
Ph.D. Thesis

Disjoint-path Routing

in Hypercubes and their Variants

Author:

Antoine Charles Martin Bossard

Supervisor:

Pr. Keiichi Kaneko

Graduate School of Engineering

Tokyo University of Agriculture and Technology

September 2011

Abstract

Modern supercomputers are massively parallel systems which connect hun-
dreds of thousands of processor nodes, soon millions. It is thus critical to
link this huge quantity of nodes according to a suitable topology in order
to retain high performance. Interconnection networks used for this purpose
are thus graphs with a high connectivity. However, due to physical restric-
tions, additional requirements such as the diameter of the network must be
satisfied so as to achieve practicability.

In this thesis, we will be addressing several routing problems inside dif-
ferent interconnection networks. Precisely, we shall focus on hypercubes
and some of their variants, such as perfect hierarchical hypercubes. Inside
these topologies, we shall describe solutions to disjoint-path routing prob-
lems such as the node-to-set disjoint-path routing problem or the set-to-set
disjoint-path routing problem.

Because of the very large and continuously increasing number of com-
puting nodes inside massively parallel systems, we understand that data
routing is a critical topic to retain high performance. At the same time,
given the increasing complexity of the topologies used as interconnection
network of modern supercomputers, routing is, likewise, becoming increas-
ingly challenging and requires much attention.

The routing problems addressed in this thesis are the node-to-set disjoint-
path routing problem and the set-to-set disjoint-path routing problem. The
former one is about finding node-disjoint paths between one source node
and a set of destination nodes inside a given interconnection network. The
latter one is about finding node-disjoint paths between a set of source nodes
and a set of destination nodes.

Disjoint-path routing algorithms have two main advantages. First, gen-
erating disjoint paths is one solution to avoid notorious resource allocation
issues of parallel systems such as deadlocks, livelocks or starvations. Sec-
ond, considering the high number of nodes inside modern supercomputers,
we understand that faults are likely to occur. In this context, generating
disjoint paths maximises the probability of finding a fault-free path: in this
case, one faulty node can effectively compromise at most one path.

Chapter 1 presents the background of our research by introducing the
current context of supercomputing and massively parallel systems, as well

iii

iv ABSTRACT

as by explaining the motivations of our research.
Chapter 2 recalls several general terms and notations of graph theory

before reviewing numerous previous related works.
We give in Chapter 3 a formal definition of each of the interconnection

networks studied in this thesis.
Chapter 4 presents an algorithm solving the node-to-set disjoint-path

routing problem inside hypercubes.
Chapter 5 describes a solution to the node-to-set disjoint-path routing

problem inside perfect hierarchical hypercubes. Benefiting from a low degree
and a small diameter compared to a hypercube of the same size, perfect
hierarchical hypercubes are suitable as interconnection network of massively
parallel systems.

Then Chapter 6 states a node-to-set disjoint-path routing algorithm in
metacubes. Similarly to perfect hierarchical hypercubes, metacubes enjoy a
low degree and a small diameter compared to a hypercube of the same size.

Chapter 7 describes a set-to-set disjoint-path routing algorithm in perfect
hierarchical hypercubes.

This thesis is finally concluded by Chapter 8.

Contents

1 Introduction 1

2 Previous works 7

2.1 Preliminaries . 8

2.2 Hypercube-based interconnection networks 10

2.3 Permutation-based interconnection networks 20

2.4 Meshes, Tori-based interconnection networks 31

2.5 Other networks . 32

3 Definitions 33

3.1 Hypercube . 33

3.2 Perfect hierarchical hypercube 35

3.3 Metacube . 36

4 Optimal node-to-set disjoint-path routing in hypercubes 41

4.1 Preliminaries . 41

4.2 Node-to-set disjoint-path routing algorithm 43

4.3 Correctness and complexities 44

4.4 Summary . 48

5 Node-to-set disjoint-path routing in perfect hierarchical hy-
percubes 49

5.1 Preliminaries . 49

5.2 Node-to-set disjoint-path routing algorithm 51

5.3 Correctness and complexities 55

5.4 Empirical evaluation . 60

5.5 Improvement . 62

5.6 Summary . 63

6 Node-to-set disjoint-path routing in metacubes 65

6.1 Preliminaries . 65

6.2 Node-to-set disjoint-path routing algorithm 66

6.3 Correctness and complexities 70

6.4 Empirical evaluation . 74

v

vi CONTENTS

6.5 Summary . 75

7 Set-to-set disjoint-path routing in perfect hierarchical hy-
percubes 79
7.1 Preliminaries . 79
7.2 Set-to-set disjoint-path routing algorithm 81
7.3 Correctness and complexities 84
7.4 Empirical evaluation . 88
7.5 Summary . 90
7.6 Appendix - Case m = 2 and k = 3 90

8 Conclusion 93

Acknowledgments 95

Bibliography 97

Index 109

A Related paper 111

Chapter 1

Introduction

Routing refers to path selection. Once a path is selected, data can be subse-
quently transmitted along that path. Informally, a path linking two nodes
of a graph is a sequence of distinct adjacent nodes connecting these two
nodes. A routing algorithm is thus in charge of generating such a sequence
of adjacent nodes between two specified end-nodes. The diameter (infor-
mally the graph’s breadth) and the degree (number of edges per node) of
a graph (see Chapter 2) are important notions directly impacting the path
generation process between two nodes.

Now, to introduce interconnection networks, we first need to talk about
supercomputing. Supercomputing refers to the usage of large scale comput-
ers; by definition, supercomputers are always front when it comes to compu-
tation power. Introduced in the 60’s when they were using one or very few
processors, modern supercomputers are made of hundreds of thousands of
nodes. Today supercomputers distribute their tasks among these nodes to
perform them asynchronously as efficiently as possible: they are massively
parallel systems. Because modern supercomputers are using multi-core pro-
cessors, let us distinguish meta-nodes from regular nodes. Each meta-node
can be seen as an independent computer, having its own memory and CPU
unit. Today, the CPU unit of a meta-node is often made of several proces-
sors (i.e. several regular nodes). As an example, let us consider the Jaguar,
built by the Cray company, ranked no.1 on the TOP500 list of the world’s
fastest computers as of 2010 [110]. The Jaguar combines XT5 and XT4
meta-nodes. It includes 18,688 XT5 meta-nodes, each XT5 meta-node con-
taining a dual quad-core AMD Opteron 2356 (Barcelona) processor, thus
resulting in 149,504 regular nodes. Additionally, it includes 7,832 XT4 meta-
nodes, each XT4 meta-node containing one quad-core AMD Opteron 1354
(Budapest) processor, thus resulting in 31,328 regular nodes. Hence the
Jaguar supercomputer includes a total of 180,382 regular computing nodes
[7]. Even more recently, the K computer built by Fujitsu at the RIKEN Ad-
vanced Institute for Computational Science (AICS) in Kobe, Japan, ranked

1

2 CHAPTER 1. INTRODUCTION

no.1 on the TOP500 list as of 2011, currently contains 68,544 meta-nodes,
each made of an octocore CPU, thus resulting in a total of 548,352 regular
nodes [88, 109, 111].

An interconnection network is responsible for connecting all these nodes
each other. Theoretically, an interconnection network is an undirected
graph, each node of the interconnection network corresponding to one node
of the graph. Each node is identified by a unique address, its format de-
pending on the topology chosen to bind all the nodes of the network. As of
today, many different interconnection networks have been described in the
literature (see Chapter 2). The main concern when designing an intercon-
nection network is the network efficiency and as such, because one want to
stick closely to hardware limitations to make the network realistic, we try,
among other important properties, to keep both the diameter and the degree
of the corresponding graph as low as possible. As explained a few years ago,
there is a physical limit of eight links per node [76]; we note that even the
most recent supercomputers are sticking to this limitation [7]. Also because
of hardware considerations, the regularity of a network [45] is another criti-
cal property: it is indeed much more cost-effective to build a network whose
nodes are physically identical. There is no absolute best interconnection net-
work; depending on hardware restrictions and other conditions, each manu-
facturer will choose the most appropriate interconnection network to build
its machine. For example, the IBM Blue Gene/L is using a 3-dimensional
torus interconnection network to bind its 65,536 nodes [38], whereas the SGI
Origin 2000 is using a hypercube interconnection network as described in
[76]. Nevertheless, today interconnection networks used for these massively
parallel systems have significantly evolved and more complicated but of high
performance topologies have been introduced as a replacement for the more
conventional simple topologies [39, 63, 87].

Routing in the context of interconnection networks similarly refers, as
explained previously, to the selection of a path between two distinct nodes
to prepare data transmission between these two entities of the network.
Because of the huge and steadily increasing number of compute nodes inside
modern supercomputers, we understand that data routing inside such an
ocean of nodes is a critical topic to retain performances of supercomputers
as high as possible. Also, because of the continuously increasing complexity
of the topologies in use inside supercomputers, routing is becoming more
and more complicated and thus requires much attention.

Now let us discuss the importance of disjoint-path routing. First and
foremost, disjoint-path routing is a critical topic to ensure lock-free algo-
rithms. Effectively, as described by Duato et al. in [25], routing inside
interconnection networks may have to face different blocking situations. Let
us briefly go through these different routing problems. When sending data
on a network, a deadlock situation occurs when the message containing the
data is unable to continue its progression to the next node due to the un-

3

availability of that node. A node can become unavailable if it is already
busy transmitting data of another message and cannot process at the same
time several messages. Another deadlock case would similarly happen if a
message is requesting a resource to a node which has already granted this
resource to another message. In return, the requesting message may hold a
resource and that until being granted access to the requested resource, thus
making the current node unavailable as well. In a deadlock situation, mes-
sages are blocked forever. A second blocking situation, the livelock, occurs
when messages are denied a resource by a node and are thus rerouted by the
routing algorithm to another node. Hence we understand that a message
can be indefinitely routed along an auxiliary path, waiting for an unavailable
resource. Finally, in a network bearing an important amount of messages, a
so-called starvation situation can arise when a message requests a resource
always granted to other messages.

By using node-disjoint paths, data transmission performed along these
paths is guaranteed to avoid any of these blocking situations; indeed a node
can be used by only one message, message following one of the generated
disjoint paths. Hence resources of a node are necessarily available for a
message passing by, if any.

Also, disjoint-path routing can be seen as an improvement regarding
efficiency. By limiting the number of messages going through a node to
one, each node is thus ensured to process at most one message during the
whole transmission operation. It is easy to understand that a node having
to handle many messages, queued or simultaneous, is likely to affect global
routing performance as this node has become a bottle-neck.

Throughout our research, we designed several routing algorithms for
different interconnection networks. Firstly we focused on the node-to-set
disjoint-path routing problem. To introduce this routing operation, let us
start by looking at one related problem, multicasting, and its concrete appli-
cations. Multicast, a one-to-many communication scheme, is about passing
data from one sender to several receivers, using, unlike node-to-set disjoint-
path routing, transmission paths which are not necessarily disjoint. Multi-
cast has applications in several domains. One of its most well-known use is
for IP multicasting, which consists in distributing information from a com-
mon sender to a set of different IP addresses of the same subnet or group
[98]. Also, multicasting is used by peer-to-peer technologies to efficiently
deliver the same information data to several recipients [6]. Now, within
interconnection networks, the node-to-set disjoint-path routing problem is
generalized to the following statement: “find node-disjoint paths between
one common source node and several distinct destination nodes”. In this
context, generating disjoint paths also has direct applications: disjointly
transmitting data from one node to several others. Because the paths are
internally disjoint, it is a guarantee against blocking situations as explained
previously. But more generally, as the number of nodes in massive parallel

4 CHAPTER 1. INTRODUCTION

systems continuously grows, faults are likely to occur. Hence paths disjoint-
ness is a critical asset for a routing algorithm so as to establish communica-
tion routes under a faulty environment. In this context, multicasting is not
as reliable since the generated paths share several nodes at the beginning
of the data transmission. Then only one fault occurring on such a shared
node suffices to jeopardize data transmission. Also, another motivation for
node-to-set disjoint-path routing is that since the transfer of the same mes-
sage occurs simultaneously across the network, it is much more efficient to
send it using a node-to-set operation than several successive node-to-node
routings. Globally, destination nodes will receive the data sooner and the
network will be in use a shorter period of time. And we can see here another
motivation: a shorter use in time of the network leads to a more efficient
algorithm regarding Green IT [94].

Secondly we focused on the set-to-set disjoint-path routing problem.
Similarly to the node-to-set disjoint-path routing problem and for the same
reasons, set-to-set disjoint-path routing is a critical issue when designing
a new network topology to efficiently transmit data, this time from a set
of senders to a set of receivers. Avoiding blocking situations, a set-to-set
disjoint-path routing performs at once what would require many successive
node-to-node routing operations, which results in a significant gain regard-
ing the overall routing operation efficiency. Again, the network will be in use
a shorter period of time, thus reducing power consumption and addressing
environmental issues.

In Chapter 2 we first recall general graph theory definitions such as
degree, diameter or path. Additionally, several notations frequently used
throughout this work are also given. Then, we review numerous previous
related works: we shall briefly present several interconnection networks and
their solutions to routing problems so as to better appreciate the environ-
ment of our research which is focused on hypercube-based topologies. We
shall thus extend our audit of topologies and their routing solutions to differ-
ent kind of interconnection networks, such as permutation-based topologies,
to have a global view of the surrounding activity of this research field.

Then, Chapter 3 formally introduces and defines the interconnection
networks used in the later parts of this thesis. Additionally, several ba-
sic routing algorithms inside these topologies are provided as they will be
frequently employed in following chapters.

As extensively used by next chapters, we describe in Chapter 4 a node-
to-set disjoint-path routing algorithm in hypercubes. This algorithm is de-
scribed in Section 4.2 of Chapter 4 and its correctness and complexities are
established in Section 4.3.

Chapter 5 describes a node-to-set disjoint-path routing algorithm in per-
fect hierarchical hypercubes (HHC). As formally introduced in Chapter 2
and 3, the HHC topology has been introduced independently by Malluhi et
al. [86] and Wu et al. [115]. This network has for main motivation that it

5

can connect many nodes while keeping a low degree and a small diameter.
For instance, with only three links per node, the HHC network can connect
26 nodes. It would require twice as many links per node to a hypercube
network to connect that same amount of nodes. As current hardware limits
the number of links per node to eight [102], we easily understand the merit
of a network keeping its degree low: it is suitable to connect a significant
number of nodes where a more simple topology like a hypercube would not
be satisfactory due to its high degree as explained in the previous example.
Perfect hierarchical hypercubes are thus suitable as interconnection network
of massively parallel systems. This algorithm is described in Section 5.2 of
Chapter 5 and its correctness and complexities are established in Section
5.3.

Chapter 6 describes a node-to-set disjoint-path routing algorithm in the
metacube (MC) interconnection network. As detailed in Chapter 2 and 3,
metacubes have been introduced by Li et al. as an interconnection network
for massively parallel systems [83]. Like perfect hierarchical hypercubes,
metacubes have for merit to connect a huge number of nodes while retain-
ing a low degree as well as a small diameter compared to an hypercube of
the same size. For example, an MC network requires only six links per node
to connect 227 nodes whereas it would require 27 links per node to a hy-
percube to be able to connect that same amount of nodes. Metacubes are
thus suitable as interconnection network of massively parallel systems. This
algorithm is described in Section 6.2 of Chapter 6 and its correctness and
complexities are established in Section 6.3.

Subsequently to the presentation of three node-to-set disjoint-path rout-
ing algorithms, we describe in Chapter 7 a set-to-set disjoint-path routing
algorithm in perfect hierarchical hypercubes. This algorithm is described in
Section 7.2 of Chapter 7 and its correctness and complexities are established
in Section 7.3.

Finally we conclude this thesis in Chapter 8 where suggestions of future
works are presented.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Previous works

We present in this chapter several interconnection networks and discuss
routing problems and their solutions inside these different topologies. Such
routing problems include node-to-node (aka. point-to-point or unicast) rout-
ing, node-to-node disjoint-path routing, node-to-set disjoint-path routing,
set-to-set disjoint-path routing and finally k-pairwise disjoint-path routing.

The two node-to-node routing problems mentioned above differ from the
fact that the node-to-node disjoint-path routing problem is to find several
internally node-disjoint paths between a random pair of nodes, whereas the
node-to-node routing problem, or unicast, is to simply find one path between
a random pair of nodes.

Regarding the existence, and more precisely the maximum number of
disjoint paths that can be found for the aforementioned disjoint-path rout-
ing problems, we can state directly from Menger’s theorem [92] that a k-
connected graph (i.e. at least k nodes need to be removed to lose connec-
tivity) implies that k disjoint paths can be found when solving the node-
to-node disjoint-path, node-to-set disjoint-path or set-to-set disjoint-path
routing problem. This property shall be extensively used when performing
disjoint-path routing to give an upper bound of the number of disjoint paths
to be found.

A maximum flow algorithm describes a generic solution to these disjoint-
path routing problems [35]. However the time complexity of such an algo-
rithm is high: it is polynomial in the number of nodes and edges of the
graph. In a graph G = (V,E), several implementations of an algorithm
solving the maximum flow problem have been given. The time complexity
of some of them is as follows: O(|V | · |E|2) [28], O(|V |2 · |E|) [42, 18, 43],
O(|V |3) [42, 18], O(|V | · |E| · log |V |) [43].

For example, in an n-dimensional hypercube Qn, solving the node-to-set
disjoint-path routing problem using a maximum flow algorithm implemen-
tation like [28] requires O(23n) time complexity, thus exponential in n. We
described a hypercube node-to-set disjoint-path routing algorithm requiring

7

8 CHAPTER 2. PREVIOUS WORKS

O(n2) time complexity, this time polynomial in n [8]. This example shows
that the maximum flow algorithm is not efficient when solving such rout-
ing problems, and that there is much space for improvement regarding time
complexity.

As discussed in [114], due to the increasing number of processors in
modern supercomputers but also to the error-prone nature of any hardware
component, fault-tolerance is a critical topic when designing algorithms,
hence fault tolerance as well as cluster fault tolerance topics shall also be
considered in this chapter. Also, we should note that the fault tolerance
property of routing algorithms is widely used by the algorithms described
in Chapter 5, 6 and 7.

A first section shall recall some general definitions. Then we review
interconnection networks depending on their structure; some derive from
hypercubes, others from meshes, etc. We shall first focus on hypercube-
based interconnection networks. Due to the popular nature of hypercubes,
there exist in the literature many different topologies based on hypercubes.
Then we review some permutation-based interconnection networks, one of
the most famous being the star graph. A third section shall deal with mesh-
based interconnection networks, and finally some other networks falling in
none of the previous categories shall be reviewed in the last section of this
chapter.

2.1 Preliminaries

We recall in this section several definitions of graph theory as well as nota-
tions often used hereinafter.

Definition 1 [24] A graph G = (V,E) is defined by a set of vertices (nodes)
V and a set of edges E ⊆ V × V .

Definition 2 [24] For a graph G = (V,E), any graph G′ = (V ′, E′) with
V ′ ⊆ V and E′ ⊆ E is a subgraph of G.

Definition 3 [24] In a graph G = (V,E), two nodes u, v are adjacent, or
neighbours, if (u, v) ∈ E.

Definition 4 [24] A node u is incident to an edge e if v ∈ e.

Definition 5 [24] The degree of a node u is the number of edges starting
at u, that is the number of neighbours of u; it is denoted by d(u).

Definition 6 [24] If all the nodes of a graph G have the same degree k, then
G is k-regular. We say that G has a degree k.

2.1. PRELIMINARIES 9

Definition 7 [24] In a graph G = (V,E), a path P = (V ′, E′) is a subgraph
of G (ie. V ′ ⊆ V and E′ ⊆ E) of the form

V ′ = {u0, u1, . . . , uk} E′ = {(u0, u1), (u1, u2), . . . , (uk−1uk)}

The length of P corresponds to its number of edges, that is k. P shall be
referred to as simply u0 → u1 → . . . → uk or in more concise form u0 ; uk.
u0 and uk are referred to as the end-nodes of P .

Definition 8 [45] Two paths P = (V,E) and P ′ = (V ′, E′) are node-
disjoint (abbr. disjoint) if V ∩ V ′ = ∅.

Definition 9 [45] Two paths P = u0 → u1 → . . . → uk−1 → uk and
P ′ = u′0 → u′1 → . . . → u′k−1 → u′k are internally disjoint if ∀i, j, 1 ≤ i, j ≤
k − 1, ui 6= u′j.

Definition 10 A subpath of a path P is a subgraph of P .

Definition 11 [24] The distance between two nodes u, v, denoted by d(u, v),
is the length of a shortest path linking u and v.

Definition 12 [24] The diameter of a graph G, denoted by diam(G), is the
greatest distance between any two nodes of G.

Definition 13 The parity of a bit sequence corresponds to the parity of its
number of bits set to 1.

Definition 14 [45] The center of a graph G = (V,E) is the node c ∈ V
such that the sum of the distances

∑

v∈V d(c, v) is the smallest as possible.

Notation 1 The set of all the neighbours of a node u is denoted by N(u).

Notation 2 The Hamming distance between two bit sequences a and b is
denoted by H(a, b).

Notation 3 The length of a path P is denoted by L(P).

Notation 4 An arbitrary shortest path between any two nodes a, b is de-
noted by a

SPR
; b.

Notation 5 An edge between a node u and a node in a set V is denoted by
u → V .

Notation 6 The binary exclusive OR operation (XOR) is denoted by ⊕.

10 CHAPTER 2. PREVIOUS WORKS

2.2 Hypercube-based interconnection networks

The hypercube topology has been used in supercomputing as soon as the
early 80’s, the Caltech Cosmic Cube being the first parallel computer based
on this network. At that time, the Caltech Cosmic Cube used a six dimen-
sional hypercube network to bind 64 processors [101].

Shortly came in 1985 the Intel iPSC/1 which at that time was made of
32 to 128 CPU nodes (7-dimensional hypercube) [90], as well as the nCUBE
10, first parallel computer of the NCUBE company. This time, the nCUBE
10 was built upon a 10-dimensional hypercube allowing the connection of
1024 CPU nodes [58].

More recently, SGI introduced in 1996 the Origin 2000 family of com-
puters [76], including from 2 to at most 128 CPU nodes depending on the
model. It was followed in 2000 by the Origin 3000 family [10], including
from 2 to at most 512 CPU nodes again depending on the model.

Hypercubes remain today a very popular network topology thanks to
their simplicity and interesting properties as explained later in this section.
By using hypercubes either as low-level entities (we usually use the terms nu-
cleus or cluster) as for hierarchical cubic networks [41, 13] or metacubes [83],
or as high-level structure as for cube-connected cycles [97], hypercube-based
interconnection networks can rely on these important properties. Due to
this popularity, existing hypercube-based interconnection networks clearly
outnumber any other category of interconnection networks.

2.2.1 Hypercubes

As presented in the introduction of this section, the hypercube topology is
a popular interconnection network thanks to many interesting properties.
Routing in parallel computers built upon the hypercube topology has been
largely discussed by Rabin in [99]. As explained by Saad et al. in [100], a
hypercube has a recursive structure: an n-dimensional hypercube (or simply
n-cube) Qn is made of two distinct (n − 1)-dimensional hypercubes. This
property shall be extensively used when designing disjoint-path routing al-
gorithms. Another critical property when it comes to routing is that two
adjacent nodes of a hypercube have addresses differing in one and only one
bit position. Thanks to its properties and simplicity, many interconnection
networks are using a hypercube either as low level cluster (e.g. metacubes
[83]) or as a high level structure connecting different clusters (e.g. cube-
connected cycles [97]).

Each node of a Qn has an n-bit address. Two nodes are adjacent if and
only if their addresses differ in one single bit. A Qn is made of two hyper-
cubes (also called subcubes) Q0

n−1 (abbr. Q0) and Q1
n−1 (abbr. Q1), where

for a dimension i, Q0 is induced by the set containing all the nodes of Qn

whose i-th bit is set to 0, and Q1 is induced by the set containing all the

2.2. HYPERCUBE-BASED INTERCONNECTION NETWORKS 11

nodes of Qn whose i-th bit is set to 1.

A node-to-node disjoint-path routing algorithm in a hypercube was de-
scribed in [100]. Because a Qn is n-connected, Menger’s theorem [92] shows
that there exist n internally disjoint paths between any two nodes s and d.
The main idea of this algorithm to ensure path disjointness is to start each
path by flipping a bit at a distinct dimension for each path. We understand
that during the first flipping operation, a bit may be flipped although it was
already set to its final value, that is s and d have the same bit value on the
dimension of the flipped bit. Hence because we need in such case to flip
again that bit, this algorithm generates paths of length at most H(s, d) + 2
in linear time complexity.

A first hypercube fault-tolerant node-to-node routing algorithm was in-
troduced in [47]. In a Qn containing at most n − 1 faulty nodes, this al-
gorithm finds a fault-free path between any two nodes s and d. The main
idea is to reduce Qn into Q0 and Q1 so that s and d are not inside the same
subcube, before recursively applying the algorithm onto the subcube con-
taining the least faulty nodes. This divide-and-conquer approach is often
used when routing inside hypercubes and more generally inside recursive
topologies. The source or destination node may need to be routed to the
opposite subcube with a fault-free path of length at most two before the re-
cursion. Once a fault-free subcube is reached, the two nodes are connected
using a shortest-path routing algorithm. Since a Qn can be reduced at most
⌈log2(n − 1)⌉ times until one subcube is fault free, there will be therefore
at most ⌈log2(n − 1)⌉ paths of length two used before applying a shortest-
path routing algorithm, hence the generated path will be of length at most
2⌈log2(n−1)⌉+(H(s, d)−⌈log2(n−1)⌉) = H(s, d)+⌈log2(n−1)⌉. Because the
number of faulty nodes is at least divided by two at each iteration of the algo-
rithm, finding a fault-free path to route s or d to the opposite subcube is tak-
ing at the k-th iteration of the algorithm O(n/2k) tests to complete. Hence

we obtain a total time complexity of O(n) +O(
∑⌈log2(n−1)⌉

k=0 n/2k) = O(n).

This previous result has been improved in [50]. Because a path of length
two can be used to route s or d to the opposite subcube, a penalty edge (i.e.
not on a shortest-path toward s or d) may be introduced. This new algorithm
gets rid of such penalty edge by carefully selecting which dimensions to use
when routing s or d into the opposite subcube. If possible, only nodes
included in a shortest-path from s to d shall be used. There may be a case
where all neighbours of s or d included on such a shortest-path are faulty
nodes. In this case, a neighbour node not included on a shortest-path shall
be used, thus introducing two penalty edges (that dimension will be flipped
twice). This case shall occur only once hence the path generated has a length
of at most H(s, d) + 2. Time complexity remains O(n).

12 CHAPTER 2. PREVIOUS WORKS

Finally, Gu et al. showed in [49] that the maximal length of the paths
generated by this hypercube fault-tolerant node-to-node algorithm is in prac-
tice at most n+ 1 inside a Qn.

A hypercube node-to-set disjoint-path routing algorithm has been pro-
posed by Latifi et al. [75]. In a Qn it can find k disjoint paths between
one common source node s and k destination nodes D = {d1, d2, . . . , dk}
(k ≤ n). This algorithm reduces a Qn into two subcubes Q0 and Q1, but
this time the reduction is made along using the rightmost bit, that is the
dimension 0. Assume s is set to 0 (hence s ∈ Q0). One path is constructed
inside Q1 and the algorithm is recursively applied onto Q0 only, routing un-
processed destination nodes of Q1 with disjoint-path of length at most two
into Q0. We understand a path will suffer a penalty if its destination node
dj is blocked by other destination nodes from being connected to a node of
Q0 by flipping a bit set to 1. By balancing the number of bits of dj set to 1
and the number of needed blocking destination nodes, we can deduce that
paths will never include more than n+ 1 edges.

A fault-tolerant set-to-set disjoint-path routing algorithm in hypercubes
was given in [46]. In a Qn, given two sets of k ≤ n non-faulty nodes S the
source nodes and D the destination nodes, and a set of at most n− k faulty
nodes, the algorithm finds k fault-free disjoint paths between the nodes of S
and the nodes of D. The main idea of the algorithm to achieve path disjoint-
ness is, once again, to follow a divide-and-conquer strategy. Qn is reduced
into Q0 and Q1 using the dimension i such that D∩Q0 6= ∅ and D∩Q1 6= ∅.
The main task is then to balance the number of source and destination
nodes inside each subcube before recursively solving the problem onto Q0

and Q1 , respectively. A fault-tolerant node-to-node routing algorithm shall
be used when reaching a subcube containing only one pair of source and
destination nodes. Since at most two edges are needed to route a source or
destination node to the opposite subcube, the paths have a length of at most
(n− 1)+ (k− 1)+ 2 = n+ k. The time complexity T (k, n) of the algorithm
can be expressed as T (k, n) = T (k1, n−1)+T (k2, n−1)+O(n), k1+k2 = k
(O(n) is the time complexity to reduce a Qn, that is especially to balance
the number of source and destination nodes inside each subcube). With
further calculations we obtain a value of T (k, n) = O(kn + kO(n)) finally
simplified to O(n log k).

Let us now focus on cluster fault-tolerant (CFT) routing algorithms in
hypercubes. As explained previously, there is an evident motivation for fault
tolerance in algorithms. The aim for cluster fault tolerance is to group faulty
nodes into subgraphs of small diameter so that it becomes easier for routing
algorithm to handle faults inside the network. Concretely, a faulty cluster
is a connected subgraph whose nodes are all faulty.

2.2. HYPERCUBE-BASED INTERCONNECTION NETWORKS 13

A hypercube CFT node-to-node routing algorithm was described in [49].
In a Qn, given a set F of at most 2n− 3 faulty nodes grouped into at most
n− 1 clusters of diameter at most one, this algorithm finds a fault-free path
between two non-faulty nodes s and d. The main idea of the algorithm is
to reduce Qn into two subcubes Q0 and Q1 such that s and d are inside
different subcubes, say s ∈ Q0. Then depending on which subcube contains
the more faulty nodes, we recursively route s toward d inside the opposite
subcube, that is the less faulty subcube, using a fault-tolerant node-to-node
routing algorithm in hypercubes. If there exists a fault-free path of length
at most two connecting s ∈ Q0 to a node s′ ∈ Q1, then we apply the fault-
tolerant node-to-node algorithm onto Q1 to connect s′ and d. Otherwise we
have three edges to connect s to a node in Q1, plus at most n − 1 edges
for shortest-path routing in Q1. In both cases we have a total of at most
3 + (n − 1) = n + 2 edges. The time complexity of this algorithm is linear
in n: finding a fault-free path to connect s to a node in Q1 takes O(n) time
since there are at most 2n−3 faulty nodes, and both a shortest-path routing
as well as a fault-tolerant node-to-node in hypercubes are in O(n) time.

A cluster fault-tolerant node-to-set disjoint-path routing algorithm in
hypercubes was described in [55]. In a Qn, given a non-faulty nodes s, a set
of k, 2 ≤ k ≤ n non-faulty nodes D and a set of at most n−k faulty clusters
of diameter at most one (ie. at most 2(n− k) faulty nodes), this algorithm
can find k fault-free disjoint paths connecting s to every node of D. The
main idea of the algorithm is to follow a divide-and-conquer approach by
reducing Qn into Q0 and Q1 such that D ∩ Q0 6= ∅ and D ∩ Q1 6= ∅ hold.
Assume that s ∈ Q0. The routing problem is recursively solved in Q1 and
Q0, respectively. A separate routing procedure is used when two destina-
tion nodes remain, ensuring at most n+2 edges in O(n) time. By induction
hypothesis the paths in Q1 are of length at most (n− 1) + 2. Since at most
one additional edge is required to connect paths of Q1 to s, we have a max-
imum path length of (n − 1) + 2 + 1 = n + 2. As for the time complexity
of the algorithm we have T (k, n) = T (|D ∩Q0|, n− 1) + T (|D ∩Q1|, n− 1)
with |D ∩ Q0| + |D ∩ Q1| = k and T (k, n) = O(n) for k ≤ 2. Therefore
T (k, n) = O(kn).

A CFT set-to-set disjoint-path routing algorithm in hypercubes was in-
troduced in [55]. In a Qn, given two sets of k (2 ≤ k ≤ n) non-faulty
nodes S and D and at most n − k faulty clusters of diameter at most
one, this algorithm finds k fault-free disjoint paths between a node of S
and a node D. The main idea of this algorithm is to apply a divide-and-
conquer approach by reducing Qn into Q0 and Q1 such that D ∩ Q0 6= ∅
and D ∩ Q1 6= ∅ hold. The key is to balance inside each subcube the
number of source and destination nodes before recursively applying this al-
gorithm onto Q0 and Q1 recursively. Hence some source nodes are routed

14 CHAPTER 2. PREVIOUS WORKS

to the opposite subcube with fault-free disjoint paths of length at most
two. A separate routing algorithm is used when reaching a subcube con-
taining at most two source and two destination nodes, ensuring at most
n + 4 edges in O(n). Regarding the maximal path length L(k, n), we have
L(k, n) ≤ max{L(k1, n − 1), L(k2, n − 1)} + 2 with k1 + k2 = k since we
need at most two edges to connect a source node of Q0 to node in Q1. Also
L(2, n) ≤ n + 4 and L(1, n) ≤ n + 2, hence L(k, n) ≤ n + k + 2. For the
time complexity we have T (k, n) = T (k1, n − 1) + T (k2, n − 1) + O(kn)
with k1 + k2 = k since for each of the O(k) source nodes it takes O(n)
to find a fault-free disjoint path routing inside the opposite subcube. Also
T (1, n) = O(n), hence T (k, n) = O(kn+ k · kn) = O(k2n), later reduced to
O(n log k).

A first cluster fault-tolerant k-pairwise disjoint-path routing algorithm
in hypercubes was given in [52]. In a Qn (n ≥ 4), this algorithm finds k fault-
free disjoint paths connecting each pair (s1, t1), . . . , (sk, dk) (2 ≤ k ≤ ⌈n/2⌉)
with at most n − 2k + 1 faulty clusters of diameter one. The main idea
of the algorithm is to reduce Qn into Q0 and Q1 such that at least one
the k pairs (sj , dj) is separated: sj ∈ Q0 (resp. sj ∈ Q1) and dj ∈ Q1

(resp. dj ∈ Q0) to then recursively solve the problem onto Q0 and Q1,
recursively. Again, the key is to balance the number of nodes si and dj
inside each subcube. This is achieved by routing with fault-free disjoint
paths of length at most three some nodes di into the opposite subcube be-
fore the recursive call. The induction stops when there remain only one or
two pairs to connect (CFT node-to-node routings). A CFT node-to-node
routing generates a path of length at most n + 2, and a CFT algorithm
connecting two pairs at most n + 4. The maximum path length L(k, n) is
thus given by L(k, n) = L(k − 1, n − 1) + 3 (k ≥ 3) and L(1, n) = n + 2,
L(2, n) = n + 4. Hence L(k, n) = 2n. Regarding the time complex-
ity T (k, n), we have T (k, n) = T (k0, n − 1) + T (k0, n − 1) + O(n) with
k0 + k1 = k and T (1, n) = O(n). With further calculations we obtain
T (k, n) = O(kn+ kO(n)) finally simplified to O(kn log k).

This CFT k-pairwise disjoint-path routing algorithm in hypercubes has
been improved in [57] by significantly reducing the maximum length of the
generated paths. The main idea for this improvement is to balance the
number of pairs (and not only the number of si, dj) to connect inside each
subcube. By balancing the number of pairs connected to one subcube so
that each subcube contains almost the same number of pairs to connect,
the number of hypercube reductions will significantly be reduced, and the
penalty edges to rejoin separated pairs will be decreased since each pair will
be separated at most ⌈log k⌉ times. Hence in the worst case, CFT node-
to-node routing will be applied in a subcube of dimension n− ⌈log k⌉, thus
requiring at most n− ⌈log k⌉+ 2 edges. With at most two edges to rejoin a

2.2. HYPERCUBE-BASED INTERCONNECTION NETWORKS 15

separated pair, we obtain in that worst case of ⌈log k⌉ hypercube reductions
a path of length at most (n− ⌈log k⌉+ 2) + 2⌈log k⌉ = n+ ⌈log k⌉+ 2.

2.2.2 Cube-connected Cycles

We review in this section the cube-connected cycles (CCC) network first
described by Preparata and Vuillemin [97]. The CCC network has a 2-level
structure: it connects cycles using a hypercube topology. Each node of any
CCC network has a degree of at most three: at most two cycle edges and
at most one hypercube edge. This interconnection network has for merit
that compared to a hypercube of the same size it has a smaller diameter
and lower degree. For example a CCC(3, 3) also denoted CCC3 connects 24
nodes with only three links per node, whereas a hypercube network requires
at least 5 links per node to connect that same number of nodes.

A CCC(n, k) is parametrized by n the dimension of the underlying hy-
percube connecting cycles of length k. Each has an address (c, p) where
c identifies the cycle including the node and p represents the position of
the node inside that cycle. Hence 0 ≤ c ≤ 2n − 1 and 0 ≤ p ≤ k − 1
hold. A node (c, p) is adjacent to the following at most three nodes: (c, (p+
1) mod k), (c, (p− 1) mod k) (inducing cycle edges) and (c⊕ 2p, p), 0 ≤ p ≤
n− 1 (inducing hypercube edges). From this definition we understand that
k is necessarily greater or equal than n. We also deduce that inside each
cycle k − n nodes are not incident with a hypercube edge and are thus of
degree at most two. One should note that the special case CCC(n, n), also
denoted CCCn, is frequently used as a simplification of CCC networks as it
is regular and vertex symmetric.

A node-to-node routing algorithm in CCC(n, k) finding a shortest-path
between (0, 0) and any node (c, p) was given in [91]. The main idea of this
algorithm is to traverse cycles so that the positions of the bits set to 1 in c
are visited using the minimum number of cycle edges.

The problem can be summarized as finding a shortest-path which goes
through all positions set to 1 from the position 0 to the position p on the
cycle of length n made of 1’s when a hypercube edge must be traversed and
of 0’s otherwise. Traversing optimally the positions set to 1 in that cycle
depends on the respective positions of p and the leftmost / rightmost bits set
to 1 in c. Eight traversing types can be distinguished, each having at most
two inflection points (direction inversion), leading to at most n+ ⌊n/2⌋ − 2
cycle edges if k = n, at most n+ ⌊k/2⌋− 1 cycle edges if n+1 ≤ k ≤ 2n− 2
and at most k cycle edges if k ≥ 2n − 1. Adding the at most n hypercube
edges, we obtain a diameter for CCC(n, k) of 2n+ ⌊n/2⌋ − 2 if k = n > 3,
2n+ ⌊k/2⌋ − 1 if n+ 1 ≤ k ≤ 2n− 2 or n+ k if k ≥ 2n− 1.

