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Abstract

Thehologramtechnology is amethod to record theamplitudeand thephase

of the light, which first developed by Dennis Gabor. The invention of the SLM

enables processing thehologram through the electricmethod. Theadoptionof

the phase-only SLMbrings the concept of the phase-only computer-generated

holograms (phase-only CGH).There is a conventional method to generate the

phase-only CGH of 2D images. However, the noise of the holograms is signif-

icant. The gradient descent method, also called steepest descent method, is

widely utilized in the field of deep learning, is able to be ported to the task of

phase-only CGH task. In this research, a gradient-descentmethod based algo-

rithm is proposed to generate phase-only CGHs of 2D images as a part of the

research.

The holograms are famous on 3D regeneration with the utilization of the

holographic film, however, the conventional phase-only algorithm based on

Fourier transform can only generate the phase-only CGHof 2D images. A Fres-

nel transformwith the utilization of Fresnel lens is proposed to generate holo-

grams of 3D images and reconstruct the images from the holograms. This re-

searchalsodevelopedanalgorithmbasedonproposed transformandgradient-

descent method as a part of the research.

In thefieldof gradientdescent, therearemanyalgorithmsbasedongradient-

descentmethod,whichoverall namedasgradientdescent algorithms, areproved

as high efficient algorithms in the task of deep learning. These optimization

schemes may also speed up the optimization in the task of phase-only CGH.

This research port 6 optimization schemes of gradient-descent method and

made a comparison of these optical schemes as a part of the research.

The Fresnel transform with the utilization of Fresnel lens is a general form

of Fourier transform in math. This may bring new features to the existing al-

gorithm in many fields which rely on the Fourier transform. In the imaging

processing, image encryption, image compression, and blind watermarking

is strongly rely on the Fourier transform. In this research, the replacement of

Fourier transformwith the proposed transformmay bringmore features to the

algorithm as a part of the research.
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1 Introduction

1.1 Hologram

Hologram, first invented by Dennis Gabor [1, 2] is a technique that record the am-
plitude and phase of the wavefront through interfering with a reference beam. By
recording the interference pattern with a film, the wavefront is recorded and can
be reconstructed through light on thefilmwith the same referencebeambydiffrac-
tionon theholographicfilm. DennisGaborwasawardedaNobelPrize inphysics[3]
in 1971 for this invention.

Holograms arewidely applicated in art, data storage, sensors, security, lithogra-
phym, etc.. SalvadorDalí first employ theholographyartistically. MargaretBenyon,
In Great Britain, used holograph as medium and held a solo exhibition at 1969[4].
In 2005, Hideyoshi Horimai produced a 120mm disc that uses a holographic layer
for data storagewith a vast patential up to 3.9TB,which named asHolographic Ver-
satile Disc (HVD)[5, 6, 7, 8]. Holography are also applicated in sensors for glucose
sensoring[9], pH sensoring[10], etc.. In the application of security, holographic
anti-counterfeiting film[11, 12] and applications on banknote[13, 14] are widely
adopted. Holography is also utilized in lithography[15, 16] by generating a holo-
gram to reconstruct the target texture.

Amodern optical element created by holographic film, Holographic Optical El-
ement (HOE), are designed tomake special optical affect, which is hard to practice
in conventional lenses. HOEs are adopted inAugmentedReality devices inmodern
design[17]. A special kind of HOE, the Digital Designed Holographic Optical Ele-
ment (DDHOE), are utilized to practice the see-through head up displays[18, 19].

1.2 Computer-Benerated Holograms

With the invention and application of Spatial LightModulator (SLM), which is able
to modulate the phase, amplitude, or polarization of a beam, wave front of the
beam can bemodulized by computer. A new concept, Computer-GeneratedHolo-
grams (CGH), appears to generate theholograms throughcalculationby computer.
SLMs are divided into many kinds based on the classification of function. Phase-
only SLM and amplitude-only SLM are most common SLMs in optical researchs.

By replacing the Holographic films by SLMs, the wave front can be modulated
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by computer. Calculating the hologram by computers become possible. CGHs is
the way to generate the hologram on computer. Adapting different SLMs, CGH
algorithms varies each other. In this research, I focus on the phase-only holograms
with the utilization of a phase-only SLM.

Based on the difference of Fraunhofer Approximation or Fresnel Approxima-
tion, the base transform of CGH and virtual optical system differ from each other.

1.2.1 Computer-generated Holograms by Fraunhofer diffraction

Fraunhofer diffraction, or far field diffraction, indicates the status that the plane of
observation is located far enough from the aperture. By a utilization of a Fourier
transform lens, the observation plane can receive the same result in the Fourier
plane (focal plane). Theresult on theobservation is equivalent asFourier transform
of the aperture.

CGH in Fourier field, the hologram of 2D image can be produced and the re-
constructed image is located on the Fourier plane. This make the optical system
small and is able to design portable devices in practice. CGH in Fourier field is not
able to reconstruct a 3D image, because the depth can not be modulated during
the Fourier transform.

In theCGHofFourierfield, there is a conventional algorithm,Gerchberg-Saxton
(GS) algorithm[20], aiming at phase retrieval, are widely used to generate phase-
onlyholograms[21]. SomealgorithmsdidmoreoptimizationbasedonGSalgorithm[22,
23] shows a higher precision and effect. Other algorithms such as as simulated an-
nealing [24], genetic algorithms [25, 26, 27], and direct binary searches [28, 29, 30],
havebeendeveloped tooptimizephase-onlyCGHs. I proposedanalgorithmbased
on Gradient Descentmethod succeeded in generating holograms in a revolutional
high effect than GS algorithm[31].

1.2.2 Computer-generated Holograms by Fresnel diffraction

Fresnel diffraction, or near field diffraction, indicated the status that the plane of
observation is located in the near field of the aperture. The reconstructed image
present at the plane of observation directly.

CGH inFresnel field, thehologramof 3D image canbeproduced and the recon-
structed image is located at the near field of the hologram. However, according to
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the precision of the SLM at present, the near field is too long in practice. Thismade
the Fresnel field CGH cannot be directly adopted in portable devices.

In theCGHinFresnelfield,GSalgorithmcanbemodified that replace theFourier
transform with the Fresnel transform[32]. In the book published recently, Tsang
introducedmethods of phase-only CGH for 3D object based on Fresnel transform.

1.3 Gerchberg-Saxton Algorithm

Gerchberg-Saxton algorithm(GSA) [20] is a phase retrieval algorithmwhich can be
adopted in generating holograms of 2D images. This algorithmmonotonically re-
duces the error of the amplitude of the reconstructed images each iteration [33],
however, the efficiency reduces significantly with the further iteration.

The GSA can be modified into Fresnel field, which simply replace the Fourier
transformwith theFresnel transform. ModifiedGSalgorithm (MGSA) are designed
for image compression and 3D CGH calculation.

1.4 Gradient Descent Algorithms

Gradient Descent algorithm, first invented by Cauchy in 1847, is a optimization it-
eration algorithm that reduce the loss function each iteration. Algorithmsbasedon
naive batch gradient descent are developeed recent years during the development
of Deep Learning, which is called Gradient Descent Algorithms.

By calculating thegradientof the functionandupdate the independent variable
each iteration, the valueof the functioncanbeestimated to reducemathematically.
In the case of naive batch gradient descent algorithm, the effectivenessmay reduce
in some cases, algorithms likemomentum, adagrad, RMSprop, adadelta, adam are
developed to speed up the otimization.

GradientDescent algorithmsarewidelyused foroptimizing. In the taskofCGH,
GradientDescent Algorithms can also be adopted to generate the phase-only holo-
grams or amplitude-only holograms, because the well defined and derivable loss
function exists.
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2 Gradient Descent Method Based Phase-only CGH

for 2D Image Generation

2.1 Previous Research and Background

2.1.1 Gradient Descent method for phase-only holgrams

Gradient Descent method are not adopted for generating phase-only CGHs yet.
However, the GS algorithm is equivalent as Gradient Descent method on conse-
quent in math, which is proved by Fienup. Nonetheless, GS algorithm does not
calculate the gradient of the error function. Thus, the GS algorithm is not a kind
of Gradient Descent algorithm. Moreover, GS algorithm is equivalent as the Gra-
dient Descent method which the error function is set as the mean square error of
the amplitude of the regenerated image from the target image. However, the in-
tensity of the light is equivalent as the square of the amplitude. Thus, the noise of
the regenerated image is large in intensity.

2.1.2 Algorithms for Phase-only CGH generation

Togenerate thephase-onlyhologramsof a target image, therearemanyothermeth-
ods different from GS algorithm and GS based algorithms. Simulated annealing,
timedivisionmethodcanalso regenerate the imagewithaacceptablenoise. Among
the existing algorithms, GS algorithm produces the lowest error.

2.2 Gradient Descent Based CGH Algorithm

2.2.1 Gradient descent method for optimizing phase-only CGHs

Thegradientdescent algorithm is afirst order iterativeoptimizationalgorithmwhich
is committed to find a local minimum of a function. In order to find the local min-
imum, one takes steps toward the opposite direction of the gradient with a certain
step length. Thus, there are two essential parts in the gradient descentmethod. The
first part is the determination of the direction of the iteration, which is the opposite
direction of the current gradient. The second part is the determination of the step
length of the iteration. The formulated description of the gradient descentmethod
is written by
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𝜃𝑡+1 = 𝜃𝑡 −𝛾𝑡∇𝐹(𝜃𝑡) (1)

where 𝑡 is the iteration number, 𝛾𝑡 is the step length coefficient of each itera-
tion, and ∇𝐹(𝛼𝑡) is the gradient of the function 𝐹(𝛼).

