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Abstract 

A digital surface model (DSM) is a 3D structure that represents the reflective surface of an 

object observed above the earth. It is part of remote sensing (RS) technology used for rapid evaluation 

of crop status and is less affected by weather, unlike satellite data. DSM can provide 3D canopy 

height information on the field and has been widely used in assessing relatively taller and 

heterogeneous canopies compared to homogenous and shorter canopies such as in paddy fields where 

there is little variation in plant height. However, accurate evaluation of such little variation can 

potentially model other growth-related traits in rice. Therefore, this study focused on; (1) Using 

unmanned aerial vehicle (UAV)-based images to develop a DSM to determine plant height in rice 

varieties, (2) Spatio-temporal monitoring of growth dynamics to estimate biomass increase from 

canopy height (CH) using DSM, and (3) analyse the feasibility of using a simple and direct assessment 

of lodging method in a multi-varietal rice field using DSM canopy height by conducting the following 

studies. 

Plant height (PL) is important for phenotyping because it affects aboveground biomass 

(TDW) increase. However, manual measurement is time-consuming. Hence, UAV DSM to estimate 

plant height was studied. Three rice cultivars; Nipponbare (japonica), IR64 (indica), and Basmati370 

(indica), were cultivated in paddy fields under different fertilizer conditions. RGB images with 80% 

forward and lateral overlap at an altitude of 30 m were taken above the rice canopies every week and 

processed. The PL of four hills was manually measured. A canopy surface model (CSM) was 

developed based on the differences observed between each DSM and the first DSM after transplanting. 

The average reflectance of eight hills in each plot was used for the calculation of CH using polygons 

(15 cm x 30 cm). Depending on the growth stage and genotypes, there were large variations in PL 

(from 0.46 to 1.80 m) and CH (from 0.1 to 1.4 m). CH correlated well with PL (R2 = 0.947) which 

shows DSM could explain the large variation in PL throughout the growth stages. However, there 
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was a trend of underestimation, because PL refers to the highest point in an area, whereas DSM 

considers the average of heights in an area. Nevertheless, DSM can estimate a relatively smaller range 

of PL, which is useful at every growth stage. 

After the usefulness of the DSM was confirmed, a model transfer was done to monitor and 

estimate other crop growth-related traits like leaf area index (LAI) and TDW to assess the effect of 

spatial and temporal variations on the model as such information is limited on paddy fields. Materials 

were the same as in Chapter 2, but the plants were harvested after aerial photography to measure LAI 

and TDW. Depending on the growth stage and genotypes, there were large variations in LAI (from 

1.03 to 7.93 m2 m-2) and TDW (from 64.7 to 1237.2 g m-2). The results showed a linear relation 

between PL and LAI or TDW, so a model was developed from this relationship to estimate LAI or 

TDW. The estimation accuracy of the model was high for TDW and LAI with large variations among 

the genotypes. This implies that developing genotype-specific estimation models are necessary. 

Lodging, regarded as the displacement of a plant from its upright position or anchorage system, 

highly affects crop quality and output. However, no simple method for assessing lodging using DSM 

has been developed. Thus, a simple attempt of the DSM for lodging assessment was evaluated as 

lodging is related to canopy height. Twenty-four different genotypes were cultivated under the same 

fertilizer conditions and their angles of inclination were measured during the ripening stage, and their 

CH was evaluated as in the previous studies. Four lodging estimation methods; ∆PL (difference 

between CH of the target area and PL at heading stage), ∆CHmax (difference between CH at 

evaluation time and the maximum CH (at around heading stage) of the target area), ∆CHborder 

(difference between CH of border plants and target area), and CHCV (coefficient of variation of CH 

among plants hills of target area) were used to assess the canopy structure anomalies. The results 

showed that CHCV can be used to detect and quantify lodging with high accuracy (R2 = 0.59). When 

CHCV exceeds 0.05, the lodging angle dramatically increased. Hence, CHCV could be a good indicator 
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for estimating lodging. In conclusion, the proposed UAV DSM has a great potential to assist in the 

rapid evaluation of biomass and natural occurrences like lodging. It will be possible to use this 

technology for future breeding programs in screening and phenotyping rice fields on a large scale. 

However, the challenge remains with the model improvement to increase the estimation accuracy 

which needs redress. 
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CHAPTER 1 

Introduction. 

1.1. Background of the study. 

Global food demand continues to rise as a result of some key factors; increasing world population, 

biofuel consumption and change in consumer preference (Pingali P. 2006; Godfray et al. 2010; 

Tilman et al. 2011; Foley et al. 2011). According to the FAO report (2017), the world population 

could reach 10 billion by the year 2050 which will require a 60% - 70%-fold increase in food 

production (FAO 2019).  Given this, many authors have suggested that increasing production rather 

than expanding arable lands is key to ensuring food security (Phalan, Balmford, et al. 2011; Phalan, 

Onial, et al. 2011; Green et al. 2005; Tscharntke et al. 2012; Hulme et al. 2013). However, this feat 

must be realized within the frame of sustainability and environmental protection to ensure minimal 

effect on biodiversity (Gomiero, Pimentel, and Paoletti 2011). 

Rice is an important staple food around the world and its consumption provides about 35% - 60% 

of the daily required calories of many households (Fageria 2007). Therefore, it is necessary to increase 

the crop production of rice. Given this challenging issue, there is a need to develop and adopt crop 

management techniques that use less resource input with high efficiency to improve rice production. 

The traditional methods of rice growth monitoring rely mainly on time-consuming and labour-

intensive manual evaluation in the field which may sometimes be subjective depending on the 

observer’s experience (Cen et al. 2019). This implies that obtaining crop growth status frequently 

with high precision and accuracy is important to help in the design of the best management methods. 

To this effect, complex ecological and physiological processes are studied in agroecological research 

to identify plant genotypes and environmental reactions to crop management options for instance on 

crop growth. Crop growth simulation models (CGSM) allow for the accurate and timely estimation 
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of crop growth and development requirements (Ten Berge et al. 1997). Consideration of the spatial 

variation of crop-growth environmental conditions can improve crop-management practices. In this 

regard, remote sensing (RS) can be an important tool for meeting the aforementioned requirements 

because it provides a non-destructive means of providing recurrent information on crop growth status 

from the local to the regional scale, allowing for the characterization of spatiotemporal variability 

within a given area (Stafford 2000; Metternicht 2005). 

 

1.1.1. Remote sensing application for agriculture.  

Remote Sensing refers to the acquisition of information about an object or phenomenon 

without contact (Agrios 2004). Satellites and balloons are common remote sensing platforms, and a 

variety of sensors like optical and near-infrared sensors, as well as RADAR (Radio Detection and 

Ranging), are fixed on these platforms for remote sensing applications. Remote sensing platforms 

and sensors have been used for monitoring based on satellite imaging such as Landsat 1 and Ikonos 

(Seelan et al. 2003; Bauer and Cipra 1973; Mora et al. 2017; Mulla 2013). However, satellite imagery 

is sometimes not the best option due to the low spatial resolution of acquired images and the 

limitations of temporal resolutions imposed by the fact that longer revisit times are required. 

Furthermore, weather conditions, such as clouds, obstructs the use of satellite. Again when using 

manned aircraft for image data, the cost is usually high, and it's rare to be able to fly multiple times 

to get more than a few crop images (Tsouros, Bibi, and Sarigiannidis 2019). But recent technological 

advancements in unmanned aerial vehicles (UAVs) and portable sensors have increased their 

application in precision agriculture (Zhang and Kovacs 2012a; Verger et al. 2014). 
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1.1.2. UAV-based crop monitoring. 

UAV platforms are equipped with different types of spectroscopic and image sensors, such as 

Red Green Blue (RGB) sensors, multispectral/hyperspectral imaging sensors, light detection and 

ranging (LiDAR) and infrared thermal imaging sensors further increasing the base for UAV 

application. The potential of UAV has been demonstrated in some studies which include measuring 

plant length (Holman et al. 2016a; Li et al. 2016; K. Watanabe et al. 2017a), biomass (Willkomm, 

Bolten, and Bareth 2016a), yield (Du and Noguchi 2017), plant density (Jin et al. 2017), and 

vegetation fraction (Torres-Sánchez et al. 2014) in different crops such as barley (Bendig et al. 2014; 

Bendig, Yu, et al. 2015), maize (Wang et al. 2016), and soybean (Maimaitijiang et al. 2017). UAV-

acquired images usually have higher temporal (e.g., daily acquisitions) and spatial resolutions (e.g., 

centimetres), necessitating further investigation into the use of high-resolution images in precision 

agriculture. With regards to high-resolution image data, many studies have examined crop growth 

parameters like plant length, leaf area index (LAI), and biomass alongside other environmental factors 

such as nitrogen (N) content, soil water stress, soil surface properties, etc., (Zarco-Tejada, González-

Dugo, and Berni 2012; Donoghue et al. 2007; Sullivan, Shaw, and Rickman 2005; López-Lozano et 

al. 2009; Wan et al. 2020; J. Wu, Wang, and Bauer 2007; Metternicht 2005; Liang 2004).  

  However, most of the above-mentioned parameters are assessed using vegetation indices 

(VIs), which are widely used tools in agricultural remote sensing. Specifically, VIs such as the 

Normalized Difference Vegetation Index (NDVI), the Soil Adjusted Vegetation Index (SAVI), and 

the GreenNDVI, have been used for quantitative analysis of the aforementioned parameters (Hunt et 

al. 2005; Lelong et al. 2008; Swain, Jayasuriya, and Salokhe 2007). But a common setback with the 

use of these VIs in agricultural studies is saturation in the advanced crop growth stage (Haboudane et 

al. 2004). Additionally, there are concerns of irradiance conditions may affect the results of VIs. For 

example in Hama et al. (2020) and Zhou et al. (2017), the VIs fluctuates with an increase in the sun’s 
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multitude above the horizon which causes a decrease in VIs (Rahman, Lamb, and Stanley 2015; 

Cogliati et al. 2015). Furthermore, this effect is also compounded by weather (Ishihara et al. 2015). 

The spectral information differs depending on the environmental (especially radiation) condition 

(Rasmussen et al. 2016; Inoue et al. 2016; Yukie, Katsura, and Yamashita 2020). 

Another natural occurrence of importance to rice production is lodging because of how it 

substantially affects rice production. Lodging, regarded as the displacement of a plant from its upright 

position or anchorage system highly affects crop quality and output (Wei Wu and Ma 2016; Berry et 

al. 2004; 2003; Foulkes et al. 2011). Timely assessment of lodging would benefit several stakeholders 

like rice breeders, farmers, and insurance companies, and inform policymakers on farmer incentives 

and risk management on a large-scale (Liu et al. 2018). Because lodging causes a significant reduction 

in plant height, DSM could be used to assess lodging. However, no simple method for assessing 

lodging using DSM has been developed. 

 

 1.1.3. UAV photogrammetric techniques. 

Photogrammetric techniques are mainly used to construct orthomosaic or digital elevation models 

(DEMs) to extract 3D information regarding observed vegetation (Tsouros, Bibi, and Sarigiannidis 

2019). UAV photogrammetry has facilitated the on-demand generation of high-resolution datasets 

such as the DSM. DSM represents the ground elevation model consisting of the morphology of the 

observed objects, such as vegetation and is constructed using surface point cloud data (X. Hu et al. 