16 CHAPTER 2. PREVIOUS WORKS

2.2.3 Perfect Hierarchical Hypercubes

Hierarchical hypercubes of dimension n have been introduced in the liter-
ature by Malluhi and Bayoumi in [86]. A perfect hierarchical hypercube
(HHC) is a (2m + m)-dimensional hierarchical hypercube. The HHC net-
work has a 2-level structure: on the low-level, nodes are connected each
other forming several distinct hypercubes, and on the high-level, each node
of one low-level hypercube is connected to another node of a distinct low-
level hypercube. This idea of connecting hypercubes has motivated Wu et
al. to name this interconnection network Cube-connected Cubes when they
described it independently in [115]. The main motivation for the perfect
hierarchical hypercube interconnection network is that it can connect many
nodes in comparison with its low degree as well as its small diameter. For
example, an HHC6 can connect 26 nodes with only 3 links per node, half
less than a hypercube Q6 of the same size.

A (2m +m)-dimensional (i.e. perfect) hierarchical hypercube is denoted
by HHC2m+m. Each node of an HHC2m+m is a pair of a 2m-bit sequence, the
subcube ID, and a m-bit sequence, the processor ID. Two nodes a = (σa, πa)
and b = (σb, πb) are adjacent if and only if one of the following conditions
holds: σa = σb and H(πa, πb) = 1, or, σa = σb ⊕ 2πb and πa = πb. Edges in-
duced by the first condition are called internal edges, whereas edges induced
by the second condition are called external edges. From this we can deduce
the degree of HHC2m+m is m + 1. Also we note that the nodes having the
same subcube ID σ induce an m-dimensional hypercube, denoted subcube
Qm(σ).

A node-to-node routing algorithm in HHC was given in [86]. In an
HHC2m+m, the algorithm finds a path connecting any two nodes s = (σs, πs)
and d = (σd, πd). The main idea is to follow a Hamiltonian path in an m-
dimensional hypercube starting from πs to πd (or a neighbour of πd if the
parity of πs ⊕ πd is even) for internal edges. External edges are then sim-
ply inserted at the appropriate place inside this Hamiltonian path to obtain
the final path. We understand that at most 2m external edges will be re-
quired to set all the bits of σs to σd, and at most 2m internal edges for the
Hamiltonian path in an m-dimensional hypercube as described. Hence the
maximum path length of the generated path is at most 2m+1 and we can
deduce that the diameter of an HHC2m+m is 2m+1.

A node-to-node disjoint-path routing algorithm in an HHC was described
in [116]. In anHHC2m+m, the algorithm findsm+1 disjoint paths connecting
any two nodes s = (σs, πs) and d = (σd, πd). The main idea of this algorithm
to achieve path disjointness is to route each path inside distinct subcubes
(i.e. not used by any other path). Concretely, considering the sequence of

2.2. HYPERCUBE-BASED INTERCONNECTION NETWORKS 17

dimensions of differing bits of σs and σd following an m-bit Gray code, each
path shall start with an external edge according to a distinct dimension
of the Gray code considered, and then connect d by traversing the m-bit
Gray code until reaching σd, performing routing inside each subcube. All
the paths may not be able to start from a dimension differing in σs and σd,
hence the remaining paths introduce two additional external edges to start
by visiting a distinct subcube after the subcube of s. By discussing the
number of edges required inside each subcube, we obtain paths of length at
most max{2m+2m+r, 2m+m+r+4} ≤ max{2m+1+2m+1, 2m+1+m+4}.

2.2.4 Dual-Cubes

Dual-cubes [77] have a two-level structure: clusters (hypercubes) on the low-
level, which are linked each other on the high-level depending on their class.
There are two classes in a dual-cube, each cluster is member of one unique
class. While retaining interesting properties of hypercubes, dual-cubes can
connect many more nodes than a hypercube of the same size, while retaining
a small diameter and a low degree.

Each node of a dual-cube Fr has an address of 1 + 2(r − 1) = 2r − 1
bits: the leftmost bit represents the class of the node. The remaining
bits are divided into two sequences of r − 1 bits (left and right). Two
nodes u = (u2r−1 . . . u1) and v = (v2r−1 . . . v1) are adjacent if the follow-
ing three conditions hold: 1. u and v differ in one bit, say the i-th bit, 2.
1 ≤ i ≤ r−1 ⇒ u2r−1 = v2r−1 = 0 and 3. r ≤ i ≤ 2r−2 ⇒ u2r−1 = v2r−1 = 1
or if 4. ui = vi, 1 ≤ i ≤ 2r−2. Condition 4. induces cross-edges. The cluster
of one node (clusterID) is identified by the class bit and the left (r − 1)-bit
sequence if the class is 0, and by the right (r − 1)-bit sequence if the class
is 1. Clusters are (r− 1)-dimensional hypercubes induced by the remaining
(r − 1)-bit sequence, called nodeID.

A fault-tolerant node-to-node routing algorithm in a dual-cube Fr hav-
ing at most r−1 faulty nodes finding a path between any two nodes s and d
was given in [78]. The main idea is to consider s, d as nodes of an extended
cube so as to apply a fault-tolerant node-to-node routing in hypercubes. The
clusters of s and d, both (r−1)-cubes, are linked with paths traveling to one
other distinct cluster if the classes of s and d are identical, and otherwise
there exists one pair of a node of the cluster of s and a node of the cluster of
d that are connected with a single cross-edge, and all the r − 2 other pairs
can be connected via two clusters, plus three cross-edges. Hence considering
two clusters as an r-cube, we can apply a hypercube node-to-node fault-
tolerant routing to this extended cube, considering a node as faulty if the
path connecting it to the opposite cluster is not fault-free. By discussing
the number of edges inside and between the two clusters we obtain a max-

18 CHAPTER 2. PREVIOUS WORKS

imum path length of (r + 2) − 1 + 1 + (r − 1) + 1 + (r − 1) + 1 = 3r + 2.
Deducing the faulty-nodes from the faulty-edges takes O(r) time and hyper-
cube fault-tolerant node-to-node routing requires O(r) time in a Qr, hence
fault-tolerant node-to-node routing in an Fr is O(r) time complexity.

A node-to-node disjoint-path routing algorithm in dual-cubes was de-
scribed in [78]. In an Fr this algorithm finds r disjoint paths between any
two nodes s and d. As for fault-tolerant node-to-node routing, the main idea
of this algorithm is to consider the two clusters of s and d as an extended cube
to be able to use a hypercube node-to-node disjoint-path routing algorithm.
We obtain a maximum path length of 1 + (r− 1) + 1 + (r− 1) + 1 = 2r+ 1
by performing in-cluster routing and replacing some extended cube edges
by the corresponding dual-cube paths. Because a hypercube node-to-node
disjoint-path routing algorithm can be solved in O(n2) time in a Qn, this
algorithm in a dual-cube has a time complexity of O(r2).

A node-to-set disjoint-path routing algorithm in dual-cubes was pro-
posed in [68]. In an Fr this algorithm finds r disjoint paths between one
source node s and r destination nodes d1, d2, . . . , dr. The main idea of this al-
gorithm is to route with disjoint paths s and each destination node to clusters
so that each cluster does not have more than r−1 destination nodes. Finally
a hypercube fault-tolerant set-to-set routing algorithm is applied inside each
such cluster generating paths of length at most 2(r − 1). Since hypercube
fault-tolerant node-to-node routing can be applied once when finding paths
from s, we obtain paths of length at most r + 2 + (2r − 2) + 2 = 3r + 2.
The dominant time complexity of this algorithm is that of the hypercube
set-to-set disjoint-path routing algorithm, that is O(r2 log r).

Lastly a set-to-set disjoint-path routing algorithm in dual-cubes was
given in [69]. In an Fr this algorithm finds r disjoint paths between a
set of source nodes S = {s1, s2, . . . , sr} and a set of destination nodes
D = {d1, d2, . . . , dr}. The main idea of the algorithm is to distribute source
and destination nodes such that we have inside each cluster the same number
of sources (including distributed sources) and destination nodes (including
distributed destination nodes). Then inside each cluster containing at least
one pair of source and destination nodes, we disjointly connect these pairs
by using a hypercube set-to-set disjoint-path routing algorithm inside that
cluster. In the worst case, distributing a source node or a destination node
requires r + 2 edges and in-cluster routing r − 1 edges, hence we obtain
a path of length 3r + 3. The dominant time complexity of the algorithm
comes from the set-to-set disjoint-path routing algorithm inside an (r − 1)-
cube, connecting O(r) source and destination nodes, that is a total time
complexity of O(r2 log r).

2.2. HYPERCUBE-BASED INTERCONNECTION NETWORKS 19

2.2.5 Metacubes

The metacube interconnection network (MC) [83] is a generalization of dual-
cubes. It has a two-level cubic structure: clusters are on the low level, each is
member of a class. The high level is responsible for linking nodes of different
classes each other. MC can connect a huge quantity of nodes while keeping
its degree and diameter small compared to a hypercube of the same size.

Each node address of an MC(k,m) is made of k + m2k bits, it is of
the form (c,m2k−1, . . . ,m1,m0) with c representing the class of the node
(classID) where c occupies k bits. (m2k−1, . . . ,mc+1,mc−1, . . . ,m1,m0) rep-
resents the m(2k − 1)-bit clusterID, and finally, mc is the m-bit nodeID.
Each cluster is an m-dimensional hypercube induced by the m-bit nodeID
(cube-edges). Two nodes of distinct clusters are adjacent if and only if their
classIDs differ in one single bit, all the other m2k bits being identical (cross-
edges).

A node-to-node routing algorithm in metacubes was given in [80]. In
a MC(k,m) this algorithm finds a path between any two nodes s and d.
The main idea is to follow an Hamiltonian path of the classes from the class
c(s) of s to the class c(d) of d and to modify inside each cluster the m-bits
according to that bits in d. We can deduce from this algorithm the distance
between s and d as being 2k cross-edges to perform the Hamiltonian path
on a k-cube, plus the Hamming distance between c̄(s) and c̄(d), formally:
2k +H(c̄(s), c̄(d)) where c̄(u) represents all the bits of u excepted the left-
most k bits. From this we can deduce the diameter of a metacube MC(k,m)
as being 2k +m2k = 2k(m+ 1).

A node-to-node disjoint-path routing algorithm in metacubes was first
introduced in [79] and clarified in [81]. This algorithm aims at finding inside
MC(k,m) k +m disjoint paths between any two nodes s and d. The main
idea of the algorithm is to connect the neighbours of s inside the cluster of s
to the neighbours of d inside the cluster of d, and the neighbours of s outside
the cluster s to the neighbours of d outside the cluster of d. To ensure path
disjointness, the algorithm introduces the idea of signature: each path shall
hold its signature through a bit of the node address. Path disjointness is
guaranteed since routing shall occur inside distinct clusters thanks to this
signature bit. Regarding the maximum path length, we have 2k cross-edges
to perform a Hamiltonian path of all the classes, plus H(s, d) including the
class bits since after finding a signature we leave the class without modifying
the current nodeID, thus we need to get back later to that class which re-
quires this amount of cross-edges. Penalty edges must also be added for the
signature, four at most, and disjoint class paths (cross-edges only) requires
at most k + 1 cross-edges for disjoint-path routing inside a k-cube. In total
we have paths of length at most H(s, d) + 2k + k + 5.

20 CHAPTER 2. PREVIOUS WORKS

We conclude this section on hypercube-based interconnection networks
by mentioning several important others: Möbius Cubes [19], Folded Hy-
percubes [30], Hierarchical Folded Hypercubes [27], Hierarchical Cubic Net-
works [41, 120, 37], Generalized Hypercubes [5], Extended Hypercubes [74],
Crossed Cubes [29], Cyclic Cubes [36], Augmented Cubes [14], Folded Pe-
tersen Cubes [95], Fibonacci Cubes [59], Fully Connected Cubic Networks
[11, 117], Multilevel Hypercubes [1], Recursive Cube of Rings [105].

2.3 Permutation-based interconnection networks

We focus in this section on graphs defined by permutations on groups of
symbols. Like hypercubes, these graphs are Cayley graphs, they correspond
to the permutation group. The main motivation for such graphs is that
both their diameter and degree are lower than that of a hypercube of the
same size. Hence these interconnection networks allow to bind more ef-
ficiently (less links per node) generally more processors than hypercubes,
while retaining important properties of Cayley graphs. Routing is, however,
of higher difficulty compared to routing inside hypercube interconnection
networks.

2.3.1 Star Graphs

Star graphs have been introduced in the literature by Akers et al. in [2, 3]
as a particular Cayley graph. They have a smaller diameter and a lower
degree than a hypercube of the same size.

Each node of an n-dimensional star graph Gn corresponds to one per-
mutation of the set {1, 2, . . . , n}. Each node is linked to every other per-
mutation obtained by swapping the first symbol with any of the others,
that is each node (p1, p2, . . . , pn) of Gn is adjacent to the n − 1 nodes
(pi, p2, p3, . . . , pi−1, p1, pi+1, . . . , pn) (2 ≤ i ≤ n). Also, Gn is made of n
subgraphs Gn−1: considering one of the n positions of node addresses, a
subgraph Gn−1 is induced by the nodes having the same symbol at that po-
sition. Since there are n symbols possible, Gn contains n subgraphs Gn−1.
Also there are n possible ways to reduce Gn into n substars Gn−1, one for
each different position considered.

A simple node-to-node routing algorithm finding a path between any
two nodes was described in [3]. The main idea is to check if the first symbol
of the current node is already at its final position. If so, then we swap this
first symbol with a symbol which is not in its final position. Otherwise we
swap the first symbol with the symbol standing at the final position of the
first symbol. The algorithm is applied recursively until each symbol has
reached its final position. Akers et al. [3] showed that the diameter of Gn

2.3. PERMUTATION-BASED INTERCONNECTION NETWORKS 21

is ⌊3(n− 1)/2⌋.

A fault-tolerant node-to-node routing algorithm in star graphs was de-
scribed in [47]. In a Gn, given two nodes s and d and a set F of at most
n − 2 faulty nodes, this algorithm finds a fault-free path between s and d.
The main idea of this algorithm is to connect s and d with a fault-free path
of length at most two or three to a fault-free subgraph Gn−1 if any, and in
this case the path is completed by applying a shortest-path routing inside
this Gn−1, or to the subgraph Gn−1 containing the least faulty nodes, and
in this case the algorithm is then applied recursively onto this Gn−1. By
discussing the number of edges required to reach the selected Gn−1 from s, d
as well as the distance between s and d, we obtain a maximum path length
of min{diam(Gn) + 3, d(s, d) + 6}. s and d are connected to the selected
Gn−1 in O(n) time since there are at most n−2 faulty nodes. Shortest-path
routing in Gn−1 is also O(n) time, therefore this algorithm requires O(n)
time complexity.

A node-to-set disjoint-path routing algorithm in star graphs was intro-
duced in [53]. This algorithm generates disjoint paths between a source node
s and k ≤ n − 1 destination nodes D = {d1, d2, . . . , dk}. A first version of
the algorithm returns paths of length at most diam(Gn) + 3. Assuming s
is the identity permutation, the main idea is to first distribute destination
nodes to nodes whose first symbol is 1, with a disjoint path of length at
most two, and then to use a shortest-path routing to reach the identity per-
mutation in O(n) time. Hence the total time complexity of this algorithm is
O(kn). A second version of the algorithm reduces the maximal path length
to diam(Gn) + 1. The main idea is to distribute destination nodes to nodes
whose first symbol is 1 by following a shortest-path routing toward the iden-
tity permutation. Concretely this is achieved by prioritizing nodes having
less candidate subpaths to nodes whose first symbol is 1. The time com-
plexity remains unchanged though.

A fault-tolerant set-to-set disjoint-path routing algorithm in star graphs
was given in [51]. In a Gn, given a set of non-faulty source nodes S =
{s1, s2, . . . , sk} a set of non-faulty destination nodes D = {d1, d2, . . . , dk}
(k ≤ n − 1) and a set F of at most n − 1 − k faulty nodes, this algorithm
finds k fault-free disjoint paths between each node of S and D. The main
idea of the algorithm is to find k fault-free subgraphs Gn−1, each of them
used to connect one node si to a node dj using a shortest-path routing
algorithm. By discussing the number of edges needed to reach selected sub-
graphs Gn−1 and considering the diameter of a Gn−1, we obtain a maximum
path length of diam(Gn) + 5. For one path, reaching a selected subgraph
Gn−1 requires O(n), hence we obtain a total time complexity of O(kn).

22 CHAPTER 2. PREVIOUS WORKS

A k-pairwise disjoint-path routing algorithm in star graphs was pre-
sented in [54]. In a Gn, given k = ⌈(n − 1)/2⌉ pairs of distinct nodes
(s1, d1), (s2, d2), . . . , (sk, dk), this algorithm finds k disjoint paths si ; di
(1 ≤ i ≤ k). The main idea of the algorithm is to reduce the k-pairwise
disjoint-path problem in a Gn to k shortest-path routings inside distinct
subgraphs Gn−1. A subgraph is candidate to hosting a shortest-path rout-
ing if it contains one pair (si, dj) or at most one source or destination
node. At most three edges are required to connect a node si or dj to
its destination subgraph. Shortest-path routing inside a Gn−1 requires
at most diam(Gn−1) edges, therefore we have paths of length at most
diam(Gn−1) + 6 ≤ diam(Gn) + 5 edges. Connecting a node si or di to
its destination subgraph requires O(n) time. Shortest-path routing is also
O(n) time, hence constructing all the k paths is O(kn) time complexity.

We now focus on cluster fault tolerant (CFT) routing algorithms inside
star graphs. A CFT node-to-node routing algorithm in star graphs was in-
troduced in [48]. In a Gn, given a set of at most n − 2 faulty clusters of
diameter at most two and two distinct non-faulty nodes s and d, this al-
gorithm finds a fault-free path between s = (p1, . . . , pn) and d. The main
idea of the algorithm is to route s and d to a subgraph Gn−1 containing no
center of a faulty cluster of diameter at most two (ie. node of degree greater
than one, arbitrarily select any other node otherwise) so that we can apply
a fault-tolerant node-to-node routing algorithm inside this Gn−1. Each path
requires at most three edges to connect s to the destination subgraph Gn−1

(same for d) and at most diam(Gn−1) + 3 edges to apply a fault-tolerant
node-to-node algorithm inside Gn−1. Hence the maximum path length is
diam(Gn−1) + 9 ≤ diam(Gn) + 8. Finding the center of all faulty clusters,
the destination subgraph Gn−1 and a fault-free path to connect s and d to
that subgraph takes O(n) time. Hence the algorithm is O(n) time complex-
ity.

A CFT node-to-set disjoint-path routing algorithm inside a star graph
was given in [56]. In a Gn, given one source node s, a set of destination nodes
D = {d1, d2, . . . , dk} (2 ≤ k ≤ n− 1) and at most (n− 1)− k faulty clusters
of diameter at most two, this algorithm finds k fault-free disjoint paths be-
tween s and each node of D. The main idea of the algorithm is to connect s
and each destination node to a distinct subgraph Gn−1 not containing s nor
the center of a faulty cluster, and then apply a CFT node-to-node routing
algorithm inside this Gn−1. By discussing the number of edges required to
connect s and each destination node to its destination subgraph as well as
the routing inside each destination subgraph, we obtain a maximum path
length of diam(Gn−1) + 10 ≤ diam(Gn) + 9. It takes O(n) time to find
faulty cluster centers and O(kn) to find k destination subgraphs. Routing a
destination node to its destination subgraph takes O(n) time and node-to-

2.3. PERMUTATION-BASED INTERCONNECTION NETWORKS 23

node routing inside Gn−1 takes O(n) time. Hence the total time complexity
of this algorithm is O(kn).

A k-pairwise cluster fault-tolerant disjoint-path routing algorithm in star
graphs was presented in [56]. In a Gn, given 2 ≤ k ≤ ⌈(n − 1)/2⌉ pairs
(s1, d1), . . . , (sk, dk) of non-faulty nodes and at most n − 2k faulty clusters
of diameter at most two, this algorithm finds k disjoint fault-free paths
connecting si to di (1 ≤ i ≤ k). Again, the main idea of the algorithm is
to find k destination subgraphs Gn−1 not containing the center of a faulty
cluster nor two nodes of different pairs to connect each pair using a node-to-
node routing algorithm. si and dj nodes are connected to their destination
subgraph in at most three edges. Fault-tolerant node-to-node routing inside
each destination subgraph requires at most diam(Gn−1)+3 ≤ diam(Gn)+2
edges. Hence the maximum path length is diam(Gn) + 8.

2.3.2 Macro-Star Networks

The macro-star (MS) interconnection network [119] is based on star graphs.
Compared to a star graph of the same size, the degree of each node of a MS
network is much lower while the diameter remains of the same order.

Each node of an MS(l, n) is a permutation of the set {1, 2, . . . , k} with
k = nl + 1. Each node (p1, p2, . . . , pn) of an MS(l, n) is adjacent to the n
nodes (pi, p2, p3, . . . , pi−1, p1, pi+1, . . . , pk) (2 ≤ i ≤ n+1) (this operation cor-
responds to the swap of the first symbol with one symbol of the first n-symbol
portion) and to the l− 1 nodes (p1, p(i−1)n+2, . . . , pin+1, pn+2, . . . , p(i−1)n+1,
p2, . . . , pn+1, pin+2, . . . , pk) (2 ≤ i ≤ l) (this operation corresponds to the
swap of the first n-symbol portion with another). Also, MS networks have
a recursive structure: each node is included in a star graph Gn+1 induced
by the first adjacency condition above, and the second adjacency condition
induces a subgraph MS(l, n, pj . . . , pk) (j = (i− 1)n+ 2).

A node-to-node routing algorithm in an MS(l, n) was described in [119].
The main idea of the algorithm is to consider for each symbol of the node
address into which n-symbol portion of the destination node it is located.
The algorithm first groups each symbol into a portion so that each portion
can be found at any place in the destination node. Then it reorders the
portions each other. By discussing the number of edges required to place
symbols into the correct portion and to reorder the portions, we obtain a
path of length at most ⌊5(nl+ l− 1)/2⌋. As an improvement, we can try to
eliminate the second step (portions reordering) by placing a portion to its
final position as soon as it is complete. We would obtain in this case a path
of length at most 2nl + ⌊nl/2⌋+ 2(l − 1).

24 CHAPTER 2. PREVIOUS WORKS

2.3.3 Pancake Graphs

Pancake graphs have been introduced by Akers et al. [3] as a particular
Cayley graph. Similarly to star graphs, pancake graphs can connect many
nodes while keeping a low degree and a small diameter.

Each node of a pancake graph Pn corresponds to a permutation of the
set {1, 2, . . . , n}. Each node (p1, p2, . . . , pn) of a Pn is adjacent to the n− 1
nodes (pi, pi−1, . . . , p1, pi+1, pi+2, . . . , pn) (2 ≤ i ≤ n), that is by reversing
the i first (leftmost) symbols of the node. Also Pn is made of n subgraphs
Pn−1 induced by the nodes sharing the same last (rightmost) symbol.

A node-to-node routing algorithm in a Pn finding a path between any
two nodes s = (s1, . . . , sn) and d = (d1, . . . , dn) was given in [72]. The main
idea of the algorithm is to reverse the leftmost symbols of the current node
(beginning with s) so that the right part of the node address is matching the
corresponding right part of d. We start by routing s to the node whose right-
most symbol is equal to dn. Formally, for each i from n to 1, if si 6= di we first
connect s to the node s(k) = (sk = di, . . . , s1, sk+1, . . . , sn) and then con-
nect s(k) to the node s(k,i) = (si, si−1, . . . , sk+1, s1, . . . , sk = di, si+1, . . . , sn)
which becomes the new node s. If si = di there is nothing to do, the sym-
bol si is already correctly positioned. Finding k such that sk = di requires
O(n) time complexity. Hence by traversing all the n symbols, the total
time complexity of this algorithm is O(n2). It generates a path of length
O(n). Gates and Papadimitriou gave an upper bound for the diameter of
Pn: diam(Pn) = 5(n+ 1)/3 [40].

A node-to-node disjoint-path routing algorithm in a Pn was given in
[106]. This algorithm finds n− 1 internally disjoint paths between any two
nodes s and d. The main idea of the algorithm is to recursively apply this
algorithm onto the subgraphs Pn−1 containing s or d, reached by traversing
distinct subgraphs to ensure path disjointness. By discussing the number
of edges required to reach the subgraph used to recursively apply this algo-
rithm, we obtain path lengths of O(n). Since at each step of the recursion a
shortest-path routing is applied in the intermediary subcube for each path,
we obtain a total time complexity T (n) of T (n− 1) +O(n3) = O(n4).

Kaneko and Peng later described in [67] a node-to-node disjoint-path
routing algorithm in a Pn being O(n2) time complexity. The main idea
of this algorithm is to first route s to n − 1 distinct subgraphs using dis-
joint paths of length at most two, and similarly to route d to n− 1 distinct
subgraphs. Then we extend these paths so that we can connect with a
shortest-path routing each pair of nodes routed from s and d inside a dis-
tinct subgraph. We need at most four edges to route s or d, but not both,
to their destination subgraph. Other extension paths are of length at most

2.3. PERMUTATION-BASED INTERCONNECTION NETWORKS 25

two. Hence we have paths of length at most diam(Pn−1)+4+2 = 5n/3+6.
Extension paths are found in O(n) time. Shortest-path routing inside a Pn−1

is also O(n) time. Therefore the total time complexity of this algorithm is
O(n2).

A node-to-set disjoint-path routing algorithm in a pancake graph was
described in [72]. In a Pn, given a source node s = (1, . . . , n) and a set of
n − 1 destination nodes D = {d1, d2, . . . , dn−1}, the algorithm finds n − 1
disjoint paths s ; di (1 ≤ i ≤ n − 1). The main idea of the algorithm
is to recursively solve the problem inside the subgraph Pn−1 containing s
and to achieve path disjointness by using class paths (i.e. paths whose nodes
are inside the same class; each node is contained in one class only). A pre-
processing task connects each destination node to a distinct class and then
with a class path reach the subgraph of s before applying the algorithm
recursively onto that subgraph. Because classes are rings of length 2n, the
sum of the path lengths is l(n) = l(n − 1) + O(n2) = O(n3). Connecting
destination nodes to distinct classes requires O(n4) time. Hence the total
time complexity is T (n) = T (n− 1) +O(n4) = O(n5).

Another node-to-set disjoint-path routing algorithm in a pancake graph
was given in [67], reducing the time complexity to O(n2). This time the
main idea of this algorithm is to distribute destination nodes into distinct
subgraphs which will be later used to perform a shortest-path routing. The
algorithm first connects s to n − 1 distinct subgraphs with disjoint paths
of length at most two, then connects each destination node to these n − 1
subgraphs with a disjoint path of length at most three and finally apply
a shortest-path routing to complete the paths. Because a path may need
to be rerouted to another subgraph, we obtain a maximum path length of
diam(Pn−1) + 2 + 4 ≤ 5n/3 + 6. Distributing destination nodes to distinct
subgraphs requiresO(n2) time complexity. Shortest-path routing inside each
subgraph requires O(n) time, hence the total time complexity of this algo-
rithm is O(n2).

A set-to-set disjoint-path routing algorithm in a pancake graph was given
in [96]. In a Pn, given a set of n − 1 source nodes S and a set of n − 1
destination nodes D, this algorithm finds n − 1 disjoint paths between all
elements of S and D. The main idea of this algorithm is to first distribute
source and destination nodes to n − 1 distinct subgraphs such that each
subgraph has exactly one pair of distributed nodes in S and D. A shortest-
path routing is then performed to connect each pair. Since each pair is
connected inside a distinct subgraph, path disjointness is guaranteed. By
discussing the number of edges required to distribute source and destination
nodes, we obtain paths of length at most 5n/3+O(1). Node distribution and
shortest-path routing are performed in O(n2) time, which is the dominant

26 CHAPTER 2. PREVIOUS WORKS

time complexity of the algorithm.

2.3.4 Burnt Pancake Graphs

In this section we shall describe another permutation-based interconnection
network: burnt pancake graphs. Burnt pancake graphs have been originally
described in [40]. They can connect still more nodes than a pancake graph
or a star graph of the same size, while keeping their degree and diameter of
the same order.

Each node of a burnt pancake graph BPn corresponds to a signed per-
mutation of the set {1, 2, . . . , n}. Each node (p1, p2, . . . , pn) of a BPn is
adjacent to the n nodes (p̄i, p̄i−1, . . . , p̄1, pi+1, pi+2, . . . , pn) (1 ≤ i ≤ n), that
is by reversing as well as negating the i first (leftmost) symbols of the node.
Also a BPn is made of 2n disjoint subgraphs BPn−1 induced by the nodes
sharing the same last (rightmost) symbol.

A simple node-to-node routing algorithm in a BPn finding a path be-
tween any two nodes s = (s1, . . . , sn) and d = (d1, . . . , dn) was given in [70].
The main idea of the algorithm is to reverse the leftmost symbols of the
current node (beginning with s) so that the right part of the node address
is matching the corresponding right part of d. We start by routing s to
the node whose rightmost symbol is equal to dn. Let c = (c1, . . . , cn) be s.
Formally, for each i from n to 1, if ci 6= di we find k such that |ck| = |di|. If
k 6= 1 then we append the node c(k) = (c̄k, . . . , c̄1, ck+1, . . . , cn) to the path;
this node becomes the new node c. If i 6= 1 and c1 = di then we reverse the
sign of c1 (= di) by appending the node c(1) to the path; this node becomes
the new node c. Finally, we connect c to the node c(i) to correctly place the
symbol c1 in the right part of the node address; this node becomes the new
node c. This way, the rightmost n − i + 1 symbols of c are matching the
rightmost n−i+1 symbols of d. If ci = di there is nothing to do, the symbol
ci is already correctly positioned. Finding k such that |ck| = |di| requires
O(n) time complexity. Hence by traversing all the n symbols, the total time
complexity of this algorithm is O(n2). Also, this algorithm generates a path
of length at most 3n − 2 since at most three prefix reversal operations are
performed for each iteration.

Another node-to-node routing algorithm in a BPn was described in
[16]. Because of the symmetric structure of burnt pancake graphs, this
node-to-node routing problem is equivalent to sorting the permutation, that
is to route from any node s = (s1, . . . , sn) to the identity permutation
(1, 2, . . . , n). The main idea of the algorithm is to always keep already sorted
consecutive symbols together. Once a sequence of two symbols is obtained,
we merge these two symbols into one, thus reducing the number of symbols
by one. The algorithm is finished when no symbol remains. This time the

2.3. PERMUTATION-BASED INTERCONNECTION NETWORKS 27

maximum path length is reduced to 2n while the time complexity remains
O(n2).

A node-to-node disjoint-path routing algorithm in a burnt pancake graph
was described in [70]. In a BPn, given a source node s and a destination
node d, this algorithm finds n internally disjoint paths between s and d. The
main idea idea of this algorithm is for each path to perform a shortest-path
routing inside a distinct subgraph which will ensure path disjointness: s is
connected to n− 1 distinct subgraphs with at most two edges and d is dis-
jointly connected to these subgraphs in at most three edges before applying
a shortest-path routing onto each of these subgraphs. By discussing special
cases, we obtain a maximum path length of 3n + 4 and a time complexity
of O(n3).

A node-to-set disjoint-path routing algorithm in a burnt pancake graph
was given in [63]. In a BPn, given a source node s and a set of n destination
nodes D, this algorithm finds n disjoint paths between s and all nodes in
D. The main idea idea is to ensure path disjointness by using class paths,
that is paths including exclusively nodes of the same class (each node is
in one class only). Finally we solve the routing problem inside the sub-
graph containing s. A preprocessing task connects each destination node
to a distinct class in O(n4) time, and then routes to the subgraph of s by
traversing that class. Since a class is a ring of length 4n, the sum of the
paths lengths is l(n) = l(n−1)+O(n2) = O(n3). The total time complexity
is T (n) = T (n− 1) +O(n4) = O(n5).

A set-to-set disjoint-path routing algorithm in a burnt pancake graph
was proposed in [61]. In a BPn, given a set of n source nodes S and a set
of n destination nodes D, this algorithm finds n disjoint paths between the
source and destination nodes. The main idea of this algorithm is to first dis-
tribute source nodes to distinct subgraphs with disjoint paths of length at
most two (source nodes whose subgraph does not contain any other source
node act as distributed source nodes themselves). A similar distribution
process is then applied to the destination nodes. Pairs of distributed source
and destination nodes inside the same subgraphs are connected. Lastly, re-
maining unconnected distributed source nodes are connected to subgraphs
containing remaining unconnected distributed destination nodes where these
last pairs are finally connected. This ultimate step may obviously generate
a longest path, precisely of length at most 2n+ 12 and in O(n4) time com-
plexity.

A fault-tolerant node-to-node routing algorithm inside a burnt pancake
graph was given in [60]. In a BPn, given any two non-faulty nodes s and
d and a set of at most n − 1 faulty nodes, this algorithm finds a fault-free

28 CHAPTER 2. PREVIOUS WORKS

path connecting s to d. The main idea of the algorithm is to first connect s
and d to distinct subgraphs such that each pair of end-nodes of a path for
s and d is located inside a distinct subgraph. s is connected to n distinct
subgraphs with disjoint paths of length at most two, and d is connected to
these n subgraphs with disjoint paths of length at most three. Finally we
apply onto a fault-free subgraph a shortest-path routing to obtain a fault-
free path connecting s to d. By discussing in special cases the number of
edges required before applying a shortest-path routing, we obtain a maxi-
mum path length of 2n+4. Finding a fault-free subgraph takes O(n2) time
complexity which is the dominant time complexity of the algorithm.

A cluster fault-tolerant node-to-node routing algorithm was given in [62].
In a BPn, given any two non-faulty nodes s and d and a set of n− 1 faulty
clusters of diameter at most three, this algorithm finds a fault-free path
connecting s to d. The main idea is to first connect s and d to a subgraph
not containing any center of a faulty cluster and containing at most n −
2 of their neighbours, and second to apply a fault-tolerant node-to-node
routing algorithm inside this subgraph to complete the path. Since the
paths connecting s and d to the destination subgraph are of length at most
four, we obtain a maximum path length of 2(n− 1) + 4 + 4 + 4 = 2n+ 10.
Computing the center of one faulty cluster of diameter at most three requires
O(n) time complexity. Hence computing the centers of all faulty clusters
requires O(n2) time complexity, which is the dominant time complexity of
this algorithm.

2.3.5 Rotator Graphs

We focus in this section on another interconnection network based on per-
mutations of symbols, rotator graphs, introduced by Faber and Moore in
[31] and rediscovered by Corbett [17]. Similarly to star graphs and pancake
graphs, rotator graphs have the useful ability to connect many nodes while
retaining a low degree and small diameter. However rotator graphs have a
smaller diameter compared to star graphs and pancake graphs of the same
size.

Each node of a rotator graph Rn is a permutation of the n symbols
1, 2, . . . , n. Each node (p1, p2, . . . , pn) of an Rn is adjacent to the n − 1
nodes (p2, p3, . . . , pi, p1, pi+1, . . . , pn) (2 ≤ i ≤ n). Also, an Rn has a recur-
sive structure, it is composed of n distinct rotator subgraphs Rn−1, each of
them induced by the nodes of Rn sharing the same last symbol pn.

A node-to-set disjoint-path routing algorithm in an n-rotator graph Rn

finding n − 1 disjoint paths was described in [71]. The main idea of the
algorithm is to recursively apply the algorithm inside a subgraph Rn−1,
each time creating one path to decrease the number of destination nodes

2.3. PERMUTATION-BASED INTERCONNECTION NETWORKS 29

before inducting on that subgraph Rn−1. Path disjointness is ensured by
traversing one distinct class for each path (each node is member of an unique
class). A preprocessing task is required to connect each destination node to
a distinct class. Hence a path traversing exclusively nodes of a same class is
guaranteed to be disjoint from paths traversing different classes. Regarding
the maximal path length, since a class is a ring of length n, class traversal
using shortest-path routing requires O(n) edges. Because class traversal
can be performed for each path at each step of the reduction, we obtain a
sum of the path lengths of O(n3). Assuming the comparison of two node
addresses takes O(n) time complexity, each step of the recursion takes O(n4)
total time complexity, dominated by destination node connection to distinct
classes. Hence applying the algorithm recursively O(n) times gives a total
time complexity of O(n5).

2.3.6 Bi-rotator Graphs

We focus in this section on the bi-rotator interconnection network. Origi-
nally introduced by Lin et al. in [84], bi-rotator graphs are the undirected
variation of rotator graphs. Sharing the same interesting properties with
rotator graphs (eg. connecting many nodes with a low degree), bi-rotator
graphs, thanks to the bi-directional edges, benefit from a smaller average
routing distance [84].

Each node of a bi-rotator graph BRn is a permutation of the n symbols
1, 2, . . . , n. Each node (p1, p2, . . . , pn) of a BRn is adjacent to the n − 1
nodes (p2, p3, . . . , pi, p1, pi+1, . . . , pn) (2 ≤ i ≤ n) and to the n − 1 nodes
(pi, p1, p2, . . . , pi−1, pi+1, . . . , pn) (2 ≤ i ≤ n). Also, a BRn has a recursive
structure, it is composed of n distinct bi-rotator subgraphs BRn−1, each of
them induced by the nodes of BRn sharing the same last symbol pn (right-
most position).

A node-to-node disjoint-path routing algorithm finding 2n − 3 disjoint
paths inside a bi-rotator graph BRn was described in [64]. The main idea
of this algorithm to ensure path disjointness is for each two paths to reach
distinct subgraphs BRn−1 from the source and destination node, that is
each such subcube containing two pairs to be linked. There may exist two
subcubes containing one pair and a half each, hence additional routing is re-
quired to obtain two full pairs in one of them. To connect one pair, shortest-
path routing in a BRn−1 uses at most n − 1 edges. Connecting two pairs
pairs requires at most 2n − 4 edges, and in the case two subcubes contain
one pair and a half each, finding the three disjoint paths requires at most
4n − 11 edges. The latter case generates longest paths, with at most three
edges to reach the distinct subcube from the source node and as many from
the destination node, we have paths of length at most 4n− 11+ 6 = 4n− 5.
Regarding time complexity, pair connection algorithms are all O(n2). Hence

30 CHAPTER 2. PREVIOUS WORKS

the total time complexity of this algorithm is O(n3) to generate all the 2n−3
paths.

