。の関係式

 $I_{d} = I_{o} \left[\exp\left[(2-\alpha) (V-V_{t_{o}}) / \alpha V_{2} \right] \right]_{V_{a}}^{V_{a}}$ (4-2)

V₂=2kT/q(1+q²N_u/C_{ox}) (4-3) から界面準位密度とSの関係式を導くことができ S=dV_g/dlogl_d~ln10*2/(2-α)kT/q(1+q²N_u/C₁) (4-4) と表せる。C₁はゲート容量である、αは次のように表される。

$\alpha = T/T_{o}$

ここで

T _o =	T	$(T > T_{\alpha})$	非分散形伝導	
	To	(T <t<sub>g)</t<sub>	分散形伝導	

Tは測定温度、Toはconduction band-tail states distributionの特性温度である。 N-(E)=N_{To}/k_{To}exp[(E-E_o)/kT_o)] (4-7)

(4-5)

(4-6)

N_{To}: total density of traps in conduction band-tail distribution (4-4)式で α =1、つまりキ+リアは非分散的な伝導をすると仮定して計算したN_{ww}と Ta0_x膜厚との関係を図4-5-2 に示す。 Nssは移動度に比べて変化がプロードになるが、 50~100nm付近で最小値を持つ。これより、全応力とN_{ww}の間にも相関がありそうであ る。図4-5-3に全応力と移動度、N_{ww}の相関を示す。全応力の増大にともなって移動度 は増加する傾向を示し、S、N_{ww}は全応力が1.3×10⁴ dyn/cm付近で極大を示している。 移動度のピークが、Ta0x単独膜がピークを示す膜厚ではなく、複合膜の応力のピーク に一致していることは、複合膜としての応力特性がTFT特性に強くかかわっていること を示している。小林らはPECVD法で水素添加による応力制御手段を用いて組成比一定に しながらa-SiN_x:H膜の応力を制御し、この膜を用いたTFTにおいてゲート絶縁膜の応力 と移動度の間に相関のあることを報告している。(1)以上の結果からTFT特性の向上に はゲート絶縁膜の応力の最適化が重要であることが示された。

表4-5-3 には各層成膜時における基板の曲率半径の変化を示す。活性層の次に形成 する背面a-SiN_x:H の形成によって曲率半径の値が大きく変化している。すなわち最上 層に形成したa-SiN_x:H膜が活性層、ゲート絶縁層を介して基板を反らせていることに なる。したがって保護層の形成によってa-SiN_x:H(保護層)/a-Si:H/a-SiN_x:H/ TaOx/基板(ゲート)の各界面に働くせん断力が大きく変化すると考えられる。この 様な保護層の影響を調べるためにTFT特性の保護層の厚さによる変化を調べた。移動度、 Sは図4-5-4 に示すように背面a-SiN_x:H膜厚によって大きく変化している。この結果は 応力がTFT特性へ与える影響をより直接的に示していると思われる。C-V特性から算出 した界面準位密度がa-SiN_x:H膜の膜厚に依存していることが示されており、界面に働 くせん断力が界面特性に影響を与えている可能性がある。⁽⁸⁾

TFT特性はゲート絶縁膜/活性層界面特性に敏感であるが、活性層が薄いと背面側の 界面準位の影響も考慮しなくてはならない。さらにS/D電極にも応力が生じているはず である。したがってTFT特性の向上には背面のa-SiN_{*}:H、さらにコンタクト層、電極も 考慮にいれた応力バランスの最適化が必要であると考えられる。