2021). DSM generated from overlapped aerial images is relatively less affected by the weather and 

time zone, unlike satellite images except by strong winds and rainfall at the time of the filming. UAVs 

for image acquisition coupled with structure-from-motion (SfM), provide a robust system capable of 

creating high-resolution DSMs using less expensive RGB cameras (Javernick, Brasington, and 
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Caruso 2014; Verhoeven and Vermeulen 2016; Verhoeven 2011; Geipel, Link, and Claupein 2014; 

Schirrmann et al. 2016).  

 

1.2 Problem statement and research justification. 

Plant height is an important agronomic factor for field investigation in crop phenotyping due 

to its influence on biomass (Boomsma et al. 2010; Salas Fernandez et al. 2009; Yuan et al. 2008; 

Lübberstedt et al. 1997). DSM can provide 3D plant height information in the field and has been 

widely used in assessing relatively taller and heterogeneous canopies compared to homogenous and 

shorter canopies such as in paddy fields where there is little variation in PL (Rueda-Ayala et al. 2019; 

Zhang et al. 2018). However, accurate evaluation of such little variation has the potential for 

modelling other growth-related traits in rice (Bendig, Willkomm, et al. 2015; Bendig et al. 2014; 

Bendig, Yu, et al. 2015; Y. Wang et al. 2019; De Souza et al. 2017; X. Han et al. 2018; Li et al. 

2016). In addition, the crop biomass–height relationship is usually specific to different rice genotypes 

under different crop growth statuses and environments. To date, fewer studies have considered the 

potential of the DSM approach for evaluating the genotypic differences in plant height among 

different rice varieties, and there is a dearth of information on paddy fields that requires much 

attention.            

 Therefore, this thesis provides the details of a comprehensive study comprising field and 

laboratory analysis which outlines the feasibility of DSM application in evaluating production and 

lodging in rice in different rice genotypes. The findings of this study add to the knowledge of remote 

sensing applications for agriculture to assist all stakeholders in the management decision-making 

process to increase rice production. 
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1.3. Objectives of the study. 

The overall objective of this study was to develop evaluation methods for biomass production and 

lodging in rice by the digital surface model using an unmanned aerial vehicle. To achieve this 

objective, the following three specific objectives were set in conjunction with the subsequent chapters 

of this thesis: 

a. To use UAV-based images to develop a DSM to determine plant height in rice varieties in a 

paddy field.  

b. To estimate the biomass increase from plant height using DSM by conducting Spatio-temporal 

monitoring of growth dynamics. 

c. To analyse the feasibility of using a simple and direct assessment of lodging method in a 

multi-varietal rice field using DSM plant height. 

 

1.4. Research hypothesis. 

The background and the objectives of this research informed the formulation of the following hypothesis: 

1. Significant genotypic differences exist among rice varieties which affect their response to the 

growth environment. 

2.  Genotypic and environmental differences affect the development and application of crop 

growth monitoring and evaluation models. 

 

1.5. Structure of this thesis. 

This thesis is structured into five chapters.  

The first chapter constitutes the general introduction to the research, detailing the background, 

justification, objectives, and hypothesis. Chapter two focuses on using UAV-based images to develop 

a DSM to determine plant height in the 2018 growing season. Chapter three focuses on model transfer 
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and application to monitor and estimate biomass growth in rice in the 2019 growing season. Chapter 

four further assesses the feasibility of using the  DSM to evaluate lodging in rice varieties. Chapter 

five consists of a summary of the significant outcomes of the research, the conclusion made from the 

analysis and proposed areas for further study. 
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CHAPTER 2 

Development of plant height estimation model by a digital surface model using unmanned aerial 

vehicle images. 

2.1. Introduction. 

 The future of agricultural food production is threatened by a labour shortage that is expected 

to worsen in the not-too-distant future. However, food demand and consumer preference require that 

high yields and quality standards are maintained which necessitates the best management practices 

used throughout the production period. Traditionally cultivation management involves on-site visual 

appraisal of crops, which is laborious and time-consuming thus prone to many errors. In some cases, 

the farmer's judgment based on experience may be subjective (Dessart, Barreiro-Hurlé, and Van 

Bavel 2019). For countries like Japan, the ageing and dwindling labour force in the agriculture sector 

has become a major social problem, therefore, labour saving and efficiency in cultivation 

management are pressing issues that need urgent attention. For this reason, Guo et al., (2015) asserted 

that technological innovations and interventions are eminent to compensate for the physical 

deficiency in the agricultural labour force. Concurrently, developed techniques must not compromise 

economically and environmentally sustainable production systems, through increased efficiency of 

input use and reduced environmental damage (Delgado et al. 2019).     

Rice is a major grain crop that feeds over half of the world's population. Rice production and 

quality have been the subject of many studies (Yuan 2014; Peng et al. 2008; Dan et al. 2016). 

Precision management, legislation, decision-making, and marketing all benefit from timely and 

accurate rice monitoring and yield forecasting before harvest (Zhou et al. 2017). Field surveys and 

destructive sampling at various field scales are common methods for collecting rice ontology 

information, but they are labour-intensive, complex, and fraught with uncertainty. Furthermore, 

because rice has a long growth cycle, its yield is affected not only by growth status during the 
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reproductive phase (booting, heading, and filling), but also during the vegetative phase (seeding, 

tillering, and jointing), necessitating continuous monitoring of rice growth (Wan et al. 2020).  

Plant height is a basic agronomic parameter for field investigation in crop phenotyping and is 

widely used to assess biomass and potential grain yield (Rueda-Ayala et al. 2019; H. Zhang et al. 

2018). Traditionally, plant length (usually from the base to the top-most tip of the plant) has been 

measured in the field with a meter rule by selecting a few representative plants to represent the canopy. 

However, this method is time-consuming when it involves large-scale multi-variety trials and can be 

hampered by severe weather and limited accessibility. As a result, several high-throughput 

technologies for obtaining three-dimensional (3D) structures under field conditions have been 

developed (Boomsma et al. 2010; Sankaran et al. 2015). This is because, o characterize phenotypic 

traits non-destructively and noninvasively for thousands of individual plants with high efficiency and 

precision, high-throughput phenotyping systems are required (Furbank and Tester 2011; Großkinsky 

et al. 2015).  

Crop growth can now be predicted thanks to advances in remote sensing technology, and 

satellite-based remote sensing has proven to be extremely accurate. However, satellites' overpass 

frequency and spatial resolution (>50 cm), which do not correlate well with single rice plants, are 

limitations for such work (Kawamura et al. 2020; Al-wassai 2013). Single rice plants cannot be 

identified because they are usually sown in 20 – 25 cm intervals grid (Kawamura et al. 2020). 

Similarly, ground-based sensing platforms are difficult to transport from one location to another, 

surface maps are difficult to generate in real-time, and plant parameters of multiple plots cannot be 

measured at the same time (Sankaran et al. 2015). Also, low resolution, cost, and variable weather 

conditions limit the ability to obtain timely crop growth information throughout the growth period. 

Furthermore, many crop yield prediction models can only provide high accuracies at a large scale, 

such as country, region, or county, but they cannot describe the detailed variations at a small scale, 
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especially for small farmlands or experimental plots (L. Han et al. 2019; Sulik and Long 2016; Huang 

et al. 2015). 

 The increasing availability of UAVs has opened the possibility of increasing image data 

monitoring frequency and spatial resolution (Shi et al. 2022). For instance, VIs derived from UAV-

based images have been proven to be an effective method for predicting crop yields (Zeng et al. 2021). 

But canopy structure variability at various growth stages is another factor that influences VIs 

robustness, especially in heterogeneous canopy structures like rice with wide genotypic variations. 

Laser scanning techniques, such as airborne light detection and ranging (LiDAR), can be used to 

obtain detailed 3D information on the plant canopy (Hoffmeister et al. 2009; Tilly et al. 2014). Due 

to the payload limitations of small UAVs and their high relative cost, LiDAR and TLS are not widely 

available in crop fields, despite their precision (Kawamura et al. 2020). The feasibility of using UAV 

platforms to estimate plant height and 3D canopy structure in barley, maize, and sugarcane has been 

demonstrated so far. Conversely, fewer studies have been conducted in relatively shorter canopy 

crops (Bendig et al. 2014; Berry et al. 2003; Bendig, Willkomm, et al. 2015; K. Watanabe et al. 

2017b; X. Han et al. 2018) because of smaller distinctions in plant height possibly leading to lower 

accuracy.  

 Therefore, in this study, UAV digital surface model (DSM) was used to estimate plant height 

in a relatively shorter crop, rice, using different genotypes throughout the growth period in the paddy 

field. Canopy height (DSM_CH) obtained by extracted crop surface models (CSM) from successive 

DSMs were validated by ground measured data and explained by linear regression models. The 

established relationships could serve as the basis for modelling other crop growth-related traits. 
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2.2. Materials and methods. 

2.2.1. Experimental site. 

A field experiment was conducted in 2018 in a paddy field containing alluvial clay loamy soil, 

on the farm belonging to the Field Museum Honmachi, Tokyo University of Agriculture and 

Technology, Honmachi, Fuchu-shi, Tokyo (35° 39′ 57″ N, 139° 28′ 16″ E, 49 m above sea level). 

The total land area measures approximately 3.39 ha and consists of 13 rice paddy plots with a total 

area of 2.4 ha (Figure 2.1). The climatic conditions of this area are mild and generally warm, with a 

mean annual temperature and precipitation of 15 °C/59 °F and 1530 mm, respectively (Japan 

Meteorological Agency n.d.). The experimental area measured 45 m × 15 m and was arranged in a 

randomized complete split-plot block design, with three replicates each, with fertilizer treatment as 

the main plots and rice varieties as sub-plots (Figure 2.3). The dominant soil at this site is grey lowland, 

alluvial loamy soil which is the typical soil of paddy fields in Japan. The site has been in continuous 

rice cultivation for over 30 years with little off-season fallow period in between growing seasons. 

Based on a report that industrial effluents polluted the water supply from the Fuchu irrigation to this 

farm in the 1970s, groundwater from a depth of about 150 m now supplies water for irrigation to the 

farm ever since (Tatsumi, Kuwabara, and Motobayashi 2019; Aoyama et al. 2010; H. Watanabe et al. 

2007; Okazaki and Saito 1989).  
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Figure 2.1. Location of the study site at Fuchu Honmachi, Tokyo 

2.2.2. Agronomic and management practices. 

The field was irrigated with groundwater from the pump station at the paddy field. The water 

flows to the research field by underground pipes connected to the pump station, which allows for full 

and independent control of water levels appropriately. Following the general paddy field preparation 

and water ponding, the paddy soil was paddled by several passes of a rotary tiller under a few 

centimetre ponding water conditions (Figure 2.2). Submerged field condition was normally 

maintained for most of the growing season. Hand-picking of weeds was done when necessary to 

reduce competition for available nutrients with crops. Herbicides are normally applied in the first and 

third weeks after transplanting using 350g granules herbicide containing Imazosulfuron 0.9%, 

Pyrazlonil 2.0%, and Brombutide 9.0%. Before transplanting, water was introduced into the paddy to 

a level of 0.01-0.02 m above the soil surface. All other standard agronomic practices were observed, 

and plant protection measures were taken as required. 
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Figure 2.2. Rotary levelling (a) and manual levelling (b) of paddy field. 

   

  

(a) (b) 
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Figure 2.3. Study field and overview of the plot layout in 2018. 