A node-to-set disjoint-path routing algorithm in BRn finding 2n − 3
disjoint paths was given in [65]. The main idea of the algorithm is to re-
cursively apply the algorithm onto subgraphs BRn−1, each time creating at
least one path. Also, path disjointness is achieved by exclusively traversing
one distinct class for each path (each node is member of an unique class).
A preprocessing task connects each destination node to a node inside a
distinct class. Regarding the sum of the path lengths l(n), since shortest-
path routing in a BRn generates a path of O(n2) length, we have l(n) =
l(n− 1)+O(n2) = O(n3). Routing each destination node to a distinct class
requires O(n4) time complexity. Hence, because of the recursion, the total
time complexity T (n) for this algorithm is T (n) = T (n−1)+O(n4) = O(n5).

2.3.7 Bubble-sort Graphs

We focus in this section on bubble-sort graphs, originally introduced by Ak-
ers et al. [3]. Similarly to star graphs, bubble-sort graphs are Cayley graphs
with a recursive structure. They can connect many nodes while retaining a
low degree.

Each node of a bubble-sort graph Bn is a permutation of the n symbols
1, 2, . . . , n. Each node (p1, p2, . . . , pn) of a Bn is adjacent to the n− 1 nodes
(p1, p2, . . . , pi−1, pi+1, pi, pi+2, . . . , pn) (1 ≤ i ≤ n − 1). Also, a Bn has a
recursive structure, it is composed of n distinct subgraphs Bn−1, each of
them induced by the nodes of Bn sharing the same last symbol pn (right-
most position).

A node-to-node disjoint-path routing algorithm in a bubble-sort graph
was described in [73]. In a Bn, the main idea of this algorithm to achieve
paths disjointness is to first route the source and destination node to distinct
subgraphs Bn−1 ((n− 1)-dimensional bubble-sort graphs, subgraphs of Bn)
to then apply a shortest-path routing algorithm inside these distinct sub-
graphs. Since reaching a distinct subgraph requires O(n) edges and since
shortest-path routing inside a Bn−1 requires O(n2) edges, the maximum
path length of this algorithm is O(n2). For the same reason, since shortest-
path routing in a Bn−1 is O(n3) time complexity, generating all the n paths
requires O(n4) time complexity.

A node-to-set disjoint-path routing algorithm in bubble-sort graph was
described in [107]. In a Bn, the main idea of the algorithm is to recur-
sively solve the node-to-set disjoint-path routing problem into subgraphs
Bn−1 and to disjointly connect each destination node by traversing one dis-

2.4. MESHES, TORI-BASED INTERCONNECTION NETWORKS 31

tinct class per path (each node is member of an unique class). A prepro-
cessing task is thus required to connect each destination node to a dis-
tinct class. The sums of the path lengths when traversing the classes
are at most (n − 1)2 since a class is a ring of length n − 1. Because a
shortest-path routing algorithm in a Bn outputs a path of length at most
n(n − 1)/2, we can deduce the sum of the path lengths l(n) is equal to
l(n − 1) + (n − 1)2 + (n(n − 1))/2 = l(n − 1) + (3n − 2)(n − 1)/2. Also,
as shortest-path routing in a Bn is O(n3) time complexity, generating O(n)
class paths requires O(n4) time complexity. Since the algorithm may be
recursively applied onto a Bn−1, we can express the total time complexity
T (n) as T (n− 1) +O(n4) = O(n5).

To conclude this section on permutation-based interconnection network,
we refer two additional graphs: well-known de Bruijn networks [23, 4, 85]
and Incomplete Pancake Graphs [66].

2.4 Meshes, Tori-based interconnection networks

We can distinguish another category of networks including meshes and tori-
based interconnection networks. Because of their orthogonality [25], these
networks are popular topologies as routing and hardware implementation
are much facilitated compared for example to permutation-based intercon-
nection networks.

An n-dimensional mesh interconnection network is made of k0 × k1 ×
. . . × kn−1 nodes, that is ki nodes along each dimension i with ki ≥ 2 and
0 ≤ i ≤ n− 1. A node u of an n-dimensional mesh is identified by a tuple of
n coordinates (u0, u1, . . . , un−1) with 0 ≤ ui < ki, 0 ≤ i ≤ n− 1. Regarding
adjacency, two nodes u = (u0, u1, . . . , un−1) and v = (v0, v1, . . . , vn−1) are
neighbours if and only if there exists a j (0 ≤ j ≤ n − 1) such that ∀i, 0 ≤
i ≤ n − 1, i 6= j, ui = vi and uj = vj + 1 or uj = vj − 1 with respect to
0 ≤ uj < kj . Hence we understand that for each node u of an n-dimensional
mesh, n ≤ d(u) ≤ 2n holds.

Closely related to meshes, tori [20] are built so that each node has the
same degree, making it a regular and symmetrical network. Concretely,
each dimension will contain the same number of nodes k (instead of ki for
meshes) and the adjacency condition of two nodes becomes there exists
a j (0 ≤ j ≤ n − 1) such that ∀i, 0 ≤ i ≤ n − 1, i 6= j, ui = vi and
uj = (vj + 1) mod k or uj = (vj − 1) mod k. Such torus is formally called
a k-ary n-cube.

Because each node of a mesh or torus has a fixed degree independent
from the arity k (or ki) of the network itself (e.g. a k-ary n-cube is of degree
2n), these graphs (and their siblings) are rarely considered when dealing
with disjoint-path routing. Effectively, the maximum number of disjoint

32 CHAPTER 2. PREVIOUS WORKS

paths that can be found in such graphs is always limited by its number of
dimensions, whatever the size of the network itself. For example, in any k-
ary 2-cube, we can only find at most four internally disjoint paths between
any two nodes, whatever the value of k, that is the size of the torus.

Several other networks are based on meshes or tori: Multi-Mesh [22],
Manhattan Street Network [89, 112], Multidimensional Manhattan Street
Network [15], Hierarchical Manhattan Street Network [93], Recursive Diag-
onal Torus [118], Express Cubes [21].

2.5 Other networks

There exist several other interconnection networks not falling under one of
the previously mentioned categories. These graphs are often hierarchical:
they are connecting subgraphs according to a specific topology. Effectively,
a hierarchical structure allows a network to bind many nodes while retain-
ing the degree and the diameter of the graph low. For example, the WK-
recursive Network [113, 12, 26] and its variant the Incomplete WK-recursive
Network [103, 104] are recursively connecting fully connected graphs (com-
plete graphs).

Also, interestingly some of these hierarchical graphs are generic: they
are using any seed network as base, then recursively used to produce a more
complex structure. Such networks include the Recursive Dual Net [82] and
the Generalized Hierarchical Completely-Connected Network [108].

Chapter 3

Definitions

In this chapter we formally define the interconnection networks used here-
inafter, as well as introducing useful lemmas and algorithms. We first focus
on the hypercube interconnection network [100]. Then we consider the per-
fect hierarchical hypercube interconnection network [86]. We conclude this
chapter with the metacube interconnection network [83].

3.1 Hypercube

The hypercube (HC) network is extensively used throughout our work since
we are focusing on hypercube-based networks. Hence we first formally de-
fine the hypercube interconnection network and give related notations om-
nipresent inside this thesis.

Each node of an n-dimensional hypercube Qn has an address made of
n bits. Thus a Qn contains a total of 2n nodes. Two nodes are adjacent if
and only if their addresses differ in one single bit, that is their Hamming
distance is equal to one. Hence we can deduce the diameter, degree and
connectivity of a Qn as being simply n. Also it is easy to see that a Qn is
symmetric. A four dimensional hypercube is represented in Figure 3.1.

As explained briefly in Chapter 2, a Qn is a recursive topology: a Qn

is made of two hypercubes of lower dimension Q0
n−1 and Q1

n−1 (also called
subcubes), where for a dimension i (0 ≤ i ≤ n− 1), Q0

n−1 is induced by all
the nodes of Qn whose i-th bit is set to 0, and Q1

n−1 is induced by all the
nodes of Qn whose i-th bit is set to 1. We say that Qn is reduced to two
subcubes Q0

n−1 and Q1
n−1. See Figure 3.2.

For convenience reasons, we formally name the n neighbours of a node
u in a Qn as u(i) (0 ≤ i ≤ n − 1). The node u(i) is the unique neighbour
of u differing with u on the i-th bit position. Also, let u(i,j) = (u(i))(j).
As an example, in a Q3, the node u = 000 is adjacent to the three nodes
u(0) = 001, u(1) = 010 and u(2) = 100.

Inside a Qn, we assume that a node address can be stored in a fixed

33

34 CHAPTER 3. DEFINITIONS

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Figure 3.1: A four dimensional hypercube Q4.

Q3

000

001

010

011

100

101

110

111
Q1

2

000 010

110100

Q0

2

001 011

111101

Figure 3.2: Reduction of a hypercube Q3 along the 0-th dimension.

number of machine words. Hence, for two nodes u and v in a Qn, the
comparison of u and v, the computation of the Hamming distance H(u, v),
and the calculation of the most significant bit position can be performed in
constant time complexity O(1).

A shortest-path routing algorithm in a hypercube is denoted by SPR.
Many different SPR algorithms exist. For example, one of them is called
dimension-order shortest-path routing algorithm. This particular SPR finds
a shortest path between any two nodes u and v in a Qn by successively
flipping the bits at the positions δ0, δ1, . . . , δh−1 where h = H(u, v) and
u⊕ v =

∑h−1
i=0 2δi .

3.2. PERFECT HIERARCHICAL HYPERCUBE 35

Q2(0000)
11

10

01

00

Figure 3.3: HHC6 (m = 2).

3.2 Perfect hierarchical hypercube

We now formally define the perfect hierarchical hypercube (HHC) intercon-
nection network. A (2m +m)-dimensional (i.e. perfect) hierarchical hyper-
cube is denoted by HHC2m+m. Each node of an HHC2m+m has an address
represented by a pair of a 2m-bit sequence, called the subcube ID, and an m-
bit sequence, called the processor ID. Hence an HHC2m+m contains 22

m+m

nodes. Two nodes u = (σu, πu) and v = (σv, πv) are adjacent if and only if
one of the following conditions holds:

• σu = σv and H(πu, πv) = 1

• σu = σv ⊕ 2πv and πu = πv

Edges induced by the first condition are called internal edges, whereas the
edges induced by the second condition are called external edges. From this
we can deduce the degree and the connectivity of an HHC2m+m are both
equal to m + 1. Again, an HHC2m+m is symmetric and of diameter 2m+1

[116]. Also we note that the nodes having the same subcube ID σ induce an
m-dimensional hypercube, denoted subcube Qm(σ).

For example, in an HHC6 (m = 2), the node u = (0000, 00) is adjacent
to the three nodes (0000, 01), (0000, 10) (both linked to u with an internal
edge) and (0001, 00) (linked to u with an external edge). An HHC6 is
illustrated by Figure 3.3.

An HHC2m+m has a two-level structure: on the lower level are subcubes,
induced by internal edges, and on the higher level is a 2m-dimensional hy-
percube Q2m , induced by external edges. Each node of Q2m corresponds to
a distinct subcube of HHC2m+m. Practically, Q2m is obtained by mapping

36 CHAPTER 3. DEFINITIONS

each subcube Qm(σ) of HHC2m+m to the single node σ. Hence we consider
inside an HHC2m+m two types of nodes:

• HHC-level nodes are nodes of the HHC2m+m.

• Cube-level nodes are nodes of the Q2m ; they are subcube IDs.

From there, an HHC-level path denotes a path made of HHC-level nodes,
and a cube-level path denotes a path made of cube-level nodes.

We now describe an algorithm CONV which converts a cube-level path
in Q2m to an HHC-level path in HHC2m+m.

Given a cube-level path P : σ0 ; σn and two processor IDs πbeg, πend,
CONV generates an HHC-level path (σ0, πbeg) ; (σn, πend) according to P .
For a path P : σ0 → σ1 → · · · → σn, let πj (1 ≤ j ≤ n) be an m-bit
sequence satisfying the condition σj−1⊕2πj = σj . The corresponding HHC-
level path (σ0, πbeg) ; (σ0, π1) → (σ1, π1) = (σ0 ⊕ 2π1 , π1) ; (σ1, π2) →
· · · → (σn−1, πn−1) ; (σn−1, πn) → (σn, πn) ; (σn, πend) is constructed
by using a shortest-path routing algorithm inside every subcube to connect
each node (σj , πj) to the node (σj , πj+1). The pseudocode of CONV is given
in Algorithm 1.

Regarding time complexity, in an HHC2m+m, for any cube-level path P
in Q2m of length l, CONV applies a shortest-path routing algorithm inside
each visited subcube, thus requiring O(lm) time complexity.

Algorithm 1 CONV(P = σ0 → σ1 → . . . → σn, πbeg, πend)

Input: A cube-level path P = σ0 ; σn and two processors IDs specifying the HHC
end-nodes (σ0, πbeg) and (σn, πend).

Output: The HHC-level path (σ0, πbeg) ; (σn, πend) corresponding to P .
if L(P) = 0 then

π0(= πbeg) → π1 → . . . → πλ(= πend) := SPR(πbeg, πend);
return (σ0, π0) → (σ0, π1) → . . . → (σ0, πλ)

else

πnext := log2(σ0 ⊕ σ1);
π0(= πbeg) → π1 → . . . → πλ′(= πnext) := SPR(πbeg, πnext);
P ′ := CONV(σ1 ; σn, πnext, πend);
return (σ0, π0) → (σ0, π1) → . . . → (σ0, πλ′) → P ′

end if

3.3 Metacube

As briefly explained in Chapter 2, the metacube (MC) interconnection net-
work has a two-level cubic structure: on the low level, the metacube is made
of clusters linking nodes each other using a hypercube structure. Each clus-
ter is member of a class. On the high level, nodes of different classes are
connected each other, again using a hypercube structure.

3.3. METACUBE 37

m2k bits

k-cube m-cube

k bits m bits m bits m bits m bits

c m2k−1 · · · mc · · · m1 m0

Figure 3.4: MC(k,m) node address format.

Formally, each node address of a metacube MC(k,m) is made of k +

m2k bits; an MC(k,m) has thus a total of 2k+m2k nodes. A node u in an
MC(k,m) is represented by a tuple (c,m2k−1, . . . ,m1,m0) where c represents
the class of u (classID). The class c occupies k bits and induces a high-level
k-dimensional hypercube. Hence an MC(k,m) has 2k classes, represented
by the leftmost k bits of node addresses.

Each mi (0 ≤ i ≤ 2k − 1) is an m-bit sequence. The tuple (m2k−1, . . . ,
mc+1,mc−1, . . . ,m1,m0) represents the m(2k − 1)-bit clusterID of a node.
Finally, mc is the m-bit nodeID inducing an m-dimensional hypercube (clus-

ter). Hence each class contains 2m(2k−1) clusters, and each cluster con-
tains 2m nodes. See Figure 3.4 for an illustration of a node address in an
MC(k,m).

For a node u of an MC(k,m), let mi(u) (0 ≤ i < 2k) be the bit
sequence mi of u and let c(u) be the class of u, c̄(u) representing the
m2k−1, . . . ,m1,m0 part of the address of u, called k-cube of u. The ad-
dress of u can thus also be written (c(u), c̄(u)). Two nodes u and v of an
MC(k,m) are adjacent if H(u,v) = 1 and one of the two following condi-
tions is satisfied:

• H(mc(u),mc(v)) = 1 where c = c(u) = c(v)

• H(c(u), c(v)) = 1

In other words, two nodes are adjacent either if they are inside the same
cluster and their nodeID differ in one bit, or if they are inside distinct clusters
and their addresses differ in only one bit, the differing bit necessarily located
on the classID. The first condition induces edges inside a cluster; such edges
are called cubes-edges. The second condition induces edges between two
clusters; such edges are called cross-edges.

Hence we understand that the degree of each node in aMC(k,m) is equal
to m + k. We also note that a metacube of the form MC(0,m) is an m-
dimensional hypercube, and a metacube of the form MC(1,m) corresponds
to a dual-cube Fm as seen in Chapter 2. An MC(1, 2) is given in Figure 3.5.
In this figure the clusterID is displayed in the middle of each cluster.

For convenience reasons we formally name the neighbours of a node u of
a MC(k,m). Let u(i) (0 ≤ i ≤ m− 1) be the i-th dimensional neighbour of

38 CHAPTER 3. DEFINITIONS

Figure 3.5: A metacube MC(1, 2).

u inside its cluster such that u and u
(i) differ on the i-th bit of mc(u). We

assume the LSB (rightmost) of mc(u) corresponds to the 0-th dimension. Let

u
(i) (m ≤ i ≤ k +m− 1) be the i-th dimension neighbour of u such that u

and u
(i) differ in the (i−m)-th bit of the classID. Finally let u(i,j) = (u(i))(j)

(0 ≤ i, j ≤ k +m− 1).

As an example, in a MC(2, 2), the node u = (01, 00, 00, 00, 00) is adja-
cent to the four nodes u

(0) = (00, 00, 00, 01, 00), u(1) = (00, 00, 00, 10, 00)
(both inside the same cluster as u), u(2) = (00, 00, 00, 00, 00) and u

(3) =
(11, 00, 00, 00, 00). An MC(2, 2) is shown in Figure 3.6, regrouping clusters
of the same class. Note that only four high-level cubes are fully represented
in this figure.

A simple node-to-node routing algorithm in a metacube was described
in [80]. Inside a metacube MC(k,m), given any two nodes s and d, this
algorithm finds a path between s and d. The main idea of the algorithm
is to follow an Hamiltonian path of the classes from the class c(s) of s

to the class c(d) of d. Then we modify inside each cluster visited the m-
bits according to that bits in d by applying a shortest-path routing in an
m-dimensional hypercube. The pseudocode of this algorithm is given in
Algorithm 2

From this approach, we understand that the distance between s and d

can be expressed as first, 2k cross-edges to perform the Hamiltonian path
on a k-cube to browse all the classes, plus second, the number of edges
corresponding to the Hamming distance between c̄(s) and c̄(d). Formally
the distance between s and d is bound by 2k + H(c̄(s), c̄(d)). We can
subsequently deduce the diameter of a metacube MC(k,m) as being 2k +

3.3. METACUBE 39

Figure 3.6: A metacube MC(2, 2).

40 CHAPTER 3. DEFINITIONS

m2k = 2k(m+ 1).

Algorithm 2 MC-N2N(MC(k,m), s, d)

Input: A metacube MC(k,m), a source node s and a destination node d.
Output: A path inside MC(k,m) between s and d.

/* next(c) represents the next class after c in the Hamiltonian path of the classes. */
/* Let h = 2k. */
c := c(s);
v := s;
P := v;
while 1 do

w = (c,mh−1(v), . . . ,mc+1(v),mc(d),mc−1(v), . . . ,m0(v);
if w 6= v then

P := P
SPR
; w

end if

if w = d then

break

end if

v := w;
w := (next(c),mh−1(v), . . . ,mc+1(v),mc(v),mc−1(v), . . . ,m0(v));
P := P → w;
c := next(c)

end while

Chapter 4

Optimal node-to-set

disjoint-path routing in

hypercubes

The routing algorithms we describe in the next chapters strongly rely on
hypercube node-to-set disjoint-path routing. Subsequently we propose in
this chapter an optimal node-to-set disjoint-path routing algorithm in hy-
percubes. Also, while retaining the optimal length of the generated paths
as well as the O(kn) optimal time complexity, our algorithm attains some
kind of fault-tolerance. Effectively, without introducing any penalty to the
maximum path length or to the time complexity, our algorithm optionally
takes as input a set of faulty neighbours of the source node and generates
fault-free disjoint paths. A cluster fault-tolerant node-to-set disjoint-path
routing algorithm in hypercubes was proposed by Gu and Peng [55]. Ad-
dressing a different problem, this algorithm by Gu and Peng generates in a
Qn paths of lengths at most n+ 2 and is thus not satisfying for our needs.

The rest of this chapter is organized as follows. Section 4.1 first de-
scribes as preliminaries a node-to-node routing algorithm in hypercubes.
Then Section 4.2 describes the hypercube node-to-set disjoint-path routing
algorithm Cube-N2S. Section 4.3 establishes the correctness and complexity
of Cube-N2S. Finally Section 4.4 summarizes this chapter.

4.1 Preliminaries

We describe in Lemma 1 a hypercube node-to-node routing algorithm Cube-
N2N, which finds a path between a source node s and a destination node
d, avoiding some neighbours of s. This algorithm Cube-N2N will be used
by the node-to-set disjoint-path routing algorithm Cube-N2S described in
Section 4.2.

41

42 CHAPTER 4. HC NODE-TO-SET DISJOINT-PATH ROUTING

Lemma 1 Inside a Qn, given two nodes s, d and a set M of at most n− 1
neighbours of s, we can find a path P : s ; d including neither an edge
s → M nor a node in M \ {d}, and with L(P) ≤ n + 1 in O(n) time com-
plexity.

Proof: First we select a node s′ in the set N(s) \M . Let δ be the unique
dimension on which s and s′ differ. We reduce Qn into two subcubes Q0

n−1

and Q1
n−1 along the dimension δ. We can assume without loss of generality

that s ∈ Q0. If d ∈ Q1, we connect s′ to d by successively flipping the di-
mensions differing between s′ and d in any order. See Figure 4.1. If d ∈ Q0,

Q0 Q1

s s′ /∈ M

d

Figure 4.1: d ∈ Q1.

we first connect s′ to d′ = d ⊕ 2δ by successively flipping the dimensions
differing between s′ and d′ in any order, and we finally flip the dimension
δ to reach d. See Figure 4.2. Because M ⊂ Q0 and P ∩ Q0 ⊂ {s, d}, the

Q0 Q1

s s′ /∈ M

d′d

Figure 4.2: d ∈ Q0.

statement P ∩ (M \ {d}) = ∅ holds.

Regarding the maximum length of the path s → s′ ; d, we distinguish
two cases. First assume H(s, d) ≤ n − 1. If s′ is on a shortest path s to
d, that is H(s′, d) = H(s, d) − 1, then the dimension δ is included in the
differing bits between s and d. Therefore there are at most n − 2 differing
bits between s′ and d. Hence s′ is connected to d in at most n − 2 edges.
Taking the edge connecting s to s′ into consideration, we obtain a path

4.2. NODE-TO-SET DISJOINT-PATH ROUTING ALGORITHM 43

of length at most n − 1. If s′ is not on a shortest path s to d, that is
H(s′, d) = H(s, d) + 1, then there are at most n differing bits between s′

and d. Hence s′ is connected to d using at most n edges. Considering the
edge connecting s to s′, we obtain a path of length at most n + 1. Now
assume H(s, d) = n. Then the dimension δ must be included in the differing
bits between s and d. Therefore the statement H(s′, d) = H(s, d)− 1 holds.
Thus s′ is connected to d with n−1 edges. Considering the edge connecting
s to s′, we obtain a path of length n.

This algorithm flips at most n − 1 dimensions once, and at most one
dimension twice, hence it performs at most n + 1 dimension flips. Finding
the dimension δ requires O(n) time complexity. Each of the dimension flips
is performed in constant time. Therefore Cube-N2N has a time complexity
of O(n). 2

4.2 Node-to-set disjoint-path routing algorithm

We describe in this section a hypercube node-to-set disjoint-path routing
algorithm Cube-N2S. In a Qn, given a source node s, a set D of k (k ≤ n)
destination nodes and a set M of at most n − k neighbours of s, Cube-
N2S generates k disjoint paths between the source node and the destination
nodes, not including an edge between s and M , and not including a node
in M \D. Cube-N2S recursively reduces the node-to-set disjoint-path rout-
ing problem to subproblems in subcubes of the original hypercube. The
pseudocode of Cube-N2S is given in Algorithm 3.

Step 1 First if s ∈ D, we create the path of length zero s and remove s
from D. Then we create the trivial paths of length one between the
source node s and the nodes of D∩N(s) \M . We accordingly remove
these connected destination nodes from D and add them into M . If
there remains only one destination node inside D, we connect it to s
using Cube-N2N and terminates the algorithm.

Step 2 We reduce Qn into two subcubes Q0
n−1 and Q1

n−1 along a dimension
δ (0 ≤ δ ≤ n− 1) such that D∩Q0

n−1 6= ∅ and D∩Q1
n−1 6= ∅. Assume

s ∈ Q0
n−1 and let s′ be the unique neighbour of s intoQ1

n−1 (s
′ = s⊕2δ).

Step 3 We collect in a new set M1 all the neighbours s′i ∈ Q1
n−1 of s′

whose neighbour si in Q0
n−1 is in M ; formally M1 = {s′i | s

′
i ∈ Q1

n−1 ∩
N(s′), si(= s′i ⊕ 2δ) ∈ M}. See Figure 4.3.

Step 4 We apply Cube-N2S recursively onto Q1
n−1 to obtain a set C1 of

disjoint paths from s′ to the nodes of D′, including neither an edge
s′ → M1 nor a node in M1 \D

′, where D′ is defined depending on the
two cases below.
• s′ ∈ D∩M . If s′ ∈ D∩M then we cannot use the edge s → s′. Hence

44 CHAPTER 4. HC NODE-TO-SET DISJOINT-PATH ROUTING

Q0 Q1

s s′

︸ ︷︷ ︸

∈M
︸ ︷︷ ︸

M1

Figure 4.3: The set M1.

we have to find a neighbour node s′w of s′ in Q1
n−1 for connection, and

we consider s′w as a destination node instead of s′. Then D′ is defined
as D ∩Q1

n−1 \ {s
′} ∪ {s′w}.

• s′ /∈ D ∩M . In this case D′ is simply defined as D ∩Q1
n−1.

Step 5 If s′ ∈ D ∩ M we replace the path s′ → s′w in C1 by the path
s′ → s′w → s′ whose edge s′ → s′w will be later discarded.

Step 6 We connect the paths of C1 to s depending on the two cases below.
• s′ /∈ M . For each path (s′ ; di) ∈ C1 except one arbitrary path
(s′ ; dj) ∈ C1, j 6= i we replace the edge s′ → s′i by the subpath
s → si → s′i where si = s′i ⊕ 2δ. For the remaining path s′ ; dj , we
add the edge s → s′.
• s′ ∈ M . For each path (s′ ; di) ∈ C1 we replace the edge s′ → s′i by
the subpath s → si → s′i where si = s′i ⊕ 2δ.

Step 7 Let M0 = (M ∩ Q0) ∪ {si | (s → si → s′i ; di) ∈ C1}. We apply
Cube-N2S recursively onto Q0

n−1 to obtain disjoint paths from s to
the nodes of D ∩ Q0

n−1, not including an edge s → M0 nor a node in
M0 \ (D ∩Q0

n−1).

4.3 Correctness and complexities

We show the correctness of Cube-N2S by proving the following lemma.

Lemma 2 In a Qn, given a node s, a set of k (k ≤ n) nodes D = {d1, d2, . . . ,
dk} and a set M of at most n − k neighbours of s, we can find k disjoint
paths s ; di (1 ≤ i ≤ k) of lengths at most n+1, including neither an edge
s → M nor a node in M \D in O(kn) time complexity.

Proof: In Step 1 it takes O(k) time complexity to check if s ∈ D or not. It
also takes O(k) time to generate the paths s → di ∈ D ∩ N(s) \M . Their
lengths are only one and they are trivially disjoint.

4.3. CORRECTNESS AND COMPLEXITIES 45

Algorithm 3 Cube-N2S(Qn, s, D, M)

Input: A Qn, a node s, a set of k (k ≤ n) nodes D = {d1, . . . , dk} and a set M of at
most n− k neighbours of s.

Output: k disjoint paths s ; di (1 ≤ i ≤ k) including neither an edge s → M nor a
node in M \D.
if s ∈ D then C := {s}; /* s: path of length 0 */

D := D \ {s} else C := ∅ end if;
C := C ∪ {s → si | si ∈ D ∩N(s) \M};
M := M ∪ (D ∩N(s));
D := D \ (N(s) \M);
if D = ∅ then return C end if

if |D| = 1 then

C := C ∪ {Cube-N2N(Qn, s, d1, M)}
else

Reduce Qn along δ s.t. D ∩Q0
n−1 6= ∅ and D ∩Q1

n−1 6= ∅; /* Assume s ∈ Q0
n−1 */

s′ := s⊕ 2δ; /* Let s′i ∈ Q1
n−1 be the neighbour of si ∈ Q0

n−1 */
M1 := {si ⊕ 2δ | si ∈ M ∩Q0

n−1};
if s′ ∈ D ∩M then

Find s′w such that s′w ∈ N(s′) \ (D ∪M1 ∪ {s});
D′ := D ∩Q1

n−1 \ {s
′} ∪ {s′w}

else

D′ := D ∩Q1
n−1

end if

C1 := Cube-N2S(Q1
n−1, s

′, D′, M1);
if s′ ∈ D ∩M then

C1 := (C1 \ {s
′ → s′w}) ∪ {s′ → s′w → s′}

end if

if s′ /∈ M then

Select P ∈ C1 arbitrarily;
C1 := {s → P} ∪ {s → sij → s′ij ; dj | s′ → s′ij ; dj ∈ C1 \ {P}}

else

C1 := {s → sij → s′ij ; dj | s′ → s′ij ; dj ∈ C1}
end if

M0 := (M ∩Q0
n−1) ∪ {sij | (s → sij → s′ij ; dj) ∈ C1};

C0 := Cube-N2S(Q0
n−1, s, D ∩Q0

n−1, M0);
C := C ∪ C0 ∪ C1

end if

return C

46 CHAPTER 4. HC NODE-TO-SET DISJOINT-PATH ROUTING

Q0 Q1

s s′ /∈ M

sr+1sr+2 sk

d1
dr

s′r+1
s′r+2 s′k

dr+1
dr+2

dk

Figure 4.4: Node-to-set disjoint-path routing in a Qn (s′ /∈ M).

We show by induction on n and k (n ≥ k) that Cube-N2S generates
disjoint paths of length at most n + 1 not including an edge s → M and
not including a node in M \ D in O(kn) time complexity. If k = 1, in a
Qn Cube-N2N generates a path s ; d ∈ D of length at most n + 1 not
including an edge s → M and not including a node in M \ {d} in O(n) time
complexity. Hence Lemma 2 holds. Assume k ≥ 2 and thus n ≥ 2. We
assume Lemma 2 holds for any hypercube of dimension smaller than n with
at most k− 1 destination nodes (induction hypothesis). We prove Lemma 2
holds for a hypercube of dimension n with k destination nodes. Let T (k, n)
represent the time complexity of Cube-N2S in a Qn with |D| = k.

In Step 2 it takes O(1) to find δ. We assume D ∩ Q0
n−1 = {d1, . . . , dr}

and D ∩Q1
n−1 = {dr+1, . . . , dk}.

In Step 3, for each of the at most n−k neighbours si of s inM∩Q0, we put
in a new setM1 the corresponding node s

′
i (= si⊕2δ). HenceM1 is created in

O(n) time complexity and we have |M1| ≤ n−k. Since there are at most k−1
destination nodes in Q1

n−1 we have |D ∩Q1
n−1|+ |M1| ≤ (k− 1) + (n− k) =

n − 1. Hence, if s′ ∈ D ∩ M then |((D ∩ Q1
n−1) ∪ M1) ∩ N(s′)| ≤ n − 2

since s′ ∈ D ∩ Q1
n−1. Therefore, in Step 4, if s′ ∈ D ∩ M then we can

always find s′w ∈ N(s′) \ (D ∪ M1 ∪ {s}), and |D′| + |M1| ≤ n − 1 holds
with D′ = D ∩ Q1

n−1 \ {s′} ∪ {s′w}, |D
′| = k − r ≤ k − 1. Finding s′w and

creating D′ takes O(n) time complexity. Otherwise if s′ /∈ D ∩M we have
D′ = D ∩Q1

n−1, |D
′| = k − r ≤ k − 1, also created in O(n) time complexity.

Because |D′| + |M1| ≤ n − 1, we can find by induction onto Q1
n−1 k − r

disjoint paths of length at most (n − 1) + 1 = n from s′ to the nodes of
D′, not including an edge s′ → M1 and not including a node in M1 \D

′ in
T (k − r, n− 1) time complexity.

In Step 5, if s′ ∈ D ∩ M , say s′ = dj (r + 1 ≤ j ≤ k), we extend the
path s′ → s′w to Pj : s′ → s′w → s′ = dj and we have L(Pj) = 2 ≤ n since

4.3. CORRECTNESS AND COMPLEXITIES 47

n ≥ 2. Let Pi be the paths s′ ; di (r + 1 ≤ i ≤ k) in Q1
n−1. We have thus

L(Pi) ≤ n (r + 1 ≤ i ≤ k).
In Step 6, if s′ /∈ M , then |M ∩ Q0

n−1| ≤ n − k. We connect one path,
say Pr+1 : s′ ; dr+1 to s by simply connecting s to s′ in one edge, and
we connect each of the remaining k − r − 1 paths Pi (r + 2 ≤ i ≤ k) to s
by replacing the edge s′ → s′i by the subpath s → si → s′i. Because each
path Pi (r + 2 ≤ i ≤ k) is using a distinct neighbour s′i of s′, the paths
Pi (r + 2 ≤ i ≤ k) stay disjoint when linked to s via si the neighbour of
s′i in Q0

n−1. Also, because s′ is distinct from all the neighbours si ∈ Q0
n−1

of s, Pr+1 is disjoint with the other paths Pi (r + 2 ≤ i ≤ k). Because
Pr+1 ∩Q0

n−1 = {s}, Pi ∩Q0
n−1 = {s, si} (r + 2 ≤ i ≤ k), s /∈ M and si /∈ M

(r + 2 ≤ i ≤ k), we have Pi ∩ M = ∅ (r + 1 ≤ i ≤ k). Now, let M0 be a
union of the neighbours si ∈ Q0

n−1 of s used in the paths Pi (r+2 ≤ i ≤ k),
and M ∩Q0

n−1. We have |M0| ≤ (k − r− 1) + (n− k) = n− r− 1. Because
for each path Pi (r+2 ≤ i ≤ k) we replace the edge s′ → s′i by the subpath
s → si → s′i, the new paths have a maximum length of n − 1 + 2 = n + 1.
The path Pr+1 : s′ ; dr+1 of length at most n is linked to s with the edge
s → s′, hence the new path is of length at most n+ 1. See Figure 4.4.

Otherwise, if s′ ∈ M , then |M ∩Q0
n−1| ≤ (n− k)− 1. We connect each

of the k − r paths Pi (r + 1 ≤ i ≤ k) to s by replacing the edge s′ → s′i by
the subpath s → si → s′i. Because each path Pi (r + 1 ≤ i ≤ k) is using a
distinct neighbour s′i of s

′, the paths Pi (r + 1 ≤ i ≤ k) stay disjoint when
linked to s via si the neighbour of s

′
i in Q0

n−1. For the same reason as in the
case s′ /∈ M , we have Pi ∩M = ∅ (r + 1 ≤ i ≤ k). Now, let M0 be a union
of the neighbours si ∈ Q0

n−1 of s used in the paths Pi (r + 1 ≤ i ≤ k), and
M ∩Q0

n−1. We have |M0| ≤ (k − r) + (n− k − 1) = n− r − 1. Because for
each path Pi (r + 1 ≤ i ≤ k) we replace the edge s′ → s′i by the subpath
s → si → s′i, the new paths have a maximum length of n− 1 + 2 = n+ 1.

Step 5 and 6 both require O(k) time complexity. We have obtained
|M0| ≤ n − r − 1. In Step 7, because we have |D ∩ Q0

n−1| + |M0| ≤ r +
(n − r − 1) = n − 1, we can find by induction onto Q0

n−1 r disjoint paths
Pi : s ; di (1 ≤ i ≤ r) of length at most (n − 1) + 1 = n not including an
edge s → M0 and not including a node in M0\(D ∩Q0

n−1) in T (r, n−1) time
complexity. In addition, because all the neighbour nodes si ∈ Q0

n−1 of s used
in the paths Pi (r+1 ≤ i ≤ k) are included in M0, and because excepted for
these nodes si ∈ Q0

n−1 the paths Pi (r+1 ≤ i ≤ k) are located inside Q1
n−1,

the paths Pi (1 ≤ i ≤ r) are disjoint with the paths Pi (r + 1 ≤ i ≤ k).
From this discussion, the k paths generated by Cube-N2S are disjoint,

have lengths of at most n + 1 and include neither an edge s → M nor a
node in M \D. Also we can express the time complexity of Cube-N2S by
induction on n and k as follows.

T (1, n) = O(n) (4.1)

T (k, n) = T (r, n− 1) + T (k − r, n− 1) +O(n) (4.2)

48 CHAPTER 4. HC NODE-TO-SET DISJOINT-PATH ROUTING

= O(kn)

Equation 4.1 corresponds to the time complexity of Lemma 1. Cube-N2S
has thus a total time complexity of O(kn) which is time optimal. 2

Now we can state the following theorem.

Theorem 1 In a Qn, given a node s, a set of k (k ≤ n) nodes D = {d1, d2,
. . . , dk} and a set M of at most n−k faulty neighbours of s with D∩M = ∅,
we can find k fault-free disjoint paths s ; di (1 ≤ i ≤ k) of lengths at most
n+ 1 in O(kn) time complexity.

Proof: Since D ∩ M = ∅, by Lemma 2 the disjoint paths returned by
Cube-N2S(Qn, s, D, M) are fault-free. 2

4.4 Summary

We have described in this chapter a node-to-set disjoint-path routing algo-
rithm Cube-N2S in a hypercube. Inside a Qn, given a source node s, a set D
of k (k ≤ n) destination nodes and a set of at most n− k faulty neighbours
of s, Cube-N2S finds k fault-free node-disjoint paths between s and each
node of D of lengths at most n+ 1 in O(kn) time complexity.

Chapter 5

Node-to-set disjoint-path

routing in perfect

hierarchical hypercubes

We describe in this chapter a node-to-set disjoint-path routing algorithm
HHC-N2S in perfect hierarchical hypercubes. The presentation of HHC-
N2S is organized as follows. Section 5.1 recalls one lemma. Then Section
5.2 formally describes the algorithm HHC-N2S and gives its pseudocode.
The proof of the correctness of HHC-N2S as well as its complexities are
addressed in Section 5.3. An example of the execution trace of HHC-N2S
is also given. An empirical evaluation of HHC-N2S is performed in Section
5.4. An improvement idea aimed at reducing the paths lengths is proposed
in Section 5.5. Finally Section 5.6 summarizes this chapter.

5.1 Preliminaries

In this section we state Lemma 3 which shows that inside an HHC2m+m we
can distribute all the m + 1 destination nodes to distinct subcubes using
disjoint paths of length at most two.