This studyconsiders theFourier transformtypephase-onlyCGHs, i.e., theFourier
transform of the phase distribution of the CGH provides the reconstructed image.
The phase distribution of the CGH is denoted by 𝜃𝑝𝑞, where 𝑝 and 𝑞 represent the
coordinates of the pixels on the hologram, and 𝑃 and 𝑄 are the numbers of rows
and columns of the hologram. The amplitude and phase distributions of the re-
constructed image are denoted by 𝑎𝑚𝑛 and 𝜙𝑚𝑛, respectively, where𝑚 and 𝑛 rep-
resent the coordinates of the pixels on the reconstructed image, and𝑀 and𝑁 are
the numbers of rows and columns of the target image. The relationships between
the phase-only CGH and the reconstructed image are given by:

𝑎𝑚𝑛𝑒𝑗𝜙𝑚𝑛 =ℱ𝑒𝑗𝜃𝑝𝑞 =
𝑃

𝑝

𝑄

𝑞
𝑒𝑗𝜃𝑝𝑞𝑒−𝑗2𝜋⒧

𝑚𝑝
𝑃 + 𝑛𝑞

𝑄 ⒭ (2)

ℱ−1{𝑎𝑚𝑛𝑒𝑗𝜙𝑚𝑛 } = 1
𝑀𝑁

𝑀

𝑚

𝑁

𝑛
𝑎𝑚𝑛𝑒𝑗𝜙𝑚𝑛𝑒𝑗2𝜋⒧

𝑚𝑝
𝑀 + 𝑛𝑞

𝑁 ⒭ (3)

The intensity distribution of the reconstructed image, denoted by 𝐼𝑚𝑛, is given
by:

𝐼𝑚𝑛 = 𝑎2𝑚𝑛 (4)

The gradient descent method calculates the gradient of the error of the recon-
structed image. In this study, the MSE was adopted to evaluate the error of the
reconstructed image. When the target image is denoted by ̂𝐼𝑚𝑛, the MSE is given
by:

𝐸 = 1
𝑀𝑁

𝑀

𝑚

𝑁

𝑛
( ̂𝐼𝑚𝑛−𝐼𝑚𝑛)2 (5)

The gradient of the MSE with respect to the phase distribution is calculated by
the chain rule.
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𝜕𝐸
𝜕𝜃𝑝𝑞

=
𝑀

𝑚

𝑁

𝑛

𝜕𝐸
𝜕𝐼𝑚𝑛

𝜕𝐼𝑚𝑛
𝜕𝜃𝑝𝑞

(6)

𝜕𝐸
𝜕𝐼𝑚𝑛

is calculated as follows:

𝜕𝐸
𝜕𝐼𝑚𝑛

=− 2
𝑀𝑁 ( ̂𝐼𝑚𝑛−𝐼𝑚𝑛) (7)

The following process shows the calculation of 𝜕𝐼𝑚𝑛
𝜕𝜃𝑝𝑞 :

𝐼𝑚𝑛 =
𝑃

𝑝

𝑄

𝑞
cos𝜃𝑝𝑞−2𝜋⒧

𝑚𝑝
𝑃 + 𝑛𝑞

𝑄 ⒭
2

+
𝑃

𝑝

𝑄

𝑞
sin𝜃𝑝𝑞−2𝜋⒧

𝑚𝑝
𝑃 + 𝑛𝑞

𝑄 ⒭
2

(8)

𝜕𝐼𝑚𝑛
𝜕𝜃𝑝𝑞

=
𝜕

𝑃
∑
𝑝

𝑄
∑
𝑞
cos𝜃𝑝𝑞−2𝜋⒧𝑚𝑝

𝑃 + 𝑛𝑞
𝑄 ⒭

2

𝜕𝜃𝑝𝑞
+
𝜕

𝑃
∑
𝑝

𝑄
∑
𝑞
sin𝜃𝑝𝑞−2𝜋⒧𝑚𝑝

𝑃 + 𝑛𝑞
𝑄 ⒭

2

𝜕𝜃𝑝𝑞

=−2
𝑃

𝑝

𝑄

𝑞
cos𝜃𝑝𝑞−2𝜋⒧

𝑚𝑝
𝑃 + 𝑛𝑞

𝑄 ⒭sin𝜃𝑝𝑞−2𝜋⒧
𝑚𝑝
𝑃 + 𝑛𝑞

𝑄 ⒭

+2
𝑃

𝑝

𝑄

𝑞
sin𝜃𝑝𝑞−2𝜋⒧

𝑚𝑝
𝑃 + 𝑛𝑞

𝑄 ⒭cos𝜃𝑝𝑞−2𝜋⒧
𝑚𝑝
𝑃 + 𝑛𝑞

𝑄 ⒭

= −2Re𝑎𝑚𝑛𝑒𝑗𝜙𝑚𝑛sin𝜃𝑝𝑞−2𝜋⒧
𝑚𝑝
𝑃 + 𝑛𝑞

𝑄 ⒭

+2Im𝑎𝑚𝑛𝑒𝑗𝜙𝑚𝑛cos𝜃𝑝𝑞−2𝜋⒧
𝑚𝑝
𝑃 + 𝑛𝑞

𝑄 ⒭

= −2𝑎𝑚𝑛 cos𝜙𝑚𝑛 sin𝜃𝑝𝑞−2𝜋⒧
𝑚𝑝
𝑃 + 𝑛𝑞

𝑄 ⒭+2𝑎𝑚𝑛 sin𝜙𝑚𝑛 cos𝜃𝑝𝑞−2𝜋⒧
𝑚𝑝
𝑃 + 𝑛𝑞

𝑄 ⒭

= 2𝑎𝑚𝑛 sin𝜙𝑚𝑛−𝜃𝑝𝑞+2𝜋⒧
𝑚𝑝
𝑃 + 𝑛𝑞

𝑄 ⒭
(9)

Then, the gradient of the MSE is given as follows:

𝜕𝐸
𝜕𝜃𝑝𝑞

= 4
𝑀𝑁

𝑀

𝑚

𝑁

𝑛
⒧ ̂𝐼𝑚𝑛−𝑎2𝑚𝑛⒭𝑎𝑚𝑛 sin𝜙𝑚𝑛−𝜃𝑝𝑞+2𝜋⒧

𝑚𝑝
𝑃 + 𝑛𝑞

𝑄 ⒭ (10)

The above calculation can be described using the Fourier transform.
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𝜕𝐸
𝜕𝜃𝑝𝑞

= 4
𝑀𝑁 Im

𝑀

𝑚

𝑁

𝑛
⒧ ̂𝐼𝑚𝑛−𝑎2𝑚𝑛⒭𝑎𝑚𝑛𝑒𝑗𝜙𝑚𝑛−𝜃𝑝𝑞+2𝜋⒧𝑚𝑝

𝑃 + 𝑛𝑞
𝑄 ⒭

= 4
𝑀𝑁 Im𝑒−𝑗𝜃𝑝𝑞

𝑀

𝑚

𝑁

𝑛
⒧ ̂𝐼𝑚𝑛−𝑎2𝑚𝑛⒭𝑎𝑚𝑛𝑒𝑗𝜙𝑚𝑛+2𝜋⒧𝑚𝑝

𝑃 + 𝑛𝑞
𝑄 ⒭

(11)

Substitute the Fourier Transform (3) into (11).

𝜕𝐸
𝜕𝜃𝑝𝑞

=−4Im𝑒−𝑗𝜃𝑝𝑞ℱ−1 ⒧ ̂𝐼𝑚𝑛−𝑎2𝑚𝑛⒭𝑎𝑚𝑛𝑒𝑗𝜙𝑚𝑛 (12)

whereℱ−1 represents the Fourier transform. When the fast Fourier transform
algorithm is used, the calculation time can be reduced.

According to the gradient descent method, the phase distribution is updated
each iteration as follows:

𝜃′
𝑝𝑞 = 𝜃𝑝𝑞+Δ𝜃𝑝𝑞 = 𝜃𝑝𝑞−𝛾

𝜕𝐸
𝜕𝜃𝑝𝑞

(13)

2.2.2 Determination of step length coefficient

Next, the determination of the step length coefficient is explained. In this study,
the coefficient is determined using the estimated MSE of the next iteration.

TheMSE of the next iteration is estimated as below.

𝐸′ =
𝑀

𝑚

𝑁

𝑛

 ̂𝐼𝑚𝑛−⒧𝐼𝑚𝑛+Δ𝐼𝑚𝑛⒭
2

𝑀𝑁 (14)

where Δ𝐼𝑚𝑛 is the estimated direction for the phase change Δ𝜃𝑝𝑞. The step
length coefficient 𝛾 is determined so that 𝐸′ becomes minimum, i.e., 𝑑𝐸

′

𝑑𝛾 = 0

𝐸′ = 1
𝑀𝑁

𝑀

𝑚

𝑁

𝑛
⒧ ̂𝐼𝑚𝑛−𝑎2𝑚𝑛⒭−Δ𝐼𝑚𝑛

2
(15)

𝜕𝐸′

𝜕𝛾 = 2
𝑀𝑁

𝑀

𝑚

𝑁

𝑛
⒧ ̂𝐼𝑚𝑛−𝑎2𝑚𝑛⒭−Δ𝐼𝑚𝑛⒧−

𝜕Δ𝐼𝑚𝑛
𝜕𝛾 ⒭ = 0 (16)

We can adopt the first order approximation to calculate Δ𝐼𝑚𝑛

Δ𝐼𝑚𝑛 ≈
𝑃

𝑝

𝑄

𝑞

𝜕𝐼𝑚𝑛
𝜕𝜃𝑝𝑞

Δ𝜃𝑝𝑞 (17)

Substrate (9) into (17)
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Δ𝐼𝑚𝑛 ≈
𝑃

𝑝

𝑄

𝑞
2𝑎𝑚𝑛Δ𝜃𝑝𝑞 sin𝜙𝑚𝑛−𝜃𝑝𝑞+2𝜋⒧

𝑚𝑝
𝑃 + 𝑛𝑞

𝑄 ⒭

≈ 2Im𝑎𝑚𝑛𝑒𝑗𝜙𝑚𝑛
𝑃

𝑝

𝑄

𝑞
Δ𝜃𝑝𝑞𝑒−𝑗𝜃𝑝𝑞−2𝜋⒧

𝑚𝑝
𝑃 + 𝑛𝑞

𝑄 ⒭
(18)

Substrate (2) into (18)

Δ𝐼𝑚𝑛 ≈ 2Im𝑎𝑚𝑛𝑒𝑗𝜙𝑚𝑛 ℱ⒧Δ𝜃𝑝𝑞𝑒𝑗𝜃𝑝𝑞⒭
∗ = 2𝛾Im𝑎𝑚𝑛𝑒𝑗𝜙𝑚𝑛 ℱ⒧− 𝜕𝐸

𝜕𝜃𝑝𝑞
𝑒𝑗𝜃𝑝𝑞⒭

∗


(19)
Substrate (19) into (16).

2
𝑀𝑁

𝑀
∑𝑚

𝑁
∑𝑛 ⒧

̂𝐼𝑚𝑛 −𝑎2𝑚𝑛⒭−2𝛾Im𝑎𝑚𝑛𝑒𝑗𝜙𝑚𝑛 ℱ⒧− 𝜕𝐸
𝜕𝜃𝑝𝑞

𝑒𝑗𝜃𝑝𝑞 ⒭
∗
−2Im𝑎𝑚𝑛𝑒𝑗𝜙𝑚𝑛 ℱ⒧− 𝜕𝐸

𝜕𝜃𝑝𝑞
𝑒𝑗𝜃𝑝𝑞 ⒭

∗
 = 0

(20)

Finally, 𝛾 is determined as follows:

𝛾 =

𝑀
∑
𝑚

𝑁
∑
𝑛
( ̂𝐼𝑚𝑛−𝑎2𝑚𝑛)Im𝑎𝑚𝑛𝑒𝑗𝜙𝑚𝑛 ℱ⒧− 𝜕𝐸

𝜕𝜃𝑝𝑞 𝑒
𝑗𝜃𝑝𝑞⒭

∗


2
𝑀
∑
𝑚

𝑁
∑
𝑛 Im𝑎𝑚𝑛𝑒𝑗𝜙𝑚𝑛 ℱ⒧− 𝜕𝐸

𝜕𝜃𝑝𝑞 𝑒
𝑗𝜃𝑝𝑞⒭

∗


2 (21)

Bydetermining the step length in each iteration, we canobtain anearly optimal
step length coefficient which makes the MSE reduce rapidly.