4-6 まとめ

Ta0_x/a-SiN_x:H二層構造ゲートTFTを形成し、移動度とサブスレッショルド特性のTa0_xの膜厚依存性を調べた。

 移動度およびSから算出される界面準位密度の最も良くなるTa0xの膜厚は、Ta0x/ a-SiNx:Hの全応力が最も大きくなる膜厚と一致した。

2)背面側のa-SiNx:Hの厚さによって移動度、Sが大きく変化した。

これらの結果からTFT特性の向上には背面のa-SiN_x:H、さらにコンタクト層、電極も 考慮にいれた応力の最適化が必要である。

-110-

図4-2-2 a-Si:H、a-SiNx:H成膜装置の概略図

-111-

表4-1 Ta0xの形成条件

	deposition	photo-0 ₂ anneal
Sub. Temp.	300 °C	400 °C
Pressure TaCl ₅ Sublimation	7 Torr	1 atm
Temp.	55 °C	

表4-2 a-Si:H,a-SiNx:Hの形成条件

	a-SiNx:H		a-Si:H	
			undoped	n*
Sub. Temp.	(°C)	200	200	175
Pressure	(Torr)	1.0	1.0	1.0
Hg chamber Temp	. (°C)		20	20
SiH ₄ flow rate	(sccm)	2.5	2.0	10
Не	(sccm)		100	6
NH3	(sccm)	100		
PH3(1%)	(sccm)			2.5

図4-2-4 TFTの作製工程

図4-2-5 Ips-Vgs特性

図4-3-1 Ta0x内部応力の成膜温度依存性

-116-

図4-3-2 Ta0x内部応力の膜厚依存性

-118-

-120-

			(cm)
1	Before dep ↓	osition	1730
2	TaOx ↓	45nm	1989
3	+ a-SiNx:H ↓	20 n m	1971
4	+ a-Si:H ↓	20 n m	2020
5	+ a-SiNx:H	250nm	675

表4-5-3 各層成膜時における曲率半径の変化

図4-5-4 移動度、S値の背面a-SiN_x:H膜厚依存性

参考文献

(1) I.Kobayashi, T.Ogawa and S.Hotta: Jpn.J.Appl.Phys. 31 (1992) 336.

(2) H.Mikioshiba: J.Electrochem.Soc., 123 (1976) 1539.

(3) S.Mayumi, M.Shishino and S.Ueda: Jpn.J.Appl.Phys., 29 (1990) 743.

(4) H.S.Momose, T.Morimoto, S.Takagi, K.Yamabe, S.Onga and H.Iwai: Extended Abstract of the 22nd Conference on Solid State Devices and Materials, Sendai (1990) 279.

(5) A.Hamada, T.Furusawa and E.Takeda: IEICE Technical Report, 170 (1989) 67.
(6) H.S.Momose, T.Morimoto, K.Yamabe, S.Onga and H.Iwai: IEICE Technical Report, 139 (1990) 51.

(7) M.Utsunomiya and A.Yoshida: IEICE Technical Report, 156 (1988) 21.

(8) 長谷川正博、堀田昌義、川端良平、芝山彦右:1990年秋季応用物理学会講演予稿 集 27a-G-3.

(9) M.Matsui, H.Nagayoshi, G.Muto, S.Tanimoto, K.Kuroiwa and Y.Tarui: Jpn.J. Appl.Phys., 29 (1990) 62.

(10) T.Leroux: Solid State Electron. (1986) 47.

5章 総括

本研究は半導体プロセスにおける絶縁膜として重要なa-SiNx:H膜に発生する残留応 力の膜質との関連を明らかにし、これらを系統的に制御する方法を示した。さらに残 留応力の発生メカニズムを明らかにした。ほとんどのa-SiN_x:H膜には低温プロセスに おいても熱膨張係数の違いから予測される値よりもかなり大きな内部応力(1~10 ×10°dyn/cm²)を持つことが従来から指摘されている。プロセスの微細化、多層化に 伴う膜厚の増加において膜中に残留する応力とこれに起因するクラック発生は最も問 題となる事項である。強い内部応力の発生はa-SiN_x:H膜自体のクラックの発生や下層 電極のノッチ、ヒロック、ストレスマイグレーションなどの発生につながる。さらに 界面特性、デバイス特性に影響を与えることが示されており、内部応力の抑制・制御 は応用上非常に重要な課題である。

