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1.1 Thesis overview and Motivation

1.1.1 Overview

As human societies move toward the Society 5.0 [1] paradigm and industries move toward the

Industry 4.0 [2] model, smart devices are becoming increasingly ubiquitous; it is expected that

more than 100 billion such devices will exist by 2050 [3]. Moreover, with the advent of virtual

reality and augmented reality, there are many new possible ways of creating embodied conver-

sational agents (ECA) – entities capable of understanding and of replying with human natural

language that have a physical representation [4]. With more computing power and smaller (or

no) screens, the user interface design paradigm is shifting from graphical user interfaces (GUI)

to conversational user interfaces (CUI) [5]. This can already be seen in personal assistants for

computers, smartphones, and smart speakers, such as Cortana, Alexa, Siri, Bixby, Google Assis-

tant etc. However, such systems have one common problem: their speech sounds human-like, but

they still sound unnatural because there is little to no variation on the prosody of their synthesized

speech.

It should be noted that not all devices need semantic speech to convey desired messages [6, 7],

such as success, failure, attention, or danger. To do this, several classes of auditory means have

been used, such as sounds, music, gibberish speech etc, can be employed. In particular, the use

of gibberish in affective computing offers a key advantage in that it allows the communication of

emotions without the need for an understandable language. This approach is useful for evaluating

the effectiveness of affective prosody generation strategies as well as for implementing functional

systems in a myriad of settings, since it can work across different cultures because its expressions

do not depend on actual meaning of words.

Thus, Gibberish Speech is useful for evaluating the effectiveness of affective prosodic strategies

as well as for implementing functional systems. This thesis investigates the effects of Gibberish

Speech in a conversational setting, where humans can openly talk to robots and other embodied

conversational agents without the fear of judgement, but still receiving responses that shows the

ECAs are listening to what the human says and are engaged in the conversation, without actually

saying anything. Gibberish speech holds a presence within popular culture, notably within movies

and TV-series like Star Wars (featuring Rodian, Ewokese, Jawaese, Huttese, and other alien lan-
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guages), Star Trek (where Vulcan and Klingon "languages" originated as gibberish speech in the

original series) and Pingu (in order to teach children how to interpret media just from audio-visual

cues). This inclusion serves to introduce an otherworldly or fantastical dimension to the narra-

tive, effectively avoiding the need for the development of a fully coherent language. Despite its

apparent randomness, gibberish speech manages to convey emotions and sentiments through char-

acter dialogues through its acoustic prosodic properties. In interactive media, gibberish speech has

found its place in video games (such as Papers Please and Star Fox Command) and toys (like the

Furby). These platforms utilize gibberish speech to craft immersive interactions that don’t rely on

conveying coherent meaning. Instead, they contribute to a unique and unconventional ambiance,

enhancing the overall experience of the interaction. Despite such cultural presence, little human-

robot and human-computer interaction research has been performed with gibberish speech in its

center.

This way, the present thesis is dedicated to gain a better understanding on how the speech char-

acteristics (content, phone choice and acoustic prosody parameters) and the appearance (levels of

anthropomorphism and embodiment) of ECAs affect human immediate and post-hoc impression

of the agents and the interaction with them. It also aims to develop a system capable of select-

ing adequate acoustic prosody parameters for the synthesized speech of ECAs, to elicit a desired

emotional change on listeners. Such knowledge is of utmost importance due to the lack of general

guidelines on how to develop ECAs; and, thus, aims to obtain useful knowledge that can be used

to guide the development of the aforementioned entities, which are bond to become more and

more common. It also showcases the development process of the Social Plantroid Robot, which

was used for the necessary the investigation on speech and appearance of ECAs, and how the

conclusions of the experiments shaped the development process itself.

1.1.2 Speech Characteristics: Prosody and Phone choice

When automatically generating appropriate prosody for synthetic semantic speech, it is possi-

ble to learn adequate prosody for a given speech from prosodic speech databases extracted from

natural speech [8, 9] or to cause a certain impression on the listener [10, 11]. However, a similar

approach for gibberish speech is not as feasible since, to the best of the authors’ knowledge, there

is only one emotional speech database for gibberish speech, the EMOGIB dataset [12], from which
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it would be possible to extract prosodic parameters. However, since it consists only of words com-

posed by phones present in English and Dutch, it limits the ability to develop prosody attribution

systems from it, restricting the possibility cross-cultural usage. Furthermore, the emotional label

present in the dataset is the perceived feeling that the utterances convey, not how they made the

listeners feel.

To fill such gaps, the web-based crowdsourcing experiment “Talk to Kotaro" [13] was conducted

to generate an IPA-based gibberish speech with different prosody patterns dataset labeled with the

emotion change on listeners. To achieve such a goal, volunteers talked to a screen-based ECA [4]

inspired by the Kotaro robot [14], which responded with gibberish speech. The developed web-

site recorded both the audio of the volunteers’ speech and the video of them listening to ECA’s

utterances. 33 volunteers from 8 different countries participated, speaking a total of 11 different

languages; they contributed over 700 video samples. After the conversation with Kotaro, the vol-

unteers were asked to fill out a Likert scale questionnaire, which was optional. The questionnaire

was filled out by 22 participants.

Crowdsourcing data from all over the world was essential in that context, because we intend on

analyzing how people from different cultures react to SFU. The initial hypothesis is that even if

there are different impressions, there may be a common baseline, in similar fashion to the Bouba-

Kiki effect [15]. The objective of the experiment is to gather data that will allow us to: (i) test

the hypothesis that there is some common baseline on how people from different cultures react to

different phones and prosody patterns and (ii) if there is a baseline, to develop a human impression

prediction module using the crowdsourced data.

However, we could not find an appropriate platform which allow volunteers to talk with a robot

in their web browsers while audio and video from such interactions are securely streamed to Mizu-

uchi lab servers. The closest tools we were able to find didn’t have all the necessary features [16],

were too game-like [17], introducing many other factors that could impact the impression of vol-

unteers, or required a VR Headsets [18], which make impossible to record user facial expressions

and not web-based [19]. This way, we decided to develop our own solution and make it open-

source, so it can help other HRI researchers hold their own experiments online, saving time and

implementation costs. It was designed in such a way that others can easily use it and modify it

according to their needs. Moreover, this tool is helpful not only during times of crisis. Given that
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crowdsourcing information from all over the world will make obtained datasets more diverse and,

thus, research will be more robust.

The results of the analysis of the data obtained though the Talk to Kotaro experiment allowed

to gain a better understanding of the effect of prosody and phone choice on human impression

– the immediate emotional response – and to develop a novel bidirectional Gated Recurrent Unit

(GRU) neural network architecture that is capable of estimating human impression for given phone

and prosody inputs, called Gibberish Speech Impression Predictor (GSIP). The performance of

the system was validated by an in-person experiment with 28 participants; and achieved good

precision on estimating the impression caused by the gibberish utterances of three distinct ECA.

1.2 Embodiment level, experience with robots and human impres-
sion

Embodied Conversational agents can thus have different levels of physical embodiment [20];

some agents are just text on a display or a voice that speaks to users, while others are robots

that are fully capable of sensing and interacting with the world around them. Since their main

function always has a social component, in the sense that they perform tasks where it is necessary

to talk to humans, it is important to understand how the level of physical embodiment relates to

human perception. If this is properly understood, it is possible to design an agent with a level

of embodiment that is sufficient, since higher levels of embodiment tend to make an ECA more

expensive, i.e., a speaker connected to a computer is cheaper than a robot with a plethora of sensors

and actuators necessary to perform its tasks. Moreover, since conversational agents can occupy

multiple displays or robot bodies at once, change bodies as needed, and share bodies with other

ECAs, it is important to know how changing the level of embodiment changes human opinion

about its capabilities.

Studies have already been conducted to investigate the relationship between physical embod-

iment level and human engagement, human perception of ECA [21, 22], and how well users

perform certain tasks when interacting with agents of different embodiment levels [23, 24, 25].

However, there is a possibility that such results are due to novelty preference - the preference for

new experiences - which may have played an important role in these results. Previous works,
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even when acknowledging this possibility, have not investigated the effect of novelty preference

on participants’ impressions and preferences.

To address this gap in the literature, an experiment in which participants have conversations

with three different versions of the Social Plantroid robot was performed: a 2D avatar displayed

on a computer screen (referred to as a screen agent), a 3D model displayed on a Gen 1 Looking

Glass 8.9-inch holographic display (referred to as a holographic agent), and the real Plantroid

robot (robot agent). All ECAs use the same GPT-3-based chatbot and eSpeak speech synthesizer –

their appearance, shown in Figure 7.2, is the only distinguishing factor. The executed experiment

was the first human-robot and human-computer interaction study to use a holographic display

for 3D visualization of embodied agents. After interacting with an agent, volunteers were asked

to complete a short adapted Godspeed Scale questionnaire and, after interacting with all agents,

to rank which agent they preferred to interact with. All volunteers had to fill out a profile with

relevant personal information and their experience with robots, which was used to assess how

novel the experience of interacting with the Plantroid robot was.

Current understanding was that, although not causing significantly better performance of users,

higher levels of physical embodiment of ECA seems to cause a higher engagement [22, 23]. The

proposed experiment was conducted to challenge this understanding and thus verify the following

research hypothesis:

H1: Novelty preference plays a strong role in engagement in interactions with ECAs.

If hypothesis H1 is true, we expect a negative correlation between participants’ level of experi-

ence with robots and their impressions of the robot agent.

Thus, three main contributions of the experiment were: 1) investigate the correlation between

volunteers’ impressions and the level of physical embodiment of ECA through questionnaires and

emotion estimation from video; 2) investigate the correlation between novelty preference in the

preference of ECA and 3) it is the first study to use holographic displays in an HRI experiment.

1.3 Social Plantroid

In order to test, validate and demonstrate the novel embodied conversational agents paradigms

created through the present research and the developed systems, a novel version of the Plantroid(Plant+droid)
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family of robots [26, 27] was developed, called Social Plantroid, since it joins the smart agricul-

tural worker aspect of previous Plantroids with a social side, which aims to transform plants into

pets and friends.

In the Agriculture 4.0 paradigm, the latest technological advances in fields such as internet

of things , big data, machine learning, remote sensing and precision farming are put together in

order to optimize crop yield and quality, while minimizing the environmental impact, costs and

intensiveness of labor [28]. Moreover, given the current trend of urbanization [29, 30] and that

many countries have an ageing population [31], the reduction of the available workforce and of

the average farm was only a natural, albeit perilous, outcome [28, 29, 32]. In that sense, robotics is

expected to play a central role in future of farming due to its resource saving, precision improving

and labor saving potential [28]. Interest on agrobots (agricultural robot) research has, thus, only

grown in the last few decades [33].

With the reduction of available farmland, greenhouse farming [29, 33] and urban agriculture [34,

32, 35] appear as very labor intensive solutions, which require precise resource management. Re-

search on IoT, big data machine learning, AI-assisted decision-making systems address the re-

source management aspect [36]. The original Plantroid research [26, 37], and by extension this

present work, are inserted in the corpus of robotics-based labor-saving solutions research. How-

ever, whereas previously developed Plantroids , hereby referred to as Plantroid Omni [26] (shown

in Figure 1.1a and Plantroid mini [37] (shown in Figure 1.1b only address the labor intensive

problem of carrying plants into and out of sunlight in smart-greenhouses and plant factories; the

novel Social Plantroid (shown in Figure 1.1c also takes care of monitoring the soil of the plant,

information management and communication.

However, much more relevant to the scope of this thesis, Social Plantroid is an embodied con-

versational agent that aims to help you take care of plants and wants to be a companion, notifying

the necessities of the plant when its sensors detect that the soil lacks nutrients, or needs watering

and holding complex and engaging conversations through a novel GPT-J-based Dialogue Manage-

ment system that takes Pragmatics and Proxemics principles into account for communication. It

can also uses the developed Gibberish speech and prosody generation techniques, coupled with a

powerful emotion and facial expression framework to express the needs of the Plant it carries. The

development of the Social Plantroid robotacknowledges the fact that, while Robots and AI might



— 第 1章： Introduction — 17

substitute human labor in certain conditions [38, 39], taking care of plants has psychological ben-

efits to humans and, thus, Plantroid should only help instead of substituting the care-taking labor.

This way, as it is expected for many robots [40], Plantroid works together with humans. Robots

in a cooperative setting need to competently communicate, and to understand human verbal and

non-verbal communication [41, 42]. Its pet-like appearance was also chosen to make the robot

appealing [43] for home-owners and further contribute to the impression that the plant became a

pet.

Previous Plantroid versions required an external camera for environment navigation and, most

importantly, for performing its main task of finding sunlight or shadow, accordingly to the need

of the plants they carried. The novel Social Plantroid has two cameras, one gray scale OMRON

B5T-007001-010 [44], used for human detection, emotion recognition and sunlight detection and

an Adafruit MLX90640 IR Thermal Camera [45] for sunlight detection.

This way, the novel Social Plantroid was developed to be a Human-Robot Interaction research

platform and an agrobot research platform. It addresses the problem that doomed many social

robots to fail as products: the lack of perceived utility by customers [46]. It is, to the knowledge

of the authors, the first open-source agricultural robot with a social function. Other novelties

presented in this research is that a simple, but effective, sunlight-seeking algorithm which requires

no external cameras was developed, together with a VGG-16-based end-to-end visual navigation

architecture that allows Plantroid to avoid obstacles while seeking the best sunlight or shadow.

Vision is a powerful sense for navigation – it can be used to achieve the 4 principal tasks of robot

navigation: localization, mapping, path planning, and locomotion [47]. Moreover, since most

humans rely on vision to navigate in their daily lives, interest in vision-based robot navigation

research is natural. This work is inserted in that context, focusing on end-to-end locomotion

and obstacle avoidance using monocular gray scale images to estimate the heading direction of a

differential drive Plantroid robot.

Initially, most approaches for visual navigation were based on Image Processing [47] tech-

niques, but as computing power increased and machine learning matured, machine-learning-based

solutions became more present in the field. However, one gap in end-to-end neural-network

vision-based navigation research is that no solution was developed to directly learn the behav-

ior derived from using the Artificial Potential Field (APF) [48] method for path planning, the
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(a) Autonomous Mov-
able Fruit Growing
Plantroid. (b) Plantroid Mini.

(c) 3D render of the Novel So-
cial Plantroid .

Fig. 1.1: The Plantroid Family.

same method used in the previous Plantroid models for seeking sunlight, while avoiding walls and

other robots [27].

Vision-based end-to-end methods have the advantage of eliminating the need for robot local-

ization and mapping the environment, generating locomotion decisions by directly sensing the

environment, a behavior known as reflex approach [49]. That allows to reduce necessary compu-

tation power and reduce the number of necessary sensors, making robots cheaper, lighter, smaller

and more energy efficient. Thus, in this work, localization and mapping problems are not ad-

dressed; and it assumes that for the task of seeking sunlit areas, Plantroid encoders are precise

enough, since the objective destination is an area far larger than the robot itself. Knowing the map

is not essential, since the architecture successfully learns how to avoid walls, static and mobile

obstacles.

Works [50, 51, 52] have used monocular images to estimate the distance of obstacles from

the robot and then used variations of the APF method for trajectory planning. The proposed

VGG-16[53] based architecture yields the robot heading directly from images, eliminating the

need of running the APF method while achieving comparable performance. APF was chosen

as the planning method for training data generation for the proposed architecture because Social

Plantroid’s main navigation goal is to move into and out of sunlight while avoiding obstacles. The
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intensity of the sunlight also translates well into the attractive potential of the robot’s goal, as it

was done for the previous model, albeit from an external camera. Moreover, its implementation

is simple and has many variants. Trajectories planned through APF method are followed through

the virtual robot approach, which is also easily implemented.

The proposed architecture consists of a convolutional neural network (CNN1), which receives

RGB images from the camera as input; and a multilayer perceptron (MLP1), which receives the

current location (xc,yc) of the robot and the desired robot destination (x f ,y f ). The outputs of the

aforementioned neural networks are concatenated and used as the input of a second multilayer

perceptron(MLP2), which then outputs a predict way-point (xn,yn) for a time horizon T , which

should enable the robot to avoid all moving and static obstacles.

Using the APF method and the virtual robot approach, a little over 30h of simulations were

run in 3 distinct environments: a house, a cafe, and a meeting room, where the robot navigates

from an initial position pi = (xi,yi) to a final position p f = (x f ,y f ) while avoiding mobile and

static obstacles. Every second, an image is saved, together with the current robot pose (xr, yr and

θr), current destination, and the future heading of the robot obtained through the aforementioned

techniques. Generating data, training, and evaluating the navigation architecture in a simulated

environment allows for cheaper and faster development since it does not wear out real robots,

does not require modifications to the environment and does not need to run in real-time.

1.4 Structure of the Thesis

The structure of the present thesis is as follows. Chapter 1 introduces the main objectives, gives

basic context and rationale for the research that was performed and outlines the structure of the

thesis. Chapter 2 introduces the many necessary concepts for understanding this thesis, while

Chapter 3 introduces previous research that is related to the investigations performed in this thesis,

while outlining the difference between the current and previous works. Chapter 4 introduces the

web crowdsourcing platform that was developed, together with the experiment that was performed

to gain a deeper understanding on how phone and prosody choice affects human impression, also

introducing the Gibberish speech generation algorithm and the Likert Scale questionnaire used

to obtain a deeper understanding of why participants reacted the way they did in the experiment.

Chapter 5 introduces what methods were used for analyzing the data obtained through the Talk to
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Kotaro experiment, showcases and discusses its results and introduces the Gibberish Speech Im-

pression Prediction system. Chapter 6 introduces the GSIP experiment, which aimed to investigate

the performance of the developed system and elucidate how volunteers perceived gibberish speech,

English, distinct prosody selection methods and hope the levels of embodiment and anthropomor-

phism of Embodied conversational agents impacted their impression. Chapter 8 introduces the

development process of the new Social Plantroid robot and its many systems developed for hu-

man robot interaction. Moreover, it also introduces itś end-to-end VGG16-based architecture for

visual navigation and obstacle avoidance in social environments. Finally, Chapter 9 outlines the

conclusions from the present thesis and future works.
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This chapter provides essential information to understand this thesis. It is divided into 4 dif-

ferent domains of knowledge that were necessary to perform all research topics present in this

thesis – human-robot and human-computer interaction are very interdisciplinary research fields.

First, Section 2.1 presents knowledge related to phonetics, speech synthesis and multimodal esti-

mation. After that, Section 2.2 introduces Embodiment levels and Novelty bias, or preference for

novelty. Section 2.3 presents knowledge necessary for visual navigation of robots, pragmatics and

proxemics, soil monitoring and plant health estimation.

2.1 About Human-machine communication

This section briefly introduces concepts necessary for understanding this work and presents re-

lated work. Its subsection 2.1.1 explains in detail what Gibberish Speech is and introduces the

International Phonetic Alphabet, whose symbols serve as building blocks for Gibberish Speech in

our work. Subsection 2.1.2 explains what prosody is in the context of linguistics. Subsection 2.1.3

explains the valence-arousal emotion classification model. Subsection 2.1.4 explains the mathe-

matical model that maps the listener’s emotional response to an IPA phone, prosody pair.

In the field of HRI, the topic of Human-robot communication is of great interest, because seam-

less cooperation between humans and machines are essential in the Industry 4.0 [2] and Society

5.0 [1] paradigms. Verbal communication is one of most natural means of information exchange

between humans and thus, this is one of the focal points of the research area. However, commu-

nication does not always need to be done with intelligible words. Emotions can be conveyed by

SFU [54], which is reflected in many pop-culture icons like R2-D2, Wall-E and EVE, which do

not need meaningful utterances to convey their message and capture hearts. SFU are traditionally

classified in 4 types: Gibberish Speech (GS), Non-Linguistic Utterances (NLUs), Musical Utter-

ances (MU) and Paralinguistic Utterances (PU) [55]. This work focuses on GS, which are defined

as meaningless utterances that are composed from real phones, resembling human languages. For

that similarity, many HRI studies have been performed, trying to better understand how such SFU

impacts human impression, the experience of interacting with the robot, if the message is being

correctly understood; among many others, such as [56, 12, 55].

HRI, as a research field, has the problem of measuring human thoughts and feelings regarding

an interaction with robots as a way of validating research hypothesis and developed technologies



24 — 第 2章： Background —

on its core. Unfortunately, there is still no sensor capable of that. The most used methods of trying

to gauge the internal state of test subjects are questionnaires, due to their ease of implementation.

Works [57, 58, 59], for example, have used questionnaires to measure the overall experience of

test subjects. However, such methods have several limitations, such as research subjects trusting

scientists too much (or too little), the fact that the questionnaire is not immediately answered as

the interaction happens and that the precision of any conclusions drawn from responses depends

on the correct statistical knowledge of the researchers [60].

To avoid these limitations, a vision-based human impression estimation [61] system was em-

ployed. There are several different emotion estimation techniques, such as Bayesian Networks,

SVMs, Decision trees [62], Deep reinforcement Learning [63], Deep CNN [64] among others.

In the scope of this thesis, three techniques are used. VGG-16 and Resnet-18 Deep Neural Net-

works are used to estimate human emotion in terms of valence and arousal for the present facial

expression. Moreover an OMRON HVC-P2 B5T-007001-010 camera is used to obtain an emotion

label of the human, allowing Social Plantroid to change its behavior, facial expression and prosody

without needing to run the heavy neural network models.

Regarding the Gibberish Speech generated in this work, IPA symbols [65] were used to build it,

allowing the Embodied conversational agents to speak phones from every language IPA is capable

of representing. This is similar to Hanamogera [56], which uses Japanese Language phonemes to

generate gibberish speech. No other Gibberish Speech HRI Research has been performing using

the IPA for its utterances, which is a novelty provided by this research.

All embodied conversational agents in this thesis used espeak [66], a formant synthesis speech

synthesizer, to have a voice. Espeak was chosen due to its easy of use, small size, quick synthesis

of clear speech and, most importantly, the fact that it accepts IPA input (in the ASCII-IPA form)

and it allows us to control the prosody parameters of the generated speech: volume, speed and

pitch.

2.1.1 Gibberish Speech

In human-computer communication, when a given language is used for communication, it lim-

its the set of people who can effectively understand what an ECA is trying to convey; and the

meaning of words can have multiple interpretations that affect the impact on a listener. To avoid
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such limitations, semantically free utterances have been used to convey emotions such as anger,

sadness etc. Such utterances use musical cues such as tempo and pitch to convey emotion. For

example, sounds with slower tempo, lower pitch, and little variation convey sadness, while sounds

with faster tempo, high volume, and intensity can convey anger. Such cues also apply to human-

like speech, allowing it to convey such emotions without conveying meaning, but still resembling

a language. There are four main classifications of semantic-free speech: [6]: (i) gibberish speech,

SFU, which are composed of human speech sounds; (ii) paralinguistic utterances, which are com-

posed of human non-speech sounds, such as laughs, sighs etc; (iii) musical utterances, which use

musical sounds to convey messages and feelings; and (iv) non-linguistic utterances, which consist

of beeps, whirs, and pings, among many other sounds to communicate [6].

This work focuses on gibberish speech (GS) because it is useful for systems that do not require

meaningful vocalizations to convey certain meanings, such as in human-robot interaction, video

games, or animation. It can also be beneficial when users need to communicate with a technology

that has little natural language processing capability, such as voice-activated devices with low

processing power. The ability to convey more subtle emotions and intentions through fluctuations

in pitch, rhythm, and other acoustic aspects is an advantage of using gibberish speech over other

SFUs.

2.1.2 Prosody

In linguistics, prosody is defined as the study of larger units of speech, such as syllable charac-

teristics, intonation, stress, and rhythm [67]. Listeners can infer the emotional state of speakers

from the prosody of their utterances, since someone who is excited, for example, may speak faster,

louder, and at a higher pitch than usual.

The most important auditory variables in prosody are pitch (how low or how high the voice is),

rate (the length of the utterances), loudness (how loud the voice is), and timbre (the quality of the

sound of the voice) [67]. This work is concerned with the first three characteristics, assuming that

decreasing the quality of the audio will lead to negative reactions because it will make it harder to

understand what the ECA is saying.
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2.1.3 Valence and Arousal

The question of how many human emotions there are and how to classify them is an important

problem in psychology, and thus, many classification models have been developed. One such

model is Russell’s two-dimensional model of valence and arousal [68], which classifies emotions

in a continuous valence–arousal space. Valence represents how positive or negative an emotion is,

while arousal represents how aroused a person is from relaxation to excitement [68]. The valence–

arousal emotion space is defined over {v ∈ R| − 1 ≤ v ≤ 1} and {a ∈ R| − 1 ≤ a ≤ 1}, which

produces the emotion space shown in Figure 2.1, along with the positioning of some emotions.

This model is often used because it produces a continuous emotion space rather than discrete

labels, such as Paul Ekman’s six or seven basic emotions [69] or Plutchik’s wheel of emotions [70].

It is often used for emotion estimation from facial expressions, the same context of this work [71].
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Fig. 2.1: Russell’s two-dimensional model of valence and arousal and the mapping of some emo-
tions in it.

The emotional state of a person at a given time t is then defined as Et = (vt ,at).
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2.1.4 Speech Act

Speech is an act on itself with effects on listeners. Since the speech used in this work is mean-

ingless, the only effect it can have on listeners is emotional, and thus this work only considers

perlocutionary acts and studies their perlocutionary effects on human listeners. A speech is de-

fined as S(w,P), where w is a vector containing each phone to be spoken and P is a ||w||×3 matrix

containing the prosody (volume, speed, and pitch) associated with each phone. An example of a

speech is Sexample:

Sexample = S([b,a,I],

100 130 45
90 130 50
95 140 50

)
The communication act by the ECA can be defined as C[S(w, p)] = f (S(w, p)), where f is a

rendering function, which, in this work, represents the eSpeak speech synthesizer. Even if listening

to an utterance does not lead to an action, it is expected to produce an impression
−→
IS , which is

defined as
−→
I =
−→
δE(δv,δa), representing the change in valence and arousal caused by the speech

act S. This change can be modeled as Et+1 = g{Et ,C[S(w, p)]}, where t is the moment before

hearing S and t+1 is the moment after; and g is a function representing how a listener responds to

utterances. This function represents individual preferences, sensibilities, cultural background etc;

and is very difficult, if not impossible, to model. However, with enough data, it is possible to learn

listener preferences for phonetic and prosodic choices through machine learning.

2.1.5 Statistical Bootstrapping

Bootstrapping is a statistical technique introduced in the late 1970’s that enables researchers

to make data-based inferences without strict distributional assumptions for univariate and multi-

variate data. It involves two distributions: the underlying distribution of the data (for example,

normal or binomial) and the distribution of a computed statistic (in our case, Stuart–Kendall τC

correlation). New m data sets are formed by Monte Carlo resampling, each one containing the

same number of observations n as the original data set [72]. Monte Carlo resampling is performed

through randomly selecting points in the original data set and copying them into the new data set,

until there are n points in the new data set.



28 — 第 2章： Background —

That way, a data sample of the original data set might appear one time, multiple times, or not

at all in the new data set. Such an operation is performed m times; and for each new data set

created, it is necessary to perform the computed statistic operation. Now, we have a distribution

of computed statistic results, from which we can obtain a confidence interval through several

techniques, such as percentile [73], bias-corrected (BC) [74], bias-corrected and accelerated (BCa)

[75], and approximate bootstrap confidence (ABC) [76], among others.

The authors have chosen to use the percentile method since it suffices for the performed analysis

and due to its easiness of implementation. The percentile method consists of plotting the frequency

histogram of them computed statistics of the new sampled data sets, and the 95% confidence inter-

val will consist of the values between the 2.5th and 97.5th percentiles. These percentiles represent

the lower and upper bounds of the confidence interval, respectively. The resulting confidence in-

terval yields a range of values within which the true parameter value is likely to fall with a certain

level of confidence, in our case, 95%.

The idea behind such process is to estimate the sampling distribution of a statistic by repeatedly

sampling with replacement from the observed data. The ultimate goal is to make inferences about

a population parameter or the distribution of a statistic even when you have a limited amount of

data, as long as the distribution of the limited data set somewhat resembles the real distribution of

the real-world variable.

2.2 About Embodiment

Embodiment is an idea of great interest in the fields of psychology, cognitive science, and

human-robot and human-computer interaction research. The idea of embodiment is based on

the concept that cognitive and perceptual processes cannot be separated from the physical body

through which the mind interacts with its environment. Thoughts, emotions and perceptions,

according to this conception, are shaped by bodily processes and experiences, i.e. the body is not a

simple passive container for the mind, but plays an active role in shaping its mental processes [77].