Figure 1 shows the phase-only CGH calculation process based on the theory
described above. A random phase distribution is used as an initial phase distribu-
tion of the CGH. The phase-only CGH is Fourier transformed to obtain the recon-
struct the image, which ismultiplied by the difference of the intensity distributions
of the reconstructed image and the target image. Next, the inverse Fourier trans-
form is performed and the phase distribution of the CGH of the previous iteration
is multiplied. Then, the imaginary part is extracted and –4 is multiplied to obtain
the gradient. The step length coefficient is calculated to calculate the increment of
the phase distribution. Finally, the phase distribution of the CGH is updated. This
process is performed interactively.
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amne jφmn

×(Îmn −a2
mn) Îmn

F−1×e− jθpqIm

×(−γ)

∆θpq θpq

∂E
∂θpq

×−4

Figure 1: Calculation process of the proposed technique.

2.3 Simulation

The effectiveness of the proposed algorithm was verified. Figure 2 shows three
target images including one grayscale image (“mandrill”) and two binary images
(“hikari” and “circle”).

(a) Mandrill (b) Hikari (c) Circle

Figure 2: Target images

The reconstructed images obtained by the proposed technique for “hikari” af-
ter 1, 2, 5, 10, 50, and 100 iterations are shown in Figure 3. For comparisons, the
reconstructed images obtained by the GS algorithm are shown in Figure 4. From
these results, the proposed technique required fewer iterations for the phase opti-
mization.

13



(a) 1 iteration (b) 2 iterations (c) 5 iterations

(d) 10 iterations (e) 50 iterations (f) 100 iterations

Figure 3: Images(hikari) reconstructed by proposed algorithm

(a) 1 iteration (b) 2 iterations (c) 5 iterations

(d) 10 iterations (e) 50 iterations (f) 100 iterations

Figure 4: Images(hikari) reconstructed by GS algorithm

Figure 5 shows the reconstructed images and thephase-onlyCGHs for the three
target images after 100 iterations obtained for the proposed technique and the GS

14



technique. The changes of the MSE during the optimization process are shown in
Figure 6. From these results, the lower MSE values were obtained with the pro-
posed algorithm than the conventional GS algorithm.

(a) Mandrill by proposed algo-
rithm

(b) Hikari by proposed algorithm (c) Circle by proposed algorithm

(d) Mandrill by GS algorithm (e) Hikari by GS algorithm (f) Circle by GS algorithm

Figure 5: Comparison of proposed technique and GS technique
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(a) Mandrill
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(b) Hikari
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Figure 6: Comparison of MSE of 3 target images

The surface images of the reconstructed images for “circle” after 100 iterations
obtained by the proposed algorithm and the GS algorithm are shown in Figure 7,
respectively. From these results, the proposed algorithm controlled the intensity
distribution of the reconstructed image than the GS algorithm.
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(a) Reconstructed by proposed algorithm
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(b) Reconstructed by GS algorithm

Figure 7: Surface image of a part of ”circle”

Finally, the effectiveness of the step length optimization algorithmwas verified.
Constant step length coefficients were used for the proposed algorithm. Figure 8
shows the comparison of the algorithm using constant step length coefficient and
the algorithm using the optimized step length coefficient. As the result of different
target image, a best step length constant does not exist. The optimized step length
algorithm can do well in different target images.
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Figure 8: The comparison of the constant and the optimized step length coefficient

2.4 Experimental Results

Theproposed techniquewasexperimentally verifiedutilizing theexperimental sys-
tem shown in Figure 9. A PLUTO-2 phase-only SLM (HOLOEYE Photonics AG)
was utilized, and a He-Ne laser with a wavelength of 633 nm was used as the light
source. The focal length of the Fourier transform lens was 450 mm.

Figures 10a – 10c show the phase distributions used for the experiments, which
correspond to the reconstructed images shown in Figures 5. The experimentally
obtained reconstructed images are shown in Figures 11a – 11c.
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Figure 9: Experimental system

(a) Mandrill (b) Hikari (c) Circle

Figure 10: Optimized phase distributions used for the experiments for the different
target images: (a) mandrill, (b) hikari, and (c) circle

(a) Mandrill (b) Hikari (c) Circle

Figure 11: Experimentally obtained reconstructed images for the different target
images: (a) mandrill, (b) hikari, and (c) circle

FromFigure11, the test imageswere reconstructed. However, the reconstructed
images contained speckles because the phase distributions of the reconstructed

17



images were not controlled. Although the images “hikari” and “circle” were re-
constructed clearly, the image “mandrill” was not as clear as them. Because the
“hikari” and “circle” were binary images, the image contrast was not affected so
much by the speckles. On the contrary, because the “mandrill” was a gray-scale
image, the image contrast was heavily affected.

2.5 Discussion

Anew techniquewas proposed for calculating phase-only CGHsusing the gradient
descent method, which minimizes the MSE defined for the intensity distributions
of reconstructed images. We confirmed that the proposed technique optimizes the
CGH phase distribution more rapidly than the GS algorithm and provides higher-
precision reconstructed images. The proposed technique was also experimentally
verified.
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3 Gradient Descent Method Based Phase-only CGH

of 3D Image

3.1 Previous Research and Background

There are two main approximation methods in physics for diffraction. Fraunhofer
diffraction, also known as far field diffraction, which reconstruct the image on the
observation plane far enough from the hologram. With the utilization of a Fourier
transform lens, the reconstructed image is locatedat theFourierplane (focal plane).
This enables the objective plane to locate at a near position from the hologram.
Many algorithms produce the holograms in Fourier field, such as simulated an-
nealing, genetic algorithms, machine learning algorithms, Gerchberg-Saxton (GS)
algorithm, gradientdescent algorithm, etc. However, Fourier transformbasedCGH
produces only the hologram of 2D image.

Fresnel diffraction, known as near field diffraction, which reconstructs the im-
age on the observation plane directly. CGHs of Fresnel field are able to produce
holograms that can reconstruct 3D images. Various researches focus on develop-
ing phase only CGH algorithms in Fresnel field. However, due to the pixel pitch of
the SLMs at present are too big comparing with the wavelength of the lasers, the
near field of Fresnel transform is still too long in practice. Thus, a new transform
is desired for CGHs for regenerating 3D images with the utilization of the Fourier
transform lens for a nearer imaging position and a larger field of view. Such trans-
form would realize portable designs of 3D display systems.

GradientDescent is anoptimizationmethod that reduces the error by changing
the variant opposite the gradient each iteration. Gradient Descent algorithms are
widely used in deep learning in recent years. Gradient Descent based algorithm
for phase only CGH was proposed in previous research, which showed a higher
efficiency and precision. In this research, we propose a Gradient Descent based
algorithm for phase only CGH of 3D images with the utilization of a Fresnel trans-
form lens.
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3.2 Design of Fresnel Transform with the Utilization of Fourier
Lens

3.2.1 Diffraction based on the Fourier transform

In the field of Fraunhofer diffraction, also known as far field diffraction, the im-
age reconstructed in the screen in far field. The reconstructed image is the Fourier
transform of the holograph. We can also adopt an Fourier transfrom lens to recon-
structed imageon theFourier plane[34]. The light diffraction is givenby theFourier
transform as below:

𝐸′(𝑥′,𝑦′) = 𝑒𝑖 2𝜋𝑓𝜆
𝑖𝜆𝑓 

+∞

−∞
𝐸(𝑥,𝑦)𝑒−𝑖 2𝜋𝜆𝑓 (𝑥′𝑥+𝑦′𝑦)𝑑𝑥𝑑𝑦 (22)

where 𝜆 is the wavelength of light, the object plane is denoted by (𝑥,𝑦), and
the diffraction plane is denoted by (𝑥�,𝑦�). The distribution of a 2D object located
on the object plane is denoted by 𝐸(𝑥,𝑦), and the distribution on the diffraction
plane is denoted by 𝐸�(𝑥�,𝑦�). A point at (𝑥,𝑦) on the object plane generates
a plane wave 𝑒−𝑖 2𝜋𝜆𝑓 ⒧𝑥𝑥′+𝑦𝑦′⒭on the diffraction plane. The inclination of the plane
wave depends on the position of the point (𝑥,𝑦) on the object plane and is given
by ( 2𝜋𝑥𝜆𝑓 ,

2𝜋𝑦
𝜆𝑓 ).

Fourier transform lens Diffraction plane E ′(x′, y′)Object plane E(x, y)

Point on object

ff

Figure 12: Hologram Generation by Fourier transform

3.2.2 Diffraction based on the Fresnel transform

In the field of Fresnel diffraction, also known as near field diffraction, the image
reconstructed in the near field without a utilization of Fourer transform lens. The
optical system of the diffraction is whown as Figure 13. The function of Fresnel
transform is shown as below:
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𝐸′(𝑥′,𝑦′) =
+∞

−∞
𝐸(𝑥,𝑦,0)𝑒

𝑖 2𝜋𝑧𝜆

𝑖𝜆𝑧 𝑒𝑖 𝜋
𝜆𝑧 (𝑥′−𝑥)2+(𝑦′−𝑦)2 (23)

z

Diffraction plane E ′(x′, y′)Object Plane E(x, y)

Point on object

Figure 13: Hologram Generation by Fresnel transform

3.2.3 DiffractionbasedontheFresnel transformwith theutilizationofFourier

lens

BothhologramsbasedonFourier andFresnel transformshavedisadvantages. Holo-
grams based on Fourier transform does not have the capability of regenerating 3D
images. Holgrams based on Fresnel transforms can regenerate the 3D images, but
the ”near field” inpractice is too far. Moreover, theprecisionof SLMatpresent does
not support a high resolution with the Fresnel transform. Thus, a new transform is
desired to reconstruct 3D images with the optical system of Fourier transform.

A Fresnel transformwith the utilization of Fourier lens is proposed for 3D holo-
grams. The optical system is shown as Figure 14

z

u

Z

Fourier transform lens E ′(x′, y′)Fourier plane

Point on object

ff

Object plane

E0(X,Y, Z)
Image of object E(x, y, z)

Diffraction plane

Figure 14: Optical system of the proposed transform

Where 𝑢 is the image distance and 𝑍 is the distance of the image from the
diffraction plane. 𝑋,𝑌 ,𝑍 is the coordinates of the image of the object.