 

2.2.3. Rice genotypes and fertilizer application. 

Three rice genotypes; Nipponbare (Japonica), IR64 (Indica), and Basmati370 (Indica) were 

planted based on their wide genotypic variability. Nipponbare is the first japonica cultivar in the world 

whose genome sequence has been sequenced in 2004 and was used as a representative of the japonica 

varieties (Matsumoto et al. 2005). IR64 is the most widely cultivated indica variety in the world and 

was used as a representative of indica varieties (Mackill and Khush 2018). Basmati370 is a traditional 

indica variety of aromatic rice with relatively less genetic improvement (Cosmas Mojulat et al. 2017). 

It was used in this study because the traditional (less genetically improved) varieties tend to show 

vigorous vegetative growth, and the plant morphological traits are very different from the improved 

varieties such as Nipponbare and IR64 (Shaobing Peng and Khush 2003). Seedlings at the fourth leaf 

  Target  

(8 x 8 cm) 
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stage were transplanted at a hill spacing of 15 cm x 30 cm with one seedling per hill. The transplanting 

date was May 30, 2018. N fertilizer was applied in three splits. Fertilization in 2018 was divided into 

no fertilization (0N), low fertilization (Low) (basal: 3 g m-2, and topdressing 3 g m-2) and high 

fertilization (High) areas (basal: 3 g m-2, and topdressing 3 g m-2 x 6 times). Phosphorous pentoxide 

(P2O5) and potassium oxide (K2O) were also applied at a ratio of 10:10 g m-2 as the basal dose for 

each plot (17.5% P and 60% K concentrations, respectively).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. Images of the Genotypes planted in the 2018 growing season (a: Nipponbare, b: IR64, C: 
Basmati370).   

(a) 

(b) 

(c) 
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2.2.4. Aerial image data acquisition. 

Ground control points (GCPs) were established in the experimental field using the total station 

and auto level by conducting traverse surveying and levelling. The coordinates of the GCPs were 

referred to in the Japan Geodetic Datum 2011 / Plane Rectangular Coordinate System zone 9 as a 

map projection, and the GCPs were set at the four corners of each field (Figure 2.3). Later, the GCPs 

were identified in the ortho mosaicked images for geo-referencing and height calibration. 

 

Figure 2.5 The UAV platform used in this study: (a) Inspire 2 DJI UAV (b) RGB camera (Zenmuse 

X4S; DJI) (c) The UAV in the take-off position. 

 

Sets of overlapped images of the fields were taken using a UAV (Inspire 2; DJI) equipped 

with an RGB camera (Zenmuse X4S; DJI) with 20 megapixels (5472 × 3648 resolution). The UAV 

flights were set to an autonomous flight plan using the ‘double grid’ mission in Pix4Dcapture. The 

flight altitude was fixed at 30 m above the rice canopy with a forward and lateral overlap rate of 85%. 

(a) (b) 

(c) 
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Approximately 160 images were acquired during each flight campaign, and the flight survey was 

performed at two-week intervals in 2018 (eight flights). In the event of rain or strong winds, the 

shooting time and dates were altered accordingly. Due to the predominant flooded conditions in the 

paddy field at the early stages, it was better to take the UAV images at a time when the sun altitude 

was not high.  

 

 Table 2.1. Specification of the Inspire 2 DJI (UAV) platform. 

 

 Table 2.2. Specifications of the RGB camera (Zenmuse X4S; DJI). 

 

Item  Specification 

Maximum take-off weight 4,250 g 

Maximum rotation speed Pitch: 300 ° / s, Yaw: 150 ° / s 

Speed (Max) 94 km h-1 

Wind pressure resistance 10 m s-1 

Gimbal accuracy ± 0.01 ° 

Battery (standard) 4280 mAh 

Obstacle detection range 0 - 5 m 

Image processing system CineCore 2.1 

Item  Specification 

Size 125 x 100 x 80 mm 

Weight 253 g 

Sensor CMOS, 1 " 

Lens F / 2.8-11, 8.8 mm (35 mm equivalent: 24 mm) 

Viewing angle 84 ° 
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Figure 2.6. UAV flight trajectory of the flight mode. 

 

.2.5. Ground truth data collection.  

Plant length was measured from a 60 cm x 60 cm area that covers four standard hills from 

each plot. Figure 2.7 shows an example of images of three genotypes taken on July 3rd and 27th, and 

the area of the photos almost corresponds to the sampling area covering eight hills per plot. A total 

of 12 hills were sampled in 2018 per each sampling date. Plant length was obtained by straightening 

the plants one at a time and measuring the four hills from the ground surface level to the tip of the 

rice plant. The plant length was measured simultaneously along with the DSM_CH on each UAV 

survey Day.  

Camera positions and directions 

3D point cloud 
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Figure 2.7. Examples of photos of 8 hills of 3 genotypes (Nipponbare, IR64 and Basmati370) with 

medium fertilization in replication 2 that were taken on (a) July 3rd and (b) July 27th in 2018. 

 

2.2.6. Generation of the DSM and canopy surface model (CSM).   

The Agisoft Metashape Professional (ver. 1.5.1) was used to generate a 3D point cloud, ortho-

mosaic images, and DSMs by processing the UAV-acquired images. As outlined by Gindraux et al., 

(2017), this approach supports the simultaneous processing of overlapped images using the geometric 

constraints of camera positions. Hereafter, the DSM is also referred to as the canopy surface model 

(CSM) because it reflects the crop surface. The process of generation of DSM and ortho mosaic 

images as explained by Yamaguchi et al. (Yamaguchi et al. 2020) was used in this study as shown in 

Figure 2.9. 

Nipponbare IR64 Basmati370

(a)

(b)

(a) 

(b) 

Nipponbare IR64 Basmati370 
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First, tie points were automatically identified from the overlapped aerial images; then the tie 

points were used to calibrate the camera parameters such as the focal length of the lens, principal 

point positioning, and radial and tangential distortions. The parameters of external orientation 

(camera position and tilting angle) were estimated using the detected tie points and the four installed 

GCPs, and a dense point cloud was generated. This processing was performed to achieve a GCP 

accuracy within 1 pixel. A DSM and an ortho mosaic with a spatial resolution of approximately 9 

mm/pixel were developed. The standard deviations of the z-coordinate (elevation) at the two 

checkpoints were examined from the generated time-series DSMs and were ± 8.4 mm and ± 18.4 mm 

in 2018.      

From this, it was confirmed that the DSM generated using the minimum number of 4 GCPs 

required for photogrammetry showed sufficiently robust and stable in the use of the analysis of crop 

height. Using the DSM, CSM was calculated from the difference between the DSM of each 

observation day (DSMn) and the first DSM after transplanting (DSM1st,) as seen in figure 2.8 (van 

Iersel et al. 2018). DSM1st can be regarded as almost flat inside the paddy field and is defined as the 

reference plane to generate CSMs. At this time, since the paddy is flooded, the influence of the 

refraction of water may be included in the z-coordinate, but this was a systematic error and was not 

corrected. The value of the CSM was defined as the DSM_CH. This relation is mathematically 

expressed as 

 𝐶𝑆𝑀𝑛 = 𝐷𝑆𝑀𝑛 − 𝐷𝑆𝑀1𝑠𝑡  (2.1) 
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where n represents the observation dates. 

Figure 2.8. Generation of a CSM from the DSM. 

 

Table 2.3. Parameters of the drone flights and image processing. 

Process Parameter Setting 
Drone flight Altitude (m) 30 m 
 Overlap Forward 85% and lateral 

85% 
 Number of GCPs 4 
 Coordinate system JGD2011/Japan Plane 

Rectangular CS IX 
(EPSG:6677) 

Camera alignment Accuracy Highest 
 Adaptive camera model 

fitting 
No 

Build point clouds Quality Ultra-high 
 Depth filtering Mild 
Build texture Mapping mode Generic 
 Blending mode Mosaic 
Orthomosaic Blending mode Mosaic 
 Surface DEM 

 

        
DSMn DSM1st CSM 
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Figure 2.9. The flowchart of the DSM and orthomosaic image generation from UAV images. 

 

2.3. Results and discussions. 

This study analysed the potential of UAV-based DSM to estimate plant height, with an emphasis 

on developing estimation models to predict plant height of three rice varieties grown under varying 

environmental conditions. The results demonstrated the feasibility of using CSM-derived CH to 

predict plant height in rice genotypes. The approach used is uncomplicated, practicable, and can 

achieve timeliness compared to the conventional destructive sampling method. Although the droopy 

nature of rice leaves makes it difficult to measure accurately using UAVs in the field, the high 

correlation with the ground truth data shows a high degree of accuracy in using this technology. 
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2.3.1. Variations in manually measured plant length (PL) from field observation. 

A growth survey was conducted on three rice genotypes between July 3rd and August 27th. The results 

showed significant large variations in PL (from 0.46 m to 1.8 m) which were influenced by the 

genotype and the growth stage (Figure 2.10). Basmati370 attained the highest PL under both growth 

conditions. This is principally due to the tall nature of traditional Basmati varieties even under 

reduced nitrogen conditions (Bhattacharjee, Singhal, and Kulkarni 2002). Even though manual 

measurement of plant length tends to be accurate, however, manual measurement on a large scale has 

been a thorny issue (Tilly et al. 2014; Bendig et al. 2014). In literature, the problem of determining 

the representative mean of the PL of a field plot has also been addressed (Bendig et al. 2014). 

Therefore, it is beneficial to use the DSM for rapid and accurate estimation of PL in the field to save 

time and energy. 
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Figure 2.10. Comparison of changes in PL at various days after transplanting (DAT) for three rice 

genotypes: Basmati370 (Circles), IR64 (Triangles), and Nipponbare (Squares) under high fertilization 

(solid lines, filled) and Low fertilization (long broken lines, unfilled) and no fertilization (short broken 

lines, unfilled) conditions. 

 

2.3.2. Relation between the measured PL and DSM_CH.  

A large variation was observed in CH (from 0.1m to 1.4 m) based on the growth stage and the 

genotypes. Generally, CH is relatively lower than PL because of (1) the droopy nature of fully 

matured rice leaves, (2) CH represents the entire canopy surface of the average height of several 

leaves including those in the lower position and is not necessarily the highest point of the plant when 

measured from the field (Bendig et al. 2014; Zhang et al. 2020), and (3) the wind may bend plants 

and generate false parallax, which can make the DSM height estimate method more difficult (Chu et 

al. 2018). Regarding the DSM_CH, numerous measuring points exist within a pixel including lower 
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point areas within the pixel, therefore, a mean difference of about 0.3 m between PL and DSM_CH 

is quite reasonable.  

  After the detailed processing of the 3D image as described in the previous section, the 

following spatial and temporal variations and patterns within each CSM and between different CSMs 

can be obtained as seen in figure 2.11. The increase in CH could be calculated from the height 

differences between successive CSMs using the maps obtained, as shown in Figure 2.11. Plant growth 

across the three dates accurately reflected changes in crop coverage and CH, which implies that plant 

growth is observable using DSM. In the early growth stages, a homogeneous canopy growth pattern 

was observed, which changed in the later growth stages. The results of the recorded CSMs indicate 

the suitability of the model developed to estimate CH with a high spatial resolution (approximately 9 

mm) and accuracy as opposed to the spaceborne remote sensing approach (Koppe et al. 2012; Lopez-

Sanchez et al. 2011; Ribbes and Letoan 1999).  