However, the exact definition of embodiment, to what extent the mental processes are embodied,

is not exactly agreed, since there are a few different definitions and models [20, 78, 77].

However, since this work is concerned with the effect of the level of how physical the body of

an ECA is, the only concept of interest regarding embodiment is physical embodiment as defined
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in [20]. The screen agent has a colorful 2D body, while the holographic ECA has all 3 dimensions,

even though it has no physical body that can interact with the environment and be touched by users.

In this sense, the robot has the highest level of physical embodiment because it is a physical entity.

In another sense, all agents have very similar capabilities, since they all use the same microphone

and the same camera to record the volunteers, and use the same voice to speak, and use the same

GPT-3-based chatbot [79].

2.2.1 Physical Embodiment

Since the definitions of embodiment and physical embodiment are still not so clear, it is impor-

tant to establish a framework that allows useful conclusions to be drawn from the data obtained

in our experiment. We propose a 4-level scale of physical embodiment, which is illustrated in

Figure 2.2:

0) No representation

1. 2D representation

2. 3D representation

3. Physical body

The proposed 4-level scale of physical embodiment is by no means definitive - it is a tentative

framework to make this work more understandable, since the boundaries between the more "real-

like" agents are very clear. However, the boundaries between levels 1 and 2 may not be so clear.

For example, if we compare a photorealistic 2D representation of the actual robot body with an

abstract 3D representation of the robot, which should be considered more or less embodied? There

is no obvious answer to this question, but it is very clear that the actual robot body is the most

embodied agent. Scientific research needs to be done to try to establish clearer boundaries between

levels 1 and 2, but apart from such problems, the proposed framework is useful for understanding

the present work.

The researchers are aware that the communication medium used by an ECA also contributes

to the impression of its physical embodiment. That is, an agent that displays text may feel less
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physically embodied than one that uses speech; and an agent that uses gestures to emphasize its

speech may feel more embodied than one that only speaks. However, since these differences say

more about the capabilities of the system than about how close the embodiment is to a fully real

and physical body, the researchers feel that it would be appropriate, at least in the context of this

thesis, to consider such capabilities as a separate dimension of embodiment. This works for the

present research because all agents used the same communication medium - speech synthesized

by the eSpeak [66] speech synthesizer.

2.2.2 Novelty and familiarity

Novelty preference is a well-known psychological effect that is thought to stem from the bio-

logical need to understand new events in our lives in order to increase our chances of survival.

This instinct leads people to seek to understand and be fascinated by new experiences. However,

the opposite effect is also observed; humans also prefer familiar events because they are already

understood and known to pose no threat [80]. In the context of human-robot interaction, previous

studies have found that users tend to show higher engagement for ECAs that are fully embodied;

and we suspect that this phenomenon is related to novelty preference, since most people do not

have extensive experience interacting with robots. This effect also extends to many other occa-

sions, not just HRI.

Four levels of familiarity with robots were established by analyzing the level of experience

of many volunteers who participated in the experiments executed to validate the performance

of the developed prosody selection techniques and to investigate the effects of embodiment and

experience with robots had on the impression of volunteers about conversational agents:

0) No experience: no previous interaction with robots;

1. Beginner: few brief interaction with robots without communication;

2. Intermediate: multiple interaction with robots or a few with communication;

3. Experienced: specialist in robots or someone who has had extensive interaction with robots.

None of the participants had previously interacted with holographic displays; and all of them

had previously interacted with monitors, even if they had not previously interacted with screen-
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based conversational agents. Thus, the novelty factor of the experiment is largely controlled by

prior experience with robots, which is used to analyze novelty preference in the experiment.

2.3 About Social and Agricultural Robotics

This Section provides background information necessary for understanding some of the de-

sign choices and algorithms employed in Social Plantroid . Since the main agricultural function

Plantroid performs is guaranteeing that the plant it carries receives enough sunlight, Subsection

2.3.1 describes the photosynthesis mathematical models which are used to decide whether the

robot should seek sunlight or shadow and how intense the sunlight needs to be. Moreover, since

Social Plantroid monitors the pH, Moisture. Finally, regarding the Social Robot side, the design

principles which guided the development of the conversation engine are explained in 2.4.4.

2.3.1 Plant photosynthesis, light and temperature

Plant photosynthesis is the organic process through which plants harvest energy from sun-

light, converting it into biochemical energy, which is used to sustain its many physiologic pro-

cesses ([81]).

Light is one of the principal driving factors in photosynthesis; without enough sunlight, a plant

will not be able to develop properly, accumulating less dry matter than otherwise. However, exces-

sive sunlight is also harmful, leading to photoinhibition, photooxidation and damage to the leaves,

causing an early maturation of the vegetable and reduced dry matter accumulation ([82]).

Moreover, when the temperature of the environment is high, some enzymes involved in the

mechanism of Chl biosynthesis decrease, e.g. the 5-aminolevulinate dehydratase (ALAD)[83].

This way, Plantroid also needs to seek shadowwhenever the measure temperature exceeds a certain

threshold.

2.3.2 Soil Monitoring

The overwhelming majority of plants acquire the majority of their nutrients through their roots

from the soil; with carnivore plants and air plant being notable exceptions. Thus, in order for a

plant to enjoy a healthy growth and life, the soil must be fertile, that is, contain the necessary
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nutrients for an specific plant species. The Social Plantroid , besides moving the plant into and

out of sunlight, monitors many import contents of the soil, so the owners of the plant may take

corrective action in order to protect the plant.

Important soil characteristics are moisture, pH, salinity and NPK contents, and the present Sub-

section is dedicated on outlining the importance of each one of them for the healthy development

of plants.

Moisture

Plants, like every living being, require water for many of their physiologic processes, including

photosynthesis. Most plants absorb necessary water from the soil by osmosis through their roots

and, thus, guaranteeing that the soil has enough water in it is essential. However, if there is an

excess of moisture, it may deprive the roots of oxygen, killing the plant. Measuring the moisture

levels in the soil and ensuring that it stays in a healthy range is, thus, essential for obtaining optimal

plant growth.

Soil pH and photosynthesis

The relationship between a variation in the pH of the soil and the CO2 absorption by the plant

is approximately linear ([84]):

∆ACO2
=−KpH∆pH (2.1)

Where ∆ACO2
stands for the variation on the carbon dioxide assimilation by the plant, KpH is a

constant specific to each species of plant, indicating how sensible it is to changes in the pH of the

soil and ∆pH denotes the change of the pH of the soil.

It is necessary to note that every plant species has a maximum CO2 absorption rate and, thus,

decreasing the soil pH after a certain value will not lead to an increase the plant’sCO2 absorption,

but actually the opposite, since the increased presence of H+ ions in the soil will damage the roots

of the plant, reducing the absorption of water and mineral nutrients (such as Nitrogen, Phosphorus

and Potassium, whose concentration in the soil are measured by Plantroid). Such lack of water

and nutrients will eventually lead to a complete inhibition of photosynthesis in the plant ([85]).
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Salinity

Soil salinity is defined as the quantity of salts dissolved in the aqueous phase of the soil. The

quantity of such salts may negatively impact the plants’ health, since a high concentration of salts

in the soil might cause soil acidification. That will, in turn, stunt the growth of the plant up to over

90% ([86]). Moreover, if the salinity of the soil is too high, the osmotic process through which

plants uptake water from the soil will reduce and, possibly, revert, that is, the roots might lose

water to the soil.

Thus, it becomes very important to monitor the salinity of the soil in the pot, since the water used

to water the plant will very probably contains dissolved salts in it. One of the easiest and cheapest

ways of measuring the salinity of the soil is to measure its electrical conductivity (henceforth

referred to as EC), since conductivity of the aqueous phase of a soil increases along with its

salinity.

Nitrogen, Phosphorus and Potassium (NPK)

Nitrogen, Phosphorus and Potassium are very important nutrients for the development of plants,

since they are used in many of the physiological processes of a plant. In a potted plant, the plant

removes such minerals from the soil during its life and the soil will eventually become deprived of

such components. The health of the plant will, then, be negatively impacted by lack of nutrients.

This way, efficient fertilization is essential to keep a plant healthy and knowing which components

and how much is necessary helps that process.

Plants require a minimum amount of such nutrients to be able to develop and, since plants do

not grow indefinitely, there is an upper limit of the uptake of NPK from the soil. This way, the

curve which better represents the concentration of a nutrient in the soil vs the expected final dry

massY of the vegetable is expected to be a Sigmoid curve, which is obtained through the following

logistic function ([87]):

Y =
A

1+ e(b−cM)
(2.2)

Where A is the maximum biomass a plant species can achieve in very ideal conditions, b is

the intercept parameter and c is the nutrient response coefficient (how much the plant’s growth
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depends on such nutrient).

It must be noticed that the values of A, b and c have been obtained empirically for many species

of plants for N, P and K. Moreover, it is important to highlight that after a certain amount, the

presence of such nutrients might actually be harmful for the development of the plant and, thus,

the Sigmoid curve does not appropriately model the effects outside the “healthy range” for the

vegetable in question.

2.4 End-to-end visual Navigation

In order to achieve autonomous robot navigation, many systems are necessary; in this work, a

heading direction system (either the APF method navigation planner coupled with the virtual robot

approach or the proposed VGG-16-based architecture) and the low-level locomotion controller,

which ensures that the robot will turn into the heading direction given by the heading direction

system.

This Section, thus, briefly explains the necessary elements for generating the training data and

the VGG-16-based architecture: (2.4.1) Artificial Potential Field Method, (2.4.2) Virtual Robot

Approach, (2.4.3) VGG-16 Deep Convolutional Neural Network and, finally, of (3.4) Related

Works.

2.4.1 Artificial Potential Field Method

The artificial potential field method [48] is an extensively studied path-planning method for

mobile robots. In its original version, obstacles exert a repelling force on the robot, while a target

destination exerts an attractive force, as shown in Figure 2.3. The resulting force of all obstacles

and goals will move the robot into its next position, and this process will continue until the final

destination is reached. The method has been used widely for its easiness of implementation, but

it does not guarantee that a trajectory will be found even if it exists. Such a problem happens at

points where all attractive and repulsive forces cancel out, leaving the robot stuck. Many variations

of the method have been created to tackle such limitations, but they are beyond the scope of this

work.
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With the path planned, it is necessary to implement a trajectory following the control algorithm,

which is explained in Subsection 2.4.2.

2.4.2 Virtual Robot Approach

The virtual robot approach [88] is a path-tracking algorithm, which considers that there is an-

other robot at a reference point in the trajectory, the virtual robot, which is governed by a differen-

tial equation containing the feedback error. This gives the virtual robot its own dynamics, moving

along the path in a way that the real robot is able to mimic. The approach is robust to measurement

errors and external disturbances because the motion of the virtual vehicle is governed by the track-

ing error feedback, which makes possible to use only proportional controllers for the real robot.

The idea behind the Virtual Robot Approach is shown in Figure 2.4.

The objective is, then, finding a lateral control δ f (t) and longitudinal control v(t) which makes

the robot follow the reference trajectory smoothly. The trajectory is parameterized by the virtual

vehicle s(t), moving in the trajectory defined as (xd ,yd) = (p(s),q(s));0 < s ≤ s f . The subscript

d stands for desired and the subscript f stands for final. It is assumed that p′2(s)+q′2(s) ̸= 0 ∀s ∈

[0;s f ]. The control objective is as follows:

limt→∞ sup ρ(t)≤ dρ ; (2.3)

limt→∞ sup |ψ−ψd | ≤ dψ ; (2.4)

where ρ(t) =
√

∆x2+∆y2, ∆x = xd − x, ∆y = yd − y, ψ is the current heading of the real robot

and ψd = atan2(∆y,∆x) is the desired heading angle of the robot. Additionally, dϕ > 0 is a small

number that depends on the maximum curvature of the given trajectory and dρ is the look-ahead

distance for the virtual robot.

Thus, the robot’s linear speed is given by v =
√
ẋ2+ ẏ2 and, because the robot is assumed to

move slowly through the environment, it can be considered to be constant, making it necessary

only to control the robot’s heading. Finally, the control law for the heading of the robot is given

by:
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δ f =−k(ψ−ψd), k > 0 (2.5)

2.4.3 VGG-16 Deep Convolutional Neural Network

Convolution Neural Networks (CNN) are standard artificial neural networks able to process

multidimensional data. This way, because they are capable of processing spatial data through

shared weighs, CNNs excel at tasks such as image recognition and processing and computer vi-

sion.

The VGG-16 CNN used in this work is a deep CNN (DCNN), which was originally developed

for large-scale image recognition, that is, a single neural network is capable of recognizing a large

quantity of distinct objects [53]. Thus, it is able to recognize distinct environments and obstacles

while navigating; the reason why such DCNN was chosen.

2.4.4 Pragmatics and Proxemics

The Social Plantroid has a simple, albeit effective, conversational engine which was designed

with modularity in mind. At the center of that conversational engine is a chatbot, whose dialogues,

albeit simple, allows Plantroid to hold enjoyable conversation with its owners, while announcing

the needs of the plant whenever necessary. The design principles used for writing Social Plantroid

’s dialogues and conversational behavior were based in Neo-gricean Pragmatics and Proxemics,

which are briefly introduced in Subsubsections 2.4.4 and 2.4.4, respectively.

Pragmatics

In linguistics and in other communication-related fields, Pragmatics is considered to form a triad

with Semantics and Syntax. While syntax studies the formal relations between communication

signs and semantics dedicates itself to studying how signs relate to objects and actions in the

external world; pragmatics, investigates the relation between signs and those who interpret them,

that is, language users. In the context of social robotics, language users might be either humans

or robots and signs have a rather broad definition; not being limited to written, drawn or spoken

signs, but including bodily gestures and facial expressions [89].
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Since Pragmatics studies the interpretation of signs, it implies that a collection of signs has

reached an individual; that is, it presupposes exchanges between language users in some way.

Thus, language users cannot seen as isolated beings, but as social creatures in the Aristotelian

sense; being inserted in sociocultural contexts which might change interpretation of given signs.

Moreover, through the use of verbal and nonverbal signs, language users are also able to interact

with and change the aforementioned social contexts.

In the aforementioned signs exchanges, it is expected that there will be a certain extent of

cooperation, of "good will", between language users. That is to say, they will avoid telling lies, say

irrelevant things, avoid ambiguity, wait their turn to speak, etc. This assumption is called Grice’s

Cooperative Principle, in which a few maxims can be observed or breached. The Gricean maxims

are as follows:

• Quantity

1. Contributions to the conversation are as informative as required;

2. Do not make your contributions more informative than is required.

• Quality

1. Do not say what you believe to be false;

2. Do not say that for which you lack adequate evidence.

• Relation

1. Be relevant.

• Manner

1. Avoid obscurity of expressions;

2. Avoid ambiguity;

3. Be brief;

4. Be orderly.
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If a violation of a maxim is blatant and intentional, it is called a flout. If an individual is caught

flouting, it drastically changes how others interpret his or her signals, because they will try to

find the real intentions of the flouting person, looking for a layer of underlying meaning called

implicature. That phenomenon is specially important for robots and chatbots, because it has been

observed that humans will try to read more into what the machine is trying to say than it was

originally intended by its creators ([90]).

Expecting humans to follow Grice’s Cooperation principle might be too generous of an assump-

tion, but since a service robot is only useful if it serves its owners, any communication from the

robot should respect such principles, that is, the robot is always cooperative. Moreover, since the

robot is taking care of a plant which belongs to someone, we can assume that it is in the best

interest of that someone to cooperate, for the sake of the plant.

The robot also needs to be polite in its conversation. It can be noticed that "be polite" is not

included in the Gricean maxims, but in many sociocultural contexts, it is essential for establish-

ing cooperation. For example, in a context where a subordinate talks to a superior, honorifics are

necessary, violating the maxim of Quantity, by adding words which do not contribute to the infor-

mation that is being exchanged. To consider that necessity in exchanges, Neo-gricean pragmatics,

thus, includes Theory of Politeness, adding the following politeness maxims [91]:

1. Tact: avoid damaging reputation and negative implications;

2. Generosity: selflessness;

3. Approbation: minimize criticism, maximize praise;

4. Modesty: minimize self-praise;

5. Agreement: avoid directly disagreements;

6. Sympathy: be sympathetic with others.

These principles, findings and maxims were incorporated while designing Social Plantroid ’s

conversation engine.
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Proxemics

Proxemics studies how people inserted in a given sociocultural context use space and interpret

the usage of space by others. In other words, it studies the physical and psychological distance

people keep from each other in different contexts and, ultimately, how they organize their living

and work spaces, such as homes and cities in accordance with such social behavior (proxemic

behavior).

Such study consists mainly of three components:

1. Spatial dimensions;

2. Level of interpretation of the spatial dimensions;

3. Physical features of space.

There are four main distances which impact such components ([92]):

1. Intimate zone: immediate physical space surrounding a person, considered to be private or

personal space;

2. Personal zone: zone within the reach of an individual, but larger than the privacy sphere,

normally used for close friends and family members;

3. Social zone: zone outside of the reach of an individual, normally used for social interactions

with acquaintances;

4. Public zone: normally used for public speaking.

Different cultures have different notions on what specific distance ranges constitute such spaces,

but, within a given sociocultural framework, researchers can predict how larger are such zones for

individuals with statistical accuracy. Since social robots communicate and, sometimes, are able to

move, it is necessary to take in to account how the distance between the robot and humans affects

comfort levels and how it impacts communication. This particular sub-area of Proxemics is known

as Human-robot proxemics, or HRP.

There are a few mathematical models for predicting a comfortable distance between individuals

which take into account many parameters, such as how familiar the individuals are, their body
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postures, gaze, familiarity of the topic of conversation among many others and, thus, it is important

to take such models into account when designing an algorithm for navigation in environments with

humans, so robots will move and communicate without disrupting the social environment in which

they are inserted. The most prevalent models for inter-human interactions are as follow ([93]):

• Compensation model: suggests an equilibrium between individuals; when one individual

approaches or increase eye contact, the other compensates by distancing or decreasing eye-

contact;

• Reciprocity model: states the opposite, individuals are more likely to copy the behavior of

each other in an interaction;

• Attraction-mediation model: suggests that individuals with initial high levels of attraction

will keep close regardless of changes from others, while individuals with low levels of

attraction will keep distance despite changes on the behavior of interaction partners;

• Attraction-transformation model: a mix between the compensation and reciprocity models,

suggests that the initial attraction between individuals define if they will act accordingly to

the compensation (low attraction) or reciprocity models (high attraction).

Research has found that for HRP, how much users like the robot in the first moments of the

interaction affects the personal distance from a robot and how much personal information users

were willing to share with the robot ([93]). People who have shown higher initial affinity with

the robot did not change the distance between themselves and the robot when it increased its eye

contact; while people who have shown an initial disliking of the machine increased the distance

between them proportionally to the gazing behavior of the robot. Moreover, the last group of

people also were less willing to disclose personal information. This shows that, if a person dis-

likes a robot, it tends to increase the distance between with increased eye contact, supporting the

compensation model; but there is also partially support for the attraction transformation model.

In the psychological sense, greater evidence shows greater support for the attraction-mediation

model ([93]).

Eye-contact is a very important component of intimacy and influences the distance on which

individuals feel comfortable while interacting and the proxemic distance tends to reduce when eye-
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contact is reduced ([94]). This effect seems to be stronger in men, who have shown, in average, to

distance themselves more with increased eye contact than women; and have a higher tendency of

keeping a greater distance from robots ([92]).

Age is also an important factor; children tend to prefer interacting with robots in their social

zone, while adults have shown to prefer interacting with them in their personal zone ([95]).

Factors such as previous pet ownership and previous robot interaction experiences also influence

the distance at which humans feel comfortable interacting with robots; reducing accordingly to

increased experience ([92]). However, measuring to what extent people are familiar with pets or

robot is very hard, if not impossible, without explicitly asking.

Personal proxemic preferences are not to be considered during conversation, but also during

robot navigation; especially because Social Plantroid needs to navigate towards sunlight, shadow

and to request help from humans. People, in average, prefer if the robot approaches from the front

and stops outside the personal zone. However, such findings are subject to context of what the

people are doing, how fast is the robot and many other factors ([92]).
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Fig. 2.2: Proposed physical embodiment scale, which goes from no representation (level 0) to a
physical body (level 3).

Fig. 2.3: Obstacle and goal point interac-
tions with mobile robots.

Fig. 2.4: Virtual Robot Approach main idea.
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As for the Background Chapter, the present Chapter introduces works related to the distinct

research topics investigated during the elaboration of this thesis. It is also broken into the same

subdomains of knowledge: first, Section 3.1 previous research related to phonetics, speech syn-

thesis, multimodal estimation and Pragmatics. After that, Section 3.2 introduces related research

works about Embodiment levels, Novelty bias, or preference for novelty. Section 3.3 presents re-

lated visual navigation of robots, Proxemics, soil monitoring and plant health estimation research.

3.1 About Prosody in Human-machine Communication

Research on semantic-free utterances is not new, and many different types of semantic-free

utterances, such as [7], have been performed, but research on gibberish speech still needs more

development. Among the works that used gibberish speech, all of them were based on existing

languages, such as Japanese [56] and Dutch and English [12, 96, 97]. Thus, this work is novel in

the sense that it presents a language agnostic gibberish speech and analyzes its emotional impact

on listeners. It also investigates the effects of prosodic acoustic characteristics of gibberish speech

on human impression, but unlike the investigation done in [98], which investigated which prosodic

characteristics of gibberish speech better fit different robot morphologies according to children’s

expectations, it investigates how such characteristics affect adult human impression for a fixed

ECA appearance.

In work [97], the authors developed a gibberish generation system based on swapping the vowel

nucleus of Dutch and English words to turn them into gibberish, but to avoid ending up with weird

sounding words, the authors developed a weighted swapping mechanism according to the proba-

bility distribution of each vowel core in English and Dutch. The gibberish generation algorithm

developed for the “Talk to Kotaro” experiment deliberately allowed the generation of utterances

that did not follow any yule-like phone distribution [99], because if a distribution were chosen,

it might cause alienation to speakers of other language families. Moreover, by not following the

usual rules, we can study the effects of the violation of such principle on listeners.

In order to analyze what emotions are generated by gibberish speech, the authors of [100] con-

ducted child–robot interaction experiments using an NAO robot equipped with control and behav-

ior modules. The experiments were divided into two trials: one in which the experimental setup

was designed to elicit natural emotions in children, and the second in which the setup was designed
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to analyze children’s perception and response to the gibberish speech of the NAO robot. Similarly,

[101] investigates the perceived emotions of Spanish synthetic expressive voices by participants

of four Asian nations (Japan, South Korea, Vietnam, and Malaysia), which shows that non-verbal

cues are very important in the perception of emotion, but, again, the work does not focus on how

the listeners felt.

In [98], the acoustic prosody features were chosen in a Wizard of Oz setup, but several tech-

niques for automatic prosody generation, at least for semantic speech, have been developed. Such

techniques can be rule-based [102, 103, 10] or neural network based [104, 105, 106, 107]. In gen-

eral, rule-based approaches have been superseded by neural prosody selection because manually

creating rules to generate appropriate prosody from every possible case is an impossible task. The

problem with neural prosody generation is that it depends on existing data from which appropriate

prosody for the speech content can be learned; this is not possible for gibberish speech since, by

definition, no one speaks gibberish and thus the data is scarce and artificially generated, as in [12].

Thus, this work provides novelty in the sense that it has generated a small dataset that can be used

to learn appropriate prosody for IPA-based input text. Moreover, another problem of most neural

prosody generation work is that they are tightly coupled to speech synthesis, whereas the proposed

architecture is speech synthesizer independent.

Regarding the emotional evaluation of prosodic speech, again, most of the works had semantic

speech as their focus [10, 11, 108, 109, 110] and had research participants evaluate their perception

of what emotion the generated speech conveyed, rather than how it affected their emotional state.

In addition, most of the evaluation was done through subjective post-listening evaluation [110],

rather than measuring the immediate response of the participants through their facial expressions

and body language, for example through EEG [111]. An exception to these constraints is [100],

where they have analyzed the emotion caused by gibberish-speech on children by analyzing the

facial expressions and bodily language displayed on video samples.

All of the automatic prosody generation research was conducted for the domain of semantic

speech, and most of it focused on learning prosodic patterns from pre-existing audio recordings.

Moreover, research studies that develop systems for emotional speech generation have only veri-

fied the emotion which listeners perceive on the generated speech, not on how the research subjects

themselves felt when listening to the obtained speech, seeking to be perceived as natural speech,
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such as [104], which deals with voice only and [105], which also deals with the visual components.

3.2 About Embodiment

Other studies have conducted to investigate how physical embodiment level affects human en-

gagement and perception of ECA [21, 22], and how well users perform certain tasks when inter-

acting with agents of different embodiment levels [23, 24, 25]. However, there is a possibility

that such results are due to novelty preference, which may have played an important role in these

results. Previous works, even when acknowledging this possibility, have not investigated the effect

of novelty preference on participants’ impressions and preferences.

Current understanding is that, although not causing significantly better performance of users,

higher levels of physical embodiment of ECA seems to cause a higher engagement [22, 23].

3.3 About Social and Agricultural Robotics

The proposed Social Plantroid robot platform, as indicated by its own name, is not the first plant

caring robot and surely not the first social robot. This research article is, then, inserted in the very

rich research fields of Agricultural robotics and Human-robot interaction (Social robotics); whose

related works are listed in Subsections 3.3.1 and 3.3.2, respectively.

3.3.1 Agrobots research

While there is no official definition, consensus is that an agricultural robot is a programmable

mechatronic device responsible for performing crop production activities, such as soil preparation,

planting seeds, pest control, harvesting etc ([112, 28]). While there are many types of agricultural

robots, this short review will focus only on mobile ground robots partaking on plant-caring ac-

tivities in farms, greenhouses and plant-factories, due to their greater similarity with the Social

Plantroid and previously developed Plantroids.

[113] developed an open-source autonomous multi-purpose mobile ground robot for plant phe-

notyping and soil sensing, which is equipped with LiDAR, GPS, stereo camera and a three DoF

manipulator arm, which has a soil temperature and moisture sensor on its end effector and a chuck



48 — 第 3章： Related Works —

for attaching different tools. It can be used both in indoors and outdoors applications. In its in-

tended purpose, MARIA does not take care of plants directly, but is responsible for monitoring the

quality of the soil and the phenotypic characteristics of crops in order to allow for crop artificial

seed selection. However, given ts versatile end effector, it might be able to take care of plants.

Since plants require adequate quantities of water in order to grow healthy and water is a pre-

cious resource in many regions, precision irrigation is an important research topic for agricultural

robotics; thus, many agribots have been developed for that purpose, such as [114, 115, 116, 117,

118, 119]. While Social Plantroid does not irrigate, it closely monitors the moisture level of the

soil of the potted plant it carries and requests human for help whenever there is too little water

in the soil. The contents of the soil are also very important for the health of the crops and, thus,

many different agribots were developed to measure the salinity of the soil ([120]), Ph ([121]), NPK

levels ([122, 123]) and other parameters of interesting. The proposed Social Plantroid measures

the temperature, moisture, salinity, pH and NPK levels of the soil of the potted plant it carries

and stores these values in a SQLite database, which allows it to not only notify humans when cor-

rective action is needed, but to predict when corrective action will be necessary, allowing human

caretakers to schedule the procurement of correct fertilizers beforehand.

Research on solar powered agricultural machines and robots is driven by several factors, such

as an increasing concern about sustainability, fossil-fuel dependency reduction and difficulty of

charging robots on farms and rural areas where electricity might not be easily available ([28, 124]).

Moreover, even in greenhouses and urban farms where electricity is easily available, an agribot

that does not need to cease operations for charging has great advantages over those who need

to. Some examples of solar powered agriculture robots are present in ([26, 125, 126, 127]). The

proposed Social Plantroid platform has following sunlight as its primary function, so, recharging

the batteries of the robot using sunlight was a natural choice. However, such solar panels only

slow down the battery depletion, due to their small size.

The previously developed Plantroid Omni ([26]) and Plantroid mini ([37]) require an external

camera to identify sunlit areas and to control their own movements. The novel Social Plantroid

, on the other hand, does not require any environment changes or special setup to operate; it

uses its own black an white and thermal cameras and photoresistors distributed over its body to

detect sunny areas and shadowy areas. Plantroid mini employs an artificial Potential Field-based
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navigation method where sunny areas attract robots and obstacles, such as walls and other robots,

repels the robot. This navigation algorithm allows a swarm of Plantroid mini to take care of

multiple plants, automating a whole plant factory or greenhouse at once. This lack of top-down

vision in the new Social Plantroid makes it harder to work in a swarm, since the robot can only

detect obstacles in front of it. Moreover, unlike Plantroid Omni, Social Plantroid is not capable of

omnidirectional movement, since it is a differential drive robot.

