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Abstract

English

This doctoral dissertation discusses the technologies that will be needed for robots to enter and
become productive members of human society in the future. Based on previous research, social
robots may add social functions, including emotional expression, in order to be more acceptable
to people. On the other hand, it is also true that the market demands not only sociable functions
but also the ability to perform productive tasks. Therefore, both practical and communicative as-
pects are necessary for future robots to participate in society. In this paper, a 7-degree-of-freedom
serial link robot arm is treated as the subject of research. We propose a generalized design of a
control system that enables the robot arm to perform more intelligent and diverse tasks, including
emotional expressive behavior. The research can be divided into three main parts.

In the first study, an adaptive generalized predictive control (AGPC) was designed using kinematic
parameters estimated by dynamic identification of the robot arm to allow the robot to perform
tasks in response to changes in the grasped object at its end-effector. The performance of AGPC
was compared with PID control, which is still dominant in industry, and generalized predictive
control (GPC) that is for systems linearized by feedback linearization. The results showed that
AGPC exhibited the best position control and external force control performance based on the
parameters estimated from the dynamic identification, even when the size and mass of the grasped
object changed.

Same as in the previous section, the second study is about generalized predictive control, but
here, the main focus is on linearizing the dynamical system of a robot using the concept of the
Koopman operator. Using this concept of the Koopman operator, a nonlinear dynamical system of
a robot can be represented by a linear time-invariant state-space model. This allows us to apply ad-
vanced linear control laws, including generalized predictive control, to the robot arm. Furthermore,
since the computational cost is lower than that of predictive control based on rigorous modeling,
high control frequency can be achieved in a real environment. Here, a 7-DOF robot is simplified
to a 3-DOF robot, and the Koopman operator is identified using a method inspired by the robot
arm dynamics model. A state-space model was extracted from the identified Koopman operator,
and its accuracy was compared with that of the state-space model using Koopman operators in
previous studies. We also designed a generalized predictive controller for the obtained linear state-
space model of the robot and compared its control performance with that of a conventional PD
controller. The results show that the GPC with Koopman operators maintains constant control
performance over a wide range of postures, speeds, and work ranges compared to the PD controller
with fixed gains.

In the last study, we proposed a motion control system that uses the kinematic redundancy of
the robot arm to perform emotional expressive motion when the robot arm performs a main task
at its end-effector. As mentioned earlier, in order for robots to play an active role in society, they
must be able to perform both communicative and productive tasks. Here, we used null-space control
to exploit kinematic redundancy and applied the concept of manipulability ellipsoid to maximize
motion within the null space. The proposed method was implemented on an actual upper body hu-
manoid robot "Nextage-Open" and recorded the interactions with a person. Using the recordings,
the robot’s emotions were evaluated online by more than 200 people via Google-Form. The results
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showed that current rules surrounding industrial machines operating near people severely limit
the robot’s speed and prevent it from expressing the movement-by-movement changes necessary to
express emotion. However, we found that people who viewed unclear emotional behavior used the
content of the interaction, the robot’s gaze, and their own prejudices about the robot, in addition
to the emotional behavior, to interpret the robot’s emotions.

Finally, we concluded that for a robot to perform emotionally expressive actions in a human-
close environment, it needs a precise motion controller that realize different elements of subtle
movements, and a structure made of soft and light materials to to clear safety standard set by so-
ciety. Model predictive control is suitable for controlling the robot to use different subtle motions,
and this study is significant in that it provides an example of systematic application of MPC, gen-
eralized predictive control, to a robot. Furthermore, the new attempt to use kinematic redundancy
for emotional expression is also academically meaningful.

Keywords: Model Predictive control, Generalized Predictive Control, Dynamic Parameter Iden-
tification, External Force Control, Feedback Linearization, Optimal Control, Koopman Operator,
Dynamic Mode Decomposition, Redundant Robot Arm, Robotic Manipulator, Null Space Con-
trol, Manipulability Ellipsoid, Pleasure-Arousal-Dominance Model (PAD), Emotional motion, HRI,
NARS
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Chapter 1

Introduction

SUMMARY

Dramatic improvements in computing power have given rise to great expectations for social
implementation of robots through the application of machine learning. This thesis paves the
way for robots to achieve both social and productive functions that are required for robots to
coexist with humans. In this chapter, we outline the main motivations for implementing emotional
expression functions in robots and provide background on the underlying control and machine
learning methods. Furthermore, we summarize the structure of this thesis.

1.1 Motivation and Context

It has been almost 100 years since the concept of robots was invented by Karel Capek in 1920,
and they have gone from being mere industrial tools to being expected to be functional mem-
bers of the human society. This trend seems to have been accelerated by the recent prosperity
of machine learning methods that have accompanied the dramatic increase in computing power.
However, advanced machine learning approaches have further revealed the complexity of the real
world and highlighted the difficulty for robots to move with the same intelligence as living organ-
isms. Furthermore, despite daily advances in cognitive engineering, robots are still at the mercy
of elusive human behavior. "How can we make robots acts intelligently?" and "How will people
and society react when confronted with such robots?". These two questions about technology and
significance are probably simultaneous if they are to be answered, and therefore must be explored
simultaneously. And this thesis describes both the exploration of modern control methods for pre-
cise robot motion (technology), and evaluation of Human-Robot Interaction (HRI) (social impact).

As robots become more integrated into daily life, an important question arises: how can robots
become more acceptable for people? In the 2017 Pew Research Center survey “Automation in
Everyday Life", 4135 people in the United States were asked, “Are you interested in using robots
in your daily life, including care-giving?" Out of the respondents 64% had negative perceptions
on robots, stating that they “can’t read robots’ mood" and that robots are “simply scary" [6].
Furthermore, in a recent 2019 survey by Provide Japan Inc. on “Questionnaire on "Human Work
and Robot Work’," 1020 individuals in Japan were asked, “How did you feel about robots com-
pared to people?" the results showed that 49.7% of the respondents had negative opinions, with
the contents being “lack of warmth, not understanding of emotions, and scary" [7]. Thus, people’s
feelings toward robots are still not quite positive.

One of the ways being explored to gain user acceptance is to incorporate emotional movements. In
order to overcome the negative reputation of robots, researchers have been implementing emotions
into robots [8, 9, 10, 11]. One of the main functionality of robots’ mood/emotion expression is
that it gives social value to interactions between people and robots [8]. Yamamoto et al. discussed
human behavior toward computer programs (i.e., pseudo-interpersonal behavior) [12], and found
that the "improvement of system functions alone does not cause pseudo-interpersonal behavior,
but some other element is necessary." The "element" is the social value of interaction between
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people and robots/program, and numbers of researchers have been making effort towards creating
that social value. This can be done by displaying affective content on the screen and/or through
expressive sound and movements. Through the emotional expression of robots which can draw out
people’s empathy in a natural way, the robots are no longer recognized as simply a "tool" but as
something social, which can help to appease feelings of aversion and dislike for robots [13].

If a robot does not have a display board or voice function, such as a robot arm, it may still
be able to communicate through motion. Researchers have been trying to convey certain emotions
through robot motions (see section 2.5). For instance, Knight attempted to use a small robot that
only has a few Degree of Freedom (DoF) [8], and Beck et al. used a humanoid that utilize human
gesture information to generate expressive robot motions [9]. In these studies, the general tactics
for differentiating emotions are adjusting pre-existing gestures/postures and/or the velocity of the
motions. Those attempts have successfully conveyed arousal and mood through robot motion.

Human ability to detect slight motion is outstanding and it makes the robots’ emotional conveyance
by motion more challenging. Because recognition of conspecifics and enemies is ecologically im-
portant, the human visual system is capable of perceiving minute changes in facial expression and
subtle body movement cues. In particular, the human visual system is very sensitive to the move-
ments of human shaped entity. We can even tell the sex of a person from their movements alone
[14]. Johansson’s demonstration of biological motion is well known [15]. Humans’ eyes are keenly
aware of noise of vibrations among robot motions that are unintended by the operator and try to
make sense of the mood/emotions, even though it just mere unintentional fluctuation.

In order to achieve detailed operation of various emotional motions, more advanced control method
than the traditional Proportional-Integral-Differential (PID) control is required. Because of its in-
tuitive parameter tunability, the PID control is still dominant in general industry. However, with
regard to robot motion control, due to its nonlinear dynamic nature, a fixed PID gain can only
guarantee its control performance in a single, fixed motion. While the emotional motions are of-
ten not fixed gestures and these velocity and acceleration are varied according to the degree of the
emotion intensity. Among the advanced control theory, we focus on the Model Predictive Control /-
Controller (MPC) that utilize dynamic model of the robots and predict its behavior to optimize
future input. MPC has adaptability to the different robot postures/trajectory but require detailed
modeling and computationally expensive. Especially, the technique to embed nonlinear dynamics
to the model such as state space model is needed for implementation of MPC to the robots.

Moreover, to be more accepted by society, just sharing emotion is not enough for robots. Most
research on emotional robots treat emotion conveyance as the main task, so the robots cannot
do any other productive tasks such as manipulating objects. People’s expectations of robots are
becoming clearer, and the image of a convenient existence to do work is generally an important
element in the image of robots. The reality is that household robots such as Vector and Kuri,
which are only for sharing emotions, are forced to withdraw from the market even though these
companies had been viewed as promising [16]. This trend implies that, in order for a robot to be
accepted, it should have both a productive function and social function.

Thus, we need a motion controller that enables robot to execute designed motions precisely in
order to communicate emotion with human in higher level. In this thesis, application of MPC is
considered as the subject of the research. Moreover, the motion control system that allow robot to
conduct productive task and social functionality at same time would be beneficial for social robots.

1.2 Objective

In this thesis, three distinct objective is presented regarding fore-mentioned motivations and the
attempt to achieve those objective is presented in following chapters as primary work. First two
objectives are about model identification and predictive control for robotic system. last one objec-
tive is about developing motion control system that enable to execute a productive task and social
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task (emotional expression) at same time.

The first objective is to design a predictive control adaptation scheme based on the General-
ized Predictive Control/Controller (GPC) using the robot dynamic and geometrical identification
with optimal exciting motions. Acquiring model of controlled system (reference model) is essential
for MPC and the controller needs to adapt new model if the reference model changed. Robot arms
that perform productive tasks attach various tools to their end-effectors and that cause model error
between the reference model in the controller and actual robot model. In order to achieve highly
accurate position control with various tool, Adaptive Generalized Predictive Control/Controller
(AGPC) was developed. AGPC uses dynamic parameter information such as the mass of each
link and the position of the center of gravity, identified through optimal exciting motion data, and
not only update reference model but also update control parameter of MPC based on the stability
index. The AGPC were evaluated using the 7 DoF KUKA LWR arm.

Furthermore, we attempt to apply GPC to robots with an approach that globally linearizes the
nonlinear dynamics of the robot, whereas the aforementioned AGPC utilized local linearization
of the referenced model. We also propose a method to identify the dynamical information of a
robot by analyzing the linearly represented dynamical system of the robot. This thesis presents
an example of the linearization of the robot manipulator’s nonlinear dynamics using Koopman
Operator (KP), and introduces practical issues to be considered when applying KP to robotic
systems. The basic idea of KP is to lift a non-linear function to a higher dimensional space by
extending its explanatory variables, and these new variables are often referred to as "observables".
In this higher dimension space, nonlinear functions can be described in a linear form. Using this,
GPC was designed and aimed high tracking performances for a wide range of motions compared to
traditional Proportional-Differential (PD) control. Also, We attempted to ascertain information
about the mass by comparing a set of linear models identified with different masses grasped.

Finally, we develop a motion system that performs tasks while expressing emotions using the
kinematic redundancy of robot arms. A system for performing emotional actions using redundant
DoF while performing industrial tasks has not yet been demonstrated in the social robot field.
Although Claret et al. have shown an example of a humanoid (Pepper) that utilize the redundant
degrees of freedom to express emotion, its main task was a waving gesture and emotion conveyance,
while productive task were not implemented [10]. In contrast, the target of our study is a robot arm
that is specialized in productive tasks. Furthermore, we will mention the concerns of work-oriented
robots as they work in the real world, expressing their emotions through their motions. The system
is implemented and evaluated using an upper body humanoid (Kawada Robotics Nextage-Open).

1.3 Outline of the Thesis

This dissertation is structured into six sections, which can be outlined as follows:

e This Chapter 1 is introductory. it gives the motivation and context addressed in this disser-
tation and states objectives of author’s doctoral works.

e Chapter 2 presents the state of the arts that related to the primal works in this dissertation.

e Chapter 3 presents first primal work that is Adaptive generalized predictive controller and
Cartesian force control for robot arm using dynamics and geometric identification. Section
3.2 describes the kinematics/dynamic model for KUKA Light weight robot manipulator.
Section 3.3 introduces the dynamic parameter method that is developed by co-authors of
[17]. Section 3.4 describes the proposed AGPC and other controllers that is used in the
control experiments. Section 3.5 describes dynamic/geometric parameter identification result
of the painting roller and experimental setup for painting task in V-rep simulation. Section
3.6 presents results of painting task with proposed AGPC and comparison between other
controllers. Also, discussion regarding to those results are presented in the section. Section
3.7 sum up the Chapter 3.
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e Chapter 4 presents second primal work that is Linearizing Robotic Manipulator’s Dynamics
Using Koopman Operator and Applying Generalized Predictive Control. Section 4.3 describes
the concept of Koopman operator for controlled dynamic systems. Section 4.4 introduces the
designing method of GPC with state space model. Section 4.5 describes the open question
about linearizing robot arm’s dynamcs using Koopman operator and propose a solution.
Section 4.6 present the experimental setup and shows results that compare proposed method
and state of arts. Section 4.7 gives discussion regarding the results and present potential of
presented method for dynamic/geometric parameter identification. Section ?? concludes the
Chapter 4.

e Chapter 5 presents third primal work that is Robotic Manipulator Expressing Emotions as
Sub-Task Using Kinematic Redundancy. Section 5.2 describes the kinematics model for
redundant robot manipulators. Section 5.3 introduces the proposed emotion conveyance
method. Section 5.4 describes the implementation of the method on a real robot, question-
naire contents, and experiment. Section 5.5 and 5.6 present the experimental results and the
discussion, respectively. Section 5.7 concludes the Chapter 5.

e Finally, Chapter 6 presents the conclusions of the thesis, outlining the main contributions
and directions for further research regarding limitations of presented works.



Chapter 2

Related Works

SUMMARY This section introduces previous studies related to the primal work in this paper and
presents the positioning of this study. MPC for robotic systems, dynamic parameter identification,
and Koopman operator theory in robotic systems are presented. Also, exsamples of HRI and social
robotics, expressive motion by robotics, exploiting kinematic redundancy and finally, method for
evaluating expressive movements and emotion are presented.

2.1 Model Predictive Control (MPC) for Robotic Systems

MPC [18] is a control method that determines control inputs while solving a finite-time optimal
control problem at each time. MPC was developed in the 1970s as a control algorithm for systems
with relatively slow control loops but large system delays, such as oil refineries and chemical plants.
At that time, MPC was not uniformly called MPC, but was called Dynamic Matrix Control or
Model Predictive Heuristic Control. Later, with improvements in the computational performance
of controllers and advances in software (solvers) for solving optimization problems, the application
of MPC has expanded to real-time control systems with high-speed control loops such as robotic
systems.

MPC is also called Receding Horizon Control in which control inputs are determined by solving an
optimal control problem in a finite interval at each time. Since the control input is determined by
the state at each time, this method is characterized as both optimal control and feedback control.
Besides the better control performance, MPC could provide two more advantages compared to con-
ventional PID control. First, it is possible to systematically handle constraint conditions on inputs
and outputs. In real situations, often there are constraint conditions on the inputs and outputs of
the controlled system. For example, in the case of a robot arm, they are the limits of acceleration,
the maximum value of velocity in terms of safety, and the maximum joint angles. Also, there is
almost no input or output without constraint conditions, such as the maximum value of torque,
voltage. In model predictive control, such constraint can be taken into account in optimization
using the Lagrange’s undetermined multiplier method, etc. [19], so that precise control can be
performed with accurate consideration of the constraint conditions.

MPC is a control system that combines a model of controlled system and an optimization al-
gorithm and it can be classified into two types depending on the system model and optimization
algorithm used. The first is when the system model is a linear model and the constraints can be
expressed in terms of convex functions or convex spaces. In this case, the MPC control problem
can be solved by a convex optimization algorithm. Such an MPC is called a linear MPC, and
the term MPC generally refers to this linear MPC. Another case is when the controlled system is
non-linear. While linear MPC can find solutions quickly by using convex optimization techniques,
Nonlinear MPC requires the use of nonlinear optimization to find solutions, which can be more
computationally expensive than convex optimization, and the optimal solution may be initial value
dependent. However, compared to linear MPC, it is possible to handle nonlinear models as they
are in real, and in some cases, it may perform better than linear MPC [20].
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In the past, researchers have worked in two areas to realize the MPC advantage on robotic sys-
tems by linearization of the model. About the optimization, improving efficiency of computation
of optimization problem is one of the main motivation of research about MPC. When applied
to robot control, for example, control inputs must be generated by iteratively solving non-linear
optimization problems of appropriate size at intervals of several tens of milliseconds and it is com-
putationally heavy. Therefore, it is difficult to use non-linear optimization for control systems
that require fast response. Although, as computer performance has improved in recent years and
this may not be a problem in some cases. Yet, it is still necessary to use high-speed logic for
optimization which is generally for linear system. For real-time control using MPC, it is important
to efficiently solve the optimal control problem, and various methods have been proposed for this
purpose|[20].

About the linearization, to apply MPC to a robot, a linear model must be designed. As fast
optimization technique is often require system to be linear, the object to be controlled by MPC
must be described by a linear model. If the controlled system is very complex or nonlinear, this lin-
ear model can be difficult to create. Robot arm’s linearized model is basically designed by physics
and geometric relations. For example, Taji et al. described a dynamic system in which a dual-
armed two-link robot arm handles a single object in a state-space model, including friction. Since
the model was a time-varying continuous-time state-space model, the changes in the state were
assumed to be minute during the short prediction interval, and all the equations of motion, etc.,
were linearly approximated by fixing the inertia matrix, etc., to the values of the initial conditions
[21]. Besides linearly approximated model, approximation by First-order Taylor expansion is also
used [20],[22]. While these methods are locally linearize the system dynamics, strict linearization
using feedback linearization is possible such as Computed Torque Control [23]. On the other hand,
there are also methods to generate a linear model by neural networks or machine learning with
various inputs and outputs [24, 25].

Sometimes, the model description is devised to ensure robustness to system change of conditions
and to model errors and noise that arise during linearization and measurements. Robust MPC is
an algorithm that predicts a set of states (Reachability Set) containing errors in the model, rather
than a single point whose predictions are computed from the model, and controls the entire set
to satisfy the constraints [24]. and Stochastic MPC is a more stochastic approach to MPC. The
prediction of a state may be described by a stochastic model, or the cost function may be specified
in terms of the expected value of the stochastic model [26].

There are also studies in which the system stability and robustness against model errors and
noise are acquired by appropriately adjusting the MPC control parameters. For example, the
extended horizon adaptive control (EHAC) proposed by B.E. Ydstie [27], or the extended predic-
tion self-adaptive control (EPSAC) proposed by Keyser and Van Cauwenberghe were developed
[28]. In the EHAC control, the adaptation of the control law depends on the system parameters.
The controller adapts the final prediction horizon and fixes the optimal weighting parameter (\).
The parameters are updated over the whole process. The EPSAC updates the prediction hori-
zon, weighting factor, and filter polynomials [29, 30|. However, the on-line adaptation affects the
structure of the predictor and control, which may lead to unstable motions and the coefficients
of the prediction equation cannot be obtained at certain points in time. Moreover, the controller
produces a reduced functionality to calculate the control effort, and an extension of the horizon
results in a delayed velocity response [20, 31].

GPC is a controller in the MPC category [32, 33|. It was developed by Clarke [2], and it is
now widely used in industry and academia [34, 35]. Moreover, it was successfully implemented in
several industrial applications with good performance and adequate robustness [32, 34, 18]. M.
Makarov et al. [36] applied GPC to an anthropomorphic robotic arm, and it demonstrated a su-
perior tracking and robustness to that of PID controllers. Furthermore, GPC can handle several
control problems [37] for a wide range of plants with a significant number of design variables, which
have to be specified by the user based on prior knowledge of the plant and control objectives.
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2.2 Dynamic Parameter Identification

Dynamic parameter identification methods are becoming increasingly important in the develop-
ment of model-based controllers. Precise dynamic parameters are required because many control
methods are sensitive to their values. Especially in high-speed operation, sensitivity to dynamic
parameter uncertainty is high. Atkeson et al. [38] proposed the estimation of inertial parameters
of rigid-body loads and links, demonstrated with PUMA 600 robot. Gautier et al. [39] proposed a
dynamic identification method from only the torque data. Grotjahn et al. [40] used the two-step
approach to perform the friction and rigid body identification of robot dynamics. The focus of
several studies has been the identification of the serial manipulator Segment Inertial Parameters
(SIP) [41], [42], [43], [44], [45]. Identification method can be categorized into two group: on-line
identification and off-line identification methods.

In the off-line procedure, all the input—output data is collected prior to the computation of pa-
rameters and there is no computation time limit. There are three main off-line methods for robot
arm. The first is done by physical experiments in which the robot is disassembled to isolate each
link and conducted experiments to obtain inertial parameters. For example, the mass could be
evaluated directly and the center-of-mass of the parts could be obtained by examining counter-
balanced points of the link. The inertia tensor could be obtained through pendular motions [46].
However, to conduct physical experiments of each parts, the special measuring devices are usually
needed and the characteristics of joints are neglected. Furthermore, practically speaking, physical
experiments should be done by the manufacture of the robot before assembling.

Second off-line method is Computer Aided Design (CAD) techniques. This approach uses ge-
ometric and material characteristics which can be found in CAD data. Robotics CAD/CAM
packages often provide tools to calculate the inertia parameters from 3-dimensional models. How-
ever, the precision of the material /geometric model in CAD system determines the accuracy of the
estimated parameter. Due to the manufacturing error of the link, the CAD model is not identical
with the real part as manufacturing error exsists and friction parameters are not predictable from
CAD drawing. Therefore, the accuracy of the estimated parameter values is effected.

The third off-line identification method is based on the analysis of the “input/output” behav-
ior of the robot on some planned excited motion. It use mathematical model of robot dynamics to
compare difference between a the real variables and its model with estimated dynamic parameters.
This method was found to be the best in terms of ease of experimentation and precision of the iden-
tification by Khalil et al. [47]. Also [48] identified the dynamic parameters of payload of the robot.
The least-square and maximum likelihood estimation methods are the most popular approaches.
Furthermore, the accuracy of SIP estimation is related to the maximization of information, i.e. the
design of optimal exciting trajectories [49], [50], [51], [52].

Contrary to the off-line technique, the on-line method conduct real-time updates of the dynamic
parameters during robot operations. This method finds values of the parameters in the mathemat-
ical model of a system from on-line measured data [53]. One of the way to incorporate identified
parameter to the control on time is adapting control algorithms. the method has been investigated
extensively to estimate or adjust the dynamic parameter values used in the control on-line. For the
case of parallel robots, problems such as workspace constraints and the complexity of the dynamic
equations are reduced with adaptive control algorithms. Then based on the Jacobian matrix, Bur-
det and Codourey [54] projected the force and torque of each moving part onto the Cartesian space.

Another important trend about parameter identification is using neural networks. Neural networks
have received considerable attention in the dynamic parameter identification fields and Control in
general. It has been demonstrated that neural networks can effectively identify non-linear dynam-
ics [55]. The identified parameters are represented as the weights of the nodes. Neural network
can realize the on-line identification since the trained network output real-time parameter value
fast as real-time data are given. Jiang et al. [56] proposed an identification approach using neural
network to compensate uncertainty of dynamics.
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2.3 Koopman Operator Theory on Robotics Systems

Koopman operator is a concept related to data-driven modeling of dynamics, which can describe
nonlinear dynamical systems in a linear form. Moreover, unlike modeling with neural networks,
it is theoretically a strict linearization, and semantic analysis results can be obtained. Above all,
the major advantage is that nonlinear dynamical systems are represented by state-space models.
Discoveries made by data-driven methods are now revolutionizing the way complex systems are
modeled, predicted, and controlled. Modern scientific and engineering problems of increasing com-
plexity cannot be addressed by empirical modeling or knowledge of basic physics alone. More and
more researchers are adopting data-driven approaches to complex systems as diverse as turbulence,
the brain, climate, epidemiology, finance, and robotics. These complex systems are typically non-
linear, dynamic, multi-scale in space/time, and high-dimensional, but have dominant underlying
patterns that are necessary for the ultimate goal of prediction, estimation, and control. Modern
mathematical methods and the explosion of computational performance have enabled us to tackle
challenges that were previously unfeasible.

Here, the concept called "Koopman Operator" (KP) is particularly interesting [57, 58]. The KP is
a linear operator defined for nonlinear dynamical systems and represents the time evolution of the
observed quantity (output function in control engineering) of the dynamical system. This operator
is a linear operator that preserves the information of the original nonlinear dynamical system and
it allows mapping dynamic constraints into a linear dynamical system in a higher dimensional state
space. Its basic idea is to lift non-linear function to a higher dimensional space by extending its
explanatory variables that are often referred as "observables". In this higher dimension, nonlin-
ear functions can be described in a linear form. Here, how the observables should be augmented
depends on the dynamical system’s property and needs to be chosen with consideration, such as
which kind of observables and how many should be[59].

The KP have only recently begun to attract attention in the field of robotics, and only a few
applications exist. For example, Bruder et al. applied to soft robotic arm [60], and Abraham
showed an example of a serial manipulator controlled with KP [61]. However, the performance of
the linearized model was not discussed in detail for the robot arm case, and the control result by
LQR left room for improvement. In particular, it is still unclear how to extend the state vector in
a way that is suitable for describing the dynamics of a robot arm.

Linear dynamic models derived from KP enable the application of linear control methods and
hold great promise in the field of control engineering. In particular, the adaptability of KP with
Model Predictive Control (MPC) [62], is pointed out by Korda [63] and Igarashi et al. [64]. In fact,
there are several works that show numerical examples of linearization of the non-linear systems and
control by linear control theory like LQR [65, 66] and MPC [63]. Furthermore, control examples
with linearized model by KP can be found in vehicle control [67], fluid dynamics [68], and energy
grid management [69].

