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Abstract

Epilepsy is a neurological disorder that is said to affect 50 million patients

worldwide. In some patients, it can lead to developmental disorders such

as ASD and ADHD.

Epilepsy that appears in childhood is called childhood epilepsy. Child-

hood epilepsy is a complex group of seizure disorders associated with neu-

ropsychological disturbances that are thought to have diverse outcomes

during development and later in life. In the case of childhood epilepsy,

which affects the growing brain, compared to epilepsy developing at other

ages, it may lead to neurodevelopmental disorders such as ASD and ADHD.

In some cases, no special treatment is necessary, but in most cases, an accu-

rate diagnosis and appropriate treatment, such as antiepileptic drugs, will

allow the patient to live a seizure-free life. Therefore, treatment of childhood

epilepsy can lead to a reduction in the number of patients with developmen-

tal disorders in the future.

In the treatment of epilepsy, electroencephalography (EEG) is necessar-

ily performed to detect abnormal brain regions and specific symptoms. Be-

cause of the lack of experts who have highly skilled knowledge for EEG

diagnosis, automated technologies are advancing. These technologies sup-

port the diagnostic work of epileptologists. To develop these technologies,

machine learning-based methods have been used successfully for detect-

ing epileptic spikes, one of the biomarkers, from EEG. However, designing

based on empirical knowledge is essential to build machine learning-based

detection systems. This thesis proposed some methods that automate these
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design sections that require the human factors required for the entire system

in two ways: (1) to automate parameters tuning in the EEG preprocessing

step while extracting explainable features, and (2) Eliminate candidate de-

tection methods that rely on human knowledge in EEG segment generation.

For the parameters tuning at EEG preprocessing, this study introduces a

novel class of neural networks (NNs) that have a bank of linear-phase finite

impulse response filters at the first layer as a preprocessor that can behave

as bandpass filters that extract biomarkers without destroying waveforms

because of a linear-phase condition. Besides, the parameters of the filters

are also data-driven. The proposed NNs were trained with a large amount

of clinical EEG data, including 15,833 epileptic spike waveforms recorded

from 50 patients, and their labels were annotated by specialists. In the ex-

periments, we compared three scenarios for the first layer: no preprocess-

ing, discrete wavelet transform, and the proposed data-driven filters. The

experimental results show that the trained data-driven filter bank with su-

pervised learning behaves like multiple bandpass filters. In particular, the

trained filter passed a frequency band of approximately 10–30 Hz.

However, in the above method, the EEG segments for input into the de-

tection model were generated based on the label locations annotated by the

epileptologists. In other words, the waveforms that are candidates for iden-

tification must be previously determined to drive the model. Therefore, it is

difficult to detect epileptic EEG from the entire EEG because the above study

is a classification task using epileptic and non-epileptic EEG segments. To

address this problem, this study hypothesize that a machine learning model

could extract locations and ranges of particular interest within a segment

to detect epileptic spikes while simplifying the rules for EEG segment cre-

ation. With this method, the location of the EEG signal of interest within

a segment is not fixed, thus the learning model must identify its location.



iv

In this thesis, to locate the waveforms of interest, we introduces the Sate-

light model, which uses the self-attention (SA) mechanism. The SA mecha-

nism is expected to reduce the number of parameters and efficiently extract

features from a small amount of EEG data. The model was trained using

a clinical EEG dataset labeled by five specialists, including 16,008 epilep-

tic spikes and 15,478 artifacts from 50 children. To validate the effective-

ness, we compared various spike detection approaches with the clinical EEG

data. The experimental results showed that the proposed method detected

epileptic spikes more effectively than other models (accuracy = 0.876 and

false positive rate = 0.133). Further exploration of the hidden parameters

revealed that the model automatically attended to the EEG’s characteristic

waveform locations of interest.

The proposed solutions showed that the machine learning-based model

automatically learned the expert knowledge by the models themselves. These

results could provide significant assistance to epileptologists and increase

the number of EEG analyses of patients with intractable epilepsy.
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Chapter 1

Introduction

1.1 Epilepsy

Epilepsy is a chronic brain condition that results in seizures characterized

by disorientation and convulsions associated with excessive electrical stim-

ulation of brain neurons [1]. Epilepsy affects about 50 million people world-

wide, and there is a severe shortage of specialists who treat epilepsy (epilep-

tologists). For example, Japan only has 700 epileptologists, regardless of

having one million patients suffering from epilepsy [2]. One of the symp-

toms, epileptic seizures, is defined as the occurrence of transient signs and

symptoms characterized by sudden and involuntary skeletal muscle activ-

ity due to abnormal, excessive, or synchronized neuronal activity in the

brain. Early diagnosis and treatment, as well as specific medical support,

are necessary to prevent status epilepticus superimposition [3]. Various fac-

tors have been considered in the etiology of epilepsy, including structural,

genetic, and immunologic factors. However, in most cases, the etiology of

patients with epilepsy is unknown. Furthermore, epilepsy can lead to co-

morbidities such as cognitive, neurodevelopmental, and behavioral disor-

ders. For some patients, these comorbidities have a greater impact than

epilepsy and can significantly interfere with daily life [4]. In particular, neu-

rodevelopmental disorders are defined as a group of disorders that develop
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during the developmental years and induce impairments that result in func-

tional disability. Neurodevelopmental disorders include autism spectrum

disorders (ASD), attention-deficit hyperactivity disorder (ADHD), and in-

tellectual disabilities [5].

1.2 Childhood Epilepsy

Epilepsy that appears in childhood is called childhood epilepsy. Childhood

epilepsy is a complex group of seizure disorders associated with neuropsy-

chological disturbances that are thought to have diverse outcomes during

development and later in life. A study in Italy reported that the peak inci-

dence of epilepsy is in children under 15 years of age (newly 50.14 patients

per 100,000 children per year) [6].

In the case of childhood epilepsy, which affects the growing brain, com-

pared to epilepsy developing at other ages, it may lead to neurodevelop-

mental disorders such as ASD and ADHD [7]. In addition, ADHD has a

prevalence of 7–9% in the general pediatric population. On the other hand,

in children with epilepsy, ADHD has been found to be present in 20% to 50%

of patients [8]. In some cases, no special treatment is necessary, but in most

cases, an accurate diagnosis and appropriate treatment, such as antiepileptic

drugs, will allow the patient to live a seizure-free life. Therefore, treatment

of childhood epilepsy can lead to a reduction in the number of patients with

developmental disorders in the future.
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1.3 Types of Childhood Epilepsies

Childhood epilepsy is not a single case, but rather a generic term for a vari-

ety of cases. Detailed epilepsy cases are defined by the type of seizures ex-

perienced, age of onset, neurological status, and physical examination. The

reason for classifying epilepsy in this manner is to facilitate understanding

of possible treatments and specific prognoses [9]. The following epilepsy

types are specific examples.

1.3.1 Infantile Spasms and West Syndrome

West syndrome is characterized by epileptic convulsions. This case was first

reported in 1841 [10]. These epileptic seizures are characterized by various

muscle contractions, including head nodding and body flexion, and occur

in clusters. The EEG during interictal has a high-voltage, acyclic, and highly

abnormal pattern [11].

1.3.2 Benign Partial Epilepsies of Childhood

Benign partial epilepsy of childhood is a group of disorders that are con-

sidered to be genetically transmitted and are often associated with charac-

teristic EEG patterns [11]. One of the more specific cases, benign epilepsy

with centrotemporal spikes (BECTS), is the most common focal epilepsy

syndrome in children, accounting for 15–20% of all childhood epilepsies.