None of the previously mentioned robots has social and speech capabilities, which is a novelty

presented by Social Plantroid . The only other agriculture robot which incorporates such aspect

is the PotPet ([128]), a pet-like flowerpot robot which has 4 types of sensors: humidity sensor

to measure the moisture of the soil of the plant, a light sensor to detect sunlight, motion sensors

to detect human presence and ultrasonic sensors to detect obstacles. Previous Plantroid versions

have incorporated the sunlight seeking aspect of the PotPet, but didn’t present its social aspect:

PotPet approaches humans and uses its movements to convey that the plant requires watering. The

proposed Social Plantroid platform incorporates that social aspect and takes it further; it can listen

and talk to people, displays facial expressions, is capable of a wider range of body language and

recognizes human emotion through video and audio.

3.3.2 Social Robotics

Human-robot interaction (HRI) is a broad and multidisciplinary research field that studies inter-

actions between humans and robots. Since agribots are expected to work side by side with human

workers, some HRI research on agricultural robots has been performed ([129, 130, 131]). How-

ever, there is little research regarding on social behavior and social robotics, that is, with agrobots

that are too social robots. A social robot is designed to perform social interactions with humans

to elicit social responses from them, unlike robots that are designed to exclusively to perform an

external mechanical task ([132, 133]). The idea of developing plant-based social robots is not

novel and that is to be expected: humans having been interacting with plants since the dawn of

time. Taking care of plants positively impacts human quality of life in a physical and psycholog-

ical sense and, thus, no developed social plant robot completely takes care of plants, because this

would negate the need of humans interacting with the plant and, thus, with the robot itself. The

proposed Social Plantroid is not different in that regard, it only monitors and warns users about
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the plant’s condition and it is up to them to make care-taking decisions and to take necessary cor-

rective actions. A vast corpus of research has been performed about social robots but, for the sake

of brevity, this Subsection will dedicate itself on listing only previously developed open-source

social robots and plant social robots. A problem in social robotics research is a lack of available

customizable robots for meeting different research necessities and, thus, building robots becomes

a very costly and time-consuming necessity, whenever commercially available social robots such

as PARO ([134]), NAO ([135]) and Pepper ([136]) cannot meet the researcher’s needs ([137]).

In order to solve such problems, open-source social robot kits such as the OPSORO’s Grid Sys-

tem [138] and TJBot ([139]) were developed; as well as open source software frameworks, like

OPSORO [138] and HARMONI ([140]).

Since humans tend to display a higher degree of empathy towards anthropomorphic robots ([141]),

many Social Robot platforms have a high degree of anthropomorphism. One of such robots is Ono,

a humanoid anthropomorphic social robot which is modular, easy to build (do-it-yourself) and is

capable of a wide range of facial expressions – Ono’s face has 13 degrees of freedom. Another an-

thropomorphic open-source social robot is CASTOR [142], developed as a platform for therapy of

children with autism spectrum disorder, integrating soft actuators and compliant mechanisms for

safe interaction. It 14 DoF, is capable of a wide range of facial expressions, of moving its head and

arms and of answering with sentences, sounds and movements. Woody ([143]), besides having

an animal-like head, still retains a somewhat anthropomorphic shape, since it is described as an

open-source humanoid torso robot. It possesses two arms with five degrees of freedom and a two

DoF neck supporting a head with two movable eyebrows. The previously mentioned platforms,

however, are not able of moving around, while Nelson ([144]), a low-cost open source social robot

for education, is capable of doing so by having an iRobot Create platform at its base. It possesses

a three DoF neck, seven DoF face, allowing for many facial expressions and two arms with four

DoF each. The aforementioned robots are used mainly for educational and therapeutic purposes,

which is somewhat outside of Social Plantroid intended social purposes. However, it can still serve

educational purposes, teaching how to take care of plants or teach about plant species in educa-

tional gardens, which are powerful educational tools about sustainability, ecology and taking care

of nature ([145]).

However, humans also have a tendency to hold anthropomorphic robots to a higher standard
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expecting more knowledge a more competent behavior ([141]). Thus, not all social robots should

be anthropomorphic, such as Romibo ([146]) a low-cost open-source do-it-yourself and highly

customizable robot for motivation, therapy and education. Another non-anthropomorphic open-

source robot is Blossom ([147]), which has a floating head platform which is actuated by means

of cables and servomotors a is able to rotate it’s base. The differentiation factor or Blossom is

that its external body is soft and handcrafted, allowing the researchers to customize its appear-

ance and expressiveness to a very high degree. The appearance of Social Plantroid was chosen to

be pet-like, because it relies heavily on users for taking care of the plant whose health it moni-

tors. Moreover, since the proposed platform can communicate with sounds or with semantic-free

utterances ([148]), an animal appearance was deemed to be more appropriate.

Regarding other plant-based social robots, PotPet ([128]) is the closest to Plantroid for mixing

both the social aspects and plant-caring; but it is only capable of non-verbal communication. An-

other social plant robot, flona([149]) communicates with users by moving whenever an ultrasonic

sensor detects hand movements. The movements of the plant are generated by strings attached

to the body of the plant, which are pulled by stepper-motors. In [150], a cyborg consisting of an

iRobot Create base, a plant, light sensors and ultrasonic sensors is used in an artistic installation,

where a probabilistic planning algorithm was used to schedule the actions of the cyborg in a way

where all physiological needs (water and sunlight) of the plant were satisfied and the iCreate base

did not run out of battery, while presenting interesting movement patterns. The objective of the

artistic installation was to make the public question the role of plants society, since they normally

are static. All of the plant robots presented above interact with humans only through non-verbal

communication and do not posses any capacity of estimating the emotional state of users. Social

Plantroid , on the other hand, not only can interact through the movements of its base and its head,

but is capable of synthesizing and understanding speech, being able to convey the necessities of

the plant clearly, to hold conversation and following users commands.

The proposed open-source social plant-caring robot platform Social Plantroid is, then, a multi-

purpose robot that incorporates in a single machine capabilities that were spread through multiple

platforms or were not available at all in open-source robots. This way, it has the potential of

becoming an useful research platform both for agrobot and social robotics research fields. Addi-

tionally, since the project is open-source, researchers are not only free, but invited, to modify the
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robot to meet the requirements of their own research topics.

3.4 About Visual Robot Navigation

Since visual robot navigation is a problem of great interest, there is a large corpus of previous

works dedicated to solving many different aspects of it. Since this work uses monocular images

and neural network to achieve end-to-end navigation without reinforcement learning, this literature

review will list only works related to these sub-domains of the visual navigation research.

In [151], a complete visual robot navigation platform consisting of a ResNet50 neural network

is proposed; which is trained with navigation trajectories generate by a Model Predictive Control

navigation algorithm, whose simulations were ran in a custom simulator HumANav. The present

work, however, does not require a custom simulator, using Gazebo and readily available models.

Moreover, by using the simpler artificial potential field method to generate the trajectories for the

training data, it speeds up implementation.

In [52], a Faster Region-based Convolutional Neural Network (Faster R-CNN) based architec-

ture is trained to detect tree trunks from monocular camera images, while a control strategy which

uses the height of the trees to estimate the distance to the obstacles and uses the distance between

trees to determine the widest free space in order to safely navigate.

In [152], a CNN is used to predict potential paths for SLAM using uncalibrated 360o spheri-

cal images. In [153], a CNN classifier is used for autonomous robot navigation, deciding from

monocular RGB images if the robot should move ahead, turn left or turn right in order to avoid

obstacles and reach its destination. To train such a classifier, data generated by human operators

controlling the robot in a real environment was used. These papers require human operators to

generate the training data, which, in this work, is achieved automatically by running simulations

is Gazebo.

More closely related, work [154] developed an end-to-end method for training CNN for au-

tonomous navigation of mobile robots using only a RGB-D camera, which is more complex and

expensive that the simple gray-scale camera used in this work; and the labeling of the data was not

done through the APF method.

The architecture presented in this work is simpler than the ones presented by [155] and [151]

[153].
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In order to obtain the data set necessary for developing a system that allows ECA to estimate the

impact their utterances has on listeners, an experiment were volunteers would hold conversations

with an embodied conversational agent that speaks Gibberish Speech only was proposed. Again,

that was necessary due to the nonexistence of readily available data sets from which good prosody

patterns for gibberish speech could be learned from.

Moreover, the COVID-19 pandemic had impacted life in every aspect; and research was not

an exception. Economic crisis, silicon crisis, budget reduction, activity-restricting policies, con-

ferences being postponed and, worst of all, a grim death toll. In-person experiments became

impossible during the period of time when this research was being carried out because it would

be very difficult — and irresponsible — to gather volunteers in person at Mizuuchi lab. Thus,

the experiment had to be held online, like many other activities. The web-based crowd-sourcing

platform was then created to allow circumventing such restrictions. This chapter is dedicated to

explain the proposed experiment in an in-depth manner, as well as describing the development

process of the platform and of its implementation. The structure of this chapter is as follows:

The experiment consisted of having volunteers hold turn-based conversations with an avatar of

the robot Kotaro [14], which answers with semantic-free utterances (SFU) [55] constructed using

International Phonetic Alphabet [65] (IPA) symbols. The goal of the experiment wass to record

what volunteers are saying and their facial expressions while listening to the response of the avatar,

in order to estimate their impression regarding the phone and prosody choices of the system.

This data will be used to generate a phone-prosody embedding for the robotic utterances, clus-

tering phones and prosody according to the estimated human impression on them; that is, phones

said with certain prosody patterns will be close to other phones and patterns which generate sim-

ilar impression on humans, in a word2vec [156] fashion. Other works have performed phoneme-

embedding in the context of verifying if the phoneme distribution in languages implied similar

meaning between words composed by such phonemes [157], emotion recognition of speech [158]

and automatic speech recognition (ASR) [159], but without considering prosody parameters and

outside of the HRI context.

Crowdsourcing data from all over the world is essential in that context, because we intend on

analyzing how people from different cultures react to SFU. The initial hypothesis is that even if

there are different impressions, there may be a common baseline, in similar fashion to the Bouba-
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Kiki effect [15]. The objective of the experiment is to gather data that will allow us to: (i) test

the hypothesis that there is some common baseline on how people from different cultures react to

different phones and prosody patterns and (ii) if there is a baseline, to develop a human impression

prediction module using the crowdsourced data.

However, there was no appropriate platform that allowed volunteers to talk with a robot in

their web browsers while audio and video from such interactions are securely streamed to our lab

servers. The closest tools we were able to find didn’t have all the necessary features [16], were

too game-like [17], introducing many other factors that could impact the impression of volunteers,

or required a VR Headsets [18], which make impossible to record user facial expressions and not

web-based [19]. This way, we decided to develop our own solution and make it open-source, so it

can help other HRI researchers hold their own experiments online, saving time and implementation

costs. It was designed in such a way that others can easily use it and modify it according to their

needs. Moreover, this tool is helpful not only during times of crisis. Given that crowdsourcing

information from all over the world will make obtained data sets more diverse and, thus, research

will be more robust.

4.0.1 Talk to Kotaro: an web crowdsourcing experiment

4.1 Experiment Description

To better understand how people respond to different phonetic and prosodic choices in gibber-

ish speech, the web-based crowdsourcing experiment “Talk to Kotaro” was conducted between

2021/10/1 to 2023/03/31 and has been approved by Tokyo University of Agriculture and Tech-

nology Ethics Committee (approval number 210801-0321 and experiment extension request ap-

proval number 220306-0321). All participants had to read an online consent form, the experiment

instructions and had to click a consent button, which was deemed as an acceptable means of ob-

taining consent by University of Agriculture and Technology Ethics Committee.It was a Human-

Computer Interaction experiment whose objective is to collect audio and video data to allow us

to better understand the impact of phone and prosody choices for synthesized speech on human

impression. The aforementioned data consists of audio recordings of what volunteers tell Kotaro,

video of the facial expressions made while listening to Kotaro’s GS, the text information that users
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provide while registering their profile for the experiment and their answers to a 10-question long

Likert scale [60] questionnaire (which is optional). Profile information will be used to better un-

derstand the impact (if there is any) of region of origin, spoken languages and the cross-cultural

experiences have on human impression of synthesized Gibberish speech.

4.1.1 Structure of the experiment

First time volunteers need to read the consent form, experiment instructions and, if they agree on

participating, create a profile, for which they need to provide relevant information regarding their

backgrounds which might influence their impression on GS. Such information will be detailed in

Subsection 4.1.3.

Fig. 4.1: Talk to Kotaro experiment: crowdsourcing human impression information online.
After creating a profile, users need to login and start the experiment. The experiment screen,

shown in Figure 4.1, is a web page where volunteers are free to have a turn-based conversation with

Kotaro for as long as they want. In order to start chatting, test subjects must press the green button,

which will become blue. The web page will record what the participant is saying until the button is

pressed again. That audio is sent over the network for posterior emotional analysis. On the server

side, GS will be generated using an algorithm described in Subsection 4.1.2, and sent over the web.

Kotaro moved its mouth while the volunteer’s web browser plays the utterance. While Kotaro

moves its mouth, the facial expressions of volunteers will be recorded by their webcams; and send
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to the server. This is done in order to allow researchers to run emotion estimation algorithms to

estimate the volunteers’ first impressions based on their facial expressions.

This turn-based conversation dynamic was created to avoid the need for Voice Activity Detec-

tion (VAD); and it can be repeated for as long as volunteers have interest in doing so. There was

no minimum nor maximum duration for the experiment. The most prolific volunteer contributed

201 conversations, about 23.4% of all the data in the experiment. Whenever participants wish

to leave the web-page, they should click on the Logout button and they will be prompted with a

Likert-scale questionnaire, which is described in Subsection 4.1.4). The questionnaire is optional

in order to avoid volunteers who will click any responses to quickly end the experiment because

they are already tired of interacting with Kotaro, and 22 of the 37 participants chose to do so.

The IPA-based gibberish speech spoken by Kotaro was generated using the eSpeak [66] speech

synthesizer, which was chosen because it is open source, can receive ASCII-IPA input and allows

for controlling the prosody of the generated speech. Algorithm 1, described in Subsection 4.1.2,

was used to select the phones to be used in Kotaro’s speech. As for the prosody, the three chosen

parameters, speed, pitch, and volume, were randomly chosen between 80-450 words per minute

(speed), 10%-200% (volume), and 0-99 (arbitrary unit, pitch). Some participants reported a feeling

of alienation when the ECA suddenly changed its voice pitch, making them feel like they were not

talking to the same person.

4.1.2 Gibberish speech generation algorithm

To create Kotaro’s gibberish, an algorithm, originally described in [13], draws vowels and con-

sonants from the IPA table to randomly generate Kotaro’s responses. The International Phonetic

Alphabet, IPA, is a phonetic notation system created by the International Phonetic Association

in the 19th century to provide a standardized way of representing speech sounds in different lan-

guages in written form [65]. It can represent various aspects of the lexical and prosodic sounds

of human speech; phones, intonation, and pauses. Other non-speech sounds, such as clicks, grits,

and lisping, are represented by an extended set of symbols. There are two basic sets of symbols:

letters and diacritics, which are showcased in Figure 4.2.

While designing the experiment, it was necessary to decide how to attribute a probability of

selection for each phone, because every language has its own Yule-like [99, 161] phoneme dis-
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Fig. 4.2: Consonant, vowel and other symbols IPA charts, taken from [160].

tribution (which implies a similar phone distribution). However, if we did select a non-flat distri-

bution, the GS might resemble an existing language, which would bias the enjoyment of the Talk

to Kotaro experience towards speakers of certain families of languages. However, by not choos-

ing a Yule-distribution, we risked making the GS too strange and impossible to be enjoyed by

any volunteers. However, since there is no work supporting that Gibberish Speech whose phone

choices do not follow a Yule distribution can cause listeners to be estranged, we have decided to

have a “naive" phone probability distribution, that is, every IPA symbol has the same probability

of being picked. In this sense, this is another novelty provided by this research, since other other

research use a phoneme distribution close to an existing language, e.g. English and Dutch [12] and

Japanese [56]. Following such design principles, Algorithm 1 was proposed, whose pseudo-code 1

describes how Kotaro’s utterances were randomly generated during the experiment.

To better understand Algorithm 1, it is necessary to define the function choice(l), which ran-

domly chooses an element belonging to the list l. At the beginning of the routine, the number of

iterations for generating the utterance is randomly chosen between 1 and 10, an arbitrary maximum

chosen by the researchers to avoid very long utterances and to avoid very long delays between a

volunteer finishing speaking and Kotaro responding. The utterance starts as an empty string, which
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Algorithm 1 IPA Giberish Speech generation algorithm

1: procedure GENERATE GIBBERISH

2: maxiter← choice([1, . . . ,10])
3: counteriter← 0 ▷ iteration counter.
4: utterance← “" ▷ gibberish speech utteranc, starts empty.
5: IPAv ▷ list of all IPA vowels.
6: IPAc ▷ list of all IPA consonants.
7: IPAo ▷ list of all IPA other symbols.
8: while counteriter < maxiter do
9: chunk← choice(choice([IPAv, IPAc]))

10: chunk← chunk+ choice(choice([IPAv, IPAc, IPAo,“”]))
11: if len(chunk)> 1 then
12: if chunk[0] ∈ IPAc∧ chunk[1] ∈ IPAc then
13: chunk← chunk+ choice(IPAv)

14: else if chunk[1] ∈ IPAo then
15: chunk← choice(choice([IPAv, IPAc]))

16: else
17: chunk← chunk+ choice(choice([IPAv, IPAc, [“”], [“”], [“”], [“”], [“”], [“”]]))

18: utterance← utterance+ chunk
19: counteriter← counteriter+1

return utterance
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gets chunks of one or more IPA symbols in each iteration. There is a 50% chance that a chunk will

start as a vowel and a 50% chance that it will be a consonant symbol. All symbols in each list have

the same chance of being chosen by the choice function. After that, there is a 75% chance that

a second symbol will be added (vowels, consonants, and other symbols all have a 25% chance),

and a 25% chance that nothing else will be added to the chunk. If a second symbol is chosen, and

both the first and second are consonants, a third symbol from the vowel list is added. If the second

symbol chosen is another symbol, there is a 50% chance that a vowel will be added, and a 50%

chance that a consonant will be added instead. Otherwise, there is a 12.5% chance that a vowel

will be added, and a 12.5% chance that a consonant will be added. The remaining probability is

that nothing will be added. At the end of the iteration, the chunk is added to the utterance and the

iteration counter is incremented.

Note that when receiving ASCII-IPA input, eSpeak will skip unpronounceable sounds if there

is a space between each chunk, i.e. it will just speak the next one. An example of an utterance

generated by this algorithm is: ionu"i:in@"@.

With the contents of the GS chosen, it is now necessary to select the prosody parameters for

the utterance. For the sake of simplicity, a single set of prosody parameters are used during the

whole utterance, because using Speech Synthesis Markup Language tags to give multiple prosody

parameters in a single utterance would make the analysis of the results even harder. For the speed,

a value between 80 words per minute and 450 words per minute is randomly chosen. For the

pitch, a value between 0 and 99 (no unit is provided in the documentation) is randomly chosen.

Finally a value between 10% and 200% is chosen for the loudness. Such values are the lower

and upper limits of espeak prosody parameters. The only exception is the lower limit of loudness,

which was chosen as 10% in order to generate low-volume, but not completely silent, utterances.

A representation of the prosody of generated gibberish speech can be seen in Figure 4.3.

4.1.3 Profile Information

In order to verify if the cultural background of volunteers influences their impression on GS and

to investigate how, during the profile creation step of the experiment the following information is

necessary:
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Fig. 4.3: Prosody Space of generated gibberish speech
• ID;

• Password;

• Age;

• Gender;

• Country/Region of Origin;

• Mother language;

• Other languages you speak;

• If you live or have lived abroad, write where;

• Years living abroad.

ID and password are necessary in order to allow a volunteer to send data and to have it securely

cryptographed, while correlating it with his or her profile information.

Age and Gender are asked in order to enable us to investigate if some age brackets have distinct

tastes regarding GS when compared to others, the same goes for gender.

Country or origin, Mother Language, Other Languages you speak, if the volunteer has lived

abroad and for how long – are asked to try and investigate the impact of the cultural background

of volunteers in their reactions to GS phone and prosody choice.
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4.1.4 Likert Scale Questionnaire

Likert scale questionnaires are a tool for measuring overall attitudes toward a topic. They consist

of prompts, statements about the topic being studied, to which respondents choose their level of

agreement, ranging from strongly agree to strongly disagree. The number of prompts and possible

responses is not predetermined; researchers must use as many as they need, keeping in mind that

increased precision may be offset by increased burden on research subjects. However, the most

traditionally used scales have either five or seven responses. It is also possible to remove the

neutral option, that is, to have a pair of possible levels of agreement, to prevent respondents from

over-relying on neutral responses as a socially acceptable stance. This paper uses the traditional

5-point scale and 10-point prompts to avoid tiring respondents.

The Likert scale questionnaire used in the Talk to Kotaro experiment uses a classic five-point

format, i.e., respondents can choose their level of agreement with a prompt between 1—strongly

disagree, 2—disagree, 3—neutral, 4—agree, and 5—strongly agree.

This decision was made so that respondents would not have to think too much while answering

a questionnaire that they could simply exit by closing a tab on their web browser. However, not

making the questionnaire mandatory was a design choice to prevent participants who were already

tired from the experiment from randomly clicking through the answers to end their participation

as quickly as possible. While this risk could not be completely avoided, as participants completed

the questionnaire unsupervised, it was a way to reduce this possibility.

The questionnaire was designed to measure volunteers’ enjoyment of the statements Kotaro

responded to them with, and to measure what factors were most relevant to that impression. The

prompts shown are as follows:

(P1) Talking with the robot avatar was interesting;

(P2) Variation of the speech characteristics made conversation more natural;

(P3) Some randomly generated words are less pleasant than others;

(P4) Some speech characteristics, such as speed, loudness or pitch influence more than others;

(P5) Different random words didn’t have an impact on your enjoyment;
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(P6) You felt that the robot was answering your speech accordingly;

(P7) Longer phrases were more interesting;

(P8) The turn-based conversation felt unnatural;

(P9) Foreign sounding phones were more interesting;

(P10) The robot seemed to be intelligent.

4.2 Platform Description

The platform hosting the “Talk to Kotaro" HRI experiment was built with modularity and eas-

iness of modification in mind. There are three key components to the platform: the web-page

templates (the front-end), the server application (back-end) and the memory (file storage and

database). Only the server application is containerized inside a Docker container, the web-page

templates and the memory are bind-mounted to the Docker container, so all stored data is pre-

served when the Docker container is destroyed; and the web-page templates can be easily edited

without the need to rebuild the docker image. The overall Platform structure is shown in Figure 4.4

and each component will be described in detail in the following Subsections.

4.2.1 Server Side - Server Application

This is the main module of the platform, which is responsible for: Login information verifi-

cation, serving web-pages, generating and sending Kotaro’s Semantic Free Utterances, audio and

video capture, cryptography and storage. It consist of the following python scripts:

• flaskapp.py: the main file, responsible for serving the web-pages and calling every back-end

functions;

• login.py: contains functions that verify if an ID already exists, login information verification

and login creation;

• encryption.py: contains all encryption and decryption functions, uses AES-256;
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• mailer.py: contains the functions which enable the application to send profile delete request

emails;

• emotion_estimator.py: contains the CNN Classifier which estimates the impression of vol-

unteers;

• utils.py: contains the gibberish speech generation function, data URI to cv2_img and other

useful image manipulation functions.

Besides those files which are essential for running the experiment, there is the dockerfile, which

specifies all necessary programs and python libraries for the docker environment on which the

application will run; that is, it specifies that it should run an Ubuntu 20.04 image, install espeak,

flask, python-opencv, etc. Currently, in order to reduce the server load, the emotion estimation

function is not being performed as image frames arrive, but that might be easily enabled.

This module of the server application also contains all static files which are served to the client,

such as Kotaro’s avatar images, Javascript scripts responsible for controlling how the avatar be-

haves, capturing audio and image etc.

4.2.2 Server Side - Memory

The memory module consists of a SQLite database and two folders which contains, respectively,

the cryptographed audio and video files. The SQLite database contains the following tables:

• login: stores the ID the hashed password, and the salt for the cryptography algorithm;

• info: stores all profile information of volunteers;

• likert: stores Likert scale questionnaire responses;

• analysis: stores Kotaro’s utterances and the associated volunteer speech and reaction video

files names.

4.2.3 Server Side - Web-page templates

The web page template module contains all HTML, CSS and some of the Javascript files nec-

essary for the client side. It contains a landing page, which explains the experiment, a login page,
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Fig. 4.4: Talk to Kotaro Platform Structure.

a consent form and experiment instructions page, the main page of the experiment, a data deletion

page, a page where legal guardians can request the deletion of data belonging to minors and the

Likert scale questionnaire page.

Audio recordings of the volunteers conversations with Kotaro are sent over the web using the

Recorderjs [162] library and the video of volunteers’ facial expressions are captured by their we-

bcams, displayed on a canvas in the experiment webpage and sent over the web using a XMLHttp

request, frame by frame.
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In order to analyze the data obtained through the Talk to Kotaro experiment, it was necessary

to label the obtained data in terms of valence and arousal, in order to obtain the emotional change

caused by the distinct phone and prosody choices for the gibberish speech of Kotaro. To do so, it

was necessary to implement several neural networks for analyzing the emotion of the audiovisual

data provided by the volunteers, which are described in this chapter.

5.1 Neural Network Architectures for emotion analysis

The most important data provided by the volunteers of the “Talk to Kotaro" experiment con-

sisted of video recordings of the facial expressions of participants while listening to the gibberish

speech responses and audio recordings of what participants told the conversational agent. The idea

behind recording both audio and video was to help gauge the emotional state of volunteers before

Kotaro’s answer, from the audio, and understand how the emotions of the volunteers have changed

from the facial expressions displayed in the recorded videos. To achieve such a goal, three differ-

ent artificial neural network architectures were employed. Two neural architectures, described in

Subsection 5.1.1, are used for estimating the emotion of volunteers from their facial expressions;

and one, described in Subsection 5.1.2 is used for sentiment classification of the audio samples.

After possessing labels in terms of valence and arousal for the reaction displayed by volunteers

after listening to distinct phones and gibberish speech patterns, we investigate the relationship

between the aforementioned parameters of Kotaro’s Gibberish Speech and the impression of vol-

unteers through Neural Network architectures described in Subsection 5.1.3.

5.1.1 Emotion estimation from video

In order to obtain the impression created on the volunteers by the GS utterances, two differ-

ent neural network architectures, VGG-16 and ResNet18 (inspired by the architecture proposed

in [163]), were used to estimate the volunteers’ valence and arousal, respectively, from the videos

of their facial expressions. This hybrid system was chosen because VGG-16 performed better than

ResNet18 for valence, while ResNet18 performed better for arousal. Both networks were trained

on the AffecNet data set [164]. This method of engagement and preference estimation was cho-

sen because it is not an invasive method, does not require very expensive additional hardware for
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volunteers (given most laptop computers, tablet computers and smartphones have front cameras

nowadays), and it does not pause the experiment, allowing one to capture the immediate emotional

change caused by the speech sound. The decision for capturing the immediate reaction stems from

previous research findings that the candid reaction of research subjects differs substantially from

their opinion after being given some time to think and rationalize their own feelings and opin-

ions about an experiment [165, 166]. However, since it is also important to know the attitude of

volunteers towards Kotaro’s gibberish speech, towards Kotaro and the experiment itself after hav-

ing some time to think, this approach is coupled with the Likert scale questionnaire proposed in

Section 4.1.4.

However, since the aforementioned neural networks estimate human emotions from still images,

and the collected data consists of video samples, it was necessary to choose a metric capable of

representing the impact of the gibberish speech on the listener. Thus, it is necessary to obtain the

initial emotional state Et of the subject and the emotional state Et+1 after listening to the utterance.

The chosen metric is then the difference between the emotion estimation from the initial (just

before Kotaro starts speaking) and the last frames of each video sample. This metric is called
−→
δE = (δv,δa), where δv, δa is the change in displayed valence and arousal. It is possible to see how

a few utterances (randomly selected from the data set) have affected the subjects in the valence-

arousal space shown in Figure 5.1.

Fig. 5.1:
−→
δE represented in the valence–arousal emotion space, where arrows indicate the valence–

arousal change and gray triangles denote an utterance that caused no visible emotional impression.
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Fig. 5.2: Architecture of the LSTM-based Neural Network used for analyzing the sentiment of the
voice recordings of participants.