Lemma 3 Inside an HHC2m+m, given a set of m+1 nodes D = {d1,d2, . . . ,
dm+1}, we can find m+ 1 disjoint paths di ; d

′
i (1 ≤ i ≤ m+ 1) of length

at most two in O(m3) time complexity such that the subcube of d′
i does not

include any node in D ∪ (D′ \ {d′
i}) where D′ = {d′

1,d
′
2, . . . ,d

′
m+1}.

Proof: For an arbitrary node di = (σ, pi) ∈ D, there exist m + 1 dis-

joint paths P
(i)
1 , . . . , P

(i)
m+1 of length at most two connecting di to m + 1

49

50 CHAPTER 5. HHC NODE-TO-SET DISJOINT-PATH ROUTING

Qm(σ)
Qm(σu)

Qm(σv)
di

u1

v1

u2

v2

P
(i)
u

P
(i)
v

Figure 5.1: Two candidate paths for distribution of di.

distinct subcubes:






di = (σ, pi)→ (σ ⊕ 2pi , pi) ∈ Qm(σ ⊕ 2pi)

di = (σ, pi)→ (σ, pi ⊕ 2h) → (σ ⊕ 2pi⊕2h , pi ⊕ 2h) ∈ Qm(σ ⊕ 2pi⊕2h)
(0 ≤ h ≤ m− 1)

Now we show that for any dj (1 ≤ j ≤ m + 1, i 6= j), the path P
(j)
wj :

dj → d
′′
j → d

′
j (1 ≤ wj ≤ m+ 1) can block at most one of the m+ 1 paths

P
(i)
1 , . . . , P

(i)
m+1.

Let us consider two paths P
(i)
u : di → u1 → u2 ∈ Qm(σu) and P

(i)
v :

di → v1 → v2 ∈ Qm(σv) with 1 ≤ u, v ≤ m + 1, u 6= v (see Figure 5.1).
Because u1 and v1 are two distinct neighbours of the same node di, we have
H(u1,v1) = 2.

First we assume that dj ∈ Qm(σ). Then d
′′
j ∈ Qm(σ) and d

′
j /∈ Qm(σ)

hold. Hence u1 and v1 cannot be both on P
(j)
wj because H(u1,v1) = 2. In

addition, if dj = u1 then d
′
j /∈ Qm(σv) holds because there exists only one

external edge v1 → v2 between Qm(σ) and Qm(σv) and because d
′′
j 6= v1.

Therefore P
(j)
wj cannot block both P

(i)
u and P

(i)
v if dj ∈ Qm(σ).

Next we assume that dj /∈ Qm(σ) and dj ∈ Qm(σu) hold. We recall that
H(σ, σu) = H(σ, σv) = 1, hence H(σu, σv) = 2 since u1 6= v1. Therefore
there is no external edge between Qm(σu) and Qm(σv), hence d

′
j /∈ Qm(σv)

holds since P
(j)
wj has only one external edge. Consequently, if dj ∈ Qm(σu)

holds then P
(j)
wj cannot block P

(i)
u and P

(i)
v at the same time.

We can deduce from this discussion that each path P
(j)
wj (1 ≤ wj ≤ m+1)

can block at most one of the m + 1 paths P
(i)
1 , . . . , P

(i)
m+1. Hence at least

(m + 1) − m = 1 path P
(i)
wi (1 ≤ wi ≤ m + 1) remains to connect di to a

node d
′
i. P

(i)
wi can be found in O(m2) time complexity by checking all the

m+ 1 paths P
(i)
1 , . . . , P

(i)
m+1 of length at most two for di. Therefore we can

connect all nodes di ∈ D to nodes d′
i with disjoint paths of lengths at most

two in O(m3) time complexity. 2

Given a subcube ID s0, a set D of k (k ≤ m + 1) nodes and a set Z
of subcube IDs, we describe in Algorithm 4 an algorithm DISTRIB based
on Lemma 3. When DISTRIB is used in the next section for distribution

5.2. NODE-TO-SET DISJOINT-PATH ROUTING ALGORITHM 51

of destination nodes, some of them are not necessarily distributed. For ex-
ample, for destination nodes in Qm(s0), disjoint paths from the source node
are constructed inside Qm(s0). Hence it is not necessary to distribute these
destination nodes. Instead, the subcubes including the end nodes of op-
posite sides of external edges incident to the destination nodes in Qm(s0)
cannot be used for distribution. That is, any destination nodes in these
subcubes must be distributed, and any destination nodes outside cannot be
distributed to these subcubes. The parameters s0 and Z are passed to DIS-
TRIB to specify the subcube including the source node and the destination
nodes to be distributed, respectively. Then, the algorithm distributes each
di = (si, pi) ∈ D with si ∈ Z to distinct subcubes using disjoint paths of
lengths at most two.

Algorithm 4 DISTRIB(s0, D = {d1,d2, . . . ,dk}, Z)

Input: A subcube ID s0, a set D of k (k ≤ m+ 1) nodes and a set Z of subcube IDs.
Output: A set of HHC-level distributing disjoint paths di = (si, pi) ; d

′
i, si ∈ Z.

H := ∅; D′ := ∅;
D̃′ := {(s0 ⊕ 2pi , pi) | di = (si, pi) ∈ Qm(s0)};
for all di = (si, pi) with si ∈ Z do

Generate m+ 1 paths P
(i)
1 , . . . , P

(i)
m+1 according to Lemma 3;

Find a path P
(i)
wi

such that

• P
(i)
wi

∩ (D \ {di}) = ∅

• Qm(s′i) ∩ ((D ∪D′ ∪ D̃′) \ {d′
i}) = ∅

• P
(i)
wi

∩ P
(j)
wj

= ∅ (∀P (j)
wj

∈ H)
hold;
H := H∪ {P (i)

wi
};

D′ := D′ ∪ {d′
i | P

(i)
wi

= di ; d
′
i}

end for

return H

5.2 Node-to-set disjoint-path routing algorithm

In this section we describe an algorithm HHC-N2S finding k (k ≤ m + 1)
disjoint paths from a source node s = (s0, p0) to k destination nodes di =
(si, pi), 1 ≤ i ≤ k in an HHC2m+m. The main idea of this algorithm is to
reduce the node-to-set disjoint-path routing problem in an HHC to the node-
to-set disjoint-path routing problem in a hypercube via a 2m-to-1 mapping
of an HHC2m+m onto a Q2m . Concretely, for each node (σ, π) ∈ HHC2m+m,
we map its subcube Qm(σ) to the single node σ of a Q2m . From there, we
distinguish two types of nodes: HHC-level nodes are nodes of theHHC2m+m,
and cube-level nodes are nodes of Q2m . An HHC-level path is made of HHC-
level nodes and a cube-level path is made of cube-level nodes.

First we give an algorithm CONV which generates in an HHC2m+m,
for a cube-level path P : σ0 ; σn in Q2m of length l and two processor

52 CHAPTER 5. HHC NODE-TO-SET DISJOINT-PATH ROUTING

IDs πbeg, πend, an HHC-level path (σ0, πbeg) ; (σn, πend) according to P
by applying an SPR inside each visited subcube Qm. Therefore CONV is
O(lm) time complexity. The pseudocode of CONV is given in Algorithm 5.

Algorithm 5 CONV(P = σ0 → σ1 → . . . → σn, πbeg, πend)

Input: A cube-level path P = σ0 ; σn and two processors IDs to specify the HHC nodes
(σ0, πbeg) and (σn, πend).

Output: The HHC-level path corresponding to P .
if L(P) = 0 then

π0(= πbeg) → π1 → . . . → πλ(= πend) := πbeg
SPR
; πend;

return (σ0, π0) → (σ0, π1) → . . . → (σ0, πλ)
else

πnext := log2(σ0 ⊕ σ1);

π0(= πbeg) → π1 → . . . → πλ′(= πnext) := πbeg
SPR
; πnext;

P ′ := CONV(σ1 ; σn, πnext, πend);
return (σ0, π0) → (σ0, π1) → . . . → (σ0, πλ′) → P ′

end if

HHC-N2S is divided into two cases depending on the number of desti-
nation nodes inside Qm(s0). If it is at least k − 1, the problem is solved by
applying Cube-N2S inside Qm(s0) and generating at most one path going
outside Qm(s0). Otherwise we performs the following steps. In Step 1, we
first distribute destination nodes into distinct subcubes. These subcubes are
considered as destination nodes when applying Cube-N2S onto Q2m in Step
2. Step 3 replaces one path generated in Step 2 if a certain condition holds.
In Step 4 we discard unnecessary cube-level paths generated in Step 2. Fi-
nally, in Step 5, the cube-level paths not discarded will be converted back to
HHC-level paths using the CONV algorithm. It is important to note that if
k = m + 1 then one path must include the edge s → (s0 ⊕ 2p0 , p0) so that
we can disjointly connect inside Qm(s0) the other m paths to s. To satisfy
this requirement, a set Z4 ⊂ N(s0) is introduced in Step 2 before applying
Cube-N2S in Q2m . The pseudocode of HHC-N2S is given in Algorithm 6.

Case I: |D ∩Qm(s0)| ≥ k − 1
Assume without loss of generality that {d1, . . . ,dk−1} ⊂ Qm(s0).

Case I-a: dk ∈ Qm(s0) and k < m+ 1
The k disjoint paths s ; di, 1 ≤ i ≤ k are found by applying Cube-
N2S inside Qm(s0).

Case I-b: dk ∈ Qm(s0) and k = m+ 1
Apply Cube-N2S inside Qm(s0) to find k−1 disjoint paths s ; di, 1 ≤
i ≤ k − 1. If dk is included on one of these m paths, say s ; dj ,
discard the subpath dk ; dj and exchange the indices of the nodes
dj and dk. So there is still one destination node dk to which a disjoint
path from s is not obtained. Hence the path s ; dk is given by

5.2. NODE-TO-SET DISJOINT-PATH ROUTING ALGORITHM 53

s

Qm(s0)

dk

(s0 ⊕ 2p0 , p0)

dk−1

d1

d2

Qm(s0 ⊕ 2p0)

Qm(s0 ⊕ 2pk)

Qm(s0 ⊕ 2p0 ⊕ 2pk)

Figure 5.2: Disjoint paths generated in Case I-b.

s → (s0 ⊕ 2p0 , p0)
SPR
; (s0 ⊕ 2p0 , pk) → (s0 ⊕ 2p0 ⊕ 2pk , pk)

SPR
; (s0 ⊕

2p0 ⊕ 2pk , p0) → (s0 ⊕ 2pk , p0)
SPR
; (s0 ⊕ 2pk , pk) → (s0, pk) = dk. See

Figure 5.2.

Case I-c: dk /∈ Qm(s0)
Apply Cube-N2S inside Qm(s0) to find k−1 disjoint paths s ; di, 1 ≤
i ≤ k − 1. The remaining path s ; dk is obtained by first finding a
cube-level shortest path P : s0 ⊕ 2p0 ; sk ⊕ 2pk so that P does not
start with the edge s0⊕2p0 → s0. Next, if sk ∈ P discard the subpath
sk ; sk ⊕ 2pk of P and apply CONV(P , p0, pk). Otherwise if sk /∈ P
apply CONV(P , p0, pk) and extend the path obtained by one external
edge (sk ⊕ 2pk , pk) → dk.

Case II: |D ∩Qm(s0)| ≤ k − 2

Step 1 Assume without loss of generality that Qm(s0) ∩D = {d1, . . . ,dr}
(r ≤ k − 2). Let Z1 be the set of subcube IDs whose corresponding
subcubes contain at least two destination nodes (s0 is excluded from
Z1), formally Z1 = {σ | |Qm(σ) ∩ D| ≥ 2} \ {s0}. Let Z2 be the set
of subcube IDs not in Z1 such that each of corresponding subcubes is
linked to Qm(s0) with an external edge whose end node in Qm(s0) is
a destination node, formally Z2 = {s0 ⊕ 2p1 , . . . , s0 ⊕ 2pr} \ Z1.

Find a path of length at most two from each destination node di =
(si, pi) with si ∈ Z1∪Z2 to a node d′

i = (s′i, p
′
i) (called distributed des-

tination node for di) by applying DISTRIB(s0, D, Z1∪Z2). Formally,
∀di, 1 ≤ i ≤ k with si ∈ Z1∪Z2, three statements hold with respect to
its distribution path di → d

′′
i → d

′
i: s

′
i /∈ Z2, Qm(s′i)∩(D∪D′\{d′

i}) =
∅ and d

′′
i /∈ D, where D′ = {d′

j | sj ∈ Z1 ∪ Z2}. Note that if

54 CHAPTER 5. HHC NODE-TO-SET DISJOINT-PATH ROUTING

Qm(s0)

Z1

Z2
Z3

Z4

destination node
distributed destination node

Figure 5.3: The four disjoint sets of subcube IDs Z1, Z2, Z3 and Z4.

Qm(s0)∩D = ∅, one destination node can be distributed to a node in
Qm(s0).

Step 2 Let Z3 be the union of the set of subcube IDs whose corresponding
subcubes contain one distributed destination node, and the set of sub-
cube IDs not in Z2 ∪ {s0} whose corresponding subcubes contain only
one destination node. Formally Z3 = {s′i | si ∈ Z1 ∪ Z2} ∪ {si | si /∈
Z1 ∪Z2 ∪ {s0}}. Let Z4 be a set of subcube IDs neighbours of s0 such
that Z4 ⊂ N(s0)\(Z1∪Z2∪Z3) and |Z4| = 2m−|Z1|−|Z2|−|Z3\{s0}|.
If |N(s0)\ (Z1∪Z2∪Z3)| > 2m−|Z1|− |Z2|− |Z3 \{s0}|, we construct
Z4 so that s0⊕2p0 /∈ Z4 holds. Note that Z4 is not always unique. See
Figure 5.3 for an illustration of the four disjoint sets Z1, Z2, Z3 and
Z4.

Apply Cube-N2S in Q2m with Cube-N2S(Q2m , s0, Z1 ∪ (Z3 \ {s0}),
Z2∪Z4) to obtain a set C0 of cube-level disjoint paths. If s0 ∈ Z3, add
into C0 the cube-level path of length zero s0. We have |C0| = |Z1∪Z3|.

Step 3 We introduce an additional treatment for the case s0 ⊕ 2p0 ∈ Z4

holds. Otherwise go to Step 4. First select an arbitrary node si =
s0 ⊕ 2q ∈ Z3 ∩ N(s0). Then add into C0 the path s0 → s0 ⊕ 2p0 →
s0 ⊕ 2p0 ⊕ 2q → s0 ⊕ 2q = si of length three and remove from C0 the
path s0 → si of length one.

Step 4 Remove from C0 the paths s0 ; σ ∈ Z1 not including s0 ⊕ 2p0 . If
C0 includes a path P : s0 → s0 ⊕ 2p0 ; ς → σ ∈ Z1, considering the

5.3. CORRECTNESS AND COMPLEXITIES 55

Qm(s0)

(s0, p0)

Qm(s0⊕2p0)

(s0⊕2p0 , p0)

P

Qm(ς)

P ′
Qm(s′j)

d
′
j

Qm(σ)

di

(σ, log2(ς⊕σ))

d
′′
j=e

dj

Figure 5.4: Two paths P and P ′.

set E = {di | di ∈ Qm(σ)} ∪ {d′′
i | di → d

′′
i → d

′
i, di,d

′′
i ∈ Qm(σ)}, let

e(= dj or d′′
j) ∈ E be the closest node of E to the node (σ, log2(ς⊕σ)).

Since P will be used to connect s to e in Step 5, we remove from C0
the path P ′ : s0 ; s′j where (s′j , p

′
j) = d

′
j . See Figure 5.4. We have

|C0| = k − r.

Step 5 First extend each path (s0 ; s′i) ∈ C0 with an edge s′i → si (C0 is
updated). Next, convert the k − r cube-level paths Pi : (s0 ; si) ∈
C0, r + 1 ≤ i ≤ k back to HHC-level paths using CONV as follows.

Assume without loss of generality that Pr+1 includes the edge s0 →
s0 ⊕ 2p0 . If Pr+1 connects an element of Z1 (i.e. sr+1 ∈ Z1), that is P
of Step 4 exists, its conversion requires special treatment. First apply
CONV(Pr+1, p0, π) where (sr+1, π) = e (e ∈ {dr+1,d

′′
r+1}, see Step

4). Second, if e = d
′′
r+1, extend that path with the edge e → dr+1.

Third, for each path Pi, r + 2 ≤ i ≤ k : s0 → s0 ⊕ 2πi ; si apply
CONV(Pi, πi, pi). Now if sr+1 /∈ Z1, that is P does not exist, for each
path Pi, r + 1 ≤ i ≤ k : s0 → s0 ⊕ 2πi ; si apply CONV(Pi, πi, pi).

Finally apply Cube-N2S inside Qm(s0) to connect s to the k−1 (≤ m)
nodes of the set (Qm(s0)∩D)∪{(s0, πi) | s0⊕2πi ∈ Pi, r+2 ≤ i ≤ k}.
See Figure 5.5.

5.3 Correctness and complexities

In this section we prove the correctness of HHC-N2S and estimate its time
complexity as well as the theoretical maximum path length.

Lemma 4 Case I generates disjoint paths of lengths at most m2m + 2m −
m+ 1 in O(m2m) time complexity.

Proof: Cases I-a, I-b and I-c use Cube-N2S to disjointly connect s and
k or k − 1 destination nodes in Qm(s0). By Lemma 2, these disjoint paths
are generated in O(km) time complexity, and their lengths are at most

56 CHAPTER 5. HHC NODE-TO-SET DISJOINT-PATH ROUTING

Algorithm 6 HHC-N2S(HHC2m+m, s, D = {d1, . . . ,dk})
Input: An HHC2m+m, a source node s = (s0, p0) and a set D of k (k ≤ m + 1) destination

nodes di = (si, pi) (1 ≤ i ≤ k).
Output: k disjoint paths s ; di (1 ≤ i ≤ k).

if |D ∩Qm(s0)| ≥ k − 1 then /* Case I - Assume {d1, . . . ,dk−1} ⊂ D ∩Qm(s0) */
if dk ∈ Qm(s0) and k < m+ 1 then /* Case I-a */

S0 := Cube-N2S(Qm(s0), p0, {p1, . . . , pk}, ∅);
H := {(s0, p0) ; (s0, pi) | ∀(p0 ; pi) ∈ S0, 1 ≤ i ≤ k}

else if dk ∈ Qm(s0) and k = m+ 1 then /* Case I-b */
S0 := Cube-N2S(Qm(s0), p0, {p1, . . . , pk−1}, ∅);
H := {(s0, p0) ; (s0, pi) | ∀(p0 ; pi) ∈ S0, 1 ≤ i ≤ k − 1}; /* If dk ∈ H, additional
processing required, but omitted. */

H := H ∪ {s → (s0 ⊕ 2p0 , p0)
SPR
; (s0 ⊕ 2p0 , pk)→ (s0 ⊕ 2p0 ⊕ 2pk , pk)

SPR
; (s0 ⊕ 2p0 ⊕

2pk , p0)→(s0 ⊕ 2pk , p0)
SPR
; (s0 ⊕ 2pk , pk)→ dk}

else /* Case I-c */
S0 := Cube-N2S(Qm(s0), p0, {p1, . . . , pk−1}, ∅);
H := {(s0, p0) ; (s0, pi) | ∀(p0 ; pi) ∈ S0, 1 ≤ i ≤ k − 1};
P := s0⊕2p0 ; sk⊕2pk ; /* P is a cube-level shortest-path between s0⊕2p0 and sk⊕2pk

not including s0. */
if sk ∈ P then

Discard the subpath sk ; sk ⊕ 2pk of P ;
H := H ∪ {s → CONV(P , p0, pk)}

else
H := H ∪ {s → CONV(P , p0, pk) → dk}

end if
end if

else /* Case II - Assume {d1, . . . ,dr} = D ∩Qm(s0) with r ≤ k − 2 */
/* Step 1 */
Z1 := {σ | |D ∩Qm(σ)| ≥ 2} \ {s0};
Z2 := {s0 ⊕ 2p1, . . . , s0 ⊕ 2pr} \ Z1;
H′ := DISTRIB(s0, {dr+1, . . . ,dk}, Z1 ∪ Z2);
/* Step 2 */
Z3 := {s′i | si ∈ Z1 ∪Z2}∪{si | si /∈ Z1 ∪Z2 ∪{s0}}; /* (di→(d′′

i →) d
′
i = (s′i, p

′
i))∈ H′ */

Z4 := {σj | 1 ≤ j ≤ 2m − |Z1 ∪ Z2 ∪ (Z3 \ {s0})|, σj ∈ N(s0) \ (Z1 ∪ Z2 ∪ Z3)};
/* Z4 is not always unique and should avoid including s0 ⊕ 2p0 if possible. */

C0 := Cube-N2S(Q2m , s0, Z1 ∪ (Z3 \ {s0}), Z2 ∪ Z4);
if s0 ∈ Z3 then C0 := C0 ∪ {s0} end if

/* Step 3 */
if s0 ⊕ 2p0 ∈ Z4 then

Find a path P from s0 ⊕ 2p0 to an arbitrary si ∈ Z3 ∩N(s0) of two edges not including
s0; /* Z3 ∩N(s0) 6= ∅ */
C0 := (C0 \ {s0 → si}) ∪ {s0 → P}

end if
/* Step 4 */
for i = r + 1 to k do

if si ∈ Z3 then Pi := (s0 ; si) ∈ C0 else Pi := (s0 ; s′i) ∈ C0 end if

end for
if ∃P = (s0 ; si) ∈ C0 with s0 ⊕ 2p0 ∈ P, si ∈ Z1 then C1 := {P} else C1 := ∅ end if

/* The remaining paths s0 ; σ ∈ Z1 not including s0 ⊕ 2p0 of C0 are discarded. */
/* Step 5 */
for i = r + 1 to k do if si /∈ Z3 then Pi := Pi → si end if end for
if C1 6= ∅ then /* Assume C1 = {P = s0 ; ς → σ} */

Find e = (σ, π) the closest node in H′ ∩Qm(σ) to the node (σ, log2(ς ⊕ σ));
Pj := P ; /* Assume e = dj or d

′′
j */

Hj := CONV(Pj , p0, π); if e = d
′′
j then Hj := Hj → dj end if

end if
for i = r + 1 to k do /* Assume Pi = s0 → σ ; si */

if C1 = ∅ or i 6= j then Hi := CONV(Pi, log2(s0 ⊕ σ), pi) end if
end for
/* Assume Hr+1 is the path starting with s → (s0 ⊕ 2p0 , p0) */
S0 := Cube-N2S(Qm(s0), p0, {p1, . . . , pr} ∪ {πi | Hi = ((s0, πi) ; di), r + 2 ≤ i ≤ k}, ∅);
H0 := {(s0, p0) ; (s0, π) | ∀(p0 ; π) ∈ S0};
H := Join the paths {(s0, p0) ; (s0, πi) | Hi = ((s0, πi) ; di), r + 2 ≤ i ≤ k} ⊂ H0 to the
paths Hi, r + 2 ≤ i ≤ k;
H := H∪ {((s0, p0) ; (s0, pi)) ∈ H0 | 1 ≤ i ≤ r} ∪ {Hr+1}

end if
return H

5.3. CORRECTNESS AND COMPLEXITIES 57

s

Qm(s0)

dr+1

d
′
r+2

d
′′
r+2

dr+2

d
′
r+3

dr+3

dk

Figure 5.5: Disjoint paths generated by HHC-N2S.

m+1. Case I-b generates an additional path going outside Qm(s0) of length
at most 3m + 4 since it consists of four external edges and three subcube
routings. That path can be constructed in O(m) time complexity. Case I-c
also generates an additional path going outside Qm(s0), this time of length
at most (2m + 1) +m(2m − 1) = m2m + 2m −m + 1 since it consists of at
most 2m+1 external edges and at most 2m−1 subcube routings. That path
can be constructed in O(m2m) time complexity. Regarding the additional
path generated in Case I-b and I-c, all its nodes other than its end nodes
s and dk are outside Qm(s0). Hence, this path is disjoint from the other
paths. In Case I-b, checking if dk is included on a path generated inside
Qm(s0) requires O(km) time complexity since at most k−1 paths of lengths
at most m+ 1 are checked. 2

Lemma 5 Step 1 of Case II requires O(m3) time complexity.

Proof: The sets Z1 and Z2 can be created in O(k2) and O(k) time complex-
ity, respectively. By Lemma 3, all destination nodes included in subcubes
whose corresponding subcube IDs are in Z1∪Z2 can be distributed to distinct
subcubes by disjoint paths of lengths at most two inO(m3) time complexity.

2

Lemma 6 Step 2 of Case II requires O(k2m) time complexity and generates
cube-level disjoint paths of lengths at most 2m + 1.

Proof: First we show the construction of Z4 is possible, that is |Z4| ≥
0. Because we have |Z4| = 2m − |Z1| − |Z2| − |Z3 \ {s0}|, we need that
|Z1|+|Z2|+|Z3\{s0}| ≤ 2m holds. Let us count how many elements each set
Z1, Z2 and Z3\{s0} contains. Assume Qm(s0)∩D = {d1, . . . ,dr}, r ≤ k−2.
Hence we have |Z2| ≤ r. Since k − r destination nodes are outside Qm(s0),
|Z1| ≤ ⌊(k − r)/2⌋. Also we have |Z3| = k − r and |Z3 \ {s0}| ≤ k − r. We

58 CHAPTER 5. HHC NODE-TO-SET DISJOINT-PATH ROUTING

solve the following inequality (|Z1|+ |Z2|+ |Z3 \{s0}| is maximised for r = 0
and k = m+ 1)

|Z1|+ |Z2|+ |Z3 \ {s0}| ≤ ⌊(k − r)/2⌋+ r + (k − r)

= ⌊(k − r)/2⌋+ k

≤ ⌊(m+ 1)/2⌋+ (m+ 1)

≤ 2m ⇔ m ≥ 2

Therefore |Z4| ≥ 0 holds form ≥ 2. Because we have |Z1|+|Z2|+|Z3\{s0}|+
|Z4| = 2m, we can apply Cube-N2S to solve the node-to-set disjoint-path
routing problem in Q2m . If m = 1, the corresponding HHC is a cycle and
it is then trivial to disjointly route to at most m+ 1 = 2 destination nodes.
The sets Z3 and Z4 can be created in O(k) and O(2m) time complexity,
respectively. By Lemma 2, the cube-level paths generated are disjoint, have
a maximum length of 2m+1 and require O(k2m) time complexity since |Z1|
and |Z3 \ {s0}| are O(k). 2

Lemma 7 In Step 3 of Case II, s0 ⊕ 2p0 ∈ Z4 ⇒ Z3 ∩N(s0) 6= ∅.

Proof: If s0 ∈ Z3 or Z1 ∪ Z2 ∪ (Z3 \ {s0}) 6⊂ N(s0), then |N(s0) \ (Z1 ∪
Z2 ∪ Z3)| > 2m − |Z1| − |Z2| − |Z3 \ {s0}| = |Z4| holds, that is Z4 can
be constructed so as not to include s0 ⊕ 2p0 . It is a contradiction, hence
s0 /∈ Z3 and Z1∪Z2∪ (Z3 \{s0}) = Z1∪Z2∪Z3 ⊂ N(s0). Now assume that
there is a subcube ID σ in Z1 ∩ N(s0). Then Qm(σ) has multiple destina-
tion nodes, and Qm(s0) can have at most one distributed destination node.
Hence, at least one destination node di in Qm(σ) has to be distributed to
Qm(s′i) where d

′
i = (s′i, p

′
i) is the distributed destination node of di and

s′i 6= s0. In addition, H(s0, σ) = 1 and H(σ, s′i) = 1. Then H(s0, s
′
i) 6= 1,

and it means s′i /∈ N(s0). Therefore, s′i /∈ N(s0) ∪ {s0} holds. Hence
Z3 \ {s0} 6⊂ N(s0). It is a contradiction, then Z1 ∩N(s0) = ∅. As a result
from Z1 ⊂ N(s0) and Z1 ∩ N(s0) = ∅, we have Z1 = ∅. If Z3 ∩ N(s0) = ∅
then |D ∩Qm(s0)| = k ≥ k − 1, but this situation must be handled in Case
I. Hence Z3 ∩N(s0) 6= ∅. 2

Lemma 8 Step 3 of Case II requires O(2m) time complexity. If s0⊕2p0 ∈ Z4

then it replaces a path (s0 → si) ∈ C0 where si = s0 ⊕ 2q ∈ Z3 ∩ N(s0) by
the path of length three s0 → s0 ⊕ 2p0 → s0 ⊕ 2p0 ⊕ 2q → si disjoint with the
other paths of C0.

Proof: Since |Z4| is O(2m), we can check if s0 ⊕ 2p0 ∈ Z4 holds in O(2m)
time complexity. By Lemma 7 we have Z3 ∩ N(s0) 6= ∅, hence we can se-
lect an arbitrary node si = s0 ⊕ 2q ∈ Z3 ∩ N(s0). Also by Lemma 7 we
have Z1 ∪ Z2 ∪ Z3 ⊂ N(s0) and Z1 = ∅, hence the destination nodes out-
side Qm(s0) are in subcubes whose corresponding subcube IDs are in N(s0).

5.3. CORRECTNESS AND COMPLEXITIES 59

���

Qm(s0) Qm(si)

s
d
′
i

d
′′
i

di

m+ 1
1

m
1

m
1
. . .

1
m

1
1

Figure 5.6: Counting the maximum number of edges.

Then the path s0 → s0 ⊕ 2p0 → s0 ⊕ 2p0 ⊕ 2q → s0 ⊕ 2q = si of length three
is disjoint with the other paths (s0 → sj) ∈ C0, i 6= j. Removing the path
s0 → si from C0 requires O(k) time complexity since |C0| = |Z1 ∪ Z3| holds,
and |Z1| and |Z3 \ {s0}| are O(k). 2

Lemma 9 Step 4 of Case II requires O(k2) time complexity.

Proof: Since |Z1| and |Z3| are O(k), we can check for each path of C0 if it
should be discarded or not in O(k) time complexity. Because |C0| = |Z1∪Z3|,
the total time complexity of Step 4 is O(k2). 2

Lemma 10 Step 5 of Case II generates HHC-level disjoint paths of lengths
at most m2m + 2m + 2m+ 4 in O(km2m) time complexity.

Proof: By Lemma 6, all the subcubes used by CONV are distinct. Hence
the HHC-level paths generated by CONV are disjoint. The paths generated
inside Qm(s0) are disjoint by Lemma 2. An HHC-level path generated by
Cube-N2S inside Qm(s0) and an HHC-level path generated based on Cube-
N2S and CONV outside Qm(s0) are disjoint since they do not share any
node except for a common end node in Qm(s0). Therefore Step 5 generates
HHC-level disjoint paths.

By Lemma 6, the paths of C0, which are cube-level paths, have lengths
at most 2m +1. Hence applying CONV to one such path requires O(m2m).
Since |C0| is O(k), the total time complexity of Step 5 is O(km2m).

Some of the paths of C0 may be extended by one edge. Hence the cube-
level paths Pr+1, . . . , Pk have lengths at most 2m + 2. For a path of length
2m + 2, Cube-N2S generates a path of length at most m + 1 in Qm(s0).
Inside the 2m + 1 intermediate subcubes, shortest-path routings generate
paths of length at most m. In the last subcube, a path of one edge is
generated. See Figure 5.6. Therefore Step 5 generates paths of lengths at
most (m+ 2) + (m+ 1)(2m + 1) + 1 = m2m + 2m + 2m+ 4. 2

Theorem 2 In an HHC2m+m, given a node s and a set of k (k ≤ m + 1)
nodes D = {d1, . . . ,dk}, we can find k disjoint paths s ; di, 1 ≤ i ≤ k of

60 CHAPTER 5. HHC NODE-TO-SET DISJOINT-PATH ROUTING

lengths at most m2m + 2m + 2m+ 4 in O(km2m) time complexity.

Proof: It can be deduced from Lemmas 4, 5, 6, 8, 9 and 10. 2

We should note that this theoretical maximum path length is not reach-
able. Let us consider a cube-level path σ0 → σ1 → . . . → σλ, and let
bi = log2(σi−1⊕σi), 1 ≤ i ≤ λ. Assume each subcube routing inside Qm(σi)
requires m internal edges, then H(bi, bi+1) = m. Hence b1 = b3 = b5 = . . .
and b2 = b4 = b6 = . . . hold. It means σ0 = σ4 which indicates the presence
of a cycle inside that path, which is a contradiction. Therefore at least one
subcube routing takes less than m edges.

Regarding the lower bound for the maximum path length and time com-
plexity, assume H(s0, s1) = 2m for d1 = (s1, p1), and H(s0, si) = 2m − 1 for
other di = (si, pi), 2 ≤ i ≤ k. Then s ; d1 has at least 2m external edges
and at least 2m − 1 internal edges. Hence the lower bound of the maximum
path length is 2·2m−1. Also the paths s ; di, 2 ≤ i ≤ k have at least 2m−1
external edges and at least 2m − 1 internal edges because we should count
at least one internal edge inside Qm(s0). Hence k paths s ; di, 1 ≤ i ≤ k
include at least 2 · 2m − 1 + (k − 1)(2 · 2m − 2) = 2k2m − 2k + 1 edges in
total. Therefore the lower bound of the time complexity is Ω(k2m).

As an example, we solve a node-to-set disjoint-path routing problem
inside an HHC11 (m = 3), using the previously introduced HHC-N2S al-
gorithm. For clarity reasons, we represent all numbers in binary format.
Let the source node be s = (00000000, 000) and let the set of destina-
tion nodes be D = {d1 = (00001010, 000),d2 = (00001010, 001),d3 =
(00111000, 100),d4 = (10000010, 010)}. One should note that d1 and d2 are
inside the same subcube Qm(00001010) and will thus need to be distributed
to d

′
1 and d

′
2, respectively. The disjoint paths returned by HHC-N2S are

given in Table 5.1.

5.4 Empirical evaluation

In this section we empirically measure the algorithm HHC-N2S described
in Section 5.2 to inspect its practical behaviour. The algorithm has been
implemented using the Scheme functional programming language under the
development environment DrScheme 4.2.5 [32, 33, 34] (now DrRacket).

First we measured the average execution time of this algorithm for dif-
ferent values of m from 2 to 9. Then, for each value of m, we measured the
average and the maximum of all the maximal path lengths, each maximal
length being collected when solving one routing problem for this value of m.

Practically, we solved 10,000 routing problems for each value of m.
We bounded m by 2 ≤ m ≤ 9, that is using natural integers of up to
29 = 512 bits and routing inside perfect hierarchical hypercubes as large as
an HHC521. Such big integers are natively handled by Scheme as the integer

5.4. EMPIRICAL EVALUATION 61

Table 5.1: Routing example inside an HHC11.
Cube-level path HHC-level path Cube-level path HHC-level path
00000000 (00000000, 000) s 00000000 (00000000, 000) s
00000001 (00000001, 000) (00000000, 010)

(00000001, 001) (00000000, 011)
(00000001, 101) 00001000 (00001000, 011)

00100001 (00100001, 101) (00001000, 001) d′

2

(00100001, 001) 00001010 (00001010, 001) d2

00100011 (00100011, 001)
(00100011, 011)

00101011 (00101011, 011)
(00101011, 001)
(00101011, 101)

00001011 (00001011, 101)
(00001011, 100)
(00001011, 000) d′

1

00001010 (00001010, 000) d1

Cube-level path HHC-level path Cube-level path HHC-level path
00000000 (00000000, 000) s 00000000 (00000000, 000) s

(00000000, 100) (00000000, 001)
(00000000, 110) (00000000, 101)

01000000 (01000000, 110) (00000000, 111)
(01000000, 111) 10000000 (10000000, 111)
(01000000, 011) (10000000, 101)

01001000 (01001000, 011) (10000000, 001)
(01001000, 010) 10000010 (10000010, 001)
(01001000, 000) (10000010, 000)
(01001000, 100) (10000010, 010) d4

01011000 (01011000, 100)
(01011000, 101)

01111000 (01111000, 101)
(01111000, 100)
(01111000, 110)

00111000 (00111000, 110)
(00111000, 100) d3

62 CHAPTER 5. HHC NODE-TO-SET DISJOINT-PATH ROUTING

 1

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9

Average time (ms)

m

8.0× 10−3 ×m22m

Figure 5.7: Average execution time for each value of m, in milliseconds
(logarithmic scale).

datatype. The source node and the destination nodes were generated ran-
domly and are always distinct. The number of destination nodes k is always
set to m+ 1.

Figure 5.7 illustrates for each value of m the average time in milliseconds
required to solve a node-to-set disjoint-path routing problem. We see the
measured average time converges to O(m22m) time complexity. Figure 5.8
then illustrates the average and maximum maximal path length for each
value of m. The theoretical maximum path length of the algorithm HHC-
N2S m2m+2m+2m+4 is also represented for comparison. As m increases,
the probability to generate a path of maximum length decreases, which
explains the divergence between the results and the theoretical maximum
path length.

5.5 Improvement

We understand that the length of the paths generated by the algorithm
HHC-N2S of Section 5.2 directly depends on the length the cube-level paths
when performing routing inside Q2m . In other words, the number of exter-
nal edges in a path generated by HHC-N2S is represented by the length of
the corresponding cube-level path in Q2m . Hence, a natural approach to

5.6. SUMMARY 63

 1

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9

average
maximum

Maximum path length

m

m2m + 2m + 2m+ 4

Figure 5.8: Average and maximum of the maximal path lengths collected
for each value of m (logarithmic scale).

shorten the HHC-level paths generated by HHC-N2S is to reduce the cube-
level paths lengths, that is the number of external edges in an HHC-level
path. We proposed in [9] an improvement to the algorithm HHC-N2S so
that the number of external edges in a path is significantly reduced. That
is, we described a new hypercube node-to-set disjoint-path routing algorithm
optimizing the paths lengths by using when possible a shortest-path routing
algorithm flipping bits according to a Gray Code order [44]. Following an
m-bit Gray Code when flipping bits in a shortest-path routing allows us to
traverse all the 2m bit positions of a node address in a Q2m using at most
2m − 1 bit flips, thus reducing the number of external edges required. Con-
cretely, such a shortest-path routing finds a shortest path between any two
nodes a, b in a hypercube with H(a, b) = h and a⊕ b =

∑h−1
i=0 2δi by succes-

sively flipping the bits at the positions δ0, δ1, . . . , δh−1. This improvement
idea has been detailed, and its effects onto HHC node-to-set disjoint-path
routing have been empirically measured, in [9].

5.6 Summary

We have introduced in this chapter a routing algorithm HHC-N2S solving the
node-to-set disjoint-path routing problem in perfect hierarchical hypercubes.