Another similar direction in model-based control is to learn robot dynamics models through ma-
chine learning and apply them to control [59]. For example, in [70], the nonlinear robot dynamics
is represented as a mixture of local linear models, learned from data, and used for control. Al-
though the concept of representing nonlinear dynamics with a myriad of linear combinations is
similar to the KP, it differs from the method using machine learning in that the analysis of the
model through the KP in this study is obtaining a state-space model of the system and can be
applied to state-space model analysis methods and control design that were established in control
engineering.

2.4 HRI and Social Robotics

In HRI research, robot control and human perception have been studied in two main research di-
rections: physical (pHRI) and social (sHRI). Our study falls under sHRI. Much of pHRI research is
focused on robots, developing control frameworks that treat humans as extraneous noise, external
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forces, or another "robot" [71][72][73].

In contrast, sHRI research is focused on human perception. Social human-robot interactions
without physical contact have often been investigated through specially designed experiments.
Researchers have been trying to analyze mental states, comfort, sense of safety, sociability, and
general perceptions of users. Such mental measures are often acquired using post-experimental
questionnaires [74][75][76](77].

Weiss et al.[74] used the HRP-2 humanoid to investigate whether the general attitude of peo-
ple who are skeptical towards robotics changed after interacting with the robot. Our study uses
the Negative Attitude Towards Robot Scale (see section c¢)) used in their research. Kamide et
al.[76] aimed to discover the basic factors for determining the "Anshin" of humanoids from the
viewpoint of potential users. "Anshin" is the Japanese concept of subjective well-being toward
life with artificial products. According to the factor analysis in their research, the five factors
of Anshin are comfort, performance, peace of mind, controllability, and robot-likeness. Existing
sHRI studies have also attempted to give robots emotional intelligence and investigate the human
perception of emotional robots as mentioned in the following section.

2.5 Expressive Motions by Robots

Expressing emotions through body motions has been studied in the fields of animation and com-
puter graphics for decades, though it was not until the beginning of 21th century that this was
studied in robotics. Kulic and Croft [78] presented the first study of this kind, in which they found
that robot motions may cause users to feel anxious. They also pointed out the need to design robot
motions so that the interaction is more comfortable between the user and the robot. Saerbeck and
Bartneck [79] proposed a method that effectively transmits different emotional states to the user
by varying the velocity and acceleration of the robot. The proposed solution has been implemented
in a Roomba robot and further shown to be extendible to other robots.

Beck et al. [9] proposed a method for generating emotional expressions in robots by interpo-
lating between robot configurations which are associated with specific emotional expressions. The
emotions are selected from the Circumplex model of emotions [80]. This model plays an important
role in mathematically defining emotions as points in a two-dimensional space, allowing each points
to correspond to different emotions. The PAD model [3] is also widely used as a tool to express
emotions numerically (see section 5.3.2).

An approach has also been taken to add an offset to the known gesture behavior in terms of
position and its velocity. For instance, the method proposed by Lim et al. [11] varies the final
position and velocity of the base gesture on the basis of the intensity and type of emotion the
humanoid robot wishes to convey. In their study, the amount of offset is varied on the basis of
the features extracted from the speech signal. Similarly, Nakagawa et al.’s study [81] showed a
correspondence between emotion and offset based on the Circumplex model. By adding this offset
to the intermediate configuration and velocity of a given trajectory, emotional nuances are added
to the trajectory. Thus, the trajectory can be parametrized in two dimensions to express the in-
tended emotion.

Claret et al. [10] proposed using the extra degrees of freedom left over from the robot’s kine-
matic redundancy to make the robot express emotions. This concept is based on a technique
called null space control [82] (see section 5.2.2), which uses the extra degrees of freedom to perform
an additional task as a sub-task even when the robot is performing its main task. This approach
was applied to the humanoid robot Pepper, which was given the gesture of waving as its main task,
and an emotional movement component was given as a sub-task. With this method, the robot
was able to express emotions simultaneously expressed while performing the main task of hand
waving. Our study examines emotional expression while performing a productive task through
manipulators, which was not mentioned in the previous study. We also introduce a method for
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effectively regulating the emotional movements expressed within the redundant degree of freedom.

2.6 Exploiting Kinematic Redundancy

Liégeois [83] and Klein and Huang [84] pointed out that if the number of task-required dimensions
is lower than the number of robot joints, the robot is considered as redundant and it is possible to
program multiple tasks, regardless of whether the robot structure is redundant. The most common
method of exploiting robot redundancy is the null space of the robot’s Jacobian. In this method,
the potential function is projected onto the kernel of the main task. In other words, only the
space of joint speeds that can be executed without affecting the main task is made available to the
sub-task [83] [85]. In this approach, the first task is guaranteed to be executed, and the second
task is executed only if sufficient degrees of freedom remain in the system, thus avoiding inter-task
conflicts.

There are several examples of implementing secondary tasks using the Jacobian null space ap-
proach. For instance, Liégeois implemented joint limit avoidance [83], and Nemec and Zlajpah
demonstrated singularity avoidance [86]. In addition, Maciejewski and Klein developed a self-
collision avoidance system [87]. Hollerbach and Suh implemented torque minimization [88|, and
Baerlocher and Boulic demonstrated the simultaneous positioning of multiple end-effectors [89].
In a subsequent study, they demonstrated center of mass positioning for humanoids [90]. Peng
and Adachi, added compliant control to the null space of the 3 Dof robot manipulator [91]. On
the other hand, the work of Claret et al. [10] is the only example of a study in which emotional
expression was set as a sub-task.

2.7 Evaluating Expressive Movements and Emotion

How to evaluate the physical and psychological movement of people and objects is an important
concern that is fundamental to the study of emotional movement. There are many study that aim
is quantify the degree of expressiveness of human motion and emotion.

About evaluation of expressive motion, there are several way to decompose human motion/ges-
ture. For exsample, Laban Effort System [92], which invented in the 1940’s by Laban as part of
a dance notation indicating the how of a motion. The Laban Effort System describe motion by
four-dimensional state space of Time, Weight, Space and Flow. Also the specific movement guide-
lines can be paraphrased as Press, Writhe, Glide, Float, Punch, Slash, Dab and Flick, respectively.
This motion notation system is used not only for dance training, but also robot motion evaluation.
Knight [8] have studied about emotional motion of robot with low degree of freedom using Laban
system and showed even robot with low degree of freedom can effectively differentiate generated
emotional motions.

Also, there is data set that contain gesture and the label describing its mood/emotion. For ex-
ample, The Geneva Multimodal Emotion Portrayal (GEMEP) corpus [93] is emotion portrayals
to tune and validate the emotional gesture/behavior. The GEMEP corpus was developed by the
University of Geneva. It consists of more than 7,000 video of emotional motions. It represent 18
emotions in total and acted by 10 actors. Glowinski et al. [94] utilize GEMEP corpus to presents a
framework for analysis of affective behavior starting with a reduced amount of visual information
related to human upper-body movements.

Rather than existing gesture, it is pointed out that the mood/emotion of motion is conveyed
by motion feature such as jerkiness (smoothness), kinetic energy, spatial extent, gaze and etc. In
Saerbeck and Bartneck’s work [79], a emotional motion pattern generation method for robot is pre-
sented. The proposed method differentiate each motion pattern by varying the amount of velocity
and acceleration of the robot trajectory. This work showed that it is possible to transmit different
emotional states to the user by adjusting motion feature of velocity and acceleration. Although
the proposed solution has been implemented in a robot with low degree of freedom (Roomba), it
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further shown to be extendible to other robots.

Besides the motion evaluation, also methods of evaluation/quantification of emotional state is
crucial for social robot study. To express emotion by number, there is the Circumplex Model of
Affect that is a model of emotions representation developed by James Russell [80]. In this method,
emotions are represented as points in a circular space of two dimensions. These two dimensions
are arousal and pleasure ,corresponding to the vertical and horizontal axis. There is 3 dimensional
space model of emotion called Pleasure-Arousal-Dominance (PAD) model by Mehrabian and Rus-
sell [3]. The PAD model decompose an emotion into three elements: Arousal level, Pleasure level,
and Dominance level. To measure emotions, the Self-Assessment Manikin (SAM) by Lang [5] can
be used. The SAM scale is a visual questionnaire composed of three scales. Each scale is corre-
sponding to a dimension of the PAD space. Lang conducted a comparative analysis of measurement
results from both the SAM and Mehrabian and Russell’s PAD scales. The correlation coefficients
between the two scales were 0.94 for pleasure, 0.94 for arousal, and 0.66 for dominance [95].

11
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Adaptive generalized predictive
controller and Cartesian force control
for robot arm using dynamics and
geometric identification

SUMMARY In the first study, an adaptive generalized predictive control (AGPC) was designed
using kinematic parameters estimated by dynamic identification of the robot arm to allow the robot
to perform tasks in response to changes in the grasped object at its end-effector. The performance
of AGPC was compared with PID control, which is still dominant in industry, and generalized
predictive control (GPC) that is for systems linearized by feedback linearization. The results
showed that AGPC exhibited the best position control and external force control performance
based on the parameters estimated from the dynamic identification, even when the size and mass
of the grasped object changed.

3.1 Introduction

Robotic serial manipulators are now widely used for manufacture in various industrial fields.
[96, 97]. Industrial manipulators are typically controlled by Proportional-Integral-Differential
(PID) controllers. Often its control parameters are tuned based on a fixed robot model and
fixed series of motion [98, 99]. Contrarily to the manufacture, in the case of HRI, the task/motion
pattern is not always the same because robots are required to adapt its motion according to the
reaction of people and context of the interaction. Moreover, in case of the robotic manipulator, it
could be equipped various object to handle many kind of tasks. Therefore, the simple usage of the
PID control is not suitable for HRI in general.

Besides the position control, force control/collision handling is also required for robot to oper-
ate in general environment [100]. A force controller is typically based on force sensors, which are
expensive, fragile, and require frequent calibrations. Alternatively, external forces can be estimated
by using accurate dynamic and kinematic models of the robotic arm. With joint position sensors
and torque sensors, force control can be performed by exploiting robot’s dynamic and kinematic
models and estimating external forces [101]. Thus, dynamic and kinematic modeling is important
for robots, and accurate models give robots to possibility for advanced HRI.

How to adapt to new reference model for MPC is an open question. Robotic arms are capa-
ble of using various types of tools. However, the dynamic characteristics of the robot vary when
the robot grasp a different tool. Especially when the mass of the tool is too heavy to ignore relative
to the robot’s own mass. This situation will be seen more often in the future for small robotic
arms used for HRI. The additional mass and length at the end-effector may result in an inaccurate
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Figure 3.1: Overview of the proposed framework for adaptive predictive controllers based on
dynamic and geometric identification with optimal exciting motion.

control result if the robot is only operated by controller which is deigned based on the old model
and have no adaptability to the new model, such as a case of conventional PID controller. Here,
the author combined Dynamic Parameter Identification (DPI) and GPC to solve this problem.

In this chapter, an adaptive predictive position-force control framework (AGPC) that uses ge-
ometric and dynamic identification was proposed. The GPC was adapted to the new reference
model by adjusting control parameter A\ acording to the newly identified dynamic parameters. The
control parameter A represents wight on the change of future input torque and directly modifies the
cost function, which updates the law of control. This method can be used for any serial manipulator
equipped with joint torque sensors or equivalent sensors such as motor-current measurement. This
method enable the manipulators to accurately perform various tasks using different tools, without
loss of performance. The adaptive position and force controllers were designed and evaluated for
the KUKA LWR (KLWR) robotic arm. A wall painting task using different types of painting
rollers is presented in this work.

An overview of the framework proposed in this paper is presented in Fig. 3.1. The explanation
of notation is following; ¢(6),q,q,T" denote joint position, velocity, acceleration, and torque. W
represent regressor matrix. ® is a vector of dynamic parameters compose of SIP, Center of Pres-
sure, and mass. [,r represent length and radius of the painting roller. P,y denote the motion
plan in the Cartesian space and swivel angle plan respectively. In section 3.2, the geometric and
dynamic models of the KLWR are described. Section 3.3 presents the parameter identification of
the robot using optimal exciting trajectories. Section 3.4 presents the development of the robot
control system with position and force controls, and the application of the adaptation with the
novel prediction scheme. In section 3.5, the experimental setup is presented, followed by the results
and discussion in section 3.6.

Let it reminded that the contents of section 3.3 is a credit to the co-authors of [17], and for the
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authors’ credit, I have introduced a system that optimally incorporates the new robot information
obtained by DPI into the reference model of the predictive controller.

3.2 Modeling of KUKA LWR

3.2.1 Geometric Model

In this study, the control command was organized by task space control where the desired end-
effector motion in the task space is converted to joint angles using inverse geometric model. There-
fore, an inverse geometric model of the KLWR was required.

The KUKA LWR (KLWR) is a manipulator with 7 rotational joints (Fig. 3.2). The KLWR
has a load-to-weight ratio of approximately 1:1 and the total mass of the arm is approximately 17
kg with a 1.2 m work space [99]. Each link is equipped an angle position and torque sensor. Using
the modified Denavit-Hartenberg (MDH) parameters (Table 1), the forward kinematics model
was calculated using specialized software "Symoro+" [102]. The segment lengths Ly, Lo, L3 were
set using the available CAD data [41].

Table 3.1: Modified DH parameters of the KUKA LWR

ila op ooy oy dyp 0
110 1 0 0 0 6, L;
21 1 0 /2 0 6 0
312 1 0 w2 0 6 Ly
403 1 0 wx/2 0 6 0
504 1 0 /2 0 605 Ly
65 1 0 /2 0 6 0
716 1 0 -x/2 0 6, 0

Contrary to the foreword kinematic model, inverse geometric model require additional effort to
compute for the case of 7 DoF robot. The inverse geometric model is generally calculated using
the Paul method [102]. However, given that the KLWR has 7 DoFs and only 6 Dof is required
to describe a posture in 3D space, the robot is structurally redundant, meaning there are infinite
options for realizing one end-effector posture.

To solve the redundancy problem in the robot, a swivel angle ¢ was added to the model [103]
shown in Fig. 3.3. The swivel angle ¢ uniquely represents the position of the elbow joint (4th
joint) P, on a circle perpendicular to the vector of the wrist joint (6th joint) from the shoulder
joint (2nd joint) [(PsPy)]. In Fig. 3.3, P,,P., P, define the position of the shoulder, elbow,
and wrist of the robot, respectively. To mathematically describe this circle, the unit vector n of
the direction from the shoulder to the wrist was defined. A local coordinate system was created
from unit vectors U and V. It can be noted that U was arbitrarily set to be the projection of a
user-defined vector b. The mathematical description of U, v, and 1 is found in [103].

. P
0= Thw]

= =B )R 3.1

u [[b—(b-n)a|| (3:1)
v=nxu
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Zg, Z7
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%

Figure 3.2: Frames and segments definitions for the KUKA LWR used in the MDH in Table 3.1
(1]

Figure 3.3: Conceptual diagram of swivel angle ¢
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By using these unit vectors, the position P, of the elbow joint can be expressed by the swivel
angle ¢ as follows.
2 2 2
cos(a) = 7L1;LL13L_3L2
c = Lin cos(a)
(3.2)
R =L, sin(a)

P. = c+ R(cos(p)t + sin(p)¥)

The Paul method was then implemented to obtain the resolution of the inverse geometric model.
By using the elbow joint position P, and wrist joint position P, obtained by swivel angle, the
inverse geometry problem can be solved and the joint angles can be uniquely obtained. detailed
explanation can be found in [104, 105]. Here is brief explanation of the Paul method. Let U,
denotes the known transformation matrices from the base to the elbow joint.

The transformation matrix "~ !T,, is the transformation matrix from the n — 1 th frame to
the n th frame. Using the Paul method, a transformation matrix for a particular links can be
derived using a known transformation matrix. The Paul method can generate a new expression by
multiplying "T,,_; from the left. By multiplying Eq. (3.3) by 'Tg,2 Ty,...,"e 2T, _1 from the
left, we obtain the following equation.

UeO =0 Tl 1’:[‘2 come—l Tne

1 e—1
Uel - T2 e Tne

_ne—1
Uene—l =e Tne

Once the transformation matrix for a particular links was obtained, the trigonometric functions
of its elements were analyzed based on Shimizu’s research [104] to calculate the joint angles. swivel
angle provides the elbow joint posture relative to the desired end-effector position, therefore, the
Paul method can be used with redundant manipulators.

3.2.2 Dynamic Model

A dynamic model is a model that represents the behavior of a robot when a certain control input
(torque) is applied to the robot, while an inverse dynamic model, conversely, represents the torque
required to achieve a specific robot behavior. The inverse dynamic model is needed in this study
for applying feedback linearization and for evaluation of DPI. The inverse dynamic model of the
KLWR was calculated through Symoro+ which is using Newton-Euler equations. The inverse dy-
namic model provides the joint torques vector I' that realize a certain joint position, velocity and
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acceleration [102].

I'=M(q)d+ C(q,q) + G(a) + Ty + Tea
(3.5)
I'y = diag(q)FV + diag(sign(q))FC

Where q, ¢ and g represents the (7 x 1) vectors of the joint angles, velocities, and accelerations;
M(q) (7 x 7) represents the robot tensor of the inertia; C(q, q) (7 x 1) represents the Coriolis and
centrifugal terms; and G(q) (7 x 1) is the gravitational term. Moreover, I'c,; is the joint torques
vector, which represents the influence of the external forces; and I'y (7 x 1) is the vector of the fric-
tion torques due to Coulomb and viscous-friction effects. Furthermore, FC = [F C; .. FCy J} r
(7 x 1) is the vector containing the Coulomb’s friction coefficients, and FV = [FVl .. FVny;
(7 x 1) is the vector containing the viscous friction coefficients.

}T

Here, interestingly, the equation of motion Eq. (3.5) can be expressed in linear form with re-
spect to the dynamic (inertial) parameters in the joint frames such as SIP, Center of Mass (CoM),
and mass [42] as follows:

W(q,9,9)® =T (3.6)

where W (7 x 84) is the regressor matrix of the chains, ® (84 x 1) is the vector of standard

inertial parameters to be identified. In detail, ® = [®#] &%, FCT FVT]T. For each link ¢,
10 inertial parameters can be expressed in the joint frame ®; = [M; MS? TI?|”, where M; is

the mass, MS; = [MSX, MSY; MSZ]"

six-dimensional vector TI; = [XXZ' YY, ZZ, XY, XZ YZi]T that gathers the elements
of the 3 x 3 tensor of inertia.

is the three-dimensional vector of the CoM, and the

3.3 Identification of Robot Parameters

Generally, mechanical parameters such as mass, center of gravity, and moment of inertia of each
link can be calculated for a robot by using CAD data. In reality, however, the mechanical model
obtained from CAD data alone is not sufficient, because elements not included in the CAD data,
such as cables and other electrical components, also affect the robot dynamics. Therefore, it is
necessary to identify the mechanical model of the robot. In general, white-box modeling is con-
sidered to be the most effective method for identifying the mechanical model of a robot, because
a mathematical model can be constructed based on physical laws. Therefore, the identification
of the robot dynamics means the identification of the mechanical parameters consisting of mass,
center of gravity, and moment of inertia.

The identification process is done with three steps.
1. The generation of the optimal exciting trajectory.
2. The identification of the robot inertial parameters.
3. The end-effector tool identification.

the identification method that is using the optimal exciting motion is described in [1]. In his
study, painting roller is chosen as the implementation example. Painting rollers are tools used to
paint walls and require proper force and positioning accuracy for the task. Following his example,
the painting roller was similarly treated as an implementation example in this study.
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From the Eq. (3.6), we can obtain the dynamical parameter ®. However, in general, the
regressor matrix W is not a full-rank matrix. Therefore, it is not possible to obtain the dynam-
ical parameters by using the least-squares method directly. Therefore, it is necessary to use a
transformed form of the dynamical parameters called the minimum dynamical parameters [43, 44].
The minimum dynamical parameters ®; are the dynamical parameters with the minimum number
of dimensions necessary to represent the entire dynamical model. Therefore, using the minimum
dynamical parameters, Eq. (3.6) can be rewritten as follows.

W& =W, b, =T (3.7)

When the obtained motion data is n samples, it can be written as follows.

W, (1) I'(1)
I A

Wy(n) I'(n) (3.8)
— V_Vb@b =T

The regressor matrix W is depend on the structure of the robot and delivered by Symoro+, and
the symbolic approach of computing the base parameters is based on determining the independent
elements of the energy functions of each link [102]. By applying the weighted least-squares method
[106] on the Eq. (3.8), the minimum dynamical parameters ®; can be uniquely identified as shown
below.

®; = (WIPW,) 'PWIT

S, 0 0
P=1p 0
0 0 Sy (3.9)
I
Sj = (17\;‘3
. — _.7q>J
o, = | fvefﬁgb”

Where, N., N fé is the number of samples and number of minimum dynamical parameters for
j th link respectively. I, is identity matrix that size of N, x N.. f‘j,Wg, and <I>g is the parts
corresponding to j th link. By using this weight matrix P, the least-squares method can be im-
plemented to account for differences in the magnitude of joint torques.

About the optimal exciting trajectories, in conducting identification experiments, it is a very
important issue to decide what kind of motion to use for identification. The motion that guarantees
the identification accuracy is called Optimal Exciting Trajectory (OET), and such a characteristic
is called excitation. This OET is known to reduce the following cost function J; in previous studies

1.
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Jg = —log{det(W] W)} (3.10)

The trajectories were parameterized by Q-Spline method and optimized to minimize the cost
function of the Eq. (3.10) using quadratic programming (QP). Here, the motion was optimized
so that the joint angles, velocities, accelerations, and input torques were within limits, and self-
collisions were avoided.

In general, the minimum dynamical parameters ®y, are sufficient to represent the dynamic model.
However, complete dynamic parameter ® is needed for adapting reference model of predictive
controllers. Therefore, it is necessary to identify the total dynamic parameters by QP. In order to
identify the total dynamic parameters, as in the case of the minimum dynamic parameters, the
measured values of each joint angle and torque, as well as the total dynamic parameters from CAD
data to be used as a reference, are required. The cost function for QP is shown below.

Jp = w1 [|[Wp® — T,||° + ws |® — @capl|”
Wp=PWp (3.11)
r,=PI

Where ®¢ 4p is total dynamic parameters from CAD data. wy and wy are weights for the first
and second terms respectively.

3.3.1 End-Effector Tool Identification

The robotic arm can attach various tools to the end-effector to perform tasks. Moreover, the
physical change of the end-effector generates geometric and dynamic changes in the system. The
geometric parameters of the tool were identified using its SIP, as described in [1, 45]. The dynamic
identification of the end-effector was achieved using two sets of grouped equations which represent
the trajectories without and with the end-effector presented by [107].

'l (W, o
Tl |wW, W,

E:Z] (3.12)

= =l o7 ol .. ..
Here, I‘u, T, WZ, W, represent the measured joint torques vectors and minimum regressor
matrices that correspond to the KLWR is unloaded and loaded cases, respectively.

The geometric identification of end-effector is based on the relationship between the dynamic
parameters and geometric parameters [48]. In this study, the length and width of a paint roller are
identified using the look-up table. The table contains dynamic and geometric parameters for dif-
ferent sizes of painting rollers. A principal component analysis (PCA) of the dynamic parameters
is conducted for the classification of the tool at end-effector [108]. In other words, after identifying
the dynamic parameters of the grasped tool that are not known, the error norm of all the dynamic
parameters in the lookup table is calculated, and the one with the smallest value is considered
as the painting tool being grasped. Then, the geometric model of the robot is updated with the
corresponding geometric parameters.

In this work, the main task was the painting of flat surfaces with smooth and continuous tra-

jectories. In particular, the robot manipulator traced a painting trajectory in the shape of "W"
on the wall using painting rollers attached to the end-effector. The size of the "W" trajectory was
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Type Mass CoM Inertia Length of tool | Width of roller
1 M] MSl Tll ll 51
2 Mz MSZ TIZ lz )
M MM MSM TIM '!M ™

Figure 3.4: Example of look-up table

approximately 0.2 m x 0.2 m. The painting roller was applied to the wall with a constant force
of 30 N. In this work, two painting rollers (big and small) specified in Table 3.4 were used. The
trajectory for the painting task was generated in the Cartesian space by the optimization process,
ensuring a smooth trajectory and proper initialization of painting task. The Cartesian trajectory
applied in this study was developed by T. Katsumata et al. [1].

The optimization for the motion trajectory minimizes a cost function constituted by the norm
of the robot joint jerks and the duration of the desired trajectory. Simultaneously, the optimiza-
tion maximizes the work area (in the case of a painting surface by the horizontal and vertical
distances traveled by the roller) during the motion. Thus it is ensuring dynamic and kinematic
viability in the robot. The trajectory is defined in 6 DoFs; Pc = [Px Py Pz 6x 0y §Z]T.
Here, ?X,Y, z are 3D position of the end-effector and 0x vy z are the orientations represented
by Euler angle. The path planning optimization problem can be expressed as the solution of
Xopt = [TC 0 Zu 41 Y AY] € RO, where the T, represents the trajectory duration time,
p is the swivel angle, Z, and Z; are the upper and lower vertical positions of the roller, respec-
tively. And Y} is the initial horizontal roller position, and AY is the horizontal distance traveled
by the roller. The velocity and acceleration at the point of turns were set as zero. The trajectory
was interpolated using 5" order B-splines. Through this parameterization of the trajectory, the
adaptation of robot motion to the different tools is automated.

These aforementioned work are developed by co-authors of previous work [17] and the author’s
primal work is to unified those DPI and geometric adaptation method into predictive control system
and formed one adaptive robotic manipulator motion operation scheme. Now the controller have
to adapt these newly identified parameters. In particular, GPC and AGPC are based on the
dynamic models, and updating the parameters of the robot is a crucial task for the controllers if
the characteristics of the robot varies with different types of rollers attached to its end-effector. In
the next section, the proposed AGPC that exploits the identified results is presented.

3.4 Robot Control System (Position and Force Controllers)

The control system for painting wall with applying 30 N force was designed according to the scheme
as shown in Fig. 3.6. The painting motion P, is generated by planner described in section 3.3.1.
The Cartesin trajectory of the end-effector is converted into joint angle trajectories qges using
inverse geometric model (IGM) described in section 3.2. The controller receive desired joint angle
and generate input torque I'c,, to realize the target joint angle trajectory. The position/torque
sensors inside of the joints return the current joint angles ¢ and torque I working on the joints.
For the force control, reaction force on the wall is estimated based on the torque information and
compensation variance of the end-effector position AP, is computed using proportional-integral
(PI) control method and added to the next Cartesian trajectory command. The position con-
trollers were developed using the proportional-Differential (PD) with gravitational compensator,
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Roller

Figure 3.5: Parameterization of the trajectory of the painting task

GPC, and AGPC. Moreover, the AGPC and GPC make use of the models identified in the previous
sections to adapt its reference model.