BECTS is also known as childhood epilepsy with centro-temporal spikes

(CECTS) [12] The typical age of onset is 5 to 8 years. Seizures are relatively

rare overall, with 60–70% of patients experiencing 2–10 seizures during their

lifetime and 10–20% experiencing only one seizure. Symptoms of epilepsy

may be activated by sleep. The characteristic EEG change, as suggested by
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its name, is a steady spike followed by a slow wave that occurs either uni-

laterally or bilaterally [13].

1.3.3 Childhood Absence Epilepsy

Pediatric absence epilepsy (CAE) accounts for approximately 8% of pedi-

atric epilepsy cases [14]. The main symptom of CAE is absence seizures,

which are characterized by brief staring, subtle rhythmic blinking of the

eyes, and unawareness of surroundings [9]. It has been reported to cause

learning disabilities and cognitive impairment in the future. In addition,

young adults with a history of CAE have a high rate of work and social dif-

ficulties, persistent difficulties with family and friends, less regular outings

with friends and partners, and mental and emotional difficulties [14].

1.4 Epilepsy Diagnosis

For the diagnosis of epilepsy, a variety of methods are used, including mag-

netic resonance imaging (MRI), computed tomography (CT), positron emis-

sion tomography (PET), magnetoencephalography (MEG), and electroen-

cephalography (EEG) [15]. Among these methods, EEG diagnostics are par-

ticularly important in identifying epileptic EEG and brain regions of inter-

est by measuring temporal and spatial information of the brain as voltage

[16, 15]. One of the main purposes of EEG diagnostics is the observation

of waveforms that appear during interictal seizures, called epileptic spikes.

These spikes are caused by synchronous firing of high neuronal populations

and are considered an unusual phenomenon [17]. Furthermore, the location

and frequency of these spikes can be helpful as a biomarker for diagnosing

epilepsy type. However, accurate diagnosis and identification of epileptic
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types usually requires monitoring the patient’s EEG for several days. This

manual EEG monitoring is very time-consuming [18].

1.5 Studies of Automated Epileptic Spike Detec-

tion

1.5.1 Preprocessing methods for EEG

To support the detection of epileptic spikes, several automated detection ap-

proaches are making great advances [19, 20, 21, 22, 23, 24, 25, 26]. To imple-

ment the automatic detection of epileptic spikes, supervised learning is one

effective method. To efficiently train the machine learning models, the EEG

signal is generally decomposed into standard clinical frequency bands of

interest—such as δ, θ, α, β, and γ—before the learning [27]. While conduct-

ing such training, it is necessary to select the frequency bands appropriately,

which depends on several factors, such as the EEG measurement method,

measurement environment, the type of epilepsy, and epileptologists’ skills.

However, in various studies, a range of frequencies or frequency bands of

interest has been empirically selected.

Cheong et al. [28] used discrete wavelet transform (DWT) to decompose

the signal into frequency subbands from the delta band to the gamma band

(0–63 Hz). Gutierrez et al. [20] applied a bandpass filter in the range of 0.5–

70 Hz. Then, they obtained wavelet coefficients from the filtered signal to

classify epileptic spikes. Similarly, a range of 0.5–70 Hz was extracted with

a Butterworth filter to obtain wavelet coefficients [26].

Other studies have utilized narrow bandpass filter ranges for prepro-

cessing. Polat et al. [29] applied a bandpass filter range of 0.53–40 Hz and
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then used the discrete Fourier transform to extract the features for the deci-

sion tree classifier. Khan et al. [23] used the range of 0–32 Hz decomposed by

DWT because most of epileptic information lies in the range of 0.5–30 Hz.

Similarly, Douget et al. [19] and Indiradevi et al. [30] adopted DWT with

Daubechies 4 (DB4) to extract the frequency band of 4–32 Hz. Moreover,

Fergus et al. [31] used the range of only 0–25 Hz, although they did not

use DWT but a Butterworth filter. Thereafter, they employed the holdout

technique and k-fold cross-validation, passing into many different classifier

models for distinguishing seizure and nonseizure EEG records.

In these studies for the classification or detection of epilepsy, DWT de-

composition and other filtering methods were effective. As seen above, al-

though the frequency range, including the epileptic information, is roughly

known to be less than about 60 Hz, the selection of cut-off frequencies de-

pends on several factors, such as the designer of the automated system, the

type of epilepsy, the epileptologists on diagnosis, and so forth. This moti-

vated us to identify the filter parameters based on data.

1.5.2 Neural Network-Based Techniques

Neural network (NN)-based techniques have demonstrated high perfor-

mance in spike detection tasks [32, 33, 19, 34, 35]. Epileptic spikes have

been detected on a single-electrode EEG. Although the shape of the epilep-

tic waveforms is similar among patients, each patient’s distribution of the

waveforms is unique. To identify these individual differences in distribu-

tion among patients, specialists use several montages in epilepsy diagnosis,

like bipolar and monopolar, to observe EEGs. This is because the specialists

use the EEG of the surrounding or all electrodes to identify epileptic spikes.

Therefore, to effectively use the detection methods from a single-electrode

EEG, the appropriate montage must be determined manually, limiting its
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versatility. These facts have influenced studies on machine learning-based

automatic spike detection. Since 2019, numerous related studies have used

multi-electrode EEG to detect the location of epileptic spikes[36, 37, 26, 38,

39].

For detecting spikes using these multi-electrode EEG, convolutional NN

(CNN)-based models, such as the model by Thomas et al.’s [38] and SpikeNet

[37], are some of the effective methods. Thomas et al. [38] used CNN to

detect epileptic spikes from multi-electrode EEG by calculating the prob-

ability of the appearance of epileptic spikes for individual electrodes and

then obtaining the maximum of the output probabilities for all electrodes.

SpikeNet [37] directly outputs a predicted value from a multi-electrode EEG

segment. This was achieved using a combination of deep convolution layers

in the spatial and temporal directions. SpikeNet efficiently extracts features

using a top convolutional layer that merges the relationships between elec-

trodes and 22 temporal convolutional layers. According to Thomas et al.

[37], SpikeNet outperforms the detection performance of the commercially

available software, Persyst13 [40], in spike detection.

1.6 Our Contributions

1.6.1 Extraction of frequency bands of interest for spike de-

tection

Frequency filtering to EEG with the appropriate passbands is essential for

enhancing the epileptic spikes. However, in various studies, a range of fre-

quencies or frequency bands of interest has been empirically selected [19,

20, 21, 22, 23, 24, 25, 26]. To solve this limitation, we introduces a novel class
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of neural networks (NNs) that have a bank of linear-phase finite impulse re-

sponse filters at the first layer as a preprocessor that can behave as bandpass

filters that extract biomarkers without destroying waveforms because of a

linear-phase condition. Besides, the parameters of the filters are also data-

driven. The proposed NNs were trained with a large amount of clinical

EEG data, including 15,833 epileptic spike waveforms recorded from 15,004

patients, and their labels were annotated by specialists. In the experiments,

we compared three scenarios for the first layer: no preprocessing, discrete

wavelet transform, and the proposed data-driven filters. The experimental

results show that the trained data-driven filter bank with supervised learn-

ing behaves like multiple bandpass filters. In particular, the trained filter

passed a frequency band of approximately 10–30 Hz.