Figure 2.11. Height comparison datasets with canopy surface model for three rice genotypes in 2018. 
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In Figure 2.12, two types of CH calculated from CSMn using the values at the 97th percentile 

(Kawamura et al. 2020) and the mean values of a 60 cm x 60 cm area that covers four hills are 

presented. As seen in figure 2.12, the two types of CH strongly correlate with PL, and the 

determination coefficient (R2 = 0.947) of the mean CSM shows a little higher than the 97th percentile 

(R2 = 0.937). This shows that DSM could explain the large variation in PL throughout the growth 

stages. However, there was a tendency for underestimation.  

 Also, the RMSE of the mean CH and the 97th percentile of CSM were 0.067 m and 0.074 m 

respectively. From these results, a complicated method is not required to derive representative CH in 

this case, and it implies that plant height can be estimated simply using the mean of CSM with higher 

accuracy. 

 

Figure 2.12: Comparison between measured plant length (PL) and two types of CHs calculated from 

the mean CSM values (red squares) and 97th percentile of CSM (black cross signs). 
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2.3.3. DSM_CH calculation.  

Variations in pixel units make it difficult to estimate crop growth accurately. Therefore, as 

shown in figure 2.13, ortho-mosaic and CSM images were developed, and the entire field was divided 

into polygons of 30 cm × 30 cm square meshes (2 plants) from which the mean value of the PL of 

each mesh was used as the representative value. 

 

Figure 2.13: CH calculation from (a) orthoimage and (b) CSM in a 30 by 30 cm area (yellow square) 

covering two plants. 

 

2.4. Conclusion. 

 This study used DSM to determine CH from UAV aerial images. The results showed 

significant variations in PL among the rice genotypes from 1.8 m in Basmati370 to 0.46 m in 

Nipponbare depending on the growth stage. CH correlated well with PL (R2 = 0.947, root-mean-

square error (RMSE) = 0.067 m) with large variation (from 0.1m to 1.4 m) depending on the genotype 

and growth stage. However, there was a tendency for underestimation in CH due to a composite of 

factors. Nonetheless, the ability of DSM to estimate such a wide range of CH is beneficial in assessing 

crop growth status, especially at the early growth stages where plant height is relatively low. These 

results proved the potential of DSM for deriving PL, which can be used for modelling other important 
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crop growth-related traits. Furthermore, since DSM was used in this study, the influence of weather 

was relatively minimal. The results outlined in this study require further investigation in different 

environmental conditions over multiple years to ascertain its transferability, because several other 

factors that influence model development and application were not investigated in this study. 
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CHAPTER 3. 

Spatio-temporal estimation of biomass growth in rice using canopy surface model from 

unmanned aerial vehicle images. 

3.1. Introduction. 

Obtaining knowledge about the dynamics of plant biomass is an essential part of precision 

agriculture, as such information aids in the management decision-making, risk assessment, and the 

design of labour-saving and efficient technologies that can compensate for the physical deficiency in 

the agricultural labour force (Guo, Wen, and Zhu 2015; Gil-Docampo et al. 2020; Tang et al. 2020). 

Biomass estimation has been widely explored due to its direct relation to crop yield commonly by 

farmers’ expert knowledge through destructive sampling which is not timely and labour efficient. The 

consequences thereof lead to lower productivity (Li et al. 2015; Jimenez-Berni et al. 2018) 

Alternatively, the potential of satellite-based remote sensing for crop management has been 

widely studied by MacDonald (1983). However, satellite imaging is hindered by coarse resolution, 

cloud cover, and fixed-timing image acquisition, which may not synchronize with some specific 

phenological phases (Matese et al. 2015; Cen et al. 2019). In addition, information on sufficient 

resolution and apt revisit frequency for precisely mapping smallholder farm units has been a challenge 

until the influx of UAVs (Hegarty-Craver et al. 2020). The low cost, high flexibility, simple handling, 

and high spatial resolution of UAVs enable their application in many fields of research including 

biology, forestry, and hydrology (Burkart et al. 2018; Candiago et al. 2015; C. Zhang and Kovacs 

2012b; George et al. 2013; Zhou et al. 2017; Bendig, Yu, et al. 2015; Debell et al. 2015; Anderson 

and Gaston 2013; Rasmussen et al. 2016). Recent studies based on VIs extracted from the images 

captured by relatively inexpensive UAV-based digital and multispectral cameras have been used to 

examine many options for crop growth indices (Honkavaara et al. 2013; Lee and Lee 2013). However, 

it has been established that the normalized difference vegetation index (NDVI), widely used in remote 
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sensing, saturates the index values as the growth stage progresses, affecting its sensitivity to genetic 

and environmental conditions in the acquisition of high-resolution data (Lee and Lee 2013; 

Christopher et al. 2016). Also,  spectral information is affected by various factors, including plant 

morphology, soil background, and the shooting environment (Rasmussen et al. 2016; Inoue et al. 

2016; Tanaka, Katsura, and Yamashita 2020)   

The emergence of UAV photogrammetry has facilitated the on-demand generation of high-

resolution datasets such as the DSM (Hoffmeister et al. 2009). Comparatively, DSM generated from 

UAV photogrammetry offers advantages such as easy handling of the UAV platform, the likelihood 

of adapting sensors, user-friendly data evaluation tools, accessibility of difficult terrains and low cost, 

over terrestrial platforms or the light detection and ranging (LiDAR) (Fischer et al. 2016; Barrand et 

al. 2009; Baltsavias et al. 2001). Unlike satellite imagery, the DSM generated from overlapped aerial 

images is relatively less affected by the weather and time zone, except by strong winds and rainfall 

at the time of the filming. The spike in the use of UAVs for image acquisition proceeded 

simultaneously with the onset of a novel photogrammetric technique known as structure-from-motion 

(SfM), which together with multi-view stereo (MVS) provides a robust system capable of creating 

high-resolution DSMs using less expensive cameras (Javernick, Brasington, and Caruso 2014; 

Verhoeven 2011; Geipel, Link, and Claupein 2014; Schirrmann et al. 2016).  

DSMs have been used extensively in agriculture for monitoring important traits such as plant 

height, yield, and biomass estimation in major crops such as maize, rice, barley, potato, and even 

perennial grasses such as Miscanthus giganteus (Bendig et al. 2014; Papadavid 2011; Verhoeven and 

Vermeulen 2016; Freeman et al. 2007; Sharma et al. 2016). However, little information is known of 

studies conducted on rice paddy fields and their particularities, highlighting significant varietal 

differences among genotypes. Additionally, the factors that constrain the location of control points 

(unlike dry land), could lead to potential correlation errors in SfM due to water reflections. Although, 



 

31 

 

investigations into several other factors that affect DSMs from UAV photogrammetries such as image 

quality, the layout of the Ground Control Point (GCPs), and flight altitude among others have been 

carried out (Rock, Ries, and Udelhoven 2012; Tahar et al. n.d.; Nouwakpo, Weltz, and McGwire 

2016). Nonetheless, the analysis of time-series dynamic processes of various allometry and 

phenology mechanisms and their relationship with a different environment in rice has not been well 

studied. For these reasons, rigorous efforts to redress these information gaps are needed. 

Unquestionably, previous works have made significant contributions to improving the feasibility 

of DSM application in agriculture by outlining various prospects, methodologies, challenges, and 

mitigation strategies. However, lapses in the available information for estimating crop growth under 

various environmental conditions using DSM require significant attention, especially in a 

homogeneous canopy like rice fields. Hence, in this study, UAV photogrammetry was used to assess 

the time-series aerial growth dynamics of different paddy rice varieties cultivated under different 

conditions to improve the estimation of biomass growth from CH using the DSM. Obtaining such 

data is a good step toward designing precise phenological calendars that are variety specific to feed 

crop estimation models. Linear regression models based on the DSM and extrapolated from 

overlapped RGB images were developed to estimate crop growth. From the estimated LAI and crop 

biomass results, the differences in the planting year and growth conditions were revealed using DSM 

instead of VIs, especially under various conditions, with high Spatio-temporal resolution.  

 

3.2. Materials and methods. 

3.2.1. Experimental site. 

 Two field experiments were conducted during the summers of 2018 and 2019 as shown 

in Figure 3.1 (hereafter referred to as Area 1 and Area 2, respectively) in a paddy field containing 

alluvial clay loamy soil, on the farm belonging to the Field Museum Honmachi, Tokyo University of 
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Agriculture and Technology, Honmachi, Fuchu-shi, Tokyo (35° 39′ 57″ N, 139° 28′ 16″ E, 49 m 

above sea level).  

 

Figure 3.1. Study fields and layout in 2019. 
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The climatic conditions of this area are mild and generally warm, with a mean annual temperature 

and precipitation of 15 °C/59 °F and 1530 mm, respectively (“Japan Meteorological Agency, n.d.). 

Areas 1 and 2 measured 45 m × 15 m and 15 m × 27 m, respectively, and were arranged in a 

randomized complete split-plot block design, with three replicates each, with fertilizer treatment as 

the main plots and rice varieties as sub-plots. 

3.2.2. Rice genotypes and fertilizer application. 

Three rice cultivars—Nipponbare (Japonica), IR64 (Indica), and Basmati370 (Indica) were used 

based on their wide genotypic variability. The reasons for their selections have been thoroughly 

discussed in the 2018 experiment. Seedlings at the fourth leaf stage were transplanted at a hill spacing 

of 15 cm x 30 cm with one seedling per hill. The transplanting dates were May 30, 2018, in Area 1, 

and May 22, 2019, in Area 2. Nitrogen fertilizer was applied in three and two splits in 2018 and 2019, 

respectively. Fertilization in 2018 was divided into no fertilization (0N), low fertilization (Low) 

(basal: 3 g m-2, and topdressing 3 g m-2) and high fertilization (High) areas (basal: 3 g m-2, and 

topdressing 3 g m-2 x 6 times). For 2019, the plots were divided into non-fertilized (0N) and fertilized 

(+N) areas (basal: 2 g m-2, and topdressing: 2 g m-2 × 6 times). Phosphorous pentoxide (P2O5) and 

potassium oxide (K2O) were also applied at a ratio of 10:10 gm-2 as the basal dose for each plot 

(17.5% P and 60% K concentrations, respectively). 

 

3.2.3. Aerial image acquisition and image processing.  

The detailed information about aerial imaging was mentioned in the second chapter of this thesis 

which is the 2018 experiment. However, the UAV flight campaign was adjusted to weekly intervals 

making eleven flights in total. For time-series monitoring, the aerial survey was done weekly in 2019 

to acquire more detailed phenological changes in rice growth. All other precautionary measures were 

observed to ensure a successful UAV campaign throughout the study period. The standard deviations 
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of the z-coordinate (elevation) at the two checkpoints (Figure 3.1) were examined from the generated 

time-series DSMs and ± 4.9 mm and ± 4.5 mm in 2019. 

 

3.2.4. Ground truth data collection.  

Plants were harvested from a 60 cm x 60 cm area that covers eight standard hills from each 

plot (Figure 3.1). The total number of samples was 189 and 108 for up to 89 and 87 days after 

transplanting in 2018 and 2019, respectively to examine aboveground biomass (TDW), leaf area 

index (LAI) and PL. A total of 27 and 18 plots were sampled in 2018 and 2019 respectively per each 

sampling date. The above-ground parts of the plants such as leaf blades and stem plus leaf sheaths 

were retained, while the roots were discarded. PL was obtained by straightening the plants one at a 

time and measuring the height from the ground surface level to the tip of the rice plant. The PL was 

measured simultaneously along with the CH on each UAV survey Day. Leaf area was obtained by 

measuring randomly sampled leaves using an automatic leaf area meter (AAM-9A; Hayashi Denko, 

Japan) with a conveyer belt assembly. After determination of leaf area, the plant organs were oven-

dried at 80 °C for 72 h to attain a constant dry weight, after which their dry weights were measured 

and LAI on a ground area basis was calculated. 