Adaptive <
. Qdes l-‘cmd q
Cartesian
Motion IGM | Controller | Robot

Trajectory

AF _— Fest [Estimate
Pl —0O

Force
Fdes T-l_

Figure 3.6: Adaptive control system for robot force and position control based on fast dynamic
and geometric identification

3.4.1 External Force Estimation

Applying the DPI to the robotic manipulator and of its end-effector, the external forces (reac-
tion force from the wall) could be estimated from the measured joint torques using the following
equations.
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T = M(q)d + C(q, ) + G(q) + Teuy
— T =Tayn + Ceus (3.13)

Fest = (JT)+Fewt = (JT>+(F - den)

where J is a (6 x 7) robot Jacobian matrix and superscript + denotes pseudo inverse. ﬁ(q)
(7 x 7) is the identified robot inertia matrix, a(q, q) (7 x 1) is the vector that contains the
identified Coriolis and centrifugal terms. I" and I'gy,, are the measured and estimated joint torques,
respectively. F.q (6 x 1) is the estimated vector of the external forces in Cartesian space. The
symbolic model of each dynamical components are generated through Symoro+. It is symbolic
because one easily adapt to new dynamic parameters once the robot setting have changed.

3.4.2 Force Control

The control scheme is composed of two embedded control loops inspired by [109]. The outer loop
controls the external forces, and the inner loop controls the pose of the Cartesian end-effector as
shown in Fig. 3.6. The additional displacement command to the end-effector in 3D position, is
given by:

T

AP. =K} (Fg—Fey) + K | (Fq—Fey) (3.14)
To

where A P is the additional displacement reference signal in Cartesian space. F is the desired
external force. KIJ; and K{ are the proportional and the integral gains, respectively. And Ty and T
represent the initial time and current time, respectively. The gains are set as follows by refereeing
previous work of Katsumata [108].

f— -4 f— -3
K, = diag(1.0 x 107%,0,0) , K; = diag(2.0 x 107°,0,0) (3.15)

Here, diag(x) denotes the diagonal matrix with diagonal elements x.

3.4.3 Position Control

Besides the predictive controllers, several traditional control techniques were implemented for the
comparison. First, a PD control with a gravitational compensator was presented. Second, a PD
control with feedforward compensation was explained. followed by GPC, and AGPC is proposed.

a) PD Control & Gravitational Compensator

The PD control with a gravitational compensator was designed by tuning the gains as a classical
joint space PD controller [110] with P gain [500, 1000, 300, 500, 100, 100, 0.5] and D gain [15, 15,
10, 15, 5, 5, 0.01] for links 1-7, respectively.

Table 3.2: Gain values for the PD controller for KLWR

i-th link 1 2 3 4 ) 6 7
K, 500 1000 300 500 100 100 0.5
Ky 15 15 10 15 5 5 0.01

The gravitational torque was computed using the dynamic parameters identified in the previous
part. Given that the dynamic models of the robot and painting tool were already identified, the
PD control could be expressed as:
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~

I'a = Kp(qqa — q) + Ka(q, — q) + G(q) (3.16)

where K, and K, are (IV; x N;) diagonal matrices for the experimentally-tuned proportional
and derivative gains. qq (7 x 1) and q, (7 x 1) are the vectors of the desired and measured joint
angles, respectively. q,; and q were obtained by the first-order backward difference with respect
to qq and q. And é(q) (N x 1) is the vector of gravitational terms obtained using the identified
inertial parameters.

b) PD Control & Feedforward

The PD control with feedforward was applied, as expressed in below. Typically, the plant with
previous determined dynamics and a predefined trajectory was controlled using feedback and feed-
forward controls. The feedforward torques were computed using the identified dynamic parameters
of the robot. P gains and D gains were tuned using the same values of the PD gravitational com-
pensator control. q,; was obtained by the first-order backward difference with respect to qgq.

Ty = K,(qs — q) + Ka(dy — @) + M(aa)dy + C(aa, da) + G(qa) (3.17)

c) Generalized Predictive Control (GPC)

The GPC scheme was applied to the robot arm using feedback linearization. GPC is a method
of model predictive control (MPC) proposed by Larke et al. in 1987 [111]. GPC is expected to
improve the performance of the position control with various condition such as different posture
and velocity. Before describing the GPC design, the feedback linearization method is presented.
In this study, the same feedback linearization technique as that in the common case of computed
torque control (CTC) was used [23] to calculate suitable models for the predictive controllers.
GPC is linear model predictive control, therefore, non-linear system needed to be described in
linear model in order to be applied GPC. The robotic arm dynamics could be linearized and
decoupled by nonlinear feedback, when input is set as below with new input control vector w.

I' = M(q)w + C(q,4) + G(a) (3.18)
ﬁ(q), é(q, q), and é(q) are the estimates of M(q), C(q,q), G(q), respectively; and w is the

new input control vector. Assuming that ﬁ(q) = M(q), C(q,q) = C(q,4), and G(q) = G(q)
the problem is reduced to a linear and decoupled double-integrators system, where n is the number

of DoFs of the robot [47].

qg=w (3.19)

This Eq. (3.19) shows that each link is independent and angler acceleration is linearly propor-
tional to new input w. Thus, linear control theory such as the GPC can be applied. Predictive
control can be summarized as follows [112, 33].

e The definition of a numerical model of the system to predict future behavior.

e The minimization of a quadratic cost function over a finite future horizon using future pre-
dicted errors.

Applying the first value of the computed optimal input torque to the system.

e the iteration of the entire procedure for the next sampling period, according to the "receding
horizon" strategy [2]

For the GPC, the plant was modeled using Controlled Auto-Regressive Integrated Moving
Average (CARIMA) model which is shown in Eq (3.20). Even though CARIMA model is single-
input-single-output (SISO) model, thanks to the feedback linearization, the original dynamics is
decoupled and individual link can treated as SISO system.
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Figure 3.7: Concept of receding horizon strategy (2]

A=yy(t+1) = Bl u(t) + e ()

Az ) =14+az7V +asz 2+ ... +a,, 2"
(3.20)
B(Z_l) =1+ blz_l —+ b22_2 + ...+ bnbz_"b

CzY)=1+czt+caz 2+ . +ep 2"

Where 2! is a one-step backward operator, and A = 1—2~1. A(z7!) and B(2~!) polynomials
were obtained by discretizing the linearized model of Eq. (3.19), and C(z7!) is the polynomial of
coefficients that represent the white noise in the system. wu(t) and y(t) are the plant input and
output respectively, and £(t) is a centered Gaussian white noise. This model gives one step ahead
prediction. The reason why CARIMA model is useful is that it incorporates a disturbance esti-
mation. Therefore, it can give unbiased prediction in the steady-state, irrespective of some model
uncertainty.

Traditionally, to obtain the prediction equation, Diophantine equation is solved. However, the
solution of Diophantine equation is somewhat obscure so the matrix notation is used here follow-
ing [113]. The ideal condition has no noise so let us £(t) = 0, C(27!) = 1. Let us rewrite Eq.
(3.20) as below.

Aa(z"y(t) = Ba(z~")Au(t)
(3.21)
= yt+ 1)+ Ay@t) + ...+ A Yt—n,+1 = b1Au(t) + ... + by, Au(t —np + 1)

Where
Agz™ D =AA(z" ) =14+ 4127+ .+ A, 27

(3.22)
Ba(z7h) = b1z +boz7 2+ by, 2

And series of one step predictions towards No — th step can be expressed using matrix.
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y(t+1) y(t) Auf(t) Au(t—1)
Cy +Hyz =G, + H,
yt + Na) y(t — (na + 1)) Aut+ Ny — 1) Au(t — (ny + 1))

— Cuy+H,y =Cyua+Hyu

— ¥=C,'Cpii+C'Hpu— C'Hay

(3.23)
Where
1 0 0 0
Ay 1 0 0
Cy= Ao Ay 1 0
: : : 0
An,—1 ANn,—2 An,—3 1
A Ay A,
Ay Ay . . A0
Hys=| . ) ) . ) .
An, An 0 0
b1 0 0 0
b by 0 0
3.24
Coe |t b2 b 0 (3:24)
) ) . 0
bn, bny—1 bn,—2 by
by by b,
b3 b4 bnb O
H, = . ) :
byt by, 0 0

The optimal predictor Eq. (3.25) was configured with the matrix about the past states, present,
and future actions which are represented by if, ih, and G, respectively.

y=ify+ihu+Gu

(3.25)
— y=H;+Gu
Where
if = C,'Ha
ih=C,'H,
(3.26)
G=C,'Cy

Hf=ify +ihu
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Each element of the G matrix represents the dynamic response of the system. The control
signal Au was obtained by minimizing of the quadratic cost function shown in Eq. (3.27);

T = 3052, (4 16) = w(t + )12) + X, MG [Ault + 5 = 1)]2) (3.27)

Where N; and N, define the range of the prediction output, NV, defines the control horizon, A is
a control weighting factor, r(k) is the reference value, y(k) is the prediction output value obtained
by solving the Diophantine equation, and Aw is the control signal. Moreover, Eq. (3.27) can be
expressed by a vector with the following form:
J =) —r®)TF) —rt) + AU TAAU(Y) (3.28)
Where

r= [T(t + Nl)a e ,T(t + NQ)]T
A =diag[A(1),- -+, A(Ny)] (3.29)

AU(t) = [Au(t), -, Au(t + N, — 1)]T

By substituting Eq. (3.25) into Eq. (3.28) and differentiating the equation with respect to
AU(t) then organize each term with dJ = 0, the control law @,y that minimizes the evaluation
function in Eq. (3.30) was obtained as follows:

fiopr = N(r — Hy) (3.30)

Where

ﬁopt = [Au(t)opt, s ,A’Z,L(t + Nu — 1)0pt}T
(3.31)
N =[GTG +A]7'GT

The receding horizon principle assumes that only the first value of the optimal control series
Uopt is applied, thus for the next step, the procedure is repeated.

The design was therefore implemented adjusting Ts, N1, No, N, and A to satisfy the required
input/output behavior, i.e., fastest response that is consistent with the stability requirements.
With this control strategy, a two-DoF reference signal tracking (RST) controller was obtained, and
the procedure is described in [114], [115]. The resulting GPC was then synthesized as a two-DoF
controller, as shown in Eq. (3.32) [116, 114].

S(z7HAu(t) = —R(z"Yy(t) + T(2)r(t) (3.32)

The controller was calculated using synthesized polynomials R(z71), S(z71) and T'(2~1) which
is shown in Fig. 3.8.

d) Adaptive GPC

The AGPC is proposed and implemented for position control, and the structure is presented in
Fig. 3.8. In the real-time robot manipulation case, it may be difficult to obtain reliable angu-
lar acceleration information because the measurement noise on the joint angle is amplified when
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Adaptive

u(?) q(7)
Robot

Figure 3.8: Scheme for the AGPC

second-order derivative is applied to it. Without accurate acceleration information, advanced con-
trol techniques such as CTC could not be applied to the system. Consequently, the adaptation
of the GPC was designed using the dynamic information of the robot. According to Khalil and
Dombre [47], the approximate dynamic model of robot arm links can be expressed as a linear
second order differential equation:

Ly =m;d; + Fojdj +; (3.33)

Where mj=Mjjmae is the maximum magnitude of element M;; of the inertial matrix of the
robot, 7; represents a disturbance torque, and F;,; is the coefficient of viscous friction. The GPC
is then designed based on the model Eq. (3.33) as same as Eq. (3.19). Contrarily to the Eq.
(3.19), the inertial characteristics of the robot m; vary in accordance with the motions of the
robot in Eq. (3.33). Thus, therefore, to cope with model error and stabilize the GPC, updating
polynomials R(z71), S(z71), and T'(27!) was attempted. It was achieved by adjusting the GPC
design parameter A and final prediction horizon Ns.

The controller directly adapts the control parameters; weight for control variation A and the
predictive window for the control design No, and that leads to the adaptation of controller polyno-
mials R(271), S(271), and T((271). The optimal values for these control parameters are determined
based on the stability analysis of gain margin and phase margin. The analysis is done by piloting
bode diagram of the control loop and converging it to "block diagram" which is shown in Fig. 3.9
and Fig. 3.10 [116]. The phase margin is required to be larger than 45°, and the gain margin is
required to be larger than 6 dB, to be selected as the optimal controller. This process validated ro-
bustness criteria, which involves checking the direct and complementary sensibilities in Eq. (3.34).
Bode and black analyses reveal the relationship between the measurement of the direct sensitivity
04, and the complementary sensitivity o.. The first represents the relationship between the output
and the noise measurement, and the second represents the relationship between the output and
the perturbation in the robot. The stability analysis is conducted every 0.1 s to determine the
optimal A for the GPC.
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on = A(z"HAS(z™)
d = AZ"NHASz H+(z-H)B(z-)R(z- 1)

(3.34)
o — (z")B"HRGE)
¢ = AEDASE- D+ DBE-DR(E"T)
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Figure 3.9: Stability analysis based on the gain/phase margin (stable). The diagram about the
phase of the Bode diagram and the diagram about the gain are integrated into one diagram as a
black diagram, which displays the gain margin and phase margin in an easy-to-understand manner.
The larger ellipses in green represent a phase margin of 45 degrees and a gain margin of 6 decibels.
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Figure 3.10: Stability analysis based on the gain/phase margin (unstable). The diagram about
the phase of the Bode diagram and the diagram about the gain are integrated into one diagram
as a black diagram, which displays the gain margin and phase margin in an easy-to-understand
manner. The larger ellipses in green represent a phase margin of 45 degrees and a gain margin of
6 decibels.

The optimal A is selected based on the A\ that yields the best stability response. The corre-
sponding A is selected as the new optimal A until the next time-period. The algorithm is set to
select the best A from 20 sets in the range of 0.001 ~ 5.0 x 10% as shown in Table 3.3.

Besides A, according to the analysis by Ogata [117], the final predict horizon N; is preferred to
be small, as it has a direct influence on the computational cost and delay of the system response.
On the other hand, a larger N> generally results in an increased system stability. In this study,
the initial value of Ny was set as a minimum with tolerable value of the gain and phase margins.
If the A cannot provide system stability, the algorithm immediately changes the final window of
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Table 3.3: Choices of A for GPC design

# 1 2 3 4 5
Al 10x1073 50x10°% 10x10"2 50x1072 1.0x 107!
# 6 7 8 9 10
A | 5.0x1071 1.0 5.0 1.0 x 10! 5.0 x 10!
4 11 12 13 14 15
A | 1.0 x 102 5.0 x 102 1.0 x 103 5.0 x 10° 1.0 x 10%
H 16 17 18 19 20
A | 5.0x10F  1.0x10° 5.0 10° 1.0x 105 5.0 x 10°

predictor Ny to bigger value, and a new optimal A is searched.
The adaptive algorithm is summarized below.

1. Calculate the inertial matrix of the robot at the initial pose using the angle information and
identified dynamic parameters. Then build the new robot models for each link using the
dynamic model Eq. (3.33) of the joints.

2. To determine the first optimal GPC, the prediction horizon N7, Ny, the control horizon N,,
and the sample time T} is chosen based on the referring Ogata’s research [117].

3. By using 20 choices of A in Table 3.3, configure GPCs and conduct stability analysis using
black diagram Fig. 3.9 to chose best GPC.

4. Execute the control process (Eq. (3.30)) with best GPC polynomials Ro(271), Sp(271),
To(271) as initial configuration.

5. Every 0.1 second, the new approximated dynamic model of joints Eq. (3.33) at the current
pose is calculated to update the reference model.

6. Decide optimal control parameter A for the new reference model by repeating the step 3 and
if the stability is not sufficient, increase prediction horizon Ns.

7. Return to the step 5 and Contrite.

The stability analysis is conducted over the entire duration of the task, and the optimal A is
selected by the algorithm above. If the algorithm cannot determine the optimal A that can yield a
sufficient system, it immediately changes the final window of the predictor N, and starts searching
for a new A.

The main differences between the GPC + feedback linearization and AGPC are the presence
of the linearizer and the adaptive method used to develop the on-line optimization for the model
error. The GPC + feedback linearization uses a strict linearizer to reduce the controlled system,
as shown in Eq. (3.19). However, the strict linearizer is sensitive to model errors and jerky accel-
eration signal. Thus, these elements affects the entire linearizer, and the GPC decrease the control
performance. On the other hand, the AGPC is designed to be stable at all times by analyzing the
system responses throughout the duration of the task. Moreover, it guarantees a certain range of
robustness against model errors and noisy inputs. Thus, the AGPC is less sensitive to the model
errors than the GPC. In addition, the AGPC is an auto tuning system; thus, the user is not re-
quired to determine optimal set of design control parameters such as in the case of the GPC +
feedback linearization.
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Figure 3.11: Concept of AGPC

3.5 Experimental Setup

3.5.1 Parameter Identification of the Robot and Tools

The position and force controllers with aforementioned controllers were compared using V-REP
simulation platforms with KUKA LWR real experimental identification data [1]. For the identifi-
cation, the KUKA LWR excuted OET and thus, robot and tool’s dynamic/geometric parameters
obtained following the procedure described in section 3.3. Fig. 3.12 presents the KUKA envi-
ronment when the exciting motion was executed for the identification of the parameters. The
identification and control were validated using two different types of painting rollers. Table 3.4
presents the physical parameters of these tools, and Table 3.5 presents the identified parameters.
As Table 3.5 presents ,it can be considered the two identified masses are closed to their reference
one. The parameters were downsized using PCA and stored in a look-up table with associated
geometric parameters. Thus, the robot could recognize the painting roller attached to the end-
effector. These values were obtained in the previous experimental identification developed by the
co-authors of this paper [1]. The root mean square error (RMSE) between measured torque and
estimated torque with identified dynamic parameter was 0.63 Nm [1].

Table 3.4: Physical parameters for the painting roller tools

Name of the roller | Length [m] Width [m] Weight [kg]
Big roller 0.35 0.20 0.2
Small roller 0.33 0.10 0.1

The KUKA LWR used in this study had a mass of 12 kg, and the masses of the rollers were
100 ~ 200 g. Although the differences between the masses of the rollers were relatively small, and a
difference of 100 g could affect the control system if it attempts to conduct precise and high-speed
tasks. It should be noted that the system successfully identified the physical parameters of the
rollers and differentiate between the different rollers, although the mass difference between the
rollers was only 0.1 kg. Then, the identified values were used to implement the model predictive
control such as the GPC and AGPC, and the computation of the gravitational compensation torque
for the PD + Grv control. The masses and dimensions of the rollers were linked in the look-up
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Figure 3.12: Robot motion for dynamic identification with optimal exciting trajectories [1]

Table 3.5: Identified inertial parameters for big ®;, and small @, rollers [1] (see section 3.3 for
the definition of each symbol). %oe, is relative standard deviation.

Parameter by, %0w,, b, %0o,,
M [ke] 2.4.1071 0.5 9.7x107 2 1.3
MSX [kgm| | —3.9.1073% 8.1 4.5.107° 28.4
MSY [kgm] | —1.5.107°  21.0 7.2.107° 25.4
MSZ [kgm] | 6.5.1072 0.6 2.4.1072 1.4
XX [kgm?] | 2.0.1072 1.9 7.4.1073 4.4
YY [kgm?®] | 2.1.1072 2.0 7.1.107% 5.1
77 [kgm? | 2.1.1073 14.9 1.5.107* 31.0
XY [kgm?] | 5.6.107* 56.6 2.0.107*  102.8
X7 [kgm?] | 6.3.107* 41.5 | —4.2.107* 547
YZ [kgm?] | 8.3.107° 49.9 2.1.107* 47.5

31



Chapter 3 — Adaptive generalized predictive controller

table Fig. (3.4) and updated for the final robot models.

3.5.2 Control Experiments

Following tasks are executed to compare the performance of the proposed AGPC and other con-
trollers explained in section 3.4.3.

1. Swinging motion of the end-effector for 3 seconds using AGPC and GPC without adaptation.

2. Painting task with the big roller and small roller.

About the swinging control experiment, the control performance of AGPC and GPC in case
of fast motion is compared for several trajectories. Each controller was running with rate of 1.0
kHz with V-Rep simulation environment. The V-Rep is connected to MATLAB through SDK
and provide robot’s state such as joint current joint information and reaction of robot to the
input torque with 1.0 kHz. Note that AGPC adaptation process rate is 10 Hz. The duration
is 3.0 seconds and the velocity and acceleration at beginning and ending point of each motion is
set as zero and the trajectory is smoothly interpolated as Fig. 3.13 and Fig. 3.14 shows an example.

E 08 | i
=
Q 0.6 - -
oo
c
<  04F -
4
£ 2f i
@]
=

0

0 1 2 3

Time [rad]

Figure 3.13: Example of the joint space trajectory for swinging motion

The second control experiment is to compare proposed AGPC and other controllers by means
of force control and position control accuracy. The task is drawing W shape on the wall with
applying force of 30 N as showin in Fig 3.15 and Fig 3.16. Each controller was running with rate
of 1.0 kHz with V-Rep simulation environment. The V-Rep is connected to MATLAB through
SDK and provide robot’s state such as joint current joint information and reaction of robot to the
input torque with 1.0 kHz.

3.6 Results and Discussion

3.6.1 Swinging Motion with AGPC and GPC Without Adaptation

To ensure the proper function of the AGPC, simple motion control was conducted using the
AGPC in the V-REP environment. Fig. 3.17 - Fig. 3.22 is showing 3D trajectory of the end-
effector trajectory where the duration is 3 seconds, and its joint space trajectory. The reference
trajectories are plotted in dotted black line, and AGPC and GPC is plotted in red and blue solid
line respectively.

These figures reveal that the AGPC could stably control the LWR and follow the reference with
minimal error. Because the range of motion is large for the robot, as shown here, the controller
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Figure 3.14: Example of the Cartesian space trajectory for swinging motion

Figure 3.15: Painting task simulation in V-Rep simulator
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Figure 3.17: 3D trajectory of the end-effector with AGPC controller with simple trajectory #1
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Figure 3.18: Joint space trajectory result with AGPC controller with simple trajectory #1
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Figure 3.19: 3D trajectory of the end-effector with AGPC controller with simple trajectory #2
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Figure 3.20: Joint space trajectory result with AGPC controller with simple trajectory #2
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Figure 3.21: 3D trajectory of the end-effector with AGPC controller with complex trajectory

is expected to operate stably over a wide range of motion. Moreover, Fig. 3.23 presents an time
series change of the polynomial R,q,(27") for the case of trajectoy #1 (Fig. 3.17, Fig. 3.18), and
how it varied in accordance with changes in the posture of the robot.

3.6.2 Painting Task Results

Fig. 3.24 - Fig. 3.27 show that the GPC and AGPC controllers yielded accurate tracking, whereas
the PD control + gravitational compensation and feedforward + PD control deviated from the
desired trajectory, as the painting motion progressed. There was approximately 5 mm of a constant
position error in the tracking control with the controllers with PD in the both cases of the big
roller and small roller. The real-time duration of each trajectory was 50 s and 46 s for the large
roller and small roller, respectively.

Given that the PD and feedforward control do not support integral action, the robot could
not handle the position error caused by the external force at the end-effector. On the other hand,
the GPC supports integral action due to the nature of its structure, successfully managed the
disturbance of external force and exhibited a significant improvement of tracking ability.

Although the system demonstrated a sufficient force control and tracking control performance,
a constant position error of approximately 5 mm was presented in each case, as mentioned above.
The error may be suitable for the painting task over a large area. However, the system would
be required to reduce the position error if the complexity of the task and precision requirements
increased such as writing small letters or locate the tool into the reduced place. Therefore, other
controllers with the adaptive methods for position error were proposed, i.e., the GPC, AGPC, and
feedforward - PD control using the optimal trajectory and force control strategy discussed in the
previous sections.

Furthermore, the results reveal that the GPC with feedback linearization demonstrates a good
performance due to the fine identified inertial parameters used to develop the model of the robot.
Fig. 3.28 presents the RMS position error when the controllers were implemented. The GPC

37



Chapter 3 — Adaptive generalized predictive controller

H B W Reference
e A GPC
— GPC without Adaptation

1st

2nd

3rd

Joint Angle [rad]
4th

5th

6th

7th

Time |sec]

Figure 3.22: Joint space trajectory result with AGPC controller with complex trajectory
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Figure 3.23: Transition of R(z~!) polynomial terms 7o, r1, and 7 with respect to the new optimal
A. It represents the controller is changing/adapting its internal value to cope with non-linearity of
the robot arm dynamics.

06F | ]
{
055} : 1
i
0.5 =4 % B
i
'g‘ 045 { b
5 |
04r b
— =mRef
o3sr R & WU SLS e GPC _
v/, |m-- PD&Grv
/ FF&PD
03F : —— AGPC 8
0‘25 B 1 1 1 1 Il Il ]
0.38 04 042 0.44 046 048

Y [m]

Figure 3.24: Results of painting task with GPC, AGPC, and PD+ for small roller
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Figure 3.25: Zoom results of painting task for small roller with GPC, AGPC, and PD+
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Figure 3.26: Results of painting task with GPC, AGPC, and PD+ for big roller
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Figure 3.27: Zoom results of painting task for big roller with GPC, AGPC, and PD+

and AGPC yielded a minimal position error when compared with that of PD with gravitational
compensation. The results for the GPC and AGPC were 0.1 mm and 0.21 mm with the small
roller, and 0.22 mm and 0.62 mm with the big roller in the end-effector, respectively.

As shown in Fig. 3.29 and Fig. 3.30, the GPC and AGPC yielded better force control results
due to their fast reaction capabilities. The AGPC presented a better control result than the
PD control with gravitational compensation. Moreover, the AGPC re-adjusted according to the
posture of the robot arm on-line. In addition, in the case of the GPC with feedback linearization,
the AGPC can work without to direct affect of the acceleration feedback, which could contain a
noise in the real situation. Thus, the AGPC is more suitable for robots in planning and motion
tasks.