a-SiN_x:H膜はその応用範囲の広さ、研究報告の多さにもかかわらず、応力に関する 研究は少なく、その発生要因についての意見もまちまちである。現在の実用的な a-SiN_x:H膜堆積プロセスの主流は容量結合型高周波プラズマCVD法(PECVD法)である が、この方式はイオンダメージなど多くの問題を含んでいることが従来から指摘され ている。これらの問題を解決するためにトライオード方式などが開発され、SiC等にお いて特に電気特性などの膜質が飛躍的に向上したことが報告されており実用上の製法 は進歩している。しかし内部応力という観点からは、その特性が応用上非常に重要で あるにもかかわらず見過ごされることが多い。PECVD法では成膜パラメータが多く、残 留応力等の成膜条件に対する変化が複雑になることが研究を遠ざける一要因になって いたと考えられる。本研究はこの様な観点から、PECVDの成膜特性を複雑にしていると 思われるpeening効果のない成膜系を導入してa-SiN_x:H膜に発生する応力の制御性を追 求し、その発生要因を明確に示した。

第1章「緒論」ではa-SiN_x:H膜の有用性を述べた上で、残留応力の研究の意義、歴 史的背景について述べた。

第2章「各種成膜法によるa-SiN_x:H膜の堆積と比較」では引っ張り応力の発生要因 を明確に示すためにpeening効果のないソフトな成膜法としてNH₃マイクロ波アフター グローCVD法、N₂マイクロ波アフターグローCVD法を導入し、それぞれの方法で形成し たa-SiN_x:H膜の水素結合状態の組成比依存性が異なっていることに着目して残留応力 の制御の可能性を追求した。さらにアフターグロー法と同様にpeening効果のない低圧 水銀ランプを光源とした光CVD法(UV光CVD法)、窓無し光CVD法(VUV光CVD法)で形成 した膜について検討を加えた結果も示した。N₂マイクロ波アフターグローCVD法、NH₃ マイクロ波アフターグローCVD法それぞれの成膜特性の比較から、残留応力は組成比に は直接的に依存せず、膜中の水素結合状態(N-H/Si-H)に直接的に依存することを見 出した。同じ原料系を用いているにもかかわらず水素結合状態の異なる膜が形成され るのは、原料の分解の程度の違いに帰着され、UV光CVD法、VUV光CVD法の結果もあわせ ると原料をより高次または高効率に分解するほど同じ組成でよりN-H結合の割合が多い 膜質になると結論された。これに対して絶縁特性の組成比依存性はN₂マイクロ波アフ ターグロー法、NH₃マイクロ波アフターグロー法、UV光CVD法のどの成膜法を用いても ほとんど同じ特性を示すことがわかった。これらの結果から、組成比を化学両論値付 近に維持しながら水素結合状態を変化させれば絶縁特性を維持したまま残留応力を連 続的に制御できることを明らかにした。

第3章「a-SiN_x:H膜における残留応力の発生機構」では2章で得られたデータを元 にこれまで幾つも提出されている応力発生機構の仮説の妥当性について検討を加えた 結果について述べた。a-SiN_x:H膜の形成反応の統一的な見解はまだ得られていないが、 表面反応においてHzまたはNH3の脱離反応を伴っていることが共通的に示唆されている。 この様な成膜反応の類推から熱脱離反応モデルに着目し、膜特性を広く制御すること のできるNH₃アフターグロー法で形成した膜の総水素結合量、FT-IRにおけるSi-N結合 の積分吸収強度、応力の対応関係を詳細に調べた。その結果、残留応力がピークを示 す組成比において膜中総水素量がDIPを示し、同時に1(Si-N) #trがピークを示している ことを見出した。これらの現象は、熱脱離反応が応力を発生させていると考えること によって説明可能である。残留応力が大きいときにはHzまたはNH3の脱離反応によって 膜中の総水素結合量が減少し、脱離と同時にSi-N結合が形成されるために1(Si-N)*** が強くなっていると解釈される。さらにこれらの推定の正当性を裏付けるためにアニ ールによる膜中水素結合量、残留応力の変化を調べ、アニールによる膜質変化も脱離 反応モデルによって矛盾なく説明できることを示した。 2章の結果も考慮すると、 N-H、Si-Hを適度に含むような膜が形成されるときに膜表面からの脱離反応が最も盛ん になり、同時に応力が強くなると結論された。以上のように脱離反応モデルによって