The Fourier transform lens produces the virtual image of the 3D object far from
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the Fourier transform lens. Considering the Fresnel transform represented by Eq.
(23), the electric field of each point on the virtual image is𝐸0 (𝑋,𝑌 ,𝑍). The convert
of the electric field of the object and the virtual image is explained as following.

The image distance 𝑢 can be calculated through the convex lens imaging for-
mula.

𝑢 = 𝑓
𝑧(𝑓−𝑧) (24)

The convert relation of the coordinate 𝑋,𝑌 and 𝑥,𝑦 is shown as below:

𝑋
𝑢 = 𝑥

𝑓−𝑧,
𝑌
𝑢 = 𝑦

𝑓−𝑧.

𝑋 = 𝑓
𝑧𝑥, 𝑌 = 𝑓

𝑧 .
(25)

The convert relation of the depth distance 𝑍 and 𝑧 is shown as below:

𝑍 = 𝑢+𝑓 = 𝑓2
𝑧 (26)

Theconvert relationof the electric fieldof theobject𝐸 ⒧𝑥,𝑦,𝑧⒭ andvirtual image
𝐸0 (𝑋,𝑌 ,𝑍) is divided by amplitude convert and phase convert. The electric field
can be expressed as:

𝐸(𝑥,𝑦,𝑧) = 𝐴(𝑥,𝑦,𝑧)𝑒𝑖𝜃(𝑥,𝑦,𝑧)

𝐸0(𝑋,𝑌 ,𝑍) = 𝐴0(𝑋,𝑌 ,𝑍)𝑒𝑖𝜃0(𝑋,𝑌 ,𝑍)
(27)

where 𝐴⒧𝑥,𝑦,𝑧⒭ and 𝐴0 (𝑋,𝑌 ,𝑍) are the amplitude of the object and the virtual
image. 𝜃 ⒧𝑥,𝑦,𝑧⒭ and 𝜃0 (𝑋,𝑌 ,𝑍) are the phase of the object and the virtual image.

Wefirst consider the amplitude relation of the object and the virtual image. The
virtual image and the object showa same light intensity on the center of the Fourier
transform lens.

𝐴(𝑥,𝑦,𝑧)𝑑𝑥𝑑𝑦
𝑓−𝑧 = 𝐴0(𝑋,𝑌 ,𝑍)𝑑𝑋𝑑𝑌

𝑢 (28)

The differential relation can be inferred from Eq. (25)

𝑑𝑋 = 𝑓
𝑧𝑑𝑥,𝑑𝑌 = 𝑓

𝑧𝑑𝑦 (29)
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Substrate the Eqs. (24) and (29) into Eq. (28), the amplitude convert can be
expressed as following:

𝐴0(𝑋,𝑌 ,𝑍)𝑑𝑋𝑑𝑌 = 𝑓
𝑧𝐴(𝑥,𝑦,𝑧)𝑑𝑥𝑑𝑦 (30)

Thephase convert canbe calculatedby thedistanceof the object and the virtual
image.

𝜃(𝑥,𝑦,𝑧)−𝜃0(𝑋,𝑌 ,𝑍) =
2𝜋
𝜆 √[𝑢−(𝑓−𝑧)]2+(𝑋 −𝑥)2+(𝑌 −𝑦)2 (31)

Substrate the Eqs. (24) and (25) into Eq. (31), the first-order approximation is

𝜃(𝑥,𝑦,𝑧)−𝜃0(𝑋,𝑌 ,𝑍) =
2𝜋
𝜆𝑧(𝑓−𝑧)

2+ 𝜆
𝜋𝑧(𝑥

2+𝑦2) (32)

The Fresnel diffraction of the virtual image can be expressed as below

𝐸′(𝑥′,𝑦′) =
+∞

−∞
𝐸0(𝑋,𝑌 ,𝑍)

𝑒𝑖 2𝜋𝜆 𝑍

𝑖𝜆𝑍 𝑒𝑖 𝜋
𝜆𝑍 (𝑋−𝑥′)2+(𝑌−𝑦′)2𝑑𝑋𝑑𝑌 (33)

Change the expression of the Eq. (33) into amplitude and phase:

𝐸′(𝑥′,𝑦′) =
+∞

−∞
𝐴0(𝑋,𝑌 ,𝑍)𝑒𝑖𝜃0(𝑋,𝑌 ,𝑍)

𝑒𝑖 2𝜋𝜆 𝑍

𝑖𝜆𝑍 𝑒𝑖 𝜋
𝜆𝑍 (𝑋−𝑥′)2+(𝑌−𝑦′)2𝑑𝑋𝑑𝑌 (34)

Substrate 𝑋,𝑌 ,𝑍 ,𝐴0 (𝑋,𝑌 ,𝑍)𝑑𝑋𝑑𝑌 ,𝜃0 (𝑋,𝑌 ,𝑍) into function Eq. (34)

𝐸′(𝑥′,𝑦′) =
+∞

−∞
𝐴(𝑥,𝑦,𝑧)𝑒𝑖𝜃(𝑥,𝑦,𝑧) 𝑒

𝑖 2𝜋𝜆 (2𝑓−𝑧)

𝑖𝜆𝑓 𝑒−𝑖 2𝜋𝜆𝑓 (𝑥𝑥′+𝑦𝑦′)𝑒𝑖
𝜋𝑧
𝜆𝑓2 (𝑥

′2+𝑦′2)𝑑𝑥𝑑𝑦 (35)

Thus, the Fresnel transformwith the utilization of Fourier lens canbe expressed
as below:

𝐸′(𝑥′,𝑦′) =
+∞

−∞
𝐸(𝑥,𝑦,𝑧)𝑒

𝑖 2𝜋𝜆 (2𝑓−𝑧)

𝑖𝜆𝑓 𝑒−𝑖 2𝜋𝜆𝑓 (𝑥𝑥′+𝑦𝑦′)𝑒𝑖
𝜋𝑧
𝜆𝑓2 (𝑥

′2+𝑦′2)𝑑𝑥𝑑𝑦 (36)

The transformabovepossesses a counterpart of theFourier transform,𝑒−𝑖 2𝜋𝜆𝑓 ⒧𝑥𝑥′+𝑦𝑦′⒭,
which is phase distribution of a plane wave. The main difference of the transform
above and the Fourier transform is 𝑒𝑖

𝜋𝑧
𝜆𝑓2 ⒧𝑥

′2+𝑦′2⒭, which is a phase distribution of a

23



centralized spherical wave. When the object point is nearer to the lens, the depth
coordinate 𝑧⒧𝑥,𝑦⒭ is positive, where the spherical wave is divergence (Fig. 15).
When the object point is farther to the lens, the depth coordinate 𝑧⒧𝑥,𝑦⒭ become
negative, the phase diffraction of the spherical wave is converging (Fig. 16).

z

f f

u
Fourier transform lens

Focal plane Diffraction plane

Object on nearer plane

Image of the object

Figure 15: Object on nearer plane

z f f

u
Fourier transform lens

Focal plane Diffraction plane

Object on farther plane

Image of the object

Figure 16: Object on farther plane

Similar to the inverse Fresnel transform, the inverse transformof the transform
above is expressed as below:

𝐸(𝑥,𝑦,𝑧) = 1
2𝜋

+∞

−∞
𝐸′(𝑥′,𝑦′)𝑖𝜆𝑓𝑒−𝑖 2𝜋𝜆 (2𝑓−𝑧)𝑒𝑖 2𝜋𝜆𝑓 (𝑥𝑥′+𝑦𝑦′)𝑒−𝑖

𝜋𝑧
𝜆𝑓2 (𝑥

′2+𝑦′2)𝑑𝑥′𝑑𝑦′ (37)

3.2.4 Computer simulations of proposed transform

The computer simulations were performed to verify the inversibility of the pro-
posed transforms and the accuracy of the diffraction calculation.

The discrete form of the proposed transform and inverse transform can be pro-
posed through a convert relation. The SLM is located at the diffraction plane. Thus,
the coordinates of the diffraction side can be expressed as:
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𝑥′ =𝑝0𝑝⒧−
𝑃
2 ≤ 𝑝 ≤ 𝑃

2 −1⒭

𝑦′ =𝑝0𝑞⒧−
𝑄
2 ≤ 𝑝 ≤ 𝑄

2 −1⒭
(38)

where 𝑝 and 𝑞 are the row and column coordinates of the SLM, and 𝑃 and 𝑄
are the numbers of rows and columns, and 𝑝0 is the pixel pitch of the SLM.

Consider the object side, the size of the objectwas limited in the effective range.
The effective row and column ranges are determined by the pixel pitch.

𝑙0 =
𝑓𝜆
𝑝0

(39)

where 𝑙0 is the effective row and column length of the object.
We set the same row, column, and depth ranges. Thus, the convert relation of

the object coordinate is:

𝑥 = 𝑙0
𝑚
𝑀 = 𝑓𝜆

𝑝0
𝑚
𝑀 ⒧−𝑀2 ≤𝑚≤ 𝑀

2 −1⒭

𝑦 = 𝑙0
𝑛
𝑁 = 𝑓𝜆

𝑝0
𝑛
𝑁 ⒧−𝑁2 ≤ 𝑛 ≤ 𝑁

2 −1⒭

𝑧 = 𝑙0
2 𝑧𝑚𝑛 =

𝑓𝜆
2𝑝0

𝑧𝑚𝑛 (−1 ≤ 𝑧𝑚𝑛 ≤ 1)

(40)

where𝑚 and 𝑛 are row and column coordinates of the object, and𝑀 and 𝑁
are the numbers of the rows and columns, and 𝑧𝑚𝑛 is the relative depth position of
the object.

Substrate the coordinates into the proposed transform. The discrete form of
the proposed transform can be expressed as below.