3.6.3 Considerations of the Controllers

The GPC seems have the best performance in this study and hare is the discussion about it. The
GPC implemented in this study utilize the feedback linearization, and was optimized by tuning
the parameter A, prediction windows Ni-Na, and control horizon N, as discussed in Section c).
By adjusting the parameters, GPC response speed, and convergence speed/position, the stability
and robustness sensibilities changed. Given that the controlled system is strictly linearized, and
that its controlled MIMO system is decoupled and does not change over the range of motion, a
fixed GPC (fixed values of design parameters) is applicable to this system, and the values of the
optimal parameters depend on the motion task.

There is more possibility in robot arm with GPC. By combining GPC + feedback linearization
and on-line system identification, another AGPC can be introduced. Using on-line system iden-
tification, the system could detect whether the robot is in high-speed motion or interacting with
the external environment. In this case, the high response speed of the GPC should be designed by
adjusting the design parameters. Moreover, it is possible that using on-line system identification
to design the feedback linearizer on-line strictly linearizes the robot system. This system identifies
the dynamic parameters of the robot on-line and simultaneously constructs a feedback linearizer
using the identified values. Eventually, the optimal linearizer is obtained by evaluating the tracking
error. However, it is difficult to set the initial parameters for the linearizer and the GPC, which
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Figure 3.29: External Force with GPC, AGPC, and PD+ controllers
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provide a certain level of stability from the start of the motion.

The computational cost was calculated by the program for different types of rollers, to validate
the GPC, AGPC, and PD+ controllers. The computational cost was verified by measuring the
allocated memory, % of CPU, and time consumption. The results are summarized in Table 3.6.

Table 3.6: Computational cost using the GPC, AGPC, and PD+ during the painting task

Controller Memory|[GB]  %CPU  CPUtimels]
AGPC (small roller) 0.993 27 0.043
AGPC (big roller) 0.628 21 0.051
GPC (small roller) 0.950 23 0.032
GPC (big roller) 0.599 21 0.040
PD+ (small roller) 0.628 18 0.037
PD- (big roller) 0.601 17 0.038

The table above presents CPU time of each controller for one cycle. As expected, it shows that
the AGPC has the highest computational cost. This is because the AGPC conducts optimizations
and stability analyses, in addition to the calculation of the control torques. In this study, the
sampling time for the calculation was 1 ms; approximately 43 seconds was required to calculate 1
second of motion. However, this type of on-line adaptive controller can be further enhanced with
potential computational characteristics and optimize scripts to decrease the duration of the control

tasks.
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3.7 Conclusion

In this study, a novel robot control adaptation based on predictive controllers and the fast dynamic
and geometric identification of base parameters in a force control framework was developed.

The proposed methods were applied to the KUKA lightweight robot. During the roller paint-
ing task, the external forces applied to the end-effector could be estimated and controlled without
a force sensor mounted at the end-effector, due to the accurate model identification.

Moreover, the controllers were developed using the identification performed with the exciting mo-
tion of 10 s, which was generated by an optimization. The proposed adaptive predictive controllers
were compared with other controllers such as the PD control with gravitational compensation,
feedforward with PD control, and GPC. The AGPC updated itself during the motion and suc-
cessfully controlled the robot with good stability by exploiting the fine identified SIPs. The GPC
and AGPC demonstrated excellent control performances such as a 90% reduction in the position
errors when compared with the results of the previous experiment. Moreover, a novel tuning
design with robust control will be developed in the future to enhance the AGPC. Furthermore,
the future work will extend this method to a significantly larger number variables, rollers, and tools.

Although GPC + feedback linearization demonstrated an improved tracking ability and lower
computation cost, AGP exhibited a superior control performance. Moreover, it confirmed the po-
tential of the GPC adaptation in the application with the on-line robotic arm during the task. The
performance of the proposed AGPC therefore verified the effectiveness of the GPC is solving the
robotic arm control problem using a simple model such as in (22), and demonstrated the robustness
and applicability of the GPC scheme.
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Chapter 4

Linearizing Robotic Manipulator’s
Dynamics Using Koopman Operator
and Applying Generalized Predictive
Control

SUMMARY the second study is about generalized predictive control, but here, the main focus is
on linearizing the dynamical system of a robot using the concept of the Koopman operator. Using
this concept of the Koopman operator, a nonlinear dynamical system of a robot can be represented
by a linear time-invariant state-space model. This allows us to apply advanced linear control laws,
including generalized predictive control, to the robot arm. Furthermore, since the computational
cost is lower than that of predictive control based on rigorous modeling, high control frequency
can be achieved in a real environment. Here, a 7-DOF robot is simplified to a 3-DOF robot, and
the Koopman operator is identified using a method inspired by the robot arm dynamics model.
A state-space model was extracted from the identified Koopman operator, and its accuracy was
compared with that of the state-space model using Koopman operators in previous studies. We
also designed a generalized predictive controller for the obtained linear state-space model of the
robot and compared its control performance with that of a conventional PD controller. The results
show that the GPC with Koopman operators maintains constant control performance over a wide
range of postures, speeds, and work ranges compared to the PD controller with fixed gains.

4.1 Introduction

In recent years, with the ability to handle large-scale time series data, there has been an attempt
to mathematically extract the essence of complex real-world phenomena from observed values in
order to advance understanding or control them. However, often these real-world phenomena have
non-linear characteristics and controllers for non-linear dynamic systems often require complex
modeling and a rough approximation of the system. On the other hand, linear control theory
is well established more than non-linear control, and techniques to linearize non-linear dynamics
have been researched so that linear control theory can be applied to non-linear systems. Attempts
have been made to consider the system locally linear by approximating it in the neighborhood of
the reference point by Taylor Expansion, or globally linearize by state feedback linearization using
state estimation observers [22]. However, the former can only guarantee linear control performance
locally, and the latter is significantly affected by model errors, making it unsuitable for non-linear
controllers such as model-based control.

Here, the concept called "Koopman Operator" (KP) is particularly interesting [57, 58]. The KP is

a linear operator defined for nonlinear dynamical systems and represents the time evolution of the
observed quantity (output function in control engineering) of the dynamical system. This operator
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is a linear operator that preserves the information of the original nonlinear dynamical system and
it allows mapping dynamic constraints into a linear dynamical system in a higher dimensional state
space. Its basic idea is to lift non-linear function to a higher dimensional space by extending its
explanatory variables that are often referred as "observables". In this higher dimension, nonlin-
ear functions can be described in a linear form. Here, how the observables should be augmented
depends on the dynamical system’s property and needs to be chosen with consideration, such as
which kind of observables and how many should be[59].

Linear dynamic models derived from KP enable the application of linear control methods and
hold great promise in the field of control engineering. In particular, the adaptability of KP with
Model Predictive Control (MPC) [62], is pointed out by Korda [63] and Igarashi et al. [64]. The
motivation to apply MPC exists especially in the field of robotics. This is because predictive
control can accommodate sequential changes in future target trajectories and can be used for in-
telligent motion control, where the robot generates and executes unique motions at a moment’s
notice. However, robot dynamics are nonlinear, and MPCs that include nonlinear models suffer
from high computational costs and difficulties in generalizing the design [63]. On the other hand,
if the dynamic system of the robot could be represented by a linear equation of state, the compu-
tational cost would be small enough for practical systems, and it would be possible to apply not
only the well-established linear control theory such as Linear Quadratic Regulator (LQR), but also
Generalized Predictive Control (GPC).

Other well establish control method for robot arm is computed torque contol (CTC) method
[23]. It utilize robot’s dynamic and geometric information to conduct feedback linearization and
reduce the control system to linear and decoupled. However, applicable system for this method
is limited to the legit body structure and require joint acceleration information which likely to
contain some noise. Moreover, dynamic parameter identification require joint torque information
which is not always available. On the other hand, this data driven linearization by KP enable any
structure to acquire linearized model without dynamic parameter identification. In the future, the
structure of robot will be more diverse and acquiring traditional form of dynamic model will be
not simple. For example, soft robot that doesn’t have joints and bio-inspired joint with complex
actuator is not easy for CTC method to adapt contrary to the presented method.

This chapter presents an example of the application of the KP for a robot manipulator which
has a nonlinear dynamics, and introduces practical issues to be considered when applying KP to
robotic systems. Also, it presents working candidates for new state vectors for manipulators. In
this study, the optimal expansion scheme was acquired by expanding the robot dynamics equation
and using its monorails. The KP was then identified by the least-squares minimization, and an ap-
proximate linear state-space model of the robot was identified. Using this, GPC was designed and
its tracking performances for a wide range of motions are compared with traditional PD control.
Also, the linear model from observables choice of previous research and ours are compared.

4.2 Linear Predictor

First, the concept of linear predictor for non-linear dynamics is explained here. A discrete-time
nonlinear controlled dynamical system is

Ti41 = f(xt,ut) (41)

where x € R" is the state of the system, u € R™ is the control input, subscripts ¢ indicates
time steps and f is the mapping.

We need the predictor that takes initial condition xg and the control inputs {ug, u1, ...} and outputs

the trajectory of Eq.(4.1) along certain time steps. In particular, the form of state space model
which are suitable for linear control design is required. The discrete state space model is
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Zt+1 = AZt + But

. 4.2
Ti41 = Czppq ( )

where z, € RV | and 7 is predicted value of z. Hare, N is generally N > n. A € RV*N is the
state matrix, B € RV*™ is the control matrix, and C' € R™*¥ is the output matrix. The initial
condition of the predictor Eq.(4.2) is

1 (300)
YN (o)

where z( is the initial value of states in Eq.(4.1), and ¢; : R® — R, i = 1,...N, are lifting
functions and importantly, it is user specified functions. The state z; is referred as lifted stets or
observables.

The idea is that if the true trajectory of z; generated by Eq.(4.1) and the predicted trajectory
from Eq.(4.2) are close within a sufficient time interval, the optimal controller based on Eq.(4.2)
should be close to the optimal controller for Eq.(4.1).

4.3 Koopman Operator

We start by recalling the Koopman operator (KP) approach for the analysis of an uncontrolled
dynamical system.

xe1 = f(xe) (4.4)

The KP is a linear operator defined for nonlinear dynamical systems and represents the time
evolution of observables in the dynamical system. Let F denotes the space that the observables
U in Eq.(4.3) can take, F has as elements not only state variables but also functions, such as
their squares. Therefore, F is a space of infinite dimension. Now, when N = oo, the operator
R : F — F that evolves from an observable ¥(x;) to a new observable ¥(x;1) is defined as follows.

(RY) (1) := U(141) (4.5)

The time evolution of the observables ¥ under the mapping f in Eq.(4.4) can then be expressed
as follows.

U(zy) = V(f(zi-1,)) = (RY)(24—1) + 111
= (R20)(w4—2) + Te—1 + T2 = ... (4.6)

= (R"T)(20) + Xio i

This £ is called the Koopman operator [57, 58] and is a linear operator that represents the time
evolution of an observable under a nonlinear mapping f. And r;,7 = 0...t is the transition error.
In principle, as the size of operator N x N goes to oo X oo , the transition error r; goes to zero
[118, 119]. However, it is sometimes possible to find N < oo such that ZE:O r; ~ 0 [120].

4.3.1 Koopman Operator for Controlled Systems

There are several ways of generalizing the KP to controlled systems [63, 121, 122].
The KP can include an input u that affects the transition of observables. Consider the observ-
ables functions that include the control input as shown below.
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Y1 ()
Uz, up) = m - Wf(xt) (4.7)

The KP & € RINFM)X(N+m) ags0ciated to Eq.(4.7) is defined by

(ﬁ@)(l‘t, ut) = \I'(xt_H, ut+1)

. [ 5. ﬁ“} (4.8)

Here, R, € RV*Y is the part that represents the impact of the previous lifted state on the next
states, and K], € RY>™ represents the contribution of input to the evolution of the lifted state.

Finally, those submatrices of the KP &,, &, are used to obtain the linear predictor in Eq.(4.2).

U(@es1, upr1) = R (e, ue)
4
ze41 = Reze + Ry
Typ1 = CZt+1

Note that finding the output matrix C is simple when the observables explicitly include the
state variable. In that case, the output matrix will be an index matrix. And from now on, we
will proceed with the discussion assuming that the observables explicitly include the state variable
that is the object of control.

Also note that, it is generally not possible that the trajectory of this linear predictor Eq.(4.9)
matches the trajectory of the original nonlinear system Eq.(4.1) for all times. Nevertheless, these
predictors can be used for MPC that use finite-time predictions, as long as the predictions are
accurate for a sufficient time interval.

4.3.2 Approximation of Koopman Operator

When enough data D = {z;,u;}}£, and M > N is provided, we can approximate KP & using
least-squares minimization over the parameters of £ [61, 123].

M-—1
o1
ming X 1W(as) = K Go) (4.10)

Given that Eq.(4.10) is convex in 8, the solution is given below.

A=G1Gy" (4.11)
Where
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G1= 2 SN Ui ()T
(4.12)
Gz =4 M U)W (a)”

In here, + denotes the Moore-Penrose pseudoinverse. The continuous time operator £ is then
given by

_ L

g= 7

log(K) (4.13)

Where T is the time interval for each time step.

4.4 Generalized Predictive Control

Generalized Predictive Control (GPC) is a method of model predictive control (MPC) proposed
by Larke et al. in 1987 [111]. And it is compose of

1. Derivation of output prediction equation using model of control target.
2. Determination of the optimal control rule based on the prediction equation.

3. Application of the Receding Horizon Method

Where, the Receding Horizon Method means that the time interval in which the range of out-
put prediction and the optimal control law are considered is successively shifted forward in time.
Specifically, only the first few samples (usually one sample) of the optimal control inputs are ap-
plied to the control target at each time step.

Various methods have been proposed for model predictive control, while GPC is a method that
uses the CARIMAX model (Controlled Auto-Regressive Integrated Moving Average model) or
state-space model for output prediction and derivation of the optimal control input. GPC is a
systematic arrangement and generalization of MPC within the framework of control theory [124].

Here, we consider an m-input n-output linear time-invariant plant with a state-space model in
Eq.(4.2). In this case, the control objective is to make the system output follow the step-like target
value stably. Therefore, in order to include an integrator in the control system and to follow the
target value without steady-state deviation, an expanded system that includes an integrator in the
plant of Eq.(4.2) is constructed.

”
where
A, = [O:Xn Ii] B, = [I]i]
C.:=[C  Ouxm], 2, = [Z] (4.15)
A=1-¢1
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Note that £~! is an operator representing a one-sample delay. The output prediction equation
for j step ahead can be derived by repeating Eq.(4.14) as follows.

j—1
#rij = CeAlze, + Y Co AT 'B.Auy (4.16)
=0

In GPC, the following linear-quadratic form of the cost function is defined to derive the optimal
control input.

J=(X, - X.,)TQ(X, - X,.,) + AUTRAU, (4.17)
where
XT [ _}l—"Nl t+N2]
AUtT =[A ;ft . AutT+N 1] (4.18)
X, =[x Trpyng s xmer]

Q and R are the weight matrices for the prediction tracking error and the input increment,
respectively, both semi-positive definite matrices. Ny, Ny, and N,, are the minimum, maximum,
and control prediction ranges, respectively. z,, is the target value at time ¢.

Substituting the prediction X in Eq.(4.16) into the cost function J in Eq.(4.17), it can be ex-
pressed in the quadratic form of AU;. Therefore, the optimal AU; can be obtained from the
equation in which the partial derivative of the evaluation function J with respect to AU, is a zero
vector.

AU, = (GIQG, +R)'GIQ(X,, — Hoxy) (4.19)

In here, when a matrix of 1 rows and m columns is counted as one block, G, is a matrix of
Ny — N7 + 1 block rows and N, block columns, whose (i1, jin) block components are as follows

. C. ANit+i-i—1B | Ni+i—j—1>0
G (i) _{ O, Ni4+i—j—1<0 (4.20)
C.AN
C. AN+
H, = , (4.21)
C.AM:

Even though, this AU, gives control inputs for the time step from ¢ to ¢t + N,, — 1, those control
will be open-loop control, since the state of the controlled object is only taken into account at the
current time. Therefore, only the first block of AU, is applied to the actual control target.
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Aut = [Ima 0, ceey O]AUt (422)

The control input after time ¢+ 1 can also be obtained by the same procedure as the derivation
of the control input at time .

4.5 Finding Optimal Observables for Manipulator’s Dynam-
ics

This section introduces the problems to be considered when actually applying the KP to a lin-
earization of robot arm’s dynamics. The primary concern when introducing the KP is the setting
of the observables. For the robot arm, Ian Abraham and Todd D. Murphey show examples of
state quantities actually used [61]. They used 7 Dof serial link robotic arm " Sawyer". They used
distinctive method, in which the state of adjacent joints are multiplied to obtain observables, is
here called the n — th order product method.

Z(x) = [xTa 1,(]1(1% 4243, .-, ngqulqz, 7ng?] S RSI (4 23)
. . T .
T = [qla - 47,41, "'7(]7}

Where, ¢;,q¢;, © = 0,...,7 are ¢ — th joint position and angular velocity. Whether this choice of
observables is optimal for describing robot arm’s dynamics is still a matter of debate. If the amount
of observables is increased without limit, the state matrix of the resulting state-space model is no
longer a full-rank matrix, and redundancy is created in the computation of the inverse matrix. This
has a negative impact on the calculation of optimal control inputs in model-based control such as
GPC. Furthermore, including excessively large matrices in the model increases the computational
cost and prevents quick prediction and control. Hence, it is ideal to choose functions and state
variables that are appropriate for that dynamical system and minimize the size of the observables.

4.5.1 Referring Robot Dynamic Equation

To define optimal observables, the robot arm’s dynamical equation is used. The idea is that the
monomial that appears when the dynamics of the robot are truly expressed in the form of a linear
combination, should be the ideal choice of observables, and its size should be optimal without
excess or deficiency. For the k-link serial link robot arm, the dynamic equation for joint angular
acceleration and its monomial expansion can be expressed as below.

(q)(F Hg.g) — [ric(g,g)

| Expand

) (4.24)
i1 = co1 + €1191(g,4)Fs - ENLIN(g,4)

Gk = Cok + C1k91(q,¢) > s CNEGN (q.4)

Where, q, ¢, { are vectors of joint position, angular velocity, and angular acceleration respec-
tively. And T is input torque vector, M, is inertia matrix, H ala is torque vector that is origi-
nated from gravity, centrlfugal and Coriolis, fricg 4 is friction torque For the expanded form, ¢,
i=0,..N, j=1,...,k is coefficients for monomial g,y 4)-
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Ideally, if this monomials g;(4 ) is included as an observable, the continuous-time operator that
gives joint angular acceleration is obtained exactly. However, the monomials that actually appear
in the equation include fractions, and the further it go to the link at the end-effector, the more
complex the monomials becomes. For example, some of the monomials in equation Eq.(4.24) looks
like below.

o sinQ(ql)cos(qg)
Jeal = a(B—y cos(q1—qz)) (4 25)
. .
Gexl

Gea2 = G65in(q) X

Thus, in the process of equation expansion of the dynamics Eq.(4.24), there is a form in which
linearly combined monomials are included in the denominator. Furthermore, the further one goes
to the equation about the end-effector, the more these complex monomial divisions appear, so the
structure of the monomial becomes even more complex, with a very long linear combination in
the denominator. Above all, the number of monomials grows exponentially, and the size of the
observables becomes too large.

In order to overcome the complexity, concentrating on monomials that appear frequently in the
Eq.(4.24), we extract them and employ them as observables. By doing so, we aimed to approximate
the KP. In theory, the size of the KP is infinite-dimensional, and when applied to a real system, the
resulting operator will be an approximation no matter what. The important question is which set
of observables can reproduce the behavior of a nonlinear dynamical system with sufficient accuracy
at a realistic size.

In this study, the dynamics calculation software SYMORO+ [102] was used to write down the
dynamics equation for the robot arm. Also, in order to reduce computation intensity, 3 Dof serial
link robot arm is treated as an example in this research. First, SYMORO+ outputs symbolically
expressed dynamic equation Eq.(4.24) in MATLAB function file. Then, by counting operators such
as +,—, *, /, the tendency of simple forms that appear in monomials is determined. As a result,
the following configurations seem to be primal.

1. trigonometric functions of joint angles and their multiplication (e.g. sin™(qy)cos™(q1),
sin™2(qs)cos™2(qq), sin™3(q3)cos™3(q3))

2. multiplication of joint angular velocities
Ny 2MNe

(e-g- 4142 45")
3. multiplication of 1 and 2

The number of monomials used for these multiplications (ex. n, + np + n.) is expressed in
terms of “order” hereafter. Some of these orders may exceed 10, but their effects are so nonlinear
that they behave like noise and their share in the overall dynamics is limited. The maximum order
in each case was therefore defined as follows.

1) maﬂC(Z?ﬂ Nsi + Nei) =5

2) maz(ng + np + ne) = 3 (4.26)

At this point, the total number of employed observables is 9243. The KP identified from these
observables will be 9243 x 9243, which is too computationally expensive to incorporate into GPC.
Furthermore, this KP is less likely to be full rank. Therefore, it is necessary to eliminate the
unnecessary monomials from the observables in the Eq.(4.27).
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Z(l’) = [17 xTa 41427 ceey QSv SZ”(Ql)» ceey COSB((]?)),
qrsin(qr), ..., gzcos®qs] € R?43 (4.27)

T = [Q17q2a qz%dla q.2a Q3]T

4.5.2 Extract Important Monomials

To determine unimportant monomials, we first approximated the KP using the observables in
Eq.(4.27) Here, as described in Chapter 4.3.2, more than 9243 data points were required, so 10000
data points are provided with 10 Hz sampling. The motion was controlled with PD control with
gains that were tuned based on Franka-ROS package. The motion consisted of random safe postures
of the panda robot smoothly connected by spline interpolation. The duration between postures
gradually varied between 1 and 10 seconds, and movements covering a wide range of velocities were
recorded. The data was acquired through Gazebo simulator with ROS Melodic environment.

Table 4.1: Gains for PD Control

Joints
Ist 2nd 3rd 4th 5th 6th T7th
P gain | 30 60 3 3 30 15 5
Dgain | 03 06 03 04 04 03 0.1

After KP were identified, the columns were taken one by one, their ranks were calculated, and
the columns with rank failures were determined by repeating the process until the ranks fail. The
optimal observables to be sought were then determined by excluding the monomials associated with
that column as shown in Algorithm 1. In this process, low-rank matrix approximation method
is used. This low-rank approximation is called a matrix sketch [125]. The matrix sketch only
preserves important features of the original matrix, filtering unnecessary information out. The
tolerance for relative approximation error of the matrix sketch is set to 0.1.

Algorithm 1 Calculate Optimal Observables
Ensure: rank(R) = length(K)

LK< 8(1)

2: 1< 1

3: while rank(K) < rank(f) do

4: 1<=1+1

5: if rank(K) == length(K(1,:)) then
6: K < [K, R(:,1)]

7: else

8: K(:,end) <[]

9: end if

10: end while

In Algorithm 1, K is a submatrix of KP R, extracting the part of the KP that concerns im-
portant monomials. By checking the column numbers of the remaining KP that is in K, against
the order of the observables in Eq.(4.27), finalized observables are defined. The size of the observ-
ables is z(z) € R%. The all monomials of the robot arm’s dynamics and selected monomials by
Algorithm 1 is available hare https://github.com/shoheil536/Extracted_monomials.
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Figure 4.1: Panda robot and simplified robot

4.6 Control Experiments and Results

For the control experiments, Panda robot from Franka is used. Although it has 7 Dof, it is treated
as 3 Dof robot by disabling 3,5,6,7 — th joints. The experiment is done in the Gazebo simulation
with Ubuntul8 and ROS Melodic environment. The experiment section has 3 parts.

1. Comparison of Performance of the Linear Predictor
2. Comparison of Performance Within a Task Space

3. Comparison of Adaptability to Different Motions

In 1), linear predictors from the proposed observable set and the linear predictors derived
from observables used in the previous study were compared. Secondly, in 2) We compared the
end-effector tracking performance in the task space for the GPC from the linear predictor in the
previous study and our GPC and PD controller. Finally, in 3) tracking performance over a wider
range of motion conditions (position, velocity, and acceleration) was compared in joint space.

4.6.1 Comparison of performance of the linear predictor

First, the KP R that contains the linear predictor is shown in Fig.4.2 As explained at the very end
of Section 4.5, the number of our observables is 99, so the KP identified from here takes the form
of a matrix of size 99 x 99. From this matrix, the linear predictor that is explained in Eq.(4.2) was
acquired as explained in Eq.(4.8) and Eq.(4.9). The KP was identified from 110000 data points
that are 10 Hz recordings of PD-controlled motions. The motions were made as explained in sec-
tion 4.5.2. To get motion data that contain a wide range of position, velocity, and acceleration, the
duration time between postures was gradually varied between 1 and 10 seconds. Moreover, very
slow motion where the duration between postures was 50s was also added to data for identification.
Henceforth, we will refer to the KP, identified from these observables we have proposed, using the
"Opt" adjunct in the following figures.

As can be seen from Fig.4.2, the diagonal components of the identified KP tended to take val-
ues close to 1.

The prediction of the robot’s behavior using the state-space model obtained from the KP is
shown in Fig.4.3. The figure is about the 4th joint, where the most nonlinear behavior appears
among the 1st, 2nd, and 4th joints. The left figure shows the joint position and the right figure
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Figure 4.2: Identified Koopman operator & from our observables. Its diagonal elements are high-
lighted in green and have distinct tendency where these value is almost one

shows the joint angler velocity. Predictions are shown for 90 steps (0.9 seconds) made at 100 [Hz].
Actual robot data are shown as solid lines and predictions are shown as dashed lines.

As mentioned at the end of section 7?7, it is generally not possible that the trajectory of lin-
ear predictors matches the trajectory of the actual system for over an infinite period of time. On
the other hand, these predictors are accurate for a prediction steps of more than 20 (0.2 seconds).
Therefore, the predictor is sufficient for model base control such as GPC with prediction window
of 0.2 seconds.

Besides our prediction with Opt observables, as a comparison, predictions from n-th order product
methods were plotted (see (4.23)). Even though in the previous study of Ian et al., the robot’s
DoF was 7, the n-th order product method was applied to the 3 DoF by maintaining the principle
of multiplying the state of adjacent joints. In addition to the observables of 3rd orders that was
introduced in (4.23), the observables sets of 1st order, 2nd orders, and 4th order were also plotted
in Fig.4.3. As Fig.4.3 shows, our predictor is slightly more accurate than the others, especially
for the velocity prediction. For example, the average value of the mean absolute error (MAE) of
joint position for 30 different trajectories is; our Opt predictor was 0.0368[rad] and for the 3rd
order product predictor is 0.0374[rad] , and MAE of joint angular velocity for our predictor was
0.0895[rad/s| and 0.1137[rad/s] for the 3rd order predictor.