5.1.2 Sentiment analysis of recorded speech

To make the predictions of the volunteers’ initial emotional state just before listening to Kotaro’s

responses more accurate, the Talk to Kotaro web platform recorded what the volunteers said to Ko-

taro, which allowed us to perform sentiment analysis on the recorded audio samples. However,

the initial problem is that the authors could not find a dataset for human speech whose sentiment

labels were in terms of valence and arousal, only categorical labels. The chosen datasets were the

audio datasets TESS [167], RAVDESS [168] and SAVEE [169], whose samples were labeled with

one of the following 7 emotions: anger, disgust, fear, happiness, neutral, sadness and surprise. We

extracted the main features of the available audio data using Mel Frequency Cepstral Coefficients

(hereafter called MFCC) and used the obtained information to train an LSTM-based neural net-

work, whose architecture is shown in Figure 5.2, which was then used to verify the accuracy of

the participants’ initial emotional state prediction, at least in qualitative terms, since the labels are

categorical.
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5.1.3 Gibberish Speech Impression Prediction System architecture

To better understand the effect of phones on participants’ impressions, a neural network called

GRUphones was built, consisting of an embedding layer with 64 outputs, followed by a bidirectional

Gated Recurrent Unit (GRU) layer with 512 units, which is then followed by 4 fully connected lay-

ers with 512, 256, 128, and 1 neuron. All connected layers use ReLu as activation function, except

the last one, which is linear (architecture shown in Figure 5.3 (a)). The proposed neural network

was able to learn an embedding for each of the 71 IPA symbols used by Kotaro (some symbols

were not used because not enough utterances were generated). The neural network was trained

with the data from the experiment, taking the tokenized IPA symbols as input and outputting the

predicted valence or arousal.

Besides the analysis performed by Stuart–Kendall’s τC correlation coefficient, another way to

learn the correlation between the acoustic prosodic parameters is to use a neural network that

receives as input a vector containing the speed, volume, and pitch of a given utterance and predicts

the subjects’ impression. However, only using the prosody information did not yield good results,

and by adding the profile information encoded together with the prosody parameters into a 1×80

vector, it was used as input for a neural network called MLPpro f ile+prosody, which consists of an

input layer of 80 neurons connected to three hidden layers of 128, 128, and 64 neurons each, and

ReLu as the activation function (architecture shown in Figure 5.3 (b)). The output layer is a single

neuron, and thus, two copies of MLPpro f ile+prosody were trained, one for predicting arousal and

another for valence.

Since gibberish speech utterances C, it is necessary to take both aspects into account to make

accurate predictions, and thus, we combined both neural networks by averaging their outputs.

Other architectures were tested for combining MLPpro f ile+prosody and GRUphones, but the results

were not as accurate the ones obtained by averaging the outputs of both pre-trained models. The

resulting model is called the Gibberish Speech Impression Prediction System, hereby referred to

as GSIP.
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(a) Architecture of the Bi-directional GRU Neu-
ral network GRUphones for generating a phone-
embedding matrix.

(b) Architecture of neural network
MLPpro f ile+prosody and its variations,
where X represents the number oc
columns of the input vector.

Fig. 5.3: Neural networks used for impression prediction in this work.
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5.2 Correlation Analysis

With the audio and video recordings properly labeled, it is necessary to calculate the correla-

tion between the Impression caused by the utterances and the acoustic prosody parameters. The

Stuart-Kendall’s τC correlation coefficient test[170] was chosen to perform such analysis, since its

assumptions are not as strong as Person’s correlation coefficient. That is, it is a non-parametric

hypothesis test for statistical dependence which measures rank correlation – how similarly data

is organized when sorted by each other quantities. It can be used for discrete data and does not

assume a normal distribution, it is, thus, ideal for the present research, since the prosody values

used by espeak are discrete and the δE .

The Stuart-Kendall’s τC correlation coefficient between two variables is high variables with

similar ranks and low for observations with different ranks. It is defined as follows:

τC =
2(nc−nd)
n2m−1m

(5.1)

5.3 Analysis and results

In this section, we present the data obtained from the “Talk to Kotaro” experiment in fully

anonymized form and perform the necessary analysis to verify the influence of phone and prosody

choices in gibberish speech. The audio and video recordings cannot be shared because that would

violate the privacy of the volunteers, a condition set by Tokyo University of Agriculture and Tech-

nology’s Ethics Committee. However, a fully anonymized version of the dataset, containing the

phones, prosodic parameters of each generated gibberish speech and the results of the emotional

analysis performed on audio and video data are available together with its partitions into data set

without outliers, training, validation and test data sets are available in the supplementary files of

paper [171].

Subsection 5.3.1 presents the profile information of the participants of the experiment, while

subsection 5.3.2 presents the results of the emotion analysis performed on the participants’ video

and the investigation of the correlation between the prosody parameters and the impression on

the volunteers. To further improve the emotion estimation from the volunteers’ facial expressions

before listening to Kotaro’s utterances, we performed a sentiment analysis of the participants’
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recorded speech, which is presented in Subsection 5.3.3. Subsection 5.3.4 presents and discusses

the results of the phone embedding matrices obtained from the experimental data; and the results

of the Likert scale questionnaire are discussed in 5.3.5.

5.3.1 Profile of Participants Breakdown

This subsection breaks down the information about the participants of the Talk to Kotaro ex-

periment. Profile information of the volunteers was stored to try to determine how the prosody

changes affected each nationality, speakers of certain languages, age groups, etc. The stored in-

formation included ID, password, age, gender, country/region of origin, native language, other

languages spoken by the volunteer, and if the volunteer lives or has lived abroad (write where and

years lived abroad).

The initial goal was to try to find a cross-cultural baseline for human impression for different

prosody parameters, a point that will be described in more detail in the Section 5.3.2. The effects

of phone choice on human impression are discussed in Section 5.3.2.

Countries with participants are shown in Table 5.1, along with the number of speakers of each

language. Initially, 61 participants from 16 countries speaking 17 languages registered, but after

removing those who contributed with no data, or contributed only with unusable data (e.g. partic-

ipated in very dark environments, wore face masks, etc.), only 37 were left. That fact showcases

one of the greatest weaknesses of web-based crowdsourcing: data quality varies a lot because par-

ticipants have different hardware and environment conditions, and might misinterpret instructions

without any chance for correction.

Out of the remaining 37 participants, 23 were male and 14 were female. The mean age of the

participants was 27.46 years, with a standard deviation of 9.39 years, a median of 25 years, and a

mode of 21 years. The youngest participant was 18 years old and the oldest was 55 years old.
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Table 5.1: Breakdown of the cultural background of the participants.

Region of Origin Male Female All Mother Language Male Female All Total Speakers Male Female All
Japan 9 10 19 Japanese 9 11 20 English 19 15 34
Brazil 6 1 7 Portuguese (Brazil) 6 1 7 Japanese 14 11 25

Malaysia 2 0 2 Mandarin 3 0 3 Portuguese (Brazil) 6 1 7
China 1 0 1 Cantonese 0 1 1 Mandarin 3 0 3

Hong Kong (China) 1 0 1 English 0 1 1 Malaysian 2 0 2
India 0 1 1 Marathi 0 1 1 Arabic 1 0 1
Peru 1 0 1 Spanish 1 0 1 Cantonese 1 0 1
USA 0 1 1 Arabic 1 0 1 Spanish 1 0 1

Bangladesh 1 0 1 Sinhala 1 0 1 Sanskrit 0 1 1
Egypt 1 0 1 Bengali 1 0 1 Korean 0 1 1

Sri Lanka 1 0 1 Sinhala 1 0 1
Undisclosed 0 1 1 Bengali 1 0 1

Hindi 0 1 1
Marathi 0 1 1

5.3.2 Impression Estimation from Video and Prosody Correlation

In this subsection, the videos of the volunteers’ facial expressions are analyzed and the im-

pression
−→
IS , the immediate emotional response to the speech act S, is obtained by the vector

−→
δE = (δv,δa), which is obtained by subtracting the estimated emotional state of the initial and final

frames of the video. In this way, a data set is generated that associates the speech acts and the hu-

man impression, allowing us to verify if there is a correlation between the prosody parameters and

the impression
−→
IS , and to use machine learning to obtain an embedding matrix for the IPA phones.

This is achieved by using the VGG-16 and ResNet-18 neural networks described in Section 5.1.

Plotting all obtained
−−→
δE,S = (δa,S,δv,S) vectors, the impression caused by each speech S in the

valence–arousal space yields Figure 5.4 . However, since there are 734 vectors, it is difficult to

visualize the results in valence–arousal space. Plotting the histograms of the results of the analysis,

shown in the left and middle histograms of Figure 5.5, shows the results of the analysis performed

on the video samples of the participants’ reactions to each utterance spoken by Kotaro during the

entire experiment. It can be seen that many utterances had little effect on the participants’ valence

or arousal. However, if we calculate the norm of the
−→
δE vector for each speech act, we obtain the

right histogram in Figure 5.5, which shows that many utterances caused little to no change in the

emotional state of the listeners, but most still made an impression. The set of all ||
−→
δE || has a mean

of 0.124 and a standard deviation of 0.135.
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Fig. 5.4: Emotional state changes caused by every utterance in the “Talk to Kotaro” experiment
in the valence–arousal space, where a blue arrow denotes a positive change in valence, a red one
denotes negative valence change, and a grey triangle denotes no visible emotional change.
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Fig. 5.5: Histograms of δv (top left) and δa (top right) and ||
−→
δE || (bottom) for every utterance

generated in the “Talk to Kotaro” experiment.

Since Russell’s two-dimensional model of valence and arousal is defined over {v∈R|−1≤ v≤
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1} and {a ∈ R|−1≤ a≤ 1}, where v and a are valence and arousal, respectively, the impression

space is defined over {δv ∈ R|− 2 ≤ δv ≤ 2} and {δa ∈ R|− 2 ≤ δa ≤ 2}. Thus, we can obtain

another representation for all the impressions caused by Kotaro’s utterances, shown in Figure 5.6,

where outlier impressions are highlighted in red. Since the obtained impressions consist of two

variables, we used the Mahalanobis distance metric [172], which measures the distance between

a point and a distribution, to determine which emotion changes were outliers, with a Mahalanobis

distance threshold of 3.

Impression

Outlier Impression

Fig. 5.6: Every emotion change
−→
δE in the data set represented in the impression space.

From the emotional estimates obtained from each frame of every interaction with Kotaro, we

have seen that the maximum valence shown was of 0.831, while the lowest valence was of−0.823,

while the average was−0.172, with a standard deviation of 0.291. For arousal, the highest estimate
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was of 0.815 and the lowest estimate was of −0.061. The average arousal was of 0.176 with a

standard deviation of 0.134.

Another metric that can be explored, for the video of a volunteer listening to a given GS ut-

terance, is averaging the emotion estimates for each frame. This way, we can obtain an overall

feeling of the emotion elicited by the interaction. Calculating such a metric for every video sam-

ple and averaging the average emotion, we obtained an average of all average emotion estimates

Eavgavg = (−0.248,0.161), with standard deviations of 0.293 for valence and 0.137 for arousal.

The lowest and highest valence averages for each interaction were−0.693 and 0.831, respectively.

The lowest and highest arousal averages were−0.051 and 0.767, respectively. Out of all 734 video

samples, 130 video samples had a non-negative average valence and 695 had non-negative average

arousal; and 37 video samples had both non-negative valence and arousal averages. Such results

show that the majority of non-Yulean gibberish speech did generate moderately negative feelings

on listeners, but still, few interactions had a positive average valence.

Considering participants that had more than a single exchange with Kotaro, it is possible to

analyze how their emotional state changed along the overall interaction. Out of the 37 participants,

33 had multiple exchanges and 7 had interactions across multiple days. We used linear regression

to detect the tendency of the evolution of the average valence of each interaction within the the

same day (a participation session) and across multiple days, for the volunteers who participate

multiple days (multiple sessions). Out of the 65 participation sessions, volunteers had their average

valence decrease in 30 sessions, while in the remaining 35, the average valence of the interactions

increased. For arousal, out of the 65 sessions, only in 28 could we see the valence increasing.

For volunteers who participated in multiple sessions across distinct days, the average valence

decreased across different sessions for four volunteers, while it increased only for three of them.

Arousal, on the other hand, increased only for two volunteers across multiple sessions, decreasing

for the remaining five.

The results of such analysis can be seen in Figure 5.7, where the average valences of the different

sessions are represented in different colors and the line resulting from the linear regression for each

session has the same color as the points. The longest line represent the changes across multiple

sessions. Some volunteers had their emotions improve, while other had their emotional state

deteriorate while listening to the GS utterances. For the top left image, we can see a result were



80 — 第 5章： Analysis of obtained data —

the line fits the data very well, but for most volunteers, that is not the case, showing that continued

interactions are not a good predictor of how well listeners will react to the different. Especially

when looking at the bottom right graph of Figure 5.7, where we can see that in the first session

there is a tendency of improving valence, but in the next session, there is a strong decrease in

valence as the volunteer listened to the GS utterances.

For arousal, the results are similar, but since it has lower variance when compared to valence,

linear fitting describes the evolution of the emotional state of participants during a session, as one

can see in Figure 5.8. However, as it is possible to see in the bottom right figure, that is not the case

for every volunteer. We have calculated the average mean squared error between the predicted and

the actual impression for average arousal of every session, obtaining a value of 0.006, while the

same metric for valence is of 0.023.
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Fig. 5.7: Scatter plots of the average valence of each time volunteers M6, F3, F7, and F12 listened
to a GS utterance and the results of the linear regression for each session and across multiple
sessions. Points with the same color were obtained in the same session, and the line for that
session shares the color with the points.
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Fig. 5.8: Scatter plots of the average arousal of each time volunteers M2, M8, F3, and F7 listened
to a GS utterance and the results of the linear regression for each session and across multiple
sessions. Points with the same color were obtained in the same session, and the line for that
session shares the color with the points.

Emotion State Change Estimate Error

In the context of the present work, the error of the estimate of the emotion change caused by

gibberish speech S(w,P) is defined as the norm of the difference between the actual emotional

state change
−−→
δES,A and the predicted emotional state change

−−→
δES,P , that is,

EES = ||
−−→
δES,A−

−−→
δES,P ||=

√
(δva,S −δvp,S)2+(δaa,S −δap,S)2

Two different neural network architectures, VGG-16 and ResNet18, were used for estimating

arousal and valence of volunteers from their facial expressions, respectively. However, since the

aforementioned neural networks estimate human emotions from still image frames and the col-

lected data consist of video samples, it was necessary to choose a metric that was capable of
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representing the impact the gibberish speech had on the listener. This way, it is necessary to obtain

the initial emotional state Et of the volunteer and the emotional state Et+1 after listening to the

utterance.

The chosen metric is then the difference between the emotion estimation from the initial (just

before Kotaro starts speaking) and the last frames of each video sample. This metric is referred

to as
−→
δE = (δv,δa), where δv, δa is the change in the displayed valence and arousal. It is possible

to see how a given utterance has affected research subjects in the valence–arousal space shown in

Figure 5.4. If the valence improved, the vector is shown as blue; otherwise, as red.

The original research hypothesis during the development of the Talk to Kotaro platform was that

prosodic choice is the most important factor in generating emotional responses in listeners; since

gibberish has no meaning, it was expected that volunteers would respond according to prosodic

features. Furthermore, it was expected that there would be a cross-cultural preference for certain

prosodic parameters, similar to the Bouba–Kiki effect [15]. To test this hypothesis, it is neces-

sary to compute the correlation between the prosody parameters and δv and δa. This analysis was

performed pairwise using Stuart–Kendall’s τC correlation coefficient for each participant, all male

volunteers, all female volunteers, all Japanese nationals, and all Brazilian nationals; their corre-

lation matrices are shown in Figure 5.9. The correlation coefficient was also calculated for other

demographics, but for the sake of brevity, the matrices are not shown.
It is very clear from Figure 5.9 that there is no statistically relevant correlation between the

acoustic prosody characteristics and the generated impression for all volunteers, except for a very

weak correlation between pitch and valence. For only the male participants, only the female

participants, only Japanese nationals, and all Brazilian nationals as separate groups, no statistically

relevant correlation could be found.

However, it is necessary to investigate if there are significant differences on the impressions

displayed by men and women and by Brazilian and Japanese volunteers. In order to verify if the

variance of the samples are similar, we performed multivariate analysis of variance, MANOVA,

on the obtained data, whose results are shown in Tables 5.2 and 5.3. The results of column Pr >

F suggest that there is no statistically relevant difference between the reactions displayed by male

and female volunteers. However, the reactions displayed by Japanese and Brazilian participants

are statistically distinct.
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Fig. 5.9: Pairwise Stuart-Kendall’s correlation coefficient matrices, where the top number of a cell
indicates the coefficient and the number in parentheses indicates the related p-value.

Table 5.2: Results of the MANOVA for the data volunteered by male and female participants.

Group Value Num DF Den DF F Value Pr > F
Wilks’ lambda 0.9950 2.0000 628.0000 1.5839 0.2060
Pillai’s trace 0.0050 2.0000 628.0000 1.5839 0.2060

Hotelling–Lawley trace 0.0050 2.0000 628.0000 1.5839 0.2060
Roy’s greatest root 0.0050 2.0000 628.0000 1.5839 0.2060

Table 5.3: Results of the MANOVA for the data volunteered by Japanese and Brazilian partici-
pants.

Group Value Num DF Den DF F Value Pr > F
Wilks’ lambda 0.9716 4.0000 1120.0000 4.0687 0.0028
Pillai’s trace 0.0285 4.0000 1122.0000 4.0534 0.0029

Hotelling–Lawley trace 0.0292 4.0000 670.9614 4.0889 0.0028
Roy’s greatest root 0.0274 2.0000 561.0000 7.6855 0.0005

Thus, the original research hypothesis does not hold, i.e., there is no common baseline prefer-

ence for particular prosodic patterns across cultures, across cultural groups, across genders, and
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across age groups. Correlation between the acoustic prosody parameters and emotion change was

investigated also for other groups, but since no other statistically relevant correlation was found,

only the previously mentioned groups are displayed for the sake of brevity.

In order to strengthen the calculated correlations, assuming that some combination of the data

points obtained through the “Talk to Kotaro” experiment actually reflect the real-world distribu-

tion of the reaction of how humans in general, men, women, Japanese people and Brazilian people

would react to different acoustic prosody parameters, we perform statistical bootstrapping as de-

fined in Section 2.1.5. In order to perform the bootstrapping technique, we consider the pairs

(r,m), where r is either speed, pitch, or volume, and m is the either the associated δv or δa. During

the Monte Carlo resampling operation, r and m are joined. After all sub-data sets are obtained, we

separate all r andm into sets R andM and calculate the Stuart–Kendall τC correlation between both

sets. For the present bootstrapping correlation analysis, we created 10,000 sub-data sets and used

the percentile method to obtain the 95% confidence interval, whose results are shown in Table 5.4.

In order to obtain the desired GSIP model, we first removed the outliers from the data set

and trained the MLPpro f ile+prosody model using the prosodic characteristics of Kotaro’s remaining

utterances and the profile of participants. Using the Adam optimizer (learning a rate of 10−3, no

decaying rate) with mean square error as the loss function, the model was trained for 100 epochs

with a batch size of 32. The loss function for the training was mean squared error. Since the data

set is quite small, 10% of the data were used for validation and 10% for testing. Two copies of the

model were trained, one for valence and the other for arousal prediction. Together, they achieved

an average error (as defined in Section 5.3.2) of 0.157 for the training data, 0.129 for the validation

data, and 0.204 for the test data. The benchmarking results can be seen in Figure 5.10.
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Table 5.4: Stuart–Kendall’s τC correlation 95% confidence interval obtained through bootstrap-
ping.

Group Prosodic Parameter Valence Arousal
Speed [−0.065, 0.038] [−0.036, 0.070 ]

General Volume [−0.095, 0.014] [−0.040, 0.068 ]
Pitch [0.0045, 0.110] [−0.054, 0.052]
Speed [−0.076, 0.063] [−0.061, 0.077]

Male Volume [−0.091, 0.050 ] [−0.074, 0.064]
Pitch [−0.020, 0.114] [−0.048, 0.076]
Speed [−0.062, 0.098] [−0.119, 0.061]

Female Volume [−0.156, 0.025] [−0.060, 0.114]
Pitch [−0.063, 0.101] [−0.076, 0.106]
Speed [−0.058, 0.127] [−0.168, 0.029]

Brazilian Volume [−0.087, 0.100] [−0.100, 0.095]
Pitch [−0.117, 0.060] [−0.018, 0.142]
Speed [−0.053, 0.103] [−0.090, 0.086]

Japanese Volume [−0.136, 0.041 ] [−0.067, 0.100]
Pitch [−0.051, 0.113 ] [−0.083, 0.085]
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Fig. 5.10: Comparison between the actual impression and the impression predicted by
MLPpro f ile+prosody for (top left) training data, (top right) validation data, and (bottom) test data.
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Regarding the training of model GRUphones, it is performed in Section 5.3.4, since it is also used

for investigating the positioning of the phones in the phone embedding space.

5.3.3 Analysis of the recorded speech supports the findings of the video analysis

A total of 823 audio samples were recorded in the experiment, but many were unusable (were

completely silent, contained very loud background noise etc), leaving us with 517 voice record-

ings. These voice recordings were analyzed using the LSTM-based neural network described in

Subsection 5.1.2. The results are summarized in Table 5.5. It can be seen that the most frequent

emotions of the recorded voice were disgust and anger, i.e. negative valence and low arousal val-

ues, and negative valence and high arousal values, respectively. These results are consistent with

those obtained from the analysis of the volunteers’ facial expressions, as shown in Figure 5.4.

Happy, calm, and surprised initial states were rare but present in the interactions.

Table 5.5: Results of the sentiment analysis of volunteer’s speeches.

Emotion Label Number of Samples
Disgust 118
Angry 113
Happy 78

Surprised 54
Fearful 46
Sad 43
Calm 38
Neutral 27

Unfortunately, it was not possible to improve the accuracy of emotion estimation from the orig-

inal video frames, but since the negative emotion estimates from the audio matched negative va-

lence values and the positive ones matched positive valence values, it helped to validate, albeit

qualitatively, the results of emotion estimation from facial expressions.

5.3.4 Phone Embedding Analysis

To investigate the contribution of each phone to the estimated impression across subjects, the

GRUphones neural network introduced in Section 5.1 was trained using the Adamax optimizer and
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mean square error as the loss function with a batch size of 32 for 100 epochs. Two copies of

the model were trained, one for valence and other for arousal, to estimate the change in arousal

and valence caused by a given string of phones. The output dimension of the embedding layer

was chosen after trials with many different values; the best results were obtained with an output

dimension of 64. Thus, the resulting embedding matrices for valence and arousal are of 64× 71

dimension. However, since the each phone has a position in a high-dimension hyperspace, it is not

possible to visualize their proximity graphically.

To facilitate the analysis of the contribution of each phone, we used the k-means clustering

method in order to group the phones accordingly to their proximity for both embedding matrices.

In order to select the best number of clusters, we used the silhouette score analysis method [173]

in order to determine the optimal number of clusters.

The optimal number of clusters was 35 for valence and 26 for the arousal embedding matrices.

The number of phones in the largest cluster was 5, and most phones were grouped with distant

phones or alone in their own cluster. From the clusters of the embedding spaces for valence and

arousal, we were able to obtain Figures 5.11a,b, 5.12 and 5.13, which allows us to visualize which

vowels and consonants phones belong to the same clusters, since such phones are colored with

the same color. The red-colored phones were not selected by the gibberish speech generation

algorithm, since the algorithm randomly picked phones.

However, since many phones were absent in Kotaro’s gibberish speech, clustering might not

be the best method to analyze which phones have a similar emotional impact on listeners, so we

calculated the distance between the phones in the embedding space both for valence and arousal

and for valence. Considering vowels and consonants separately, we obtained that for valence,

the following phones that are close in their articulation loci are also the closest neighbors in the

embedding space: [a]–[E], [2]–[E], [@]–[E], [i]–[u], [p]–[m], [d]–[t], [k]–[g] and [L]–[í]. If we

consider all phones together, we have all combinations of vowels and consonants, but none with

close articulation in the human mouth.

We have performed the same analysis for the arousal embedding space, and fewer pairs have a

close articulation locus in the human mouth were obtained than for valence. The following pairs

were identified: [E]–[e], [@]–[E], [o]–[U], [z]–[S], [Z]–[R] and [x]–[X].

Such results show that while some phones are close in the learned embedding space for va-
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lence, it is not possible to claim that similar phones, except for a few exceptions, are close in the

embedding space, in the context of non-Yulean gibberish speech.
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Fig. 5.11: Embedding values for vowels of the IPA for valence and arousal estimation. IPA sym-
bols in red were absent in the generated utterances. Other symbols were colored according to
the index of the cluster they belong to, as shown in the rightmost color bar;(a) Embedding val-
ues of vowel for valence change estimation; (b) embedding values of vowel for arousal change
estimation.
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Fig. 5.12: IPA Consonant table with embedding values for valence change estimation. IPA sym-
bols in red were absent in the generated utterances. Other symbols were colored according to the
index of the cluster they belong to, as shown in the rightmost color bar.
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Fig. 5.13: IPA Consonant table with embedding values for arousal change estimation. IPA symbols
in red were absent in the generated utterances. Other symbols were colored according to the index
of the cluster they belong to, as shown in the rightmost color bar.

The proposed neural network was then able to estimate the emotional change caused just by

the tokenized phone vector w of a given Gibberish speech S(w,P), achieving a prediction error of

0.035 for training data and 0.241 for validation data, as one can see in Figure 5.14.
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Fig. 5.14: Comparison between the actual impression and the impression predicted by GRUphones

for (top left) training data, (top right) validation data, and (bottom) test data.
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5.3.5 Likert Scale Questionnaire Analysis

Out of a total of 37 research volunteers, only 22 (13 male and 9 female) answered the optional

Likert scale questionnaire after participating in the experiment. With the results, it is possible to

perform a post hoc analysis of the internal consistency of the questionnaire. Cronbach’s alpha

was chosen to measure the consistency of the questionnaire prompts; we obtained a Cronbach’s

alpha of 0.752, with a 95% confidence interval of [0.562,0.881]. The internal consistency of the

questionnaire is, thus, considered to be sufficient, and we can proceed with the analysis of the

responses of the volunteers.

Given that prompts P5 and P8 were worded negatively, the responses must be inverted before

any analysis is performed. Prompt P3, although seemingly negatively worded, does not change its

meaning when inverted, i.e., if it had been worded as “Some randomly generated words are more

pleasant than others”, it would not have changed participants’ responses, since some words being

less pleasant than others already implies that some are more pleasant. The same is not true for P5

and P8, which become “Different random words had an impact on your enjoyment” and “The turn-

based conversation felt natural” . To obtain the inverted responses IR from the actual responses

AR, the following calculation must be made: IR=MS−AR+1, whereMS is the maximum score

of the highest level of agreement; in this paper, it is 5.

To obtain the overall attitude toward a prompt, it is necessary to calculate the weighted aver-

age, where the value of a given item is multiplied by the number of respondents who chose that

level of agreement, summed for each item, and divided by the total number of respondents in the

questionnaire.

Results of the analysis performed on all prompts can be seen in the box and whisker plots

shown in Figures 5.15 and 5.16, and the bar plots of each response by male and female volunteers

can be seen in Figures 5.17 and5.18. The overall attitude towards the Talk to Kotaro experiment

was mostly neutral or slightly negative. Such results were expected after the emotion estimation

analysis performed in Section 5.3.2, since most of the average emotion shown by participants

during the experiment had negative valence and low but positive arousal.
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Fig. 5.15: Male (blue), female (yellow), and everyone’s (green) responses to the optional Likert
scale questionnaire’s prompts 1 to 5. The median value of the responses is highlighted in orange,
outliers are represented by small circles.

Fig. 5.16: Male (blue), female (yellow), and everyone’s (green) responses to the optional Likert
scale questionnaire’s prompts 6 to 10. The median value of the responses is highlighted in orange,
outliers are represented by small circles.
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General opinion(m/f/a): 3.2/3.2/3.2
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Stdev(m/f/a): 1.167/0.786/1.029
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male
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General opinion(m/f/a): 3.1/3.4/3.2
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Stdev(m/f/a): 1.206/0.831/1.084
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General opinion(m/f/a): 2.2/2.3/2.2
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Stdev(m/f/a): 0.948/1.054/0.997
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Stdev(m/f/a): 1.187/0.667/1.008
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male

Fig. 5.17: Bar plots of the male and female responses to prompts 1 to 5 of the optional Likert cale
questionnaire.
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P10

General opinion(m/f/a): 2.2/2.7/2.4
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Stdev(m/f/a): 1.167/0.943/1.11
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General opinion(m/f/a): 3.2/3.0/3.1
Mode(m/f/a): 3/3/3/

Stdev(m/f/a): 1.12/0.471/0.919
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Stdev(m/f/a): 1.187/0.629/1.033
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General opinion(m/f/a): 2.8/3.2/3.0

Mode(m/f/a): 2/3/2/
Stdev(m/f/a): 1.099/0.916/1.044

female
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General opinion(m/f/a): 2.1/1.8/2.0
Mode(m/f/a): 1/1/1/

Stdev(m/f/a): 1.141/0.786/1.021

female
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Fig. 5.18: Bar plots of the male and female responses to prompts 6 to 10 of the optional Likert
scale questionnaire.