1.6.2 Identification of temporal location for spike detection

Deep convolutional neural network-based models have been used success-

fully for detecting epileptic spikes, one of the biomarkers, from EEG [37,

38]. However, a sizeable number of supervised EEG records are required

for training [41]. To solve this problem, This study introduces the Sate-

light model, which uses the self-attention (SA) mechanism. The model was

trained using a clinical EEG dataset labeled by five specialists, including

16,008 epileptic spikes and 15,478 artifacts from 50 children. The SA mech-

anism is expected to reduce the number of parameters and efficiently ex-

tract features from a small amount of EEG data. To validate the effective-

ness, we compared various spike detection approaches with the clinical EEG

data. The experimental results showed that the proposed method detected

epileptic spikes more effectively than other models (accuracy = 0.876 and

false positive rate = 0.133). The proposed model had only one-tenth the

number of parameters as the other effective model, despite having such a
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high detection performance. Further exploration of the hidden parameters

revealed that the model automatically attended to the EEG’s characteristic

waveform locations of interest.

1.7 Organization of Thesis

As shown in Figure 1.1, this thesis is divided into five chapters. Chapter 1

describes the research background, problems, and proposed methodology.

Chapter 2 presents the basic machine learning techniques for EEG. Chapter

3 proposes a frequency identification method for spike detection. Chapter

4 proposes a lightweight machine learning model for identifying temporal

spike locations. Finally, Chapter 5 summarizes this thesis.
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Chapter 2

Machine Learning Techniques
for EEG signal

Chapter 3

Frequency Bands Extraction

Chapter 4

Temporal Features Extraction

Chapter 1

Introduction

Chapter 5

Conclusion and Open Problems

FIGURE 1.1: Diagram for the organization of the thesis.
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Chapter 2

Machine Learning Techniques for

EEG signal

In this chapter, we introduce some machine learning-based methods, which

can be used to the real world signals.

2.1 Convolutional Neural Networks

A type of neural network (NN) that demonstrates excellent performance—

especially in the field of image or video recognition [42, 43]—is the CNN.

The CNN is an extended NN that has an input layer, multiple hidden lay-

ers, and output layer. In general, the hidden layers consist of convolutional

layers, and a fully connected layer is used as the output layer. The con-

volution layer applies a convolution to the input and forwards the result

to the next layer. Let X = {x0, x1, . . . , xN−1}, Y = {y0, y1, . . . , yM−1}, and

H = {h0, h1, . . . , hL−1} be a 1D input signal, a 1D output signal, and a con-

volutional kernel, where N , M , and L are the length of X , Y , and H , re-

spectively. For the sake of simplicity, L is assumed to be even. Focusing on

one layer, the input X is convolved with the kernel H , and the output Y is
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generated as follows:

ym =
L−1∑
l=0

hlxm+l. (2.1)

The flattened layer smoothes multiple convolved signals into a single di-

mension. Then, the fully connected layer multiplies all input neurons by

their weight coefficients and connects them to the output.

Some recent studies have applied a CNN-based model to EEG signals [44,

35, 32, 45]. Ullah et al. [44] used 1D convolution to extract features by fil-

tering time series EEG. Zhou et al. [45] directly input both of the multi-

channel time series EEG signals and their frequency domain signals into a

CNN-based model. Such studies using CNN to detect epileptic seizures or

epileptic spikes have been gaining interest.

2.2 Separable Convolution

A layer known as separable convolution, which independently convolves

the temporal and spatial directions, should be inserted at the beginning of

the network for the analysis of multi-electrode EEG with NNs. This involves

frequency filtering for the temporal convolution and electrode coupling for

the spatial convolution (i.e., montage optimization). Given that it has a sep-

arate kernel for each dimension, this convolutional layer has much smaller

parameters than a standard two-dimensional convolutional layer. The first

model to use this layer for EEG analysis is EEGNet [46], which has been

successful in the field of brain-computer interface. Huang et al. [47] also re-

ported the effectiveness of the EEGNet-based model in their study of EEG-

based emotion classification tasks . Using an extended model of EEGNet,

Shoji et al. [48] successfully identified abnormal EEG durations indicative
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of patients with juvenile absence epilepsy. Furthermore, SpikeNet [37] uses

a separable convolution to detect epileptic spikes. As these results show, the

separable convolution in multi-electrode EEG analysis is effective, particu-

larly in extracting features along the electrode direction.

2.3 Self-Attention Mechanism

Accurately detect epileptic spikes, even in randomly extracted EEG seg-

ments, without using candidate detectors. However, to train a deep learn-

ing model with many parameters [41], a significant amount of training data

are needed. We focused on the SA mechanism to efficiently analyze the

waveform of interest. The SA mechanism is expected to automatically skip

redundant data in time-series signals [49]. Using the dot-product attention

[50] is one way to construct SA. That is, the layer based on SA calculates

three hidden features, Q(i) ∈ Rτ×d, K(i) ∈ Rτ×d, and V (i) ∈ Rτ×d, from the

input features X(i) ∈ Rτ×d using the three weight matrices, WQ ∈ Rd×d,

WK ∈ Rd×d, and WV ∈ Rd×d, as follows:

Q(i) = X(i)WQ, (2.2)

K(i) = X(i)WK , (2.3)

V (i) = X(i)WV , (2.4)

where i, τ , and d are the index of EEG segments, the temporal length of

the input feature, and the number of feature electrodes, respectively. Then,

using the softmax function and one weight matrix WO ∈ Rd×d, the output

of the SA layer Y (i) ∈ Rτ×d is obtained as follows:

Y (i) = softmax
(
Q(i)(K(i))

⊤
)
V (i)WO. (2.5)
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As (2.5) shows, the softmax function of the matrix product between Q(i)

and K(i) acts to represent the level of interest within the input feature itself.

Further, it is expected that multiplying the softmax using the weighted in-

put feature V (i) extracts meaningful EEG locations for the prediction. Here,

the SA layer can be constructed as a single layer using these calculations.
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Chapter 3

Frequency Bands Extraction

In this chapter, we introduce a novel class of NNs that have a bank of linear-

phase finite impulse response filters at the first layer as a preprocessor that

can behave as bandpass filters that extract biomarkers without destroying

waveforms because of a linear-phase condition. Besides, the parameters of

the filters are also data-driven. The proposed NNs were trained with a large

amount of clinical EEG data, including 15,833 epileptic spike waveforms

recorded from 50 patients, and their labels were annotated by specialists. In

the experiments, we compared three scenarios for the first layer: no prepro-

cessing, discrete wavelet transform, and the proposed data-driven filters.

The experimental results show that the trained data-driven filter bank with

supervised learning behaves like multiple bandpass filters.

3.1 Proposed method

3.1.1 Dataset Construction

EEG recordings were collected from 50 patients (24 males and 26 females)

with childhood epilepsy with centro-temporal spikes (CECTS) [12] at the

Department of Pediatrics, Juntendo University Nerima Hospital. The age

range of the patients at the time of the examination was 3–12 years. The

data were recorded from 16 electrodes with the international 10–20 methods
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using the Nihon Koden EEG-1200 system. The sampling frequency was

500 Hz. This dataset was recorded and analyzed with the approval of the

Juntendo University Hospital Ethics Committee and the Tokyo University

of Agriculture and Technology Ethics Committee.

First, two neurosurgeons, one pediatrician, and one clinical technolo-

gists selected a focal channel associated with the origin of the epileptic spike.