 

3.2.5. Procedures of Spatio-temporal estimation of biomass growth.  

Using CSM and ground truth data collected in 2018 and 2019, models were developed to estimate 

LAI and TDW from CH with PL and tried to estimate LAI and TDW spatially and temporally. Figure 

3.2 shows the flowchart of spatio-temporal estimation of biomass growth using the CSM. First, the 

method of calculating CSM in 2018 to derive the relations with PL was examined. In addition, the 

relations between PL and LAI/TDW were derived, and from these relation formulas, LAI and TDW 

estimation models using CH as the variable were derived and evaluated. Furthermore, these models 
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were applied to CH in 2019 to estimate and evaluate LAI/TDW and estimated LAI and TDW spatially 

and temporally. 

 

 

Figure 3.2. Procedures of Spatio-temporal estimations using canopy surface models. 

 

3.3. Results and discussions. 

3.3.1. Genotypic variations in leaf area, biomass, and plant length. 

Biomass production and harvest index determine rice productivity (Yoshida Souichi 1981). 

However, is it widely acknowledged that following the Green revolution, there is less room to 

increase the harvest index (Laza et al. 2015) and realizing higher rice yield will largely depend on 

increasing biomass production (S Peng et al. 1999). The agronomic parameters investigated in this 
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study yielded similar per-unit area values over the growth period as seen in Figure 3.3a-f compared 

to other previous studies (Fageria 2007; Yoshida et al. 2007; Njinju et al. 2018). The results presented 

in Figure 3.3 shows large variations in manually measured LAI, TDW and PL depending on the 

genotype, growth stage and growth condition. First, the largest LAI range was observed in 

Basmati370 (from 8.8 – 9.4 m2 m-2) in the two growing seasons. Conversely, Nipponbare and IR64 

achieved nearly the same LAI increase with little variation between them. The LAI range for 

Nipponbare and IR64 was relatively lower (from 7.1-7.5 m2 m-2). The results show that genotypic 

differences affect LAI development. LAI increased almost linearly, especially under nitrogen 

fertilization conditions until after heading, in all varieties (Figure 3.3a and 3.3d), and this result agrees 

with Yoshida and Horie (2010), who emphasized the importance of fertilizer application in enhancing 

LAI growth. A similar trend was observed in PL with Basmati370 achieving the highest  PL (from 

177 – 180 cm) in 2018 and 2019 respectively compared to Nipponbare and IR64 (from 120 to 123 

cm ) in both growing seasons. TDW was relatively higher in 2018 than in 2019 (Figure 3.3b and e). 

TDW reached approximately 1334 g m-2 and 1242 g m-2 in Nipponbare and IR64 in 2018 and 2019 

respectively compared to lower TDW recorded in Basnati370 (from 1144 – 1238 g m-2) in 2018 and 

2019 respectively which confirms the effects of genotypic differences (Semchenko and Zobel 2005). 

Since water level condition was the same for the growing seasons, the difference in biomass may be 

attributed to the significant variation in daylight hours between the two seasons. The significant drop 

in TDW production could be explained by the intercepted solar radiation as determined by total 

incident radiation during rice ontogeny and the possible radiation intercepted by the radiation canopy 

(Yoshida et al. 2007). As it can be seen from Figure 3.9, there was a significant drop in the daylight 

hours which affected the radiation and absorption by plants for dry matter production emphasizing 

the importance of light intensity Photosynthetic-related biomass compounds  
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Figure 3.3. Comparison of seasonal changes in LAI, TDW and PL at various days after transplanting 

(DAT) for three rice genotypes: Basmati370 (Circles), IR64 (Triangles), and Nipponbare (Squares) 

under high fertilization (solid lines, filled) and Low fertilization (long broken lines, unfilled) and no 

fertilization (short broken lines, unfilled) conditions. 
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(Xu, Ibrahim, and Harvey 2016). This is mainly because, at lower irradiance, the rate of 

photosynthesis depends mainly on the light interception capacity (Pearcy and Sims 1994).  

Additionally, Nitrogen fertilization plays a pivotal role in rice growth because of its 

involvement in physiological processes such as LAI development and biomass growth. The data 

collected exhibited large variations in each parameter, as described above, and plant height could be 

obtained throughout the growth period.  

 

3.3.2 Relationship between the measured PL and DSM_CH.  

The model accurately estimated DSM_CH in agreement with the conventional meter rule 

measurement method of PL (R2 0.904) in 2019 as sown in Figure 3.5. The strong linear correlations 

between the predicted and measured datasets of 2019 indicate a high accuracy in the model 

application. When deriving the estimation formula of LAI and TDW from CH, the relational formula 

of PL and CH in 2018 (y=1.1384x + 0.207) was used.  

 

Figure 3.4. Comparison of seasonal relationships between measured PL and estimated DSM_CH in 

2018 (cross sign) and 2019 (unfilled circles). 
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Even though constraints such as underestimation by DSM exist as reported, the results showed 

enhanced accuracy compared to that of earlier reported models (Yamaguchi et al. 2020; van Iersel et 

al. 2018). The result thus shows that the model using DSM with RGB images could provide an 

alternative to the methods of using a multispectral camera and vegetation indices to estimate plant 

height. 

 

3.3.3. Biomass modelling and evaluation. 

From the previous dataset in 2018, the dataset was further divided into two; datasets of 

replications 1 and 3 were for the model calibration (n = 48) and replication 2 was used for the model 

validation (n = 24). A linear regression model was then developed to compare the measured PL with 

LAI and TDW and was evaluated using their coefficient of determination values (Figure 3.5). The 

calibration data for LAI yielded R2 values of 0.886 and 0.764 for Basmati370, and Nipponbare and 

IR64 combined respectively (Figure 3.6a). Aboveground shoot biomass recorded a high R2 value of 

0.961 in Basmati370 (Figure 3.6b). A similar correlation between biomass and PL has been 

previously reported by (Ehlert, Adamek, and Horn 2009; Willkomm, Bolten, and Bareth 2016b; 

Aasen et al. 2015). The effect of nitrogen fertilizer application on the relationship between PL and 

LAI/TDW was not significant in this study (Figure 3.6), so it was regarded as negligible because the 

same regression lines could be developed for the parameters. From the observed linear relationship 

between the PL and DSM_CH, and the relationship of PL with LAI and TDW, a model for estimating 

LAI and TDW from the CH was developed using the two types of relational expressions expressed 

below: 
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Nipponbare & IR64 

 𝐿𝐴𝐼𝑛𝑖𝑝𝑖𝑟 = 9.15𝐶𝐻 − 0.66 (3.2) 

 

 

Basmati370 

 𝐿𝐴𝐼𝑏𝑎𝑠  =  7.21𝐶𝐻 –  0.83   (3.3) 

 𝑇𝐷𝑊𝑏𝑎𝑠  =  1030.7𝐶𝐻 –  201.6 (3.4) 

 

 

Basmati370 had different relational expressions compared to the other genotypes; therefore, different 

models were built for Basmati370 and the other two genotypes using ArcMap. Relatively, 

Basmati370 is less genetically improved than the other two genotypes used in this study, and 

generally, less genetically improved rice varieties tend to have higher N requirements and become 

taller compared to genetically improved rice varieties. Therefore, to establish a method for estimating 

the biomass growth of rice under various cultivation controls, it is necessary to have knowledge of 

different genotypes and develop different models to fit the different models as the results of this trial 

have proven that large variation exists in growth-related parameters among different rice genotypes 

and also plants response to the growing environment. 

 

 

 

 

 𝑇𝐷𝑊𝑛𝑖𝑝𝑖𝑟 = 2071.3𝐶𝐻 − 412.8 (3.3) 
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Figure 3.5. Relationship of (a) LAI and (b) aboveground TDW with measured PL  among three rice 

varieties: Basmati (filled circles), IR64 (unfilled triangles), and Nipponabare (unfilled circles) in 

2018 (Rep. 1 & 3). Solid line (Basmati trendline); Broken line (IR64 and Nipponbare trendline). 
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3.3.5. Accuracy Assessment of LAI and TDW estimates and validation. 

The derived model from the validation dataset was used to estimate LAI and TDW as shown 

in Figure 3.7, and the results were compared with the measured values considering their strong 

relationship with PL. The correlation between measured and estimated values was high in  
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Figure 3.7. Accuracy assessment of CSM derived estimated (a) LAI and (b) TDW against standard 

ground-based measurements among three rice varieties. Basmati (filled circles), IR64 (unfilled 

triangles), and Nipponabare (unfilled circles) in 2018 (Rep. 2). Solid line (Basmati trendline); Broken 

line (IR64 and Nipponbare trendline). BAS: n=12, NIP & IR: n=24. 

 

TDW (R2 between 0.894 and 0.926) as compared to LAI (R2 between 0.780 and 0.814). In rice 

canopies, where leaves overlap during canopy closure, leaf area estimation could be hindered as 

segregation of individual tillers and leaf blades become difficult, which could result in 

underestimation (Fang et al. 2014). Again, the scattering of values increased with the progress in 

vegetative growth, especially in LAI. 

 The aerial survey campaign was suspended on August 27 because of strong winds from a 

typhoon that resulted in the lodging of some plots; thus, subsequent surveys became challenging. 

Therefore, the CSMs up to August 17 were used for the estimation. The influence of lodging on the 

development of different genotypes could be a major limiting factor in the application of the CSM 

(Bendig et al. 2014). Table 3.1 shows the estimation accuracy of the LAI and TDW on the validation 

dataset that was set in 2018. The root mean square error (RMSE) of LAI was approximately 1.0 m2 

m-2 for all varieties. The RMSE of TDW was approximately 119 g m-2 and 84 g m-2 for Basmati370 

and the other two varieties, respectively. The relative RMSE of estimating LAI and TDW was 

approximately 18% to 20% and 12% to 18%, respectively, for all genotypes. The results indicated 

the ability of PL derived from the DSM approach to predict crop growth. 
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Table 3.1 Estimation accuracy of LAI and TDW in 2018 (Rep. 2). 

 LAI (m2 m-2)  TDW (g m-2) 

 BAS IR& NIP  BAS IR & NIP 

Mean 5.24 4.96  657.8 708.5 

Mean error -0.67 -0.55  -85.9 25.9 

RMSE 1.09 0.93  119.0 84.4 

Relative RMSE (%) 20.8 18.8  18.1 11.9 

BAS, n=12; NIP and IR, n=24. 

 

In 2019, the regression model derived from the validation dataset of 2018 was applied and evaluated 

based on the relationship between the measured and predicted values of LAI and biomass (Figure 

3.8). As shown in Figure 3.8a, the prediction of aboveground dry biomass had the highest R2 value 

(0.937) in Basmati370 with an RMSE of 0.76 (Table 3.1). Compared to 2018, the LAI distribution 

was slightly smaller in 2019 (R2 = 0.894 to 0.866 (Figure 3.8b) in Basmati370 and the two other 

genotypes. However, the values tended to be more scattered toward the estimated LAI and TDW 

compared to the measured values. This is the result of bad weather conditions experienced in the early 

stages of the growing season, which had adverse effects on the plants. Reduced sunshine or daylight 

negatively affected the slope of the relationship between PL and TDW and LAI. This event led to an 

underestimating of the growth parameters in 2019. 