P1—Talking with the robot avatar was interesting The general opinion is that talking to the

robot avatar was just slightly above neutral , but it must be noted that the most common answer

for male respondents was actually that they agreed that talking to Kotaro was an interesting expe-

rience, while most women tied between finding it neutral or slightly interesting experience. There

are many factors that could have contributed to such results, but in line with the opinions of partic-

ipants in [56], talking to a gibberish-speaking robot does not lead to a very enjoyable conversation,

even if it is more interesting than the nodding robot. However, it must be noted that the attitude

towards the experience of talking to Kotaro was worse than the attitude towards talking with the

Hanamogera-speaking NAO robot in [56]. Such result suggests that GS that has phone distribu-

tion tends to perform better than GS that does not. We are, however, cognizant of the fact that

more embodied conversational agents tend to elicit higher engagement and better impression on

research subjects, and thus, this result warrants further investigation.
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P2—Variation of the Speech Characteristics Made Conversation More Natural Volunteers,

both male and female, felt that the random prosody variations used by Kotaro for his gibberish

speeches did not make the conversation feel natural. This result was somewhat expected, since the

avatar could suddenly change its voice from a very high pitch to a very low pitch, sounding like a

completely different entity. Such a result is supported by previous research works, such as [174],

where pitch inflection is identified as a very important factor in voice recognition. Another point

is that low volume and high speed may have affected the overall experience, since people usually

do not suddenly change the speed or volume of their speech unless there is a context for doing so.

P3—Some randomly generated words are less pleasant than others The most frequent an-

swer for participants was “3—neutral”, suggesting that research subjects could not see much dif-

ference on how distinct words generated by Algorithm 1 made them feel. This results suggests

that non-Yulean gibberish speech words could not pick the interest of research subjects, again, in

a similar fashion to the Hanamogera GS words in [56].

Moreover, since the algorithm also created some unusual combinations that were described by

some participants to be “alien-like”, generated words might have caused estrangement on partici-

pants.

This result is also consistent with the data shown in Section 5.3.2, since most of the utterances

left a neutral-to-negative impression on participants.

P4—Some speech characteristics, such as speed, loudness, or pitch influence more than oth-

ers The analysis of this prompt was of particular interest since there was little to no correlation

between speed, pitch, volume, and valence, and arousal. The question was somewhat divisive

among the participants, since the most common response was “4—agree” (10 responses), although

the seven neutral responses, “3—disagree”, and “2—strongly disagree”, skewed the overall atti-

tude towards neutrality. The overall attitude agrees with the result of the emotion analysis from

the video samples and with the lack of correlation between the acoustic prosody parameters and

the impression of volunteers.

P5—Different random words didn’t have an impact on your enjoyment While the previous

prompt analyzed the effect of prosody choice, this prompt analyzes the effect of phone choice.
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It is very similar to prompt P3, but phrased differently to validate the results obtained. Since the

prompt is negatively worded, in order to be comparable to the others, it is necessary to rephrase it

as “Different random words had an impact on your enjoyment” and invert the responses.

The results were consistent for the overall attitude of all participants together and for female

volunteers. However, for male volunteers, the overall impression worsened, since fewer male

participants agreed with the random words. Such a result, even if unexpected, is more aligned

with the emotion analysis from the video samples, but it shows that some volunteers might not be

so sure of their opinion about the impact of phone choice in their impression.

P6—You felt that the robot was answering your speech accordingly This question, along with

P10, tests the perceived intelligence of Kotaro. The results indicate a highly negative perception,

with the majority of male and female respondents strongly disagreeing with the prompt. The re-

sults suggest that the use of non-Yule-like distributions of phones and randomly changing prosody

patterns leads to a poor opinion of the agent’s intelligence. Participants were likely aware of the

random selection of phones and prosody patterns, which contributed to their negative perceptions.

P7—Longer phrases were more interesting The overall opinion that longer sentences are more

interesting than shorter ones was rather neutral, but one can see that male participants had a worse

attitude towards longer utterances, suggesting that men would prefer shorter gibberish utterances

as a response.

P8—The turn-based conversation felt unnatural Another negatively worded prompt, P8, needs

to be inverted to allow for a closer comparison with other prompts in the questionnaire. It then

becomes “The turn-based conversation felt natural”, which tries to capture the effect that pressing

a button to talk and having Kotaro answer might have had on the volunteers’ impressions. The

general attitude is that the chosen turn-based conversation system felt unnatural. This was to be

expected, since humans are very good at taking turns in conversation; the average silence between

turns is within a range of 250 ms from the cross-language mean of 208 ms [175]. However, overall

male impression was rather neutral, suggesting that such effect might be not as strong for male

participants.
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P9—Foreign sounding phones were more interesting The purpose of generating gibberish

speech utterances using IPA symbols was to allow the ECA to use sounds from languages around

the world, and this prompt was intended to measure the impact that foreign-sounding phonemes

had on participants. The results indicate that attitudes toward foreign-sounding phonemes were

mostly neutral, but an analysis of other responses shows that they were slightly more negative than

positive.

P10—The robot seemed to be intelligent Regarding the perceived intelligence of the embod-

ied conversational agent, the results were mostly negative, in line with prompt P6, although not

as much, since female respondents had “2—disagree” and “3—neutral” as the most frequent re-

sponses, while male responses were mostly “1—strongly disagree”. Again, subjects were able to

perceive that the ECA randomly generated their responses. This prompt was phrased differently

than P6 to measure how the robot’s humanoid form affected perceptions of intelligence, since be-

ing intelligent and responding accordingly capture two different aspects of the ECA’s capabilities.

While it did not improve the overall opinion of its intelligence, more responses were neutral, or

even in agreement that the ECA was intelligent.

5.4 Evaluation of the GSIP

With both MLPpro f ile+prosody and GRUphones pre-trained, we further trained the combined mod-

els, using the standard gradient descent method (learning rate of 0.01 and no momentum) for 100

epochs with a batch size of size 32. It achieved an an average error of 0.141 for training data,

0.139 for validation data, and 0.19 for test data, as one can see in Figure 5.19.
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Actual
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Predicted
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Actual
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Predicted
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Actual

Error

Predicted
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Fig. 5.19: Comparison between the actual impression and the impression predicted by GSIP for
(top left) training data, (top right) validation data, and (bottom) test data.

5.5 Discussion

The results of the analysis performed on the audio and video recordings, together with the

investigation on the location of each IPA phone in the learned embedding space and the results of

the optional Likert Scale questionnaire, are individual pieces of a larger jigsaw puzzle that must be

pieced together in order to allow us to see the bigger picture, enabling us to obtain further useful

insights and to contextualize our previously shown results.

5.5.1 Effects of Kotaro’s Gibberish Speech on Listeners

The main takeaway when considering the results of the average emotion during the experiment,

the impressions caused by the GS utterances, emotion classification of the audio samples, and

the results of the Likert scale questionnaire is that GS that does not follow a traditional Yule-like

phone distribution and has random acoustic prosody parameter selection does not have a good

performance in a conversational setting with a screen-based conversational agent. Most utterances

caused little to no impression, while the average emotion displayed while listening to Kotaro’s
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utterances, Eavgavg = (−0.248,0.161), could neither excite nor create positive feelings on listeners,

on average. However, since the standard deviation for valence was quite high, stdevvalence = 0.293,

we can see that there were still positive experiences, albeit few when compared with the neutral

or slightly negative ones. Such results show that volunteers were mostly impatient and frustrated

while listening to Kotaro’s speech. There very few impression outliers, only 35 impressions, since

most utterances caused small emotional changes.

Results of the analysis of what they told the agents also show that they showed little to no

enthusiasm while talking to the agent, further showing that the overall experience was not partic-

ularly engaging. The neutral attitude toward prompt P1 further sediments such a conclusion. Even

though multiple participants have shown that they enjoyed through their answers, the majority

still had a neutral or negative opinion of the experiment. Such results are in line with previous

research results of work [56], where volunteers found the Hanamogera gibberish speech-speaking

NAO robot more engaging than the nodding NAO robot, but volunteers still remarked that the con-

versations were still not so engaging. There was no acoustic prosody parameter variation in the

GS utterances used by the NAO robot, and the overwhelmingly negative attitude towards prompt

P2 suggests that no variation of the prosody parameters performs better than completely random

variations, as some volunteers also noted that drastic changes in pitch made them feel that they

were speaking to a completely different entity, as voice pitch is a very important characteristic for

identifying particular individuals just from their speech, as was shown in early voice identification

works such as [174].

The main takeaway from the emotion analysis performed over the data provided by research

subjects’ suggestions and contrasting it with the results of previous research that focused on

determining how research subjects felt regarding interacting with GS-speaking conversational

agents [56, 100] is that while GS can provide positive interactions, its best use might not be in

a conversational setting, since both in this work and in [56], volunteers complained about not un-

derstanding what the agent was saying and that they were not actually responding to their speech.

Such results are unlike the ones shown in [100], where research subjects (children) played with a

GS-speaking NAO robot a non-conversational setting, where the robot expressed its own emotions

through GS. Since research subjects seemed to enjoy the experiment and to want to play again,

GS in a expressive role (since the robot is using it to express itself) seems to perform better than
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in a conversational setting, where more objective meaning is expected. However, another aspect

to be taken into consideration is that in [100], research subjects were children, while in the present

work and in [56], research subjects were mostly young adults who might be less accepting of such

odd and “alien-like” interactions, since it requires a more imaginative and playful imagination,

less focused in the actual communication and more in the experience itself.

Another reason that might explain the worse performance of the present GS generation tech-

nique is that the agent itself could not capture the interest of research subjects. The idea of making

it mostly expressionless in a not-vibrant environment was to give more focus on the speech itself.

Having an ECA on the screen was a deliberate choice to make the task actually resemble more the

conversation with a robot or other types of ECA. Moreover, since higher embodiment levels tend

to create higher engagement on users, we thought that having volunteers talk with a GS speaking

voice without any representation would feel even less engaging, since research subjects could feel

like they were talking to a non-entity. The researchers were, however, aware that the choice of

the appearance of the ECA also matters in experiments, and the humanoid appearance of Kotaro

might have created a mismatch in expected intelligence and the lack of coherence of the words

said by the ECA, which tends to generate a bad impression on users, as discussed in [176] and

exemplified by the lower perception of the robot in [177].

5.5.2 Effects of Prosody, Duration of Interaction, and Phone Choice

Previous analysis performed on video, audio, and Likert scale questionnaire answers can help

us understand how research subjects felt towards each utterance and the experiment itself, but

does nothing to elucidate why, which was one of the goals of the “Talk to Kotaro” experiment.

In order to understand how acoustic prosody parameters affect the impression of volunteers, we

have calculated pair-wise Stuart–Kendall’s τC correlation between each one of the investigated

prosodic parameters and valence and arousal changes. Unlike what was previously thought by

the researchers, no meaningful correlations could be obtained, with the exception of a very weak

correlation of 0.06 between pitch and arousal for all participants, which had a p-value of 0.03.

By performing MANOVA analysis, it was possible to verify that Brazilian research subjects

had distinct impression patterns compared to Japanese research subjects. Such analysis was not

performed for other nationalities since they had too few participants (fewer than four), and thus,
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it would be a meaningless comparison between an individual and a group of participants, for

most nationalities. However, joining the fact that there were no favoured prosody patterns by all

volunteers considered as a single group and that volunteers from different cultures had statistically

distinct reactions to prosody parameters, we found no support for the original hypothesis from the

“Talk to Kotaro Experiment” that, like the Kiki–Bouba effect [15], there would be a cross-cultural

preference for certain prosody characteristics; quite the opposite.

However, it is necessary to further investigate if the high p-values are due to the small size of the

data set or if there is really no statistically meaningful correlation. One way of performing such

analysis is to use for all participants KDE (kernel density estimation) [178] to learn the distribution

of the pairs of (p,r), where p is one of the prosody parameters and r is the associated δv or δa

value. With that, it is possible to create synthetic data whose distribution is very similar to the

distribution obtained through the experiment and calculate the correlation between the synthetic

set of p and r for different quantities of synthetic data points until meaningful p-values are obtained

for all pairs of Stuart–Kendall’s correlation. Such an analysis is just a ballpark estimate, since it

has a very strong assumption: the distribution of the real data obtained through the experiment

actually represents (or represents closely enough) the actual distribution of how people react to

different prosody parameters in the context of listening to non-Yulean GS.

We used a Gaussian kernel and chose a bandwidth of 0.1 to learn the distribution of our data

in order to create synthetic data sets. With the distributions learned, we increased the size of the

synthetic data sets until we consistently obtained meaningful, albeit still very weak, correlations

between the synthetic pairs. We started obtaining mostly relevant correlations by 15,000 data

points and always obtained statistically relevant correlations with 20,000 data points. Such a

result shows that a much larger data set seems to be necessary in order to allow researchers to

make stronger claims regarding the correlation between prosodic parameters and the impression

of volunteers.

Linear regression was performed on the average emotion of each interaction volunteers had

in their experiment sessions as a way of obtaining an overall tendency of how the emotion of

participants evolved as they interacted with Kotaro. Both for valence and arousal, volunteers had

positive or negative valence/arousal changes across the session, which are not explained by the

number of interactions with Kotaro in a session, given that some volunteers that had multiple



— 第 5章： Analysis of obtained data — 101

sessions in different days had days where valence/arousal improved in one session and worsened

on the next one, just to improve in the final session, as shown in the bottom right plot for F3 in

Figure 5.7. Additionally, average valence values fluctuated a lot in a same session, very rarely

showing any linear tendencies. Arousal, on the other hand, has shown better linear fit for most

of the research subject, but not all. Moreover, even if the majority of research subjects showed

decreasing arousal as they interacted with Kotaro, which is expected as the experience loses its

novelty or as the participant gets tired, some research subjects showed increasing arousal, which is

counter-intuitive. However, since users did not answer any personality tests or write any notes that

could help elucidate the reason, it was not possible to understand why such patterns happened.

In order to analyze the position of individual IPA phones in the learned embedding space, we

developed the GRUphones neural network, which was able to learn to predict the impression of

volunteers from Kotaro’s GS utterances quite well for training and validation data, which shows

good confidence on the 64×71 embedding spaces for predicating valence and arousal.

However, due to the stochastic nature of the algorithm, not every IPA phone was selected for the

experiment. Moreover, both calculating the distances between the phones in the learned embed-

ding hyperspaces and the clustering operations have shown no support for the idea that similarly

sounding phones cause similar impressions, but many more data are necessary to lay stronger

claims in that sense.

5.5.3 Performance of the GSIP System

In order to develop the gibberish speech impression prediction system, neural networks

MLPpro f ile+prosody (responsible for predicting impression just from the profile information of vol-

unteers and the acoustic prosody characteristics of a GS utterance) and GRUphones (responsible for

predicting human impression from the tokenized IPA phones of a GS utterance) were pre-trained

using the obtained data set after the outlier impressions were removed. GRUphones achieved and

outstanding performance for predicting training and validation data, but for test data, the results

seemed lackluster and mostly random, which shows a lack of generalization capability of the

model. For MLPpro f ile+prosody, the results were not as impressive for training and validation data,

but it performed better than GRUphones for test data, showing closer predictions for some of the

test data.
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By using the pre-trained neural networks, we trained the GSIP system, which consisted of the

average of both previously mentioned neural networks, which achieved a better performance for

test data when compared to previous two neural network, but it showed a tendency of making more

“average” estimates, since most utterances generated small emotional changes.

The results were not satisfactory for test data, showing that even though the models could per-

form reasonably well for training and validation data, they could not properly learn how to gener-

alize that knowledge for never-seen-before data.
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Fig. 6.1: Proposed architecture for the prosody Selection system.

6.1 Introduction

In order to make robotic speech more interesting to human listeners, the research titled“ Image-

based emotion detection system to improve human-robot communication〞is currently being de-

veloped in Mizuuchi Lab. The first step of the aforementioned research consisted of the Talk to

Kotaro experiment, where volunteers held conversation online with a robot avatar of the Kotaro

robot. The website recorded what research subjects told the robot avatar and filmed their facial ex-

pressions while they listed to the semantic free utterances – speech composed from human phones

but without meaning – Kotaro replied with. The experimented yielded enough data to allow the

development of a module called GSIP – Gibberish Speech Impression Predictor. GSIP is capa-

ble of predicting the impression – immediate emotional response – of humans after listening to a

semantic-free utterance spoken with a given prosody pattern. Its predictions are in terms of va-

lence and arousal. Valence is the measure of how positive a given emotion is and it is defined

over {v ∈ R| − 1 ≤ v ≤ 1}, -1 being the worst possible emotion and 1 being the most positive

possible. Arousal measures how intense the displayed emotion is and its values are defined over

{a ∈ R|−1≤ a≤ 1}, -1 being the most apathetic reaction and 1 being the most intense possible.

With the help of the GSIP system, proposed in Section 5.4, ECAs can better guess human im-

pression to their utterances, allowing them to select adequate prosody parameters for pre-generated

or randomly generated text of the semantic-free utterances (SFU). Batches of candidate prosodic

patterns are randomly created and the [SFU, prosody] pairs are evaluated by the GSIP module –

the pair which is predicted to generate the most positive impression (although other criteria can be

chosen) is selected and spoken by the robot. The structure of the system is shown in Figure 6.1.
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6.1.1 Research questions/hypotheses

The proposed system has been already developed but it is necessary to validate its performance

experimentally and, thus, this Research Experiment Plan was devised in order to allow us to vali-

date the hypotheses listed below:

• H1 – speech generated by the proposed system is perceived as more human-like than speech

with constant prosody or with randomly generated prosody;

• H2 – speech generated by the proposed system generates more positive impression on vol-

unteers than speech with constant or random prosody patterns;

• H3 – the system could generate the desired impression in research subjects;

• H4 – test subjects are more lenient with a non-humanoid looking avatar regarding semantic-

free speech and eventual bad selection of prosody.

• H5 – the system can be successfully used for physical robots;

• H6 – the system can be successfully used for semantic speech;

• H7 – novelty bias plays a heavy factor when users consider physical robots more engaging

than virtual agents.

It is necessary to clarify that, in H3, generating the desired impression on volunteers is to obtain

a valence-arousal impression with an mean absolute error (henceforth referred to as MAE) no

larger than 0.15 (obtained with current data).

This research experiment plan, thus, explains the workflow of the experiments to be executed,

what data will be recorded, how it will be recorded, stored and how research subjects will have

their mental and physical integrity and anonymity protected.
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6.2 Experiment Plan

6.2.1 General Overview

Since there are seven hypotheses to be experimentally tested for the developed system, the

desired experiment is divided in three experimental phases P1, P2 and P3, which were expected to

last around 35 minutes each, totaling an 1h45 of experiment for each research subject. However

there will be an initial explanation of the experiment where volunteers are free to ask any question.

If they consent participating on the experiment, they will sign the consent form. As users may ask

as many questions as necessary, it is hard to guess how long this preliminary phase might last

but, if there are no questions, it is expected to last around 15 minutes. Between every experiment

phase, participants will be given around 5 minutes to rest (more if they deem it necessary). This

way, the total experiment time goes up to around 2h12, but in reality, most research subjects spoke

with the conversation agents for farshorter periods of time and refused the first break, reducing the

total average experiment duration to around 1h30.

In order to test hypothesesH1,H2,H3,H4 andH5, the first experiment phase P1 was designed. P1

consists of having research subjects holding conversations with three different conversation agents

A1, A2 and A3, which will employ prosody selection systems c1,gs, c2,gs and c3,gs for semantic free

utterances. c1,gs always use the same prosody regardless of what the gibberish speech is; c2,gs

is the system where prosody is selected using GSIP and, finally, c3,gs randomly selects prosody

characteristics for semantic speech. Agent A1 consists of the same avatar of the Kotaro robot

used in the Talk to Kotaro Experiment; A2 consists of a 2D avatar of the Plantroid Robot, which

resembles an animal A3 is the physical Plantroid robot. All conversation agents are shown in

Table 6.1 The order in which volunteers talk to the agents will be randomly selected in order to

avoid order bias; and the order on which the conversation agents will use the prosody selection

systems will also be randomly selected for the same reason.

Every agent will hold a 10 exchange-long conversation for each one of the prosody selection

systems, totaling 30 exchanges per agent and 90 in total for P1. An exchange is defined as a

segment of a longer conversation, consisting of an initial saying by the research volunteer and a

response from a conversation agent. Research subjects are free to say whatever they want to the

conversation agent, which will reply using pre-generated semantic free utterances during the first
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five exchanges. For the remaining five utterances, the first conversation agent will generate them

using GSIP for the first prosody selection system it uses and they will be used for every other

prosody selection system and conversation agent.

In order to test hypothesis H6, experiment P2 will perform the very similar tests performed in

P1, but the same conversation agents will use prosody selection systems c1,ss, c2,ss and c3,ss, where

c1,ss applies the same prosody pattern for any semantic speech inputs, c2,ss uses GSIP to select the

prosody characteristics of the speech and c3,ss randomly selects the prosody patterns. Volunteers

will ask 3 given questions about the health of a plant and the conversation agents will answer with

pre generated speeches. The remaining 7 exchanges are free; research subjects can talk about any

topic with the conversation agents.

The final experiment phase P3 consists of letting test subjects freely talk with conversation

agents A2, A3 and A4. A4 is a holographic 3D model of the Plantroid robot shown using a Looking

Glass holographic display. This experiment phase will test hypothesis H7, which postulates that

the common perception that virtual agents are always less engaging than a physical embodied

robot is because of novelty bias, which will be tested by introducing the novelty of interacting

with a 3D hologram. If A4 is considered to be as engaging or more engaging than A3, hypothesis

H7 will be validated. If the interactions with A3 are found out to be more engaging than those with

A2, but less than those with A3, it will show a strong support for novelty bias, but will validate the

previous conception that physical embodiment of agents are more engaging than virtual agents.

If it is found to be less engaging than A2, it will show that novelty plays little to no role into the

interactions and a very strong support to the current conceptions of physical agents being more

engaging. The prosody selection system for the responses of the different actors is c1,ss, that is,

same constant prosody.

After talking with every conversation agent, subjects will be asked to answer three question-

naires (Godspeed anthropomorphism and likeability) and will be asked if they want to rest, con-

tinue or give up the experiment. After all Phases, volunteers will be asked a final time for if they

still consent to have their data used for the research. The experiment Phases will be described in

more detail along with the questionnaires in the following sections. The flow of the experiment can

be seen in Figure 6.2. All conversation agents are listed in Table 6.1 and every prosody selection

system is show in Table 6.2.
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Fig. 6.2: Proposed experiment phases and its components.

Name Description Image

A1 Avatar of the robot Kotaro.

A2 Avatar of the robot Plantroid.

A3 Physical Plantroid robot.

A4 Holographic Plantroid robot.

Table 6.1: Conversation agents, their descriptions and images.
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Name Description
c1,gs Constant prosody parameters for gibberish speech.
c2,gs Prosody parameters of gibberish speech selected using the GSIP system.
c3,gs Prosody patterns randomly selected for gibberish speech.
c1,gs Constant prosody parameters for semantic speech.
c2,gs Prosody parameters of semantic speech selected using the GSIP system.
c3,gs Prosody patterns randomly semantic for gibberish speech.

Table 6.2: Prosody parameters selection systems and their descriptions.

Fig. 6.3: Experiment Setup common for all phases.

6.2.2 Experiment Setup

The setup of the experiment, shown in Figure 6.3, consists of having a volunteer sitting down

in front of a table where the conversation agent will be right in front of the eyes of the volunteer.

Conversation Agents A1 and A2 will be shown in a LCD monitor. When Agent A3 or A4 are

interacting with volunteers, the monitor will be removed and replaced by the physical Plantroid

robot and by the Looking Glass holographic display. A computer, used for generating the prosody

parameters and showing agents A1, A2 and A4 on their respective displays will also be above the

table. An USB camera and a microphone will be placed in positions appropriate to capture the

facial expression of users and their speeches while not obstructing their view of the conversation

agents. Volunteers will be provided with a pen for answering questionnaires and signing the

necessary forms. This configuration is common to every phase of the experiment.
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6.2.3 Phase 1 (P1)

Phase one consists of having the research volunteer holding ten exchange-long conversations

with three distinct conversation agents A1 (avatar of the Kotaro robot), A2 (avatar of the Plantroid

robot) and A3 (the real Plantroid Robot), all of which will use three distinct prosody selection

system, c1,gs, c1,gs and c3,gs for their semantic free responses. In order to avoid any bias caused by

having volunteers talk to the agent in the same order, the first agent with whom a volunteer will

be selected among A1, A2 and A3. For example, suppose that A2 was selected as the first agent. A2

will, then, randomly select a prosody generation system among c1,gs, c1,gs and c3,gs. Suppose c1,gs

was chosen. The volunteer will have, then, ten exchanges with A2, which will reply for the first five

times with pre-generated semantic-free utterances (showcased in Table 3), whose prosody will be

always the same, accordingly to c1,gs. The remaining five utterances will be randomly generated

in this first interaction and reused for the subsequent interactions for the other prosody generation

systems and for the other conversation agents. After the volunteer has talked with A2 for ten

exchanges, the subject has to fill a very brief Godspeed questionnaire, shown in Subsection 6.4.1.