4.6.2 Comparison of performance within a task space

The GPC was designed using the linear predictor obtained in the previous chapter, and its per-
formance in the task space of the robot was compared to that of the PD controller. The task is
to draw the shape of 8 horizontally five times using only 1st, 2nd, and 4th joints. Fig.4.4 shows
the results with the time taken for one cycle set to 3 seconds and 10 seconds, respectively. The
control parameters of GPC are set as Ny = 1, Ny = 20, N,, = 10, R = diag(0.1),Q = diag(1.0).
Here, diag(x) denotes the diagonal matrix in which each elements have value of x.
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Figure 4.3: Comparison among linear predictors and actual robot arm’s behavior. In the legend
section, 1st, 2nd, 3rd, 4th denote the predictor with previously suggested observables sets. And
Opt denotes the predictor with proposed observables.

End-Effector’s Trajectorys
—————— Reference Trajectory

GPC with GPC with
Opt Previous PD Control
Observales Observales
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1 cycle period = 10 [s]

Figure 4.4: Control result of GPC and PD controller in task space. The duration of one cycle was

3 seconds and 10 seconds.
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4.6.3 Comparison of adaptability to different motions

To see the control performance of GPC against wide range of joint position, velocity and accelera-
tion, the exciting motion and RMSE in joint space was compared among our GPC, PD control and
GPC from 3rd linear predictor. The motion was made as explained in section 4.5.2. The duration
time between postures was set between 1 and 5 seconds. The measurement sampling rate was 100
Hz and duration was 30 s.

1st Joint 2nd Joint 4th Joint
—Opt GPC ||
Prev GPC
< <
o o

0.2

Joint Position RMSE [rad]
0.4

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Transition Time Between Postures [sec]

Figure 4.5: RMSE of joint position for 1st, 2nd and 4th joint in case of excited motions

4.7 Discussion

About section 4.6.1, our KP has distinct features, its diagonal elements have value of almost 1.
This is representing the physical fact that the observables has continuity in transitioning to the
next state. Fach element of this matrix K represents the degree of influence that the observables
have on each of the observables’ next stats. The final three rows of this matrix are larger than the
other elements, but this is a meaningless byproduct, as they represent the degree of influence that
the observables have on future changes in the input.

In the result of Fig.4.3, it should be noted that even the observables of 2nd and 3rd order that has
size of only R'® and R?? can predict robot motion similarly to our linear predictor which have size
of R%. On the other hand, as our predictor has better prediction, more complex monomials are
included in the observables, the better the predictor might be.

About section 4.6.2, Even though our GPC could control robot stably, the result was not the
best. Our GPC suffers from the effect of gravity and the end-effector was shifted to a lower po-
sition compare to the GPC with 3rd order observables in case of a slow task (Fig.4.4). This is
thought to be because the larger the size of the state-space model matrix, the more room there is
for model error, and the more the errors add up.

When we compare the fast task and slow task, GPC controllers keeps its performance, while
PD controller lost its performance. This tendency can be seen in the result of section 4.6.3. For
the 1st and 2nd joint, our GPC Could keep control performance better than PD control in the case
of fast motions. This high responsiveness to the slackness of the target trajectory can be seen in
the results of Fig.4.4. Here, the PD control is wobbly because the target speed changed abruptly
at the start of the movement. On the other hand, GPC adapts appropriately to this abrupt change
in target speed.

Model errors are mentioned here. In the proposed method, the number of monomials constituting

the observables was carefully selected, resulting in the identification of approximate Koopman op-
erators. As a result, the accuracy of the linear predictor deteriorated, resulting in control errors
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as shown in the figure 4.4. Figure 4.6 shows the relationship between the different observables and
the accuracy of the linear predictor. This is shown for the fourth joint of a 7-DOF robot. In the
proposed method, the accuracy of the linear predictor decreases as the number of observables is
reduced. On the other hand, the linear predictor in the previous study achieves better accuracy
with fewer observations. It is believed that there is a way to select more suitable observables.
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Figure 4.6: The relationship between the different observables and the accuracy of the linear
predictor. This is shown for the fourth joint of a 7-DOF robot. In the proposed method, the
accuracy of the linear predictor decreases as the number of observables is reduced. On the other

hand, the linear predictor in the previous study achieves better accuracy with fewer observations.
It is believed that there is a way to select more suitable observables.

Here, we discuss the advantages of choosing a large size observable over smaller size such as the
previous study. The advantage is that the KP identified for a larger size of observables contains
more information about the system. For example, the KP we have identified here, modified into a
continuous time operator £ using (4.13), composed of elements that indicate the degree to which
the input affects the angular acceleration. This is shown in Fig.4.7. This figure shows the evolution
of the value of the element indicating the degree of influence of the input on the angular accel-
eration in the identified continuous time operator £ as the mass of the end-effector changes from
0.5 kg to 2.5 kg which shape is 10 [cm] diameter sphere. The approximate line is the least-squares

approximate line. The results show that the information of the mass of the end-effector is reflected
in the operator’s value.
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Figure 4.7: Change in the value of elements of the continuous-time operator £ in response to a
change in the end-effector’s mass (about 1st, 2nd, and 4th joint)

In addition to the intuitive elements as shown in Fig.4.7, the information of the end-effector
mass is also reflected in the non-intuitive observables as shown in Fig.4.8. This suggests that
information-rich KP can be analyzed using PCA or auto-encoders to estimate the mass and even
the shape of the object at the tip of the hand. Moreover, if the observables are set appropriately,
it could be possible to estimate the dynamical information of attached objects other than the end-
effector such as anti-collision retrofit parts.
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Figure 4.8: Change in the value of elements of the continuous-time operator £ in response to a
change in the end-effector’s mass (about 1st joint)

4.8 Conclusion

This chapter presents an example of the linearization of a robot manipulator’s dynamics using
Koopman operators (KP), and presents practical issues to be considered when applying the prin-
ciple of KP theory to robotic systems, and introduced the advantages of setting up large-size
observables. Using the KP, this work presents the successful design of a Generalized Predictive
Controller (GPC) that is able to control robot position and velocity stably under a wide range
of posture/velocity /acceleration for a 3-Dof robot arm. Control results show that our GPC per-
formance outperforms a traditional PD controller in terms of adaptability to the diverse target
trajectories.

59



Chapter 4 — Linearizing Robotic Manipulator’s Dynamics Using Koopman Operator

This study contributes to one of the few instances in which the KP has been introduced into
the serial link robot arm system. Its basic idea is to lift a non-linear function to a higher di-
mensional space by extending its explanatory variables, and these new variables are often referred
to as "observables". In this higher dimension space, nonlinear functions can be described in a
linear form. Here, how the observables should be augmented depends on the dynamical system’s
property. For the robotic manipulator, still, it remains unclear what the best observables set to
describe its dynamics is.

In this study, the optimal observables choice was acquired by expanding the robot dynamics equa-
tion and using its monorails. The KP was then identified by the least-squares minimization, and
an approximate linear state-space model of the 3 DoF simplified Panda robot was identified. Us-
ing this, GPC was designed, and it was compared with PD controller. Fig.4.3 shows that our
observables choice was properly describing the non-linear behavior globally and made the linear
state space model as accurate as previous research. Using these linear predictors, GPC was de-
signed and its performance in the task space and joint space was shown in Fig.4.4 and Fig.4.5.
The results depict GPCs have more adaptability to the different motions velocities than PD control.

Finally, the advantage of choosing a large size observable to identify KP was explained using
Fig.4.7 and Fig.4.8. The advantage is that the KP identified for a larger size of observables con-
tains more information about the system. The results show that the information of the mass of
the end-effector is reflected in the operator’s value. This suggests that information-rich KP can be
analyzed using machine learning techniques such as PCA or auto-encoders to estimate the mass
and even the shape of the object at the tip of the hand. Moreover, if the observables are set
appropriately, it could be possible to estimate the dynamical information of attached objects other
than the end-effector. There may be anti-collision retrofit parts, and people may personalize their
home robot with decorations. More detailed identification will be our future research direction.

4.9 Publications

The following list contains the published and submitted papers regarding this doctoral work.

Conference

e S. Hagane, L. Jamone, G. Venture, Linearizing Robotic Manipulator’s Dynamics Using Koop-
man Operator and Applying Generalized Predictive Control, 2023 IEEE /SICE International
Symposium on System Integration (S112023), WeP2M2.6 Atlanta USA, January 2023
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Chapter 5

Robotic Manipulator Expressing
Emotions as Sub-Task Using
Kinematic Redundancy

SUMMARY

In the last study, we proposed a motion control system that uses the kinematic redundancy
of the robot arm to perform emotional expressive motion when the robot arm performs a main
task at its end-effector. As mentioned earlier, in order for robots to play an active role in society,
they must be able to perform both communicative and productive tasks. Here, we used null-space
control to exploit kinematic redundancy and applied the concept of manipulability ellipsoid to
maximize motion within the null space. The proposed method was implemented on an actual
upper body humanoid robot "Nextage-Open" and recorded the interactions with a person. Using
the recordings, the robot’s emotions were evaluated online by more than 200 people via Google-
Form. The results showed that current rules surrounding industrial machines operating near people
severely limit the robot’s speed and prevent it from expressing the movement-by-movement changes
necessary to express emotion. However, we found that people who viewed unclear emotional
behavior used the content of the interaction, the robot’s gaze, and their own prejudices about the
robot, in addition to the emotional behavior, to interpret the robot’s emotions.

5.1 Introduction

As social robots become more integrated into daily life, an important question arises: how can
robots become more acceptable for people? In the 2017 Pew Research Center survey “Automation
in Everyday Life", 4135 people in the United States were asked, “Are you interested in using robots
in your daily life, including care-giving?" Out of the respondents 64% had negative perceptions on
robots, stating that they “can’t read robots’ mood" and that robots are “simply scary" [6]. One of
the ways being explored to gain user acceptance is to incorporate emotional movements. In order
to overcome the negative reputation of robots, researchers have been implementing emotions into
robots which are expressed towards the human user [8, 9, 10, 11]. This can be done by displaying
affective content on the screen and/or through expressive sound and movements. One of the main
purposes of robots expressing mood/emotion is that it gives social value to interactions between
people and robots. In other words, when people empathize and socialize with robots, the robots
are no longer recognized as simply a "tool" but as something social, which can help to appease
feelings of aversion and dislike for robots.

Movement is often difficult to handle as a tool for emotional expression. Especially for robotic
arms, movements have a significant impact on the main task, so there are few attempts to even
make them express emotional motions. Popular tools for robots to share emotions are optical
devices, such as displays that show animated facial expressions, and audio devices. However, it
is questionable whether the robot’s internal information expressed in voice and display alone is
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sufficient to facilitate human sociability. In fact, in Brscic’s work, the robot with voice device
communicating its emotion and wish is abused by children in a shopping mall [126].

To state human basic reaction, the social mind is attributed to empathy, and empathy is trig-
gered by the strength of the observed emotion [127]. According to a book "Introduction to Social
Psychology : a European Perspective" by M. Hewstone, an emotion can be seen as “an episode of
interrelated, synchronized changes in five components in response to an event of major significance
to the organism” [128]. These five components are: the cognitive processing, the subjective feeling,
the action tendencies, the physiological changes, and the motor expression. And C. Clavel pointed
out that the synchronization of expressions of emotion across different components is expected
to have major importance to human understanding of emotion perception. [129]. Therefore, It
is important to make the emotions that people perceive strong not only through easily neglected
expressions such as light and sound, but also by simultaneously performing the realistic element
of movement.

Researchers have been trying to convey certain emotions through robot motions (see section 2.5).
For instance, Knight attempted to use a small robot that only has a few degree of freedom [§],
and Beck et al. used a humanoid that utilize human gesture information to generate expressive
robot motions [9]. In these studies, the general tactics for differentiating emotions are adjusting
pre-existing gestures/postures and/or the velocity of the motions. Those attempts have success-
fully conveyed arousal and mood through robot motion.

However, most research on emotional robots treat emotion conveyance as the main task, so the
robots cannot do any other productive tasks such as manipulating objects. People’s expectations
of robots are becoming clearer, and the image of a convenient existence to do work is generally an
important element in the image of robots. The reality is that household robots such as Vector and
Kuri, which are only for sharing emotions, are forced to withdraw from the market even though
these companies were viewed as promising [16]. This trend implies that, in order for a robot to
be accepted, it should have both a productive function and an element that appeals to human
sensibilities.

In this research, we develop a motion system that performs tasks while expressing emotions using
the kinematic redundancy of robot arms. A system for performing emotional actions using redun-
dant degrees of freedom while performing industrial tasks has not yet been demonstrated in the
social robot field. Although Claret et al. have shown an example of a humanoid (Pepper) that
utilize the redundant degrees of freedom to express emotion, its main task was a waving gesture
and emotion conveyance, while productive task were not implemented [10]. In contrast, the target
of our study is a robot arm that excels in practical use makes it more aware of actual operations
in real life situation.

People’s feelings toward robots are still mostly negative as mentioned above. Yamamoto et
al. discussed human behavior toward computer programs, i.e., pseudo-interpersonal behavior [12],
and found that the "improvement of system functions alone does not cause pseudo-interpersonal
behavior, but some other element is necessary." This "element" is the social value of human-robot
interaction, and our research is an effort towards creating that social value. We aim to change the
perception of robots as a mere tool through the emotional expression of robots which can draw out
human empathy in a natural way. This should significantly impact the way robots will be used in
the service industry in the future. For example, it may prevent robots being used in public from
being harassed by passersby. Particularly in the service industry[13].

Fig.5.3 provides an outline of our research. Chapter 5.2 describes the kinematics model for
redundant robot manipulators. Chapter 5.3 introduces the proposed emotion conveyance method.
Chapter 5.4 describes the implementation of the method on a real robot, questionnaire contents,
and experiment. Chapters 5.5 and 5.6 present the experimental results and the discussion, respec-
tively. Chapter 5.7 concludes this paper.
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Figure 5.1: The main idea is the coexistence of productive tasks and emotional expression behavior.
The robot’s mood is communicated to the observer through emotional movement within a range
of redundant degrees of freedom so as not to affect the main (productive) task at hand.

5.2 Robot Manipulator with Kinematic Redundancy

The definition of a redundant manipulator and its kinematics are described here. A redundant
manipulator is defined as a manipulator that has more degree of freedom (DoF) than a task
requires. The Jacobian is related to the DoF of the end-effecotr. In another words, it indicates
the direction in which the end-effector can move at that joint coordination q. The maximum rank
of this Jacobian M is equal to the DoF of the task in Cartesian space. Here let’s assume that the
manipulator has N DoF and the rank of Jacobian r, there would be three cases as showed below.

1. In the case of (N = M).
The manipulator has exact number of DoF that required to complete the main task at its
end-effector.

2. In the case of (N >M).
The manipulator is redundant with degree of (N - M). The manipulator has ability to move
along its redundant space without moving its end-effector and that kinetic redundant space
is often refferd as Null Space in robotic motion control.

3. In the case of (r <M).
The manipulator is at the singular pose with degree of (M-r) and its end-effector can not
move to the certain direction (degenerate direction). If the Jacobian is square matrix, this
is the case when the determinant of the matrix is 0. On the other case, such as the case of
the redundant manipulator, it is the case when the determinant of the product of Jacobian
and its transpose is 0.

5.2.1 Kinematics of Robotic Manipulators

In this study, the robot’s emotional motion was generated via Null Space Control [82] and it is
closely related to kinematics such as Jacobian matrix. So let us note the basics of manipulator’s
kinematics in this section. First, in the inverse kinematics of the robot arm, the relationship be-
tween the position and orientation X in three-dimensional space and the joint angle vector g can
be expressed as X = f(q) using a certain nonlinear function f. Then, the differential relation in
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Secondary Task
(1 Dof Redundancy)

Primary Task
(6 Dof Task)

Figure 5.2: A redundant robotic manipulator can move parts of the body without affecting the
position and/or posture of its end-effector

that equation can be expressed by a certain linear expression with Jacobian J(q) := df/dq as the
coeflicient matrix.

X=Jgq (5.1)

There are two approaches to inverse kinematics with redundancy: one is to solve equation X =
f(g) using numerical methods such the Paul method [102], and the other is to solve equation 5.1.
However, in the case of singular postures, since Jacobians do not have inverses, Moore-Penrose
pseudo-inverses are often used.

g=JtX (5.2)

However, in singular postures, even pseudo-inverse matrices can deteriorate the accuracy of the
computation, and may generate discontinuous values when incorporated into a closed-loop control
system. Therefore, in this study, the SR-Inverse (singularity robust inverse) was used [130].

J# = JT(3IT k1)1 (5.3)

where T is the identity matrix and k is a very small positive arbitrary constant. By using this
SR inverse matrix, it avoids dealing with exact values in the process of calculating the inverse
matrix in singular postures, and thus prevents discontinuity in the time series calculation results.

5.2.2 Null Space Control

Null space control is a method of controlling robot motion in the space of joint angular velocity or
joint angular accelerations in degrees of freedom that are not used in the main task [82]. There are
many studies that take advantage of the kinematic redundancy of robots as mentioned in Chapter 2.
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The null space projection matrix IN can be calculated from Jacobian.

N=I-J#J (5.4)

In this research, since a 7-DOF manipulator is used, at least one redundant DoF is basically
ensured as shown in Fig.5.2, but depending on the type of task, there may be more than two
redundant DoFs. For example, the task of moving a ball along a fixed trajectory is represented
by 3-DoFs (z, y, z) for position only if the rotation of the ball (6,,6,,0,) are arbitrary, which
means that the 7-DoF manipulator has 4th degree of redundancy. In order to effectively utilize
this redundancy, we devise a new method for the Jacobian Jo that is used to calculate the null
space projection matrix N.

Jo=(ITIy)T

iy 0 0

Io:= 19 0
0 0 g, (5.5)

. |1 (a € maintask)
‘“=10 (o ¢ main task)

o€ [xa Y, %, 9337 01,/7 92:]

Using this N, any additional motion ¢,4; can be added to the main task ¢,,., by projecting
it in the null space. And the new motion g, takes a form that not affect the main task at the
end-effector.

qref = qtask +N qadd
. (5.6)
= J#Xtask + (I - J#Jo)qemo

The final reference trajectory which contain main task and emotional motion ¢,,,, is given in
second line of Eq (5.6). Xtask is the main task of the end-effector. In this research, it is important
to define emotional component ¢.,,, effectively. Because it will be trimmed into the null space
and it might loss some important motion feature such as spatial extension of the motions that
would convey a dominance level of the mood. To cover this issue, the manipulability ellipsoid is
adapted in null space control as it described later section 5.3.4.

5.3 Emotional Conveyance

5.3.1 Proposed Method

Our method is for generating a joint space motion for robotic manipulators. The generated joint
space motion contains both, the main task at end-effector and the emotional motion in its null
space. In order to express the intended emotion correctly, the corresponding motion features jerk-
iness, velocity and spatial extent are adjusted. The motion features were selected on the basis of
state of the arts studies in the cognitive engineering field. Finally, the adjusted motion features
are effectively executed in the null space by using the concept of manipulability ellipsoid.
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Figure 5.3: Overview of the proposed method of emotional motion conveyance using kinematic
redundancy. Emotional information is given to the robot as PAD parameters, which are converted
into a set of motion feature parameters J., V., S, with reference to previous studies in cognitive
engineering. Then, depending on the values of the motion features, the emotional motion in the
null space is generated using its manipulability ellipsoid. This emotional motion was performed
by the robot through null space control and recorded on video for an online survey.

Like Claret et al.’s work [10], our proposed method convert emotion (PAD) into motion fea-
tures. However, in contrast to previous work, we concentrate on robotic manipulators that execute
productive tasks at the end-effector. While the previous related work focused on humanoids, and
set gestures (e.g., waving) as the main task, our method enables robots to be productive and ex-
pressive at same time. In addition, our method of converting emotion to motion features differs
from that of previous work which converted emotion (PAD) into motion features by a simple linear
formula. We use findings from previous cognitive engineering studies [94, 4, 131], focusing on the
velocity of the motion to convey emotions. Furthermore, instead of the motion feature Gaze that
is used in Claret et al.’s work, we introduce Spatial Extent to express the dominance of the emotion
since manipulators don’t have eyes. The degree of spatial extent was represented using geometric
entropy [132].

5.3.2 From Emotion: PAD to the Motion Features: J,.V.S,

The PAD model is by Mehrabian [3] and used to express emotions in numbers. In this model, a
certain emotion is described by 3 elements: pleasure P , arousal A and dominance D. Each ele-
ments are nearly independent and take values from -1 to 1 contentiously. Thus, different emotions
can be expressed as points in the 3D space (PAD space) as shown in Fig.5.4.

Several studies have attempted to correlate human gestures with PAD parameters [133] [94].
However, as many studies have shown, it is not the meaning of the gesture categories that is
important for humans to recognize and distinguish emotions in nonverbal communication, but the
elements of motion contained in the movements [134] [135] [136] [137] [138]. There are researches
on mapping the relationship between movement elements and PAD parameters to make robots
perform actions that match emotions [10] [11]. In the study by Claret et al. [10] using the
humanoid robot Pepper, Jerkiness and Activity were used as adjustment parameters. Following
the work of Lim et al. [11], they mapped the correspondence between these movement features
and PAD parameters, generated affective movements, and verified the validity of emotion transfer.
In the study by Donald et al. [94], 25 movement elements are described as transmitting emotional
information, and in particular, four of them are capable of expressing most emotions. These four
movement components are Activity, Fxcursion, Extent, and Jerkiness.the Activity is correspond to
the energy of movement. The Fxcursion indicates how kinetic energy is distributed throughout the
movement, while the Eztent refers to how large the gestures of the hands and arms are. Jerkiness
is the derivative of acceleration.
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Figure 5.4: PAD space model by Mehrabian [3]: A single emotion can be broken down into three
components: arousal, pleasure, and dominance. Each components takes a value between -1 and 1.

a) Kinetic Energy

It is stated that the energy of movement ( Activity ) is positively correlated with the degree of
excitation. Therefore, it can be considered that the movement component corresponding to the
Arousal in the PAD parameters is the kinetic energy of the movement. In addition, in a study by
Wallbott et al. [4], the kinetic energy of movement (Fj) was found to play an important role in
identifying the 14 emotions.

1. .
Ey = 3 ' Iv q (5.7)

For instance, when the kinetic energy was high, the emotion expressed by the movement was
perceived as anger, and when it was low, the emotion was perceived as joy or fear (see Fig.5.5). In
the Eq.(5.7), Im denotes inertial matrix of the manipulator.

b) Jerkiness/Smoothness

It was also stated that Jerkiness is negatively correlated with Pleasure P in case of highly excited
emotions [94] [131]. Therefore, it is considered that the lower the value of Jerkiness (smooth
movement), the more positive emotion can be expressed. Although the aforementioned kinetic
energy can be perceived as both positive and negative emotion depending on its magnitude, it’s
expected that the addition of Jerkiness information will allow human to distinguish positiveness
of the emotion, such as between joy and fear.
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Figure 5.5: Finding of the research by Wallbott et al. [4]. When the kinetic energy was high, the
emotion expressed by the movement was perceived as anger, and when it was low, the emotion
was perceived as joy or fear

c) Spatial Extent

In the previous research [10], it is mentioned that the direction of eye (gaze) is significantly related
to the transmission of dominance D in the PAD parameters. However, since the robot arm in
general does not have parts corresponding to the face and eyes, eye movements cannot be intro-
duced into the motion. On the other hand, Wallbot [4] regarded spatial extension of movements
as indicator for distinguishing between active and passive emotions. Therefore, we treat the range
of spatial use as corresponding to the D parameter in the PAD parameters.

In order to represent spatial extension of the joints’ trajectories, the Geometric Entropy is used.
The measure of geometric entropy provides information on how much the trajectory is spread/dis-
persed over the available space [132]. Glowinski, et al. [139] showed in his study about affective
gestures that the Geometric Entropy Index can be used for comparison of hands trajectorys’ spa-
tial extension. Also, it is stated that the Geometric Entropy informs how the available space is
explored even in very restrained spaces, including the extreme condition of close trajectory. The
joints’ trajectories exhibited in the null space frequently fell into such cases. The geometric entropy
(Hge) is computed by taking the natural logarithm of two times the length of the pattern traveled
by the robot’s links (LP) divided by the perimeter of the convex hull around that path (¢) as shown
in Eq.(5.8). Hye is computed on the frontal plane relative to the participant’s point of view. The
Geometric Entropy is computed for all links and summed up to represent one emotional motion as
whole.

2x LP
c

e =log (5.8)

d) PAD to J,V.S,

Based on the information from the references mentioned above, this study will be communicating
a rough image of emotion (anger, joy, fear, boredom) by regulating the energy of movement (veloc-
ity), and of making people perceive positivity /negativity and dominace level by using the degree
of jerkiness and the level of spatial extent.

Here is the mapping between the points in the PAD space [PAD]T € [-1,1]3 to the points
in the J, V.S, space within the normalized domain [J,V.S,]T € [0,1]® (Eq.(5.9)). J., V. and S,
are motion feature parameters that represents jerkiness, velocity and spatial extent respectively.
The motion feature parameter configures amount of corresponding motion feature in the emotional
motion. Mappings for jerkiness and spatial extent were defined linearly with reference to Claret’s
study [10]. On the other hand, the mapping for velocity were defined to reflect the findings
presented in Wallbott’s study [4] as showin in Fig.5.6. The actual equation of f, is shown in the
appendix.
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Figure 5.6: Expressed the finding of the research by Wallbott [4] by mapping f,.

5.3.3 From Motion Features: J.V.S, to Emotional Motion in Null Space

The effective way to define adjustable emotional motion is presented by Claret et al. [10]. In their
work, the motion was defined in joint velocity space. In contrast, the emotional motion is defined
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in form of the Cartesian space speed (not velocity) Vemo of each iy, joint in this study, since this
work is focusing on the motion in 3D space.

iVemo = Femo(Jra V87 Sp)

= A; sin(w; t + ¢;) (5.11)
Where

Ai = fa([Jr, Ve, Spl)

W; = fw([Jr7‘/;vSP]) (512)

¢i = fo([Jr, Ve, Spl)

By adjusting the amplitude A, frequency w and phase disturbance ¢, certain motion features
such as velocity, jerkiness and spatial extension in Cartesian space can be modified. The A; is
amplitude of the sinusoidal wave where regulate maximum speed of the emotional motion. This
coefficient directory related to the kinetic energy of the motion. On the other hand, this coefficient
also has a significant impact on the spatial extent as well. This is because, in general, in continu-
ous motion, the greater the velocity in three-dimensional space, the greater the space used by the
motion. Therefore, the coefficient that defines the maximum value of this velocity A was designed
to be proportional to both V, and S, parameters as shown below.