𝐴′
𝑝𝑞𝑒𝑖𝜃

′𝑝𝑞 =
𝑀
2 −1


𝑚=−𝑀
2

𝑁
2 −1


𝑛=−𝑁
2

𝐴𝑚𝑛𝑒𝑖𝜃𝑚𝑛𝑒𝑖 2𝜋𝜆 ⒧2𝑓− 𝑓𝜆
2𝑝0 𝑧𝑚𝑛⒭𝑒−𝑖2𝜋⒧

𝑚𝑝
𝑀 + 𝑛𝑞

𝑁 ⒭𝑒𝑖
𝜋𝑝0
2𝑓 𝑧𝑚𝑛(𝑝2+𝑞2) (41)

Similar to the inverse Fresnel transform, the inverse transform is shown as be-
low:
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𝐴𝑚𝑛𝑒𝑖𝜃𝑚𝑛 = 1
𝑃𝑄

𝑃
2 −1


𝑝=− 𝑃
2

𝑄
2 −1


𝑞=− 𝑄
2

𝐴′
𝑝𝑞𝑒𝑖𝜃

′𝑝𝑞𝑒−𝑖 2𝜋𝜆 ⒧2𝑓− 𝑓𝜆
2𝑝0 𝑧𝑚𝑛⒭𝑒𝑖2𝜋⒧

𝑚𝑝
𝑀 + 𝑛𝑞

𝑁 ⒭𝑒−𝑖
𝜋𝑝0
2𝑓 𝑧𝑚𝑛(𝑝2+𝑞2)

(42)
Eq. (42) can also be expressed as:

𝐴𝑚𝑛𝑒𝑖𝜃𝑚𝑛𝑒𝑖 2𝜋𝜆 ⒧2𝑓− 𝑓𝜆
2𝑝0 𝑧𝑚𝑛⒭ = 1

𝑃𝑄

𝑃
2 −1


𝑝=− 𝑃
2

𝑄
2 −1


𝑞=− 𝑄
2

𝐴′
𝑝𝑞𝑒𝑖𝜃

′𝑝𝑞𝑒𝑖2𝜋⒧
𝑚𝑝
𝑀 + 𝑛𝑞

𝑁 ⒭𝑒−𝑖
𝜋𝑝0
2𝑓 𝑧𝑚𝑛(𝑝2+𝑞2) (43)

There is a common item in Eqs. (41) and (43), 𝑒𝑖𝜃𝑚𝑛𝑒𝑖 2𝜋𝜆 ⒧2𝑓− 𝑓𝜆
2𝑝0 𝑧𝑚𝑛⒭, which is the

phase of the object and a phase compensation determined by the depth coordina-
tion. We can substitute this item with 𝑒𝑖𝜑𝑚𝑛 :

𝜑𝑚𝑛 = 𝜃𝑚𝑛+
2𝜋
𝜆 ⒧2𝑓− 𝑓𝜆

2𝑝0
𝑧𝑚𝑛⒭

𝑒𝑖𝜑𝑚𝑛 = 𝑒𝑖𝜃𝑚𝑛+ 2𝜋
𝜆 ⒧2𝑓− 𝑓𝜆

2𝑝0 𝑧𝑚𝑛⒭
(44)

The discrete transform and inverse transform can be thus expressed as follow-
ing:

𝐴′
𝑝𝑞𝑒𝑖𝜃

′𝑝𝑞 =𝒯(𝐴𝑚𝑛𝑒𝑖𝜃𝑚𝑛,𝑧𝑚𝑛) =
𝑀
2 −1


𝑚=−𝑀
2

𝑁
2 −1


𝑛=−𝑁
2

𝐴𝑚𝑛𝑒𝑖𝜑𝑚𝑛𝑒−𝑖2𝜋⒧
𝑚𝑝
𝑀 + 𝑛𝑞

𝑁 ⒭𝑒𝑖
𝜋𝑝0
2𝑓 𝑧𝑚𝑛(𝑝2+𝑞2)

(45)

𝐴𝑚𝑛𝑒𝑖𝜑𝑚𝑛 =𝒯−1(𝐴′
𝑝𝑞𝑒𝑖𝜃

′𝑝𝑞 ,𝑧𝑚𝑛) =
1
𝑃𝑄

𝑃
2 −1


𝑝=− 𝑃
2

𝑄
2 −1


𝑞=− 𝑄
2

𝐴′
𝑝𝑞𝑒𝑖𝜃

′𝑝𝑞𝑒𝑖2𝜋⒧
𝑚𝑝
𝑀 + 𝑛𝑞

𝑁 ⒭𝑒−𝑖
𝜋𝑝0
2𝑓 𝑧𝑚𝑛(𝑝2+𝑞2)

(46)
Theproposed transformand inverse transformcannotbeappliedas fast Fourier

transform (FFT) because the proposed transform is equivalent as Fresnel trans-
form for 3D object, which cannot be applied the fast transform.

The conventional algorithms based on Fourier or Fresnel transforms are point-
based methods that each point stand for a pixel. However, most of the phase only
CGHs are based on Fourier or Fresnel transforms. The main advantage over the
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layered Fourier transform is the optimization algorithm. The layered Fourier trans-
form based phase only CGH algorithm so far does not able to optimize the whole
image on different layers simultaneously, optimization of a certain layermay bring
extra error to other layers. Thus, more layers bring bigger error. The proposed
transform in this paper enables the optimization algorithm optimizes the image
on a certain 3D surface, this enables the advantage over the layered Fourier trans-
form that image parts on all the layers could be optimized simultaneously.

The adopted SLM in experiments is PLUTO-2.1 LCOS Spatial Light Modulator
Phase Only (Reflective) (HOLOEYE Photonics AG). The pixel pitch is 8 𝜇m. The
resolution is 1,080 × 1,920. The focal distance of the Fourier transform lens is 150
mm. The adopted laser is a He-Ne laser with the wavelength of 632.8nm.

We did the simulation to test the proposed transform. We adopted two images
with different depth option (Figs. 17 and 18), which the resolutionwas 300×300. In
the “ℒℛ” image (Fig. 17), the letter “ℒ” is located on the preset minimum range
to the Fourier transform lens; the letter “ℛ” is in the preset maximum range to the
Fourier transform lens. In the “grid” image (Fig. 18), the depthoption is an inclined
screen.

Preset minimum range

Fourier plane

Preset maximum range

L

R

Figure 17: “ℒℛ” image, depth option and image of depth option

Preset minimum range

Fourier plane

Preset maximum range

Inclined
screen

Figure 18: “grid” image, depth option and image of depth option

To test the validity of the proposed algorithm, such simulation was executed
that do the inverse transform of the transform of the image. The desired result is
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that the inverse transformreconstructs the target imageon thedepthposition from
the transform of the target image and all the pixels are focused. Figure 8 shows
the transform of the “ℒℛ” image with a random phase which the resolution was
changed to 1,920×1,080 to fit the SLM adopted in the experiment. Fig. 20 shows
the reconstructed image by making the inverse transform of the Fig. 19. Fig. 21
shows the transform of the “grid” image with a random phase, and Fig. 22 shows
the reconstructed image.

Figure 19: Transform of the “ℒℛ” image. Left: Intensity; Right: phase
(1920×1080)

Figure 20: Reconstructed “ℒℛ” image (300×300)

Figure 21: Transform of the “grid” image. Left: Intensity; Right: phase (1920×1080)
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Figure 22: Reconstructed “grid” image (300×300)

The validity of the porposed transform is confirmed through the computer sim-
ulations. The image reconstructed correctly after the proposed transform and then
inverse transform. The transform cosumes about 70 seconds each time.

3.3 Gradient-Descent Method Based 3D Phase-Only CGH Algo-
rithm

I tried to construct gradient-descent basedmethod as the section 2 did. If we sim-
ply replace the Fourier transform with the proposed transform, the theoretical va-
lidity cannot be confirmed and the error cannot be estimated. The mathematical
verification of the gradient-descent based 3D phase-only CGH algorithm is shown
as below.

To calculate the hologramof a 3D image, themethodof gradient descent canbe
utilized. Similar to the former research, there are twoessential elements in gradient
descent method, which are error estimation function and the gradient of the error
and the retrieval variant.

In this research, we set the error estimation function as the Mean Square Error
of the intensity of the regenerated image and the target image. The retrieval variant
is the phase distribution of the hologram.

The gradient of the error and the retrieval variant can be calculated through
chain rule 47.

𝜕𝐸
𝜕𝜃′𝑝𝑞

=
𝑀
2 −1


𝑚=−𝑀
2

𝑁
2 −1


𝑛=−𝑁
2

𝜕𝐸
𝜕𝐼𝑚𝑛

𝜕𝐼𝑚𝑛
𝜕𝜃′𝑝𝑞

(47)
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where 𝜃′𝑝𝑞 is the phase of the pixel 𝑝 and 𝑞 on the hologram.
The equation 47 can be calculated separately.
calculation of 𝜕𝐸

𝜕𝐼𝑚𝑛
:

𝜕𝐸
𝜕𝐼𝑚𝑛

= 2
̄𝐼𝑀𝑁 ⒧𝐼𝑚𝑛

̄𝐼 − 𝐼0−𝑚𝑛
̄𝐼0
⒭ (48)

calculation of 𝜕𝐼𝑚𝑛
𝜕𝜃′𝑝𝑞 :

The intensity of the regenerated image can be calculated through the phase-
only hologram:

𝐼𝑚𝑛 =
1
𝑃𝑄

⎧
⎨
⎩

𝑃
2 −1


𝑝′=− 𝑃
2

𝑄
2 −1


𝑞′=− 𝑄
2

sin𝜃′𝑝′𝑞′ +2𝜋⒧
𝑚𝑝′

𝑀 + 𝑛𝑞′
𝑁 ⒭− 𝜋𝑝0

2𝑓 𝑧𝑚𝑛 ⒧𝑝′2+𝑞′2⒭
⎫
⎬
⎭

2

+ 1
𝑃𝑄

⎧
⎨
⎩

𝑃
2 −1


𝑝′=− 𝑃
2

𝑄
2 −1


𝑞′=− 𝑄
2

cos𝜃′𝑝′𝑞′ +2𝜋⒧
𝑚𝑝′

𝑀 + 𝑛𝑞′
𝑁 ⒭− 𝜋𝑝0

2𝑓 𝑧𝑚𝑛 ⒧𝑝′2+𝑞′2⒭
⎫
⎬
⎭

2

(49)
The gradient of the intensity and the hologram is:

𝜕𝐼𝑚𝑛
𝜕𝜃′𝑝𝑞

= 2
𝑃𝑄𝐴𝑚𝑛 sin𝜑𝑚𝑛−𝜃′𝑝𝑞−2𝜋⒧

𝑚𝑝
𝑀 + 𝑛𝑞

𝑁 ⒭+ 𝜋𝑝0
2𝑓 𝑧𝑚𝑛 ⒧𝑝2+𝑞2⒭ (50)

Now the gradient can be calculated:

𝜕𝐸
𝜕𝜃′𝑝𝑞

= 4
𝐼𝑀𝑁𝑃𝑄

Im𝑒−𝑖𝜃′𝑝𝑞𝒯⒧𝐼𝑚𝑛
𝐼

− 𝐼0−𝑚𝑛
𝐼0

⒭𝐴𝑚𝑛𝑒𝑖𝜑𝑚𝑛 ,𝑧𝑚𝑛 (51)

According to the principle of the gradient descentmethod, the phase change of
each iteration can be expressed as (52).

Δ𝜃′𝑡−𝑝𝑞 =−𝛾 𝜕𝐸
𝜕𝜃′𝑝𝑞

(52)

where 𝛾 is the optimization rate of each iteration.
The phase of the next iteration is shown as following.