After that, the next prosody selection system will be randomly selected among the remaining two

– the process is repeated for the next ten exchanges. Finally, the volunteer needs to talk to A2

using the remaining prosody selection system. After filling the last Godspeed questionnaire, the

volunteer will be asked to rank which prosody selection system he/she felt had the most human-

like and most engaging speech. The same procedures will be repeated for the next conversation

agent, which will be randomly selected among the remaining two. Finally, it will be repeated once

again for the remaining agent. After interacting with every conversation agent, the volunteer will

be asked to rank the most engaging conversation agent. An example of every step in of Phase 1

would be:

1. A2, c1,gs selected, volunteer interacts for 5 exchanges;

2. A2, c1,gs generates remaining 5 exchanges;

3. Volunteer answers Godspeed questionnaire about c1,gs;

4. Selects A2, c3,gs, volunteer interacts for 10 exchanges;;

5. Volunteer answers Godspeed questionnaire about c3,gs;
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6. Selects A2, c1,gs, volunteer interacts for 10 exchanges;

7. Volunteer answers Godspeed questionnaire about c1,gs;

8. Volunteer ranks most engaging prosody system;

9. A1, c3,gs selected, volunteer interacts for 10 exchanges;

10. Answer Godspeed questionnaire about c3,gs

11. Selects A1, c1,gs, volunteer interacts for 10 exchanges;

12. Answer Godspeed questionnaire about c1,gs

13. A1, c1,gs selected, volunteer interacts for 10 exchanges;

14. Answer Godspeed questionnaire about c1,gs

15. Volunteer ranks most engaging prosody system

16. A3, c1,gs selected, volunteer interacts for 10 exchanges;

17. Answer Godspeed questionnaire about c1,gs

18. A3, c3,gs selected, volunteer interacts for 10 exchanges;

19. Answer Godspeed questionnaire about c3,gs

20. A3, c1,gs selected, volunteer interacts for 10 exchanges;

21. Answer Godspeed questionnaire about c1,gs

22. Volunteer ranks most engaging prosody system;

23. Volunteer ranks most engaging agent.
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6.2.4 Phase 2 (P2)

Phase 2 is quite similar to P1 in many aspects, however, conversation agents A1, A2 and A3 will

reply using semantic speech, assigning prosody to it using systems c1,ss, c2,ss, and c3,ss. Conver-

sations with the (agent-prosody selection system) pairs consists of three exchanges where users

will be request to ask the same predefined questions (show in Table 4), which will receive pre-

generated responses and seven exchanges where they are free to say anything they want to the

conversation agents, which will reply using a GPT-3-based chatbot. The chatbot used for every

interaction is always the same. The remainder of the phase happens exactly like in phase 1 and an

example of how a phase 2 could happen is given below:

1. A1, c1,ss selected, volunteer interacts for 3 exchanges;

2. volunteer freely interacts with A1, c1,ss for 7 additional exchanges;

3. Volunteer answers Godspeed questionnaire about c1,ss;

4. Selects A1, c3,ss, volunteer interacts for 3 exchanges;

5. volunteer freely interacts with A1, c3,ss for 7 additional exchanges;

6. Volunteer answers Godspeed questionnaire about c3,ss;

7. Selects A1, c2,ss, volunteer interacts for 3 exchanges;

8. Volunteer freely interacts with A1, c2,ss for 7 additional exchanges;

9. Volunteer answers Godspeed questionnaire about c2,ss;

10. Volunteer ranks most engaging prosody system;

11. A2, c2,ss selected, volunteer interacts for 3 exchanges;

12. Volunteer freely interacts with A2, c2,ss for 7 additional exchanges;

13. Volunteer answers Godspeed questionnaire about c2,ss;

14. Selects A2, c3,ss, volunteer interacts for 3 exchanges;
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15. Volunteer freely interacts with A2, c3,ss for 7 additional exchanges;

16. Volunteer answers Godspeed questionnaire about c3,ss;

17. Selects A2, c1,ss, volunteer interacts for 3 exchanges;

18. Volunteer freely interacts with A2, c1,ss for 7 additional exchanges;

19. Volunteer answers Godspeed questionnaire about c1,ss;

20. Volunteer ranks most engaging prosody system;

21. A3, c3,ss selected, volunteer interacts for 3 exchanges;

22. Volunteer freely interacts with A2, c3,ss for 7 additional exchanges;

23. Volunteer answers Godspeed questionnaire about c3,ss;

24. Selects A3, c3,ss, volunteer interacts for 3 exchanges;

25. Volunteer freely interacts with A3, c1,ss for 7 additional exchanges;

26. Volunteer answers Godspeed questionnaire about c1,ss;

27. Selects A3, c2,ss, volunteer interacts for 3 exchanges;

28. Volunteer freely interacts with A3, c2,ss for 7 additional exchanges;

29. Volunteer answers Godspeed questionnaire about c2,ss;

30. Volunteer ranks most engaging prosody system;

31. Volunteer ranks most engaging agent.

6.2.5 Phase 3 (P3)

Phase P3 is held in order to verify if novelty bias plays a heavy role on human impression

regarding interacting with virtual agents and physical agents, that is an agent in a display and

the physical robot. Current consensus is that embodiment is very important to make agents more

engaging, however, there has been little consideration of the role of novelty bias in that conclusion,
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that is, since most people have had very few interactions with robots, they consider interacting

with a physical agent more interesting than interacting ones with screen-based virtual agents. To

verify that, a holographic display will be used to show virtual agent A4, a 3D model of Plantroid

robot. Since most people have not interacted with holographic agents, this introduces a novelty

factor that might make research subjects feel more engaged while holding conversations with a

virtual agent. In order to increase engagement, only semantic language exchanges will happen

beteween the agents and research subjects. However, in order to not introduce prosody as an

experience-changing factor, the prosody selection system c1,ss – constant prosody – will be used

by all agents. Once again, to reduce order bias, the sequence on which research subjects will talk to

the conversation agents will be determined at random and hold a five exchange long conversation.

An example of how Phase 3 could happen is as follows:

• Selects A2, c1,ss, volunteer interacts for five free exchanges;

• Selects A4, c1,ss, volunteer interacts for five free exchanges;

• Selects A3, c1,ss, volunteer interacts for five free exchanges;

• Volunteer answers Godspeed questionnaire about agents

• Volunteer ranks most engaging agent.

6.3 Collected Data

For the experiment, user information will be stored in many different forms. At the beginning

of the experiment, a volunteer needs to fill two copies of the consent form, one which the research

subject will take home and another which will be kept in Mizuuchi Lab, in a locker drawer. After

that, it is necessary to fill a form about his/her personal information, specifically:

• Age;

• Gender;

• Country/Region of Origin;

• Mother Language;
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• Other Languages you Speak;

• If you live or have lived abroad, write where;

• Years living abroad.

Such form will be filled in the computer program that was developed fot the experiment. During

the experiment, audio of what volunteers say to the conversation agents and of the replies of the

conversation agents will be recorded by a microphone, while videos of the research subject s̓ facial

expressions will be recorder by an USB camera. After every interaction with a conversation agent

using a given prosody selection system, volunteers need to fill an adapted Godspeed questionnaire;

and after interacting with every prosody selection system, they need to rank which systems were

the most engaging, human-like etc. After speaking to every conversation agent, research subjects

need to answer a similar questionnaire, this time for ranking the conversation agents.
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Fig. 6.4: Godspeed scale questionnaire for evaluating the impression caused by the speech char-
acteristics of a prosody selection system.

6.4 Questionnaires

This appendix showcases the Godspeed questionnaires used for evaluating the different prosody

selection systems and the conversation agents and the phrasing used in the form for ranking the

same aforementioned prosody selection systems and agents.

6.4.1 Adapted Godspeed Questionnaire for Prosody Selection Systems

Research volunteers will receive a small paper card which looks like the one present in Fig-

ure 6.4 where they can evaluate their perception of the speech generated by a prosody selec-

tion system in the following scales: artificial-natural, unfriendly-friendly, unpleasant-pleasant,

unintelligent-intelligent, apathetic-responsive. Research subjects will be handed out an example

card on how to fill their card at the beginning of the experiment (also shown in Figure 6.4), which

they will be able to consult at any moment. The fields ”ID”, ”agent” and ”system” will be filled by

the researcher supervising the experiment after the volunteer has finished rating the prosody selec-

tion system, since the volunteers cannot know they will be talking with the same prosody selection

system in different conversation agents (even though they might figure that out by themselves, they

should not receive any confirmation in that regard, at least until the experiment is over).
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Fig. 6.5: Left. Card for ranking the enjoyment of talking to each prosody selection system. Right.
Example of how to fill such card.

6.4.2 Godspeed Questionnaire for Agents

Research volunteers will receive a small paper card which looks like the one present in Fig-

ure 6.5 where they can evaluate their perception of the conversation agent itself across distinct

prosody selection systems in the following scales: unfriendly-friendly, unpleasant-pleasant, unintelligent-

intelligent, apathetic-responsive, kind-unkind. Research subjects will be handed out an example

card on how to fill their card at the beginning of the experiment (also shown in Figure 6.5), which

they will be able to consult at any moment. The fields ”ID” and ”agent” are filled by the researcher

supervising the experiment after the volunteer has finished rating the interaction with the agent,

just to be consistent with how the system worked for rating the prosody selecting system.

6.4.3 Communication Systems Ranking

Participants will be asked to rank the performance of the prosody generation systems with which

they just finished interacting with using a card shown in Figure 6.6. They will refer to the system

as 1, 2 or 3, accordingly to the order on which they were used in the interactions with the current

conversation agent. The researcher supervising the experiment will then attribute the correct names

of the prosody selection systems after the volunteer hands out the card. While ranking the systems

regarding how enjoyable the interactions were, subjects can use the comparison symbols <, >

and =, to denote that the system on the left performed worse than the system on the right, that
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Fig. 6.6: Left. Card for ranking the enjoyment of talking to each prosody generation system.
Right. Example of how to fill such card.

the system on the left performed better than the system on the right and that the systems on the

left and right had comparable performance, respectively. Volunteers will also receive an example

card, shown in the right side of Figure 6.6 and explanation on how to rank the systems.

6.4.4 Agents Ranking

Participants will be asked to rank the performance of the conversation agents with which they

just finished interacting with using a card shown in Figure 6.7. They will refer to the agents as

1, 2 or 3, accordingly to the order on which they were used in the interactions. The researcher

supervising the experiment will then attribute the correct names of the agents after the volunteer

hands out the card. While ranking the agents regarding how enjoyable the interactions were,

subjects can use the comparison symbols<,> and=, to denote that the agent on the left performed

worse than the system on the right, that the agent on the left performed better than the system

on the right and that the agents on the left and right had comparable performance, respectively.

Volunteers will also receive an example card, shown in the right side of Figure 6.7 and explanation

on how to rank agents.
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Fig. 6.7: Left. Card for ranking the enjoyment of talking to each conversation agent. Right.
Example of how to fill such card.

6.5 Selected Semantic-Free Utterances, and Questions and their re-
spective responses

In the Talk to Kotaro Experiment, every Semantic-Free Utterance (SFU) was generated by a

Gibberish Speech (GS) generating algorithm, which caused every research subject to listen and

react to distinct utterances. This, while helpful for understanding the role of phone selection on

human impression, made analyzing how changing the prosody parameters impacts the impression

of participants difficult. This time, however, five fixed GS were generated beforehand and, thus,

every participant will react to the same SFU, allowing the researchers better analyze the role of

personal preferences and prosody changes in human impression.

The same principle applies for having users ask previously selected questions which will receive

semantic speech responses with the same text, so it is possible to betters study the effects of

different prosody parameters and of personal preferences.

This appendix will, then, list the GS in Subsection 6.5.1 and the questions and their respective

responses in Subsection 6.5.2
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IPA phones speed volume pitch valence arousal
baI"@"rìu:"leIb 150 100 45 0.05 0.2395

m,"a haTI
“
ri:"w"ETI 150 100 45 0.1079 0.3779

h,"a4t"A:ku: 150 100 45 0.1256 0.2048
@" S b a"l "Im l c g 150 100 45 -0.405 0.206

q d"o 150 100 45 -0.05 0.3974

Table 6.3: Pregenerated Gibberish speeches and their predicted valence/arousal values.

6.5.1 Previously generated Gibberish Speech

All Gibberish Speeches listed in this subsection were randomly generated and, for prosody se-

lection system c1,gs, were evaluated by GSIP and, thus, have an expected impression prediction

associated, allowing the researchers to compare with the actual impression displayed during exper-

iments. All gibberish text (in IPA), volume, speed, pitch, predicted valence and predicted arousal

are shown in Table 6.3.

6.5.2 Previously generated questions and their answers

The decision of having research volunteers asking selected questions and receiving selected re-

sponses from conversation agents has the same rationale of pre-generating the first five gibberish

speeches of the agents, as explained in Subsection 2.1.1. However, the decision of having three

defined question instead of five is in order to not let volunteers feel that their freedom was re-

stricted, since in the previous experiment phase participants could say anything the wished to the

robot. All question, listed in Table 6.4, are related to the plant which Plantroid takes care of, since

it is a neutral conversation topic that also gives purpose of existing to the conversation agents in

the eyes of volunteers. For the same reason, every answer is either neutral or positive, in order to

not negatively influence the participants’ perception of the generated speeches.
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Table 6.4: Pregenerated questions and their answers

Question Answer

What is the current temperature? The temperature in this
room is of 26 degrees Celsius.

How long until I need to water the plant? I estimate that you will need to water
the plant in two hours and fifteen minutes.

What is the salinity of the soil? The current salinity of the soil
is of 2 deci-Siemens per meter; within the safe range for your plant.
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7.1 Introduction

This chapter is dedicated to present the data obtained through the experiment explained in Chap-

ter 6, to analyze it and discuss the results.

7.2 Experiment setup Implementation

To test all 7 research Hypotheses H1,2,3,...,7, the experimental setup described in Chapter 6 was

implemented. During phases P1,2, volunteers engaged in brief open-ended conversations with

Kotaro and Plantroid Avatars and Plantroid robot. The Holographic display was present in the

table during the experiment, but it was kept turned of during first two phases to avoid distracting

the volunteers. This arrangement, however, forced participants to take a break between Phases P2

and P3, even when they did not wanted to do so, since it was necessary to turn on the holographic

display and initialize the holographic Plantroid control script.

The interaction screen, which was used to show Plantroid and Kotaro avatars was implemented

using Python and Kivy, appearing on a laptop computer’s screen to volunteers. The same was done

for the adapted Godspeed Scale questionnaire and Ranking questionnaires, the volunteers gad to

interact with the computer in order to evaluate the speech styles and the performance of the agents

themselves.

A picture of the actual experimental setup can be seen of Figure 7.1.

Volunteers had to keep changing the focus of their attention between the Notebook screen, the

robot and, during P3 only, the holographic display, which made tacking their faces efficiently a

little difficult, more than one camera should have been used for the experiment, considering that

participants had to shift their line of sigh and, thus rotate their heads frequently.

For Phases P2,3, all conversational agents employed the same GPT3-based chatbot (OpenAI’s

GPT-3 davinci model), whose responses were synthesized into speech using the same speech syn-

thesizer, eSpeak, and thus the only major difference between the agents is the level of physical

embodiment (for P2 and P3) and prosody selection system (for P2 only).

After having a conversation with an agent, participants had to fill out the Adapted Godspeed

Scale questionnaire (presented in Subsection 6.4.1) about the speech style (during Phases P1,2),

another one after having interacted all speech style for an agent (presented in Subsection 6.4.2),
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Fig. 7.1: text

rank the speech systems using the ranking questionnaire (presented in Subsection 6.4.4) finally,

volunteers had to rank them in order of preference using the ranking questionnaire described in

Subsection 6.4.4. Every questionnaire was filled in the notebook computer in the same Python

Kivy program.

All audio was recorded with a condenser microphone, and the speech-to-text task was performed

using Google’s speech-to-text API. Although the Plantroid robot has its own microphone, in order

to ensure equal performance for all agents, the robot was remotely controlled by the laptop com-

puter by a simple TCP socket server, as it has more powerful hardware, thus avoiding potential

delays in processing the audio data. The flow of the experiment is shown in Figure 7.3

7.2.1 Experiment limitations

The present experiment focuses during P1,2 on the prosody selection systems, but some subtle

differences between the agents might have had an impact larger than anticipated, such as: Kotaro

is an humanoid robot, while Plantroid is pet-like, the size difference between the real robot and

the avatars and the 3D model displayed in the holographic display. When interrogated about
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the experiment after its completion, some participants noted that they did not enjoy interacting

with the holographic display agent exactly because of its small size when compared with the real

robot or screen agent. The extent of such effects cannot be fully known, since there was not a

sliding scale of anthropomorphism and size to try and calculate how it impacts the performance

of conversational agents. The effects of size are not addressed in this thesis, but the effects of the

higher degree of anthropomorphism are partially addressed.

Moreover, regarding ranking the performance of the agents in Phase P3 it is possible that the

volunteer, having already had interacted with the Plantroid Avatar and robot for almost an hour,

had already a formed opinion about them, while they had to judge the holographic agent after

interaction.

In addition, the robot had its own speakers in its ears, which were quieter than the laptop speaker.

Also, some participants indicated that they didn’t enjoy interacting with the holographic agent

very much because of its small size, which may have caused some more negative reactions to

it. Finally, the conversations were open-ended, meaning that subjects could say or ask anything

to the GPT-3-based chatbot. This can be seen as a limitation of the experiment, as participants

were able to switch topics between agents, and the researchers acknowledge that a particularly

interesting conversation could lead participants to prefer one agent over the others. However,

when the participants were interviewed after the experiment, no participant mentioned that they

preferred one ECA over the other based on the topic of the conversation, as they were instructed

that they were dealing with the same AI.

Finally, it is a first-time interaction study and, thus, the results might not extend to continued

interactions, since familiarity also plays a heavy role on interpersonal relationships [80]. However,

even if that is the case the results still are useful, since it helps understanding first-time interactions

better and, for many cases, users might interact with a system only once.

Moreover, a bug happened in the Python Kivy program and, for 6 of the participants, Kotaro

did not show up in Phase P2, but none of the participants had noticed and still ranked Kotaro as

if they have had an interaction with it during the experimental Phase (except the last one); all

5 of them ranked it as the better performing agent. That error shows two limitations of using

the ranking scale: pre-conceived bias about the intelligence of agents based on their appearance

and that human memory is very faulty. The problem was fixed, but that interesting phenomenon
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Table 7.1: Adapted Godspeed Scale questionnaire for the Prosody Generation Systems.

S1 Artificial ⃝1 ⃝2 ⃝3 ⃝4 ⃝5 Natural
S2 Unfriendly ⃝1 ⃝2 ⃝3 ⃝4 ⃝5 Friendly
S3 Unpleasant ⃝1 ⃝2 ⃝3 ⃝4 ⃝5 Pleasant
S4 Unintelligent ⃝1 ⃝2 ⃝3 ⃝4 ⃝5 Intelligent
S5 Apathetic ⃝1 ⃝2 ⃝3 ⃝4 ⃝5 Responsive

shows the limitations of using a questionnaire after the interaction instead of using a metric that

can measure the enjoyment of participants during the experiment, such as the audio and video

recordings.

7.2.2 Adapted Godspeed Scale Questionnaire

The Godspeed Questionnaire Series is one of the most widely used human-robot interaction

questionnaires to measure how research subjects perceive various characteristics of the robot dur-

ing their interaction. It measures five essential HRI concepts – anthropomorphism, animacy, like-

ability, perceived intelligence, and perceived safety. Respondents choose a value between two

characteristics on a scale, e.g., unfriendly - friendly; lower values mean that the person perceives

the robot as more unfriendly, and higher values show that they think the robot is friendly. The

number of answers depends on how precise the researchers want the questionnaire to be, but at the

cost of making it more difficult for participants to choose an answer.

The internal consistency of the scales has already been demonstrated, but due to the time con-

straints of the experiment and the fact that none of the five available scales Sn, n= 1,2, . . . ,5 cap-

tured all the desired aspects of the interaction, we decided to combine certain items from different

Godspeed scales and thus generated two adapted Godspeed questionnaire, one for the Prosody

generation systems (shown in Table 7.2) and another one for the ECA (shown in Table 7.2).

Since this is a modification of the scales traditionally used, it is necessary to perform post-

hoc tests to verify its internal consistency. Cronbach’s alpha was used to measure the internal

consistency of both questionnaires for each phase, each ECA and each prosody selection system.

Results of said analysis are shown in Tables7.3 and 7.4:



— 第 7章： GSIP Experiment - Execution and Results — 129

Table 7.2: Adapted Godspeed Scale questionnaire for the ECA.

S1 Unfriendly ⃝1 ⃝2 ⃝3 ⃝4 ⃝5 Friendly
S2 Unpleasant ⃝1 ⃝2 ⃝3 ⃝4 ⃝5 Pleasant
S3 Unintelligent ⃝1 ⃝2 ⃝3 ⃝4 ⃝5 Intelligent
S4 Apathetic ⃝1 ⃝2 ⃝3 ⃝4 ⃝5 Responsive
S5 Unkind ⃝1 ⃝2 ⃝3 ⃝4 ⃝5 Kind

Most of he obtained internal consistencies were either good or acceptable, with only a few cases

were the internal consistency is questionable, which are highlighted in red in Table7.3; and all of

the instances involved either GSIP or Random selection of prosody, raising the question if the

participants could appropriately judge their impression of non-constant prosody.

For Phase P3 considering all agents, the obtained Cronbach’s alpha was 0.812, with a 95%

confidence interval of [0.738, 0.87]. For the Plantroid robot agent, the obtained alpha was 0.788,

with a confidence interval between [0.629, 0.892]. For the Holographic agent, the calculated alpha

was 0.893, with a confidence interval between [0.718, 0.918]. Finally, for the screen agent, the

alpha obtained was 0.807, with a confidence interval of [0.661, 0.902]. Thus, we can conclude

that the adapted questionnaire has sufficient internal consistency for this study, but that we need to

question the results obtained for GSIP and random prosody selection methods.

7.2.3 Ranking questionnaire

Besides the impression of the robot’s characteristics, we needed to measure which agent was

preferred by the participants, so a ranking questionnaire was created where users could enter sym-

bols >, < and = to indicate which agents they thought were better or equal to others. An example

of a response would be: robot > holographic = screen.

In this way, it was possible to see which agent was preferred by the participants and to calculate

the correlation between the rankings, the level of embodiment, and the users’ experience with

Robots in order to study the novelty preference and the level of embodiment in the participants’

preference.
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Table 7.3: Adapted Godspeed Scale questionnaire for the prosody generation systems internal
consistency test for Phases P1,2 and all subsets of combinations of agents and methods. Cα stands
for Cronbach’s α and CI for Confidence Interval, Robot stand for Plantroid robot, Screen for
Plantroid Avatar, rand for Random prososdy selection, and const for constant prosody.

Phase Agent Method Cα CI
All All All 0.828 [0.802, 0.852]
All Kotaro All 0.8504 [0.807, 0.887]
All Screen All 0.790 [0.734, 0.839]
All Robot All 0.836 [0.791, 0.874]
P1 All All 0.784 [0.738, 0.826]
P2 All All 0.748 [0.69 , 0.798]
P1 All const 0.821 [0.751, 0.877]
P1 All GSIP 0.724 [0.615, 0.811]
P1 All rand 0.794 [0.712, 0.859]
P2 All const 0.812 [0.734, 0.874]
P2 All GSIP 0.696 [0.569, 0.796]
P2 All rand 0.688 [0.555, 0.79 ]
P1 Kotaro All 0.791 [0.709, 0.857]
P1 Screen All 0.754 [0.656, 0.831]
P1 Robot All 0.801 [0.723, 0.864]
P2 Kotaro All 0.791 [0.709, 0.857]
P2 Screen All 0.754 [0.656, 0.831]
P2 Robot All 0.801 [0.723, 0.864]
P1 Kotaro const 0.822 [0.689, 0.91 ]
P1 Screen const 0.806 [0.657, 0.903]
P1 Robot const 0.837 [0.712, 0.918]
P1 Kotaro GSIP 0.767 [0.588, 0.883]
P1 Screen GSIP 0.638 [0.359, 0.819]
P1 Robot GSIP 0.749 [0.557, 0.875]
P1 Kotaro rand 0.783 [0.617, 0.892]
P1 Screen rand 0.765 [0.584, 0.882]
P1 Robot rand 0.818 [0.678, 0.909]
P2 Kotaro const 0.822 [0.689, 0.91 ]
P2 Screen const 0.806 [0.657, 0.903]
P2 Robot const 0.837 [0.712, 0.918]
P2 Kotaro GSIP 0.767 [0.588, 0.883]
P2 Screen GSIP 0.638 [0.359, 0.819]
P2 Robot GSIP 0.749 [0.557, 0.875]
P2 Kotaro rand 0.783 [0.617, 0.892]
P2 Screen rand 0.765 [0.584, 0.882]
P2 Robot rand 0.818 [0.678, 0.909]
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Table 7.4: Adapted Godspeed Scale questionnaire for agents internal consistency test for Phases
P1,2 and all subsets of combinations of agents and methods. Cα stands for Cronbach’s α and CI
for Confidence Interval, Robot stand for Plantroid robot and Screen for Plantroid Avatar.

Phase Agent Cα CI
P1 All 0.825 [0.755, 0.88 ]
P2 All 0.741 [0.632, 0.826
P1 kotaro 0.853 [0.74 , 0.926]
P1 screen 0.808 [0.661, 0.904]
P1 robot 0.827 [0.694, 0.913]
P2 kotaro 0.770 [0.545, 0.903]
P2 screen 0.705 [0.484, 0.85 ]
P2 robot 0.758 [0.572, 0.879]

7.2.4 Emotion Analysis

In order to estimate the emotional state of the participants while interacting with the conversa-

tional agents, all interactions were filmed using a 4k camera. The captured frames of each video

were analyzed using two deep neural networks, VGG-16 and ResNet-18 [163], trained on the

AffectNet dataset [164], to estimate the emotional state from the participants’ facial expressions

in the 2D valence-arousal emotion space [68]. However, such a network can only estimate the

valence (how positive the displayed emotion is) and arousal (the intensity of the emotion) of the

facial expression present in a single frame, resulting in an emotion time series, as shown by the

blue line graphs in Figure 7.4. However, since the estimates are quite noisy, a moving window

of 0.5 seconds is used to smooth the time series. Since it is difficult to capture the full emotional

dynamics of the valence and arousal curves with a single value, we initially suggested using the

integral of the valence and arousal curves, as it captures the overall emotional state over time, as

shown in the red area of the graphs in Figure 7.4.

However, such approach is valid only if the length of the generated utterances does not signifi-

cantly change, or else an utterance that is less impactful, but lasts longer, might be considered bet-

ter/worse than a more impactful, but briefer utterance. The objective is not measuring how much

emotion is stored in a video, like calculating the power of a signal. The goal is to understand what

emotions the utterances are generating and, thus, calculating the average emotion displayed in the

frames of a video and the variance might be a better approach, since it is a duration-independent
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metric. However, such approach is also not ideal, since a very strong positive/negative estimation

might skew the final average. Nonetheless, when different prosody systems that generates utter-

ances with different duration are involved; and given that the content of the utterances themselves

is not fixed, it is better to use the average of the emotion displayed in every frame, at least for

Phases 1 and 2.

7.3 Profile of participants

The experiment was conducted at the Tokyo University of Agriculture and Technology (here-

after referred to as TUAT) between February 13th and March 3rd of 2023, with a total of 28

participants, of which 27 could have their data used. Of these 27 participants, 14 were female

and 13 were male. All participants were recruited from TUAT students, with a mean age of 25.56

years (standard deviation: 4.05 years). The youngest participant was 19 years old and the oldest

was 33 years old. Of the total 27 participants, 14 had no previous experience with robots (level

0), 5 had little experience (level 1), 3 had intermediate experience (level 2), and 5 had a lot of

experience with robots (level 3). The nationality that had the most participants was Japanese, with

a total of 5 volunteers, and Malaysian was second with a total of 4 volunteers. Most participants

had some experience with pets, which is represented by a simple binary encoding, 0 implies that

the volunteer never had pets and 1 implies they have had experience with pets. Their regions of

origin, places of stay abroad and languages they are capable of speaking are listed in Table 7.5

7.4 GSIP experiment Phase 1 - Gibberish Speech

The first phase of the GSIP experiment was designed to test the following research hypotheses:

• H1 – speech generated by the proposed system is perceived as more human-like than speech

with constant prosody or with randomly generated prosody;

• H2 – speech generated by the proposed system generates more positive impression on vol-

unteers than speech with constant or random prosody patterns;

• H3 – the system could generate the desired impression in research subjects;
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Table 7.5: Profile of participants breakdown.

Region of Origin Total Language Total Where Abroad Total
Brazil 1 Indonesian 4 USA 1

Hong Kong (China) 1 Malay 4 Netherlands 1
China 3 Portuguese 1 India 1

Malaysia 4 Thai 3 United Kingdom 1
Thailand 2 Chinese 5 New Zealand 1
Myanmar 1 Cebuano 1 Australia 1
Mongolia 2 Burmese 1 Japan 20
France 1 Mongolian 1 Experience with
Ghana 2 Cantonese 2 Robots Total
Tunisia 1 Japanese 22 0 14

Philippines 1 Akan 2 1 5
Indonesia 3 French 2 2 22
Japan 5 Ga 1 3 5
Gender Total German 1 Experience with
Male 13 Ewe 1 Pets Total
Female 14 Mandarin 1 0 6

Age groups Total Filipino (tagalog) 1 1 21
18<age<20 2 Arabic 1
20<=age<30 20 Mongolian 1
30<=age<40 5 English 27
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• H4 – test subjects are more lenient with a non-humanoid looking avatar regarding semantic-

free speech and eventual bad selection of prosody.

• H5 – the system can be successfully used for physical robots;

If Hypothesis H1, and H2 are valid, we expect that agents using the GSIP prosody selection

system will have better evaluation in the adapted Godspeed Scale questionnaire then when using

other systems; and will be ranked higher than other prosody selection systems in the ranking

questionnaires. Regarding H3, we need to verify the error between the predicted impression and

the impression that was actually generated. Since the impression is modeled, in the context of this

work, as a vector that represents the immediate change in the emotional state of volunteers, the

error can be calculated as the norm of the difference vector between the actual emotion change

and the estimated emotion change; that is:

Ierror = ||
−−−→
Iactual−

−−→
IGSIP||

For H4, we need that the overall evaluation for random prosody selection and for GSIP-based

prosody selection of non-humanoid-looking agents are better than those of Kotaro robot with the

same systems and that the difference of perceived intelligence reduces less for such agents than

for Kotaro, when the system is changed from constant to the other two.

Finally, in order to H5 be true, Plantroid robot should have similar or better perception of

Plantroid avatar in the adapted Godspeed Scale questionnaire.

The analysis of the video recording can be used to estimate the impression caused by the agents

during the interactions and, thus, is considered to be a more accurate representation of the en-

joyment of the interactions, albeit it does not allow to gauge the perception of particular items

captured by the questionnaire.

With that in mind, it is necessary to analyze the responses to the questionnaires and obtain the

overall emotion caused by the utterances of the ECA.

7.5 GSIP experiment Phase 2 - Semantic Speech

The second phase of this experiment was designed mostly to investigate hypothesis H6. but also

to study how differently research subjects perceive the ECAs when they switch from Gibberish
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speech to semantic speech.