64 CHAPTER 5. HHC NODE-TO-SET DISJOINT-PATH ROUTING

Inside an HHC2m+m, given a source node and a set of k (k ≤ m + 1)
destination nodes, HHC-N2S finds k disjoint paths between the source node
and the destination nodes in O(km2m) time complexity. The generated
paths have lengths of at most m2m + 2m + 2m + 4. An improvement idea
aiming at shortening paths lengths has also been briefly introduced.

Chapter 6

Node-to-set disjoint-path

routing in metacubes

In this chapter we describe a node-to-set disjoint-path routing algorithm
MC-N2S in metacubes. This part is organized as follows. Section 6.1 intro-
duces or recalls several definitions and lemmas. Then Section 6.2 formally
describes the algorithm MC-N2S and gives its pseudocode. The proof of the
correctness of MC-N2S as well as its complexities are addressed in Section
6.3. Also, an example of the execution of MC-N2S is given. An empirical
evaluation of MC-N2S is performed in Section 6.4. Section 6.5 summarizes
this chapter.

6.1 Preliminaries

The problem of finding fault-free node-disjoint paths from a set of source
nodes to a set of destination nodes is known as the fault-tolerant set-to-set
disjoint-path routing problem. An algorithm Cube-S2S solving this problem
inside a hypercube [46] is recalled in Lemma 11.

Lemma 11 In a Qn, given a set of k (k ≤ n) non-faulty source nodes S =
{s1, s2, . . . , sk}, a set of k non-faulty destination nodes D = {d1, d2, . . . , dk}
and a set F of at most n − k faulty nodes, we can find k fault-free disjoint
paths between the source and destination nodes of lengths at most n + k in
O(kn log k) time complexity.

As will be described in Section 6.2, we may need to distribute destination
nodes so that each k-cube contains at most one destination node. Hence we
introduce the following lemma.

Lemma 12 In an MC(k,m), for a set of k + m nodes D = {d1,d2, . . . ,
dk+m}, we can find k+m disjoint paths di ; d

′
i of lengths at most two such

that c̄(d′
i) 6= c̄(d′

j) for any j(6= i), and c̄(d′
i) 6= c̄(dj) for any j(6= i).

65

66 CHAPTER 6. MC NODE-TO-SET DISJOINT-PATH ROUTING

Proof For any di ∈ D, if c̄(di) 6= c̄(dj) for any j(6= i), we can choose

di as d
′
i. Otherwise, we search d

′
i among d

(j)
i (0 ≤ j ≤ m − 1) and d

(j,l)
i

(m ≤ j ≤ k +m− 1, 0 ≤ l ≤ m− 1). See Figure 6.1. If d′
i is selected from

d
(j)
i (0 ≤ j ≤ m − 1), the conditions c(di) = c(d′

i) and H(c̄(di), c̄(d
′
i)) = 1

hold. Otherwise, the condition H(c̄(di), c̄(d
′
i)) = H(c(di), c(d

′
i)) = 1 holds.

Now, let M(di) = {d
(j)
i | 0 ≤ j ≤ m− 1}, K(di) = {d

(j)
i | m ≤ j ≤ k +

m−1} and c̄(M(di)) = {c̄(u) | u ∈ M(di)}, c̄(K(di)) = {c̄(u) | u ∈ K(di)}.
For any dp ∈ D \ {di}, since d

′
p is selected so that c̄(d′

p) 6= c̄(di), and since
for any u ∈ K(di) we have c̄(u) = c̄(di), then c̄(d′

p) /∈ c̄(K(di)). For any
two nodes u ∈ K(di) and v ∈ M(di), there is no path of length at most
two between them other than u → di → v. Therefore, if c̄(dp) ∈ c̄(K(di)),
c̄(d′

p) cannot be included c̄(M(di)). For any distinct nodes u,v ∈ M(di),
H(c̄(u), c̄(v)) = 2. Hence, c̄(dp) and c̄(d′

p) cannot be included in c̄(M(di))
simultaneously since H(c̄(dp), c̄(d

′
p)) = 1. Thus for any dp ∈ D \ {di},

c̄(dp) and c̄(d′
p) cannot be included in c̄(M(di)) ∪ c̄(K(di)) simultaneously

if c̄(dp) 6= c̄(d′
p).

If there is a node u ∈ M(di) such that c̄(u) 6= c̄(dp) and c̄(u) 6= c̄(d′
p) for

any node dp ∈ D \ {di}, we can select u as d
′
i. Otherwise, from the above

discussion, there is at least one node d
(j∗)
i ∈ K(di) such that c̄(d

(j∗)
i) 6= c̄(dp)

and c̄(d
(j∗)
i) 6= c̄(d′

p) for any node dp ∈ D \ {di}.

For a node u ∈ M(di) and a node d
(j,l)
i ∈

⋃

v∈K(di)M(v), H(c̄(u),

c̄(d
(j,l)
i)) = 2. Therefore, if c̄(dp) (or c̄(d′

p)) ∈ c̄(M(di)), c̄(d
′
p) (or c̄(dp))

cannot be included in {c̄(d
(j,l)
i) | d

(j,l)
i ∈

⋃

v∈K(di)M(v)}. Furthermore, for

two distinct nodes d
(j1)
i ,d

(j2)
i ∈ K(di), H(c(d

(j1)
i), c(d

(j2,l)
i)) = 2 for any

d
(j2,l)
i ∈ M(d

(j2)
i). Hence, if c̄(dp) = c̄(d

(j1)
i) for some d

(j1)
i ∈ K(di), c̄(d

′
p)

cannot be included in {c̄(d
(j2,l)
i) | d

(j2,l)
i ∈

⋃

v∈K(di)M(v), j2 6= j1}.

Consequently, for the node d
(j∗)
i above, we can select a node d

(j∗,l∗)
i ∈

M(d
(j∗)
i) such that c̄(d

(j∗,l∗)
i) 6= c̄(dp) and c̄(d

(j∗,l∗)
i) 6= c̄(d′

p) for any node
dp ∈ D \ {di} as d′

i.

We proved that we can find k +m disjoint paths di ; d
′
i of lengths at

most two. 2

6.2 Node-to-set disjoint-path routing algorithm

We describe in this section a node-to-set disjoint-path routing algorithm
MC-N2S in a metacube. In an MC(k,m), given a node s and a set of
n (n ≤ k + m) nodes D = {d1,d2, . . . ,dn}, MC-N2S finds n node-disjoint
paths s ; dj (1 ≤ j ≤ n). The pseudocode of MC-N2S is given in Algorithm
7.

6.2. NODE-TO-SET DISJOINT-PATH ROUTING ALGORITHM 67

���
���

�
�
�

�
�
�

K(di) M(di)
⋃

v∈K(di)M(v)

d
(m)
i

d
(m,0)
i

d
(m,m−1)
i

d
(k+m−1)
i

d
(k+m−1,0)
i

d
(k+m−1,m−1)
i

di

d
(0)
i

d
(m−1)
i

Figure 6.1: Distributed destination node candidates for di.

The main idea is to reduce the metacube node-to-set disjoint-path rout-
ing problem to the hypercube fault-tolerant set-to-set disjoint-path routing
problem. This is achieved with a 2k-to-1 mapping of an MC(k,m) onto an
m2k-cube Qm2k . Concretely we map each k-cube of an MC(k,m) to a single
node of a Qm2k as shown on Figure 6.2. On this figure, an MC(2, 1) is rep-
resented by grouping k-cubes each other, whereas Figure 3.5 groups clusters
together. We change the focus to easily visualize the mapping operation of
one k-cube to one node of a Qm2k .

Assume we use a node-to-set disjoint-path routing algorithm to find
paths inside Qm2k (called cube-level paths). For example, in an MC(2, 2)
with s = 00 00 00 00 00, two cube-level paths could include the edges c̄(s) →
00 00 01 00 (= q1) and c̄(s) → 00 00 10 00 (= q2), respectively. Thus, when
routing inside Qk(s) from s toward the k-cubes q1 and q2, the two paths
would both include the node 01 00 00 00 00 and thus be not disjoint. In-
stead we use a set-to-set, rather than a node-to-set, disjoint-path routing
algorithm in a hypercube to control the selection of the cube-level edges
incident to c̄(s).

We now describe MC-N2S. Let Qk(s)∩D = {d1,d2, . . . ,dr} with r ≤ n.

Step 1 If r > k, we apply Cube-N2S inside Qk(s) to connect s to d1, . . . ,
dk. For every path s ; dj (1 ≤ j ≤ k) produced that includes a
node di (k + 1 ≤ i ≤ r), we discard its subpath di ; dj and swap
the indices of di and dj . Hence we can assume that the r − k nodes
dk+1, . . . ,dr are not included in any of the paths s ; di (1 ≤ i ≤ k).

Step 2 We distribute each of the nodes dj (min(k, r) + 1 ≤ j ≤ n) with
|Qk(dj) ∩ D| > 1, to a node d

′
j (called distributed destination node

for dj) with disjoint paths of length at most two, such that d
′
j is in-

side a k-cube containing no other destination node di nor distributed
destination node d

′
i (1 ≤ i ≤ n, i 6= j). Let D̃ be the set of all the

distributed destination nodes d
′
j . Let D′ be the set containing ini-

68 CHAPTER 6. MC NODE-TO-SET DISJOINT-PATH ROUTING

tially the destination nodes alone in their k-cube, plus the distributed
destination nodes d

′
j which are by definition similarly alone in their

k-cube. We note that one destination node can be distributed into
Qk(s) if Qk(s) ∩ D = ∅. Let Ds = Qk(s) ∩ (D ∪ D̃) be the set of
the destination nodes and distributed destination nodes of Qk(s). We
remove from D′ all the nodes of Ds. Formally,

D′ = ({dj | |Qk(dj) ∩D| = 1} ∪ D̃) \Ds

Step 3 We prepare the set of source nodes to be used by Cube-S2S in Step
2. We select l = n−min(k, |Ds|) nodes si with paths s ; si of lengths
at most two such that the following conditions hold.

1. s ; si and s ; dj (1 ≤ j ≤ min(k, r)) are disjoint

2. ∀i, 1 ≤ i ≤ l, H(c(s), c(si)) ≤ H(c̄(s), c̄(si)) = H(mc(si)(s),
mc(si)(si)) = 1

3. ∀i, 1 ≤ i ≤ l, ∀u ∈ Ds \ {s}, c(si) 6= c(u)

4. ∀i, j, 1 ≤ i, j ≤ l, i 6= j,
c(si) 6= c(sj) or c(si) = c(sj) = c(s)

5. ∀i, 1 ≤ i ≤ l, if s(= d
′
j) ∈ Ds then si /∈ (d′

j ; dj)

Condition 1 forbids the inclusion of a neighbour of s included in a
path s ; dj (1 ≤ j ≤ min(k, r)) inside a path s ; si. Condition 2
represents a set of k nodes si distant from one edge to s where c(s) =
c(si) and H(mc(si)(s),mc(si)(si)) = 1, and of m nodes si distant from
two edges to s where H(c(s), c(si)) = 1 and H(mc(si)(s),mc(si)(si)) =
1. Condition 3 ensures that the si nodes are not linked to s with a
path containing a destination node or a distributed destination node
of Qk(s). Condition 4 guarantees that each node si is located inside
a distinct k-cube. Finally, Condition 5 is to avoid a collision in the
special case where a destination node dj is distributed onto a node d

′
j

with d
′
j = s. In such case, Condition 5 ensures that no si will be on

the path d
′
j ; dj .

Note that all cube-level nodes c̄(si) are adjacent to the cube-level node
c̄(s). Let S be the set of all the cube-level nodes c̄(si).

Step 4 Let F be the set of all the k-cubes containing at least two destination
nodes, plus the k-cube Qk(s). Formally,

F = {c̄(di) | di ∈ D, |Qk(di) ∩D| ≥ 2} ∪ {c̄(s)}

Now for every si with |Qk(si) ∩D| > 1, we connect si to the closest
destination node dj of Qk(si) ∩ D with an SPR, remove the corre-
sponding node d

′
j from D′ and c̄(si) from S, and discard the path

dj ; d
′
j . Only after this task complete, we can remove from F the

elements of S if any, that is F = F \ S.

6.2. NODE-TO-SET DISJOINT-PATH ROUTING ALGORITHM 69

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

��

����

����

����

����

���� ��������

���� ���� ����

���� ���� ����

���� ���� ����

Figure 6.2: Mapping an MC(2, 1) onto a Q4.

Step 5 We apply Cube-S2S in Qm2k to connect each c̄(si) to one distinct
c̄(d′

j) (d
′
j ∈ D′), avoiding faulty nodes of F .

Step 6 We convert the cube-level paths back to paths in MC(k,m) (called
metacube-level paths) by performing routings inside each k-cube tra-
versed by a cube-level path generated in Step 5.

First we route inside Qk(s). If r > k then the local routing inside
Qk(s) has already been performed in Step 1a. If r ≤ k, let Z be the
set containing the destination nodes and distributed destination nodes
of Qk(s) plus the nodes s

′
i ∈ Qk(s) of the paths (s → s

′
i → si) ∈ S

of lengths exactly two selected in Step 2 (i.e. c(s′i) = c(si) 6= c(s)).
Formally,

Z = Ds ∪ {s′i | (s → s
′
i → si) ∈ S}

We apply Cube-N2S insideQk(s) to connect s to each of the n elements
of Z. Note that s can always be connected to s

′
i in one edge. If Cube-

N2S generates another (longer) path to s
′
i, it is directly replaced by

the trivial path s → s
′
i of length one. This concludes routing inside

Qk(s).

Inside the other k-cubes, we apply an SPR as follows. We assume
without loss of generality that Pi is a cube-level path connecting
c̄(si) and c̄(d′

i). Formally, for each path Pi: qi,0(= c̄(si)) → qi,1 →
. . . → qi,λi−1 → qi,λi

(= c̄(d′
i)), let ci,j be a k-bit classID that satis-

fies H(mci,j ((ci,j , qi,j−1)), mci,j ((ci,j , qi,j))) = 1. Hence for each cube-
level path Pi we construct the corresponding metacube-level path
(ci,1, qi,0) → (ci,1, qi,1)

SPR
; (ci,2, qi,1) → . . . → (ci,λi−1, qi,λi−1)

SPR
;

(ci,λi
, qi,λi−1) → (ci,λi

, qi,λi
) = (ci,λi

, c̄(d′
i))

SPR
; (c(d′

i), c̄(d
′
i)) = d

′
i us-

ing an SPR inside each k-cube of Pi to connect every (ci,j , qi,j) to

70 CHAPTER 6. MC NODE-TO-SET DISJOINT-PATH ROUTING

(ci,j+1, qi,j). The path is completed by connecting si to (ci,1, qi,0 =
c̄(si)) again with an SPR, and by lastly joining it to the subpath
d
′
i ; di of length at most two. See Figure 6.3.

6.3 Correctness and complexities

In this section, we prove the correctness of MC-N2S and estimate its time
complexity as well as the theoretical maximum length of the generated paths.
As previously, let |D| = n ≤ k +m.

Lemma 13 In Qk(s), Step 1a finds k disjoint paths s ; dj (1 ≤ j ≤ k) of
lengths at most k + 1 in O(k2n) time complexity.

Proof By Lemma 2, the paths generated inside Qk(s) by Cube-NS2 in
O(k2) time complexity are disjoint and of lengths at most k + 1. Checking
if one path generated by Cube-N2S include other destination nodes requires
O(kn) time complexity. Hence checking the k paths requires O(k2n) time
complexity. 2

Lemma 14 Step 1b generates disjoint paths d ; d
′
j of lengths at most two

in O((k +m)n2) time complexity.

Proof By Lemma 12 we can find disjoint paths of length at most two for the
distribution of the nodes dj (min(k, r) + 1 ≤ j ≤ n) with |Qk(dj) ∩D| > 1.
For each destination node, there are k+m candidate k-cubes for hosting the
corresponding distributed destination node. Because we need to find candi-
date k-cubes not including any destination node or distributed destination
node, each destination node can thus be distributed in O((k + m)n) time.
Hence in total, the destination node distribution task requires O((k+m)n2)
time complexity. 2

Lemma 15 Step 1c generates disjoint paths s ; si of lengths at most two
in O(l) time complexity.

Proof Let us show that we can always find as many si nodes as needed
by the algorithm.

Starting from s and using at most two edges, by definition of MC(k,m)
we can reach m+k distinct k-cubes, each of them being a candidate to host
one si. One of these k-cubes must be removed from the candidates list as
soon as it has been chosen to host one si node. Also, it is important to
note that a destination node inside Qk(s) being neighbour of s can block
the access to at most one k-cube. In total, there are at most k such blocking
destination nodes since Qk(s) is a k-dimensional hypercube. However, for

6.3. CORRECTNESS AND COMPLEXITIES 71

Algorithm 7 MC-N2S(MC(k,m), s, D)
Input: An MC(k,m), a source node s and a set of n (n ≤ k + m) destination nodes D =

{d1,d2, . . . ,dn}.
Output: n disjoint paths s ; di (1 ≤ i ≤ n). The binary exclusive-or operation is denoted ⊕.

R := ∅; {d1,d2, . . . ,dr} := Qk(s) ∩D;
/* Step 1 - Preprocessing */
if r > k then /* Step 1a */

R′ := Cube-N2S(Qk(s), s, {d1,d2, . . . ,dk});
For each di (k + 1 ≤ i ≤ r) included inside a path s ; dj of R′, discard the subpath
di ; dj and swap the indices of di,dj ;

end if
D̃ := ∅; /* Step 1b */
for all dj ,min(k, r) + 1 ≤ i, j ≤ n, |Qk(dj) ∩D| > 1 do

Find a path dj ; d
′
j of at most two edges such that

∀(di,dj), i 6= j, c̄(di) = c̄(dj), c(d
′
i
) 6= c(d′

j
) and

∀d′
j , Qk(d

′
j) ∩D = ∅ and

∀d′
i,d

′
j , i 6= j,d′

i /∈ Qk(d
′
j)

hold;
D̃ := D̃ ∪ {d′

j}

end for
D′ = ({dj | |Qk(dj) ∩D| = 1} ∪ D̃) \Qk(s);

Ds := Qk(s) ∩ (D ∪ D̃); /* Step 1c */
l := n−min(k, |Ds|);
{c1, c2, . . . , cz} := {c(s)⊕ 2i, 0 ≤ i ≤ k − 1} \ {c(u) | u ∈ Ds \ {s}};
if s(= d

′
j) ∈ Ds then X := {(d′

j ; dj)} else X := ∅ end if

C1 := {si | ∀i, 1 ≤ i ≤ m, si := (c(s),mh−1, . . . ,mc(s) ⊕ 2i−1, . . . ,m0), si /∈ P, P ∈ X};

C2 := {si | ∀i, 1 ≤ i ≤ z, si := (ci,mh−1, . . . ,mci ⊕ 20, . . . ,m0)};
Take l elements {s1, . . . , sl} inside the set C1 ∪ C2;

S := {c̄(si) | si ∈ S̃}; /* Step 1d */
F := {c̄(u) | u ∈ MC(k,m), |Qk(u) ∩D| > 1} ∪ {c̄(s)};
R′′ := ∅;
for all si with |Qk(si) ∩D| > 1 do

R′′ := R′′ ∪ {(connect si to the closest destination node dj of Qk(si) ∩D)};
D′ := D′ \ {d′

j};

S := S \ {c̄(si)}
end for
F := F \ S;
/* Step 2 - Set-to-set disjoint-path routing in a Qm2k */
{P1, P2, . . . , Pl−|R′′|} := Cube-S2S(Qm2k , S, c̄(D

′), F);

/* Step 3 - Cube-level paths to metacube-level paths conversion */
if r ≤ k then

Z := Ds ∪ {s′i | s → s
′
i → si};

R′ := Cube-N2S(Qk(s), s, Z)
end if
for all Pi (1 ≤ i ≤ l− |R′′|): qi,0(= c̄(si)) → qi,1 → . . . → qi,λi−1 → qi,λi

(= c̄(d′
i)) do

Compute all ci,j such that H(mci,j ((ci,j , qi,j−1)),mci,j ((ci,j , qi,j))) = 1;

Pi := (ci,1, qi,0) → (ci,1, qi,1)
SPR
; . . .

SPR
; (ci,λi

, qi,λi−1) → (ci,λi
, qi,λi

) =

(ci,λi
, c̄(d′

i))
SPR
; (c(d′

i), c̄(d
′
i)) = d

′
i;

Pi := (s ; si) ∈ R′ → (si
SPR
; (ci,1, qi,0)) → Pi;

Pi := Pi → (d′
i ; di);

R := R ∪ {Pi}
end for
for all (si ; dj) ∈ R′′ do

R := R ∪ {(s ; si) ∈ R′ → (si ; dj)}
end for
R′ := R′ \ {s → s

′
i | 1 ≤ i ≤ l};

if R′ = {(s ; d
′
i ∈ D̃)} then

return R ∪X ∪ {(s ; d
′
i) ∈ R′ → (d′

i ; di)}
else

return R ∪X ∪R′

end if

72 CHAPTER 6. MC NODE-TO-SET DISJOINT-PATH ROUTING

every such blocking destination node, it is one si less needed since these
blocking destination nodes shall be linked with routing in Qk(s) in Step 3.
Hence we can assume without loss of generality that no destination of Qk(s)
is blocking, that is D∩N(s)∩Qk(s) = ∅ holds. Therefore, because at most
k+m nodes si are needed, and because there are k+m available candidates,
we can always select the required number of si nodes.

Step 1c selects l (= n − min(k, |Ds|)) nodes si. Let us consider the
worst case: we assume there exists a path of length two d

′
j(= s) ; dj . By

definition of the destination node distribution process, only the candidate si
nodes distant of exactly one edge to s can be on that path and moreover, at
most one of these candidates can be on that path. Let the path s ; dj be
s → s

(α) → dj , it thus takes constant time to select one si node distant of
one edge to s by simply selecting one node from s

(β) (0 ≤ β ≤ m−1, α 6= β).
Now regarding the si nodes candidates distant of exactly two edges to s,
there are km, but only k of them, one per class, can be selected as explained
in Step 1b. Hence we can directly take one si node candidate per class in
constant time. Hence in total Step 1c takes O(l) time complexity. 2

Lemma 16 Step 1d generates disjoint paths s ; si ; dj of lengths at most
k + 2 in O(k) time complexity.

Proof By Lemma 12, the path s ; si is disjoint with any other selected
path and of length at most two. The node si is connected to the closest
node dj of Qk(si) ∩D using an SPR, hence requiring at most k edges and
O(k) time complexity. 2

Lemma 17 Step 2 generates disjoint cube-level paths of lengths at most
m2k + n ≤ m2k + k +m in O(nm2k log n) time complexity.

Proof Step 2 applies Cube-S2S in a Qm2k . As required by Cube-S2S, the
number of faulty nodes plus the number of destination nodes must not ex-
ceed the dimension of the hypercube. We have at most k + m destination
nodes and at most 1 + ⌊(k +m)/2⌋ faulty nodes as described in Step 1. It
is easy to check that (k + m) + (1 + ⌊(k + m)/2⌋) ≤ m2k holds for every
k,m excepted in the three following cases: k = m = 1, k = 2,m = 1 and
k = 1,m = 2. In the first case k = m = 1, the corresponding metacube is
a cycle and it is then trivial to solve the node-to-set disjoint-path routing
problem. In the second case k = 2,m = 1, the corresponding metacube
is a perfect hierarchical hypercube HHC6, and a node-to-set disjoint-path
routing algorithm has already been proposed in Chapter 5. Finally, in the
third case k = 1,m = 2, the corresponding metacube is a dual-cube D3, and
a node-to-set disjoint-path routing algorithm has already been described in
[68].

By Lemma 11, the at most n cube-level paths generated by Cube-S2S

6.3. CORRECTNESS AND COMPLEXITIES 73

Qk(s) Qk(di)

s s
′
i

si
d
′
i

di

1
1

k
1

k
1

. . .
1

k
1

1

Figure 6.3: A path of maximum length.

in Step 2 are disjoint, have lengths at most m2k + n ≤ m2k + k + m, and
require O(nm2k log n) time complexity. 2

Lemma 18 Step 3 generates disjoint paths of lengths at most (m2k + k +
m)(k + 1) + k + 4 in O(nkm2k) time complexity.

Proof Step 3 performs inside each k-cube (excepted Qk(s)) of each path
a linear time O(k) SPR, thus requiring O(k(m2k + n)) (= O(km2k) since
n ≤ m2k) time complexity for each path, that is in total for all paths
O(nkm2k) time complexity. Step 3 performs routings inside each k-cube
included in a cube-level path generated in Step 2. Concretely, each k-cube
routing is achieved by using an SPR, hence requiring at most k edges inside
each k-cube, plus one supplementary edge to link the next k-cube in the
path. Because paths contain one node more than their number of edges, we
need to perform one additional local routing. See Figure 6.3 for an illus-
tration of a path of maximum length. From this discussion, the maximum
path length can be expressed as follows.

2 + 2 + (m2k + n)(k + 1) + k

≤ (m2k + k +m)(k + 1) + k + 4

2

Theorem 3 In an MC(k,m), given a node s and a set of n (n ≤ k +m)
nodes D = {d1,d2, . . . ,dn}, we can find n disjoint paths s ; dj (1 ≤ j ≤ n)
of length at most (m2k +n)(k+1)+ k+4 in O(nm2k(log n+ k)) time com-
plexity.

Proof It can be deduced from Lemmas 13, 14, 15, 16, 17 and 18. 2

As an example, we use MC-N2S to solve a node-to-set disjoint-path rout-
ing problem inside an MC(2, 2), with a source node s = 00 00 00 00 00 and a
set of destination nodes D = {d1 = 01 01 01 01 01,d2 = 11 01 01 01 01,d3 =
11 00 00 00 00,d4 = 10 11 10 11 00}. This example illustrates a non-trivial

74 CHAPTER 6. MC NODE-TO-SET DISJOINT-PATH ROUTING

Table 6.1: Routing example inside an MC(2, 2).
cube-level metacube-level cube-level metacube-level

00 00 00 00 00 s 00 00 00 00 00 s

00 00 00 10 00 00 00 00 10 00 00 00 01 00 00 00 00 01
00 00 00 11 00 00 00 00 11 10 00 00 00 01

01 00 00 00 11 00 01 00 01 10 00 01 00 01
00 00 01 11 01 00 00 01 11 11 00 01 00 01

00 00 00 01 11 01 01 00 01 11 01 01 00 01
10 00 00 01 11 01 01 01 00 01 d

′
1

00 01 01 11 10 00 01 01 11 01 01 01 01 01 d1

00 00 01 01 11
00 01 01 01 00 00 01 01 01

01 00 01 01 01
11 00 01 01 01 d

′
2

11 01 01 01 01 d2

cube-level metacube-level cube-level metacube-level

00 00 00 00 00 s 00 00 00 00 00 s

01 00 00 00 00 10 00 00 00 00
00 00 01 00 01 00 00 01 00 11 00 00 00 00 d3

00 00 11 00 01 00 00 11 00
00 00 00 11 00
10 00 00 11 00

00 10 11 00 10 00 10 11 00
11 00 10 11 00

01 10 11 00 11 01 10 11 00
11 10 11 00 11 11 10 11 00

10 11 10 11 00 d4

situation: d1 and d2 are located inside the same k-cube, and d3 is located
inside the k-cube of s the source node. The four disjoint paths are given in
Table 6.1.

6.4 Empirical evaluation

We conduct in this section an empirical evaluation of the MC-N2S algo-
rithm described in this chapter. MC-N2S has been implemented using the
functional programming language Scheme under the DrScheme 4.2.5 de-
velopment environment [34]. This implementation has been used to solve
node-to-set disjoint-path routing problems inside metacubes MC(k,m) with
1 ≤ k,m ≤ 9. The largest metacube used in this experiment is an MC(7, 7),
whose node addresses are sequences of 7 + 7 × 27 = 903 bits. Inside each
metacube MC(k,m) (i.e. for each pair (k,m)), we solved 10,000 node-to-set

6.5. SUMMARY 75

 1
 2 3 4 5 6 7 8 9 1

 2
 3 4 5 6 7 8

 9

 1
 10

 100
 1000

 10000
 100000
 1e+006
 1e+007

Average time (ms)

k
m

O((k +m)m2k(log(k +m) + k))

Figure 6.4: Average execution time for each couple (k,m), in milliseconds
(logarithmic scale). In this experiment we have n = k +m.

disjoint-path routing problems, each time with the number of destination
nodes n set to k +m.

This experiment is divided into two distinct measurements. First, Figure
6.4 focuses on the average time required to complete one routing problem
inside MC(k,m); the theoretical time complexity is also represented. Sec-
ond, Figure 6.5 and Figure 6.6 respectively represent the average and the
maximum maximal path lengths for all the 10,000 routing problems solved
inside an MC(k,m). Concretely, for each MC(k,m), we took the average
and the maximum of the 10,000 computed maximal path lengths.

We can note that the average time complexity obtained from this exper-
iment is significantly lower than the theoretical worst-case time complexity.
Also, the maximum maximal path lengths obtained are also significantly
lower than the theoretical maximum path length.

6.5 Summary

We described in this chapter a metacube node-to-set disjoint-path routing
algorithm. In an MC(k,m), given one source node and a set of n ≤ k +m
destination nodes, this algorithm finds n disjoint paths between the source
node and the destination nodes of lengths at most (m2k + n)(k+1)+ k+4
in O(nm2k(log n+ k)) time complexity.

Enhancing the fault tolerance of this algorithm by describing a fault-
tolerant node-to-set disjoint-path routing algorithm in a metacube should
be considered as future work. Furthermore, cluster fault tolerance is an

76 CHAPTER 6. MC NODE-TO-SET DISJOINT-PATH ROUTING

 1
 2 3 4 5 6 7 8 9 1

 2
 3 4 5 6 7 8

 9

 1
 10

 100
 1000

 10000
 100000
 1e+006

Average maximal path length

k
m

(m2k + k +m)(k + 1) + k + 4

Figure 6.5: Average maximal path lengths for each couple (k,m) (logarith-
mic scale). In this experiment we have n = k +m.

 1
 2 3 4 5 6 7 8 9 1

 2
 3 4 5 6 7 8

 9

 10

 100

 1000

 10000

 100000

 1e+006

Maximum maximal path length

k
m

(m2k + k +m)(k + 1) + k + 4

Figure 6.6: Maximum maximal path lengths for each couple (k,m) (loga-
rithmic scale). In this experiment we have n = k +m.

6.5. SUMMARY 77

interesting topic due to the cluster-based nature of metacubes.

78 CHAPTER 6. MC NODE-TO-SET DISJOINT-PATH ROUTING

Chapter 7

Set-to-set disjoint-path

routing in perfect

hierarchical hypercubes

We describe in this chapter a set-to-set disjoint-path routing algorithm HHC-
S2S in perfect hierarchical hypercubes. The presentation of HHC-S2S is
structured as follows. Section 7.1 introduces or recalls several definitions
and lemmas. Then Section 7.2 formally describes HHC-S2S and finally gives
its pseudocode. The proof of the correctness of HHC-S2S as well as its com-
plexities are addressed in Section 7.3. Section 7.3 also contains an example
of the execution of HHC-S2S. An empirical evaluation of HHC-S2S is per-
formed in Section 7.4. Section 7.5 summarizes this chapter. An appendix
solving the set-to-set disjoint-path routing problem in a special case is given
in Section 7.6.

7.1 Preliminaries

Given one set of source nodes and one set of destination nodes of same
cardinality k, a set-to-set disjoint-path routing algorithm finds k disjoint
paths between the k source nodes and the k destination nodes. We recall
in Lemma 19 a fault-tolerant set-to-set disjoint-path routing algorithm in
hypercubes Cube-S2S described in [46].

Lemma 19 In a Qm, given two sets S = {s1, . . . , sk}, D = {d1, . . . , dk} of
k (k ≤ m) nodes and a set F of at most m − k faulty nodes, we can find
k fault-free disjoint paths si ; dji (1 ≤ i ≤ k) where {j1, j2, . . . , jk} = 〈k〉
(= {1, 2, . . . , k}), of lengths at most m+ k in O(km log k) time complexity.

Now let us recall a few definitions regarding cluster fault-tolerant routing.
First, a cluster is a connected subgraph of a Qm. A faulty cluster is a cluster

79

80 CHAPTER 7. HHC SET-TO-SET DISJOINT-PATH ROUTING

whose nodes are all faulty. A cluster fault-tolerant node-to-node routing
algorithm in hypercubes was proposed in [49].

Lemma 20 Given two non-faulty nodes s, d ∈ Qm and at most m−1 faulty
clusters of diameter at most one with at most 2m− 3 faulty nodes in total,
we can find a fault-free path s ; d of length at most m + 2 in O(m) time
complexity.

We recall that a path inside an HHC2m+m is called an HHC-level path,
and a path inside a Q2m is called a cube-level path, made of cube-level nodes
which correspond to subcube IDs of an HHC2m+m.

Finally, we describe in Lemma 21 an extended hypercube set-to-set
disjoint-path routing algorithm.

Lemma 21 In a Qm, for a set S = {s1, s2, . . . , sk1} of k1 (k1 ≤ m) nodes,
a set D = {d1, d2, . . . , dk2} of k2 (k1 < k2 ≤ m+ 1 and k1 < m+ 1) nodes,
and k2 disjoint paths of lengths at most one dj → d′′j (1 ≤ j ≤ k2), we can

find in O(k1k2
2m) time complexity k1 disjoint paths si ; dji (1 ≤ i ≤ k1)

of lengths at most m + k1 that are also disjoint with the paths dj → d′′j
(1 ≤ j ≤ k2 and j /∈ {j1, j2, . . . , jk1}).

Proof. We describe an algorithm solving this problem. First, apply Cube-
S2S to find k1 disjoint paths Pi : si ; dji (1 ≤ i ≤ k1) between S
and {d1, d2, . . . , dk1} where {j1, j2, . . . , jk1} = 〈k1〉 (see Figure 7.1a). Sec-
ond, for each path Pi including a node of {dk1+1, dk1+2, . . . , dk2}, find dl
(k1 + 1 ≤ l ≤ k2) on Pi which is closest to si, swap the indices of dl, dji and
d′′l , d

′′
ji
, and discard the subpath dji ; dl (see Figure 7.1b). Third, while

there exists a path Pi such that Pi ∩ {d′′k1+1, . . . , d
′′
k2
} 6= ∅, do as follows.

Let d′′l be the closest node of Pi ∩ {d′′k1+1, . . . , d
′′
k2
} to si, select the path

si ; d′′l → dl, swap the indices of dl, dji and d′′l , d
′′
ji
, and discard the subpath

d′′ji ; dl (see Figure 7.1c).

(a)

s1 s2 sk1

dl d′′j1

dj1 dj2 djk1

(b)

s1 s2 sk1

dj1 d′′l

dl dj2 djk1

(c)

s1 s2 sk1

dj1 d′′j2

dj2 dl djk1

Figure 7.1: The three steps of the algorithm for Lemma 21 (all the paths
dj → d′′j (1 ≤ j ≤ k2) are not represented).

By Lemma 19, Cube-S2S generates disjoint paths of lengths at most
m + k1 in O(k1m log k1) time complexity. The inclusion of a node dl or d

′′
l

7.2. SET-TO-SET DISJOINT-PATH ROUTING ALGORITHM 81

(k1 + 1 ≤ l ≤ k2) on a path Pi triggers the discarding of a subpath of Pi

and the adding of at most one edge. Hence the lengths of the generated
paths do not increase. Each path Pi is first traversed to check for inclusion
of a node dl (k1 + 1 ≤ l ≤ k2), thus requiring in total O(k1k2m) time
complexity. Then each path Pi is traversed to check for inclusion of a node
d′′l (k1 + 1 ≤ l ≤ k2). If Pi includes such a d′′l , a new traversal of the paths
Pi (1 ≤ i ≤ k1) is required. Such a node d′′l can be included on at most
one path Pi and can thus trigger only once a new traversal of the paths Pi.
Hence this algorithm is of O(k2(k1k2m)) time complexity. 2

7.2 Set-to-set disjoint-path routing algorithm

In this section, we describe a set-to-set disjoint-path routing algorithm HHC-
S2S in anHHC2m+m. The main idea of this algorithm is to reduce the set-to-
set disjoint-path routing problem in an HHC to the fault-tolerant set-to-set
disjoint-path routing problem in a hypercube. In practice, this is achieved
by mapping each subcube of an HHC2m+m to a single node of a Q2m . Let
S = {s1, s2, . . . , sk} be the set of source nodes and D = {d1,d2, . . . ,dk} be
the set of destination nodes where k ≤ m+ 1.

Case I: ∃Qm(σ), S ∪D ⊂ Qm(σ)
Case I-a: k ≤ m
Apply Cube-S2S inside Qm(σ) to disjointly connect the nodes of S to the
nodes of D.
Case I-b: k = m+ 1
Apply Cube-S2S inside Qm(σ) to disjointly connect s1, . . . , sk−1 to d1, . . . ,
dk−1. If sk is included on one of the generated paths, say si ; dji ,
swap the indices of si and sk. Similarly if dk is included on one of the
generated paths, say si ; dji , swap the indices of dji and dk. Hence
we can assume sk = (σ, πsk) and dk = (σ, πdk) are not included on one
of the generated paths inside Qm(σ). Connect sk to dk with the path

sk → (σ ⊕ 2πsk , πsk)
SPR
; (σ ⊕ 2πsk , πdk) → (σ ⊕ 2πsk ⊕ 2πdk , πdk)

SPR
;

(σ ⊕ 2πsk ⊕ 2πdk , πsk) → (σ ⊕ 2πdk , πsk)
SPR
; (σ ⊕ 2πdk , πdk) → dk. See

Figure 7.2.

Case II: ∀Qm(σ), S ∪D 6⊂ Qm(σ)
Define S(σ) = Qm(σ) ∩ S and D(σ) = Qm(σ) ∩ D. Assume the sets F ,
Zs, Zd and C are all initially empty. In Step 1, F tracks already processed
subcubes, and in Step 3 then plays the role of a set of faulty nodes. Zd

(resp. Zs) contains subcubes including at least two source (resp. destina-
tion) nodes and no destination (resp. source) node, where each source (resp.
destination) node has already been connected to a destination (resp. source)
node. C contains nodes part of already established paths.