𝜃′𝑡+1−𝑝𝑞 = 𝜃′𝑡−𝑝𝑞+Δ𝜃′𝑡−𝑝𝑞 (53)

The optimization rate can be also optimized through somemethod. Similar to
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the research before, the optimization rate can be calculated through the estimated
error of the next iteration and the gradient of this iteration.

𝐸′ = 1
𝑀𝑁

𝑀
2 −1


𝑚=−𝑀
2

𝑁
2 −1


𝑛=−𝑁
2

⒧𝐼𝑚𝑛+Δ𝐼𝑚𝑛
𝐼

− 𝐼0−𝑚𝑛
𝐼0

⒭
2

(54)

where the �𝐼𝑚𝑛 is the estimated change of the intensity of the present iteration,
which can be calculated through chain rule (55).

Δ𝐼𝑚𝑛 ≈
𝑃
2 −1


𝑝=− 𝑃
2

𝑄
2 −1


𝑞=− 𝑄
2

𝜕𝐼𝑚𝑛
𝜕𝜃′𝑝𝑞

Δ𝜃′𝑝𝑞 (55)

Substitute (50) into (55).

Δ𝐼𝑚𝑛 = 2𝐴𝑚𝑛Im𝑒𝑖𝜑𝑚𝑛 𝒯⒧Δ𝜃′𝑝𝑞𝑒𝑖𝜃
′𝑝𝑞 ,𝑧𝑚𝑛⒭

∗
(56)

In order to optimize the optimization rate, 𝛾 should minimize the estimated
error of the next iteration.

𝜕𝐸′

𝜕𝛾0
= 0 (57)

The calculation of the optimization rate is shown as (58).

𝛾0 =−
∑

𝑀
2 −1
𝑚=−𝑀

2
∑

𝑁
2 −1
𝑛=−𝑁

2
𝐼𝑚𝑛 ⋅ 2𝐴𝑚𝑛Im𝑒𝑖𝜑𝑚𝑛 𝒯−1

−
𝜕𝐸
𝜕𝜃′𝑝𝑞 𝑒

𝑖𝜃′𝑝𝑞 ,𝑧𝑚𝑛
∗

∑
𝑀
2 −1
𝑚=−𝑀

2
∑

𝑁
2 −1
𝑛=−𝑁

2
2𝐴𝑚𝑛Im𝑒𝑖𝜑𝑚𝑛 𝒯−1 −

𝜕𝐸
𝜕𝜃′𝑝𝑞 𝑒

𝑖𝜃′𝑝𝑞 ,𝑧𝑚𝑛
∗

2 (58)

The optimized rate calculated by the consider only the first order differential
as the approximation, which the higher order differential act on the practical is
ignored. To reduce the error caused by the higher order differential, we can reduce
the optimization by a constant rate 𝛾𝑟 to reduce the error caused by higher order
differential.

𝛾 = 𝛾0𝛾𝑟 (59)

In the simulations below, contrast rate 𝛾𝑟 is set as 0.5.
Based on the calculation of the previous, the proposed algorithmbased onGra-
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dient Descent method is designed as the Fig. 23.

T −1

Amne
iφmn

×( Imn

I
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T×e−iθ′
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×(−γ)

∆θ′pq θ′pq

∂E
∂θ′

pq

zmn

Reconstructed imageHologram

× 4
IMNPQ

Figure 23: Flow chart of the proposed algorithm

3.4 Simulation

I test the gradient-descent based algotihm by simulation. The holograms of 1, 2, 5,
10, 50, 100 iterations are shown as Fig. 24 (“ℒℛ” image).

(a) 1 iteration (b) 2 iterations (c) 5 iterations

(d) 10 iterations (e) 50 iterations (f) 100 iterations

Figure 24: Holograms of 1, 2, 5, 10, 50, 100 iterations (”ℒℛ” image)

The reconstructed images are shown as Fig. 25.
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Figure 26: Reconstructed in minimum and maximum range. Left: minimum;
Right: maximum

(a) 1 iteration (b) 2 iterations (c) 5 iterations

(d) 10 iterations (e) 50 iterations (f) 100 iterations

Figure 25: Reconstructed images of 1, 2, 5, 10, 50, 100 iterations (“ℒℛ” image)

We reconstruct from the hologram of 100 iterations with the depth option of
minimum range and maximum range to show the reconstructed images of differ-
ent planes as Fig. 26.

The grid image was also set as the target image in simulation. The holograms
and the reconstructed images are shown as Fig. 27 and Fig. 28.
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(a) 1 iteration (b) 2 iterations (c) 5 iterations

(d) 10 iterations (e) 50 iterations (f) 100 iterations

Figure 27: Holograms of 1, 2, 5, 10, 50, 100 iterations (”grid” image)

(a) 1 iteration (b) 2 iterations (c) 5 iterations

(d) 10 iterations (e) 50 iterations (f) 100 iterations

Figure 28: Reconstructed images of 1, 2, 5, 10, 50, 100 iterations (“grid” image)

TheMSE-iteration graph is shown as Fig. 29.
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Figure 29: MSE-iteration graphs

We know that theMSE convergences after about 15 iterations. TheMSE reaches
the local minimum and no longer changes after convergence.

3.5 Experimental Results

Wedidexperiments to verify the correctnessof theproposedalgorithm. Theoptical
system was set as the Fig. 30 shows.

He-Ne Laser Objective lens

Focal lens

Beam splitter

SLM

Fourier transform lens

Fourier plane

Preset maximum range

Preset minimum range

Camera

Screen

Figure 30: Optical system

In the experiments of the “ℒℛ” image, the screen was set in different depth
position from the Fourier transform lens. As the Fig. 17 shows, the letter “ℒ” was
set on the plane in the preset minimum range, and the letter “ℛ” was set on the
plane in the preset maximum range. To take the clear letter “ℒ”, we first set the
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screen at the preset minimum range. The result of the reconstructed images by
the holograms produced by Gradient Descent based algorithm and modified GS
algorithm are shown as Fig. 31.

Figure 31: Reconstructed letter “ℒ”.

As we take the clear letter “ℒ”, the letter “ℛ” blurred because the letter “ℛ”
is in another plane. To take the clear letter “ℛ”, the screen was set at the preset
maximum range. The result of the letter “ℛ” is shown as Fig. 32.
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Figure 32: Reconstructed letter “ℛ”.

The results of “ℒℛ” image shows that both Gradient Descent based algorithm
andmodifiedGS algorithmcanproduceholograms that able to reconstruct images
clear enough.

In the experiments of the grid image, we set a tilted screen as the Fig. 18 shows.
The results of “grid” image produced by two algorithms are shown as Fig. 33.
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Figure 33: Reconstructed “grid” images.

The proposed algorithm shows correctness on reconstructing the grid image in
an inclined screen. The image correctly reconstructed on the expected plane. The
algirithmalsopossess the ability to regenerate imageson irregular screen, however,
the irregular screen is hard to practice in experiment with such optical system.

3.6 Discussion

A Fresnel transform with the utilization of a Fourier transform lens was proposed.
The transform succeeded in generating holograms of 3D images. Moreover, based
on the transform, a Gradient Descent based algorithm for phase-only computer-
generated holograms was proposed, which shows a high effectiveness.
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4 Comparison of Optimization Schemes

4.1 Optimization Schemes

Gradient-descent algorithm, first developed by Cauchy in 1847, is a first order it-
erative optimization algorithm. Gradient-descent based algorithms are developed
rapidlywith the development ofMachine-Learning, especially in the field ofDeep-
Learning.

The utilization on Deep-Learning stimulates the development of optimizatin
schemes based on gradient-descent algorithm. These optimization schemes in-
cludemomentum, adagrad, RMSprop, Adadelta, Adametc.. Herewecompare these
algorithms with the method mentioned in section 2.2.2. All the algorithms men-
tioned before shows a high efficiency in the task of Deep-Learning. They may also
show a higher efficiency in the task of phase-only CGH.

4.1.1 Momentum

Momentum is amethod that accelerates the Batch gradient descent when the rele-
vant direction and dampens oscillations. When sthe gradient oscillation, the naive
batch gradient descent algorithm become slow and unstable. As the Fig. 34 shows,
the naive batch gradient descent algorithm become slow in such scenario.

Figure 34: Naive batch gradient descent algorithm

Contrary to such scenario, themomentummethod was developed. In the field
of naive batch gradient descent algorithm, the increment of the independent vari-
able is the gradient times optimization rate.
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Δ𝜃𝑡 =−𝜂𝜕𝐸(𝜃𝑡)𝜕𝜃𝑡
(60)

where 𝜂 is the optimization rate, which is usually a constant number. 𝐸 stand
for the error function. 𝑡 stand for the current iteration number.

Themomentummethod add the history information to the increment each it-
eration. The function of the increment is shown as below.

𝑣𝑡 = 𝛾𝑣𝑡−1+𝜂
𝜕𝐸(𝜃𝑡)
𝜕𝜃𝑡

Δ𝜃𝑡 =−𝑣𝑡
(61)

where 𝛾 discribes the inertia of the history information, which is usually set to
0.9. 𝑣𝑡 determines the increment of the iteration.

Momentum method can reduce strong oscillations of the error function, and
increase the unified part. The simulation result of the momentum in the scenario
mentioned formerly is shown as Fig. 35.

Figure 35: Momentum algorithm

This example shows that the momentum algorithm accelerates the optimiza-
tion in the scenario that the gradient oscillation in some dimention. Such scenario
may occur in the task of phase-only CGH. If so, the momentum algorithm may
gring a higher efficiency than naive batch gradient descent algorithm.

40



4.1.2 Nesterov accelerated gradient

Nesterov acclerated gradient (NAG) algorithm is an algorithm based on momen-
tum, which gives ability to prescience. The algorithm of each iteration of NAG is
shown as below:

𝑣𝑡 = 𝛾𝑣𝑡−1+𝜂
𝜕𝐸(𝜃𝑡 −𝛾𝑣𝑡−1)

𝜕𝜃𝑡
Δ𝜃𝑡 =−𝑣𝑡

(62)

This algorithm provides a prescision ability that may speed up the iteration
somehow. Comparing with the momentum algorithm, NAG algorithm can speed
up in some special scenario, however, not all scenarios fit the NAG.

Similarl to themomentumalgorithm, the optimization rate 𝜂 is set to 0.9 in this
research.

4.1.3 Adagrad

Adagrad is a gradient-descent based algorithm that widely utilized in the field of
sparse features. The desired feature is decreasing the learning rate while training.
This feature is fit for language models.

Adagrad algorithmadapt the optimization rate for every features, the optimiza-
tion rate become lower for the frequent feature. For the infrequent feature, the op-
timization is high. Thus, for phase-only CGH calculation, this algorithmmay pro-
duce a high performance in a few times at beginning, and produce a stable result
as the iteration increases.