The estimation accuracy of the model applied in 2019 showed that there was an improvement 

in LAI, as shown in Table 3.2. Even though there was a reduction in the mean, which decreased from 

approximately 5.0 in 2018 to approximately 3.7 in 2019, the RMSE improved from 1.0 in 2018 to 

approximately 0.8 in 2019, with little variation between the years. As mentioned earlier, this result 

seems to suggest that the estimation results of 2018 tend to be underestimated. Regarding the accuracy 
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of TDW estimation in 2019, a significant mean reduction from 657.8 g m-2 in 2018 to 472.6 g m-2 was 

observed in Basmati 370 (Table 3.2).  

 

 

Figure 3.8. Relationship between the estimated and observed values of (a) LAI and (b) TDW among 

three rice varieties in 2019. Basmati (filled circles), IR64 (unfilled triangles), and Nipponabare 
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(unfilled circles) in 2018 (Rep. 2). Solid line (Basmati trendline); Broken line (IR64 and Nipponbare 

trendline).  (Rep. 1, 2 & 3). BAS: n=24, NIP & IR: n=48. 

The RMSE of Nipponbare and IR64 in 2019 (161.5 g m-2) was approximately twice that of 

2018 (84.4 g m-2), indicating a large variance between the two seasons. The relative RMSE increased 

from 18.1% in 2018 to 18.7% in Basmati370 in 2019 (Table 3.3). In 2018, 12 samples were used to 

evaluate the accuracy compared to the 24 samples used in 2019. Because the number of samples was 

large, the model fitted well with the variation, which was evaluated to be relatively small as the 

accuracy was improved. 

Table 3.2. Estimation accuracy of LAI and TDW in 2019 (Rep. 1, 2 & 3). 

 LAI (m2 m-2) TDW (g m-2) 

Mean 3.66 442.9 

Mean error 0.13 55.3 

RMSE 0.76 141.4 

relative RMSE (%) 20.8 28.7 

 

Table 3.3. Estimation accuracy of LAI and TDW for three rice genotypes in 2019 (Rep. 1, 2 & 3). 

 LAI (m2 m-2)  TDW (g m-2) 

 BAS NIP & IR  BAS NIP & IR 

Mean 3.93 3.53  472.6 503.0 

Mean error -0.04 0.22  0.9 82.5 

RMSE 0.79 0.75  88.3 161.5 

relative RMSE (%) 20.1 21.2  18.7 32.1 

  BAS: n=24, NIP & IR: n=48 
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Cloudy weather conditions caused about an 80% reduction in the average daylight, which reduced 

from approximately 7.9 h in 2018 to 1.5 hours in 2019 as shown in (Figure 3.9). This period coincided 

with the time in which CH could be estimated from CSM Under cloudy weather conditions, which 

results in reduced solar radiation, plants tend to elongate more rather than increase their net biomass 

weight, and several studies assert this assumption (Pierson, Mack, and Black 1990; Song and Jin 

2020; T. Zhang, Huang, and Yang 2013). This implies that as the environment changes, there may be 

a need to modify the model to fit the environment. 

 

3.3.5 Temporal changes in time-series estimation. 

By changing the survey frequency from bi-weekly intervals in 2018 to weekly intervals in 

2019, our approach could gather a multi-temporal dataset that provided detailed changes in LAI and 

biomass growth dynamics under field as shown in Figure 3.10. LAI development increased sharply 

between June 20 and July 10 after which a steadier growth pattern was observed. A similar tendency 

was observed in biomass increase but the increase was prominent in Nipponbare and IR64 under +N 

conditions. The weekly observation revealed the detailed growth pattern of the genotypes relative to 

the growth environment which may not have been revealed by prolonged intervals between 

monitoring periods. This approach helps in real-time monitoring of crop growth at important 

phenological stages essential for precision agriculture (Hansen and Schjoerring 2003), in contrast to 

single-date measurements, which may hinder growth dynamics monitoring in real-time (Kawamura 

et al. 2020). In addition, the hassle of in situ destructive growth evaluation was eliminated (Jay et al. 

2015). Biomass production in rice is very important for yield formation, and it was pointed out that 

its importance changes dynamically depending on the growth stage (Takai et al. 2006). Therefore, 

the ability to monitor growth on a fine temporal scale can be used to predict yield with high accuracy. 
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Figure 3.9. Fourteen weeks of AMeDAS Fuchu weather data during the growing season.  
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Figure 3.10. Observed temporal changes of estimated (a) LAI and (b) TDW in (Rep. 2) on various 

days after transplanting (DAT) in 2018 and 2019. 

3.3.6 DSM spatial monitoring. 

For farmers and researchers alike, information on within-field variations and discrepancies in 

crop status and edaphic factors is beneficial for making management decisions (Maes and Steppe 

2019). In this regard, UAV-based DSM offers clear advantages over conventional manual practices 

in addition to providing reliable estimates of CHs from mean CSM, as seen in this study. Such time-

saving and real-time monitoring of spatial variations within the field (Figures 3.11 and 3.12) can also 

provide cost-effective and site-specific information for important farm operations, such as fertilizer 
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and pesticide application (Portz, Molin, and Jasper 2012; Dammer and Wartenberg 2007; Shanahan 

et al. 2008). The spatial estimation showed a uniform growth pattern in LAI and TDW at the initial 

growth stages; however, detailed genotypic differences were evident at the advanced growth stages, 

with fertilized areas showing more prominent growth. Based on these results, it can be inferred that 

a good correlation between the variables translates into areas with high CH (greener areas), indicating 

high LAI and aboveground biomass. Thus, this technology can be used to evaluate rice growth 

spatially. In addition, the technology can be applied not only to precision agriculture technologies, 

such as site-specific fertilization but also for accurate prediction of growth dynamics in the entire 

field. The key limitations of the models developed in this study were the effects of weather and 

genotypic differences between varieties. When the model was applied in 2019, a tendency of 

overestimation due to reduced sunshine hours during the initial stages of the growing season was 

observed. As the bad weather persisted, the relationship between PL, LAI, and TDW was affected. 

Therefore, further investigation is required to understand the variations in the measured and estimated 

values and to improve the robustness of the model because the genotypes, environmental conditions, 

and parameters investigated in this study were limited. 
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3.4. Conclusions. 

 Rice genotypes with wide genotypic variations were cultivated under N fertilization 

conditions, and CSM developed from UAV RGB images by linear regression models was used to 

estimate growth and other leaf area development. The estimation accuracy of the model was found to 

be high, with relative RMSEs of 20.8% and 28.7% for LAI and TDW, respectively. Depending on 

the growth stage and genotypes, there were large variations in LAI (from 1.03 to 7.93 m2 m-2) and 

TDW (from 64.7 to 1237.2 g m-2). The results showed a linear relation between PL and LAI or TDW, 

so a model was developed from this relationship to estimate LAI or TDW. The estimation accuracy 

of the model was high for TDW and LAI with large variations among the genotypes. This implies 

that developing genotype-specific estimation models are necessary. Also, by altering the survey 

frequency, it was determined that it is possible to perform time-series biomass estimation using this 

model. Furthermore, since DSM was used in this study, the influence of weather was relatively small 

and stable, and easy weekly observations could be made. However, the model developed was limited 

by the differences in varieties and the growing environment. The results outlined in this study require 

further investigation in different environmental conditions over multiple years to ascertain its 

transferability, because several other factors that influence model development and application were 

not investigated in this study. Furthermore, the spatial resolution of the data can also influence the 

results obtained, especially in the earlier stages of the growth cycle. By comparing the results under 

different environmental conditions or planting seasons, the effect of weather variables such as 

sunshine, temperature, and cloud cover on the application of the model could be explained. 
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Figure 3.11. Examples of Spatial estimation of LAI in 2019 using the DSM model (greener areas 

represent higher LAI). 
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Figure 3.12. Example of spatial estimation of TDW in 2019 using the DSM model (greener areas 

represent higher biomass growth). 
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CHAPTER 4  

Assessing Lodging severity in different rice genotypes using a digital surface model. 

4.1. Introduction. 

Rice, wheat, and maize are the three most important food crops in the world, with rice ranking 

third in terms of production (Su et al. 2022). The importance of rice production for food security 

cannot be overemphasized because it is a staple meal for more than half of the world's population, 

providing more than 20% of their daily calories (Muthayya et al. 2014; Dhillon et al. 2018). Lodging 

is a frequent physiologic problem that impairs crops’ output and quality throughout the middle stages 

of their growth cycle. It is a major yield-limiting factor for staple cereal crops such as wheat, rice, 

barley, maize and oats (Islam et al. 2007; W. Wu and Ma 2004). Aside from the physical destruction, 

it also reduces grain quality (Norberg, Mason, and Lowry 1988; Setter, Laureles, and Mazaredo 1997). 

Rice lodging as explained by Pinthus (1974) is defined as the displacement of crop stems from their 

upright posture (stem lodging) or the collapse of the root-soil anchoring system (root lodging). Strong 

winds or heavy rain/hail cause it, and inappropriate crop management methods like excessive N 

treatments or high planting density worsen it (Quang et al.2004). 

Rice lodging is influenced by rice types, cultivation methods, field management, disease, and 

insect pests. During the growing phase, rice types with extremely long internodes, elongated plants, 

bent leaves, and rice with huge panicles are prone to lodging (Plaza-Wuthrich et al. 2016). Obtaining 

information such as the location and size of rice lodging sites quickly and accurately is critical for 

lodging disaster assessment, yield loss assessment, agricultural disaster insurance, and post-disaster 

management. Manual lodging assessment methods are not only time-consuming, labour-intensive, 

and inefficient, but it is also space constrained. Also, especially when thousands of plots are being 

screened in a breeding program, making repeatable surveys difficult (Duan et al. 2017; P. Hu et al. 

2018; Sun et al. 2019; Shu et al. 2020). In some cases, secondary damages are induced during the in-
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situ assessment (Han et al. 2018). Crop lodging assessment has become common in recent years 

thanks to advances in remote sensing technologies. However, satellite remote sensing cannot identify 

lodging information correctly in real-time due to geographical and temporal resolution limitations. 

Satellite remote sensing is challenging to satisfy the demands for rice lodging monitoring at a precise 

time and location. Furthermore, weather conditions have a significant impact on the satellite imaging 

(Weiss, Jacob, and Duveiller 2020). 

The UAV platform offers minimal risk, and excellent flexibility while flying even in cloudy 

conditions and is ideal for crop lodging monitoring and analysis (Ampatzidis et al. 2019). The plant 

height differences between the lodging area and the non-lodging area of rice are significantly larger 

(~>20 cm) in some cases (Yang et al. 2017). Given this, much attention has been given to height data 

derived from UAV image-generated DSMs because studies have proven that height data possess a 

beneficial contribution to classification and have the potential to improve classification accuracy in 

phenotyping rice varieties (Kuria et al. 2014; Tamminga et al. 2015). For instance, Murakami et al. 