82 CHAPTER 7. HHC SET-TO-SET DISJOINT-PATH ROUTING

s1 s2 sk−1

sk

. . .

dj1 dj2 djk−1

dk

(σ ⊕ 2πsk , πsk)

(σ ⊕ 2πsk , πdk)

(σ ⊕ 2πdk , πdk)

(σ ⊕ 2πdk , πsk)

(σ ⊕ 2πsk ⊕ 2πdk , πdk)

(σ ⊕ 2πsk ⊕ 2πdk , πsk)

Qm(σ) Qm(σ ⊕ 2πsk)

Qm(σ ⊕ 2πdk) Qm(σ ⊕ 2πsk ⊕ 2πdk)

Figure 7.2: Case I-b ({j1, j2, . . . , jk−1} = 〈k − 1〉).

Step 1. For each subcube Qm(σ), σ /∈ F with |S(σ)|+ |D(σ)| ≥ 2, proceed
in six steps as follows. Assume |S(σ)| ≤ |D(σ)|. We can assume without
loss of generality that S(σ) = {s1, s2, . . . , s|S(σ)|}.

The case |S(σ)| > |D(σ)| is handled similarly by exchanging the roles
of the source and destination nodes where Zd is used instead of Zs, and τ
instead of ρ.

1. Add σ in F .

2. For all dj ∈ D(σ) \ C, find by enumeration of the m+ 1 paths

{

dj = (σ, π)→ (σ ⊕ 2π, π)

dj = (σ, π)→ (σ, π ⊕ 2h) → (σ ⊕ 2π⊕2h , π ⊕ 2h) (0 ≤ h ≤ m− 1)

mutually disjoint paths ρj : dj ; d
′
j ∈ Qm(σ′

j) of lengths at most two
such that all σ′

j are distinct, D(σ′
j) = ∅, σ′

j /∈ Zd and ρj disjoint with
any path already constructed between one source and one destination
node (initially none). The paths ρj are of the form dj → d

′′
j → d

′
j or

dj(= d
′′
j) → d

′
j .

3. Apply Lemma 21 to S(σ) and D(σ) in Qm(σ) to find disjoint paths
si ; dji (1 ≤ i ≤ |S(σ)|) also disjoint with the paths ρj (j ∈ J1)
where J1 = {j | dj ∈ D(σ) \ {j1, j2, . . . , j|S(σ)|}}. See Figure 7.3.

4. For each path si ; dji (1 ≤ i ≤ |S(σ)|), update ρji to the path of
length zero dji and alias dji with d

′
ji
.

7.2. SET-TO-SET DISJOINT-PATH ROUTING ALGORITHM 83

Qm(σ′
j2
) Qm(σ) Qm(σ′

j)

Qm(σ′
j1
)

d
′
jdj

d
′
j2

s1
dj2

dj1

d
′′
j1

s2 d
′
j1

Figure 7.3: Case II, Step 1 - Set-to-set disjoint-path routing by Lemma 21.

s
′′
y

sy

d
′
j

si

Figure 7.4: Case II, Step 1 - Connection of d′
j (elements of C are grayed).

5. For each d
′
j (j ∈ J1), say d

′
j ∈ Qm(σ′

j), with |S(σ′
j)| ≥ 2, distinguish

three cases as follows.

σ′
j /∈ F : Find si ∈ S(σ′

j) closest to d
′
j and select the path d

′
j

SPR
; si.

Add dj → d
′′
j and si into C.

σ′
j ∈ F and d

′
j /∈ C: Apply Lemma 20 to obtain a path between d

′
j

and an arbitrary si ∈ S(σ′
j) \ C avoiding nodes in C (see Figure

7.4). If ∃τl : sl ; s
′
l with sl ∈ S(σ′

j) \ (C ∪ {si}) that is not
disjoint with d

′
j ; si, find s̃ ∈ τl ∩Qm(σ′

j) closest to d
′
j , discard

the subpath s̃ ; si, update τl to the path of length zero sl, alias
sl with s

′
l, and if s̃ 6= sl, connect d

′
j ; s̃ to s̃ → sl. Otherwise,

that is ∀τl : sl ; s
′
l with sl ∈ S(σ′

j)\ (C ∪{si}) the path d
′
j ; si

is disjoint with τl, update τi to the path of length zero si and
alias si with s

′
i. See Figure 7.5. Add dj → d

′′
j and si into C.

σ′
j ∈ F and d

′
j ∈ C (i.e. d′

j ∈ S(σ′
j)): Assume d

′
j = si, replace si →

s
′′
i by si in C, discard the edge si → s

′′
i , and then proceed simi-

larly as in the previous case to connect s
′′
i to an arbitrary node

sy ∈ S(σ′
j) \ C. See Figure 7.6. Add dj → d

′′
j and si into C.

6. If D(σ) ⊂ C, add σ into Zs.

Let S′ = {s′i | τi : si ∈ Qm(σ) ; s
′
i ∈ Qm(σ′), σ ∈ F, σ′ /∈ F} and

D′ = {d′
j | ρj : dj ∈ Qm(σ) ; d

′
j ∈ Qm(σ′), σ ∈ F, σ′ /∈ F}. Define

S′(σ) = Qm(σ) ∩ S′ and D′(σ) = Qm(σ) ∩D′.

Step 2. For each of all s′i ∈ S′, say s
′
i ∈ Qm(σ), with |D(σ)|+ |D′(σ)| = 1,

say D(σ) ∪D′(σ) = {d′
j}, add σ into F and connect s′i to d

′
j with an SPR.

84 CHAPTER 7. HHC SET-TO-SET DISJOINT-PATH ROUTING

Qm(σ) Qm(σ′
j)

s
′
q

dt
dj

d
′′
j

d
′
j

sl
s̃

si

sr

τl
s
′
l

Figure 7.5: Case II, Step 1 - Connection of d′
j with d

′
j /∈ C (elements of C

are grayed).

sy

s
′′
i

si,d
′
j

→

sy

s
′′
i

si,d
′
j

Figure 7.6: Case II, Step 1 - Connection of s′′i (elements of C are grayed).

For each of all d′
j ∈ D′, say d

′
j ∈ Qm(σ), with |S(σ)| = 1, say S(σ) =

{si}, add σ into F and connect si to d
′
j with an SPR.

Step 3. Apply Lemma 19 to find a set P of cube-level disjoint paths con-
necting the cube-level nodes S̃ = {σ | (σ, π) ∈ S ∪ S′} \ F to the cube-level
nodes D̃ = {σ | (σ, π) ∈ D ∪D′} \ F without including any node of F .

Step 4. For each path P : σ0 ; σn of P, assume (S ∪ S′) ∩ Qm(σ0) =
{s′i = (σ0, πs′

i
)} and (D ∪D′) ∩Qm(σn) = {d′

j = (σn, πd′
j
)}. The HHC-level

path corresponding to P is given by CONV(σsi → P → σdj , πsi , πdj) where
si = (σsi , πsi) and dj = (σdj , πdj).

7.3 Correctness and complexities

We show in this section the correctness and time complexity of HHC-S2S,
and we establish an upper bound for the maximum path length.

Lemma 22 Case I generates disjoint paths of lengths at most 3m + 4 in
O(km log k) time complexity.

Proof. By Lemma 19, Cube-S2S generates k (Case I-a) or k − 1 (Case
I-b) disjoint paths inside Qm(σ) of lengths at most m + k in O(km log k)
time complexity. Case I-b generates an additional path going outside of
Qm(σ) of length at most 3m + 4 since it consists of four external edges
and three subcube shortest-path routings. That path can be constructed in

7.3. CORRECTNESS AND COMPLEXITIES 85

O(m) time complexity. All its internal nodes are outside Qm(σ), hence this
additional path is disjoint from the other paths. In Case I-b, checking if sk
or dk are included on a path generated inside Qm(σ) requires O(km) time
complexity since there are k − 1 paths of lengths at most 2m. 2

Lemma 23 Step 1.2 of Case II generates disjoint paths ρ (resp. τ) of
lengths at most two in O(m2) time complexity.
Proof. Subcubes Qm(σ) with |S(σ)|+|D(σ)| ≥ 2 can be found in O(m22m)
time complexity. Assume |S(σ)| ≤ |D(σ)|. A similar discussion holds for
the case |S(σ)| > |D(σ)|. We show that we can find a path ρi for a node
di ∈ D(σ) \ C. Assume a path sq ; dt has already been established and
that its subpath s

′
q ; dt is inside Qm(σ) (i.e. dt ∈ D(σ) ∩ C). For parity

reasons, a path ρj for a dj (i 6= j) can block at most one of the m + 1
candidate paths for ρi. Since H(s′q,dt) ≤ H(s′q,di), then dt ∈ N(dj) and
N(dj)∩N(dt) 6= ∅ cannot hold simultaneously for parity reason. Hence the
path s

′
q ; dt can block at most one candidate for ρi.

Assume |D(σ) \ {di}| = α and |
⋃

H(σ,σ′
j
)=1D(σ′

j)| = β where for any

ρj : dj ; d
′
j (i 6= j), d′

j ∈ Qm(σ′
j). The nodes of D(σ) \ {di} block at

most α candidates for ρi, and the nodes of
⋃

H(σ,σ′
j
)=1D(σ′

j) block at most

β candidates for ρi. By the remaining m−α−β destination nodes, at most
⌊(m − α − β)/4⌋ subcubes are in Zd since σ′ ∈ Zd implies S(σ′) ⊂ C. See
Figure 7.7. If S(σ′) ⊂ C, then for each of all sl ∈ S(σ′), we have, according
to τl : sl ; s

′
l, that s

′
l ∈ Qm(σ′

l) with |D(σ′
l)| ≥ 2. Because H(σ, σ′) = 1

and H(σ, σ′
l) = 1 cannot hold simultaneously for parity reason, there is no

candidate path for ρi connecting di to a node in any of the subcubes Qm(σ′
l).

Hence, a subcube Qm(σ′) with σ′ ∈ Zd can block at most one candidate path
for ρi but at the same time it implies that at least four destination nodes
cannot block a candidate path for ρi. Therefore at least one candidate for
ρi remains unblocked.

As for the time complexity for finding a path ρi, the candidate paths
blocked are detected in O(α + β + m) = O(m) time complexity. Hence
finding a path ρ for each of all nodes of D(σ) \C requires O(m2) total time
complexity. 2

Lemma 24 Step 1 of Case II generates disjoint paths of lengths at most
2m+ 5 in O(m22m) time complexity.
Proof. By Lemma 21 Step 1.3 generates disjoint paths of lengths at most
2m in O(m5) time complexity.

Finally, a node d′
j ∈ Qm(σ′) may be connected to a node si ∈ Qm(σ′)\C

according to Lemma 20. Let us show that we can apply Lemma 20 inside
Qm(σ′), that is showing that Qm(σ′) contains at most m− 1 faulty clusters
and at most 2m− 3 faulty nodes in total. A faulty cluster of diameter one
si → s

′′
i or of diameter zero si is created only when |D(σ′

i)| ≥ 2 holds, where

86 CHAPTER 7. HHC SET-TO-SET DISJOINT-PATH ROUTING

Qm(σ) Qm(σ′), σ′ ∈ Zd Qm(σ′
i)

Qm(σ′
l)

s
′
q

dt
dj

ρ̃
si

sl

s
′′
l

s
′
i
dx

dr

s
′
l

dy

dw

Figure 7.7: A candidate path ρ̃ for ρj blocked by a subcube Qm(σ′) with
σ′ ∈ Zd (elements of C are grayed).

s
′
i ∈ Qm(σ′

i). Hence Qm(σ′) can contain at most ⌊(m+1)/2⌋ faulty clusters
of diameter at most one. Then for m ≥ 4 we can apply Lemma 20 inside
Qm(σ′) since Qm(σ′) can contain at most ⌊(m+1)/2⌋ ≤ m−2 faulty clusters
of diameter at most one, that is at most 2m−4 faulty nodes in total. Now if
m = 3, Qm(σ′) can contain at most two faulty clusters of diameter at most
one. Then if Qm(σ′) contains two faulty clusters of diameter exactly one,
we cannot apply Lemma 20 inside Qm(σ′). However, for Qm(σ′) to contain
two faulty clusters of diameter one si → s

′′
i and sj → s

′′
j , it means that

|D(σ′
i)| = |D(σ′

j)| = 2 holds, where s
′
i ∈ Qm(σ′

i) and s
′
j ∈ Qm(σ′

j). Because
the only external edge between Qm(σ′) and Qm(σ′

i) is the edge s
′′
i → s

′
i

which is included in the path τi : si ; s
′
i, the node d

′
q according to the path

ρq : dq ; d
′
q for the single node dq ∈ D(σ′

i) \ C cannot be inside Qm(σ′) as
we impose ρq to be disjoint with the path s

′
i ; dl. A similar discussion also

holds for the nodes of D(σ′
j). Hence we will never apply Lemma 20 inside

Qm(σ′), and HHC-S2S remains applicable for m = 3. See Figure 7.8. The
same discussion holds for the case m = 2.

In a Qm, Lemma 20 generates a path si ; d
′
j of length at most m+2 in

O(m) time complexity. Taking into consideration the path ρj : dj ; d
′
j of

length at most two, we obtain a path of length at most m+4. Now if there
is a d

′
j ∈ C, say d

′
j = si, s

′′
i is connected to a node sy with Lemma 20, thus

obtaining a path dl ; s
′
i → s

′′
i ; sy of length at most (m+2)+1+(m+2) =

2m + 5 since we apply twice Lemma 20. Checking if the path si ; d
′
j (or

s
′′
i ; sy) includes a node s̃ requires O(m2) time complexity. Hence the total

time complexity of Step 1 is O(m2). 2

Lemma 25 Step 2 of Case II generates disjoint paths of lengths at most
m+ 4 in O(km) time complexity.

Proof. Subcubes Qm(σ), σ /∈ F with S′ ∩ Qm(σ) 6= ∅ and |(D ∪ D′) ∩
Qm(σ)| = 1, or D′ ∩ Qm(σ) 6= ∅ and |S ∩ Qm(σ)| = 1, can be found in
O(k2) time complexity. A shortest-path routing in a subcube generates a
path of length at most m in O(m) time complexity. Hence, considering the
paths ρ and τ , Step 2 generates paths of lengths at most m + 4 in O(km)

7.3. CORRECTNESS AND COMPLEXITIES 87

Qm(σ′
i) Qm(σ′) Qm(σ′

j)

sy
s
′′
y

s
′
y sx

si

sj

s
′′
i

s
′′
j

dq

dl

s
′
i

s
′
j

dr

dt

Figure 7.8: A subcube with two faulty clusters of diameter one for m =
3, k = 4 (elements of C are grayed).

time complexity. By Lemma 3 and the fact that either S′ ∩ Qm(σ) 6= ∅
and |(D ∪ D′) ∩ Qm(σ)| = 1, or D′ ∩ Qm(σ) 6= ∅ and |S ∩ Qm(σ)| = 1
holds, such paths are necessarily disjoint with other constructed paths.

2

Lemma 26 Step 3 of Case II generates cube-level disjoint paths of lengths
at most 2m + k in O(k2m log k) time complexity.

Proof. To apply Cube-S2S in a Q2m , we need that the number of des-
tination nodes (equal to the number of source nodes) plus the number of
faulty nodes be at most 2m. Let us give an upper bound for the sum |D̃|+|F |
where D̃ is the set of cube-level destination nodes and F is the set of faulty
nodes when calling Cube-S2S.

From the description of HHC-S2S in Section 7.2, we distinguish three
types of faulty nodes: F0 is the set of subcube IDs whose corresponding
subcubes contain one source node and one destination node. F1 is the set
of subcube IDs whose corresponding subcubes contain at least two source
nodes or at least two destination nodes. F2 is the set of subcube IDs whose
corresponding subcubes contain one node of S′ and one node of D′, or one
node of S′ and one destination node, or one source node and one node of D′.
Hence we have |D̃|+ |F | ≤ (k−|F0|− |F2|)+(|F0|+ |F1|+ |F2|) = k+ |F1| ≤
k + 2⌊k/2⌋ ≤ (m + 1) + 2⌊(m + 1)/2⌋. Therefore |D̃| + |F | ≤ 2m holds for
m ≥ 3. If m = 1, the corresponding HHC is a cycle and it is thus trivial to
disjointly connect at most m+1 = 2 source and destination nodes. If m = 2
and k ≤ 2 then |D̃| + |F | ≤ 2m still holds. If m = 2 and k = m + 1 = 3
then we solve the problem case by case depending on the repartition of the
source and destination nodes. See Section 7.6.

Hence by Lemma 19, Cube-S2S applied in a Q2m generates disjoint paths
of lengths at most 2m + k in O(k2m log k) time complexity. 2

Lemma 27 Step 4 of Case II generates HHC-level disjoint paths of lengths
at most (m+ 1)(2m + k + 1) + 3 in O(km2m) time complexity.

88 CHAPTER 7. HHC SET-TO-SET DISJOINT-PATH ROUTING

Proof. By Lemma 26, the cube-level paths generated by Cube-S2S are
disjoint and have lengths at most 2m + k. Hence the HHC-level paths gen-
erated in Step 4 by using CONV are disjoint. Also, a cube-level path of
length at most 2m + k corresponds to at most 2m + k external edges and
at most 2m + k + 1 cube-level nodes. CONV applies an SPR inside each
subcube (i.e. cube-level node) included in a path. Therefore, considering
at most two external edges and at most two internal edges for source and
destination node paths ρ, τ , we obtain the following maximum path length.

2m + k + 2
︸ ︷︷ ︸

external edges

+m(2m + k + 1) + 2
︸ ︷︷ ︸

internal edges

= (m+ 1)(2m + k + 1) + 3

Applying CONV to one cube-level path of length O(2m) requires O(m2m)
time complexity. Hence converting O(k) such paths takes O(km2m) time
complexity, which is the dominant time complexity of HHC-S2S. 2

Theorem 4 In an HHC2m+m, given two sets of k (k ≤ m + 1) nodes
S = {s1, s2, . . . , sk} and D = {d1,d2, . . . ,dk}, we can find k disjoint paths
si ; dji (1 ≤ i ≤ k) where {j1, j2, . . . , jk} = 〈k〉, of lengths at most
(m+ 1)(2m + k + 1) + 3 in O(km2m) time complexity.

Proof. It can be deduced from Lemmas 22, 24, 25, 26 and 27. 2

One should note this theoretical maximum path length is not attainable.
Let us consider a cube-level path σ0 → σ1 → . . . → σλ, and let bi =
log2(σi−1⊕σi) (1 ≤ i ≤ λ). Assume each shortest-path routing insideQm(σi)
requires m internal edges, then H(bi, bi+1) = m. Hence b1 = b3 = b5 = . . .
and b2 = b4 = b6 = . . . hold. It means σ0 = σ4 which indicates the presence
of a cycle inside that path, which is a contradiction. Therefore at least one
shortest-path routing inside a subcube requires fewer than m edges.

As an example, we find in anHHC11 (m = 3) with HHC-S2S four disjoint
paths between the two sets S = {s1 = (00000000, 010), s2 = (00000000, 000),
s3 = (00000011, 101), s4 = (00000011, 010)} and D = {d1 = (00000001,
001),d2 = (00000001, 011),d3 = (11000000, 111),d4 = (00001111, 001)}.
The paths generated are given in Table 7.1.

7.4 Empirical evaluation

In this section we empirically measure the algorithm HHC-S2S described in
Section 7.2 to inspect its practical behaviour. This algorithm has been imple-
mented and tested under the DrScheme 4.2.5 development environment [34].
We used this implementation of HHC-S2S to solve set-to-set disjoint-path

7.4. EMPIRICAL EVALUATION 89

Table 7.1: Routing example in an HHC11.
Cube-level path HHC-level path Cube-level path HHC-level path
00000000 (00000000, 010) s1 00000000 (00000000, 000) s2
00000100 (00000100, 010) s′

1
00000001 (00000001, 000) s′

2

(00000100, 011) (00000001, 001) d1

(00000100, 111)
10000100 (10000100, 111)

(10000100, 110)
11000100 (11000100, 110)

(11000100, 010)
11000000 (11000000, 010)

(11000000, 011)
(11000000, 111) d3

Cube-level path HHC-level path Cube-level path HHC-level path
00000011 (00000011, 101) s3 00000011 (00000011, 010) s4
00100011 (00100011, 101) s′

3
00000111 (00000111, 010) s′

4

(00100011, 001) (00000111, 011)
(00100011, 011) 00001111 (00001111, 011)

00101011 (00101011, 011) (00001111, 001) d4

(00101011, 001)
(00101011, 101)

00001011 (00001011, 101)
(00001011, 001)

00001001 (00001001, 001)
(00001001, 011) d′

2

00000001 (00000001, 011) d2

90 CHAPTER 7. HHC SET-TO-SET DISJOINT-PATH ROUTING

routing problems inside perfect hierarchical hypercubes HHC2m+m where
3 ≤ m ≤ 9.

First we measured the average execution time of HHC-S2S with m rang-
ing from 3 to 9 as explained previously. Second we measured the average
and maximum of the obtained maximal path lengths. Each maximal path
length is retrieved when solving one routing problem and analyzing the paths
generated.

In practice, we solved 10,000 set-to-set disjoint-path routing problems
for each value of m. That is, we used nodes with addresses taking up to
29 = 512 bits. The set of source nodes and the set of destination node
are both randomly (uniform) generated so that they always contain the
maximum m+ 1 nodes.

Figure 7.9 represents for each value of m the average time in milliseconds
used to solve one set-to-set disjoint-path routing problem. The theoretical
worst-case time complexity is also represented for comparison. Figure 7.10
represents the average and maximum maximal path length for each value
of m. Similarly, the theoretical maximum path length of HHC-S2S is also
represented for comparison. We can note that as the size of the graph
increases, the probability to generate a path of maximum length becomes
lower, which explains the divergence between the empirical results and the
theoretical maximum path length.

7.5 Summary

We described in this paper an HHC set-to-set disjoint-path routing algorithm
HHC-S2S. In an HHC2m+m, given two sets S and D of k (k ≤ m+1) nodes,
HHC-S2S finds k disjoint paths between the nodes of S and the nodes of D
of lengths at most (m+ 1)(2m + k + 1) + 3 in O(km2m) time complexity.

7.6 Appendix - Case m = 2 and k = 3

In the case m = 2 and k = m+ 1 = 3, we solve the set-to-set disjoint-path
routing problem by distinguishing several cases based on the repartition of
the source and destination nodes. All cases not mentioned can be reduced
to the ones described by exchanging the roles of source and destination
nodes. We recall D̃ and F are the set of the destination nodes and the set
of faulty nodes, respectively, when applying Lemma 19 in Q2m . Also note
that Lemma 19 is applicable in Q2m if |D̃|+ |F | ≤ 2m.

If ∃σ, σ′ with |S(σ)| = 1, |D(σ)| = 3 and |S(σ′)| = 2, apply Case II
(|D̃| = 2 and F = {σ, σ′}, then |D̃| + |F | ≤ 2m). For each σ with |S(σ)| =
|D(σ)| ≤ 2, apply Lemma 19 inside Qm(σ) and add σ into F . Since in this
case |D̃| decreases by as many as |F | increases, |D̃|+ |F | ≤ 2m holds. Then
we can assume without loss of generality that ∀σ, S(σ) = ∅ or D(σ) = ∅.

7.6. APPENDIX - CASE m = 2 AND k = 3 91

1

10

100

1000

10000

 2 3 4 5 6 7 8 9

Average time (ms)

m

6.0× 10−3 × (m+ 1)m2m

Figure 7.9: Average execution time for each value of m, in milliseconds
(logarithmic scale).

1

10

100

1000

10000

 2 3 4 5 6 7 8 9

average
maximum

Maximum path length

m

(m+ 1)(2m +m+ 2) + 3

Figure 7.10: Average and maximum of the maximal path lengths collected
for each value of m (logarithmic scale).

92 CHAPTER 7. HHC SET-TO-SET DISJOINT-PATH ROUTING

Let S = {s1 = (σs1 , πs1), s2 = (σs2 , πs2), s3 = (σs3 , πs3)} and D =
{d1 = (σd1 , πd1), d2 = (σd2 , πd2), d3 = (σd3 , πd3)}. Let (x, y) be a pair with
x = |{σs1 , σs2 , σs3}| and y = |{σd1 , σd2 , σd3}|. We distinguish six cases.

(3, 3) Find three cube-level disjoint paths σsi ; σdji (1 ≤ i ≤ 3) by applying
Lemma 19 to {σs1 , σs2 , σs3} and {σd1 , σd2 , σd3} in Q2m .

(3, 2) Assume without loss of generality σd1 = σd2 . For one node of {d1, d2},
say d2, find a path ρ2 : d2 ; d′2 ∈ Qm(σd′2). Find three cube-level dis-
joint paths by applying Lemma 19 to {σs1 , σs2 , σs3} and {σd1 , σd′2 , σd3}
in Q2m .

(3, 1) For each of all nodes dj (1 ≤ j ≤ 3), find a path ρj : dj ; d′j ∈
Qm(σd′

j
). Find three fault-free cube-level disjoint paths considering

σd1 faulty by applying Lemma 19 to {σs1 , σs2 , σs3} and {σd′1 , σd′2 , σd′3}
in Q2m , and with F = {σd1}.

(2, 2) Assume without loss of generality σs1 = σs2 and σd1 = σd2 . For one
node of {s1, s2}, say s2, find a path τ2 : s2 ; s′2 ∈ Qm(σs′2), and for
one node of {d1, d2}, say d2, find a path ρ2 : d2 ; d′2 ∈ Qm(σd′2). Find
three cube-level disjoint paths by applying Lemma 19 to {σs1 , σs′2 , σs3}
and {σd1 , σd′2 , σd3} in Q2m .

(2, 1) Assume without loss of generality σs1 = σs2 . For one node of {s1, s2},
say s2, find a path τ2 : s2 ; s′2 ∈ Qm(σs′2), and for each of all nodes dj
(1 ≤ j ≤ 3), find a path ρj : dj ; d′j ∈ Qm(σd′

j
). Find three fault-free

cube-level disjoint paths considering σd1 faulty by applying Lemma 19
to {σs1 , σs′2 , σs3} and {σd′1 , σd′2 , σd′3} in Q2m , and with F = {σd1}.

(1, 1) Assume N(s2)∩Qm(σs2) = {s1, s3} and N(d2)∩Qm(σd2) = {d1, d3}.
For two nodes of S including s2, say s2, s3, find two paths τ2 : s2 ;

s′2 ∈ Qm(σs′2) and τ3 : s3 ; s′3 ∈ Qm(σs′3). For two nodes of D
including d2, say d2, d3, find two paths ρ2 : d2 ; d′2 ∈ Qm(σd′2) and
ρ3 : d3 ; d′3 ∈ Qm(σd′3). Find three cube-level disjoint paths by
applying Lemma 19 to {σs1 , σs′2 , σs′3} and {σd1 , σd′2 , σd′3} in Q2m .

The cube-level paths obtained are then converted to HHC-level paths
by applying CONV as in Step 4 of Case II. Note that two shortest paths
may exist for CONV inside a subcube Qm(σ) with either |S(σ)| = 2 or
|D(σ)| = 2, at most one of them may be blocked by another destination
node, but another path can be used.

The maximum path length remains unchanged to that of HHC-S2S. Time
complexity is constant since m = 2.

Chapter 8

Conclusion

Throughout this work we designed several disjoint-path routing algorithms
for different interconnection networks. As required by following chapters,
we first proposed in Chapter 4 a node-to-set disjoint-path routing algorithm
in hypercubes. Inside an n-dimensional hypercube, given a source node s,
a set D of k (k ≤ n) destination nodes and a set of at most n − k faulty
neighbours of s, this algorithm finds k fault-free disjoint paths between s and
each node of D of lengths at most n + 1 in O(kn) time complexity. Then
in Chapter 5 we described a node-to-set disjoint-path routing algorithm
in perfect hierarchical hypercubes. Inside an HHC2m+m, given a source
node and a set of k (k ≤ m + 1) destination nodes, this algorithm finds k
disjoint paths between the source node and the destination nodes of lengths
at most m2m + 2m + 2m + 4 in O(km2m) time complexity. In Chapter 6
we introduced a node-to-set disjoint-path routing algorithm in metacubes.
Inside a metacube MC(k,m), given one source node and a set of n (n ≤
k +m) destination nodes, this algorithm finds n disjoint paths between the
source node and the destination nodes of lengths at most (m2k + n)(k +
1) + k + 4 in O(nm2k(log n+ k)) time complexity. Finally, we proposed in
Chapter 7 a set-to-set disjoint-path routing algorithm in perfect hierarchical
hypercubes. Inside an HHC2m+m, for a set of source nodes and a set of
destination nodes, both of cardinality k (k ≤ m + 1), this algorithm finds
k disjoint paths between the source nodes and the destination nodes of
lengths at most (m + 1)(2m + k + 1) + 3 in O(km2m) time complexity.
As empirical evaluations were conducted to challenge theoretical results,
we could measure the practical efficiency of the experimented algorithms,
sometimes witnessing significant gain over previous results [9].

We can summarize our research by noting that inside hypercube-based
networks, a common method to solve disjoint-path routing problems is to
make use of hypercube disjoint-path routing algorithms like the one de-
scribed in Chapter 4. However, depending on the topology considered, it
is rarely possible to directly apply such a hypercube algorithm onto the

93

94 CHAPTER 8. CONCLUSION

original topology. Actually, in order to retain path disjointness, an impor-
tant and often difficult (see Chapter 7) preprocessing task is required. Thus
much attention is ought to be paid on this preliminary part before any fur-
ther developments of the algorithm can be made. Nevertheless, while this
preprocessing task may drain much of the researcher efforts and algorithm
difficulty, the time complexity of the algorithm is usually overshadowed by
the conversion of the paths found by the hypercube routing algorithm back
to paths inside the original topology. This can be easily understood as the
number of nodes included in the original topology is a lot greater than its
degree, that is the maximum number of disjoint paths that can be selected.

Regarding future works, we can note that many interconnection networks
briefly introduced in Chapter 2 do not have any solution to common routing
problems such as node-to-set, set-to-set or k-pairwise disjoint-path routing
[17, 84, 73, 82]. Also, because faults are likely to occur in modern supercom-
puters including hundred of thousands of CPU nodes, fault-tolerance as well
as cluster-fault tolerance are two important topics to be addressed. Even if
the path disjointness property of the algorithms introduced in Chapter 5,
6 and 7 can be considered as one solution to fault-tolerant routing by con-
structing disjoint paths, alternative approaches, natively designed to detect
and avoid faults when generating paths, would be more efficient regarding
fault-free path generation. Effectively, disjoint-path routing algorithms can
be used in faulty environments: once a set of disjoint paths has been gener-
ated, an additional step checking each path for the inclusion of faulty nodes
can be easily implemented to find a fault-free path, if any. However this
approach is not optimal regarding efficiency as it first constructs as many
disjoint paths as possible and only then checks the paths for fault inclusion.
Hence, a routing algorithm directly handling faults without waiting for the
paths to be generated is very likely to be more efficient; no faulty path would
be vainly generated, thus increasing efficiency.

Acknowledgments

I would like to thank particularly Pr. Keiichi Kaneko for his continuous help
throughout the years spent in his laboratory as Ph.D. student.

I am also deeply appreciative toward the reviewers of my research Pr. Hi-
ronori Nakajo, Pr. Matsuaki Terada, Pr. Konosuke Kawashima and Pr. Ma-
rio Nakamori who gave me precious advices and suggestions to construct
and improve my thesis.

I would like to express my sincere gratitude to Pr. John Boxall and Pr. Yoshi-
mi Egawa who supervised my research activities for my master degree.

Finally, I warmly thank my family for their unfailing support during my
college years.

Thank you.

95

96 ACKNOWLEDGMENTS

Bibliography

[1] Mokhtar A. Aboelaze. Mlh: A hierarchical hypercube network. Net-
works, Vol. 28, No. 3, pp. 157–165, October 1996.

[2] Sheldon B. Akers, Dov Harel, and Balakrishnan Krishnamurthy. The
star graph: an attractive alternative to the n-cube. In Proceedings of
the International Conference on Parallel Processing (ICPP-87), pp.
393–400, 1987.

[3] Sheldon B. Akers and Balakrishnan Krishnamurthy. A group-theoretic
model for symmetric interconnection networks. IEEE Transactions on
Computers, Vol. C-38, No. 4, pp. 555–566, April 1989.

[4] Jean-Claude Bermond and Claudine Peyrat. De Bruijn and Kautz
networks: A competitor for the hypercube? Hypercube and Distributed
Computers, 1989.

[5] Laxmi N. Bhuyan and Dharma P. Agrawal. Generalized hypercube
and hyperbus structures for a computer network. IEEE Transactions
on Computers, Vol. C-33, No. 4, pp. 323–333, April 1984.

[6] Stefan Birrer and Fabian E. Bustamante. Resilient peer-to-peer multi-
cast from the ground up. In Proceedings of the 3rd IEEE International
Symposium on Network Computing and Applications (NCA), pp. 351–
355, August 2004.

[7] Arthur S. Bland, Ricky A. Kendall, Douglas B. Kothe, James H.
Rogers, and Galen M. Shipman. Jaguar: The world’s most powerful
computer. In Proceedings of the Cray User Group Conference, May
2009.

[8] Antoine Bossard and Keiichi Kaneko. Optimal node-to-set disjoint-
path routing in hypercube. Submitted to Information Processing Let-
ters, February 2011.

[9] Antoine Bossard, Keiichi Kaneko, and Shietung Peng. A new node-
to-set disjoint-path algorithm in perfect hierarchical hypercubes. The
Computer Journal, Vol. 54, No. 8, pp. 1372–1381, August 2011.

97

98 BIBLIOGRAPHY

[10] Dick Brownell. SGI Origin 3000 Series Technical Configuration
Owner’s Guide. Silicon Graphics, Inc, January 2001. 007-4311-002.

[11] Rocky K. C. Chang and Hong Y. Wang. Routing properties of a
recursive interconnection network. Journal of Parallel and Distributed
Computing, Vol. 61, No. 6, pp. 838–849, June 2001.

[12] Gen-Huey Chen and Dyi-Rong Duh. Topological properties, commu-
nication and computation on wk-recursive networks. Networks, Vol.
24, No. 6, pp. 303–317, September 1994.

[13] Wei-Kuo Chiang and Rong-Jaye Chen. Topological properties of hi-
erarchical cubic networks. Journal of Systems and Architecture, Vol.
42, No. 4, pp. 289–307, November 1996.

[14] Sheshayya A. Choudoum and V. Sunitha. Augmented cubes. Net-
works, Vol. 40, No. 2, pp. 71–84, September 2002.

[15] Tein Y. Chung and Dharma P. Agrawal. Design and analysis of multi-
dimensional manhattan street networks. IEEE Transactions on Com-
munications, Vol. 41, No. 2, pp. 295–298, February 1993.

[16] David S. Cohen and Manuel Blum. On the problem of sorting burnt
pancakes. Discrete Applied Mathematics, Vol. 61, No. 2, pp. 105–120,
July 1995.

[17] Peter F. Corbett. Rotator graphs: An efficient topology for point-
to-point multiprocessor networks. IEEE Transactions Parallel and
Distributed Systems, Vol. 3, No. 5, pp. 622–626, September 1992.

[18] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. Introduction to Algorithms, Second Edition. MIT Press
and McGraw-Hill, 2001.

[19] Paul Cull and Shawn M. Larson. The möbius cubes. IEEE Transac-
tions on Computers, Vol. 44, No. 5, pp. 647–659, May 1995.

[20] William J. Dally. Performance analysis of k-ary n-cube interconnection
networks. IEEE Transactions on Computers, Vol. C-39, No. 6, pp.
775–785, June 1990.

[21] William J. Dally. Express cubes: Improving the performance of k-ary
n-cube interconnection networks. IEEE Transactions on Computers,
Vol. C-40, No. 9, pp. 1016–1023, September 1991.

[22] Debasish Das, Mallika De, and Bhabani P. Sinha. A new network
topology with multiple meshes. IEEE Transactions on Computers,
Vol. 48, No. 5, pp. 536–551, May 1999.

BIBLIOGRAPHY 99

[23] Nicolaas G. de Bruijn. A combinatorial problem. Koninklijke Neder-
landse Akademie v. Wetenschappen, Vol. 49, pp. 758–764, 1946.

[24] Reinhard Diestel. Graph Theory. Springer-Verlag Heidelberg, 2005.

[25] Jose Duato, Sudhakar Yalamanchili, and Lionel M. Ni. Interconnection
Networks: An Engineering Approach. IEEE Computer Society Press,
1997.

[26] Dyi-Rong Duh and Gen-Huey Chen. Topological properties of wk-
recursive networks. Journal of Parallel and Distributed Computing,
Vol. 23, No. 3, pp. 468–474, December 1994.

[27] Dyi-Rong Duh, Gen-Huey Chen, and Jywe-Fei Fang. Algorithms and
properties of a new two-level network with folded hypercubes as basic
modules. IEEE Transactions on Parallel and Distributed Systems, Vol.
6, No. 7, pp. 714–723, July 1995.

[28] Jack Edmonds and Richard M. Karp. Theoretical improvements in
algorithmic efficiency for network flow problems. Journal of the ACM,
Vol. 19, No. 2, pp. 248–264, 1972.

[29] Kemal Efe. The crossed cube architecture for parallel computation.
IEEE Transactions on Parallel and Distributed Systems, Vol. 3, No.
5, pp. 513–524, September 1992.

[30] Ahmed El-Amawy and Shahram Latifi. Properties and performance
of folded hypercubes. IEEE Transactions on Parallel and Distributed
Systems, Vol. 2, No. 1, pp. 31–42, January 1991.

[31] Vance Faber and Jim W. Moore. High-degree, low-diameter inter-
connection networks with vertex symmetry: The directed case. Los
Alamos National Lab., Vol. LA-UR-88-1051, 1988.

[32] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shri-
ram Krishnamurthi. The drscheme project: An overview. SIGPLAN
Notices, Vol. 33, No. 6, pp. 17–23, June 1998.

[33] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram
Krishnamurthi. The teachscheme! project: Computing and program-
ming for every student. Computer Science Education, Vol. 14, No. 1,
pp. 55–77, January 2004.

[34] Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew
Flatt, Shriram Krishnamurthi, Paul Steckler, and Matthias Felleisen.
Drscheme: a programming environment for scheme. Journal of Func-
tional Programming, Vol. 12, No. 2, pp. 159–182, March 2002.

100 BIBLIOGRAPHY

[35] Lester Randolph Ford and Delbert Ray Fulkerson. Maximal flow
through a network. Canadian Journal of Mathematics, Vol. 8, pp.
399–404, 1956.

[36] Ada W. Fu and Siu-Cheung Chau. Cyclic-cubes: A new family of
interconnection networks of even fixed-degrees. IEEE Transactions
on Parallel and Distributed Systems, Vol. 9, No. 12, pp. 1253–1268,
December 1998.