The batch gradient descent treat every independent variable with a same pat-
tern (63).

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 −𝜂
𝜕𝐸(𝜃𝑡,𝑖)
𝜕𝜃𝑖

(63)

where 𝑖 is the coordination of independent variable 𝜃. 𝜂 is the optimization
rate.

Adagrad algorithm does not adopt a universe optimization rate for every coor-
dinate. The 𝜂 is replaced by 𝜂𝑖. For each coordinate, the optimization function is
shown as below.
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𝑔𝑡,𝑖 =
𝜕𝐸(𝜃𝑡,𝑖)
𝜕𝜃𝑖

𝑠𝑡,𝑖 = 𝑠𝑡−1,𝑖 +𝑔2𝑡,𝑖
𝜂𝑖 =

𝜂
√𝑠𝑡,𝑖 +𝜖

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 −𝜂𝑖𝑔𝑡,𝑖

(64)

where 𝑠𝑡 is an adapted parameter for each coordinate and for all the coordinate
𝑖, 𝑠0,𝑖 are initialized as 0. 𝜖 is a small number to prevent the 𝑠𝑡,𝑖 to be too small and
make the 𝜂𝑖 too big. 𝑔𝑖,𝑖 is the gradient of each coordinate. 𝜂 is the main learning
rate that usually preset as 0.05.

The equation (64) is the equation of each coordinate of the independent vari-
able. The integral form of the Adagrad algorithm is shown as (65)

𝑔𝑡 =
𝜕𝐸(𝜃𝑡)
𝜕𝜃

𝑠𝑡 = 𝑠𝑡−1+𝑔𝑡 ⊙𝑔𝑡
𝜃𝑡+1 = 𝜃𝑡 −

𝜂
√𝑠𝑡 +𝜖

⊙𝑔𝑡

(65)

From the equation, we can know that the 𝑠𝑡 becomebigger andbiggerwhile the
iteration continuing. Thus, the optimization rate become smaller and smaller. The
result become stable with the iteration continues. The main disadvantage is that
the algorithm would not accept new knowledge after several iterations. This may
get solved by the following algorithms.

4.1.4 RMSprop

Aimingat thedisadvantagesofAdagradalgorithm,RMSproparedeveloped to solve
the problem. The RMSprop algorithmmerges themomentum algorithm and Ada-
grad algorithm to reduce the disadvantage of Adagrad algorithm.

As the method of momentum, RMSprop adapt the 𝑠𝑡 as following.

𝑠𝑡 = 𝛾𝑠𝑡−1+(1−𝛾)𝑔𝑡 ⊙𝑔𝑡 (66)

where 𝛾 is a rate of the parameter 𝑠𝑡 updating, which is suggested to set around
0.9.
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The update of 𝑠𝑡 changes with momentummethod, and the iteration updating
function is the same with Adagrad.

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑠𝑡 +𝜖
⊙𝑔𝑡 (67)

where 𝜂 is the optimization rate, same with Adagrad. 𝜖 is the number to avoid
the result of the 𝑠𝑡 to be too small.

This algorithm changes the 𝑠𝑡 updating algorithm of the Adagrad algorithm.
The 𝑠𝑡 does not become bigger and bigger and eventually does not change when
the new knowledge inputs. The optimization rate still strongly related to the his-
tory. In the cast of phase-only CGH, this may bring a stability of a certain coordi-
nate, increment of a certain coorinate should not be too big. The increment over
2𝜋 is pointless in phase.

4.1.5 Adadelta

Adadelta is another algorithm for solving the disadvantages of Adagrad, and inde-
pendently developed with the RMSprop. Adadelta updates another parameterΔ𝜃𝑡
to determine the optimization rate.

Similarly, the Adadelta update the parameter 𝑠𝑡 same with the RMSprop algo-
rithm.

The flow of the Adadelta algorithm is shown as following.

𝑠𝑡 = 𝜌𝑠𝑡−1+(1−𝜌)𝑔𝑡 ⊙𝑔𝑡 (68)

where 𝜌 is the changing rate of the 𝑠𝑡 , same with 𝛾 in RMSprop, which usually
set around 0.9.

𝑔′𝑡 =√
Δ𝜃𝑡−1+𝜖
𝑠𝑡 +𝜖

⊙𝑔𝑡 (69)

where Δ𝜃𝑡−1 is the leaky average of the squared rescaled gradients 𝑔′𝑡 .
Then update the independent variant.

𝜃𝑡 = 𝜃𝑡−1−𝑔′𝑡 (70)

At last, update the Δ𝜃𝑡
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Δ𝜃𝑡 = 𝜌Δ𝜃𝑡−1+(1−𝜌)𝑔′𝑡 ⊙𝑔′𝑡 (71)

Themain difference betweenRMSproop andAdadelta is replacing the constant
parameter 𝜂 with the updated parameter√Δ𝜃𝑡−1. Adadelta may improve the effi-
cient from RMSprop algorithm in phase-only CGH task, because the optimization
rate floats through thehistory andbring a reasonable optimization ratewhen some
coordinate of the phase is too big.

4.1.6 Adam

Adamis thealmost the ”ultimate”algorithmforDeep-Learning. Mergedwithmany
algorithms, adam show a very high efficient in many tasks. The flow of the algo-
rithm is shown as following.

Adam algorithm updates 2 momentum variable. Same with the momentum
algorithm, an adapted 𝑣𝑡 is updated.

𝑣𝑡 = 𝛽1𝑣𝑡−1+(1−𝛽1)𝑔𝑡 (72)

where 𝛽1 is a preset constant parameter for updating 𝑣𝑡
There is also a counter part of RMSprop, the momentum parameter 𝑠𝑡 is up-

dated as follows.

𝑠𝑡 = 𝛽2𝑠𝑡−1+(1−𝛽2)𝑔𝑡 ⊙𝑔𝑡 (73)

where 𝑏𝑒𝑡𝑎2 is also a preset constant parameter for updating 𝑠𝑡
Correspondingly the normalized state variables are given by 74.

̂𝑣𝑡 =
𝑣𝑡

1−𝛽𝑡1
̂𝑠𝑡 =

𝑠𝑡
1−𝛽𝑡2

(74)

The increment is calculated by 75.

𝑔′𝑡 =
𝜂 ̂𝑣𝑡

√ ̂𝑠𝑡 +𝜖
(75)

Update the independent variable with increment.
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𝜃𝑡 = 𝜃𝑡−1−𝑔′𝑡 (76)

Adam algorithm show a very high efficient in the task of Deep-Learning. Adam
may also show a high efficiency in the task of phase-only CGH.

4.2 Simulations

A comparison is made through generating holograms of ”mandrill” with differ-
ent methods. 8 algorithms, including naive batch gradient descent, batch gradi-
ent descent with dynamic optimization rate mentioned in section 2.2.2, momen-
tum, Nesterov accelerated gradient, Adagrad, Adadelta, RMSprop and Adam, are
adopted to participate in the comparison.

The test image isMandrill with the resolution of 512× 512with a uniformed ini-
tial random phase. The simulation of naive batch gradient descent algorithm and
proposed method has done in section 2.3. Here the simulation of 6 optimization
scemes are made. All the simulation are made in 2D image.

4.2.1 Momentum

In the simulation ofmomentum, the optimization rate was set to 0.05 and themo-
mentum parameter was set to 0.9. The hologram and regenerated image of 1, 2, 5,
10, 50, 100 iteration are shown as Figs. 36 and 37.
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(a) 1 iteration (b) 2 iterations (c) 5 iterations

(d) 10 iterations (e) 50 iterations (f) 100 iterations

Figure 36: Generated holograms of 1, 2, 5, 10, 50, 100 iterations

(a) 1 iteration (b) 2 iterations (c) 5 iterations

(d) 10 iterations (e) 50 iterations (f) 100 iterations

Figure 37: Regenerated images of 1, 2, 5, 10, 50, 100 iterations

TheMSE-iteration graph is shown as Fig. 38.
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Figure 38: MSE-iteration graph of momentum algorithm

Through the MSE-iteration relation, we can see that the MSE does not reach
the convergence after 100 iterations. The MSE may decrease continuously if the
iteration continues.

4.2.2 Nesterov Accelerated Gradient

NAG algorithm is somehow similar with momentum algorithm, the optimization
rate is set to 0.05 and the momentum parameter is set to 0.9. The hologram and
regenerated image of 1, 2, 5, 10, 50, 100 iteration are shown as Figs. 39 and 40.
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(a) 1 iteration (b) 2 iterations (c) 5 iterations

(d) 10 iterations (e) 50 iterations (f) 100 iterations

Figure 39: Generated holograms of 1, 2, 5, 10, 50, 100 iterations

(a) 1 iteration (b) 2 iterations (c) 5 iterations

(d) 10 iterations (e) 50 iterations (f) 100 iterations

Figure 40: Generated images of 1, 2, 5, 10, 50, 100 iterations

TheMSE-iteration graph is shown as Fig. 41.
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Figure 41: MSE-iteration graph of NAG algorithm

The NAG algorithm is a momentum-based algorithm with optimization, thus,
the shape of the MSE-iteration graph is similar. NAG algorithm does not reach the
convergence after 100 iterations as well.

4.2.3 Adagrad

The simulation of Adagrad algorithm was made with the optimization rate (𝜂) of
0.0025. The result is strongly related with the optimization rate, for example, the
optimization rate of 0.05 bring a very bad result which the MSE increases during
iteration. All the small numbers 𝜖 was set to 10−6 in Adagrad, RMSprop, Adadelta
and Adam algorithms. The hologram and regenerated image of 1, 2, 5, 10, 50, 100
iteration are shown as Figs. 42 and 43.