(2012), employed crop height obtained from a computerized canopy model as a measure of lodging 

stage in buckwheat, with lower values indicating severe lodging. Chapman et al. (2014) also used a 

digital elevation model (DEM) to compute the average height of lodged and non-lodged crops and 

used a height threshold (50 cm, based on pixel height variation) to detect lodged regions. Such 

significant delineation of 10–70% of the lodged region using these approaches appears to validate the 

usefulness of employing height information for lodging assessment. Conversely, a major drawback 

of using spectral indices for lodging assessment is that the changes in variability may be caused by 

composite factors. 

To date, recognition of lodging in rice fields still has low accuracy and lacks real-time 

performance. There is a dearth of statistics related to lodging on a local, regional, or global scale 

unlike crop yield (Chauhan et al. 2019). Heterogenous distribution of lodging affects the accuracy of 
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estimation, especially in rice fields (Patel et al. 2006; Schaepman et al. 2009). Therefore, it is 

important to provide quantitative estimates of the lodging stage which is vital for mid-season 

interventions. This study developed a novel approach to identify and assess lodging in rice genotypes 

based on DSM_CH variations in the rice field to establish a UAV imagery-based crop lodging 

estimation method. The approach of this study is simple and provides theoretical and practical support 

for accurate rice lodging monitoring. 

 

4.2. Materials and methods.  

4.2.1. Experimental site. 

A field experiment was conducted at a paddy field in the Field Museum Honmachi, Tokyo University 

of Agriculture and Technology, Honmachi, Fuchu-shi, Tokyo (35.41 N and 139.29 E) in 2021. The 

experimental field measured 45 m × 15 m, arranged in a randomized complete design in two replicates 

(Figure 4.1). 
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 Figure 4.1. Experimental field and layout (2021 growing season). 

 

4.2.2. Rice genotypes and fertilizer application. 

In this research, to verify the differences between as many genotypes as possible, 24 rice 

genotypes were selected. The genotypes were obtained from the Agricultural Bioresource Gene Bank 

of the National Institute of Agriculture and Innovation, Japan collection that collects genetically 

diverse varieties. Detailed information on the genotypes is presented in Table 4.1. The genotypes 

were cultivated under the same N fertilization whereby 2 g m-² was applied as a basal on May 23. In 

addition, 10 g m-² of P2O5 and K2O were applied as a basal on May 15. Transplanting was carried out 

on May 20 with a planting density of 22.2 hills m-² (30 cm × 15 cm) with one plant per hill.  
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Figure 4.2. Sample images of the rice genotypes with different canopy structures. 

 

4.2.3. Ground truth data collection.  

The PL in this study was measured as the vertical distance from the ground level to the apex 

of the plant using a measuring ruler on a per-plot basis. Although using a ruler is debatable and may 

also introduce inaccuracy issues and tediousness, it is still considered a standard and still acceptable 

in field trials (F. Holman et al. 2016; Willkomm, Bolten, and Bareth 2016a; Murakami, Yui, and 

Amaha 2012a). The above survey was conducted every week from the date of transplanting to the 

date of heading. Four plants from each plot were selected for PL and their tiller angle of inclination 

were measured.  

  

Purple rice 
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Table 4.1. Information on the different rice genotypes from different locations 

 

 

 

 

 

 

  

Variety name ID Origin Variety type 
Nipponbare WRC 01 Japan Japonica 
Kasalath WRC 02 India Indica 
Jena 035 WRC 04 Nepal Indica 
Naba WRC 05 India Indica 
IR 58 WRC 14 Philippines Indica 
CO 13 WRC 15 India Indica 
Vary Futsi WRC 16 Madagascar Indica 
Deng Pao Zhai WRC 19 China Indica 
Tadukan WRC 20 Philippines Indica 
Calotoc WRC 22 Philippines - 
Nepal 8 WRC 27 Nepal Indica 
Kalo Dhan WRC 29 Nepal Indica 
Surjamukhi WRC 33 India Indica 
Ratul WRC 36 India Indica 
Nepal 555 WRC 40 India Indica 
Dianyu 1 WRC 43 China Japonica 
Ma Sho WRC 45 Myanmar Japonica (tropical) 
Khao Nok WRC 46 Laos Japonica (tropical) 
Jaguary WRC 47 Brazil Japonica (tropical) 
Hong Cheuh Zai WRC 99 China Indica 
Vandaran WRC100 Sri Lanka Indica 
IR 64 

 
Philippines Indica 

Basmati 370 
 

India Indica 
Purple rice 

 
Japan Japonica 

WRC; world rice core collection. 
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For each plot, the angle of inclination was measured directly using a slant gauge application on a 

smartphone. The angle of inclination from the vertical was then derived for each subplot based on the 

measurements shown in Figure 4.3b. 

 

Figure 4.3. Example of a lodged rice plot (a), and (b) change in the tiller angle of inclination after 

lodging. 

 

4.2.4. Image collection from the UAV platform. 

The rice field trial was frequently observed by a UAV platform equipped with an RGB camera 

with four reference points set up at the corners of the experimental field using a flight planning 

application (Atlas Flight, Micasense; Pix4D capture, Pix4D). The forward and lateral overlaps were 

set at 80% at an altitude of 20 m. Routine flight surveys were conducted from transplanting to 

physiological maturity stage with the flight frequency targeted every week and adjusted based on the 

prevailing weather conditions. A minimum cruise speed of 3 m/s was desired. It must be noted that 

the lodging method proposed in this experiment depended on the canopy's 3D structural information 

(height) and not necessarily on the rice spectral features' response to the lodging analysed. 

  

(a) (b) 
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4.2.5. Generation of orthomosaic images 

 Closed traverse surveying was used to obtain the coordinates of the reference points installed 

at the four corners of the field, and these four points were used as ground control points using the 

Japan Geodetic System 2011 Plane Cartesian Coordinate System 9 was used as a map projection 

method (GCPs). Each ortho-mosaic image was created using 5-band multispectral images captured 

by the UAV. Camera calibration (correction of the lens focal length, principal point position, and 

radial and tangential distortion) was performed with the tie points, which were automatically detected 

from the overlapping area between aerial images. After that, the detected tie points and four installed 

GCPs were used to estimate external orientation parameters (camera position and tilting angle), and 

as well as the creation of the 3D model GCPs were processed to within one-pixel accuracy. Each of 

the 3D models was used to generate 2D orthomosaic images of 5-band multispectral cameras with a 

resolution of 9 mm.  

 

4.2.6. CH extraction from DSM 

The 3D point cloud contains estimated height information of the canopy. As described in the 

previous chapter, CSM was derived by subtracting the underlying ground model (DSM1st) from the 

DSM of the different phenological growth stages (DSMn), and absolute heights could be extracted. 

The height difference between the two enables the assessment of the CH. The Zonal Statistics as 

Table tool in ArcGIS was used to calculate statistical information about each pixel area as well as 

average plot heights. Thus, absolute PL and growth dynamics were calculated between acquisition 

dates (Willkomm, Bolten, and Bareth 2016; Norman Wilke et al. 2019b; N. Wilke et al. 2019a). 
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Figure 4.4. Examples of CSM of all acquisition dates until lodging. 

 

4.2.7. Lodging assessment and evaluation method 

When compared to non-lodged areas, lodging severity is thought to be linked to a canopy 

structural anomaly (Chu et al. 2017). In this experiment, two main canopy architectures were set and 

compared for CH evaluation: (1) the target area, the lodged area within the plot. The height of the 

lodged area was considered as a constant variable on either a canopy scale which consisted of 3*6 

plants or one central line of 6 plants, and (2) the border plants used as a control variable. The border 

plant was used as a control variable because generally border plants were not lodged easily as seen in 

Figure 4.4. A quick observation revealed the lodged rice has a relatively lower height than the healthy 

rice in Figure 4.4. By obtaining PL or CH, it will be possible to estimate or assess the degree of 

longing on the backdrop that lodging causes a significant reduction in height. 
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Figure 4.4. A close look at lodged and border non-lodged rice.  

By using the orthomosaic CSM height calculation method outlined in the previous section, 

height metrics differences such as ∆PL, ∆DSM_CHmax, ∆DSM_CHborder and DSM_CHcv 

associated with the CH of the lodged and non-lodged plots were calculated and compared with their 

tiller inclination angles. Among these height metrics, ∆PL represents the difference in ground 

measured PL and CH of the target area at heading by using the maximum plant length as depicted in 

figure 4.5.  

Healthy rice  
Height = 100 - 120 cm 

Lodged rice 
Height = >40 cm lower than 
healthy rice   
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Figure 4.5. Modelling with manually measured plant length (∆PL). 

 

∆DSM_CHmax difference between CH at evaluation time and the maximum CH (at around 

heading stage) of the target area by comparing successive CSMs as shown in figure 4.6.  

Figure 4.6. Modelling with maximum CH_DSM (∆CH𝑚𝑎𝑥). 

∆CHborder represents the difference CH of the target area and the border plants of each 

polygon as seen in figure 4.7.  
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Figure 4.7. A schematic diagram of plant height comparison of lodged and non-lodged rice. 

CHcv has been widely used for evaluating CH variation and is expressed as the ratio of CHstd 

to CHmean. In this study, DSM_CHcv is the coefficient of variation of CH among all plant hills of 

the target area as seen in figure 4.8.  

 

 

 

 

 

 

 

 

Figure 4.8.Modelling with coefficient variations of CH_DSM (CHcv). 
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It must be noted that in this experiment, the angle of inclination of the healthy and non-lodged hills 

was assumed as 90º perpendicular to the ground. The height metrics are mathematically expressed as 

follows. 

 

∆PL = 𝑃𝐿ℎ𝑒𝑎𝑑𝑖𝑛𝑔 − 𝐶𝐻𝑡𝑎𝑟𝑔𝑒𝑡                                     (4.1) 

∆DSM_CH𝑚𝑎𝑥 = 𝐶𝐻~ℎ𝑒𝑎𝑑𝑖𝑛𝑔 − 𝐶𝐻𝑡𝑎𝑟𝑔𝑒𝑡                                    (4.2) 

∆DSM_CH𝑏𝑜𝑟𝑑𝑒𝑟 = 𝐶𝐻𝑏𝑑 − 𝐶𝐻𝑡𝑎𝑟𝑔𝑒𝑡                                    (4.3) 

DSM_CH𝑐𝑣 =  
𝐶𝐻𝑠𝑡𝑑

𝐶𝐻𝑚𝑒𝑎𝑛
                                   (4.4) 

Where cv represents the coefficient of variation, std represents the standard deviation, “~” represents 

data taken around the heading stage, and bd represents border plants. 

 

 

4.3. Results and discussions. 

4.3.1. PL validation. 

In-field measurements of PL were taken for each acquisition date to verify the calculated CHs 

of all CSMs. Four sample hills were chosen per plot to use a ruler to measure PL. The results were 

compared to the mean CSM raster values of the sample points. Figure 4.9 presents the validation 

results. The calculated CSM height correlated very well with the ground measured PL (R2 = 0.73, 

RMSE = 0.002) but the accuracy was lower compared to the results obtained in the previous chapter. 

The reason for the underestimation is because figure 4.9 represents data taken at the ripening when 

there is a drastic structural change in the canopy structure as plants begin to bend due to the upper 

canopy weight added on by grain filling. However, the DSM could obtain a relatively accurate CH 

as seen in the previous experiments. The linear regression model's y-intercept is around + 0.134 cm, 
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indicating that CH values from CSM are generally lower than in-field measurements. This implies an 

underestimation of CH by DSM. Another possible reason as reported by Takeda et al. (2010), the 

DSM may record a lower foliage layer (most visible layer) than the plant tip, especially in clustered 

canopies.  