[37] Jung-Sheng Fu, Gen-Huey Chen, and Dyi-Rong Duh. Node-disjoint
paths and related problems on hierarchical cubic networks. Networks,
Vol. 40, No. 3, pp. 142–154, October 2002.

[38] Alan Gara, Matthias A. Blumrich, Dong Chen, George L.-T. Chiu,
Paul Coteus, Mark E. Giampapa, Ruud A. Haring, Philip Heidel-
berger, Dirk Hoenicke, Gerard V. Kopcsay, Thomas A. Liebsch, Mar-
tin Ohmacht, Burkhard D. Steinmacher-Burow, Todd Takken, and
Pavlos Vranas. Overview of the Blue Gene/L system architecture.
IBM Journal of Research and Development, Vol. 49, No. 2,3, pp. 195–
212, March 2005.

[39] Luisa Gargano, Ugo Vaccaro, and Angela Vozella. Fault tolerant rout-
ing in the star and pancake interconnection networks. Information
Processing Letters, Vol. 45, No. 6, pp. 315–320, April 1993.

[40] William H. Gates and Christos H. Papadimitriou. Bounds for sorting
by prefix reversal. Discrete Mathematics, Vol. 27, pp. 47–57, 1979.

[41] Kanad Ghose and Kiran R. Desai. Hierarchical cubic networks. IEEE
Transactions on Parallel and Distributed Systems, Vol. 6, No. 4, pp.
427–435, April 1995.

[42] Andrew V. Goldberg and Robert E. Tarjan. A new approach to the
maximum flow problem. In Proceedings of the 18th annual ACM sym-
posium on Theory of computing, pp. 136–146, 1986.

[43] Oded Goldreich, Arnold L. Rosenberg, and Alan L. Selman. Theoret-
ical Computer Science: Essays in Memory of Shimon Even. Springer,
2006. Yefim Dinitz, Dinitz’ Algorithm: The Original Version and
Even’s Version, pages 218–240.

[44] Frank Gray. Pulse code communication. Patent 2,632,058, U.S., March
1953. (filed Nov. 1947).

[45] Jonathan Gross and Jay Yellen. Graph Theory and Its Applications.
CRC Press, 1999.

BIBLIOGRAPHY 101

[46] Qian-Ping Gu, Satoshi Okawa, and Shietung Peng. Set-to-set fault
tolerant routing in hypercubes. IEICE Transactions on Fundamentals,
Vol. E79-A, No. 4, pp. 483–488, April 1996.

[47] Qian-Ping Gu and Shietung Peng. Linear time algorithms for fault tol-
erant routing in hypercubes and star graphs. IEICE Transactions on
Information and Systems, Vol. E78-D, No. 9, pp. 1171–1177, Septem-
ber 1995.

[48] Qian-Ping Gu and Shietung Peng. Node-to-node cluster fault tolerant
routing in star graphs. Information Processing Letters, Vol. 56, No. 1,
pp. 29–35, October 1995.

[49] Qian-Ping Gu and Shietung Peng. An efficient algorithm for node-
to-node routing in hypercubes with faulty clusters. The Computer
Journal, Vol. 39, No. 1, pp. 14–19, November 1996.

[50] Qian-Ping Gu and Shietung Peng. Optimal algorithms for node-to-
node fault tolerant routing in hypercubes. The Computer Journal,
Vol. 39, No. 7, pp. 626–629, 1996.

[51] Qian-Ping Gu and Shietung Peng. Set-to-set fault tolerant routing in
star graphs. IEICE Transactions on Information and Systems, Vol.
E79-D, No. 4, pp. 282–289, April 1996.

[52] Qian-Ping Gu and Shietung Peng. k-pairwise cluster fault tolerant
routing in hypercubes. IEEE Transactions on Computers, Vol. 46,
No. 9, pp. 1042–10, September 1997.

[53] Qian-Ping Gu and Shietung Peng. Node-to-set disjoint paths with
optimal length in star graphs. IEICE Transactions on Information
and Systems, Vol. E80-D, No. 4, pp. 425–433, April 1997.

[54] Qian-Ping Gu and Shietung Peng. An efficient algorithm for k-pairwise
disjoint paths in star graphs. Information Processing Letters, Vol. 67,
No. 6, pp. 283–287, September 1998.

[55] Qian-Ping Gu and Shietung Peng. Node-to-set and set-to-set cluster
fault tolerant routing in hypercubes. Parallel Computing, Vol. 24, No.
8, pp. 1245–1261, August 1998.

[56] Qian-Ping Gu and Shietung Peng. Cluster fault-tolerant routing in
star graphs. Networks, Vol. 35, No. 1, pp. 83–90, January 2000.

[57] Qian-Ping Gu and Shietung Peng. An efficient algorithm for the k-
pairwise disjoint paths problem in hypercubes. Journal of Parallel and
Distributed Computing, Vol. 60, No. 6, pp. 764–774, June 2000.

102 BIBLIOGRAPHY

[58] John Hayes, Trevor Mudge, Quentin Stout, Stephen Colley, and John
Palmer. A microprocessor-based hypercube supercomputer. IEEE
Micro, Vol. 6, No. 5, pp. 6–17, October 1986.

[59] Wen-Jing Hsu. Fibonacci cubes - a new interconnection topology.
IEEE Transactions on Parallel and Distributed Systems, Vol. 4, No.
1, pp. 3–12, January 1993.

[60] Tatsuya Iwasaki and Keiichi Kaneko. Fault-tolerant routing in burnt
pancake graphs. Information Processing Letters, Vol. 110, No. 14-15,
pp. 535–538, July 2010.

[61] Nagateru Iwasawa, Antoine Bossard, and Keiichi Kaneko. Set-to-set
disjoint path routing algorithm in burnt pancake graphs. In Proceed-
ings of the 26th International Conference on Computers and Their
Applications (CATA), pp. 21–26, March 2011.

[62] Nagateru Iwasawa, Tatsuro Watanabe, Tatsuya Iwasaki, and Keiichi
Kaneko. Cluster-fault-tolerant routing in burnt pancake graphs. In
Proceedings of the 10th International Conference on Algorithms and
Architectures for Parallel Processing (ICA3PP), pp. 264–274, May
2010.

[63] Keiichi Kaneko. An algorithm for node-to-set disjoint paths problem
in burnt pancake graphs. IEICE Transactions on Information and
Systems, Vol. E86-D, No. 12, pp. 2588–2594, December 2003.

[64] Keiichi Kaneko. Internally-disjoint paths problem in bi-rotator graphs.
IEICE Transactions on Information and Systems, Vol. E88-D, No. 7,
pp. 1678–1684, July 2005.

[65] Keiichi Kaneko. An algorithm for node-to-set disjoint paths problem in
bi-rotator graphs. IEICE Transactions on Information and Systems,
Vol. E89-D, No. 2, pp. 647–653, February 2006.

[66] Keiichi Kaneko. Routing problems in incomplete pancake graphs. In
Proceedings of the 7th ACIS International Conference on Software En-
gineering, Artificial Intelligence, Networking, and Parallel/Distributed
Computing (SNPD), pp. 151–156, June 2006.

[67] Keiichi Kaneko and Shietung Peng. Disjoint paths routing in pancake
graphs. In Proceedings of the 7th International Conference on Parallel
and Distributed Computing, Applications and Technologies (PDCAT),
pp. 254–259, December 2006.

[68] Keiichi Kaneko and Shietung Peng. Node-to-set disjoint paths routing
in dual-cube. In Proceedings of the 9th International Symposium on

BIBLIOGRAPHY 103

Parallel Architectures, Algorithms, and Networks (ISPAN), pp. 77–82,
May 2008.

[69] Keiichi Kaneko and Shietung Peng. Set-to-set disjoint paths rout-
ing in dual-cubes. In Proceedings of the 9th International Conference
on Parallel and Distributed Computing, Applications and Technologies
(PDCAT), pp. 129–136, May 2008.

[70] Keiichi Kaneko and Naoki Sawada. An algorithm for node-to-node
disjoint paths problem in burnt pancake graphs. IEICE Transactions
on Information and Systems, Vol. E90-D, No. 1, pp. 306–313, January
2007.

[71] Keiichi Kaneko and Yasuto Suzuki. Node-to-set disjoint paths problem
in rotator graphs. In Proceedings of the 6th Asian Computing Science
Conference (ASIAN), volume 1961 of Lecture Notes in Computer Sci-
ence, pp. 119–132. Springer, November 2000.

[72] Keiichi Kaneko and Yasuto Suzuki. Node-to-set disjoint paths problem
in pancake graphs. IEICE Transactions on Information and Systems,
Vol. E86-D, No. 9, pp. 1628–1633, September 2003.

[73] Keiichi Kaneko and Yasuto Suzuki. Node-to-node internally disjoint
paths problem in bubble-sort graphs. In Proceedings of the 10th
IEEE Pacific Rim International Symposium on Dependable Comput-
ing (PRDC), pp. 173–182, March 2004.

[74] J. Mohan Kumar and Lalit M. Patnaik. Extended hypercube: A hi-
erarchical interconnection network of hypercubes. IEEE Transactions
on Parallel and Distributed Systems, Vol. 3, No. 1, pp. 45–57, January
1992.

[75] Shahram Latifi, Hyosun Ko, and Pradip K. Srimani. Node-to-set ver-
tex disjoint paths in hypercube networks. Technical Report CS-98-107,
Colorado State University, 1998.

[76] James Laudon and Daniel Lenoski. System overview of the SGI Origin
200/2000 product line. In Proceedings of the IEEE Compcon ’97, pp.
150–156, February 1997.

[77] Yamin Li and Shietung Peng. Dual-cubes: a new interconnection
network for high-performance computer clusters. In Proceedings of
the 2000 International Computer Symposium, Workshop on Computer
Architecture, pp. 51–57, December 2000.

[78] Yamin Li and Shietung Peng. Fault-tolerant routing and disjoint paths
in dual-cube: a new interconnection network. In Proceedings of the

104 BIBLIOGRAPHY

8th International Conference on Parallel and Distributed Systems (IC-
PADS), pp. 315–322, June 2001.

[79] Yamin Li, Shietung Peng, and Wanming Chu. Fault-tolerant rout-
ing in metacube. In Proceedings of the 3rd International Conference
on Parallel and Distributed Computing, Applications and Technologies
(PDCAT), pp. 343–350, September 2002.

[80] Yamin Li, Shietung Peng, and Wanming Chu. Multinode broadcast-
ing in metacube. In Proceedings of the 3rd International Conference
on Software Engineering, Artificial Intelligence, Networking and Par-
allel/Distributed Computing (SNPD), pp. 401–408, June 2002.

[81] Yamin Li, Shietung Peng, and Wanming Chu. Disjoint paths in
metacube. In Proceedings of the 15th IASTED International Con-
ference on Parallel and Distributed Computing and Systems (PDCS),
pp. 43–50, November 2003.

[82] Yamin Li, Shietung Peng, and Wanming Chu. Recursive dual-net:
A new versatile network for supercomputers of the next generation.
Journal of the Chinese Institute of Engineers, Vol. 32, No. 7, pp. 931–
938, 2009.

[83] Yamin Li, Shietung Peng, and Wanming Chu. Metacube - a versatile
family of interconnection networks for extremely large-scale supercom-
puters. The Journal of Supercomputing, Vol. 53, No. 2, pp. 329–351,
August 2010.

[84] Hon-Ren Lin and Chiun-Chieh Hsu. Topological properties of bi-
rotator graphs. IEICE Transactions on Information and Systems, Vol.
E86-D, No. 10, pp. 2172–2178, October 2003.

[85] Zhen Liu and Ting-Yi Sung. Routing and transmitting problems in
de bruijn networks. IEEE Transactions on Computers, Vol. 45, No. 9,
pp. 1056–1062, September 1996.

[86] Qutaibah M. Malluhi and Magdy A. Bayoumi. The hierarchical hyper-
cube: A new interconnection topology for massively parallel systems.
IEEE Transactions on Parallel and Distributed Systems, Vol. 5, No.
1, pp. 17–30, January 1994.

[87] Jyh-Wen Mao and Chang-Biau Yang. Shortest path routing and fault-
tolerant routing on de bruijn networks. Networks, Vol. 35, No. 3, pp.
207–215, May 2000.

[88] Takumi Maruyama, Toshio Yoshida, Ryuji Kan, Iwao Yamazaki, Shuji
Yamamura, Noriyuki Takahashi, Mikio Hondou, and Hiroshi Okano.

BIBLIOGRAPHY 105

Sparc64 VIIIfx: A new-generation octocore processor for petascale
computing. IEEE Micro, Vol. 30, No. 2, pp. 30–40, March-April 2010.

[89] Nicholas F. Maxemchuk. Routing in the manhattan street network.
IEEE Transactions on Communications, Vol. COM-35, No. 5, pp. 503–
512, May 1987.

[90] Oliver A. McBryan and Eric F. van de Velde. Hypercube algorithms
and implementations. SIAM Journal on Scientific and Statistical
Computing, Vol. 8, No. 2, pp. 227–287, March 1987.

[91] Dikran S. Meliksetian and C. Y. Roger Chen. Optimal routing algo-
rithm and the diameter of the cube-connected cycles. IEEE Transac-
tions on Parallel and Distributed Systems, Vol. 4, No. 10, pp. 1172–
1178, October 1993.

[92] Karl Menger. Zur allgemeinen Kurventheorie. Fundamenta Mathe-
maticae, Vol. 10, pp. 96–115, 1927.

[93] Chwei-King Mok and Nader F. Mir. An efficient interconnection net-
work for large-scale computer communications applications. Journal
of Network and Computer Applications, Vol. 23, No. 2, pp. 59–75,
April 2000.

[94] San Murugesan. Harnessing green it: Principles and practices. IT
Professional, Vol. 10, No. 1, pp. 24–33, February 2008.

[95] Sabine Öhring and Sajal K. Das. Folded petersen cube networks: New
competitors for the hypercubes. IEEE Transactions on Parallel and
Distributed Systems, Vol. 7, No. 2, pp. 151–168, February 1996.

[96] Shietung Peng and Keiichi Kaneko. Set-to-set disjoint paths rout-
ing in pancake graphs. In Proceedings of the 18th IASTED Interna-
tional Conference on Parallel and Distributed Computing and Systems
(PDCS), pp. 253–258, November 2006.

[97] Franco P. Preparata and Jean Vuillemin. The cube-connected cycles:
a versatile network for parallel computation. Communications of the
ACM, Vol. 24, No. 5, pp. 300–309, May 1981.

[98] Bob Quinn and Kevin Almeroth. Ip multicast applications: Challenges
and solutions. RFC 3170, University of California, Santa Barbara,
2001.

[99] Michael O. Rabin. Efficient dispersal of information for security, load
balancing, and fault tolerance. Journal of the ACM, Vol. 36, No. 2,
pp. 335–348, April 1989.

106 BIBLIOGRAPHY

[100] Youcef Saad and Martin H. Schultz. Topological properties of hyper-
cubes. IEEE Transactions on Computers, Vol. 37, No. 7, pp. 867–872,
July 1988.

[101] Charles L. Seitz. The cosmic cube. Communications of the ACM, Vol.
28, No. 1, pp. 22–33, January 1985.

[102] SGI. Origin2000 Rackmount owner’s guide, 007-3456-003, 1997.
http://techpubs.sgi.com/.

[103] Ming-Yang Su, Gen-Huey Chen, and Dyi-Rong Duh. A shortest-path
routing algorithm for incomplete wk-recursive networks. IEEE Trans-
actions on Parallel and Distributed Systems, Vol. 8, No. 4, pp. 367–379,
April 1997.

[104] Ming-Yang Su, Hui-Ling Huang, Gen-Huey Chen, and Dyi-Rong Duh.
Node-disjoint paths in incomplete wk-recursive networks. Parallel
Computing, Vol. 26, No. 13-14, pp. 1925–1944, December 2000.

[105] Yuzhong Sun, Paul Y.S. Cheung, and Xiaola Lin. Recursive cube of
rings: A new topology for interconnection networks. IEEE Transac-
tions on Parallel and Distributed Systems, Vol. 11, No. 3, pp. 275–286,
March 2000.

[106] Yasuto Suzuki and Keiichi Kaneko. An algorithm for node-disjoint
paths in pancake graphs. IEICE Transactions on Information and
Systems, Vol. E86-D, No. 3, pp. 610–615, March 2003.

[107] Yasuto Suzuki and Keiichi Kaneko. An algorithm for disjoint paths
in bubble-sort graphs. Systems and Computers in Japan, Vol. 37, No.
12, pp. 27–32, November 2006.

[108] Toshinori Takabatake, Keiichi Kaneko, and Hideo Ito. Hcc: General-
ized hierarchical completely-connected networks. IEICE Transactions
on Information and Systems, Vol. E83-D, No. 6, pp. 1216–1224, June
2000.

[109] The New York Times. Japanese ‘K’ computer is ranked most powerful.
http://www.nytimes.com/2011/06/20/technology/20computer.html,
June 2011. Last accessed July 2011.

[110] TOP500. June 2010 list. http://www.top500.org/list/2010/06/100,
June 2010. Last accessed January 2011.

[111] TOP500. Japan reclaims top ranking on latest TOP500 list of world’s
supercomputers. http://www.top500.org/lists/2011/06/press-release,
June 2011. Last accessed July 2011.

BIBLIOGRAPHY 107

[112] Emmanouel A. Varvarigos. Optimal communication algorithms for
manhattan street networks. Discrete Applied Mathematics, Vol. 83,
No. 1-3, pp. 303–326, March 1998.

[113] Gennaro D. Vecchia and C. Sanges. An optimized broadcasting tech-
nique for wk-recursive topologies. Future Generation Computer Sys-
tems, Vol. 5, No. 3, pp. 353–357, January 1990.

[114] Jie Wu and Dharma P. Agrawal. Guest editors’ introduction: Chal-
lenges in designing fault-tolerant routing in networks. IEEE Transac-
tions on Parallel and Distributed Systems, Vol. 10, No. 10, pp. 961–963,
October 1999.

[115] Jie Wu and Xian-He Sun. Optimal cube-connected cube multicom-
puters. Journal of Microcomputer Applications, Vol. 17, No. 2, pp.
135–146, April 1994.

[116] Ruei-Yu Wu, Gen-Huey Chen, Yu-Liang Kuo, and Gerard J. Chang.
Node-disjoint paths in hierarchical hypercube networks. Information
Sciences, Vol. 177, No. 19, pp. 4200–4207, October 2007.

[117] Xiaofan Yang, Graham M. Megson, and David J. Evans. An oblivious
shortest-path routing algorithm for fully connected cubic networks.
Journal of Parallel and Distributed Computing, Vol. 66, No. 10, pp.
1294–1303, October 2006.

[118] Yulu Yang, Akira Funahashi, Akiya Jouraku, Hiroaki Nishi, Hideharu
Amano, and Toshinori Sueyoshi. Recursive diagonal torus: An inter-
connection network for massively parallel computers. IEEE Transac-
tions on Parallel and Distributed Systems, Vol. 12, No. 7, pp. 701–715,
July 2001.

[119] Chi-Hsiang Yeh and Emmanouel A. Varvarigos. Macro-star networks:
Efficient low-degree alternatives to star graphs. IEEE Transactions
on Parallel and Distributed Systems, Vol. 9, No. 10, pp. 987–1003,
October 1998.

[120] Sang K. Yun and Kyu H. Park. Comments on “hierarchical cubic
networks”. IEEE Transactions on Parallel and Distributed Systems,
Vol. 9, No. 4, pp. 410–414, April 1998.

108 BIBLIOGRAPHY

Index

k-regular, 8

adjacent, 8

bi-rotator graph, 29
bubble-sort graph, 30
burnt pancake graph, 26

center, 9
cluster, 37
cross-edge, 37
cube-connected cubes, 16
cube-connected cycle, 15
cube-edge, 37
cube-level node, 36
cube-level path, 36

degree, 8
diameter, 9
disjoint, 9
disjoint-path routing, 2
distance, 9
dual-cube, 17

edge, 8
end-node, 9
external edge, 35

fault, 4

graph, 8

HHC-level node, 36
HHC-level path, 36
hierarchical hypercube, 16
hypercube, 10, 33

incident, 8

interconnection network, 2
internal edge, 35
internally disjoint, 9

length, 9

macro-star, 23
mesh, 31
message, 2
metacube, 19, 36

neighbour, 8
node, 8
node-disjoint, 9
node-to-set disjoint-path routing, 3

pancake graph, 24
parity, 9
path, 9
perfect hierarchical hypercube, 35
permutation group, 20

recursive structure, 10, 33
rotator graph, 28
routing, 1, 2

set-to-set disjoint-path routing, 4
star graph, 20
subcube, 33, 35
subgraph, 8
subpath, 9
supercomputing, 1

torus, 31

vertex, 8

109

110 INDEX

Appendix A

Related paper

111

© The Author 2011. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

doi:10.1093/comjnl/bxr047

A New Node-to-Set Disjoint-Path

Algorithm in Perfect Hierarchical

Hypercubes

Antoine Bossard1,∗, Keiichi Kaneko1 and Shietung Peng2

1Graduate School of Engineering, Tokyo University of Agriculture and Technology, Japan
2Faculty of Computer and Information Science, Hosei University, Japan

∗Corresponding author: 50008834706@st.tuat.ac.jp

The perfect hierarchical hypercube (HHC) interconnection network, also known as the cube-

connected cube, was introduced as a topology for large parallel computers. One of its interesting

properties is that it can connect many nodes while retaining a small diameter and a low degree.

The first node-to-set disjoint-path routing algorithm in perfect HHCs was previously introduced by

Bossard et al. [(2011) Node-to-Set Disjoint-Path Routing in Perfect Hierarchical Hypercubes. Proc.

11th Int. Conf. Computational Science, Tsukuba, Japan, June 1–3. Elsevier, Amsterdam]. In this

paper, we propose a novel solution to the node-to-set disjoint-path routing problem in HHC. Inside

a (2m
+ m)-dimensional HHC, we shall describe an algorithm that can find disjoint paths between

a source node and at most m + 1 destination nodes of maximum length O(2m), significantly shorter

than the maximum path length O(m2m) of Bossard et al. [(2011) Node-to-Set Disjoint-Path Routing in

Perfect Hierarchical Hypercubes. Proc. 11th Int. Conf. Computational Science, Tsukuba, Singapore,

June 1–3. Elsevier, Amsterdam].

Keywords: cube-connected cube; hierarchical hypercube; interconnection network; disjoint routing;

polynomial algorithm

Received 17 December 2010; revised 15 March 2011

Handling editor: Alberto Apostolico

1. INTRODUCTION

As the number of processors bundled in modern supercomputers

continuously grows, interconnection networks have become a

critical topic. We should take advantage of the huge number of

CPU cores in such massively parallel systems without facing

heavy overloads or any other obstacle due to the underlying

network topology complexity. For this purpose an efficient

interconnection network and efficient data routing algorithms

are today two major components that must be taken into account

when designing such systems.

Beyond simple network structures like hypercubes or rings,

several high-performance topologies particularly adapted to

massively parallel systems have been proposed: dual-cubes [1],

metacubes [2] or pancake graphs [3] are some examples.

The perfect hierarchical hypercube (HHC) interconnection

network was introduced by Malluhi and Bayoumi in [4].

Concerned by the interesting properties of such a structure, Wu

and Sun described separately the same topology in [5] as the

cube-connected cube. The most attracting property of the HHC

network is that it can connect many nodes while retaining a

small diameter as well as a low degree, compared, for example,

to a hypercube of the same size.

Wu et al. described in [6] a node-to-node disjoint-path routing

algorithm in HHC. Bossard et al. proposed in [7] a node-to-

set disjoint-path routing algorithm in HHC, which is called

HHC-N2S in this paper. HHC-N2S generates paths of maximum

length m2m+2m+2m+4.We shall describe in this paper a node-

to-set disjoint-path routing algorithm HHC-iN2S in a (2m+m)-

dimensional HHC improving the maximum path length from

O(m2m) in [7] to O(2m).

As for different topologies, a similar problem has been solved

in dual-cubes by Kaneko and Peng in [1] and, amongst others,

in star graphs by Gu and Peng in [8].

We first review in Section 2 some definitions as well as

established results used afterwards. Section 3 describes HHC-

iN2S. Section 4 proves the algorithm correctness and estimates

The Computer Journal, 2011

 The Computer Journal Advance Access published May 27, 2011

2 A. Bossard et al.

its time complexity as well as the theoretical maximum path

length. Section 5 performs an empirical evaluation of the

algorithm and discuss the results obtained. Finally, Section 6

concludes this paper.

2. PRELIMINARIES

In this section, we first introduce several general notations. Then

we recall the definition of the HHC interconnection network.

Finally, a few lemmas used in this paper will be proposed.

A path P in a graph is defined as a sequence of edges

(a1, a2), (a2, a3), . . . , (ak−1, ak) with each node of the graph

appearing in P at most once. P can also be written as a1 →

a2 → · · · → ak or more concisely a1 � ak . The nodes

a1, ak are called end nodes and the nodes a2, . . . , ak−1 are called

internal nodes of P . The length of a path P , denoted by L(P),

is the number of edges in P . The set of the neighbours of a node

a is denoted by N(a). The operator ⊕ represents the binary

exclusive-or operation.

An n-dimensional hypercube Qn consists of 2n nodes, and

each node has an n-bit unique address. There is an edge between

a pair of nodes a and b if and only if their addresses differ by one

single bit. We recall that a hypercube has a recursive structure:

for any dimension δ(0 ≤ δ ≤ n − 1), a Qn can be reduced in

two subcubes Q0
n−1 (or simply Q0) and Q1

n−1 (or simply Q1)

of dimension n − 1. Q0 (respectively, Q1) is induced by all

the nodes of Qn whose δth bit is set to 0 (respectively, 1). We

assume that a node address in a Qn can be stored in a fixed

number of machine words. Therefore, for two nodes a, b ∈ Qn,

the comparison of a and b, the calculation of their Hamming

distance H(a, b) and the detection of the most significant bit

set to 1 can be performed in constant time complexity.

An perfect HHC is an undirected graph that has 22m+m nodes

for any natural number m. It is denoted by HHC2m+m. Each node

of an HHC2m+m is denoted by a pair of a 2m-bit sequence, called

the subcube ID, and an m-bit sequence, called the processor ID.

Two nodes a = (σa, πa) and b = (σb, πb) are adjacent if and

only if one of the following two conditions holds:

(1) σa = σb and H(πa, πb) = 1;

(2) σa = σb ⊕ 2πb and πa = πb.

Edges implied by the first condition are called internal edges.

The second condition designates external edges. We note that

from the first condition, the set of nodes having the same

subcube ID σ induces an m-dimensional hypercube, denoted

by subcube Qm(σ). A processor ID represents the position of

the node inside its subcube. Also the degree of an HHC2m+m is

m + 1. Finally, an HHC2m+m is symmetric, (m + 1)-connected

and of diameter 2m+1 [4, 6]. Figure 1 represents an HHC6.

Let us establish or recall several lemmas. First, Lemma 2.1

recalls a basic property of a hypercube.

Lemma 2.1. In a Qn reduced into two subcubes Q0 and Q1,

for any node a of Q0(respectively, Q1) there are n disjoint

Q2(0000)

11

10

01

00

FIGURE 1. HHC6(m = 2).

paths of lengths at most 2 connecting a to n distinct nodes in

Q1(respectively, Q0).

Proof. Assume that Qn is reduced along a dimension δ and

a ∈ Q0. The n − 1 paths of lengths 2 are a → a ⊕ 2i →

a ⊕ 2i ⊕ 2δ ∈ Q1 with 0 ≤ i ≤ n − 1, i �= δ, and the path of

length 1 is a → a ⊕ 2δ ∈ Q1.

Secondly, Lemma 2.2 recalls the hypercube node-to-set

disjoint-path routing algorithm (Cube-N2S) of [7].

Lemma 2.2. In a Qn, given a node s and a set of k (≤ n)

nodes D = {d1, . . . , dk}, we can find k disjoint paths between

s and the nodes of D of lengths at most n + 1 in O(kn) time

complexity.

Now we define a specific shortest path routing (SPR)

algorithm SPR-Gray in a hypercube. SPR-Gray finds a path

between two nodes a, b, where h = H(a, b) and a ⊕ b =
∑h−1

i=0 2δi , by successively flipping the bits at the positions

of δ0, . . . , δh−1 according to the order specified by a Gray

code. One should note that the nodes on the path from a to

b themselves are not following a Gray code, but the dimensions

of the flipped bits do. See Example 1 below.

Example 1. We give one possible output for a dimension

order SPR algorithm and the previously defined SPR-Gray

variation:

SPR(00000000, 00111010)

00000000 → 00000010 → 00001010 → 00011010

→ 00111010

SPR-Gray(00000000, 00111010)

00000000 → 00000010 → 00001010 → 00101010

→ 00111010

For the path returned by SPR, which changes the bits following

the dimensions in the ascending order, the bits are changed in

the order 1,3,4,5 (binary: 001,011,100,101). The path generated

by SPR-Gray changes the bits in the order 1,3,5,4 (binary:

001,011,101,100), which is a subsequence of a Gray code. We

call the order specified by a Gray code a Gray code order. In an

The Computer Journal, 2011

A New Node-to-Set Disjoint-Path Algorithm in Perfect HHCs 3

SPR in a Qn, if the bits are flipped according to a Gray code

order, we say that the nodes are traversed in Gray code order.

An illustration is given in Fig. 2.

Practically, inside a Qn, SPR-Gray first obtains the differing

bit positions δ0, . . . , δh−1 between the two nodes a, b where

a ⊕ b =
∑h−1

i=0 2δi , h = H(a, b). Then it flips successively the

bits at the positions δ0, . . . , δh−1 following the order defined by

the function f with f (γi) = i where γ0, . . . , γ2g−1 is a g-bit

Gray code with g = ⌈log2 n⌉; that is, if f (δi) < f (δj) holds,

the bit at position δi is flipped before the bit at position δj .

Sorting the dimensions δ0, . . . , δh−1 can be done in O(n) time

as well as the corresponding bit flips. Therefore, SPR-Gray has

a total time complexity of O(n).

Lemma 2.3 recalls the hypercube fault-tolerant node-to-

node routing algorithm (Cube-FTN2N) described by Gu and

Peng [9].

Lemma 2.3. In a Qn, given two non-faulty nodes s, d and a

set F of at most n−1 faulty nodes, we can find a fault-free path

from s to d of length at most n + 1 in O(n) time complexity.

This algorithm makes at most ⌈log2 |F |⌉ hypercube

reductions [9]. Gu and Peng assume an arbitrary SPR in Cube-

FTN2N but in this paper we use SPR-Gray.

Now we describe an extended hypercube fault-tolerant node-

to-set disjoint-path routing algorithm Cube-XFTN2S. In a Qn,

let s be the source node, D be the set of destination nodes and

F be the set of faulty nodes such that |D| + |F | ≤ n − 1.

Given a restriction set X with X ⊂ N(s) and |X| ≤ 1, Cube-

XFTN2S(Qn, s, D, F, X) returns |D| fault-free disjoint paths

from s to D with one of these paths starting with the edge

s → x if x ∈ X. Initially, Cube-XFTN2S is called with

non-faulty source and destination nodes, and with X = {x}.

However, since Cube-XFTN2S is recursive, X may become

empty and some destination nodes may become faulty. Two

cases are distinguished.

Case 1: |D| = 1.

Let D be {d}. If X = {x}, first reduce Qn along the dimension

s ⊕ x into two subcubes Q0 and Q1, where s ∈ Q0 and

x ∈ Q1. Then select the edge s → x. If d ∈ Q1, connect x

to d inside Q1 with Cube-FTN2N. If d ∈ Q0, find a fault-free

path d � d ′ ∈ Q1 of at most two edges not including s by

enumeration and connect x to d ′ in Q1 with Cube-FTN2N.

Otherwise a path going through x has already been created.

If d ∈ F (it means H(s, d) = 1), find by enumeration a path

s � d of length 3 not including a faulty internal node. If d /∈ F ,

connect s to d with Cube-FTN2N.

FIGURE 2. A 3-bit Gray code with flipped bit positions by SPR and

SPR-Gray.

Case 2: |D| > 1.

If D ∩ N(s) �= ∅, then select an arbitrary node d ∈

D ∩ N(s). If d /∈ F , then create the trivial path of length 1

s → d and recursively apply this algorithm by calling Cube-

XFTN2S(Qn, s, D \ {d}, F ∪ {d}, X \ {d}). If d ∈ F , then

find a node d ′ ∈ N(d) \ (F ∪ D ∪ {s}) and recursively apply

this algorithm by calling Cube-XFTN2S(Qn, s, (D \ {d}) ∪

{d ′}, F, X).

If D ∩ N(s) = ∅, reduce Qn into two subcubes Q0 and Q1

along a dimension δ such that D ∩ Q0 �= ∅ and D ∩ Q1 �= ∅.

Assume s ∈ Q0. Let s1 be the unique neighbour of s into Q1

(s1 = s ⊕ 2δ). Let F1 = ((F ∩ Q1) \ {s1}) ∪ {s ′
i | s ′

i ∈ N(s1) ∩

Q1, si(= s ′
i ⊕ 2δ) ∈ F }. We apply recursively this algorithm

onto Q1 to obtain a set C1 of paths s1 → s ′
i � dj (Cube-

XFTN2S(Q1, s1, D ∩ Q1, F1, ∅)). If s1 ∈ F , we update all the

paths inC1 to be connected to s by replacing in each path the edge

s1 → s ′
i by the subpath s → si → s ′

i . If s1 /∈ F , we update all

the paths in C1, except one, to be connected to s by replacing the

edge s1 → s ′
i by the subpath s → si → s ′

i and the remaining

path is extended to be connected to s simply using the edge

s → s1. Let F0 = (F ∩Q0)∪{si | (s → si → s ′
i � dj) ∈ C1}.

Finally, we apply this algorithm recursively onto Q0 (Cube-

XFTN2S(Q0, s, D ∩ Q0, F0, (X ∩ Q0) \ F0)).

Starting from Case 2, Cube-XFTN2S makes at most |D| − 1

hypercube reductions before reaching Case 1. In Case 1,

Cube-XFTN2S makes at most one hypercube reduction along

s ⊕ x, and Cube-FTN2N makes at most ⌈log2 |F |⌉ hypercube

reductions. Hence, Cube-XFTN2S performs in total at most

|D| + ⌈log2 |F |⌉ hypercube reductions.

Remark 1. SPR-Gray is only called by Cube-FTN2N. Cube-

FTN2N is only called in Case 1. If Cube-FTN2N is called,

SPR-Gray is applied inside a subcube of dimension at least

n − (|D| + ⌈log2 |F |⌉). Precisely, SPR-Gray is applied inside

a subcube of dimension that is exactly n − (|D| + ⌈log2 |F |⌉)

in the case X �= ∅ and d ∈ Q0 of Case 1. Otherwise, that is,

if Cube-FTN2N is not called, a path of length 3 is created in

Case 1. Therefore, any path includes at most max{(|D| − 1) +

1 + ⌈log2 |F |⌉ + 2, |D| + 2} + 1 = |D| + ⌈log2 |F |⌉ + 3 nodes

traversed not in Gray code order (Fig. 3).

From this discussion, we can state the following lemma.

Lemma 2.4. In a Qn, given a non-faulty source node s, a set

of k(≤ n) destination nodes D = {d1, . . . , dk}, a set F of at most

n−k−1 faulty nodes and a restriction set X with X ⊂ N(s)\F

and |X| ≤ 1, we can find k disjoint paths s � di(1 ≤ i ≤ k)

FIGURE 3. A path including |D| + ⌈log2 |F |⌉ + 3 nodes traversed

not in Gray code order.

The Computer Journal, 2011

4 A. Bossard et al.

not including a faulty internal node, one starting with the edge

s → x if ∃x ∈ X, of maximum length n + 3 in O(kn) time

complexity.

Proof. We prove this lemma by induction on k.

If |D| = 1, if ∃x ∈ X, then we first reduce Qn along the

dimension s⊕x so that s ∈ Q0 and x ∈ Q1. If d ∈ Q1, then x is

connected to d in Q1 with Cube-FTN2N in at most (n−1)+1 =

n edges. Then x is connected to s in one edge and the total path

length is thus at most n + 1. If d ∈ Q0, by Lemma 2.1 there

are n disjoint paths of lengths at most 2 connecting d to distinct

nodes in Q1. Since |{s} ∪ F | ≤ n − k = n − 1, there is at least

one path d � d ′ ∈ Q1 of these n disjoint paths that does not

include s or a faulty node. We see that x is connected to d ′ in Q1

with Cube-FTN2N in at most (n − 1) + 1 = n edges. Finally, s

is connected to x in one edge, the total length of this path is thus

1+n+2 = n+3. Otherwise (i.e. X = ∅), if d ∈ F , it is caused

by a recursive call from Case 2 by introducing a set of faulty

nodes F1 = ((F ∩ Q1) \ {s1}) ∪ {s ′
i | s ′

i ∈ N(s1) ∩ Q1, si(=

s ′
i ⊕ 2δ) ∈ F }, where s ′

i is also included in the set D ∩ Q1,

which is the set of destination nodes in the recursive call Cube-

XFTN2S(Q1, s1, D ∩Q1, F1, ∅). Therefore, if d ∈ F , it means

that d is adjacent to the new source node s, which was originally

s1. We can connect s to d with a path of length 3 including non-

faulty internal nodes. Since |F | ≤ n − 2 (F ∋ d), we can find

a path s → a → a ⊕ d ⊕ s → d not including a faulty internal

node by enumerating the n disjoint paths for a ∈ N(s). If d /∈ F ,

we connect s to d with Cube-FTN2N with at most n + 1 edges.

Hence, in the case |D| = 1 Lemma 2.4 holds.

We assume that Lemma 2.4 holds for any |D| < k. Let us

show that Lemma 2.4 holds for |D| = k. If ∃d ∈ (D∩N(s))\F ,

we create the path of length 1 s → d . We remove d from

D and add d into F . Then |D| + |F | ≤ n − 1 still holds.

Hence, Lemma 2.4 holds by induction hypothesis. Therefore,

we assume (D ∩ N(s)) \ F = ∅. If ∃d ∈ D ∩ N(s) ∩ F ,

we select a node d ′ ∈ N(d) \ (F ∪ D ∪ {s}). We remove d

from D and add d ′ into D, and hence |D| + |F | ≤ n − 1

still holds. Because |F | + |D \ {d}| + |{s}| ≤ n − 1, we have

|F ∪ (D \ {d}) ∪ {s}| < |N(d)| = n. Hence, we can always

find d ′. Therefore, we assume D ∩ N(s) = ∅. Now we reduce

Qn along a dimension δ into two subcubes Q0 and Q1 such

that D ∩ Q0 �= ∅ and D ∩ Q1 �= ∅. Assume s ∈ Q0 and

s1 = s ⊕ 2δ ∈ Q1.