49



(a) 1 iteration (b) 2 iterations (c) 5 iterations

(d) 10 iterations (e) 50 iterations (f) 100 iterations

Figure 42: Generated holograms of 1, 2, 5, 10, 50, 100 iterations

(a) 1 iteration (b) 2 iterations (c) 5 iterations

(d) 10 iterations (e) 50 iterations (f) 100 iterations

Figure 43: Generated images of 1, 2, 5, 10, 50, 100 iterations

TheMSE-iteration graph is shown as Fig. 44.
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Figure 44: MSE-iteration graph of Adagrad algorithm

4.2.4 RMSprop

RMSprop algorithm also requires an optimization rate (𝜂). The optimization rate
is set as 0.0025 as well. The robustness of RMSprop is far smaller than the Adagrad.
If the optimization was set to 0.01, the MSE increases during the iteration. The
momentum parameter 𝛾 is set to 0.9. The hologram and regenerated image of 1, 2,
5, 10, 50, 100 iteration are shown as Figs. 45 and 46.
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(a) 1 iteration (b) 2 iterations (c) 5 iterations

(d) 10 iterations (e) 50 iterations (f) 100 iterations

Figure 45: Generated holograms of 1, 2, 5, 10, 50, 100 iterations

(a) 1 iteration (b) 2 iterations (c) 5 iterations

(d) 10 iterations (e) 50 iterations (f) 100 iterations

Figure 46: Generated images of 1, 2, 5, 10, 50, 100 iterations

TheMSE-iteration graph is shown as Fig. 47.
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Figure 47: MSE-iteration graph of RMSprop algorithm

4.2.5 Adadelta

Adadelta also require a parameter for updating 𝑠𝑡 , the parameter 𝜌 is set to 0.9 as
well. The hologram and regenerated image of 1, 2, 5, 10, 50, 100 iteration are shown
as Figs. 48 and 49.
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(a) 1 iteration (b) 2 iterations (c) 5 iterations

(d) 10 iterations (e) 50 iterations (f) 100 iterations

Figure 48: Generated holograms of 1, 2, 5, 10, 50, 100 iterations

(a) 1 iteration (b) 2 iterations (c) 5 iterations

(d) 10 iterations (e) 50 iterations (f) 100 iterations

Figure 49: Generated images of 1, 2, 5, 10, 50, 100 iterations

TheMSE-iteration graph is shown as Fig. 50.
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Figure 50: MSE-iteration graph of Adadelta algorithm

4.2.6 Adam

Adam requires 3 parameters (𝛽1, 𝛽2, 𝜂). In this simulation, 𝛽1 and 𝛽2 is set as 0.85,
and the optimization rate 𝜂 is set to 0.1. The hologram and regenerated image of 1,
2, 5, 10, 50, 100 iteration are shown as Figs. 51 and 52.
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(a) 1 iteration (b) 2 iterations (c) 5 iterations

(d) 10 iterations (e) 50 iterations (f) 100 iterations

Figure 51: Generated holograms of 1, 2, 5, 10, 50, 100 iterations

(a) 1 iteration (b) 2 iterations (c) 5 iterations

(d) 10 iterations (e) 50 iterations (f) 100 iterations

Figure 52: Generated images of 1, 2, 5, 10, 50, 100 iterations

TheMSE-iteration graph is shown as Fig. 53.
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Figure 53: MSE-iteration graph of Adam algorithm

4.2.7 Comparison

Tomake a comparison, all the regenerated images and holograms of 100 iterations
are put together as Figs. 54 and 55
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(a) Naive batch gradient
descent

(b) Gradient descent with
proposed optimization

(c) momentum

(d) NAG (e) Adagrad (f) RMSprop

(g) Adadelta (h) Adam

Figure 54: Generated images of 100 iterations of different optimization schemes

58



(a) Naive batch gradient
descent

(b) Gradient descent with
proposed optimization

(c) momentum

(d) NAG (e) Adagrad (f) RMSprop

(g) Adadelta (h) Adam

Figure 55: Generated images of 100 iterations of different optimization schemes

I putMSE-iteration curves of all optimization scemes in a single graph (Fig. 56)
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Figure 56: MSE-iteration curves

4.3 Discussion

With the development of Deep-Learning recent years, the gradient-descent based
optimization schemes get faster and faster. After the Adam algorithm, new opti-
mization schemes were developed such as Nadam, AdaMAx and RMSgrad. How-
ever, new algorithms are not get tested sufficiently.

The Fig. 56 shows that the Adam algorithm reaches the lowest error in 100 iter-
ations, however, Adam algorithm does not stay on the lowest error in all time. The
proposed optimization keep the lowest error in the starting 30 iterations, however,
slow down the speed significantly after 70 iterations. Naive batch gradient descent
algorithm is the slowest one, but theMSE reaches an acceptable value (0.01) in 100
iterations. Momentum and NAG algorithm are similar, and the results are simi-
lar as well. Adagrad algorithm and heritors, RMSprop and Adadelta, are similar in
shape, however, the heritors does not cover the Adagrad algorithm in the task of
phase-only CGH.

In this comparison, the first one to get the error of 0.01 is the proposed opti-
mization. The algorithm which reach the lowest error is Adam.
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5 Fresnel Transform with the Utilization of Fourier

Lens (FrTFL) and Applications

A transform for generating hologramsof 3D images are developed in section 3. This
Fresnel transformwith the utilization of Fourier lens brings newcapability inmany
aspects that rely on the Fourier transform or the Fresnel transform.

TheFrTFL is similar to the Fractional Fourier transform (FRFT). Some softwares
that rely on the Fourier transform upgrade themselves by replacing the Fourier
transform by the FRFT. Image compression algorithm with the utilization of the
FRFT can simutaneously encrypt images. Blind watermarking software can also
replace the Fourier transform with the FRFT and encrypt the watermark.

In this section, I discuss the sameanddifferenceof theFRFTandFrTFL.The im-
age encryption, compression and watermarking algorithm would be discussed as
well. Algorithms for image encryption, compression andwatermarkingwith FrTFL
would be designed

5.1 ComparisonofFractionalFourierTransform(FRFT)andFrTFL

In the field of image encryption, Fractional Fourier transform are usually adopted
to encrypt images.

Consider about the n-iterated Fourier transform.

ℱ𝑛[𝑓] =ℱ[ℱ𝑛−1[𝑓]] (77)

The sequence is finite sinceℱ is a 4-periodic automorphism, that satisfiedwith
(78)

ℱ4[𝑓] =ℱ0[𝑓] = 𝑓 (78)

The FRFT provides a family of linear transforms that further extends this defi-
nition to handle non-integer powers 𝑛 = 2𝛼

𝜋 of the Fourier transform.
The FRFT was defined as follows. For any real 𝛼, the 𝛼-angle fractional Fourier

transform of a function is denoted byℱ𝛼(𝑢) and defined by

ℱ𝛼(𝑢) =√1−𝑖cot (𝛼)𝑒𝑖𝜋cot (𝛼)𝑢2
+∞

−∞
𝑒−𝑖2𝜋csc(𝛼)𝑢𝑥− cot (𝛼)

2 𝑥2𝑓(𝑥)𝑑𝑥 (79)
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Formally, this formula is only valid when the input function is in a sufficiently
nice space.

This translate possess many features like complex number.

ℱ𝛼+𝛽 =ℱ𝛼 ∘ℱ𝛽 =ℱ𝛽 ∘ℱ𝛼 (80)

Considering the parts of the FRFT and the FrTFL, there are 2 common parts,
that is plane wave and spherical wave. Thus, the Fourier lens always do the FRFT
even object and screen are not put on the Fourier plane.

5.2 Image Encryption using FrTFL

Many image encryption algorithm is using the FRFT. A simple encryption algo-
rithm’s fundamental principle is that do the FRFTwith a certain order𝛼. Thismake
the encryped image unreadable. The decryption method is doing the FRFT with
order −𝛼. The principle is mentioned formerly.

ℱ𝛼 ∘ℱ−𝛼 =ℱ𝛼−𝛼 =ℱ0 (81)

So the image reconstructs when doing the FRFT with a correct order −𝛼. If we
make the order 𝛼 as a key, the encryption reforms only when inputting the correct
key.
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Figure 57: (a)Original image; (b)Encrypted image; (c)Correct decrypted image;
(d)Decrepted image with incorrect transform orders

Thismethodsuccessfully encrypt the image,whichonlydecrypt the imagewhen
receiving the correct key. However, this algorithm can be cracked through an op-
tical experiment. The reconstructed image may eventually appear at a certain po-
sition. Thus, this simple encryption algorithm is weak on encrypting.

To encrypt the image, the FrTFL can replace the FRFT. The FRFT regenerate
the image on a plane, but FrTFL can regenerate images in a complex surface. We
can set the depth option as the key, generate the hologram of the image of the key,
and decrypt with the same key. This bring a higher robustness to the encryption,
because it is hard to crack the encryption with a certain surface through optical
experiments.

A simple encryptionalgorithmwasmade for test. Thedepth limitation is changed,
the origin image is ”mandrill” and the depth is set as a irregular surface, as Fig.
shows. The intensity and phase distribution of the diffraction is shown as Fig. .

When decrypting, if the key depth option is not correct, for example, a plane,
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the decrypted image is totally incorrect. In the other hand, if the key depth option
is correct, the image decrypts correctly as Fig. shows.

5.3 Image compression using FrTFL

There is an algorithm for depression using Fresnel transform, a kind of algorithm is
to compressmultiple images in a holograph, and regenerate images from different
direction and different depth. However, the conventional method does not opti-
mize the images in different positions simultaneously, which make the noise on
other images while doing optimizations on a certain image.

A typical example is the algorithm as Fig. 58 shows.

Figure 58: Holograph of multiple images at different positions

Thus, by adopting the FrTFL, this problem get solved perfectly. This compres-
sion algorithm is a lossy compression, which bring a noise on the original image.

A compression algorithm can be designed as following.

• Merge the images to a big image.

• Calculate the hologram of the newmerged image.
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5.4 Blind watermark using FrTFL

Blind watermark is a technology to add a watermark to images with a invisible
method. Blind watermark are widely utilized in copyright and possesses legal va-
lidity. Artists use bind watermarks for anti-counterfeiting as well.

The simplestmethod to addwatermark is to do the Fourier transform to the tar-
get image, and change the phase or amplitude value of the zone of high frequency,
and then do the inverse Fourier transform to the modified image. This method
highly hide the information into the image without changing the image toomuch.

The Fig. 59 and 60 shows an image and the image with a blind watermark. It
is hard to see the difference between two images, however, invisible watermark is
hided in the image.

Figure 59: Original image
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Figure 60: Image with blind mark

The image without blind watermark does not have any information after doing
Fourier transform. The image with blind watermark shows some information as
Fig. 61.

Figure 61: The blind watermark

Blind watermark hide information in the Fourier zone. It is very hard to find
the watermark, however, if someone knows about such technology, the watermark
may be disclosed.

Blind watermark is highly rely on the Fourier transform. Thus, the FrTFL may
bring new features on the algorithm. By adding a depth key to the watermark,
the watermark is encrypted that the hided information is encrypted. Without the
depth key, the blind watermark would not be disclosed.
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6 Conclusions

AGradient-Descent based algorithm for phase-only CGHof 2D and 3D imageswas
designed, which efficient is far better than the GS algorithm andmodified GS algo-
rithm.

For generatinghologramsof 3D images, a Fresnel transformwith theutilization
of a Fourier lens was developed. This tranform brings a new feature that able to
regenerate 3D images with the utilization of Fourier lens.

A comparison of gradient-descent based optimization schemes was made to
check the best optimization scheme on the phase-only CGH task. Adam tend to be
the best algorithm for phase-only CGH calculating.

The FrTFL brings more possibilities on the fiesds of Fourier transform or Frac-
tional Fourier transform. The FrTFL brings new feature on the task of image en-
cryption, compression and blind watermark making.
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