Ai = Ve Sp lzml (513)

Where lim; is the maximum acceptable velocity of i, joint. This limits the motion of the joint
in redundant space to the range of [0, lim;].
Next, the phase disturbance of the sinusoidal wave ¢ affects the jerkiness when it set as below.

@i = B;sin(wpt) + Cicos(w,t) (5.14)
where
B '
Cz} = J’r‘ ¢zmaz (515)

wp = ky wi, we = ke w;

O@imaz 1s the maximum design value of the phase shift for 74, joint. This limits the phase shift
to a maximum of 2¢;maes- wWp and w, is the frequency of the phase disturbance respectively. These
are determined relative to w; in Eq.(5.11) using positive value constants k, k..

Finally, the frequency of the periodic velocity shift in 3D space w; has effect on the spatial
extent of the motion. The frequency w; was defined to be inversely correlated to S,. In this way,
as the S, parameter increases, the velocity change in three-dimensional space is expected to be
slower, and the spatial utilization of the motion larger.

wi = —S, ksp + ku (5.16)

Where kg, and k,, are constant for parameter .S, and offset (max value) of the frequency re-
spectively. The constant kg, is set to be the minimum value of the w; is more than 0.
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From the above equations, a motion Veme involving features of jerkiness, velocity, spatial
extent, specified by the [J,., Ve, S,]T parameter is defined. However, since this is defined in the
form of a speed in 3D space, the direction in which this speed is to be achieved must be specified
appropriately. For example, if the axis of this speed can always be set in a direction in which
the robot can move without affecting the main task, then the designed motion feature could be
realized in the null space. On the other hand, if the direction of Veme is set in a direction in which
it is structurally impossible to move, most of the motion feature will be lost when it is projected
to the null space. Therefore, this study addresses this issue using manipulability ellipsoid. The
manipulability ellipsoid is projected into the null space, and its first principal axis is set as the
direction of Vemo- This means that the manipulator always moves for emotional expression in the
direction in which it can move in the null space. Therefore, the amount of motion feature lost by
the null-space projection matrix can be minimized. Vemo was converted to velocity of 3D space
emotional motion Xemo as shown in the following section.

5.3.4 Manipulability Ellipsoid in the Null Space

Manipulability ellipsoids are effective tools to perform task space analysis of robotic manipulators.
Generally, it is used for the evaluation of the capability at the end-effector in terms of velocities, ac-
celerations and forces. There have been many studies about manipulability ellipsoid. For instance,
Yoshikawa introduced the manipulability ellipsoid with consideration of dynamics of the manip-
ulators, which called dynamic manipulability ellipsoid [140]. Also, He present the manipulability
ellipsoid for manipulators with redundancy [141]. Chiacchio et al. have focused on singular pose
of the manipulator and improved the manipulability ellipsoid for manipulators with redundancy
in terms of task-space accelerations [142]. However, those works are about end-effector, and only
recently have manipulability ellipsoid in null space in redundant manipulators been studied by
Kim et al., in 2021 [143].

Manipulability Ellipsoid
Of the Null Space

Manipulability Ellipsoid

Figure 5.7: Manipulability Ellipsoid for 4th joint. The blue/bigger ellipsoid is for the normal
unbounded case. The red/smaller ellipsoid represents the one in the degrees of freedom constrained
by the end-effector.

In Kim et al.’s study, it is stated that the primary axis of the manipulability ellipsoid iX elp
for the 44, joint that is constrained by the end-effectors motion can be calculated using null space
projection matrixs IN and jacobian J.
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Xep =010, (5.17)
where )
Jy=UxVT
(5.18)
iJN = JlNl

The null projected Jacobian ‘J contains the relationship between the joint and the task mo-
tion in the null space. The null projected Jacobian of the ¢;; link is product of the elements of
the 1 — 445, row and column of the null space projection matrix N; and Jacobian of the i;, link
J;. The relationship can be obtained from the singular values and vectors by the singular value
decomposition (SVD) as Eq.(5.18) shows. Where U € R"*™ and V € R™*™ are orthogonal uni-
tary matrices involving singular vectors of ‘J and 3 € R™*™ includes singular values, o; in the
diagonal elements. Thus, the primary axis of the null projected manipulability ellipsoid could be
obtained with the first singular value o1 and the singular vectors of first row of U as shown in
Eq.(5.17).

Finally, the emotional motion speed for each joints Vemo from Eq.(5.11) was transformed to
the velocity along the vector X ., and set as emotional motion X ¢, using Eq.(5.20). Then it is
converted to the joint space velocity motion q,,,, as below.

qemo(t) = 2221 iqemo(t)
. (5.19)
7;qe’mo(t) = JZ# iX@’mO(t)

where,

iXemo(t) = ‘/emo(t) iXelp (520)

Here, n; represents the total number of joints. Note here that we are adding up the joint
displacements to move each joint in the null space. This is because the aim is to allow each joint
to move to its maximum extent in its null space. In a redundant robot arm with a serial struc-
ture, the joints located in the middle have the largest range of movement in the null space due
to its structure. Therefore, when the joint displacements for each joint to move in the null space
are added together, the displacement to move the joint located in the middle naturally becomes
dominant. Although this effect will be small for a fewer DoF robot arm case, this method can be
applied to linearly structured robots with any degrees of freedom, and therefore, the advantage
will be significant when applied to a robot arm with larger DoF.

Finally, Eq.(5.6) is used to transfer this emotional motion to the null space. As noted above,
the direction of this emotional motion is set as the principal axis of the null space manipulability
ellipsoid of each joint, so that maximum expressivity can be expected.

5.4 Implementation

The proposed method is implemented to an upper-half body humanoid "Nextage-Open" shown in
Fig.5.8, developed by Kawada Robotics. Nextage-Open is one of the industrial robot with two of
6 DoF manipulators. However, the manipulator can have 7 DoF when the chest joint is included
(1st joint in Fig.5.8). The main task at the end-effector is set as moving an object in a horizontal
semicircle line. Only the position of the object was specified so that the robot has 4th degree
of redundancy (3 rotational + 1 structural). The joint position control was performed with high
accuracy by the internal controller. The implementation is done through Python3, and the robot
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was operated via Robot Operating System (ROS: Melodic) with Ubuntu environment (Ubuntu
18.04).

The human shaped robot was chosen to conduct survey, so that the participants can naturally
perceive emotion. The point of this work is that, it can be applied to any form of single tree
structure robot, and can move emotionally without disturbing the main task.

In this implementation, 8 kinds of emotional motions were generated; Hostile, Exuberant, Dis-
dainful, Relaxed, Dependent, Anxious, Bored, and Intermediate. First 7 emotions are located at
the vertices of the cube formed in the PAD space in Fig.5.4. On the other hand, the intermediate
emotion is the PAD parameter of [0,0,0].

In order to avoid self collision, motor position limit and velocity limit was strictly set for each
joints following the regulations based on the ISO/TS 15066 and ISO 10218-1 [144]. Also, the emo-
tional motion was simulated in Gazebo simulator and saved beforehand, then played at the right
moment along the scenario even though this method can generate emotional null space motion
online along the main task execution. This is because the robot was owned by Kawada Robotics
and our team want maximum safety for people and the robot. Also, the other arm (left) that
is not conducting main task, was used to express emotion in null space as well, while it keeps
safe distance from the other arm. The neck and face was simply tracking the object during the
interaction, except the part of the initiation of the interaction and the moment of handing object,
in which the robot look at the human.

Figure 5.8: Nextage-Open from Kawada Robotics. Its arm has 7 Dof if the chest joint is included.
The mass is 36 [kg], Hight is 0.93 [m].

5.4.1 Questionnaire

The questionnaire is compose of three parts with following order; Negative Attitude Towards
Robot Scale (NARS), PAD evaluation using SAM scale, and Big 5 personality test. The aim for
this questionnaire is to find out;
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1. If the robot was able to convey intended emotion to human using null space

2. Is the personality and negative attitude towards robot affects interpretation of the emotional
motion

The questionnaire was conducted via internet using Google-Form. The participants are recruited
by a recruiting company (Whateverpartners Co., Ltd) via their platform through the internet. The
participants received 110 Japanese yen after the questionnaire. The informed consent was acquired
at the beginning of the Google-Form by providing the information of the content and background
of the research and possible risk for participation. Also, participants were given the chance to
freely express their comments on their impressions at the end of the questionnaire. The actual
questionnaire is available through the author’s Github repository (URL is in the appendix.

a) SAM Scale

The Self-Assessment Manikin (SAM) by Lang [5] was used to evaluate people’s interpretation of
the robot’s emotion. The SAM scale is a visual questionnaire composed of three scales. Each scale
is corresponding to a dimension of the PAD space. Lang conducted a comparative analysis of mea-
surement results from both the SAM and Mehrabian and Russell’s PAD scales. The correlation
coeflicients between the two scales were 0.94 for pleasure, 0.94 for arousal, and 0.66 for dominance
[95]. The SAM scale can eliminates the effects related to verbal measures because of its visual
nature. Also, the participants can write their responses fast and intuitively. The guidelines for a
questionnaire with the SAM scale can be found in [145]. The actual SAM scale that was used in
this work is shown in Fig.5.9. After observing the robot’s movements, the participants asked to
evaluate the PAD element level in the movements on a 5-point scale, referring to the SAM scale
diagram. Also, after watching each video and estimating the PAD, the respondents were asked to
rate a scale of 1 to 5 how confident they were in answering that PAD (1: not confident at all, 5:
very much confident). In this research, 8 kinds of emotional motion was generated. The order of
the questions are randomized for each participants.

b) Big Five Personality Test

Big Five personality test [146] is a taxonomy of personality traits. The five dimensions are defined
as; Openness to experience, Conscientiousness, Extroversion, Agreeableness, and Neuroticism. Al-
though not all researchers agree on the Big Five, it is the most powerful descriptive model of
personality and is also well-established basic framework in psychology field [146]. The Big Five
has several method to measure; International Personal Item Pool (IPIP) [147], The Ten-Item Per-
sonality Inventory (TIPI) [148], Five Item Personality Inventory (FIPI) [148] and etc.

The most frequently used measures of the Big Five compose of items that are self-descriptive
sentences [149]. In this work, the simplified version of the Big Five personality traits questionnaire
was used in which consists of 15 Japanese questions. This simplified version was based on TIPI-J
by Oshio et al. [150]. This test was used in Yue’s research [151] to diagnose the personality of
humans interacting with robots. Each 3 questions among 15 questions are corresponding to each
dimensions of the Big Five taxonomy. In Yue’s work, it is showed that, the person who has more
openness to experience, tend to think robots to be physically reliable (tough), independent and
emotional (Agency). Thus, the personality would indeed affect the perception of the robot. It will
be helpful to understand the trend of this human’s tendency for designing robot’s behavior for in
the future.

c) Negative Attitude Toward Robots Scale (NARS)

The Negative Attitude Towards Robot Scale (NARS) was developed to measure human attitudes
toward communication robots in daily-life [152]. This scale consists of fourteen questionnaire items
in Japanese. These 14 items are classified into three sub-scales, S1: “Negative Attitude toward
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Figure 5.9: The Self-Assessment Manikin (SAM) by Lang [5]. This scale can eliminates the effects
related to verbal measures because of its visual nature and help participants to write their responses
fast and intuitively.

Situations of Interaction with Robots” (6 items), S2: “Negative Attitude toward Social Influence
of Robots” (5 items), and S3: “Negative Attitude toward Emotions in Interaction with Robots”
(3 items). Each question is answered on a five-point scale (1: I strongly dis-agree, 2: I disagree,
3: Undecided, 4: T agree, 5: I strongly agree), and the score of an person at each sub-scale is
calculated by summing the scores of all the items in the sub-scale. Thus, the minimum score and
maximum score are 6 and 30 in S1, 5 and 25 in S2, and 3 and 15 in S3, respectively.

5.4.2 Experiment Description

The interaction between a person (actor) and the robot is recorded on a camera. During the
interaction, the robot performs an emotion transfer behavior designed by the researcher. There
are three different scenarios for the video: a positive scenario (PS), a negative scenario (NS), and
a positive scenario from frontal view without the human (PSNH) as shown in Fig.5.10. The flow
of the interactions are described below.

<Initializing an Interaction >
1. A robot is rearranging objects (Blue Cubes)
2. A person stands in front of the robot

3. The robot notices the person and turns to face at him

(0]
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Accepting offer
(receiving objects)

i Emotional | | Emotional ! | Emotional ! |
Giving Returning Giving
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~t Giving 1 1 Returning 1 End

Pick Offer Place

Negative Scenario

e} Rejecting offer
§ (not receiving objects)

Figure 5.10: There are three different kinds for the video. First is a positive scenario (PS) where a
human makes an affirmative gesture (nodding) and accepts the object offered by the robot. Second
is a negative scenario (NS) where The human makes a negative gesture and does not accept the
object offered by the robot. Finally, a positive scenario from frontal view without the human
(PSNH) was prepared.

4. The robot offers the object to him (emotion transfer behavior #1)

<Pattern 1 (Positive Scenario) >
1. The person accepts the object with an affirmative action (nodding)
Robot goes to pick up the second object (emotion transfer behavior #2)

The robot offers the second object to the person (emotion transfer behavior #3)

- W N

The person accepts the object with an affirmative action

<Pattern 2 (Negative Scenario) >
1. The person makes a negative action and does not accept the object
2. Robot returns the object to its original place (emotion Transfer Behavior #2)

The main task was specified as time-series 3D space position vector only and not with rotation
vector so that the robot has more redundant degree of freedom to express motion in the null space.
The duration was 7 second and joint angler velocity and acceleration at start and end point was
set to zero. Each emotional behavior is pre-generated and the same emotional expression behavior
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is used in each scenario. After the carrying task with emotional motion, the robot was switched to
position based control and placed the object using predefined position command without the null
space motion which duration is 3 second (see Fig.5.10).

5.5 Result

This section presents the results of the evaluation of the technical aspects of the proposed method
and the results of the evaluation related to human cognition. The result of technical aspects shows
if the proposed method generates motions that actually contain the desired motion features and if
it is able adjust it magnitude. The results of human recognition part presents four results. First,
the quality of the emotion conveyance. The second is the correspondence between the motion
features (jerkiness, velocity, spatial extent) in the movement and the perceived PAD values. The
third result is a comparison between those who estimated the robot’s emotions through positive
scenarios and those who estimated them through negative scenarios. Finally, the results of the
comparison of the PAD values perceived by those with high NARS and those with low scores are
presented.

5.5.1 Generated Motions and Their Motion Features

The 3-dimensional trajectory of emotion "Hostile" is shown in Fig.5.11. As the figure shows,
44p, 5ep, and 6y, joints are moving dynamically while the end-defector keeps predefined trajectory.

The proposed method is capable of adjusting the degree of Jerkiness, kinetic energy, and spatial
extent in the null space, respectively. In order to confirm this, the correspondence between the
motion feature parameters; J., V;, S, and the amount of the desired motion features index in the
actually generated movement is presented in Fig.5.12. The dotted lines are lines approximated by
the least-squares method. In all these cases, there was a positive correlation between the control
parameters of the motion feature; J,., Ve, S, and the amount of the target movement elements in
the movements produced by them. In each figure, the two motion feature parameters other than
the desired parameter are varied between [0, 1]. For example, in the right figure of Fig.5.12, which
is plot about J, parameter, the plots shows the parameters V,. and S, varied from 0, 0.5, and 1,
respectively.

Although, originally simulated motions ,which are plotted in blue color, show variety of motion
feature amount, the actually implemented motions, which are plotted in orange color, show limited
variance in the motion features. Especially, in case of jerkiness, it does not shows wide rage of
jerkiness even though J, parameter varies. The discussion about this will follow in the subsequent
Chapter 5.6.

5.5.2 Emotion Conveyance Results

Secondly, results of the human perception of the robot’s emotions are presented. The Table 5.1
shows the ratings of the robot’s emotions by the participants who viewed the aforementioned emo-
tional expression videos in Section 5.4.2. The age distribution of the participants was; 20’s: 43
(male: 14, female: 29), 30’s: 106 (male:43, female: 63) and 40’s: 118 (male: 64, female: 54), total
is 267. They are all have Japanese cultural background.

There are three different scenarios for the video: a positive scenario (PS), a negative scenario
(NS), and a positive scenario from frontal view without the human (PSNH). Of the 267 respon-
dents, 70 viewed and answered to PS, 87 viewed and answered to NS, and 110 answered to PSNH.

The values of the PAD parameters representing each emotion are shown besides the emotion.
In the "MEAN" column, those highlighted in bold are those for which the majority of participants
guessed the PAD value in the correct direction. "CONF MEAN" is the mean of the confidence
values; after watching each video and estimating the PAD, the respondents were asked to rate a
scale of 1 to 5 how confident they were in answering that PAD (1: not confident at all, 5: very
much confident). In the row of "Bored" and "Docile", " x" represents any value between 0 and
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4% Joint Trajectory
5th Joint Trajectory
6 Joint Trajectory
7t Joint Trajectory
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Figure 5.11: The 3-dimensional trajectory of emotion "Hostile”. As the figure shows, 4th, 5th, and
6th joints are moving dynamically while the end-defector keeps predefined semicircle trajectory.

1. The reason why they share same row is that the motion feature parameters V, and S;, of the
motion assigned to these two emotions are both 0, which leads to zero amplitude of the emotional
motion in Eq.(5.11). This means that for these emotions, the null space motion will be no motion
at all.

The following is a summary of the comments that were voluntarily answered at the end of the
survey. A total of 113 comments were received. Of these, 38 mentioned that it was difficult to
read robot’s emotions. Conversely, 17 expressed that the robot was emotionally expressive. Of
the participants who commented that it was difficult to read emotions, 8 people commented that
they could not read emotions due to the lack of facial expression. 41 people left positive comments
about the experiment, which were hopeful about the future of robots and humans. On the other
hand, 7 people commented on their fear of robots and their desire for thoughtful development of
intelligent robot.

Here is the relationship between the magnitude of the motion features in each emotional move-
ment and the perceived PAD values 5.13. Each plot represents each emotional motion, and the
dotted lines are lines approximated by the least-squares method. While kinetic energy and per-
ceived arousal level have positive correlation as other researches suggest, other two motion feature
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The proposed method is capable of

adjusting the degree of Jerkiness (left), kinetic energy (center), and spatial extent(right) in the
null space, respectively. Those plotted in circles are the motions generated in the simulation
environment (blue), and those plotted with star marks are the ones actually implemented to the
real robot (orange).

didn’t vary much and correlation was not that obvious from those results.
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Figure 5.13: Motion features and perceived emotions.Each plot represents a different emotions, and
the dotted line is the approximate line by the least squares method. Each figure is for Jerkiness
(left), Kinetic Energy (center), and Geometric Entropy (right). "Hostile" was the only one with a
distinctive motion features, while the other emotions were similar

"Hostile" have distinct value in terms of the motion feature as it intended. On the other
hand, the movements other than Hostile were almost identical in terms of movement character-
istics. This must be the reason why the emotion conveyance was not proper as seen in the Table 5.1.

Table 5.2 compares the responses of those who estimated PAD by observing a positive scenario
with those who responded by viewing a negative scenario. p-values are obtained using the "Mann-
Whitney U Test". Significant differences (p < 0.05) are highlighted in bold.
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Table 5.2: Comparison between the group who estimated PAD by observing a positive scenario,
and who with the negative scenario

Positive - Negative

Emotion pp pA PD

Hostile 0.18 0.18 0.04
Exuberant 0.30 0.31 0.01
Dependent 0.00 0.05 o0.01
Anxious 0.00 0.28 0.01
Disdainful 0.37 0.34 0.17
Relaxed 0.05 0.36 0.24
Bored/Docile 0.00 0.30 0.00
Intermediate 0.00 0.00 0.00

This evaluation was done by right-tailed evaluation. To be clarify, Let F(u) and G(u) be the
cumulative distribution functions of the distributions underlying x; an answer from PS and y; an
answer from NS, respectively. In this case, the distribution underlying x is stochastically grater
than the distribution underlying y, i.e. F(u) > G(u) for all u. Thus, positive scenarios tended to
be perceived with higher Pleasure and Dominance than negative ones.

Finally, the Table 5.3 compares the answers of robot emotion (PAD) estimation tendencies of
those with high and low NARS scores. Significant differences (p < 0.1) are highlighted in bold.

Table 5.3: Comparison between the group with high and low NARS scores

NARS High vs Low

Emotion pp PA PD

Bore/Docile 0.01 0.00 0.07
Anxious 0.55 0.19 0.87
Dependent 0.05 0.00 0.06
Disdainful 0.12 0.35 0.30
Relaxed 0.01 0.12 o0.01
Intermediate 0.01 0.01 0.04
Exuberant 0.04 0.01 0.38
Hostile 0.06 0.23 0.18

This evaluation was done by left-tailed evaluation. To be clarify, Let F(u) and G(u) be the
cumulative distribution functions of the distributions underlying x; an answer from high NARS
people and y; an answer from low NARS people, respectively. In this case, the distribution under-
lying x is stochastically less than the distribution underlying y, i.e. F(u) < G(u) for all u. Thus,
People who has less negative attitude towards robots tended to be perceived robot emotion with
higher Pleasure, Arousal and Dominance.

It was difficult to draw clear-cut conclusions about the high and low Bigh personality factors
and the perception of robot’s emotion. This is because the observed correlations were limited
because robot’s emotional expressions were not so different to each other as mentioned in Fig.5.13.

5.6 Discussion

Prior research has shown that motion features such as kinetic energy, jerkiness, and spatial ex-
tent affect human’s perception of emotions. Our approach seeks to change these elements through
modulating the emotional parameters (PAD). The perceived emotion and the intensity of each
movement element are in reference to previous research as described in Section 5.3.2.

80



Shohei Hagane’s PhD thesis

The movements executed in the simulation environment were highly variable, whereas those were
implemented in the actual robot were relatively unvarying. The gap between the implementation
and the simulation was the due to safety concerns.

The Nextage-Open is capable of conducting industrial operations with high control accuracy.
Therefore, it is equipped with heavy /powerful motors. The actor’s safety was our primary concern,
so in the experiment, we limited the range of movements and joint velocity following the regula-
tions based on the ISO/TS 15066 and ISO 10218-1 [144]. In addition, the joint angular jerkiness
was limited to prevent any damage to the robot system.

According to ISO/TS 15066, contact between a robot and a human is classified into two types,
transient contact and quasi-static contact. Transient contact is defined as physical contact be-
tween the robot and human that lasts less than 0.5 seconds, i.e., a collision. Quasi-static contact
is defined as contact that lasts longer than 0.5 seconds and is classified as a "pinching" accident.

ISO/TS 15066 also describes the maximum allowable pressure, which indicates how much force the
human body can take before becoming injured. For example, in quasi-static contact, pressure of up
to 150 N on the neck, 210 N for the back, and 140 N for the fingers are permissible. However, these
numbers are simply indicators of when injury occurs, so they cannot be used as safety measures for
motion generation. To avoid extreme cases, ISO/TS 15066 provides safety design measures such
as speed limits to forces and torques. Table 7?7, which is from the same ISO document, provides a
more realistic guide in ensuring the safety of cooperative robots.

The requirements specified in ISO/TS 15066 and ISO 10218-1 state that the moving speed of
an industrial robot that can be used as a cooperative robot must not exceed 250 mm/s. When
applied to the robot used in our study (torso-right arm: 12 kg), the maximum kinetic energy that
can be exerted is roughly 0.375 [kgm?/s?]. Therefore, an industrial robot is required to express
emotional behavior in the range of 0 - 0.375 [kgm?/s?]. Considering that the maximum value of ki-
netic energy in the implemented motion was 0.72 [kgm?/s?], it is clear that our method implements
almost the maximum value of motion that can be adapted safely. The presented results show that
emotional movements in the range of 0 - 0.375 [kgm?/s?] are difficult for people to discriminate.
In other words, current industrial robots must exaggerate their movements to a dangerous in order
to express distinct emotions in a comprehensible manner. Thus, collision avoidance techniques and
soft robots are needed to deal with this problem. In order for robots to move freely in human
society, it is necessary to take human safety into consideration and abide by relevant laws. In light
of this, soft robots and robots made of light materials will have an advantage in entering human
society.

Another reason that participants were unable to distinguish between emotional motions may be
that the conversion from PAD parameters to J,. V.S, parameters was not appropriate. In particular,
there is room for improvement in the conversion of the V, parameter, which is responsible for the
amplitude of the motion in the null space. As shown in Fig.5.13, only "Hostile" had a noticeable
change in the movement component. This is due to the fact that when converting PAD parameters
to V. through f, in Eq.(5.9), the V. parameters were set to take a range of 0 to 0.5 except the
case of "Hostile". The V., parameters were not scattered between 0 and 1 but clustered between
0 to 0.5, resulting in similar movements of the elements of the behavior except the case of "Hostile".

As shown in Table 5.1, for all three scenarios, the majority correctly estimated the "Arousal"
level of "Bored," "Hostile," and "Relaxed." However, most of items in the table have a standard
deviation of more than 0.4, which suggest that participants had difficulty in discerning emotions.

Between the responses when viewing the robot-only video (PSNH) and when viewing the HRI
video (PS, NS), participants were relatively more confident in their estimation of emotion when
viewing the HRI. This suggests that the context of the interaction greatly affected the recogni-
tion of emotion in the HRI, especially if it was difficult to find differences in emotional behavior.
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As shown in Table 5.2, the positive scenarios tended to be perceived with higher Pleasure and
Dominance than the negative ones. The participants who observed the NS provided the following
comments referring to the context of the interaction:

"I felt a little sorry for the robots that always got turned down."

"It was easy to get a negative impression because I felt sad that the robot’s offer was not ac-
cepted. "

"The way the robot looked at people when they approached, and the way it seemed to be disap-
pointed after being rejected were very human-like."”

Besides the context of the interactions, prejudice toward robots also altered the emotional readings.
Table 5.3 shows that those with high NARS were more likely to interpret the robot emotion PAD
as low.

These results suggest that emotion judgments are made based on the emotion expression be-
havior, the content of the interaction (story), and the observer’s impression of the robot. In this
case, because it was difficult to read emotions from the robot’s movements, the observers either
rationalized the emotions from the scenario or perceived low negative emotions by unconsciously
projecting their own prejudices toward the robot.