7.6 Godspeed scale questionnaires response analysis

In order to investigate the perception of participants about all prosody generation systems, re-

search volunteers had to evaluate how friendly, pleasant, intelligent, responsive and kind did the

speech generated using said systems. In order to gauge the overall perception, we obtain the me-

dian of the scales, considering all combinations that made sense, for example, investigating the

perception for all phases and systems for a given agent makes no sense for the questionnaire used

for measuring the perception of the systems; such analysis must be performed by the adapted God-

speed Scale questionnaire for the agents. The results for the systems are shown in Table 7.6 and

the results for the ECA are shown in Table 7.7.

From the data shown in Table 7.6, it is possible to notice that the generated speech for all

systems and agents is perceived as rather unnatural, since no combination of Agent and system

had an overall attitude over 3; and only Kotaro and the Plantroid robot achieves so while using

constant prosody. The same can be said for the perceptions of Friendliness and Pleasantness,

all with a rather neutral score of 3. However, for intelligence, the generated gibberish speech is

perceived as unintelligent, albeit as not completely so. However, all systems except the proposed

GSIP, received a good evaluation of responsiveness (score of 4), showing that volunteers noticed

the slightly longer delay between finishing speaking and the ECAs answering, a delay caused by

GSIP taking between 2 and 5 seconds to attribute prosody to the IPA phone inputs, which had

a neutral general perception of 3. It is possible to see that there is an improvement on overall

perception of the generated speech no matter the agent or the prosody selection system between

Phases P1 and P2.

Now, analyzing Table 7.7, once can see the perception about the agents themselves more di-

rectly. Kotaro was considered the least friendly in teh scenario where we consider all phases

together; but has the same neutral perception of other agents during P1. However, the percep-

tion of Plantroid Avatar and Plantroid Robot improve during phase P2, which does not happen

for Kotaro. That can be due to the fact that Plantroid is styled like a cute pet, while Kotaro is a

machine-like humanoid. No agent was considered to be unpleasant; and we can see that all agents

go from a neutral perception to good perception of pleasantness from between the phases. The
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Table 7.6: Median and Variance of the responses to the Prosody Selection System Adapted God-
speed Scale Questionnaire of phases P1,2 and all possible combinations of agents and prosody
selection systems

Phase Agent System Artificial/Natural (Un)Friendly (Un)Pleasant (Un)Intelligent Apathetic/Responsive
All All All 3.0/1.195 3.0/1.025 3.0/1.19 3.0/1.758 4.0/1.213
P1 All All 2.0/1.053 3.0/1.08 3.0/1.195 2.0/1.182 4.0/1.526
P2 All All 3.0/1.132 4.0/0.655 4.0/0.706 4.0/0.804 4.0/0.619
P1 All const 2.0/1.116 3.0/1.045 3.0/1.223 2.0/1.268 4.0/1.612
P1 All GSIP 2.0/0.989 3.0/1.068 3.0/1.16 2.0/1.102 3.0/1.525
P1 All rand 2.0/1.056 3.0/1.145 3.0/1.232 2.0/1.2 4.0/1.357
P2 All const 3.0/0.891 4.0/0.678 4.0/0.625 4.0/0.751 4.0/0.54
P2 All GSIP 3.0/1.095 4.0/0.539 4.0/0.592 4.0/0.92 4.0/0.755
P2 All rand 3.0/1.293 4.0/0.716 4.0/0.828 4.0/0.695 4.0/0.54
P1 kotaro const 2.0/1.103 2.0/0.866 3.0/0.949 2.0/1.37 3.0/1.738
P1 screen const 2.0/0.974 3.0/0.954 3.0/1.545 2.0/1.175 4.0/1.645
P1 robot const 3.0/1.294 3.0/1.282 3.0/1.226 2.0/1.342 4.0/1.46
P1 kotaro GSIP 2.0/0.794 2.5/0.894 3.0/0.978 2.0/1.095 3.0/1.655
P1 screen GSIP 2.0/0.962 3.0/1.225 3.0/1.355 2.0/0.918 3.0/1.466
P1 robot GSIP 2.0/1.262 3.0/1.145 3.0/1.12 2.0/1.342 3.0/1.575
P1 kotaro rand 2.0/0.906 3.0/0.98 3.0/0.978 2.0/1.175 4.0/1.38
P1 screen rand 2.5/1.138 3.0/1.095 3.0/1.466 2.5/1.165 4.0/1.595
P1 robot rand 2.5/1.134 3.0/1.226 3.0/1.226 2.0/1.342 4.0/1.182
P2 kotaro const 2.0/1.103 2.0/0.866 3.0/0.949 2.0/1.37 3.0/1.738
P2 screen const 2.0/0.974 3.0/0.954 3.0/1.545 2.0/1.175 4.0/1.645
P2 robot const 3.0/1.294 3.0/1.282 3.0/1.226 2.0/1.342 4.0/1.46
P2 kotaro GSIP 2.0/0.794 2.5/0.894 3.0/0.978 2.0/1.095 3.0/1.655
P2 screen GSIP 2.0/0.962 3.0/1.225 3.0/1.355 2.0/0.918 3.0/1.466
P2 robot GSIP 2.0/1.262 3.0/1.145 3.0/1.12 2.0/1.342 3.0/1.575
P2 kotaro rand 2.0/0.906 3.0/0.98 3.0/0.978 2.0/1.175 4.0/1.38
P2 screen rand 2.5/1.138 3.0/1.095 3.0/1.466 2.5/1.165 4.0/1.595
P2 robot rand 2.5/1.134 3.0/1.226 3.0/1.226 2.0/1.342 4.0/1.182
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Table 7.7: Median and Variance of the responses to the Adapted Godspeed Scale Questionnaire
for Agents of phases P1,2 and all possible combinations of agents and prosody selection systems

Phase Agent (Un)Friendly (Un)Pleasant (Un)Intelligent Apathetic/Responsive (Un)Kind
All All 3/0.982 4/0.916 4/1.269 4/1.31 4/0.947
All kotaro 2/1.086 3/1.063 3/1.133 3/1.705 4/1.349
All screen 3/1.078 3/0.908 3/1.263 3/1.793 4/1.191
All robot 3/1.335 3/1.063 3/1.12 3/1.771 4/1.124
P1 All 3/1.022 3/1.22 3/1.188 3/1.662 3/1.174
P2 All 3/0.739 4/0.491 4/0.485 4/0.585 4/0.625
P1 kotaro 3/0.906 3/1.194 3/1.262 3/1.335 3/1.226
P1 screen 3/0.906 3/1.2 2/1.22 3/1.834 4/1.294
P1 robot 3/1.318 3/1.335 2/1.102 3/1.895 3/1.042
P2 kotaro 3/0.605 4/0.471 4/0.471 4/0.706 4/0.81
P2 screen 3/0.769 4/0.385 4/0.533 4/0.584 4/0.456
P2 robot 4/0.782 4/0.598 4/0.48 4/0.535 4/0.72

perception of intelligence of the agents is rather low during P1, except for Kotaro avatar, which

has a neutral perception of 3. Such perception, however, increases during P2 for all agents, which

are now considered good. Responsiveness also goes from neutral to good for all agents between

the phases. During Phase P1, only Plantroid Avatar is considered to have a good kindness score,

while others are rather neutral; a perception that also improves to 4 in P2.

Thus, once can see that for the proposed adapted Scales, there are many advantages of using

semantic speech instead of gibberish speech for ECAs, without any obvious problems. However,

although that is not captured by the questionnaires, more than once the GPT-3-based chatbot that

was used for powering the conversation of all agents during P2 and P3 was very blunt and even

rude some times; which never happened for the Gibberish Speech, since it conveys no obvious

meaning. Some participants who seemed to be more extroverted had a laugh in such instances,

but more serious ones seemed not to enjoy it. This way, for future experiments, in order to better

understand what makes some users prefer on communication style to others, it is necessary to

obtain a personality profile such as the Big Five personality traits [179].

Such results validate previous understanding that Gibberish speech is less engaging than seman-

tic speech for actual conversations [56] and that humanoid-like ECA tend elicit a higher intelli-

gence expectation in users [180]. Two effects must also be noticed. First, the uncanny valley, that

is, that the perception on robots and other smart agents improves as it becomes more human-like

when the agents still rank low in anthropomorphism, but, once a certain anthropomorphism is
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reached, the perception worsens before it improves again [181]. That happens due to many fac-

tors, including the mismatch between the expectations of the capabilities of the agent and the actual

performance and that it might look like an ill person, which might instigate the self-preservation

instincts of users that will perceive the system as strange or creepy or dangerous and their choices

and actions will be judged more harshly [182]. The second effect is that the the context of the in-

teractions also dictate the perceived intelligence scores [183], but since all present agents had the

same role of an open-ended conversation agent, the greatest impacting factor on such perception

is probably the higher anthropomorphism of Kotaro. The Kotaro agent Avatar had a humanoid-

like shape, but did not blink or change its facial expressions, which, in the words of some of the

participants, was a little strange; and such factors may have contributed to the higher rating in

intelligence, but lower friendliness at the same time.

Regarding the higher friendliness rating of the physical Plantroid robot when compared to both

screen-based agents, that was also an expected result, since the agents with higher degrees of

embodiment tend to cause higher engagement in users [21, 22, 23, 24, 25] and, since the task at

hand was only conversation, it is natural that the robot was considered to be more friendly and

open.

7.7 Responses of ranking questionnaires

In order to measure not particular characteristics, but the overall enjoyment of the prosody

selection systems and of the agents themselves, the ranking questionnaires were proposed in order

to see general preferences. However, as previously mentioned, since some a bug in the program

caused some of the volunteers(ID numbers 17, 18, 19, 20, 21 and 27) to not Talk with Kotaro

during Phase P2, but still ranked it as their favorite agent, calls into question the validity of such

a measurement mechanism that depends on the memory of users across 30 exchange with a given

agent to rank the prosody selection system and 90 for the agents themselves, might not be a very

reliable method. Still, since the data was already obtained, it needs to be analyzed. For the

participants that did not talk to Kotaro in P2, however, their agent ranking data was disregarded;

only the prosody selection system rankings are taken into account for the analysis of the ranking

of P2. The number of 1st , 2nd and 3rd place rankings of each system, agent and phase combination

are shown in Table 7.8; and the ranking of the agents for Phases P1 and P2 are shown in Table 7.9.
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From such results, it is possible to see that the Constant Prosody System was considered to

be the best performing one, except for P1 when the Plantroid robot agent is considered, where it

was considered to have performed slightly worse than the Random prosody selection. Random

prosody selection system comes as the second place for P1 and third place for P2. Surprisingly

enough, GSIP was considered to yield a better performance for Semantic Speech; a purpose it was

not developed for. It did not outperform the random prosody selection system once for gibber-

ish speech, but overtook it in semantic speech. A suspicion is that that is due that GSIP, using

the Monte Carlo approach to select good prosody did not guarantee that the best prosody pattern

was selected and, at the same time, yielded less variety than the random prosody selection; which

might have played a role in it under-performing for gibberish speech, where more variety might

have been interesting, since the words have no meaning; but made it perform better than random

variations of acoustic prosody for semantic speech, where we expect some prosody patterns to

convey certain points, feelings etc; but in order to make such claims, more data about the par-

ticular opinions of volunteers would have been necessary; and it is a valuable lesson for future

experiments.

Regarding the agents themselves, Table 7.9 shows that the robot was the favorite agent of vol-

unteers in Phase P1, while the Kotaro avatar was considered to be the better performing agent in

Phase P2, which is an interesting result, given that it was considered to be the least friendly of

the agents. Volunteers were instructed to rank the agents in order of which they enjoyed the most

interacting with. and, thus, it was expected that the most friendly one would perform better, but it

seems that the higher perceived intelligence or the higher anthropomorphism level played a role in

such evaluation. Once again, without knowing the internal decision-making process of volunteers,

it is difficult to outline any conclusions.

Once again, it is necessary to remind the reader that, out of all three methods employed for

measuring the performance of the systems and agents, the ranking scale is expected to yield the

least reliable results, since the ranking only happens some time after the actual interactions have

happened, unlike the adapted Godspeed Scale questionnaires that ar answered just right after an

interaction is finished and the impression estimation from video, which allows estimating the

immediate reaction of volunteers to the speeches of the ECAs.
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7.8 Impression Estimation from Video

Using the same VGG-16-based and ResNet-18-based neural network architectures used in the

Talk to Kotaro experiment, and the considerations exposed in Subsection 7.2.4, the videos of

all ECA responses were analyzed and the emotional state et for every frame t was estimated,

yielding a time series of emotional state of the participants, out of which the average emotion was

calculated, yielding the results of Table 7.10. It must be noticed that the first 5 utterances in every

conversation of P1 were fixed utterances; and the first 3 responses of the ECA were fixed for P2,

the fixed column denotes if only the fixed utterances were used in the comparisons, in order to

allow for a more just comparison.

It is possible to see that albeit most of the average emotion is negative, P1 elicited emotions are

more negative that the ones caused during P2, since volunteers could understand what the agent is

saying and be more engaged in the conversation, instead of trying to figure out what the ECA is

trying to convey with its semantic free utterances.

Considering both phases, once again, Constant prosody had the overall best performance, fol-

lowed by GSIP and then by random prosody selection. Same results extend to Phase P1 but,

surprisingly, GSIP outperforms the Constant prosody and the random prosody methods. That is

a very interesting finding, given that the system was not developed to generate adequate prosody

for semantic speech but it might be the case that the observation of Section 7.7 might indicate

that some variation on prosody is better than none and better than a lot for semantic speech, but

more data would be necessary to investigate if that is really the case and, if so, to uncover possible

reasons.

Considering only the agents independently from Phase and prosody system, Plantroid robot had

the best performance, followed by Kotaro and then by Plantroid Avatar, in line with the results of

the Godspeed scale questionnaire for the agents in Phase P2, where Plantroid robot outperforms

other agents and Kotaro has less variance then Plantroid Avatar in the responses, even if the overall

attitude seems to be the same. Same results extend to P1 and P2.

Now, considering each system for every agent in the two phases, we can see that for every

interaction, the same patterns mentioned above apply for P1, with constant prosody being the best

performing and GSIP outperforming random selection for all ECAs. For P2, however, for each
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agent, Constant prosody seems outperform GSIP by a very small margin, except for Plantroid

robot, where GSIP has the best performance.

In order to verify if the same results can be seen on each individual volunteer, the three prosody

selection systems are ranked for each participant with usable data according to their performance.

Such automatic emotion estimation based ranking is somewhat similar to the ranking question-

naire, but does not suffer from ties and from human memory and post-hoc rationalization prob-

lems. The results for each participant are shown in table 7.11 and synthesized in Table 7.12.

From the results of the emotion estimation from video ranking analysis, one can see that Con-

stant Prosody has dominated for both Phases, with GSIP coming second, tying with random

prosody selection for phase P1 and outperforming it in P2.

Such results are more in line with the analysis performed in on the responses of the previous

questionnaires, as calculating the averages of the average emotion of each interaction might not

show the actual number of good quality interactions because a very good or bad one can skew the

results.

In order to analyze the accuracy of GSIP, it was necessary to compare the impression predicted

by the system and calculate Impression caused by all generated gibberish speech. To obtain the

caused impression, it is a matter of calculating the difference between the initial displayed emotion

and the final emotion and then calculate the norm of the difference bewteen the actual impression

vector and the estimated impression. Doing so, the average error was of 0.17; which is way better

than the value of 0.27 obtained during validation of the system during its training. What is more

impressive is that several nationalities that were not present in the initial Talk to Kotaro experiment

were present, but the system did not show an increase on the estimation error.

7.9 Results discussion

From the results obtained by analyzing the response to the questionnaires and the video samples,

it is possible to draw some conclusions about the initial research hypotheses.

From the Godspeed Scale Questionnaires alone, there is no support for H1 – speech generated

by the proposed system is perceived as more human-like than speech with constant prosody or

with randomly generated prosody. It seems to be on par with prosody generated by other systems
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for Gibberish speech; it only seems less responsive, and that perception do not extend to semantic

speech. However, regarding how natural the generated utterances are, GSIP performs worse than

constant and random prosody selection in P2.

Regarding H2 – speech generated by the proposed system generates more positive impression

on volunteers than speech with constant or random prosody patterns; from the results of the video

analysis, we can say that for Gibberish speech, the GSIP-based prosody selection system does

not generate a better experience than constant prosody, despite generating more positive emotions

that Random prosody. However, for semantic speech, GSIP seems to have a better average per-

formance, but, by breaking the performance down to a per-user basis, we get the same results of

P1.

For Hypothesis H3, GSIP successfully generated the desired impression on volunteers, even

outperforming the results obtained for training data. Since it is the first system of its kind, it

has, by default, the best human impression prediction performance, but it allows for automatically

verifying how much an utterance will change the emotional state of humans.

In order for H4 – test subjects are more lenient with a non-humanoid looking avatar regarding

semantic-free speech and eventual bad selection of prosody; to be true, volunteers would have had

to be more lenient while evaluating the perceived intelligence, pleasantness and responsiveness of

the more animal-like agent and the effect was quite the opposite, volunteers evaluated the pet-like

robots worse, showing that the intelligence evaluation is linked to the anthropomorphism degree

of the agent.

Since the GSIP-based prosody selction system achieved similar performance for the virtual

Plantroid Avatar and for the robot in P1 and even outperformed the Avatar in P2, the data seems to

support that the system can be successfully used in Physical robots, there seems to be support for

H5.

Regarding Hypothesis H6, it came as a surprise that, on average, GSIP outperformed constant

prosody selection and random in several instances, while it failed to do so for gibberish speech.

However, since H6 presumed that Hn, n = 1,2,3,4 would hold true, it is not possible to day that

there is support for it; nonetheless, it achieves better results other systems on average, but not on a

by-case basis.

However, it is important to notice that such results does not imply that GSIP is useless, but that
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using the Monte Carlo prosody generation approach did not yield good results. However, since

it has shown to be precise, it can be useful for pre-generating gibberish speech offline and then

using it to create a desired impression or, after improving speed, to really test more than only 10

prosody candidates.

Moreover, the system must be retrained with all the new gathered data, which is bound to

improve its performance. Such performance, along with the results of the analysis of the Talk

to Kotaro experiment data, however, hint towards a personalization route for prosody selection

systems, at least for gibberish speech.
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7.10 GSIP Experiment Phase 3 - a Study on the Effects of Embodi-
ment Level and Novelty Bias on human Impression of ECAs.

An agent can thus have different levels of physical embodiment [20]; some agents are just text

on a display or a voice that speaks to users, while others are robots fully capable of sensing and

interacting with the world around them. Since their main function always has a social component,

in the sense that they talk with humans, it is important to understand how the level of physical

embodiment relates to human perception. If this is properly understood, it is possible to design an

agent with sufficient embodiment level, since higher levels of embodiment tend to make an ECA

more expensive, but also allow the agent to physically interact with humans and its environment

[184].

Studies have already been conducted to investigate the relationship between physical embodi-

ment level and human engagement, human perception of ECA [21, 22, 185, 186], and how well

users perform certain tasks when interacting with agents of different embodiment levels [23, 24,

25]. However, there is a possibility that such results are due to novelty preference - the prefer-

ence for new experiences - which may have played an important role in these results. Previous

works, even when acknowledging this possibility, have not investigated the effect of novelty on

participants’ impressions and preferences.

Experiment phase P3 was designed to challenge the present understanding that is the higher

embodiment level that causes higher engagement and better performance. Thus, it is possible to

break H7 into the following hypotheses.

H7: Novelty, instead of embodiment level, is the defining factor in shaping: (a) engagement

level, (b) perception and (c) preference elicited by ECAs.

If hypothesis H7,a is true, we expect that the holographic agent will elicit emotions with higher

valence in volunteers with experience interacting with robots. If H7,b is true, we expect that there

will be a strong negative correlation between participants’ level of experience with robots and their

impressions of the robot agent; and a positive correlation for the Holographic agent. Finally, if

H7,c holds, we expect that for volunteers with higher experience with robots, the holographic agent

will be ranked higher than other agents.
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7.10.1 Godspeed scale questionnaire responses

In order to understand how physical embodiment and novelty shape human perception of ECAs,

and testing hypothesis H7,b, we need to compile the responses to the adapted Godspeed Scale

questionnaires (results shown in Table 7.13) and calculate the correlation between the responses

and the experience with robots across all embodiment levels. We can see that except for the

Friendliness of the Holographic agent (3, but only for female participants) and the Responsiveness

of the robot agent (5, for male participants), all agents received a good 4 rating in every scale. This

is also shown by the lack of significant correlations for the participants as a whole, since there is

not much difference in the perception of the characteristics of the agents.

However, if we separate the participants who had more experience with robots, levels 2 and

3, we see such a change in perception. While they maintain a mostly positive perception of the

screen agent (median of 4 on each scale), the robot has a lower perception of friendliness (median

of 3.5, mode of 3), while the apparent advantageous perception of responsiveness disappears.

To draw further conclusions, it is necessary to calculate Stuart-Kendall’s τC. Considering all

participants as a single group, no relevant correlation could be found between the level of embod-

iment and all questionnaire responses.

Considering subsets of participants to calculate the correlation between embodiment and vol-

unteer perception, we could find a strong negative correlation between the perception of friendli-

ness for male volunteers who had at least some experience with robots, obtaining a τC = −0.38

and a p− value = 0.046, that is, the more embodied, the less friendly they considered the agent

to be. For male volunteers with little experience with robots (level 1), there was a very strong

negative correlation between embodiment level and perceived intelligence, with τC = −0.88 and

p− value= 0.053, indicating they considered the more embodied agents less intelligent.

Regarding the correlation between the experience with robots and the impression of the char-

acteristics of the conversational agents, a strong negative correlation was found between the per-

ceived intelligence of all ECA and the level of experience with robots for male participants, with

τC =−0.38 and p− value= 0.002.

For female participants, a moderate correlation was found between the responsiveness percep-

tion of all ECA and experience with robots, with τC = 0.24 and p− value= 0.042.

When examining the correlation between gender and responses to the questionnaire, no signifi-
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cant correlation was found.

7.10.2 Agent ranking responses

In order to objectively know which agent was preferred by research participants, they were

asked to rank the three ECA in order of preference. The results of the questionnaire are compiled

in Table 7.14, where the results are also broken down by into the different levels of experience

with robots. As one can observe, the robot agent received the most first place evaluations and,

thus, is considered to be the best performing system considering the responses of all participants.

However, if we analyze the relationship with novelty, it seems that it did not perform so well

among participants who had previous experience with robots, receiving the same number of first

place evaluations as the screen agent for levels 1 and 3 of experience with robot; and actually

losing its first place among level 2 participants.

Calculating the Stuart-Kendall’s τC correlation coefficient between gender, experience level and

the classification given to each agent, we have obtained that, for male respondents, there is a

strong negative correlation between the experience with robot level and the ranking give to the

screen agent, with τC =−0.47 and a p−value= 0.049. That means that the higher the experience

with robots, the higher the likelihood of attributing 1st or 2nd place rankings to the screen agent.

7.10.3 Emotion Analysis from Video

In order to measure the engagement of volunteers while listening to the responses of the ECAs,

we estimated their emotional state from their facial expressions, to gauge how much they were en-

joying the interaction. Every reaction of the volunteers while listening to the ECAs was recorded

using a 4K video camera. Two deep neural networks, VGG-16 and ResNet-18 [163], trained on

the AffectNet dataset [164], were used to estimate the emotional state from the participants’ facial

expressions in Russel’s 2D valence-arousal emotion space [68] in each frame of the video record-

ings. However, such networks only estimate the valence (how positive the displayed emotion is)

and arousal (how excited a person is) of the facial expression present in a single frame, resulting

in an emotion time series. We have calculated the average emotion for each on the 405 videos
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of interactions with the agents and the average valence and arousal values for the interactions for

each group of participants are shown in Table 7.15.

From these results it can be seen that the holographic agent had the best performance for all

research subjects, since it had the least negative valence average. However, considering only the

volunteers who had no previous experience with robots, the robot agent had the best performance;

and the performance of the robot is even better in the group that had limited experience with

robots. However, for the more experienced participants, it is possible to see a steady decline in

the performance of the robot, as well as for the other agents, except for the holographic agent,

whose performance improves slightly and then deteriorates again. Finally, if we consider only the

subjects who had previous experience with robots, the screen agent had the worst performance,

while the holographic agent still had the best.

From the average emotion displayed in the interactions, it is possible to see that for all levels

of experience with robots, the holographic agent had a slightly better engagement than the robot

agent and performed significantly better than the screen agent. However, for participants with no

experience, the robot agent generated a higher engagement and the same tendency can be seen

for volunteers with little experience (level 1). However, for participants with level 2 and 3 of

experience, we can see that the holographic agent performed significantly better than others.

Since we obtained estimated the average emotion for every interaction, it is possible to calculate

the correlation between the level of physical embodiment and the average valence and arousal

of elicited by the interaction. No statistically relevant correlation could be found between the

experience with robots and average arousal. However, for the average valence, we found a weak

negative correlations between valence and the experience level with robots for the screen agent and

for the holographic agent (τc =−0.149, p− value = 0.021 and τc =−0.112, p− value = 0.047,

respectively). Moreover, a moderate correlation was found between valence and the experience

with robots for the robot agent (τc =−0.203, p− value= 0.001).

Now, for the correlation between embodiment level and average valence, we were able to find

a weak correlation between embodiment level and valence considering all participants with τc =

0.142, p− value = 0.001. If we consider only male participants, a weak correlation was found,

with τc = 0.107, p− value= 0.051. For all female participants, we found a moderate correlation

with τc = 0.202, p− value= 0.006.
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Considering the correlation between embodiment level and average valence for the participants

with a certain experience with robots levels, we found a weak correlation for all participants that

had no experience, with a τc = 0.151 and a p− value= 0.005. However, for participants that had

little experience with robots, we were able to find a very strong correlation between the average

valence and embodiment level, with a τc = 0.325 and p−value= 0.008. If we consider volunteers

by their gender, we can find significant correlation both for men and women for participants with-

out prior experience with robots (τc = 0.142, p−value= 0.031 and τc = 0.192, p−value= 0.055,

respectively). For men with other experience levels, no relevant correlation could be found. How-

ever, for female volunteers with experience levels of 1, 2 and 3, we found strong correlations, with

τc = 0.345, p−value= 0.015 , τc =−0.627,p−value= 0.013 and τc = 0.493, p−value= 0.051,

respectively.

7.10.4 Discussion

More important than showcasing the obtained data and the calculated Stuart-Kendall’s correla-

tion coefficient is interpreting the results of Phase P3 as to understand their implications regarding

hypothesis H7 and other interesting implications for the design of ECAs, which is done in the

present Subsection.

Emotion Analysis and engagement

First of all, regarding H7,a (novelty is the defining factor in shaping engagement level), we can

see from the results of the emotional analysis that, while the holographic agent performed better

than the robot and screen agents for the all participants and for participants with experience level

over 1, which seems to support H7,a. It is necessary to notice that, for participants that had no

previous experience with robots and for those with limited interactions (levels 0 and 1), the robot

agent outperformed the holographic one, suggests that when those agents are somewhat novel, the

embodiment level seems to be the most important factor. However, since we calculated the average

of the average emotion displayed in each interaction, the results can be skewed by samples with

very intense emotional response.

Thus, analyzing the calculated Stuart-Kendall correlation coefficients is a preferable way of
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investigating H7,a. For the average valence elicited by ECAs in the experiment, we found statisti-

cally significant correlations for both the experience level with robots and the embodiment level.

However, since the correlations between the experience levels were weak or moderate, showing

that while the experience with robot seems to have some effect on the engagement, there is not

support for it being the most defining factor in shaping it.

Specially because when we verify the correlation between embodiment level and the average

valence, we find weak correlation for all participants, weak for men only and moderate for female

volunteers. If we separate the volunteers accordingly to their experience level with robots, we

have found a strong correlation for volunteers with limited experience with robots (level 1), but

not for higher levels, except for female participants. However it is necessary to notice that levels

2 and 3 of experience with robots had a single female participant in each and, thus, such results

shows their personal preferences.

Such results suggest that both the embodiment level and novelty play a role in shaping the

valence of the volunteers in their interactions. Curiously enough, no significant correlation was

found between arousal and embodiment or experience with robots levels, suggesting that they do

not influence how much aroused the participants are from relaxation to excitement in an open

conversation setting.