a-SiN_x:H膜に発生する応力特性をアニールの効果も含めて矛盾なく説明できることを 明らかにした。

第4章「残留応力のTFT特性へ与える影響」では薄膜に発生する内部応力がデバイス 特性に与える影響について評価を行った結果について述べた。TaOx/a-SiN_x:H2層構造 ゲート TFTの特性と残留応力との対応関係について調べ、TaOx/a-SiN_x:H二層構造の 全応力特性がTaOxの膜厚を変化させることにより任意の値に制御できることを示した。 この二層構造膜をゲート絶縁膜として用いたTFTの移動度およびサブスレッショルド領 域の傾きから算出した界面準位密度はともにゲート絶縁膜に発生する全応力特性と極 めて強い相関のあることがわかった。さらに背面側の保護層として用いている a-SiN_x:H膜の厚さによってもTFT特性は大きく変化することがわかった。この結果は、 活性層の上に形成した膜が下地に応力効果を及ぼすことによってTFT特性が変化してい

ることを直接的に示している。これらの結果から残留応力がTFTの移動度、サブスレッショルド領域の特性に大きな影響を与えることが明らかとなり、残留応力制御の重要性を明確に示した。

第5章「総括」では本研究の成果をまとめ、その意義について述べた。

本論文はアフターグロー法を用いてa-SiN_x:H膜の応力特性、絶縁特性について系統 的に評価を行い、引っ張り応力の発生要因がガス脱離反応によって生じていることを 明らかにした。さらに組成比を化学両論値付近にしたまま膜中のN-H/Si-H比を変える ことにより、a-SiN_x:H膜の絶縁特性を良好に維持しながらガス脱離反応による引っ張 り応力の発生を制御できることを示した。本研究の成果により、これまでほとんど経 験的にしか行われていなかったa-SiN_x:H膜に発生する残留応力の制御を系統的に行う ことが可能になった。 謝 辞

本研究は1988年から1993年にわたり、著者が東京農工大学工学部電子情報工学科電子応用工学講座において、垂井康夫教授、並びに黒岩紘一助教授の御指導のもとで行われたものである。本研究の実施に際して貴重なる御教示と激励を賜りましたことに対し、深甚の謝意を表します。

本研究を進めるに当たっては、常にその広い学識に基づかれて貴重なる御助言、有 益なる御討論を頂いた(株)日立製作所中央研究所嶋田壽一博士に深謝します。 東京農工大学工学部の上迫浩一助教授、佐藤勝昭教授、須田良幸教授、小林俊介教授 には貴重なる御助言及び本研究遂行上の御助力を頂きました。

受託研究性として住友金属鉱山株式会社から派遣されていた現北海道工業大学教授の 鈴木和彦氏には学部時代にお世話になり、現在にいたるまで激励していただきました。

東京農工大学工学部の上野智雄博士、岩崎好孝技官、及び受託研究員としてこられ ていた旭化成工業株式会社の松井正宏氏からは多くの御助言、御助力を頂きました。 修士の武籐悟郎君、森中芳治君、学部生の野口陽也君、黄 志豪君らによって本研究 における重要なデータを得ることができました。

本研究の遂行はこれら多くの方々の協力があって初めて達成されたものです。ここに 深く感謝します。