In particular, CECTS is a type of focal epilepsy in which spikes appear only

in a certain channel. Therefore, the annotators chose the most epileptic in-

tense channel as the annotation channel. Peaks (minima and maxima) of the

EEG at the channel were detected by a peak search function implemented

with Scipy [51]. This function extracts both upward and downward peaks

with a minimum distance of 100 points. Using a threshold determined at

the 80th percentile value in the absolute amplitude of all peaks, meaning-

less peaks caused by noise, and so forth were removed. Second, the an-

notators labeled each peak as either an epileptic spike (spike or spike-and-

wave) or nonepileptic discharge. These non-epileptic waveforms were care-

fully selected by the annotator from noise peaks excluding extreme voltage

fluctuations caused by body movements and sweating and other possible

interferences. Then, a 1-s segment was extracted at every detected peak,

including 300 ms before and 700 ms after the peak. Fig. 3.1 illustrates an

example of typical waveforms. Z-score normalization was applied with the

mean value and standard deviation for each segment. It should be noted

that each segment represents one candidate spike.

3.1.2 Preprocessing and Subband Decomposition

We considered two models, as shown in Fig. 3.2. The first model uses a

predefined bank of filters. It is based on the method adopted in several

previous studies. The second model involves a special convolution layer
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called the linear-phase convolutional layer (LPCL) in which the parameters are

searched based on the dataset.

Fixed approach

The first approach employs a hand-engineered preprocessing technique for

each segment. DWT is applied to extract the subbands from the EEG. In this

paper, the Daubechies wavelet of order 4 (DB4), which has been reported

to be appropriate for analyzing EEG signals [19, 52, 53], is adopted as the

mother wavelet. The input EEG is decomposed into six coefficient levels—

D6, D5, D4, D3, D2, and D1—and one approximation level, A6. Then, four

subbands corresponding to D6, D5, D4, or D3 are generated. Each sub-

band represents the θ band (4–8 Hz), the α band (8–16 Hz), the β band (16–

32 Hz), and the γ band (32–64 Hz), respectively [28]. The approximation

level, A6, and the coefficient levels, D2 and D1, are eliminated because the

low-frequency band may include breathing and eye movements. The high-

frequency band can be considered noise.

Novel data-driven approach using linear-phase convolutional layer

The convolutional layer described in Section 2.1 can behave as a finite im-

pulse response (FIR) filter. However, each weight in a convolutional layer is

fitted with a high degree of freedom, although FIR filters are designed with

a linear-phase (LP) constraint to preserve the waveform shape. This paper

proposes a convolutional layer with LP constraints, that is, the LPCL, and

its implementation.

The FIR filter is realized by convolution of the discrete signal X = {x0, x1, . . . , xN−1}

and the kernel H = {h0, h1, . . . , hL−1}, and the output discrete signal Y =

{y0, y1, . . . , yM−1} is calculated based on the current and past L − 1 inputs,
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much like (2.1). Generally, the kernel described above causes phase distor-

tion, which can be avoided by imposing an LP constraint. When the length

of the filter is even, the even symmetry and odd symmetry of the kernel

yields the LP FIR filter of type-II and type-IV [54], that is:

hl = hL−1−l, (3.1)

and

hl = −hL−1−l, (3.2)

respectively. The idea behind using type-II and type-IV symmetric filters

is twofold: (a) In generalizing the Haar transform to a bank of FIR filters,

the multistage Haar wavelet transform is equivalent to an orthogonal ma-

trix [55], including type-II and type-IV FIR filters with different lengths, and

each filter corresponds to a bandpass filter. (b) By using type-II and type-IV,

it is possible to compose a bank of lowpass, bandpass, and highpass filters

because type-II and type-IV are inherently unable to yield a highpass filter

and a lowpass filter, respectively [54].

From (2.1) and (3.1), an even symmetric convolution Y e = {ye0, ye1, . . . , yeM}

is described as follows:

yem =

L/2−1∑
l=0

hl

(
xm+l + xm+(L−1)−l

)
. (3.3)

This convolution can be implemented using a lattice structure [56], as shown

in Fig. 3.3(a). As shown in this figure, even symmetric convolution can be

regarded as the product of the vector expressed by the addition of the two

components in X and kernel H . This is the same operation as a weighted

full connection (namely, a fully connected layer). Therefore, this can be im-

plemented by repurposing a conventional neural network framework with
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the addition of X elements, as illustrated in Fig. 3.3(a). Similarly, an odd

symmetric convolution Y o = {yo0, yo1, . . . , yoM} is described as follows:

yom =

L/2−1∑
l=0

hl

(
xm+l − xm+(L−1)−l

)
. (3.4)

Fig. 3.3(b) illustrates the lattice structure for (3.4). As this figure shows, the

odd symmetric convolution can be implemented by repurposing a conven-

tional neural network framework with the subtraction of X elements. These

LPCLs can replace the fixed (predesigned) subband filters, as illustrated in

Fig. 3.2. The idea is hypothesized that the LPCL can derive the frequency

bands of interest from the epileptic EEG dataset.

3.1.3 Classifier Models

Random forest (RF), ANN, and CNN are adopted as the classifiers. Al-

though the ANN and CNN can be combined with either a traditional pre-

processing technique or the proposed method, RF can be combined only

with the traditional preprocessing technique.

The RF parameters are tuned using a grid search for the parameters

listed in Table 3.1. To adjust the grid search, the F1 score is used as the

ranking score, and fivefold cross-validation with two subsets is used. The

model architectures of the ANN and CNN are depicted in Fig. 3.4. To gener-

ate the initial weights of these models, the He initializer [57] is used for the

layers that employ the rectified linear unit (ReLU) as the activation func-

tion. The Xavier initializer [58] is used for the other layers. These neural

networks are fitted by the Adam optimizer [59] (the learning rate η and the

scale parameters β1 and β2 are 0.001, 0.9, and 0.999, respectively) with batch

size 256 while suppressing overfitting using early stopping [60].
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3.1.4 Application of the Linear-Phase Convolutional Layer

In this paper, eight LPCLs are connected in parallel to the classification

model, as illustrated in Fig. 3.2(b). Each LPCL setting is as shown in Ta-

ble 3.2. As in this table, there are LPCLs with different filter lengths to let the

model select filters that contribute to the classification. These kernel lengths

are set based on the length of the Haar transform matrix induced from the

Haar wavelet [55]. That is, filter lengths of 8, 16, 32, and 64 are expected

to extract the standard clinical bands of γ, β, α, and θ, respectively. At the

LPCL’s filtering, the stride length is 1, and the input signal is padded with

zero to keep the input and output lengths invariant. For the initialization of

the coefficients in these LPCLs, the Xavier initializer [58] is used.

3.1.5 Evaluation

To validate the effectiveness of the proposed method, an experiment is per-

formed using the dataset described in Section 3.1.1. Recall that the classi-

fication is binary: an epileptic spike or a nonepileptic discharge. For com-

parison, three approaches are used: the fixed approach, the proposed data-

driven approach, and an approach without preprocessing. Combining these

approaches with the three classification models, a total of eight methods are

compared, as shown in Table 3.3. In the fixed approach, a 1-s raw EEG is

decomposed into four frequency bands (θ, α, β, and γ bands) using DWT.

In the proposed approach, because the LPCLs act as a bank of FIR filters,

a 1-s segment is input to this layer. Furthermore, in the third approach, a

TABLE 3.1: Parameter for the random forest to be tuned by
grid search

Parameter Candidates
Number of trees Ntree 5, 10, 20, 30, 50, 100, 300
Maximum depth Dmax 2, 4, 6, 8, 10
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1-s segment is input directly into the classification model. This approach is

similar to our previous work [35].