 

 

 

 

Figure 4.9. Regression of DSM CH compared with in-field measured PL. 

 

4.3.2. Lodging and non-lodging comparisons of the height metrics 

Lodging was severely affected by canopy structure variations, and the height evaluation over 

lodged and non-lodged varieties over the growing season is presented in Figure 4.4. To identify the 

ideal metric for quantitative assessment of lodging four different height metrics (∆DSM_CHborder, 

∆PL, ∆DSM_CHmax, and DSM_CHcv) were compared to the reference measurement of the lodged 
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height of the target area. First, the difference in height between the lodged target area and the non-

lodged border plants known as the ∆DSM_CHborder metric was used to assess lodging as explained 

in Figure 4.7.  The UAV lodging ratio derived by ∆DSM_CHborder achieved the lowest accuracy 

(R2 = 0.406) and a low amount of scattering. Although, this approach looks simple as a set of image 

data at any point in time is sufficient for assessing the height difference between the border plant and 

the target area, there was however some difficulty in estimating the height of the border plants due to 

border effects of adjacent plants as seen Figure 4.11. Additionally, background noise from bare soil 

in the border regions also affects the estimation of the height of the non-lodged bother plants. It also 

became clear that the lodging ratio of non-lodged varieties (0 inclination angle) was too large for 

most of the genotypes resulting in a possible overestimation of lodging. Alternatively, assessing the 

lodging degree at an earlier growth stage whereby cross border effect of the adjacent plot may be 

minimal may improve the estimation by this metric (Chu et al. 2017), however, this is outside the 

extent of discussion in this study. 
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Figure 4.10. Lodging assessment among rice genotypes using ∆DSM_CHborder  
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Figure 4.11 An example of a CSM image indicating cross-border interference is indicated in red 

circles. 

 

Furthermore, The UAV lodging ratio derived from the change in measured maximum PL at 

heading and the target area had a high correlation (R² = 0.629) (Figure 4.12). However, manually 

collecting lodging data requires considerable effort, time and energy and the relationship varies 

depending on the canopy structure. Compared to CH of the UAV-based derived from the DSM which 

provides information on the spatial height distribution of a continuous canopy and contains height 

information of numerous single plants (Aasen et al. 2015), the PL only represent height information 

of single plants covering a very limited area measured with a ruler in the field at a specific location 

which is not feasible for large scale assessment of lodging. 
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Figure 4.12. Lodging assessment among rice genotypes using ∆PL. 

To further avoid setting threshold and subjective decisions, the maximum CH 

(∆DSM_CHmax) was calculated up to around the heading stage and compared to the CH of the target 

area for all the genotypes which required multiple surveys or periodic shooting to develop multiple 

DSMs. ∆DSM_CHmax had relatively high lodging assessment estimation accuracy (R2 =583) as 

shown in Figure 4.13. However, as already established, the canopy structure limits the method, 

especially after the ripening stage. In cases where large variation in CH exists, lower-grown canopy 

areas that were not necessarily lodged may be partly defined as lodged resulting in an overestimation 

(Wilke et al. 2019). For this reason, Wilke et al. (2019) propose using differentiated ∆DSM_CHmax 

in areas with large CH variations caused by soil background noise or fertilizer conditions. 
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Figure 4.13. Lodging assessment among rice genotypes using ∆DSM_CHmax.  

There was a high correlation between the ratio and the DSM_CHcv which increased as the 

ratio also increased (R2 = 0.58) as seen in Figure 4.14. At a threshold of about 0.05 CHcv, the 

corresponding variety was considered as lodged. This is because at < 0.05 CHcv, the plant may not 

have necessarily lodged but the DSM may consider it lodged due to the reduced height caused by the 

droopy canopy structure. These results support the effectiveness of CHcv, as a point cloud metric for 

describing height variation, as reported by Li et al. (2014) and Næsset et al. (2013).  

Generally speaking, it would be desirable to be able to evaluate the overthrow of plants even at the 

onset of lodging, but in this case, it appears that only 0 and 1, i.e., whether the plant is overthrown or 

not, could be evaluated. 

One reason for this is that the CHcv can be large even when there is no overturning at all (Inclination 

angle = 0). In addition, the degree of lodging was measured at the base of the stem, but there are cases 
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where the stem is lodged even if the base is not inclined. Thus, the assessment of lodging in itself is 

difficult, but these results could estimate lodging quantitatively with some level of accuracy. 

Compared to the other forms of metrics that were proposed in this study, the CHcv was 

relatively less contaminated by background noise which resulted in either underestimation or 

overestimation of the proposed metric as seen in figures 4.10, 4.12 and 4.13. The reasons for 

the overestimates could be that the (1) evaluation was susceptible to ground observational errors. 

More specifically, some plants that had no inclination angles were mathematically estimated as 

lodging in the method especially in the ∆CHmax and ∆PL as seen in Figures 4.12 and 4.13. At 

advanced growth stages, plants may fail to form a closed canopy structure in the point cloud which 

can lead to a reduced height estimation (Murakami, Yui, and Amaha 2012b; F. H. Holman et al. 

2016b; Willkomm, Bolten, and Bareth 2016a) and overestimate lodging. This implies that, for 

evaluation methods like ∆CHborder and ∆CHmax that require multiple surveys, the evaluation 

accuracy will be affected at advanced growth stages. As observed in the previous chapter the 

relationship between CH and PL is not 1:1, but relatively higher for PL as was observed in the ∆PL 

metric. (2) it was also observed that leaves from lodged adjacent plots extended into non-lodged plots 

leading to misinterpretation by DSM of these plots as lodged and thus deceived the lodging 

assessment method as reported earlier by (Chu et al. 2017). The CHcv was regarded as the best metric 

for detection and evaluation of lodging in this study for reasons such as (1) does not require multiple 

observations of the rice field and that at any point in time, a single observation data is sufficient for 

lodging evaluation, thereby reducing  
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Figure 4.14. Comparison of lodging severity among the different rice genotypes using DSM_CHcv. 

timeliness of obtaining crop status information in the field, and (2) it was less affected by the 

background noise. As explained by the inverse relation with CHmean in equation 4.4, CHmean in 

each polygon usually decreases as the lodging rate increases, thus lodged polygons tend to produce 

higher CHstd than non-lodged polygons.        

  Although the metrics used in this study have the potential as a direct and simple 

lodging assessment and evaluation technique, especially CHcv, the challenge remains with accurate 

CH estimation of lodged and non-lodged plots by the DSM. For example, the actual CH of non-

lodged rice canopies may likely be lower than the threshold set in CHcv caused by composite factors, 

genotype, topography, and management type among others. Such defects can cause misrepresentation 

and miscalculation in large-scale field trials. Therefore, further examination of large-scale field trials 

is needed to better evaluate and improve the performance of the method 
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4.4. Conclusion. 

 Simplified quantitative metrics and evaluation techniques have been combined to form a 

UAV-based method for lodging assessment and evaluation in rice. An accuracy assessment proved 

that the DSM PL estimation is reliable and correlates well with ground-measured data (R2 = 0.63). 

The lodging assessment and assessment metrics used in this study could evaluate lodging in two 

distinct canopy structures with high accuracy levels, especially CHcv which was less affected by 

background noise and cross border effect. This implies that DSM CHcv (R2 = 0.58) estimated lodging 

compared favourably to ground-based assessment in terms of noise reduction and decreased 

timeliness of field operations. 

 The proposed central line canopy structure in this study has the potential to assist phenotyping 

in breeding programs whereby numerous genotypes may be planted in strips. Lodging assessment on 

such fine-scale in-between strips of breeding lines can assist in rapid assessment. However, more 

exploration is needed to finetune the proposed metrics to improve the accuracy of the DSM model. 
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Chapter 5 

Summary and conclusions. 

5.1 Development of plant height estimation model by a digital surface model using UAV images. 

The feasibility of estimating PL by using the DSM was evaluated in a paddy field cultivated with 

rice varieties with different genetic backgrounds under different fertilizer conditions. The results 

showed large genotypic variations in PL and CH throughout the growth stages with a PL range 

between 1.80 m, and 0.46 m, for Basmati 370, and Nipponbare, respectively. CH also ranged between 

1.10 m and 0.33 for Basmati37 and Nipponbare and IR64 respectively. CH correlated well with PL 

(R2 = 0.947) which signifies DSM could explain the large variation in PL throughout the growth 

stages. However, there was a trend of underestimation mainly because, PL refers to the highest point 

in an area, whereas DSM considers the average of heights in an area. Therefore, since the DSM could 

measure a relatively smaller range of PL, it will be useful for plant height estimation even at the early 

growth stage when height variations are relatively smaller. 

5.2 Spatio-temporal estimation of biomass growth in rice using canopy surface model from 

UAV images. 

In this contribution, Spatio-temporal monitoring of growth dynamics to estimate TDW increase 

from CH using DSM was evaluated. The results of this study revealed the following assertions. LAI 

and TDW could be estimated from DSM with high accuracy. The mean estimations of TDW and LAI 

were 442.9 g m-2 and 3.66 m2 m-2 with RMSE = 141.4 g m−2 and 0.76 m2 m−2 respectively. Here, 

significant genotypic differences in the estimation by the model were also observed. Additionally, by 

adjusting the observation time from biweekly to weekly, the time-series growth variations in TDW 

and LAI could be revealed. Information on such Spatio-temporal variations helps to understand the 

growth pattern and make the necessary changes in input management when necessary. DSM can also 

be used for site-specific management (Schellberg et al. 2008; N. Zhang, Wang, and Wang 2002). 
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5.3. Assessing Lodging severity in different rice genotypes using the DSM. 

A simple lodging assessment using DSM PL was developed and evaluated among 24 rice 

genotypes under the same fertilizer condition. The approach mainly considered two canopy structures 

between lodged and non-lodged areas on a pilot basis and measured again the ratio. Thus, a simple 

DSM approach for lodging assessment was evaluated. Four PL estimation lodging assessment 

methods (∆PL, ∆CHmax, ∆CHborder and ∆CHCV) were used to assess the canopy structure anomaly. 

The results showed a high correlation between CHCV and the ratio (R2 = 0.59). In principle, when the 

CHCV value exceeds 0.05, the tiller ratio increased dramatically, which suggests that the CHCV is a 

good indicator for lodging assessment. ∆PL, ∆CHmax, and ∆CHmean also proved useful (R2 = 0.39, 

0.51, and 0.34 respectively) however, noise from border plants and soil resulted in the 

underestimation or overestimation by these models and are expected to be minimized by the results 

indicate the usefulness of the evaluation methods, especially CHCV to assess lodging in rice. 

Because of the flexibility of data collecting, unmanned aerial vehicles (UAVs) are becoming 

more popular in agriculture. Plant breeders, insurance firms, and farmers may get extensive 

information on plant attributes quickly and at a cheap cost. Breeding experiments are difficult and 

time-consuming to monitor, necessitating a greater requirement for a speedier selection of better lines. 

When compared to previous methodologies, lodging quantification based on 3D canopy structure is 

substantially more independent of environmental circumstances, which greatly boosts the 

practicability. The proposed DSM approach has a great potential to assist in the rapid assessment of 

lodging. The model can also be applied in many developing regions, especially in Africa where the 

advancement of UAV remote sensing technology is still basic or lacking in some cases. However, the 

challenge remains with the model improvement to increase the estimation accuracy which needs 

redress.  
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