Let F1 = ((F ∩ Q1) \ {s1}) ∪ {s ′
i | s ′

i ∈ N(s1) ∩ Q1, si(=

s ′
i ⊕ 2δ) ∈ F }. We have |F1| ≤ |F ∩ Q1| + |{s ′

i | s ′
i ∈

N(s1) ∩ Q1, si(= s ′
i ⊕ 2δ) ∈ F }| ≤ |(F ∩ Q1) ∪ (F ∩ Q0)| ≤

n − k − 1. Because |D ∩ Q1| ≤ |D| − 1 = k − 1 and

|F1| ≤ n−k−1 = (n−1)−(k−1)−1, we can find by induction

onto Q1 disjoint paths of lengths at most (n − 1) + 3 = n + 2

connecting s1 to each destination node of Q1 not including any

internal node in F1.

All of the disjoint paths s1 → s ′
i � dj in Q1 are then

connected to s as follows. If s1 ∈ F , then we replace edges

s1 → s ′
i by the subpaths s → si(= s ′

i⊕2δ) → s ′
i . If s1 /∈ F , then

one path is randomly selected and connected to s by one edge

s → s1, and for all the other paths we replace edges s1 → s ′
i by

the subpaths s → si → s ′
i . Because for all of the disjoint paths

s1 → s ′
i � dj ∈ Q1 we have s ′

i /∈ F1, it follows that si /∈ F .

Hence, the paths s → si → s ′
i � dj do not include an internal

faulty node. Because the paths found in Q1 are disjoint, each s ′
i

is used by at most one path, hence each path is connected to s

via a distinct si ∈ Q0. Therefore, the paths s � dj stay disjoint;

they are of length at most (n + 2) − 1 + 2 = n + 3. Let C1 be

the set of the paths s → si → s ′
i � dj ∈ Q1 obtained.

Let F0 = (F ∩ Q0) ∪ {si | (s → si → s ′
i � dj) ∈ C1}.

If s1 ∈ F we have |F0| ≤ |F ∩ Q0| + |{si | (s → si →

s ′
i � dj) ∈ C1}| ≤ (n − k − 2) + |D ∩ Q1|. If s1 /∈ F , we

have |F0| ≤ |F ∩ Q0| + |{si | (s → si → s ′
i � dj) ∈ C1}| ≤

(n−k−1)+(|D∩Q1|−1). Because |D∩Q0| ≤ k−|D∩Q1|

and |F0| ≤ (n − k − 2) + |D ∩ Q1|, we can find by induction

onto Q0 disjoint paths of lengths at most (n − 1) + 3 = n + 2

not including an internal faulty node, connecting s to each

destination node of Q0.

In addition, since the neighbours si of s used in paths

connecting s to destination nodes in Q1 are considered as faulty

(gathered into F0), and since these nodes si are the only internal

nodes inside Q0 of the paths connecting s to destination nodes

in Q1, the paths connecting s to destination nodes in Q0 are

disjoint with the paths connecting s to destination nodes in Q1.

We express the time complexity of Cube-XFTN2S by

induction on n and k. Let T (k, n) be the time complexity of

this algorithm in a Qn with |D| = k.

In Case 1, if X = {x}, the reduction along s ⊕x as well as the

selection of the edge s → x are O(1). If d ∈ Q1, a path x � d

in Q1 can be created in O(n) by Cube-FTN2N. If d ∈ Q0, the

path d � d ′ ∈ Q1 can be found in O(n) by enumeration, and

the path x � d ′ can also be found in O(n) by Cube-FTN2N.

Now if X = ∅ and d ∈ F , a path s � d of length 3 not including

a faulty internal node can be found in O(n) by enumeration. If

X = ∅ and d /∈ F , a fault-free path s � d can be found in

O(n) by Cube-FTN2N. Therefore, in Case 1 we can find a path

s � d in O(n).

In Case 2, it takes O(n) to check if D ∩N(s) is empty or not.

If ∃d ∈ D∩N(s), it takes O(n) to check if d ∈ F . If d /∈ F , we

can create a path of length 1 s → d in O(1). Then the problem

is reduced to Cube-XFTN2S(Qn, s, D \ {d}, F ∪ {d}, X \ {d}).

From the induction hypothesis, it takes T (k − 1, n) time. If

d ∈ F , a node d ′ can be found in O(n). After the recursive

call we select the edge d → d ′ in O(1). Now we assume

D∩N(s) = ∅. We see that Qn is reduced along a dimension δ in

constant time since we assumed that two nodes can be compared

in constant time. Creating F1 requires O(n) time; that is F ∩Q1

is obtained by checking the dimension δ of each node of F ,

requiring O(n) time. Also s1 can be excluded from F ∩ Q1 in

O(n) time. Finally, by computing the Hamming distance from

s we can find all the faulty neighbour nodes of s in O(n) time.

Hence, the set {s ′
i | s ′

i ∈ N(s1)∩Q1, si(= s ′
i ⊕ 2δ) ∈ F } can be

obtained in O(n) time. Connecting the paths inside Q1 to s is

The Computer Journal, 2011

A New Node-to-Set Disjoint-Path Algorithm in Perfect HHCs 5

made in constant time for each path, hence requiring O(k) time

in total. Lastly, F0 is created in O(n) time.

Let D0 = D ∩ Q0 and D1 = D ∩ Q1. We have

T (1, n) = O(n),

T (k, n) = T (|D0|, n − 1) + T (|D1|, n − 1) + O(n)

= O(kn)

with 1 ≤ |D0|, |D1| ≤ k − 1 and |D0| + |D1| = k. If X = {x},

Case 1 ensures that one of the disjoint paths starts with the edge

s → x. Therefore, in a Qn, Cube-XFTN2S generates k (≤ n)

disjoint paths not including an internal faulty node, one starting

with the edge s → x if ∃x ∈ X, of lengths at most n + 3 in

O(kn) time complexity.

Lemma 2.5 recalls that in an HHC2m+m we can distribute

m + 1 nodes to distinct subcubes with at most two edges.

Lemma 2.5 ([7]). In an HHC2m+m, given a set of m + 1

nodes D = {d1, d2, . . . , dm+1}, we can find m + 1 disjoint

paths di � d ′
i(1 ≤ i ≤ m + 1) of lengths at most 2 in O(m3)

time complexity such that the subcube of d′
i does not include

any node in D ∪ (D′ \ {d ′
i}) where D′ = {d ′

1, d
′
2, . . . , d

′
m+1}.

Proof. For an arbitrary di = (σ, pi) ∈ D, there are m + 1

disjoint paths P
(i)
1 , . . . , P

(i)
m+1 of lengths at most 2 connecting

di to m + 1 distinct subcubes:

⎧

⎨

⎩

di = (σ, pi)→ (σ ⊕ 2pi , pi) ∈ Qm(σ ⊕ 2pi)

di = (σ, pi)→ (σ, pi ⊕ 2h) → (σ ⊕ 2pi⊕2h

, pi ⊕ 2h)

∈ Qm(σ ⊕ 2pi⊕2h

) (0 ≤ h ≤ m − 1).

Let us show that, for any dj (1 ≤ j ≤ m + 1, i �= j), the

path P
(j)
wj : dj → d ′′

j → d ′
j (1 ≤ wj ≤ m + 1) can block at

most one of the m + 1 paths P
(i)
1 , . . . , P

(i)
m+1.

Let us consider two paths P (i)
u : di → u1 → u2 ∈ Qm(σu)

and P (i)
v : di → v1 → v2 ∈ Qm(σv) with 1 ≤ u, v ≤

m + 1, u �= v (Fig. 4). Because u1 and v1 are two distinct

neighbours of the same node di , we have H(u1, v1) = 2.

First assume that dj ∈ Qm(σ). Then d ′′
j ∈ Qm(σ) and

d ′
j /∈ Qm(σ) hold. Hence, u1 and v1 cannot be both on

P
(j)
wj because H(u1, v1) = 2. In addition, if dj = u1, then

d ′
j /∈ Qm(σv) holds because there is only one external edge

v1 → v2 between Qm(σ) and Qm(σv), and because d ′′
j �= v1.

Therefore, P
(j)
wj cannot block both P (i)

u and P (i)
v if dj ∈ Qm(σ).

Now assume dj /∈ Qm(σ) and dj ∈ Qm(σu), we recall that

H(σ, σu) = H(σ, σv) = 1, and hence H(σu, σv) = 2 since

FIGURE 4. Two candidate paths for distribution of di .

u1 �= v1. Therefore, there is no external edge between Qm(σu)

and Qm(σv), and hence d ′
j /∈ Qm(σv) since P

(j)
wj has only one

external edge. As a result P
(j)
wj cannot block P (i)

u and P (i)
v at the

same time if dj ∈ Qm(σu).

From this discussion, we can deduce that each path P
(j)
wj

(1 ≤ wj ≤ m + 1) can block at most one of the m + 1 paths

P
(i)
1 , . . . , P

(i)
m+1. Therefore, at least one ((m + 1) − m = 1)

path P (i)
wi

(1 ≤ wi ≤ m + 1) remains to connect di to a node

d ′
i . We see that P (i)

wi
can be found in O(m2) time complexity

by checking all the m + 1 paths P
(i)
1 , . . . , P

(i)
m+1 of lengths at

most 2 for di . Hence, we can connect all nodes di ∈ D to

nodes d′
i with disjoint paths of lengths at most 2 in O(m3) time

complexity.

3. HHC NODE-TO-SET DISJOINT-PATH ROUTING

ALGORITHM

We describe in this section the HHC node-to-set disjoint-path

routing algorithm HHC-iN2S. The main idea of the algorithm

is to reduce the node-to-set disjoint-path routing problem in

an HHC to the node-to-set disjoint-path routing problem in a

hypercube by mapping each subcube of an HHC2m+m to a single

node of a 2m-dimensional hypercube Q2m . A path inside an

HHC2m+m is called an HHC-level path, and a path inside a Q2m

is called a cube-level path, made of cube-level nodes, that is

subcube IDs of an HHC2m+m.

Before describing HHC-iN2S we introduce an algorithm

CONV which takes as input one cube-level path P : σ0 � σn

and two processors IDs πbeg, πend, and generates an HHC-level

path (σ0, πbeg) � (σn, πend) according to P . For a path P :

σ0 → σ1 → · · · → σn, let πj (1 ≤ j ≤ n) be an m-bit sequence

that satisfies σj−1 ⊕ 2πj = σj . We construct the corresponding

HHC-level path (σ0, πbeg) � (σ0, π1) → (σ1, π1) = (σ0 ⊕

2π1 , π1) � (σ1, π2) → · · · → (σn−1, πn−1) � (σn−1, πn) →

(σn, πn) � (σn, πend), using an SPR algorithm inside every

subcube to connect each (σj , πj) to (σj , πj+1). The pseudocode

is given in Algorithm 1.

Remark 2. One should note that there is no difference

regarding the length of the cube-level paths returned by SPR

and SPR-Gray. In case SPR is used, at most m internal edges are

required inside each subcube when converting cube-level paths

back to HHC-level paths, that is in the worst case m × O(2m)

internal edges, where O(2m) represents the cube-level paths’

maximum length. On the other hand, SPR-Gray implies at

most 2m − 1 internal edges in total, visiting the nodes in a

Qm corresponding to the bit positions to be flipped following

the occurrence order in the Hamiltonian cycle specified by the

Gray code.

In an HHC2m+m, for any cube-level path P of length l in Q2m ,

CONV applies an SPR algorithm inside each visited subcube,

thus having a time complexity of O(lm). Now for any cube-level

shortest-path P in Q2m whose nodes are traversed in Gray code

The Computer Journal, 2011

6 A. Bossard et al.

order, the number of internal edges generated by SPR in CONV

will be at most 2m. Since SPR has a linear time complexity in

the number of edges it generates, CONV will be of O(2m) total

time complexity.

Algorithm 1 CONV(P = σ0 → σ1 → . . . → σn, πbeg , πend).

Input: A cube-level path P = σ0 � σn and two processors IDs to specify the

HHC nodes (σ0, πbeg) and (σn, πend).

Output: The HHC-level path (σ0, πbeg) � (σn, πend) corresponding to P .

if L(P) = 0 then

π0(= πbeg) → π1 → . . . → πλ(= πend) := SPR(πbeg , πend);

return (σ0, π0) → (σ0, π1) → . . . → (σ0, πλ)

else

πnext := log2(σ0 ⊕ σ1);

π0(=πbeg) →π1 → . . .→ πλ′ (=πnext) := SPR(πbeg , πnext);

P ′ := CONV(σ1 � σn, πnext , πend);

return (σ0, π0) → (σ0, π1) → . . . → (σ0, πλ′) → P ′

end if

Let s = (s0, p0) be the source node and D = {d1 =

(s1, p1), . . . , dk = (sk, pk)}, k ≤ m+1 be the set of destination

nodes.

Step 0. If |D∩Qm(s0)| ≤ k−2, then go to Step 1. Otherwise,

we assume {d1, . . . , dk−1} ⊂ Qm(s0) without loss of generality.

If dk ∈ Qm(s0) and k < m + 1, we connect s to D inside

Qm(s0) with Cube-N2S. If dk ∈ Qm(s0) and k = m + 1, we

connect s to {d1, . . . , dk−1} inside Qm(s0) with Cube-N2S. If

dk is included in one of the k − 1 paths s � di (1 ≤ i ≤ k − 1)

returned by Cube-N2S, say s � dj , then swap the indices

of dk and dj , and discard the subpath dk � dj . Finally, s is

connected to dk with the path s = (s0, p0) → (s0 ⊕ 2p0 , p0) �

(s0⊕2p0 , pk) → (s0⊕2p0 ⊕2pk , pk) � (s0⊕2p0 ⊕2pk , p0) →

(s0 ⊕ 2pk , p0) � (s0 ⊕ 2pk , pk) → (s0, pk) = dk , where

� represents an SPR. Otherwise, that is dk /∈ Qm(s0), we

first connect s to {d1, . . . , dk−1} inside Qm(s0) with Cube-N2S.

Then we find a cube-level path P : s0 ⊕ 2p0
� sk ⊕ 2pk

by using SPR-Gray so that the path does not start with the

edge s0 ⊕ 2p0 → s0. If sk ∈ P , then we discard the subpath

sk � sk ⊕ 2pk and we apply CONV to P and the processor

IDs p0, pk . Otherwise we apply CONV to P and the processor

IDs p0, pk , and we extend the HHC-level path obtained by one

external edge (sk ⊕ 2pk , pk) → dk (Fig. 5).

All paths are now constructed, and the algorithm terminates.

Step 1. We can now assume without loss of generality that

Qm(s0) ∩ D = {d1, d2, . . . , dr}, r < k − 1. Let Z1 be the set

of subcube IDs (s0 excluded) whose corresponding subcubes

contain more than one destination node. Let Z2 be the set of

FIGURE 5. A path s � dk generated if |D ∩ Qm(s0)| = k − 1 and

dk /∈ Qm(s0).

subcube IDs σ with H(s0, σ) = 1 and Qm(σ) linked to Qm(s0)

with an external edge whose end node in Qm(s0) is a destination

node. We exclude the subcube IDs of Z1 from Z2. Formally

Z1 = {σ | |Qm(σ) ∩ D| ≥ 2} \ {s0},

Z2 = {s0 ⊕ 2p1 , . . . , s0 ⊕ 2pr } \ Z1.

For each destination node di = (si, pi) with si ∈ Z1 ∪ Z2,

we connect di to a node d ′
i = (s ′

i, p
′
i) with at most two edges

such that the following statements hold:

(1) ∀di = (si, pi) with si ∈ Z1 ∪ Z2, s ′
i /∈ Z1 ∪ Z2 for the

corresponding d ′
i = (s ′

i, p
′
i)

(each di whose subcube ID is in Z1 ∪Z2 is connected to

a node d ′
i whose subcube ID is not in Z1 ∪ Z2);

(2) ∀di = (si, pi) with si ∈ Z1 ∪ Z2, D ∩ Qm(s ′
i) = ∅ for

the corresponding d ′
i = (s ′

i, p
′
i)

(each di whose subcube ID is in Z1 ∪Z2 is connected to

a node d ′
i whose subcube contains no destination node);

(3) ∀di = (si, pi), dj = (sj , pj) with si, sj ∈ Z1 ∪ Z2 and

i �= j , s ′
i �= s ′

j for the corresponding d ′
i = (s ′

i, p
′
i) and

d ′
j = (s ′

j , p
′
j)

(each di whose subcube ID is in Z1 ∪Z2 is connected to

a node d ′
i into a distinct subcube).

Each such node d ′
i is called the distributed destination node

for di .

Finally, let Z3 be the set of subcube IDs whose corresponding

subcubes contain either one distributed destination node d ′
i or

exactly one destination node di (r < i ≤ k) with si /∈ Z2 (s0 is

excluded from Z3). Formally

Z3 = ({s ′
i | ∀si ∈ Z1 ∪ Z2} ∪ {si | ∀si /∈ Z1 ∪ Z2}) \ {s0}.

Step 2. Let X be {s0 ⊕ 2p0} if k = m + 1 and s0 ⊕ 2p0 /∈

Z1. Otherwise X = ∅. We apply Cube-XFTN2S onto a

2m-dimensional hypercube Q2m . The source node for Cube-

XFTN2S is s0, Z3 is the set of destination nodes, Z1 ∪Z2 is the

set of faulty nodes and X is the restriction set. Let Pi be each

of the cube-level paths generated by Cube-XFTN2S where Pi

is of the form s0 � si or s0 � s ′
i . If ∃d ′

i ∈ Qm(s0), then there

is no path for s ′
i generated since s0 (= s ′

i) is excluded from Z3.

So let Pi : s0 (= s ′
i) of length 0.

Step 3. We convert the paths Pr+1, . . . , Pk obtained in Step

2 back to HHC-level paths using CONV. We recall that a

distributed destination node d ′
i is connected to di with a path of

length 2, denoted by d′
i → d ′′

i → di , or of length 1, denoted by

d ′
i → di . First we handle routing inside Qm(s0) separately.

For each path Pi (r + 1 ≤ i ≤ k), if it is of the form s0 � s ′
i ,

then it is extended with one edge to Pi : s0 � s ′
i → si .

If k = m + 1, s0 ⊕ 2p0 ∈ Z1 and ∄d ′
i ∈ Qm(s0) with

the corresponding di inside Qm(s0 ⊕ 2p0), then let dx be the

destination node of Qm(s0 ⊕ 2p0) such that dx or d ′′
x (if any) is

the closest of all the dj , d
′′
j ∈ Qm(s0 ⊕2p0) (x �= j) nodes to the

node (s0⊕2p0 , p0). If there exist dj1
and d ′′

j2
in Qm(s0⊕2p0) and

The Computer Journal, 2011

A New Node-to-Set Disjoint-Path Algorithm in Perfect HHCs 7

Algorithm 2 HHC-iN2S(HHC2m+m, s, D).

Input: An HHC2m+m, a source node s = (s0, p0) and a set of k (≤ m + 1) destination nodes D = {d1 = (s1, p1), . . . , dk = (sk, pk)}.

Output: k disjoint paths s � di (1 ≤ i ≤ k).

if |D ∩ Qm(s0)| ≥ k − 1 then /* Step 0 */

/* Assume {d1, . . . , dk−1} ⊂ D ∩ Qm(s0) */

if dk ∈ Qm(s0) and k < m + 1 then

S0 := Cube-N2S(Qm(s0), p0, {p1, . . . , pk});

H := {(s0, p0) � (s0, pi) | ∀(p0 � pi) ∈ S0, 1 ≤ i ≤ k}

else if dk ∈ Qm(s0) and k = m + 1 then

S0 := Cube-N2S(Qm(s0), p0, {p1, . . . , pk−1});

H := {(s0, p0) � (s0, pi) | ∀(p0 � pi) ∈ S0, 1 ≤ i ≤ k − 1};

/* If dk ∈ H, additional processing required, but omitted. */

H := H ∪ {s → (s0 ⊕ 2p0 , p0) � (s0 ⊕ 2p0 , pk) → (s0 ⊕ 2p0 ⊕ 2pk , pk) � (s0 ⊕ 2p0 ⊕ 2pk , p0) → (s0 ⊕ 2pk , p0) � (s0 ⊕ 2pk , pk) → dk}

else /* dk /∈ Qm(s0) */

S0 := Cube-N2S(Qm(s0), p0, {p1, . . . , pk−1});

H := {(s0, p0) � (s0, pi) | ∀(p0 � pi) ∈ S0, 1 ≤ i ≤ k − 1};

P := SPR-Gray(s0 ⊕ 2p0 , sk ⊕ 2pk); /* such that s0 /∈ P */

if sk ∈ P then

Discard the subpath sk � sk ⊕ 2pk from P ;

H := H ∪ {s → CONV(P , p0, pk)}

else

H := H ∪ {s → CONV(P , p0, pk) → dk}

end if

end if

else

/* Assume {d1, . . . , dr } = D ∩ Qm(s0) with r < k − 1 */

/* Step 1: Destination nodes distribution */

Z1 = {σ | |Qm(σ) ∩ D| ≥ 2} \ {s0};

Z2 = {s0 ⊕ 2p1 , . . . , s0 ⊕ 2pr } \ Z1;

∀di = (si , pi) with si ∈ Z1 ∪ Z2, connect di to a node d′
i = (s′

i , p
′
i) in at most two edges such that s′

i /∈ Z1 ∪ Z2, D ∩ Qm(s′
i) = ∅ and

∀dj = (sj , pj), sj ∈ Z1 ∪ Z2, i �= j we have s′
i �= s′

j ;

Z3 = ({s′
i | ∀si ∈ Z1 ∪ Z2} ∪ {si | ∀si /∈ Z1 ∪ Z2}) \ {s0};

/* Step 2: Routing by Cube-XFTN2S */

if k = m + 1 and s0 ⊕ 2p0 /∈ Z1 then X := {s0 ⊕ 2p0 } else X := ∅ end if

C1 := Cube-XFTN2S(Q2m , s0, Z3, Z1 ∪ Z2, X);

for all P ∈ C1 /* Assume P : s0 � si or P : s0 � s′
i */ do Pi := P end for

if ∃d′
i ∈ Qm(s0) then Pi := s0 end if /* Path of length zero */

/* Step 3: Path conversion */

for all Pi : s0 � s′
i do Pi := Pi → si end for

if k = m + 1 and s0 ⊕ 2p0 ∈ Z1 and ∄d′
i ∈ Qm(s0) with di ∈ Qm(s0 ⊕ 2p0) then

/* Assume Px : s0 � sx is the path such that dx (or d′′
x if any) is the closest dj or d′′

j to (s0 ⊕ 2p0 , p0) inside Qm(s0 ⊕ 2p0) */

Px := s0 → s0 ⊕ 2p0

end if

S0 := Cube-N2S(Qm(s0), p0, {p1, . . . , pr } ∪ {πi | (s0 → s0 ⊕ 2πi) ∈ Pi , r + 1 ≤ i ≤ k} \ {p0});

H0 := {(s0, p0) � (s0, π) | ∀(p0 � π) ∈ S0};

H1 := ∅;

for all Pi : s0 → s0 ⊕ 2πi � si do /* A special treatment for Px may be required, but omitted. */

H1 := H1 ∪ { CONV(Pi , πi , pi) }

end for

H := { join the paths of H0 to the corresponding path of H1}

end if

return H

they are both closest to the node (s0 ⊕2p0 , p0), we always select

dj1
as dx . Let Px : s0 � sx be replaced by Px : s0 → s0 ⊕ 2p0 .

We apply Cube-N2S to disjointly connect s to the set (D ∩

Qm(s0))∪{(s0, πi) | (s0 → s0 ⊕2πi) ∈ Pi, r +1 ≤ i ≤ k}\{s}

of k or k − 1 nodes depending on the existence of a path in Pi’s

starting with the edge s0 → s0 ⊕ 2p0 .

If k = m + 1, s0 ⊕ 2p0 ∈ Z1, ∄d ′
i ∈ Qm(s0) with

the corresponding di inside Qm(s0 ⊕ 2p0) and d′′
x = (s0 ⊕

2p0 , p′′
x) is closest to (s0 ⊕ 2p0 , p0), then for Px we apply

CONV(Px, p0, p
′′
x) and extend the generated path with the edge

d ′′
x → dx . For the other paths Pi : s0 → s0 ⊕ 2πi

� si

(i �= x), we apply CONV(Pi, πi , pi). Otherwise we apply

CONV(Pi, πi, pi) for all the paths Pi : s0 → s0 ⊕ 2πi
� si

(r + 1 ≤ i ≤ k).

All paths are now constructed, and the algorithm terminates.

The pseudocode is given in Algorithm 2.

The Computer Journal, 2011

8 A. Bossard et al.

4. CORRECTNESS AND COMPLEXITIES

We shall prove in this section the correctness of HHC-

iN2S, evaluate the maximum path length and assess its time

complexity.

In the case |D ∩ Qm(s0)| ≥ k − 1, the routing problem

is solved using Cube-N2S inside Qm(s0), generating paths of

lengths at mostm+1. However, an additional path s � dk can be

generated outside Qm(s0). The maximum path length is attained

in the case dk /∈ Qm(s0) and it is (1 + 2m) + 2m = 2m+1 + 1,

that is 2m + 1 external edges and 2m internal edges to cycle

through an m-bit Gray code. The corresponding cube-level path

is created in O(2m) time complexity as well as the application

of the CONV algorithm since we have used SPR-Gray, and

hence that path is constructed in O(2m) total time complexity.

It is disjoint with the other paths inside Qm(s0) since all its

internal nodes are outside Qm(s0). If dk ∈ Qm(s0), checking if

dk is included in one of the paths generated by Cube-N2S inside

Qm(s0) requires O(m2) time complexity. From this discussion,

we can deduce that the time complexity of Step 0 is O(2m).

To apply in Step 2 Cube-XFTN2S, we need that in Q2m the

number of destination nodes plus the number of faulty nodes be

less than or equal to 2m − 1. We assumed |D ∩ Qm(s0)| =

r, r < k − 1, and hence the number of destination nodes

for Cube-XFTN2S is |Z3| = k − r . The number of faulty

nodes is given by |Z1| + |Z2| ≤ ⌊(k − r)/2⌋ + r . We have

|Z3|+|Z1|+|Z2| ≤ (k−r)+⌊(k−r)/2⌋+r = r+⌊3(k−r)/2⌋.

It is easy to check that r + ⌊3(k − r)/2⌋ ≤ 2m − 1 holds for

m ≥ 3 (note that |Z3| + |Z1| + |Z2| is maximized for r = 0).

If m = 1, the corresponding HHC is a cycle, and hence it is

trivial to solve the node-to-set disjoint-path routing problem

(|D| ≤ 2). If m = 2, we solve the routing problem as in [7].

By Lemmas 2.2, 2.4 and 2.5 we understand that the HHC-

level paths connecting s to D are disjoint.

Now let us focus on the maximum path length generated

by HHC-iN2S (Fig. 6). We recall that when applying Cube-

XFTN2S in Q2m , Z3 is the set of destination nodes and Z1∪Z2 is

the set of faulty nodes. Cube-XFTN2S returns paths that include

at most 2m + 4 nodes, with each path having a subsequence

of at least (2m + 4) − (|Z3| + ⌈log2 |Z1 ∪ Z2|⌉ + 3) =

2m − |Z3| − ⌈log2 |Z1 ∪ Z2|⌉ + 1 (= ν) nodes traversed in

Gray code order (Remark 1), in O(|Z3|2
m) time complexity.

Routing inside Qm(s0) requires at most m + 1 internal edges

(Cube-N2S) plus one external edge. For the at most 2m + 3

remaining subcubes, at least ν of them are traversed in Gray

code order. This means that ν − 1 subcube routings generate at

FIGURE 6. A path of maximum length.

most 2m − 1 internal edges (Remark 2). Therefore, at most

(2m + 3) − (ν − 1) (= µ) subcubes will need at most m

internal edges for subcube routing. In the final subcube among ν

subcubes that are traversed in Gray code order, routing requires

at most m internal edges. Hence, it is also counted in µ. Finally,

we count the internal edge d ′′
i → di . In addition, Cube-XFTN2S

generates a cube-level path s0 � s ′
i of length at most 2m + 3,

which corresponds to at most 2m+3 external edges.Also, taking

the external edge d′
i → d ′′

i (or s ′
i → si) into consideration, there

are at most 2m+4 external edges. Hence, we obtain the following

maximum path length:

(m + 1) + µm + (2m − 1) + 1 + (2m + 4)

≤ 2m+1 + m((k − r)+⌈log2(⌊(k − r)/2⌋+ r)⌉+ 4)+ 5

≤ 2m+1 + m(k + ⌈log2⌊k/2⌋⌉ + 4) + 5

(maximized for r = 0)

≤ 2m+1 + m((m + 1) + ⌈log2⌊(m + 1)/2⌋⌉ + 4) + 5

(maximized for k = m + 1)

= 2m+1 + m2 + m(⌈log2 m⌉ + 4) + 5.

Regarding the time complexity of HHC-iN2S, Step 1 may

have in the worst case to distribute all the destination nodes di

to the corresponding nodes d ′
i . By Lemma 2.5, these paths can

be found in O(m3) time. By Lemma 2.4, Cube-XFTN2S(Qn,

s, D, F , X) requires O(|D|n) time complexity. Hence, Step

2 has a time complexity of O(k2m) since it includes Cube-

XFTN2S(Q2m , s0, Z3, Z1 ∪ Z2, X) where |Z3| ≤ k. Step 3

converts each path of Step 2 to HHC-level paths by applying

CONV. Since CONV takes O(lm) time complexity, where l

is the length of the cube-level path and m the dimension of

subcubes, Step 3 requires O(m2m) time complexity to convert

one path whose length is O(2m). Therefore, Step 3 has a total

time complexity of O(km2m), which is thus the dominant time

complexity of the algorithm.

Remark 3. If instead of SPR-Gray we would have used SPR,

each subcube routing would have used at most m internal edges.

Hence, the maximum path length would have been

(m + 1) + m(2m + 3) + 1 + (2m + 4)

= m2m + 2m + 4m + 6.

HHC-N2S proposed by Bossard et al. [7] obtained a slightly

shorter maximum path length of m2m + 2m + 2m + 2.

Consequently, the improvement proposed in HHC-iN2S

resulting in the maximum path length 2m+1+m2+m(⌈log2 m⌉+

4)+5 has a definite impact, significantly reducing the maximum

path length from O(m2m) to O(2m).

Remark 4. One should note that in the case m = 1, the node-

to-set disjoint-path routing problem is solved by enumeration,

producing paths of lengths at most 6. In the case m = 2, the

problem is solved by HHC-N2S resulting in a maximum path

length of 20. These maximum path lengths are shorter than the

The Computer Journal, 2011

A New Node-to-Set Disjoint-Path Algorithm in Perfect HHCs 9

TABLE 1. A routing example inside an HHC11.

Q8 path HHC11 path Q8 path HHC11 path Q8 path HHC11 path Q8 path HHC11 path

00000000 (00000000, 000) 00000000 (00000000, 000) 00000000 (00000000, 000) 00000000 (00000000, 000)

00000001 (00000001, 000) (00000000, 100) (00000000, 010) (00000000, 001)

(00000001, 010) 00010000 (00010000, 100) 00000100 (00000100, 010) (00000000, 011)

(00000001, 110) (00010000, 110) (00000100, 000) (00000000, 111)

01000001 (01000001, 110) 01010000 (01010000, 110) 00000101 (00000101, 000) 10000000 (10000000, 111)

(01000001, 100) d′
1 (01010000, 111) (00000101, 001) (10000000, 110)

01010001 (01010001, 100) d1 11010000 (11010000, 111) (00000101, 011) (10000000, 100)

(11010000, 110) 00001101 (00001101, 011) d3 (10000000, 000)

(11010000, 100) 10000001 (10000001, 000)

(11010000, 000) (10000001, 010)

11010001 (11010001, 000) (10000001, 110)

(11010001, 001) 11000001 (11000001, 110)

(11010001, 011) (11000001, 100)

(11010001, 111) d′
2 (11000001, 000) d4

01010001 (01010001, 111) d2

P1 P2 P3 P4

maximum path lengths computed in the general case withm = 1

and m = 2:

2m+1 + m2 + m(⌈log2 m⌉ + 4) + 5 =

{

14 (m = 1),

27 (m = 2).

Therefore, the following theorem holds for any m.

Theorem 4.1. Inside an HHC2m+m, given a node s and a

set of k(≤ m + 1) nodes D = {d1, . . . , dk}, we can find

k disjoint paths s � di(1 ≤ i ≤ k) of lengths at most

2m+1 +m2 +m(⌈log2 m⌉+4)+5 in O(km2m) time complexity.

As an example, we solve a node-to-set disjoint-path

routing problem in an HHC11(m = 3) using HHC-iN2S.

The source node is s = (00000000, 000) and the destina-

tion nodes are D = {d1 = (01010001, 100), d2 = (01010001,

111), d3 = (00001101, 011), d4 = (11000001,000)}. We note

that d1 and d2 are inside the same subcube and will thus be first

distributed to the nodes d ′
1 and d ′

2, respectively. The four gener-

ated paths are fully described in Table 1, where Pi (1 ≤ i ≤ 4)

represents a cube-level path.

5. EMPIRICAL EVALUATION

In this section, we conduct two computer experiments

to evaluate HHC-iN2S. We implemented HHC-iN2S using

the Scheme functional programming language under the

development environment DrScheme 4.2.5 [10] running on a

32-bit system.

We evaluated first the time needed for the algorithm to solve

node-to-set disjoint-path routing problems, and then we focused

on the maximum length of the generated paths. Concretely for

both experiments we solved 10 000 routing problems inside an

HHC2m+m for each value of m ranging from 3 to 9. The number

of destination nodes is always set to m+1. All nodes, including

the source, are randomly generated.

Figure 7 represents for each m the average time needed to

solve one routing problem. The theoretical time complexity is

also represented. Figures 8 and 9 represent, respectively, for

each m the average and the maximum maximal path lengths

generated; that is, we compute, respectively, the average and

the maximum of the 10 000 maximum path lengths obtained

for the current value of m. The corresponding average and

maximum maximal path lengths of the algorithm HHC-N2S are

also represented to illustrate the gain by this improved algorithm

1

10

100

1000

10000

2 3 4 5 6 7 8 9

FIGURE 7. Average execution time (k = m + 1).

The Computer Journal, 2011

10 A. Bossard et al.

10

100

1000

2 3 4 5 6 7 8 9

HHC-iN2S

HHC-N2S

FIGURE 8. Average maximal path length.

10

100

1000

2 3 4 5 6 7 8 9

HHC-iN2S

HHC-N2S

FIGURE 9. Maximum maximal path length.

HHC-iN2S.The average gain measured for the average maximal

path length ranges from 16 to 21%, and from 19 to 23% for the

maximum maximal path length.

6. CONCLUSION

In this paper, we proposed a new algorithm HHC-iN2S

improving the maximum path length established by HHC-N2S

in [7], reducing it from O(m2m) to O(2m). Inside an HHC2m+m,

given a source node and a set of k (≤ m + 1) destination

nodes, HHC-iN2S finds disjoint paths between the source

node and all the destination nodes of lengths at most 2m+1 +

m2 + m(⌈log2 m⌉ + 4) + 5 in O(km2m) time complexity. The

algorithm was implemented to conduct several experiments so

as to challenge the theoretical results and perform a comparison

between HHC-N2S and HHC-iN2S. We measured an average

reduction of ∼20% of the maximum path length when using

HHC-iN2S.

Showing that the theoretical maximum path length is not

attainable and subsequently reducing it are the aims included

in future works. Also, applying a similar approach to solve the

same problem in a metacube, which is a generalization of an

HHC, is an interesting future work.

FUNDING

This work was supported by the Fund for Promoting Research

on Symbiotic Information Technology of Ministry of Education,

Culture, Sports, Science and Technology (MEXT) Japan; and

a Grant-in-Aid for Scientific Research (C) of the Japan Society

for the Promotion of Science (JSPS) [22500041].

REFERENCES

[1] Kaneko, K. and Peng, S. (2008) Node-to-Set Disjoint

Paths Routing in Dual-Cube. Proc. 9th Int. Symp. Parallel

Architectures, Algorithms, and Networks, Sydney,Australia, May

7–9, pp. 77–82. IEEE Computer Society, Los Alamitos, CA.

[2] Li, Y., Peng, S. and Chu, W. (2010) Metacube—a versatile

family of interconnection networks for extremely large-scale

supercomputers. J. Supercomput., 53, 329–351.

[3] Suzuki,Y. and Kaneko, K. (2003) An algorithm for node-disjoint

paths in pancake graphs. IEICE Trans. Inf. Syst., E86-D, 610–615.

[4] Malluhi, Q.M. and Bayoumi, M.A. (1994) The hierarchical

hypercube: a new interconnection topology for massively parallel

systems. IEEE Trans. Parallel Distrib. Syst., 5, 17–30.

[5] Wu, J. and Sun, X.-H. (1994) Optimal cube-connected cube

multicomputers. J. Microcomput. Appl., 17, 135–146.

[6] Wu, R.-Y., Chen, G.-H., Kuo,Y.-L. and Chang, G.J. (2007) Node-

disjoint paths in hierarchical hypercube networks. Inf. Sci., 177,

4200–4207.

[7] Bossard, A., Kaneko, K. and Peng, S. (2011) Node-to-Set

Disjoint-Path Routing in Perfect Hierarchical Hypercubes. Proc.

11th Int. Conf. Computational Science, Singapore, June 1–3.

Elsevier, Amsterdam.

[8] Gu, Q.-P. and Peng, S. (1997) Node-to-set disjoint paths with

optimal length in star graphs. IEICE Trans. Inf. Syst., E80-D,

425–433.

[9] Gu, Q.-P. and Peng, S. (1996) An efficient algorithm for node-to-

node routing in hypercubes with faulty clusters. Comput. J., 39,

14–19.

[10] Findler, R.B., Clements, J., Flanagan, C., Flatt, M., Krishna-

murthi, S., Steckler, P. and Felleisen, M. (2002) DrScheme:

a programming environment for scheme. J. Funct. Program., 12,

159–182.

The Computer Journal, 2011

	1 Introduction
	2 Preliminaries
	3 HHC Node-to-set Disjoint-path Routing Algorithm
	4 Correctness and Complexities
	5 Empirical Evaluation
	6 Conclusion