In the experiment, intersubject validation in all combinations is performed,

in which 49 patients are used as training data and the remaining patient is

used for the test data. To evaluate the models, the area under the curve

(AUC), F1 value, sensitivity, and specificity are employed. AUC is the area

of the curve drawn by the false positive rate (FPR) and the true positive rate

(TPR = Sensitivity) when the discrimination threshold is changed, and it is

calculated in the following manner:

FPR =
FP

FP + TN
, (3.5)

TPR =
TP

TP + FN
(3.6)

= Sensitivity, (3.7)

where TP, FP, FN, and TN are the numbers of a true positive, false pos-

itive, false negative, and true negative, respectively. The specificity is the

true negative rate, which is calculated as follows:

Specificity =
TN

TN + FP
. (3.8)

The F1 value is calculated as the harmonic mean of the precision and sensi-

tivity. These metrics are defined as follows [61]:

Precision =
TP

TP + FP
, (3.9)

F1 =
2 · Precision · Sensitivity
Precision + Sensitivity

. (3.10)

In particular, this paper employs the mean AUC and the mean F1 value (by
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taking 30 independent realizations) in evaluating the ANN, CNN, and LP-

CLs because the initial weight and initial kernel value affect the learning. In

addition, because the convolution filter can be regarded as an FIR filter, the

frequency response of each filter of the eight LPCLs is analyzed after train-

ing. Similar to evaluating the AUC and F1 values, the frequency response is

meaned by 30 independent runs.

All experimental results are computed on a high-performance computer

built with an AMD(R) EPYC(TM) 7742 CPU@2.25 GHz, 512 GB RAM, and

four NVIDIA(R) A100 GPUs. The models in the experiment are constructed

using Python 3.7.6 with Keras [62] and Scikit-learn [63].

3.2 Experimental Results

Table 3.4 represents the AUC, F1 value, sensitivity, and specificity by each

model and preprocessing technique. This table shows the mean values of

all intersubject validations. A statistical tests including Friedman’s one-way

analysis of variance (ANOVA) [64] showed that the effects of the methods

on the four metrics were significant (FAUC(1, 7) = 294, pAUC = 7.21 × 10−59,

FF1(1, 7) = 197, pF1 = 2.41 × 10−38, Fsen(1, 7) = 205, psen = 5.89 × 10−40,

Fspe(1, 7) = 120, and pspe = 3.10 × 10−22). Because the main effect of the

models has been observed, a Bonferroni post-hoc test [64] was performed

TABLE 3.2: Settings of the LPCLs

LPCL no. Filter length Constraint type
1 8

even symmetric2 16
3 32
4 64
5 8

odd symmetric6 16
7 32
8 64
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to better understand the changes in cross-correlation across the different

preprocessors. Fig. 4.3 visualizes the numerical results and their analysis

of variance of 50 intersubject validations. As shown in Fig. 3.5, significant

differences in the AUC results were observed when using the preproces-

sors, especially for RF and ANN. Moreover, significant differences in the F1

results were observed for all classification models when using the prepro-

cessors. In particular, the F1 results using LPCLs tended to be statistically

higher than DWT in the ANN-based comparison. This is because LPCLs

statistically increased specificity, as shown in Fig. 3.8. From these results,

it can be seen that the preprocessing of EEG affects the classification per-

formance, even with manually designed filters such as DWT. Furthermore,

the optimal preprocessing could be learned in a data-driven method with

LPCLs.

Fig. 3.9 provides an example of prediction by CNN combined with the

LPCL. In this figure, a relatively sharp waveform indicates an epileptic spike,

regardless of its amplitude. Figs. 3.10 and 3.11 illustrate examples of the

frequency responses at the proposed layers. In addition, Figs. 3.10 and

3.11 show clearly that the proposed method’s filter emphasizes the low-

frequency band (around 12 Hz). Thus, while the conventional method man-

ually focuses on the low-frequency band, it can be said that the proposed

method automatically extracts this frequency. Moreover, Figs. 3.10(b) and

TABLE 3.3: Methods of experimental comparison. The pro-
posed data-driven method is combined only with the neural

network models.

Preprocessing None DWT LPCL
Input feature to Raw EEG Decomposed four Learnable eight

the following models [500, 1] frequency bands frequency bands
[#length, #band] [500, 4] [500, 8]

Combine with RF ✓ ✓
Combine with ANN ✓ ✓ ✓
Combine with CNN ✓ ✓ ✓
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3.11(b) show that filters with odd symmetric constraints pass different fre-

quency bands according to the filter length.
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(a) An epileptic spike
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(b) A nonepileptic discharge

FIGURE 3.1: Typical waveforms of detected peaks. Each
waveform is clipped into a 1-s segment.
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FIGURE 3.2: Diagrams of the two prediction models. The col-
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FIGURE 3.4: The model architectures, where N and C are the
length of the input segment and the number of input sub-
bands to the following model, respectively. When “None” is
selected as the preprocessing, the raw EEG is output without
any changes (C = 1); when “DWT,” four clinical frequency
bands are extracted (C = 4); when “LPCLs,” the raw EEG is
preprocessed by the eight LPCLs in Table 3.2 (C = 8). Then,
the three-stacked ANN and CNN output a prediction value in

the range of 0 to 1.
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3.3 Discussion

The experimental results show that the filters with an odd symmetry con-

straint have a different passband, as shown in Figs. 3.10 and 3.11. This be-

havior is similar to a bank of filters. As Fig. 3.11(b) shows, three of the

frequency bands, approximately 12, 24, and 50 Hz (the focus bands of nos.

7 and 8 are similar), are focused on by the odd symmetry LPCLs. Focusing

on the adjacent peak frequencies in the spectrum, the lower frequency is ap-

proximately half of the higher frequency. Their three frequency bands can

be regarded as corresponding to the standard clinical frequency bands of α,

β, and γ, respectively.

In particular, the strongest response is observed in the band around 12

Hz encompassed by LPCL nos. 4 and 8, as shown in Figs. 3.10 and 3.11.

Therefore, it is assumed that the features that pass through LPCLs of nos.

4 and 8 have a significant impact on the inference results. To confirm this

hypothesis, we performed an additional validation to detect spikes in 50

patients’ EEGs in a model with a specific LPCL disabled. In this validation,

the model is trained on 49 patient EEGs as in 3. After training, to partially

enable the following LPCLs, the weight coefficients of the other LPCLs are

overwritten with zero:

• LPCL nos. 1 and 5 (Only LPCLs with the filter length of 8 are enabled);

• LPCL nos. 2 and 6 (Only LPCLs with the filter length of 16 are en-

abled);

• LPCL nos. 3 and 7 (Only LPCLs with the filter length of 32 are en-

abled);

• LPCL nos. 4 and 8 (Only LPCLs with the filter length of 64 are en-

abled).
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Using these models, spikes are detected from the EEG of one test patient. Ta-

ble 3.5 summarizes the results of this validation compared to the model with

all LPCLs enabled. Supplementary Figs 3.12 to 3.15 visualize the AUC and

F1 results in Table 3.5. As these results demonstrate, the model with LPCL

nos. 4 and 8 showed the highest detection performance when partially en-

abling LPCLs. This result further emphasizes that the signal around 12 Hz

extracted by LPCLs is effective for spike detection. However, the results of

the model using IDs 4 and 8 are lower than the model using all LPCLs, it is

suggested that other bands also contain important signals.