There were eight comments that referred to the robot’s facial expressions and facial movements,
which were not used as emotional expression movements at this time. Those comments indicated
that facial expressions and gaze (facial orientation) play an important role in conveying emotional
information for humanoid robots.

These elements are complementary, so that if one is missing, the others compensate for it, and
then people try make sense of the emotion.

5.7 Conclusion

Sharing emotion between human and robot is one of the most important elements of human-robot
interaction (HRI). Through sharing emotion, people may find HRI socially variable and robots
would be able to work at full capacity without aversion/disturbance from people.

We introduced a method of conveying emotions through a robot arm while it simultaneously
executes other tasks. Our method utilizes a null space control scheme to exploit the kinematic
redundancy of a robot manipulator. The null space control is for adding sub-tasks (additional
motion) to the robot without affecting the task at the end-effector. We have also presented an
effective motion generating method that combines manipulability ellipsoid and null space control.
This method enable the robot to continue to move within the redundant degrees of freedom. Prior
research has shown that motion features such as kinetic energy, jerkiness, and spatial extent affect
humans’ perception of emotion. Thus, our approach seeks to adjust these features through modu-
lating the emotional parameters (PAD).

The Nextage-Open was used to implement the proposed method, and the HRI was recorded
on video. Eight different emotions (Bored, Anxious, Dependent, Disdainful, Relaxed, Hostile, Ex-
uberant, and Intermediate) were expressed for each interaction. Then a questionnaire containing
the Self-Assessment Manikin (SAM) scale, Negative Attitude Towards Robot Scale (NARS), and
Big Five Personality Test was conducted via the internet using Google Forms.
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Responses were collected from 267 people, and the results suggested that even when industrial
machines perform emotional behaviors within the safety standards set by ISO/TS 15066, it is
difficult to provide enough variety of motion for each emotion to be distinguished. However, the
analysis of the generated motions in simulation showed that the proposed method can adjust the
important motion features through modulating the motion feature parameters J,V,S,.

Furthermore, the results suggest that emotion judgments are made based on the influence of the
emotion expressing behavior, the context of the interaction (scenario), the observer’s impression of
the robot, and gaze/facial expression, and these factors compensate for each other. In our study,
because the robot’s emotional motion was difficult to distinguish, the observers either rationalized
the emotions from the scenario or perceived low PAD emotions (negative, less active and passive)
by unconsciously projecting their own prejudices toward the robot.

Finally, if a robot unilaterally expresses emotions while ignoring the person’s emotional state,
there will be no empathy between the two. A system that observes the person’s reactions and
express emotions accordingly (human-in-loop) is also necessary and will be our next research di-
rection. Moreover, because some robotic arms do not have practical joint position limits, (e.g., the
Kinova Jaco-arm), another interesting direction for this research would be to explore the possibility
of expressing emotions through non-human like movements.

5.8 Publications

The following list contains the published and submitted papers regarding this doctoral work.

Journals

e S. Hagane, G. Venture, Robotic Manipulator’s Expressive Movements Control Using Kine-
matic Redundancy, Machines, 10(12), 1118, October 2022
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Table 5.1: Results of the emotion conveyance questionnaire

(a) Positive

. MEAN STD CONF MEAN
Scenario (PS)
Emotion [P, A, D] up A 1735) op oA op ne
Intermediate [0, 0, 0] -0.11  -0.27 -0.09 0.40 0.39 0.51 3.07
Exuberant [1, 1, 1] -0.21  -0.25 -0.02 0.47 041 049 3.24
Relaxed [1,-1, 1] -0.20 -0.33 -0.14 0.43 0.42 0.43 3.11
Anxious [-1, 1, -1] -0.17  -0.36 -0.16 0.44 0.42 0.54 3.03
Bore/Docile [x,-1,-1] -0.14 -0.31 -0.01 0.50 0.43 0.53 2.99
Disdainful [-1,-1,1] -0.22 -0.08 -0.22 0.53 0.49 0.56 3.27
Hostile [-1, 1, 1] -0.06 0.35 0.06 0.67 0.53 0.55 3.84
Dependent 1, 1,-1] -0.16 -0.37  -0.09 0.41 0.44 0.50 3.07
(b) Negative MEAN STD CONF MEAN
Scenario (NS)
Emotion [P, A, D] wp HA 1755} op 0a 0p ue
Intermediate [0, 0, 0] -0.41  -0.45 -0.33 0.43 041 0.46 2.92
Exuberant [1, 1, 1] -0.24  -0.28 -0.21 0.42 0.42 0.49 3.30
Relaxed [1,-1, 1] -0.30 -0.36 -0.20 0.39 0.44 0.55 3.08
Anxious [1,1,-1] -0.46 -041 -0.39  0.35 045 0.43 2.92
Bore/Docile [x,-1,-1 -0.40 -0.35 -0.29 039 0.39 0.1 3.02
Disdainful [-1, -1, 1] -0.20 -0.03 -0.14 0.47 047 0.51 3.26
Hostile [-1, 1, 1] -0.17  0.29 -0.09 0.48 0.49 0.50 3.28
Dependent [1,1,-1 039 -048 -0.26 042 038 0.44 2.94
(c¢) PS Without
Human (PSNI) MEAN STD CONF MEAN
Emotion [P, A, D] up HA 1255) 5p 5A 5D |2%e
Intermediate [0, 0, 0] -0.09 -0.35 -0.11 0.39 0.42 0.51 2.75
Exuberant [1, 1, 1] -0.09 -0.28 -0.05 045 0.43 0.49 2.95
Relaxed [1, -1, 1] -0.15 -0.39 -0.11 0.45 046 0.51 2.80
Anxious [-1,1,-1] -0.13 -0.33 -0.09 0.38 0.43 0.50 2.73
Bore/Docile [x,-1,-1] -0.08 -0.28 0.04 0.41 0.50 0.53 2.77
Disdainful [-1, -1, 1] -0.15  -0.04 -0.21 0.56 0.55 0.56 3.37
Hostile [-1, 1, 1] -0.08 0.30 -0.10 0.66 0.61 0.56 3.75
Dependent [1, 1, -1] -0.07  -0.30 -0.01 0.42 0.49 0.50 2.68

"CONF MEAN" is the mean of the confidence values:

majority of participants guessed the PAD value in the correct direction.

how confident they were in answering that PAD (1: not
confident at all, 5: very much confident). In the "MEAN" column, those highlighted in bold are those for which the

(a) 70 answers are acquired in total for PS. (b) 87 answers are acquired in total for NS. (¢) 110 answers are
acquired in total for PSNH.
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Conclusion

SUMMARY resents the conclusions of the thesis, outlining the main contributions and directions
for further research regarding limitations of presented works. Also, published work during the
doctoral course is presented.

6.1 Summary of the Contributions
The main general contributions of this thesis are the following:

e The development of the AGPC system that adapt to the new reference model based on the
fast dynamic and geometric identification with optimal trajectories and capable of precise
motion and force control.

e presents the successful design of a Generalized Predictive Control/Controller that is able to
control robot’s joint position and velocity stably under a wide range of posture/velocity /ac-
celeration for a 3-DoF robot arm using linearization method by Koopman Operator.

e Developed an emotion expression method that exploits manipulability ellipsoid for expressing
emotional motion in the null space effectively while executing a main task at the end-effector.

Regarding the Adaptive Generalized Predictive Control/Controller and Cartesian force control
for robot arm using dynamics and geometric identification, which corresponds to the Chapter 3 of
this thesis, the particular contributions are:

e Presented the successful application of GPC to the robot manipulator, in which result showed
that GPC can be stabilized even with local and simple lionization when the control parameter
is adapted according to the stability index.

In this study, integration of the fast dynamic and geometric identification of robotic manipu-
lator and Model Predictive Control/Controller method namely GPC was presented. The system
is named AGPC and it compose of the tuning system of AGPC’s control parameters for the op-
timal predictor, with respect to the dynamic and geometric modeling of the robot. The proposed
methods were applied to the KUKA lightweight robot. During the roller painting task, the ex-
ternal forces applied to the end-effector could be estimated and controlled without a force sensor
mounted at the end-effector, due to the accurate model identification. Moreover, the controllers
were developed using the identification performed with the exciting motion of 10 s, which was
generated by an optimization. The proposed adaptive predictive controllers were compared with
other controllers such as the PD control with gravitational compensation, feedforward with PD
control, and GPC. The AGPC updated itself during the motion and successfully controlled the
robot with good stability by exploiting the fine identified SIPs. The GPC and AGPC demonstrated
excellent control performances such as a 90% reduction in the position errors when compared with
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the results of the previous experiment. Moreover, a novel tuning design with robust control will
be developed in the future to enhance the AGPC. Furthermore, the future work will extend this
method to a significantly larger number variables, rollers, and tools.

Regarding the linearizing robotic manipulator’s dynamics using koopman operator and apply-
ing generalized predictive control, which corresponds to the Chapter 4 of this thesis, the particular
contributions are:

e Presents working a candidate for new state vector (observables) for 3 DoF serial link ma-
nipulators. The optimal observables choice was acquired by expanding the robot dynamics
equation and using its monorails. The KP was then identified by the least-squares mini-
mization, and an approximate linear state-space model of the 3 DoF simplified Panda robot
was identified. Using this, GPC was designed, and it was compared with PD controller.
Fig.4.3 shows that our observables choice was properly describing the non-linear behavior
globally and made the linear state space model as accurate as previous research. Using these
linear predictors, GPC was designed and its performance in the task space and joint space
was shown in Fig.4.4 and Fig.4.5. The results depict GPCs have more adaptability to the
different motions velocities than PD control.

e Presents a method which exploit Singular Value Decomposition (SVD) of the KP to obtain
proper observables for identification of better KP.

e presents advantage of choosing a large size observable to identify KP which that the KP
identified for a larger size of observables contains more information about the system. The
results show that the information of the mass of the end-effector is reflected in the operator’s
value. This suggests that information-rich KP can be analyzed using machine learning tech-
niques such as PCA or auto-encoders to estimate the mass and even the shape of the object
at the tip of the hand.

Chapter 4 contributes to one of the few instances in which the KP has been introduced into
the serial link robot arm system. This study presents an example of the linearization of a robot
manipulator’s dynamics using KP, and presents practical issues to be considered when applying
the principle of KP theory to robotic systems which is the question of how to embed the new
observables to get sufficient linearized model. Also, it introduced the advantages of setting up
large-size observables. Using the KP, this work presents the successful design of a Generalized
Predictive Controller (GPC) that is able to control robot position and velocity stably under a wide
range of posture/velocity/acceleration for a 3-Dof robot arm. Control results show that our GPC
performance outperforms a traditional PD controller in terms of adaptability to the diverse target
trajectories.

Regarding the robotic manipulator expressing emotions as sub-task using kinematic redundancy,
which corresponds to the Chapter 5 of this thesis, the particular contributions are:

e Developed the motion generation system for robotic manipulator that adjust motion feature
in the redundant degree of freedom (a.k.a null space). The adjusted motion features are
effectively executed in the null space by using the concept of manipulability ellipsoid. The
result showed that the proposed method is capable of adjusting the degree of Jerkiness (left),
kinetic energy (center), and spatial extent(right) in the null space.

e Presents actual examples of emotional expression within the speed limit as stated in the
guidelines for industrial robots performing cooperative tasks (ISO/TS 15066 [144]). The
result showed that current industrial robots must exaggerate their movements to a dangerous
in order to express distinct emotions in a comprehensible manner.

e Presents the results suggest that emotion judgments are made based on the influence of
the emotion expressing behavior, the context of the interaction (scenario), the observer’s
impression of the robot, and gaze/facial expression, and these factors compensate for each
other in case of emotion is unclear from movements.
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The chpter 5 introduces an emotion expression method that can coexist with any main task
at end-effector. This method exploits manipulability ellipsoid for expressing emotional motion
in the null space effectively. By adjusting the velocity of its null space motion, jerkiness, and
spatial extent, this method enables any manipulators to show its mood while executing the main
task at its end-effector. The Nextage-Open was used to implement the proposed method, and
the HRI was recorded on video. Eight different emotions (Bored, Anxious, Dependent, Disdain-
ful, Relaxed, Hostile, Exuberant, and Intermediate) were expressed for each interaction. Then a
questionnaire containing the Self-Assessment Manikin (SAM) scale, Negative Attitude Towards
Robot Scale (NARS), and Big Five Personality Test was conducted via the internet using Google
Forms. Responses were collected from 267 people, and the results suggested that even when in-
dustrial machines perform emotional behaviors within the safety standards set by ISO/TS 15066,
it is difficult to provide enough variety of motion for each emotion to be distinguished. However,
the analysis of the generated motions in simulation showed that the proposed method can ad-
just the important motion features through modulating the motion feature parameters J,V.S,.
Furthermore, the results suggest that emotion judgments are made based on the influence of the
emotion expressing behavior, the context of the interaction (scenario), the observer’s impression of
the robot, and gaze/facial expression, and these factors compensate for each other. In our study,
because the robot’s emotional motion was difficult to distinguish, the observers either rationalized
the emotions from the scenario or perceived low PAD emotions (negative, less active and passive)
by unconsciously projecting their own prejudices toward the robot.

6.2 Limitations and Future Work

During the realization of this doctoral work, several limitations of the proposed method became
clear and interesting directions to follow in future research have emerged.

About AGPC, the computation intensity is the biggest limitation. The control sampling frequency
will be higher when the computation process is parallelized. In the AGPC system, the computa-
tions of inertial matrix and optimization of the GPC control parameter are biggest source of the
computation time consumption. The simple ways to parallelize those process are using multiple
processor and optimizing scripts. Moreover, applicable system for this AGPC method is limited to
the legit body structure and require joint torque and acceleration information for DPI. However,
in the future, the structure of robot will be more diverse and acquiring joint sensory information
will be not simple. For example, soft robot that doesn’t have joints and bio-inspired joint with
complex actuator is not easy for this method to adapt.

Here, data driven dynamical system analysis such as KP is interesting for DPI application. Data
driven approach doesn’t require symbolic modeling about robot structure but use only history of
motion data (e.g. time-series control input and corresponding output of controlled system) and
generate model that represents a relationship between those data. Although, the acquired model
often doesn’t show system’s dynamics intuitively and it seems difficult to extract variable numbers
such as SIP, machine learning approach will be a great tool to obtain dynamics data from the
model. Even though, by skipping detailed symbolic structural modeling, there is a possibility of
insufficient modeling result, recent rise of computation power will cover this problem and it is open
question to us how to obtain accurate model and SIP from motion data only.

In this thesis, robotic manipulator’s dynamics was identified as state space model using KP. And
it was utilized to design GPC. However, the performance of GPC was not as good as Computed
Torque Control/Controller (CTC) with accurate dynamical and kinematic model due to the model
error. This model error is from the choice of observables that was set when KP was identified and
quality of data that is used to identify KP. If the motion data was biased to a certain posture and
acceleration was not enough, the non-linearity of robot’s dynamics will be not modeled properly. In
another word, how to generate motion trajectory that satisfied enough acceleration and variation
of posture is important question. Moreover, the cost function for evaluating the quality of the
trajectory for KP is interesting research direction.
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About the optimisation of choice of observables, it is also open question that ought to be an-
swered. It should be possible that one can design specialized observables and identify KP to detect
dynamical parameter change of robot. In this thesis, SVD was used to KP to optimize the ob-
servables. On the other hand, author believe that it is also interesting to search for elements of
the Koopman operator matrix that change in response to changes in the end-effector mass, in
order to determine the optimal observables. Furthermore, if the observables are optimal and the
motion trajectory is good quality, it might possible to detect not only the mass information of the
end-effector but also the shape of the end-effector (tool).

ultimately, MPC that occasionally update its reference model automatically to deal with dynamic
parameter change and realize fast and accurate motion is possible. it is author’s hope to control
soft /light robot with high precision using MPC so that finally robot can work close to the people
safely and advance understanding how to deal with robot and better use of robot. The reason why
soft/light robot is author’s interest is that the heavy legit robots are still difficult to be operated
close to human. As mentioned in chapter 5, the speed limit of the end-effector of cooperative robot
is quite slow as it regulated in ISO. However, emotional motions require more speed range to be
perceived as different emotions.

Besides the social constrain of the robot, emotional motion generator still need to be adjust its
mapping between emotion (PAD) to motion feature (JVS). Especially, the mapping of PAD to ve-
locity parameter is interesting topic since the velocity of motion affect significantly how the motion
is perceive by people. Also, it will be interesting to introduce this method to non-human shape
robot. In the presented application experiment of the system in chapter 5, the emotional motion
was constrained within human like posture due to motor position limit. However, there are many
robot with non-human shaped and some robot doesn’t have joint position limit so it can realize
non-human-like motion. It is interesting to see how people will perceive these motions.

Finally, if a robot unilaterally expresses emotions while ignoring the person’s emotional state, there
will be no empathy between the two. A system that observes the person’s reactions and express
emotions accordingly (human-in-loop) is also necessary and will be our next research direction.

6.3 Publications

The following list contains the published and submitted papers generated during the course of this
doctoral work.

Journals

e S. Hagane, L.K. Rincon-Ardila, T. Katsumata, V. Bonnet, P. Fraisse, G. Venture, Adaptive
Generalized Predictive Controller and Cartesian Force Control for Robot Arm Using Dy-

namics and Geometric Identification, Journal of Robotics and Mechatronics, volume 30(6),
pp.927-942, December 2018, DOI: 10.20965/jrm.2018.p0927, * Associated to Chapter 3

e S. Hagane, G. Venture, Robotic Manipulator’s Expressive Movements Control Using Kine-
matic Redundancy, Machines, 10(12), 1118, October 2022, DOI: 10.3390 /machines10121118,
*Associated to Chapter 5

e S. Capy, P. Osorio, S. Hagane, C. Aznar, D. Garcin, E. Coronado, D. Deuff, I. Ocnarescu, I.
Milleville, and G. Venture, Yokobo: A Robot to Strengthen Links Amongst Users with Non-
Verbal Behaviours, Machines, volume 10(8), number 708, August 2022, DOI: 10.3390/ma-
chines10080708, *Associated to doctoral dissertation of Siméon Capy
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e S. Capy, L.K. Rincon-Ardila, E. Coronado, S. Hagane, S. Yamaguchi, V. Leve, Y. Kawasumi,
Y. Kudou, G. Venture, Expanding the Frontiers of Industrial Robots Beyond Factories: De-
sign and Validation in the Wild of a Multimodal, Affective and Cognitive Robotic System,
Machines, 10(12), 1179, October 2022, DOI: 10.3390/machines10121179, *Associated to doc-
toral dissertation of Siméon Capy

Conference

e T. Katsumata, S. Hagane, B. Navaro, P. Fraisse, G. Venture, Adaptive cartesian force con-
trol using payload dynamics and geometric identification, The Proceedings of JSME annual
Conference on Robotics and Mechatronics (Robomec2017), Fukushima Japan, Session 1P1-
H11, November 2017, ISSN: 2424-3124, DOI: 10.1299/jsmermd.2017.1P1-H11, *Associated
to Chapter 3

e S. Hagane, L. Rincon, T. Katsumata, G. Venture, Adaptive Generalized Predictive Control
for 7 DoF Robot Arm, The Proceedings of 23th Robotics Symposia, Shizuoka Japan, Session
5C1, pp 324-329, March 2018, *Associated to Chapter 3

e S. Hagane, L. Jamone, G. Venture, Linearizing Robotic Manipulator’s Dynamics Using Koop-
man Operator and Applying Generalized Predictive Control, 2023 IEEE /SICE International
Symposium on System Integration (SI112023),WeP2M2.6, Atlanta USA, January 2023, *As-
sociated to Chapter 4

e D. Deuff, I. Milleville-Pennel, I. Ocnarescu, D. Garcin, C. Aznar, S. Capy, S. Hagane, P. Os-
orio, E. Coronado, L.K. Rincon-Ardila, and G. Venture, Together Alone, Yokobo, a Sensible
Presence Robject for the Home of Newly Retired Couples, Association for Computing Machin-
ery, 2022 Designing Interactive Systems Conference (DIS’22), Virtual Event and Australia,
ppl773-1787, June 2022, DOI 10.1145/3532106.3533485 *Associated to doctoral dissertation
of Dominique Deuff

e S. Capy, E. Coronado, P. Osorio, S. Hagane, D. Deuff and G. Venture, Integration of a
Presence Robot in a Smart Home, 2023 3rd International Conference on Computer, Control
and Robotics (ICCCR2023), Shanghai China, March 2023, Accepted, *Associated to doctoral
dissertation of Siméon Capy

89



Bibliography

1]

2]

13l

4]

5]

(6]
17l

18]

19]

[10]

[11]

[12]

[13]
[14]

[15]

T. Katsumata, B. Navarro, V. Bonnet, P. Fraisse, A. Crosnier, and G. Venture. Optimal
exciting motion for fast robot identification. application to contact painting tasks with esti-
mated external forces. Robotics and Autonomous Systems, 113:149-159, 2019.

Clarke D. W. Generalized predictive control, part i, the basic algorithm. Automatica,
23(2):137, 1987.

A. Mehrabian. Pleasure-arousal-dominance : A general framework for describing and mea-
suring individual differences in temperament. J. of Current Psychology, 14(4):261-292, 1996.

G.H. Wallbott and R.K. Scherer. Cues and channels in emotion recognition. Journal of
Personality and Social Psychology, 51:690-699, 1986.

M.M. Bradley and P.J. Lang. Measuring emotion: The self-assessment manikin and the
semantic differential. Journal of Behavior Therapy and Experimental Psychiatry, 25(1):49—
59, 1994.

A. Smith and M. Anderson. Automation in everyday life.

Provide Japan. "EE G EHR" TRy b TIIR K AMHC - 2 b v &
FIPBLL LoV ERC/NED AT 7" e E AT FICH S DI TR E R &
W s F2IEIEICH 5 2 & pHlE.

H. Knight. FEzpressive Motion for Low Degree-of-Freedom Robots. PhD thesis, Carnegie
Mellon University, Pittsburgh, PA, August 2016.

A. Beck, L. Canamero, A. Hiolle, L. Damiano, P. Cosi, F. Tesser, and G. Sommavilla.
Interpretation of emotional body language displayed by a humanoid robot: A case study
with children. International Journal of Social Robotics, 5, 08 2013.

J.A. Claret, G. Venture, and L. Basanez. Exploiting the robot kinematic redundancy for
emotion conveyance to humans as a lower priority task. International Journal of Social

Robotics, 9(2):277-292, 1 2017.

A. Lim, T. Ogata, and G.H. Okuno. Converting emotional voice to motion for robot telepres-
ence. In 2011 11th IEEE-RAS International Conference on Humanoid Robots, pages 472-479,
2011.

Y. Yamamoto. Pseudo-interpersonal behavior - conditions for induction. Cognitive Studies,
1(2):2-95-99, 1994.

M. Juang. Next-gen robots: The latest victims of workplace abuse.

Hiroshi Ashida. Visual psychophysics (8): Visual motion perception and motion pictures.
Kyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television En-
gineers, 58(8):1151-1156, 2004.

G. Johsnsson. Visual perception of biological motion and a model for its analysis. Perception
& Psyehophysics, 14(2):201-211, 1973.

90



Shohei Hagane’s PhD thesis

[16]
[17]

(18]

[19]

[20]

[21]
22]
23]
[24]
[25]

[26]

27]

(28]

29]

[30]

31]

32]

[33]

[34]

[35]

[36]

M. Simon. R.i.p., anki: Yet another home robotics company powers down.

Shohei Hagane, Liz Katherine Rincon Ardila, Takuma Katsumata, Vincent Bonnet, Philippe
Fraisse, , and Gentiane Venture. Adaptive generalized predictive controller and cartesian force
control for robot arm using dynamics and geometric identification. Journal of Robotics and
Mechatronics, 30(6):927-942, 2018.

J.M. Maciejowski, P.J. Goulart, and E.C. Kerrigan. Constrained Control Using Model Pre-
dictive Control, pages 273-291. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

G. Arfken. Lagrange Multipliers. Number 945-950 in 17.6 in Mathematical Methods for
Physicists, 3rd ed. Academic Press, 1985.

K. Holkar, K Wagh, and L. Waghmare. An overview of model predictive control. International
Journal of Control and Automation, 3, 01 2011.

K. Taji. €7 THRIFIHEICT 2\ <2 di &4, In 19th RAMP Symposium.
J Legarda. LINEARIZATION TECHNIQUES, pages 75-95. Springer US, Boston, MA, 2006.
J. J. E. Slotine and W. Li. Applied nonlinear control. Prentice Hall, 1991.

Julian Nubert, Johannes Kohler, Vincent Berenz, Frank Allgower, and Sebastian Trimpe.
Safe and fast tracking on a robot manipulator: Robust MPC and neural network control.
IEEFE Robotics and Automation Letters, 5(2):3050-3057, 4 2020.

Davide Bazzi, Costanza Messeri, Andrea Maria Zanchettin, and Paolo Rocco. Identification
of robot forward dynamics via neural network. pages 13-21, 10 2020.

U. O. Akpan and M. R. Kujath. Stochastic Vibration of a Mobile Manipulator. Journal of
Applied Mechanics, 64(3):670-675, 09 1997.

K. J. Latawiec. Extended horizon adaptive model algorithmic control. IFAC Proceedings
Volumes, 30(11):305-310, 1997. IFAC Symposium on System Identification (SYSID’97),
Kitakyushu, Fukuoka, Japan, 8-11 July 1997.

R.M.C. De Keyser and A.R. Van Cauwenberghe. Extended prediction self-adaptive con-
trol. IFAC Proceedings Volumes, 18(5):1255-1260, 1985. 7th IFAC/IFORS Symposium on
Identification and System Parameter Estimation, York, UK, 3-7 July.

A. L. Elshafei, G. A. Dumont, and A. Elnaggar. Adaptive gpc based on laguerre-filters
modelling. Automatica, 30(12):1913-1920, 1994.

Avadesh Meduri, Huaijiang Zhu, Armand Jordana, and Ludovic Righetti. Mpc with sensor-
based online cost adaptation, 2022.

T. Henmi. Control parameters tuning method of nonlinear model predictive controller based
on quantitatively analyzing. Journal of Robotics and Mechatronics, 28(5):695-701, 10 2016.

S.J. Qin and T. A. Badgwell. A survey of industrial model predictive control technology.
Control Engineering Practice, 11(7):733-764, 2003.