This paper’s finding showed that the filters learned from the raw EEG

and that the experts’ labels can be decomposed into the frequency bands

contributing to the inspections. That is, the data-driven filters may emu-

late the logic of the physician’s analysis. Another advantage of the pro-

posed work is that fine-tuning of the frequency bands is accomplished in a

data-driven manner, such that the performance of the classifier is enhanced

(AUC = 0.967, F1 = 0.880), as shown in Table 3.4. Considering medical ap-

plications, the fact that the combination of LPCLs with CNN has achieved

higher sensitivities than other methods [19, 35] is promising, as shown in

Fig. 3.7.
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Moreover, the LPCLs achieves these advantage points with a small com-

putational complexity. As shown in (3.3) and (3.4), an LPCL consist of L/2-

time additions (or subtractions) and an inner product calculation of size

L/2. That is, only L/2 parameters (h0, h1, . . . , hL/2−1) are increased at the

inner product calculation as learning parameters. In the proposed model

shown in Fig. 3.4, there are a total of eight LPCLs with four different lengths

(L = 8, 16, 32, and 64) and two constraint types, even and odd. In this case,

the total number of parameters in the LPCLs is 120 only. Note that since

the total number of parameters in the CNN-based model is approximately

3,500, the ratio of the number of parameters in the LPCLs to the all model’s

parameters is less than 4%. Therefore, the ratio of the LPCL parameters in

the overall architecture is relatively low. However, because the proposed

method is designed based on neural networks, it cannot be combined with

traditional classifiers like RF. In addition, similar to standard convolutional

layers, it still requires a manual setting of hyperparameters such as the ker-

nel size and number of filters. Considering these limitations, using DWT to

decompose the EEG into clinical frequency bands [19, 52, 53] would prove

to be better when it comes to versatility.

Next, we investigated the characteristics of the 1-s segments to consider

the effectiveness of the frequency band extracted by the LPCLs. To de-

termine the differences of spectra between the nonepileptic discharge seg-

ments and epileptic spike segments, statistical analyses were performed

on the amplitude distributions at each frequency using Welch’s t-test [65].

Then, the effect sizes were calculated using Cohen’s d [66]. Fig. 3.16 shows

the mean spectrum of all 15,004 discharges, the mean spectrum of all 15,833

epileptic spikes, the areas where p < 0.01 in the t-test, and the effect sizes.

Fig. 3.16 shows that there are significant differences (p < 0.01) in the ampli-

tudes of almost all frequencies. In addition, in the range of 5–15 Hz, there
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is a large difference (d ≈ 0.8) between the two classes. Similarly, the LP-

CLs, especially no. 8, as shown in Fig. 3.10(b), showed a strong response to

this significantly different low-frequency band. This resulted in LPCLs that

can extract the frequency bands of statistical interest in the proposed data-

driven approach. Furthermore, because the methods using the LPCL and

the predefined filter of 4–64 Hz exhibit comparable performance, as shown

in Fig. 4.3, a frequency band such as those shown in Figs. 3.10 and 3.11—

less than 30 Hz, as roughly estimated—rather than a much higher frequency

band is sufficient for epileptic spike detection.

Finally, we consider the advantage of the dataset. Table 3.6 summarizes

the datasets from similar studies. It should be emphasized that the dataset

constructed in this paper achieved a much larger dataset (15,833 epileptic

spike waveforms from 15,004 patients) than previous studies, in which the

largest dataset in terms of spike waveforms consisted of 7,500 samples [32]

and the largest one in terms of patients consisted of 50 patients [67]. Note

that neither of the datasets from the previous studies is publicly available.

To the best of our knowledge, the number of epileptic spike segments is

the largest in the literature on epileptic spike detection. This number of

segments strongly supports the credibility of the statistical validation in this

paper. However, more non-epileptic labels would be needed for the task of

finding epileptic spikes in whole EEG recordings, rather than for the EEG

segment classification task, as in this work. Moreover, the results of this

paper may be limited by the fact that all patients’ symptoms are CECTS.

In the design of this dataset, we set the segment’s length as 1 s, following

other studies [19, 45] and the annotation tasks performed by the five special-

ists. Of course, certain studies have used different length segments [25, 32].

As the results of this paper show, 1-s extraction is sufficient to achieve a high
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TABLE 3.6: summary of the datasets on epileptic spike detec-
tion in other studies

Reference and #Labels annotated #Patientspublication year as epileptic spikes
Wilson et al. [67], 1999 2,400 50
Indiradevi et al. [30], 2008 684 22
Liu et al. [69], 2013 142 12
Johansen et al. [32], 2016 7,500 5
Douget et al. [19], 2017 2,157 17
Xuyen et al. [25], 2018 1,491 19
Thanh et al. [26], 2020 1,442 17
This study 15,833 15,004

AUC (> 0.9 in most cases) for CECTS spikes. In particular, because epilep-

tic spike-wave discharges in CECTS patients are known to contain a 3–4 Hz

component [68], a segment length of 1 s can fully contain one of these dis-

charges. Furthermore, even if the position of extracting the spike waveform

is slightly misaligned, it is unlikely that any part of the waveform will be

lost; thus, the 1-s extraction is appropriate.
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t-test between the two classes at each frequency are filled in
with yellow, and the bottom of the graph shows its effect size.
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Chapter 4

Temporal Features Extraction

In this cahpter, we introduce the Satelight model, which uses the self-attention

(SA) mechanism. The model was trained using a clinical EEG dataset la-

beled by five specialists, including 16,008 epileptic spikes and 15,478 arti-

facts from 50 children. The SA mechanism is expected to reduce the number

of parameters and efficiently extract features from a small amount of EEG

data. To validate the effectiveness, we compared various spike detection

approaches with the clinical EEG data.
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4.1 Proposed Method

4.1.1 Dataset Construction

Table 4.1 summarizes the dataset. Interictal EEG recordings were collected

from 50 children (23 males and 27 females) with either CECTS or focal

epilepsy [12] at the Department of Pediatrics, Juntendo University Nerima

Hospital. The patients’ ages at the time of the examination ranged between

three and twelve years. The data were recorded from 16 electrodes with the

International 10–20 system using the Nihon Koden EEG-1200 system. The

sampling frequency was 500 Hz. This dataset was recorded and analyzed

with the approval from the Juntendo University Hospital Ethics Committee

and the Tokyo University of Agriculture and Technology Ethics Committee.

Measurement EEG recordings were pre-processed as follows. First, us-

ing Scipy [51], a peak search method was used to find the EEG’s peak wave-

forms (minima and maxima)with. With a minimum distance of 100 points,

this function extracts both the upward and downward peaks. Meaningless

peaks caused by noise and other factors were removed using a threshold

set at the 80th percentile of all peaks in one electrode. Second, for the peaks

(namely, candidate spikes) that were actual epileptic spikes (spike or spike-

and-wave), five experts annotated labels as epileptic. To produce accurate

non-epileptic segments, the experts also labeled non-epileptic discharges.

These expert-selected non-epileptic discharges, which were mistakenly de-

tected as candidate spikes, included electromyograms, ambient noise, and

alpha EEG. Finally, the EEG recordings were cropped every 1.024 s (512

sampling points) from the beginning of the recordings, independent of the

temporal locations of the labeled events. As shown in Fig. 4.1, each segment

that contained either epileptic or non-epileptic labeled EEG was extracted as
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a valid segment. According to Fig. 4.1, segments with one or more epilep-

tic spikes are considered epileptic segments even if they have non-epileptic

labels. Thus, one segment had 16 electrodes and 512 samples (1.024 s). Z-

score normalization was used with the mean value and standard deviation

for each segment.