E. F. Camacho and C. (Carlos) Bordons. Model predictive control. Advanced textbooks in
control and signal processing. Springer, 2nd ed edition, 2004.

D.W. Clarke. Application of generalized predictive control to industrial processes. IEEFE
Control Systems Magazine, 8(2):49-55, 1988.

S. Ajwad, J. Igbal, M. Ullah, and A. Mehmood. A systematic review of current and emergent
manipulator control approaches. Frontiers of Mechanical Engineering, 10:1-13, 04 2015.

M. Makarov, M. Grossard, P. Rodriguez-Ayerbe, and D. Dumur. Generalized predictive
control of an anthropomorphic robot arm for trajectory tracking. In 2011 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics (AIM), pages 948-953, 2011.

91



Bibliography

37]

38

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

A. Pedro Aguiar, Joao P. Hespanha, and Petar V. Kokotovi¢. Performance limitations in
reference tracking and path following for nonlinear systems. Automatica, 44(3):598-610,
2008.

Christopher G. Atkeson, Chae H. An, and John M. Hollerbach. Estimation of inertial pa-
rameters of manipulator loads and links. The International Journal of Robotics Research,
5(3):101-119, 1986.

Jun Wu, Jinsong Wang, and Zheng You. An overview of dynamic parameter identification
of robots. Robotics and Computer-Integrated Manufacturing, 26(5):414-419, 2010.

M. Grotjahn, M. Daemi, and B. Heimann. Friction and rigid body identification of robot
dynamics. International Journal of Solids and Structures, 38(10):1889-1902, 2001.

Y. Fujimoto and A. Kawamura. Robust biped walking with active interaction control between
robot and environment. In Proceedings of 4th IEEE International Workshop on Advanced
Motion Control - AMC ’96 - MIE, volume 1, pages 247252 vol.1, 1996.

M. Gautier and W. Khalil. On the identification of the inertial parameters of robots. In
Proceedings of the 27th IEEE Conference on Decision and Control, pages 22642269 vol.3,
1988.

W. Khalil and E. Dombre. Modeling, Identification and Control of Robots. Kogan Page
Science paper edition Modeling, identification & control of robots. Elsevier Science, 2004.

M. Gautier. Numerical calculation of the base inertial parameters of robots. In Proceedings.,
IEEFE International Conference on Robotics and Automation, pages 1020-1025 vol.2, 1990.

M. Gautier and G. Venture. Identification of standard dynamic parameters of robots with
positive definite inertia matrix. In 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 58155820, 2013.

B. Armstrong, O. Khatib, and J. Burdick. The explicit dynamic model and inertial parame-
ters of the puma 560 arm. In Proceedings. 1986 IEEE International Conference on Robotics
and Automation, volume 3, pages 510-518, 1986.

W. Khalil and E. Dombre. Chapter 9 - dynamic modeling of serial robots. In W. Khalil
and E. Dombre, editors, Modeling, Identification and Control of Robots, pages 191-233.
Butterworth-Heinemann, Oxford, 2002.

W. Khalil, M. Gautier, and P. Lemoine. Identification of the payload inertial parameters
of industrial manipulators. In Proceedings 2007 IEEE International Conference on Robotics
and Automation, pages 4943-4948, 2007.

J. Swevers, C. Ganseman, D.B. Tukel, J. de Schutter, and H. Van Brussel. Optimal robot
excitation and identification. IEEE Transactions on Robotics and Automation, 13(5):730-
740, 1997.

G. Calafiore, M. Indri, and B. Bona. Robot dynamic calibration: Optimal excitation tra-
jectories and experimental parameter estimation. Journal of Robotic Systems, 18(2):55-68,
2001.

W. Rackl, R. Lampariello, and G. Hirzinger. Robot excitation trajectories for dynamic
parameter estimation using optimized b-splines. In 2012 IEEFE International Conference on
Robotics and Automation, pages 2042-2047, 2012.

J. Jin and N. Gans. Parameter identification for industrial robots with a fast and robust
trajectory design approach. Robotics and Computer-Integrated Manufacturing, 31:21-29,
2015.

R Serban and JS Freeman. Identification and identifiability of unknown parameters in multi-
body dynamic systems. Multibody System Dynamics, 5(4):335-350, 2001.

92



Shohei Hagane’s PhD thesis

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

(62]

(63]

[64]

[65]

(6]

(67]

[68]

[69]

[70]

[71]

[72]

Etienne Burdet and Alain Codourey. Evaluation of parametric and nonparametric nonlinear
adaptive controllers. Robotica, 16(1):59-73, 1998.

KS Narendra and K Parthasarathy. Identification and control of dynamical systems using
neural network. IEEE Trans Neural Networks, 1999 (1), 1992.

Jun Wu, Jinsong Wang, and Zheng You. An overview of dynamic parameter identification
of robots. Robotics and computer-integrated manufacturing, 26(5):414-419, 2010.

B. O. Koopman. Hamiltonian systems and transformation in hilbert space. Proc. of the
National Academy of Sciences, 17(5):315-318, 1931.

B. O. Koopman and J. v. Neumann. Dynamical systems of continuous spectra. Proc. of the
National Academy of Sciences, 18(3):255-263, 1932.

Steven L. Brunton and J. Nathan Kutz. Data-Driven Science and Engineering: Machine
Learning, Dynamical Systems, and Control. Cambridge University Press, 2019.

D Bruder, B Gillespie, C. D. Remy, and R Vasudevan. Modeling and control of soft robots
using the koopman operator and model predictive control. ArXiv, 2019.

I. Abraham and T. D. Murphey. Active learning of dynamics for data-driven control using
koopman operators. IEEE Trans. on Robotics, 35:1071-1083, 2019.

D.Q. Mayne, J.B. Rawlings, C.V. Rao, and P.O.M. Scokaert. Constrained model predictive
control: Stability and optimality. Automatica, 36(6):789-814, 2000.

M. Korda and I. Mezi¢. Linear predictors for nonlinear dynamical systems: Koopman oper-
ator meets model predictive control. Automatica, 93:149-160, jul 2018.

Y Igarashi, M Yamakita, J Ng, and H. H Asada. Mpc performances for nonlinear systems
using several linearization models. In American Control Conf. (ACC), pages 2426-2431,
2020.

S. Gregory and S. Zhuoyuan. Koopman operator theory for nonlinear dynamic modeling
using dynamic mode decomposition, 2021.

T. Iwata and Y. Kawahara. Controlling nonlinear dynamical systems with linear quadratic
regulator-based policy networks in koopman space. In 60th IEEE Conf. on Decision and
Control, CDC 2021, Proc. of the IEEE Conf. on Decision and Control, pages 5086-5091,
United States, 2021. IEEE.

V Cibulka, M Korda, T Hanis, and M Hromc¢ik. Model predictive control of a vehicle using
koopman operator, 2021.

S Peitz, S. E. Otto, and C. W. Rowley. Data-driven model predictive control using inter-
polated koopman generators. SIAM J. on Applied Dynamical Systems, 19(3):2162-2193,
2020.

Y. Susuki, I. Mezic, F. Raak, and T. Hikihara. Applied koopman operator theory for power
systems technology. Nonlinear Theory and Its Applications, IEICE, 7(4):430-459, 2016.

L Jamone, B Damas, and J Santos-Victor. Incremental learning of context-dependent dy-
namic internal models for robot control. In IEEE Int. Symp. on Intelligent Control, pages
1336-1341, 2014.

M. Khoramshahi, A. Laurens, T. Triquet, and A. Billard. From human physical interaction
to online motion adaptation using parameterized dynamical systems. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 1361-1366, 2018.

D.J. Agravante, A. Cherubini, A. Bussy, P. Gergondet, and A. Kheddar. Collaborative
human-humanoid carrying using vision and haptic sensing. In 2014 IEEE International
Conference on Robotics and Automation (ICRA), pages 607-612, 2014.

93



Bibliography

73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[83]

[89]

M. Suphi Erden and T. Tomiyama. Human-intent detection and physically interactive control
of a robot without force sensors. IEEE Transactions on Robotics, 26(2):370-382, 2010.

W. Astrid, B. Regina, T. Manfred, and Y. Eiichi. Addressing user experience and societal
impact in a user study with a humanoid robot. Adaptive and Emergent Behaviour and
Complex Systems - Proceedings of the 23rd Convention of the Society for the Study of
Artificial Intelligence and Simulation of Behaviour, AISB 2009, pages 150-157, December
20009.

S. Ivaldi, S. Anzalone, W. Rousseau, O. Sigaud, and M. Chetouani. Robot initiative in a
team learning task increases the rhythm of interaction but not the perceived engagement.
Frontiers in neurorobotics, 8:5, 02 2014.

H. Kamide, K. Kawabe, S. Shigemi, and T. Arai. Anshin as a concept of subjective well-being
between humans and robots in japan. Advanced Robotics, 29(24):1624-1636, December 2015.

J. Schmidtler, K. Bengler, F. Dimeas, and A. Campeau-Lecours. A questionnaire for the
evaluation of physical assistive devices (quead): Testing usability and acceptance in physical
human-robot interaction. In 2017 IEEE International Conference on Systems, Man, and
Cybernetics (SMC), pages 876-881, 2017.

D. Kuli¢ and E. Croft. Physiological and subjective responses to articulated robot motion.
Robotica, 25(1):13-27, 2007.

M. Saerbeck and C. Bartneck. Perception of affect elicited by robot motion. In 2010
5th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pages 53-60,
2010.

J. Russell. A circumplex model of affect. Journal of Personality and Social Psychology,
39:1161-1178, 12 1980.

K. Nakagawa, K. Shinozawa, H. Ishiguro, T. Akimoto, and N. Hagita. Motion modification
method to control affective nuances for robots. In 2009 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 5003-5008, 2009.

P. Corke. Dynamics and Control, pages 251-281. Springer International Publishing, Cham,
2017.

A. Liegeois. Automatic supervisory control of the configuration and behavior of multibody
mechanisms. IEEE Transactions on Systems, Man, and Cybernetics, 7(12):868-871, 1977.

C.A. Klein and C.H. Huang. Review of pseudoinverse control for use with kinematically
redundant manipulators. IEEE Transactions on Systems, Man, and Cybernetics, SMC-
13(2):245-250, 1983.

R.V. Dubey, J.A. Euler, and S.M. Babcock. An efficient gradient projection optimization
scheme for a seven-degree-of-freedom redundant robot with spherical wrist. In Proceedings.
1988 IEEE International Conference on Robotics and Automation, pages 28-36 vol.1, 1988.

B. Nemec and L. Zlajpah. Null space velocity control with dynamically consistent pseudo-
inverse. Robotica, 18, 09 2000.

A. Maciejewski and C. Klein. Obstacle avoidance for kinematically redundant manipulators
in dynamically varying environments. The International Journal of Robotics Research, 4, 09
1985.

J. Hollerbach and Ki Suh. Redundancy resolution of manipulators through torque optimiza-
tion. IEEE Journal on Robotics and Autormation, 3(4):308-316, 1987.

P. Baerlocher and R. Boulic. Task-priority formulations for the kinematic control of highly
redundant articulated structures. In Proceedings. 1998 IEEE/RSJ International Conference
on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat.
No.98CHS36190), volume 1, pages 323-329 vol.1, 1998.

94



Shohei Hagane’s PhD thesis

90]

91]

92]
93]

94]

[95]

[96]

97]

98]

99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

P. Baerlocher and R. Boulic. An inverse kinematic architecture enforcing an arbitrary number
of strict priority levels. The Visual Computer, 20:402—417, 01 2004.

7Z.X. Peng and N. Adachi. Compliant motion control of kinematically redundant manipula-
tors. IEEE Transactions on Robotics and Automation, 9(6):831-836, 1993.

R. von Laban and L. Ullmann. Modern Educational Dance. Macdonald and Evans, 1975.

Tanja Bénziger and Klaus R. Scherer. Using actor portrayals to systematically study mul-
timodal emotion expression: The gemep corpus. In Ana C. R. Paiva, Rui Prada, and Ros-
alind W. Picard, editors, Affective Computing and Intelligent Interaction, pages 476—487,
Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

D. Glowinski, N. Dael, A. Camurri, G. Volpe, M. Mortillaro, and K. Scherer. Toward a
minimal representation of affective gestures. IEEFE Transactions on Affective Computing,
2(2):106-118, 2011.

P.J. Lang. Behavioral treatment and bio-behavioral assessment: Computer applications. In
J. B. Sidowski, J. H. Johnson, and T. A. Williams, editors, Technology in mental health care
delivery systems, pages 119 — 137. Norwood, NJ: Ablex, 1980.

I. Iglesias, M.A. Sebastian, and J.E. Ares. Overview of the state of robotic machining:
Current situation and future potential. Procedia Engineering, 132:911-917, 2015. MESIC
Manufacturing Engineering Society International Conference 2015.

T Brogardh. Robot control overview: An industrial perspective. Modeling, Identification
and Control, 30, 07 2009.

A. B. Moniz and B.J. Krings. Robots working with humans or humans working with robots?
searching for social dimensions in new human-robot interaction in industry. Societies, 6(3),
2016.

A. Albu-Schéeffer, S. Haddadin, C. Ott, A. Stemmer, T. Wimbock, and G. Hirzinger. The
dlr lightweight robot — design and control concepts for robots in human environments. IN-
DUSTRIAL ROBOT-AN INTERNATIONAL JOURNAL, 34:376-385, 08 2007.

M. H. Raibert and J. J. Craig. Hybrid Position/Force Control of Manipulators. Journal of
Dynamic Systems, Measurement and Control, 103(2):126-133, 06 1981.

A. Wahrburg, S. Zeiss, B. Matthias, and H. Ding. Contact force estimation for robotic as-
sembly using motor torques. In 2014 IEEFE International Conference on Automation Science
and Engineering (CASE), pages 1252-1257, 2014.

W. Khalil and D. Creusot. Symoro : A system for the symbolic modelling of robots. Robotica,
15(2):153-161, 1997.

D. Tolani, A. Goswami, and N. Badler. Real-time inverse kinematics techniques for anthro-
pomorphic limbs. Graphical models, 62:353-88, 10 2000.

Masayuki Shimizu, Hiromu Kakuya, Woo-Keun Yoon, Kosei Kitagaki, and Kazuhiro Kosuge.
Analytical inverse kinematic computation for 7-dof redundant manipulators with joint limits
and its application to redundancy resolution. IEEE Transactions on Robotics, 24(5):1131—
1142, 2008.

Richard P. Paul. Robot manipulators : mathematics, programming, and control : the com-
puter control of robot manipulators. The MIT Press series in artificial intelligence. MIT Press,
1981.

G. Venture, P.-J. Ripert, W. Khalil, M. Gautier, and P. Bodson. Modeling and identifica-
tion of passenger car dynamics using robotics formalism. IEEE Transactions on Intelligent
Transportation Systems, 7(3):349-359, 2006.

95



Bibliography

[107]

[108]

[109]

[110]

[111]

[112]

[113]
[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

M. Gautier and S. Briot. New method for global identification of the joint drive gains
of robots using a known payload mass. In 2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 3728-3733, 2011.

T. Katsumata. Adaptive cartesian force control using payload dynamics and geometric iden-
tification. Master’s thesis, Tokyo University of Agriculture and Technology, 2017.

J. De Schutter and H. Van Brussel. Compliant robot motion ii. a control approach based on
external control loops. The International Journal of Robotics Research, 7(4):18-33, 1988.

A. D. Luca, B. Siciliano, and L. Zollo. Pd control with on-line gravity compensation for
robots with elastic joints: Theory and experiments. Automatica, 41(10):1809-1819, 2005.

D.W. Clarke, C. Mohtadi, and P.S. Tuffs. Generalized predictive control-—part i. the basic
algorithm. Automatica, 23(2):137-148, 1987.

S. Masuda, T Yamamoto, and M. Ooshima. Model predictive control : Tii : Generalized
predictive control (gpc) and the relevant topics. Systems, control and information, 46(9):578—
584, 2002.

John Rossiter. Model-Based Predictive Control: A Practical Approach. 01 2003.

[.D. Landau. The r-s-t digital controller design and applications. IFAC Proceedings Volumes,
30(6):23-33, 1997. IFAC Conference on Control of Industrial Systems "Control for the Future
of the Youth", Belfort, France, 20-22 May.

C. Decker, A.U. Ehrlinger, P. Boucher, and D. Dumur. Application of constrained receding
horizon predictive control to a benchmark problem. Furopean Journal of Control, 1(2):157—
165, 1995.

L. K. R ARDILA. Estudo do comportamento dindmico de mdquinaferramenta CNC com
énfase na implementagdo de sistemas de controlen. PhD thesis, State University of Campinas,
2013.

K. Ogata. #llfHliT Gt ¢ D€ FTLICH 3 5 — R TRIGIHE O IFFE. PhD thesis, Nagoya
University, 1993.

I Mezi¢. On applications of the spectral theory of the koopman operator in dynamical systems
and control theory. In IEEE Conf. on Decision and Control, pages 7034-7041, 2015.

M. Budis i¢, R. Mohr, and I. Mezi¢. Applied koopmanism. Chaos: An Interdisciplinary J.
of Nonlinear Science, 22(4):047510, dec 2012.

S. L. Brunton, B. W. Brunton, J. L. Proctor, and J. N Kutz. Koopman invariant subspaces
and finite linear representations of nonlinear dynamical systems for control. PLOS ONE,
11(2):1-19, 02 2016.

J. L. Proctor, S. L. Brunton, and J. N Kutz. Generalizing koopman theory to allow for inputs
and control. SIAM J. on Applied Dynamical Systems, 17(1):909-930, 2018.

Matthew O. W., Maziar S. H., Scott T.M. D., Ioannis G. K., and Clarence W. R. Extending
data~driven koopman analysis to actuated systems. IFAC-PapersOnLine, 49(18):704-709,
2016. IFAC Symp. on Nonlinear Control Systems.

A Mauroy and Jorge Goncalves. Parameter Estimation and Identification of Nonlinear Sys-
tems with the Koopman Operator, pages 335—357. Springer Int. Publishing, Cham, 2020.

S. MASUDA. A design method for generalized predictive control systems based on a state-
space approach. J. of the Society of Instrument and Control Engineers, 39(5):326-330, 2000.

Wenjian Yu, Yu Gu, and Yaohang Li. Efficient randomized algorithms for the fixed-precision
low-rank matrix approximation. SIAM J. on Matriz Analysis and Applications, 39(3):1339—
1359, 2018.

96



Shohei Hagane’s PhD thesis

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

137]

[138]

[139]

[140]

[141]

[142]

Drazen Brséi¢, Hiroyuki Kidokoro, Yoshitaka Suehiro, and Takayuki Kanda. Escaping from
children’s abuse of social robots. In Proceedings of the Tenth Annual ACM/IEEE Interna-
tional Conference on Human-Robot Interaction, HRI ’15, page 59-66, New York, NY, USA,
2015. Association for Computing Machinery.

Jean Decety and Thierry Chaminade. Neural correlates of feeling sympathy. Neuropsycholo-
gia, 41(2):127-138, 2003. The cognitive neuroscience of social behavior.

M. Hewstone. Introduction to Social Psychology: A FEuropean Perspective. B. Blackwell,
1988.

Céline Clavel, Justine Plessier, Jean-Claude Martin, Laurent Ach, and Benoit Morel. Com-
bining facial and postural expressions of emotions in a virtual character. In Zsofia Ruttkay,
Michael Kipp, Anton Nijholt, and Hannes Hogni Vilhjalmsson, editors, Intelligent Virtual
Agents, pages 287-300, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

Y. Nakamura and H. Hanafusa. Inverse Kinematic Solutions With Singularity Robustness
for Robot Manipulator Control. Journal of Dynamic Systems, Measurement, and Control,
108(3):163-171, 09 1986.

M.J. Montepare, E. Koff, D. Zaitchik, and S.M. Albert. The use of body movements and
gestures as cues to emotions in younger and older adults. Journal of Nonverbal Behavior,
23:133-152, 1999.

P. Cordier, F.M. Mendés, J. Pailhous, and P. Bolon. Entropy as a global variable of the
learning process. Human Movement Science, 13(6):745-763, 1994.

D. Bernhardt and P. Robinson. Detecting affect from non-stylised body motions. In Proceed-
ings of the 2nd International Conference on Affective Computing and Intelligent Interaction,
ACII 07, page 59-70, Berlin, Heidelberg, 2007. Springer-Verlag.

G. Castellano, M. Mortillaro, A. Camurri, G. Volpe, and K.R. Scherer. Automated analysis of
body movement in emotionally expressive piano performances. Music Perception, 26(2):103~
119, January 2008.

P. Siple. Understanding language through sign language research / edited by Patricia Siple.
Perspectives in neurolinguistics and psycholinguistics. Academic Press, New York, 1978.

J. Van den Stock, R. Righart, and B. Gelder. Body expressions influence recognition of
emotions in the face and voice. Emotion (Washington, D.C.), 7:487-94, 09 2007.

R.L. Birdwhistell. Kinesics and Context: Essays on Body Motion Communication. Conduct
and Communication. University of Pennsylvania Press, Incorporated, 2010.

E. Douglas-Cowie, N. Campbell, R. Cowie, and P. Roach. Emotional speech: Towards a new
generation of databases. Speech Communication, 40(1):33-60, 2003.

J.R.(Rob) Pijpers, R.D.R. Oudejans, F. Holsheimer, and C.F. Bakker. Anxiety—performance
relationships in climbing: a process-oriented approach. Psychology of Sport and Exercise,
4(3):283-304, 2003.

T. Yoshikawa. Dynamic manipulability of robot manipulators. Transactions of the Society
of Instrument and Control Engineers, 21(9):970-975, 1985.

T. Yoshikawa. Manipulability of robotic mechanisms. The international journal of Robotics
Research, 4(2):3-9, 1985.

P. Chiaacchio and M. Concilio. The dynamic manipulability ellipsoid for redundant manip-
ulators. In Proceedings. 1998 IEEE International Conference on Robotics and Automation
(Cat. No.98CH36146), volume 1, pages 95-100 vol.1, 1998.

97



Appendix — BIBLIOGRAPHY

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

S Kim, S Yun, and D Shin. Numerical quantification of controllability in the null space for
redundant manipulators. Applied Sciences, 11(13), 2021.

R.J. Kirschner, N. Mansfeld, S. Abdolshah, and S. Haddadin. Iso/ts 15066: How different
interpretations affect risk assessment, 2022.

M.M. Bradley and P.J. Lang. International Affective Picture System, pages 1-4. Springer
International Publishing, Cham, 2017.

G. Hurtz and J. Donovan. Personality and job performance: The big five revisited. The
Journal of applied psychology, 85:869-79, 01 2001.

J. Hendriks, W. Hofstee, and B. Raad. The Five-Factor Personality Inventory: assessing
the Big Five by means of brief and concrete statements [ch. 4], pages 79-108. Hogrefe and
Huber, 08 2002.

D.S. Gosling, P.J. Rentfrow, and B.W. Swann. A very brief measure of the big-five personality
domains. Journal of Research in Personality, 37(6):504-528, 2003.

De Fruyt, F. and Mccrae, R.R. and Szirmak, A. and Nagy, J. The Five-Factor Person-
ality Inventory as a measure of the five-factor model - Belgian, American, and Hungarian
comparisons with the NEO-PI-R. ASSESSMENT, 11(3):207-215, 2004.

A. Oshio, S. Abe, and C. Pino. Japanese edition, ten item personality inventory (tipi-j)
"sakuseino kokoromi". The Japanese Journal of Personality, 21(1):40-52, 2012.

Y. Hu, M. Benallegue, G. Venture, and E. Yoshida. Interact with me: An exploratory
study on interaction factors for active physical human-robot interaction. IEEE Robotics and
Automation Letters, 5(4):6764-6771, 2020.

T. Nomura, T. Kanda, T. Suzuki, and K. Kato. Psychology in human-robot communica-
tion: An attempt through investigation of negative attitudes and anxiety toward robots. In
RO-MAN 2004. 13th IEEFE international workshop on robot and human interactive commau-
nication (IEEE catalog No. 04TH8759), pages 35-40. IEEE, 2004.

98



	Acknowledgement
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation and Context
	Objective
	Outline of the Thesis

	Related Works
	Model Predictive Control (MPC) for Robotic Systems
	DPI
	Koopman Operator Theory on Robotics Systems
	HRI and Social Robotics
	Expressive Motions by Robots
	Exploiting Kinematic Redundancy
	Evaluating Expressive Movements and Emotion

	Adaptive generalized predictive controller
	Introduction
	Modeling of KUKA LWR
	Geometric Model
	Dynamic Model

	Identification of Robot Parameters
	End-Effector Tool Identification

	Robot Control System (Position and Force Controllers)
	External Force Estimation
	Force Control
	Position Control 
	PD Control & Gravitational Compensator
	PD Control & Feedforward
	Generalized Predictive Control (GPC)
	Adaptive GPC


	Experimental Setup
	Parameter Identification of the Robot and Tools
	Control Experiments

	Results and Discussion
	Swinging Motion with AGPC and GPC Without Adaptation
	Painting Task Results
	Considerations of the Controllers

	Conclusion
	Publications

	Linearizing Robotic Manipulator's Dynamics Using Koopman Operator
	Introduction
	Linear Predictor
	Koopman Operator
	Koopman Operator for Controlled Systems
	Approximation of Koopman Operator

	Generalized Predictive Control
	Finding Optimal Observables for Manipulator's Dynamics
	Referring Robot Dynamic Equation
	Extract Important Monomials

	Control Experiments and Results
	Comparison of performance of the linear predictor
	Comparison of performance within a task space
	Comparison of adaptability to different motions

	Discussion
	Conclusion
	Publications

	Expressing Emotions as Sub-Task Using Kinematic Redundancy
	Introduction
	Robot Manipulator with Kinematic Redundancy
	Kinematics of Robotic Manipulators
	Null Space Control

	Emotional Conveyance
	Proposed Method
	From Emotion: PAD to the Motion Features: JrVeSp
	Kinetic Energy
	Jerkiness/Smoothness
	Spatial Extent
	PAD to JrVeSp

	From Motion Features: JrVeSp to Emotional Motion in Null Space
	Manipulability Ellipsoid in the Null Space

	Implementation
	Questionnaire
	SAM Scale
	Big Five Personality Test
	Negative Attitude Toward Robots Scale (NARS)

	Experiment Description

	Result
	Generated Motions and Their Motion Features
	Emotion Conveyance Results

	Discussion
	Conclusion
	Publications

	Conclusion
	Summary of the Contributions
	Limitations and Future Work
	Publications

	Bibliography