TABLE 4.1: Dataset summary of 50 epileptic EEG. Two neu-
rosurgeons, two clinical technologists, and one pediatrician
labeled this dataset. The total number of labeled samples is

31,486.

#Male patients 23
#Female patients 27
Age (Ave. ± STD.) 7.9 ± 2.0
Recording duration [min] (Ave. ± STD.) 27.5 ± 3.31
#Labeled as epileptic spikes 16,008
#Labeled as non-epileptic discharges 15,478
#Total labeled samples 31,486
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4.1.2 Satelight: A self-attention-based lightweight model

In this study, we propose a model that can be trained using multi-electrode

EEG segments and labels that indicate whether the spikes are epileptic. Fig.

4.2 illustrates the architecture of the proposed Satelight. As shown in Fig.

4.2, the model is factorized into the first convolution block and three SA

blocks. The first convolution block combines temporal and spatial convo-

lutions, whose effectiveness in lowering the learnable parameters has been

reported in [46, 37]. A two-dimensional convolution layer with a kernel

size of (fs/2, 1) implements the temporal convolution. Because the tempo-

ral kernel size is half that of the sampling frequency, it theoretically consti-

tutes a filter with a frequency resolution of 2 Hz [46]. Spatial convolution

is performed using a two-dimensional depthwise convolution layer. In this

layer, 16 input matrices of size (N,C) are independently convolved with

C-sized kernels. Thus, it is expected that the desired electrodes will be se-

lected. These convolutions feed the following SA blocks with the features

that have been spatiotemporally filtered. Therefore, every 8 ms, the SA layer

is expected to search for relationships between feature vectors. Finally, the

fully connected layer with sigmoid activation is adopted as the output layer

for binary classification. For training Satelight, cross-entropy, which is the

log-likelihood of the Bernoulli distribution, is employed as the loss function:

J = −l(i) log p(i) − (1− l(i)) log (1− p(i)), (4.1)

where l(i) ∈ {0, 1} and p(i) ∈ [0, 1] denote the annotated label and the model’s

prediction of the i-th EEG segment, respectively.
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4.1.3 Experimental implementation

To verify the effectiveness of the proposed Satelight, we conducted a numer-

ical experiment using surface EEGs recorded from patients with epilepsy.

As mentioned, this experiment is a binary classification of segments that

contain or do not contain epileptic spikes. The following five NN-based

models, one statistical property-based model, and one commercially avail-

able software, a non-NN-based method are used as comparison models:

• NN-based models:

– The proposed model (Satelight);

– Thomas et al.’s model [38];

– Two models proposed by Jing et al. [37] with the kernel size of all

temporal convolutional layers set to:

* three (SpikeNet3);

* five (SpikeNet5);

– Lawhern et al.’s model (EEGNet) [46];

• Statistical property-based model:

– Janca et al.’s model [70];

• Commercially available software:

– Persyst13 software [40].

Note that the above NN-based model was developed to detect spikes from

properly aligned EEG.

In this experiment, 50 leave-one-patient-out tests were performed using

EEG segments from 49 patients as a training set and the remaining segments
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from one patient as a test set in all possible combinations. The Adam op-

timizer [59] used the training set to train the models for comparison. Ad-

ditionally, early stopping [60] was applied using a portion of the training

set (namely, the validation set) to suppress overlearning. The validation set

consists of 20% randomly selected segments from the training data. Thus,

80% of the segments were used for training in the 49 EEG recordings. The

Xavier initializer [58] was used to generate the initial weights for this model.

Note that the training process was not conducted on Persyst13 software. To

compare the classification performances, we used four evaluation criteria:

the AUC of the ROC, F1-value, sensitivity, and FPR.

This experiment was computed using Python 3.7.6 with Keras [62] and

Scikit-learn [63] on a high-performance computer built with an AMD(R)

EPYC(TM) 7742 CPU@2.25 GHz, 512 GB RAM, and four NVIDIA(R) A100

GPUs.
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2D Convolution 
(#kernels=16, size=[ fs/2, 1], zero padding)

Activation (ReLU)
Batch Normalization

[N, C, 16]

MaxPooling (1/4)

2D Depthwise Conv. 
(#kernels=2 for each input matrix on axis-3,

size=[1, C], no padding)

Dropout (0.2)

[N, 1, 32]

Reshaping[N, 32]

[128, 32]

Self-Attention 
(#output_ch=32n)

+

Batch Normalization
Dropout (0.2)

Full Connection (32(n+1))

Activation (ReLU)
Batch Normalization

Dropout (0.2)

+

[128/4(n-1), 32n]

[128/4(n-1), 32(n+1)]

Axis-2 is padded by zeros

MaxPooling (1/4)[128/4n, 32(n+1)]

Flatten
Full Connection (1)

Activation (Sigmoid)

0: Non-epileptic segment
1: Epileptic segmentOutput

[256]
[1]

1.024 s raw EEGInput[N, C, 1]

n blocks 
(n = 1, 2, 3)

Learnable block

Fixed block

FIGURE 4.2: Architecture of the proposed Satelight, where N ,
C, and fs are the length of the input segment, the number of
EEG electrodes, and the sampling frequency, respectively. In

this study, N = 512, C = 16, and fs = 500.
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4.2 Results

4.2.1 Results of spike detection performance

Table 4.2 shows the averaged numerical results of the 50 leave-one-patient-

out tests. According to Table 4.2, the proposed method outperformed all

evaluation metrics except AUC. Friedman’s one-way analysis of variance

(ANOVA) [64] showed that the effects of the models on two metrics—F1

and AUC—were significant ( χ2
F1(4) = 98.6, pF1 = 1.95×10−20, WF1 = 0.499,

χ2
AUC(4) = 130, pAUC = 4.93 × 10−27, and WAUC = 0.648 , where W de-

note Kendall’s Coefficient of Concordance [64]). To better understand the

effectiveness of the models, we performed a Bonferroni post-hoc test [64] be-

cause the main effect of the models has been observed. Fig. 4.3 presents

the numerical results and the statistical analysis of the variance of 50 leave-

one-patient-out tests. According to Fig. 4.3, the performance of SpikeNet

and Satelight was found to be statistically different from that of EEGNet

and Thomas et al.’s model. Although no statistical difference was found be-

tween SpikeNet and Satelight, SpikeNet consists of 24 convolutional layers.
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FIGURE 4.3: Visualized results in understanding the differ-
ences between models. Statistical significance is indicated by
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4.2.2 Results of self-attention layer behavior

In this section, we discuss an analysis of the behavior of the SA layer in

Satelight. Figs. 4.4 and 4.5 show heat maps of the first SA layer’s output

(the size is [128, 32]), where the SA structure is illustrated in Fig. 4.2, and

the upper EEG segments are input. As shown in Fig. 4.4, the epileptic spikes

appeared between 0.1–0.2 s. The SA output also responded strongly in this

range. Similarly, as shown in Fig. 4.5, the SA responded strongly to the

epileptic spikes around 0.7 s. In this case, it did not respond to the artifacts

seen around 0.3 s.
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4.3 Discussion

4.3.1 Comparison of the number of parameters in the mod-

els

Table 4.3 and Fig. 4.6 show the number of parameters used in the numerical

experiment for the compared models . EEGNet is a model with few param-

eters; however, as shown in Table 4.2, its detection performance is not as

high as that of SpikeNet and Satelight. The model by Thomas et al., which

had the highest number of parameters, produced a high FPR, as shown in

Table 4.2. This might be because, although it is a deep network, it does

not extract features in the spatial direction. Compared with these two mod-

els, SpikeNet is more stable in detecting epileptic spikes (accuracy = 0.860

and F1 = 0.821 using SpikeNet5). A combination of deep convolution lay-

ers in both the spatial and temporal directions could have been achieved

used to achieve this. Moreover, even though Satelight performed better at

classification than SpikeNet5 (accuracy = 0.876 and F1 = 0.843), it can be

constructed with one-tenth as many parameters. This implies that the deep

convolutional layer may be redundant. Therefore, using the SA layer for

epileptic spike detection is effective.

4.3.2 Analysis of self-attention layer behavior

The SA layer behavior analysis results, such as the strong response during

epileptic spike and no response on artifacts, as shown in Figs. 4.4 and 4.5

may imply that SA operates independently of the EEG amplitude. More-

over, these heat maps demonstrate that the SA responses are slightly de-

layed (≈ 200 ms) from the onset of the spike. This delay appears to be

caused by specialists’ focus on the positive phase reversal following the
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spike [9]. According to the findings, this experiment, which classifies epilep-

tic spikes and artifacts, does not depend on the EEG near the beginning of

the event. Therefore, the behavior of the SA may change if the task involves

identifying specific epileptic spike types, such as a spike–wave or sharp–

wave.

4.3.3 Dataset collection

Generally, a dataset should include a variety of age, gender, and epilepsy

types, as well as a large amount of data and accurate annotations. In this

study, many 50 EEG recordings were collected for reliable validation. Ad-

ditionally, the Z-score normalization was applied to the EEG segments to

reduce amplitude differences among individuals. Therefore, we consider

that the proposed model trained on this dataset has high versatility for typ-

ical epileptic spike detection.

However, the age range of the dataset was limited to children. Although

it has not been reported that the typical form of epileptic spikes varies with

age and gender; however, it is essential to collect patient data from a variety

of age groups for reliable validation. Additionally, to build a more practical

model, other epileptiforms, such as quasi-periodic spikes and poly-spike,

must be annotated. To solve these limitations, it is desirable to develop a

framework for more efficient data collection and labeling.

TABLE 4.3: Number of parameters of the comparison models.

Model No. of parameters Ratio with Satelight

Satelight (proposed model) 83,905 ×1.00
EEGNet [46] 3,061 ×0.0365
Thomas et al.’s model [38] 16,387,578 ×195
SpikeNet3 [37] 518,658 ×6.18
SpikeNet5 [37] 848,386 ×10.1
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4.3.4 Segment extraction for dataset construction

In many spike detection studies, after detecting candidate spikes and an-

notating them with labels for the dataset construction, the EEG signals are

segmented out based on the labeled spikes. Candidate spikes are typically

found using simple signal processing methods and expert selection directly

from the EEG. Single-electrode EEG studies use the former method [19, 35,

71]. The latter method is used for both single and multi-electrode EEG stud-

ies [37, 26, 38]. Because the candidate spikes are not uniquely defined, there

is currently no simple segment method for multi-electrode EEG extraction.

For example, detecting peak spikes based on amplitude is challenging be-

casue spikes do not always occur at precisely the same time over multiple

electrodes. Furthermore, depending on epilepsy symptoms, the number of

electrodes in which spikes appear varies; thus, the rules for candidate de-

tection are likely to be complex.

However, if segments are extracted based on the expert’s selected spikes,

the validation data appear to depend on the expert’s decision even, and

then a data set is constructed using these segments. Therefore, for sufficient

validation, the expert’s decision must be removed from the factors in the

validation phase. Following this justification, the dataset for this study was

created using the following methodology:

1. Split the EEG recordings as segments at fixed intervals from the begin-

ning.

2. Indicate on labels whether the segment contains epileptic spikes.

The method for extracting segments of the validation data using this pro-

cedure was superior to the method relying on expert selection. The disad-

vantage of this method is that the location of spikes varies for each segment;
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thus, a more effective method for segment extraction or identifying charac-

teristic waveforms for multi-electrode EEG may be necessary. In this study,

the SA mechanism, as described in Section 4.2.2, rather than the segment

extraction method, successfully mitigated this limitation.
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Chapter 5

Conclusion and Open Problems

5.1 Conclusion

This section presents the conclusions of the study. In this study, we have

discussed the unresolved issues and challenges related to EEG-based auto-

matic epileptic spike detection. The proposed methods

• Frequency bands extraction using for epileptic spike detection using

linear-phase convolutions;

• Temporal feature extraction using self-attention-based model;

has been proposed to address the problems.

In Chapter 3, we proposed a method to combine a bank of LP filters

with a NN-based model and the ability to learn its coefficients from the

data. To the best of our knowledge, we have built the largest dataset in the

literature, containing 30,837 samples annotated by two neurosurgeons, one

clinical technologists, and one pediatrician. The proposed model classifies

1-s segments as epileptic spikes or nonepileptic discharges with high per-

formance (AUC > 0.9 in most cases). Furthermore, the filter’s frequency

response fitted from the EEG is strong in the low-frequency range (around

12 Hz). This band coincided brilliantly with the frequency band of interest

in the raw EEG segments of epileptic spikes.
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In Chapter 4, we propose a lightweight epileptic spike detection model

that employs the SA mechanism. The number of parameters in this model is

small compared with that of the other state-of-the-art deep NN-based mod-

els. Nevertheless, the model achieved high detection performance (accuracy =

0.876 and FPR = 0.133). Furthermore, an exploration of the hidden parame-

ters showed that the model automatically paid attention to the characteristic

waveform locations of interest in the EEG. This would significantly con-

tribute to the development of an explainable NN.
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5.2 Open Problems

5.2.1 Limitations of collected EEG data

In all experiment of this study, the age range of the dataset was limited to

children. Although it has not been reported that the typical form of epileptic

spikes varies with age and gender; however, it is essential to collect patient

data from a variety of age groups for reliable validation. Additionally, to

build a more practical model, other epileptiforms, such as quasi-periodic

spikes and poly-spike, must be annotated. To solve these limitations, it is

desirable to develop a framework for more efficient data collection and la-

beling. It would be highly effective to use, for example, CAPTCHA [72] —

using medical images instead of general photographs—to identify the sys-

tem user as the specialists and simultaneously collect data annotations in

the background.

5.2.2 Validity of annotation

To further improve versatility, the correctness of annotations must be exam-

ined. In this study, all samples were annotated at the sole discretion of the

annotators without consulting other annotators. That is, the annotation pro-

cess may contain human errors. The SpikeNet detection result in our exper-

iment (AUC = 0.92) was less accurate than the original result (AUC = 0.98)

reported by Jing et al. [37]. One possible reason is that only samples that six

or more annotators classified as epileptic were used in their evaluation.

5.2.3 Validity of evaluation

In this study and numerous others, datasets were built using pairs of EEG

segments and corresponding labels, then divided into training and test sets
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for verification [19, 35, 71, 37, 26, 38]. This validation will be sufficient if

spike detection can be considered a simple classification task. However,

this validation method using a pre-constructed dataset is a limitation of

these studies because the raw EEG recordings are not segmented. There-

fore, ideally, all EEG recordings should be fully labeled by the experts with-

out mistakes or omissions. Alternatively, detecting spikes from the entire

EEG recordings and then evaluating these predictions posteriorly, rather

than constructing the test set, is preferable. In other words, for practical

use, a fully automated method for detecting spikes in raw EEG recordings,

including EEG segmentation steps, and evaluating them appropriately is

urgently required.
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