Perception of the characteristics of ECAs

Regarding the Perception of the three ECAs, there was not much difference on the perception

between the agents; all agents receive a median rating of 4 for most of their characteristics, which

is shown by the lack of significant correlations between embodiment and experience with robot

levels and the perceived characteristics of the agents. However, there was a strong negative cor-

relation between the experience with robots of male participants and the perceived intelligence of

ECAs, while for female volunteer there was a moderate positive correlation between responsive-

ness and their level of experience with robots. This way, there is not enough support for hypothesis

H7,b, since only one characteristic was affected by the experience levels per gender. This is an in-

dication, however, that it does affect the perception, but not as strongly as expected. The negative

correlation between intelligence and experience with robots for male volunteers is in line with

previous research results, such as [187], which found that research subjects that had previously
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interacted with a NAO robot rated its intelligence lower than volunteers that had no previous expe-

rience. However, since no participant of our experiment had previously interacted with Plantroid,

our results suggest that this effect can carry out across different robots, that is, people that have

interacted more with robots are more aware of the limitations of currently available technologies.

Analyzing the most common answer among respondents, we can see that women considered

the holographic agent to be of neutral friendliness, but had a positive impression of other agents.

Men, on the other hand, had a more polarized opinion, as evidenced by the higher variance among

their responses. The robot agent had the most neutral friendliness and kindness responses, but was

rated high on the intelligence and responsiveness scale. For all respondents, the robot received the

highest score for responsiveness. That s very interesting, since the robot was certainly the least

responsive of the agents, since it always had a delay between listening and responding, since it

was controlled by the laptop through a socket server and that added a few milliseconds of delay,

which should not be noticeable. However, not only was it not noticed, but it caused the opposite

impression.

Preference of ECAs

If H7,c was to hold, participants with higher experience with robots were supposed to prefer the

holographic agent to the screen and robot agents. However, the fact is that the screen agent was the

preferred agent for users with experience levels 1 and 2 and tied with the robot agent for volunteers

withe level 3 experience with robots. Considering all participants as a whole, the robot agent was

the overall favorite, and the same result extends for the participants that had no previous experience

with robots, showing support again to the idea that when both the less and more embodied agents

are a novelty, humans will prefer the more embodied one. The only relevant correlation found was

between the ranking assigned by male volunteers to the screen agent and previous experience with

robots.

Preference for the screen-based agent, is in line with the findings in [186], where the authors

found that the robot agent had a harder time expressing emotions than a screen-based one, showing

that, for cases where a physical agent is not needed, a screen-based one can be a better choice.

Thus, no support was found for H7,c.

It is necessary to notice that some volunteers that did not prefer the holographic agent, when
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questioned about their choice after the experiment was over, pointed out that they had preferred

the robot agent because it was physical, while others said that they had preferred the screen agent

because it was bigger than others. Many pointed out that the small size of the looking glass display

was a decisive factor for them preferring one of the other agents.
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Fig. 7.4: Estimated valence time series (blue), the smoothed data (red line) and the integral of the
area under the smoothed emotion curve, calculated to capture the overall emotion of the video.
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Table 7.8: Total of first, second and third place classifications each system received considering
all possible combinations of Phase and ECAs.

Phase Agent System 1st 2nd 3rd

P1 All Const 54 20 4
P1 All GSIP 28 28 22
P1 All Rand 49 25 4
P2 All Const 52 13 4
P2 All GSIP 21 36 12
P2 All Rand 20 33 16
P1 kotaro Const 18 7 1
P1 kotaro GSIP 8 13 5
P1 kotaro Rand 16 8 2
P1 screen Const 19 6 1
P1 screen GSIP 8 10 8
P1 screen Rand 16 9 1
P1 robot Const 17 7 2
P1 robot GSIP 12 5 9
P1 robot Rand 17 8 1
P2 kotaro Const 15 3 1
P2 kotaro GSIP 6 11 2
P2 kotaro Rand 6 9 4
P2 screen Const 16 8 1
P2 screen GSIP 9 11 5
P2 screen Rand 7 12 6
P2 robot Const 21 2 2
P2 robot GSIP 6 14 5
P2 robot Rand 7 12 6

Table 7.9: Total of first, second and third place rankings received by each ECA during Phases P1,2.

Phase Agent 1st 2nd 3rd

P1 Kotaro 11 8 7
P1 Screen 13 9 4
P1 Robot 13 11 2
P2 Kotaro 11 6 2
P2 Screen 5 12 2
P2 Robot 9 4 6
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Table 7.10: Average estimated emotion for every system, agent and phase, where fixed denotes
that only the fixed Gibberish Speech and questions were analyzed.

Phase Agent System Fixed Avg (val, aro) Avg duration
P1 All All No -0.3171, 0.1385 0.3393
P2 All All No -0.2897, 0.1245 2.5983
All All Const No -0.2860, 0.1298 1.2482
All All GSIP No -0.3028, 0.1319 1.7750
All All Random No -0.3151, 0.1334 1.5467
All Robot All No -0.2704, 0.1378 1.5757
All Screen All No -0.3230, 0.1264 1.6279
All Kotaro All No -0.3163, 0.1303 1.2371
P1 All Const No -0.3031, 0.1359 0.2190
P1 All GSIP No -0.3226, 0.1406 0.4329
P1 All Rand No -0.3255, 0.1389 0.3654
P1 Kotaro All No -0.3236, 0.1402 0.3393
P1 Screen All No -0.3279, 0.1306 0.3374
P1 Robot All No -0.3171, 0.1385 0.3393
P1 Kotaro Const No -0.3151, 0.1364 0.2191
P1 Kotaro GSIP No -0.3172, 0.1342 1.4577
P1 Kotaro random No -0.3255, 0.1401 0.3606
P1 Screen Const No -0.3071, 0.1339 0.2185
P1 Screen GSIP No -0.3383, 0.1323 0.4341
P1 Screen random No -0.3385, 0.1255 0.3600
P1 Robot Const No -0.3031, 0.1359 0.2190
P1 Robot GSIP No -0.3226, 0.1406 0.4329
P1 Robot random No -0.3255, 0.1389 0.3654
P1 All Const yes -0.2805, 0.1362 0.1938
P1 All GSIP yes -0.3051, 0.1423 0.4236
P1 All Rand yes -0.3202, 0.1413 0.3340
P1 Kotaro All yes -0.3198, 0.1423 0.2885
P1 Screen All yes -0.3271, 0.1368 0.2884
P1 Robot All yes -0.3137, 0.1393 0.2893
P1 Kotaro Const yes -0.3101, 0.1360 0.1735
P1 Kotaro GSIP yes -0.3143, 0.1294 1.2989
P1 Kotaro random yes -0.3137, 0.1475 0.3088
P1 Screen Const yes -0.3089, 0.1403 0.1720
P1 Screen GSIP yes -0.3327, 0.1388 0.3909
P1 Screen random yes -0.3396, 0.1313 0.3030
P1 Robot Const yes -0.2971, 0.1365 0.1725
P1 Robot GSIP yes -0.3210, 0.1398 0.3838
P1 Robot random yes -0.3229, 0.1416 0.3106
P2 Const All no -0.2833, 0.1231 1.8769
P2 GSIP All no -0.2828, 0.1231 3.1219
P2 Rand All no -0.3039, 0.1275 2.8135
P2 Kotaro All no -0.3071, 0.1179 2.3698
P2 Screen All no -0.3200, 0.1217 2.7552
P2 Robot All no -0.2897, 0.1245 2.5983
P2 Kotaro Const no -0.3009, 0.1186 1.6752
P2 Kotaro GSIP no -0.3172, 0.1342 1.4577
P2 Kotaro random no -0.3191, 0.1132 2.6776
P2 Screen Const no -0.3110, 0.1253 2.0774
P2 Screen GSIP no -0.3172, 0.1166 3.3045
P2 Screen random no -0.3325, 0.1228 2.9386
P2 Robot Const no -0.2833, 0.1231 1.8769
P2 Robot GSIP no -0.2828, 0.1231 3.1219
P2 Robot random no -0.3039, 0.1275 2.8135
P2 All Const yes -0.2698, 0.1264 1.5608
P2 All GSIP yes -0.2719, 0.1213 2.5655
P2 All Rand yes -0.2906, 0.1275 2.3870
P2 Kotaro All yes -0.2783, 0.1130 1.9249
P2 Screen All yes -0.3121, 0.1308 1.8075
P2 Robot All yes -0.2676, 0.1247 1.8459
P2 Kotaro Const yes -0.2890, 0.1151 1.2183
P2 Kotaro GSIP yes -0.2907, 0.1285 1.2293
P2 Kotaro random yes -0.2924, 0.1226 2.1419
P2 PScreen Const yes -0.3318, 0.1419 1.5784
P2 Screen GSIP yes -0.3139, 0.1215 2.0349
P2 Screen random yes -0.2864, 0.1259 1.8758
P2 Robot Const yes -0.2624, 0.1266 1.3679
P2 Robot GSIP yes -0.2639, 0.1184 2.1884
P2 Robot random yes -0.2770, 0.1291 2.0217
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Table 7.11: Ranking of the performance of each system according to the average emotion esti-
mated from the video camera for all participants who had usable data, where G is GSIP, R is
random and C is constant.

ID Phase 1st 2nd 3rd

5 P1 R G C
5 P2 C R G
6 P1 C G R
6 P2 G R C
7 P1 R C G
7 P2 G R G
8 P1 C R G
8 P2 G C R
9 P1 C G R
9 P2 C G R
10 P1 G R C
10 P2 C R G
11 P1 C R G
11 P2 G C R
12 P1 R G C
12 P2 R C G
13 P1 G R C
13 P2 R G C
14 P1 G R C
14 P2 C R G
15 P1 C R G
15 P2 C G R
16 P1 R C G
16 P2 G R C
17 P1 R C G
17 P2 G R C
18 P1 C G R
18 P2 G R C
19 P1 C R G
19 P2 C R G
20 P1 R C G
20 P2 C G R
21 P1 C G R
21 P2 R C G
22 P1 G R C
22 P2 G C R
23 P1 C G R
23 P2 C G R
24 P1 G C R
24 P2 R C G
25 P1 C G R
25 P2 C G R
26 P1 R G C
26 P2 C R G
27 P1 G C R
27 P2 C R G
28 P1 G R C
28 P2 C R G
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Table 7.12: Total of first, second and third place rankings for each user obtained through teh video
estimation analysis.

P1 1st 2nd 3rd P2 1st 2nd 3rd

GSIP 7 9 8 8 6 11
Random 7 9 8 4 1 8
Constant 10 6 8 12 6 5

Table 7.13: Results of the adapted Godspeed scale questionnaire (median/mode/variance), where
A=all, F=female, M=male, R=robot, H=holographic and S=screen.

(Un)Friendly (Un)Pleasant (Un)Intelligent
Apathetic/
Responsive

(Un)Kind

R 4/4/0.76 4/4/0.46 4/4/0.94 4/5/0.6 4/4/0.58
A H 4/4/0.66 4/4/0.62 4/4/0.72 4/4/0.67 4/4/0.76

S 4/4/0.85 4/4/0.42 4/4/0.5 4/4/0.51 4/4/0.52
R 4/4/0.68 4/4/0.46 4/4/0.53 4/4/0.53 4/4/0.53

F H 3/3/0.88 4/4/0.59 4/4/0.59 4/4/0.53 4/4/1.08
S 4/4/0.95 4/4/0.53 4/4/0.38 4/5/0.68 4/4/0.69
R 4/3/0.91 4/4/0.5 4/5/1.47 5/5/0.73 4/3/0.64

M H 4/4/0.41 4/4/0.64 4/3/0.9 4/4/0.83 4/4/0.47
S 4/4/0.81 4/4/0.33 4/4/0.64 4/4/0.36 4/4/0.36
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Table 7.14: Responses of the ranking of the agents according to the experience with robots of
volunteers.

Everyone Robot Holographic Screen
1st 14 9 12
2nd 9 8 9
3rd 3 9 4

Experienced-3
1st 3 2 3
2nd 1 1 1
3rd 0 1 0

Intermediate-2
1st 1 0 2
2nd 1 2 0
3rd 0 0 0

Beginner-1
1st 2 2 2
2nd 1 2 2
3rd 2 1 1

No experience-0
1st 8 5 5
2nd 6 3 7
3rd 1 7 3

Table 7.15: Averages of the average emotional response elicited by interacting with each ECA in
terms of valence and arousal for each level of experience with robots.

Screen agent Hologram agent Robot agent
Exp lvl valence arousal valence arousal valence arousal
All -0.31/0.04 0.13/0.01 -0.23/0.05 0.13/0.01 -0.24/0.06 0.13/0.01
0 -0.29/0.04 0.14/0.02 -0.21/0.05 0.12/0.01 -0.2/0.06 0.13/0.01
1 -0.3/0.05 0.15/0.01 -0.33/0.01 0.24/0.01 -0.16/0.06 0.15/0.01
2 -0.39/0.01 0.14/0.0 -0.19/0.06 0.14/0.0 -0.39/0.01 0.14/0.0
3 -0.36/0.03 0.09/0.01 -0.28/0.07 0.09/0.01 -0.4/0.04 0.11/0.01
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8.1 Introduction

In the Agriculture 4.0 paradigm, the latest technological advances in fields such as internet

of things , big data, machine learning, remote sensing and precision farming are put together in

order to optimize crop yield and quality, while minimizing the environmental impact, costs and

intensiveness of labor ([28]). Moreover, given the current trend of urbanization ([29, 30]) and

that many countries have an ageing population ([31]), the reduction of the available workforce

and of the average farm was only a natural, albeit perilous, outcome ([28, 29, 32]). In that sense,

robotics is expected to play a central role in future of farming due to its resource saving, precision

improving and labor saving potential ([28]). Interest on agrobots (agricultural robot) research has,

thus, only grown in the last few decades ([33]).

With the reduction of available farmland, greenhouse farming ([29, 33]) and urban agricul-

ture ([34, 32, 35]) appear as very labor intensive solutions, which require precise resource manage-

ment. Research on IoT, big data machine learning, AI-assisted decision-making systems address

the resource management aspect ([36]). The original Plantroid (plant droid) research ([26, 37]),

and by extension this present work, are inserted in the corpus of robotics-based labor-saving solu-

tions research. However, whereas previously developed Plantroids , hereby referred to as Plantroid

Omni ([26]) (shown in Figure 1.1a) and Plantroid mini ([37]) (shown in Figure 1.1b) only address

the labor intensive problem of carrying plants into and out of sunlight in smart-greenhouses and

plant factories; the novel Plantroid v.3 (shown in Figure 1.1c) also takes care of monitoring the

soil of the plant, information management and communication.

The last function of the novel Plantroid acknowledges the fact that, while Robots and AI might

substitute human labor in certain conditions ([38, 39]), it is not expected to happen in the near fu-

ture and, thus, robots are expected to work side-by-side with human workers ([40]). This way, the

robot needs to be able to competently communicate with workers, which requires understanding

human verbal and non-verbal communication ([41, 42]). Its pet-like appearance, as seen in Fig-

ure 8.1 was chosen to make the robot appealing ([43]) for home-owners who might want a house

companion that also helps taking care of potted plants.

Previous Plantroid versions required an external camera for environment navigation and, most

importantly, for performing its main task of finding sunlight or shadow, accordingly to the need
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(a) 3/4 view of the novel Social Plantroid.

(b) Front view of the novel Social Plantroid.

Fig. 8.1: Novel Social Plantroid.

of the plants they carried. The novel Social Plantroid has two cameras, one gray scale OMRON

B5T-007001-010 ([44]) , used for human detection, emotion recognition and sunlight detection

and an Adafruit MLX90640 IR Thermal Camera ([45]) for sunlight detection.

This way, the novel Social Plantroid was developed to be a Human-Robot Interaction research

platform and an agrobot research platform. It addresses the problem that doomed many social

robots to fail as products: the lack of perceived utility by customers ([46]). It is, to the knowledge

of the authors, the first open-source agricultural robot with a social function. Another novelty

presented in this paper is a simple, but effective, sunlight-seeking algorithm which requires no

external cameras.

8.2 A Novel Plantroid

The development of Social Plantroid expands the capabilities of the other Plantroid versions

in the navigation, vision and social aspects, albeit the swarm capabilities are severely reduced
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when compared to Plantroid mini. It was completely built from the ground up without taking

any design elements from its predecessors. This way, the developed systems can be split first in

hardware (Subsection 8.2.1) and software (Subsection 8.2.2) categories and those categories can

be subsequently subdivided into subcategories.

8.2.1 Hardware

The hardware of the Social Plantroid was designed with simplicity and sturdiness in mind, al-

lowing easy reproduction by users and other researchers who possess a 3D-printer, while enabling

it to carry heavy loads while being water resistant. It was designed to be water resistant because

accidents are expected to happen while the the plant carried by Social Plantroid is being watered.

Moreover, if the robot is being used outside, it may also face rain or move over water puddles. The

development of Plantroid was done with modularity in mind, so, while the mechanical components

(presented in Subsubsection 8.2.1) were developed to accommodate the embedded electronics, the

board electronic components (presented in Subsubsection 8.2.1) were chosen to meet the necessi-

ties of the mechanical systems.

Mechanical Systems

The Mechanical systems of Social Plantroid consist of the structures of the robot which are not

embedded electronics themselves, being responsible for allowing the robot to navigate, to protect

the electronics from environmental dangers, to carry plants and to interact socially with humans.

Such system, subdivided into social, navigation and support components is show in Figure 8.2.

The Social components are the robot’s head (shown in Figure 8.3), which houses its audiovisual

components and presents an animal-like appearance, in order to be more appealing to users, and

an 1 degree of freedom (DOF) neck (shown in Figure 8.4), which houses a servo, supports the

head and allows many wires to pass from the inside of the robot’s body to its head.

The head consists of 8 parts: the frontal face plate (i), two frontal ear plates (ii,iii), the main

head back (iv), the back part of the ears (v, vi) and the two head supporting structures (vii, viii).

The ears and the remainder of the head were designed as separate structures due to the maximum

part size that the available 3D printers could print. If a large enough 3D printer is available, they

can be printed together.
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Fig. 8.2: Social Plantroid ’s mechanical systems: social components highlighted in blue, naviga-
tion components highlighted in red and support components highlighted in grey.

Fig. 8.3: Social Plantroid ’s Head frontal and back views.

Fig. 8.4: Social Plantroid ’s Neck Left and Right views.
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Fig. 8.5: Social Plantroid ’s Left servomotor holder.

Fig. 8.6: The double bearing design of the Social Plantroid .

The Neck consists of 3 parts: base plate & neck (i), servo case (ii) and servo cover (iii). the servo

case was printed separately from the base plate & neck for the sake of saving support material, but

otherwise can be printed as a single entity. Moreover, if other researchers or users desire to use a

different servo, the system becomes easier to modify.

Regarding the navigation components, this classification is somewhat arbitrary, because without

the main body, those parts would be unable to make the robot move. However, since the robot

could still exist as an static entity without them, it somewhat be fair to classify them as such. They

consist of servomotor supports, bearings, bearing supports, steel axles, wheels, wheel covers and

a ball caster.

The servomotor supports (shown in Figure 8.5)are responsible for securely keeping the smart

servos who drive the wheels of the Social Plantroid attached to its body, while also serving as

support for the lead-acid battery which provides the energy necessary to run the embedded elec-

tronics.

The bearings are used in order to reduce friction between the axles and other navigation com-

ponents, which extends the life of the smart servomotors that drive Social Plantroid . A pair of

8mm ball bearings are used for each wheel. One is held outside the robot’s body by a bearing

support piece and the other is held to the respective wheel cover by another bearing support. Such

double bearing architecture, shown in Figure 8.6 was designed in order to offer greater support to

the axles and, consequently, to the wheels.
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Fig. 8.7: Social Plantroid ’s wheel axle.

Fig. 8.8: One of the wheels of the Social Plantroid and its components.

The axles themselves (shown in Figure 8.7) consist of a pair of 80mm long stainless steel shafts

whose diameter varies along its body. The initial diameter is of 3mm and the, after 20mm, the

diameter becomes 10mm. There is also a 10mm long and 2mm deep key-hole in its middle, in

order to prevent a wheel with a key from moving from its intended position.

The wheels of the Social Plantroid (shown in Figure 8.8) have a 90mm diameter and are 10mm

thick. They were 3D-printed in tough PLA and, thus, works quite well in rough surfaces with

small irregularities. However, for very smooth surfaces, it is better to 3D-print the external portion

of the wheel in rubber or other material with a higher friction coefficient.

A wheel consists of three parts: the wheel itself, the key axle support and the bottom axle

support. After the axle supports are glued to and axle with the key inserted into the key hole of the

axle, the supports are glued to the wheel, which cannot slip anymore. If the tolerance between the

parts is sufficiently small, no glue is necessary, but printing the parts with higher tolerance allows

for easier assembly.

Above and besides the wheels are the wheel covers which are responsible for three functions:

supporting the wheels by holding the server, supporting the solar-panel holders and protecting

the whole system from any dropped water. Finally, a ball caster is used for allowing the Social

Plantroid to navigate with only two servomotors providing differential drive. A commercially

available ball caster can be used or 3D printed, accordingly to the resources available.

Joining all the other systems and protecting the embedded electronics, the support system con-
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sists of 7 components: three body sections (i, ii, iii); a front cover plate(iv) and a back cover plate

(v) and two solar panel holders (vi, vii).

The body of the robot was designed as a box-like structure in order to provide a good and stable

surface in which a plant can be safely carried, while providing maximum internal volume for the

embedded electronics and other mechanical components. It is divided in 3 sections due to the

maximum height that available 3D-printers are able to print. The body of the robot has many

holes for bolts, nuts and recessions so the servo holders, front and back covers and wheels covers

can be held at their intended positions.

The robot’s body features walls with a thickness of 5mm. However, it is possible to reduce this

thickness to conserve materials. To enable this, the bottom of the body includes borders (shown in

Figure 8.6) that facilitate the installation of a metal, wood, or acrylic plate. This plate serves the

purpose of preventing the body from twisting.

As sensors are required to monitor the soil of the plant being carried by Plantroid, they need

to transmit information to Plantroid’s board computer and, while that could be done by Wi-Fi or

Bluetooth, the way which saves most energy is by using a physical connection between the board

computer and the plant. For that reason, there is a circular hole with 20mm diameter at the top of

Social Plantroid ’s body. Such hole is covered by the pot, making it water resistant when a silicone

adhesive is applied.

The front plate is necessary to completely enclose the internal components inside the body of

the robot. It is held in place by two screws and, while it is recommended to apply a silicone

adhesive, tests under the rain have shown the robot to be water resistant if the tolerance between

the front plate and the body is small enough.

The rear plate is used to give access to the battery, power switch and the rear screws of the smart

servomotor holders, since it might be difficult to do so once all parts are assembled in place. The

part was designed to be smaller in order to be more water resistant than the front cover, but it

can be made larger if easy access is considered a priority over water resistance by researchers and

users. It is also held in place by two screws and, once again, it is recommended to be sealed with

silicone adhesive to enhance the water resistance, but Plantroid has shown to be resistant against

rain without such additional protection.

Finally, the solar panel holders were made out of 1mm thick aluminum plates, which were
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Fig. 8.9: Social Plantroid ’s Electronic Systems

bent at a 60o degrees angle. Aluminum was chosen as the material of choice for due to its great

corrosion resistance in non-acidic water and to its ductility, since it allows for slight adjustments

of the angle of the solar panel being held.

The mechanical design of Social Plantroid still has some room for improvement, but experi-

ments have proven that is a simple, albeit effective design. The many holes allow for easy instal-

lation of new accessories for extending Social Plantroid ’s capabilities.

Electronic Systems

The embedded electronics of Social Plantroid were selected among off-the-shelf components in

order to facilitate reproducibility and increase modularity. The electronic systems are comprised

by five subsystems, shown in Figure 8.9: Energy System (i), Board Computer (ii), Audiovisual

system (iii), Sensor System (iv) and Movement System (v).

Every electronic system is powered by the energy system, which consists of a 12V 5Ah lead-acid

battery, a solar charge controller and a pair of 5W 12v solar panels. The Battery, the solar panels

and the step-down buck converter are attached to the solar charge controller (phocos CML 12/24V

20A). The solar charge controller protects the battery from excessive discharge, overheating and
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stops charging when the battery is full. However, since the solar panels are low-power, they cannot

charge the battery if the robot is in full operation; they only slow down battery depletion rate. The

step-down buck-converter provides 5V tension for components that require lower voltage, while

components which require 12V, such as the smart servomotors, the integrated soil sensor and the

LCD display are directly connected to the input of the buck converter.

Social Plantroid ’s Board computer is the brain who coordinates its operation, being responsible

for both the agricultural and social sides of the robot. A Raspberry Pi 4 model B with 8GB of RAM

is employed for that role. The aforementioned single-board computer was chosen for its compact

size, availability of GPIO pins, enough USB2.0 and USB3.0 ports, Bluetooth, Wi-Fi, HDMI port

and enough computing power for running its software. Any other single-board computer can be

used for its role as long as it provides enough computing power and internet connectivity.

The audiovisual system is responsible for the vision of the robot, capturing speech of users,

making sounds and displaying the facial expressions of the robot among other visual information.

This system is, thus, the most important one for the social side of the Social Plantroid , besides

the Board Computer. A 7-inch hdmi display is used to show a cat-like face and to display other

important information, whenever Plantroid is requested to display data about the plant it carries.

The loudspeakers are connected to the board computer through USB, as is the microphone. These

three components are essential for Social Plantroid ’s conversation engine, since they allow it to

listen to users, estimate their emotional state from audio, respond and display emotions. However,

in order to better estimate the internal state of users, being capable of reading non-verbal cues such

as facial expressions is very important. For that, an OMRON B5T-007001-010 OKAO VISION

USB camera is connected to the embedded computer. The OKAO vision USB module estimates

how positive the emotion being displayed by humans is (valence) and is capable of classifying

it into one of five emotions: neutral, happiness, surprise, anger and sadness. Additionally, the

grayscale 240× 320 image captured by the OKAO vision camera is used for robot navigation,

allowing the embedded computer to process it in order to detect sunlit or shadowy spots. Moreover,

to help the robot detecting the hottest spots in the floor, a 24×32 Adafruit MLX90640 IRthermal

camera was added to the robot; being the only component of the audiovisual system that plays no

social role.

By combining the images provided by the audiovisual system cameras, the embedded computer
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is capable of determining the location where the robot needs to head to; and the movement system

is responsible for doing so. A pair of endless turn Dynamixel AX-12A smart servomotors are

used to power the wheels and a 20Kg/cm Lobot servomotor is installed in the neck, allowing the

robot to look upwards to hold eye contact with humans and look downwards to detect sunlight and

shadow, also providing one additional degree of freedom for bodily language.

Finally, in order to monitor the quality of the soil of the plant currently being carried by the

Social Plantroid , many sensors were added to allow the robot to measure some of the most impor-

tant components that allow predicting the health of the plant. A capacitive soil moisture sensor, a

TMP36 temperature sensor, three 10KΩ photoresistors and an integrated smart soil sensor, capa-

ble of measuring the concentration of Nitrogen, Phosphorus and Potassium, EC salinity and pH

of the soil. Every sensor, except the integrated smart sensor are connected to an Arduino Nano,

which connects to the embedded computer through USB. The integrated sensor is connected to the

Raspberry Pi through a RS485-USB converter. Since an Arduino Nano cannot measure current, it

is necessary to create a voltage divider for the photoresistors, so it can measure the difference of

potential between an 1kΩ resistor and the ground. Normally, a 10kΩ would be used, but since the

resistance curve of photoresistors are logarithmic, the obtained sensor is not very sensible to more

intense sunlight. However, by using a 1kΩ resistor, the sensor becomes more sensible to intense

sunlight, in exchange for having low precision in the dark. However, since the Social Plantroid

measures light intensity mostly during the day, it does not need high resolution for low-light and,

thus, the 1kΩ resistor configuration was chosen.

With the hardware presented in the two previous Subsubsections, a completely assembled Social

Plantroid has a the performance and characteristics described in Table 8.1

8.2.2 Software

With the hardware developed, it was necessary to make it work as a robot, that is, to be pro-

grammable to perform certain tasks. In order to do so, a Raspberry Pi 4B with 8Gb of RAM

was chosen to act as the robot’s board computer, due to its small size and adequate computational

power for the necessary tasks. All code was developed in Python 3 for the ROS2 framework,

allowing to use its node structure to obtain greater flexibility, modularity and code integration for



— 第 8章： Development of the new Social Plantroid — 171

Table 8.1: Performance of the Social Plantroid . All characteristics were measured without any
additional.

.

Metric Value
Total weight 5.35kg
Maximum linear speed 0.2m/s
Maximum rotational speed 1.9rad/s
Maximum inclination 20o

Maximum movement noise 78dB
Maximum speaking noise 91dB
Battery life (in the dark) 4h
Battery life (strong sunlight) 12h

many sensors.

A ROS2-based framework

ROS 2 was chosen due to its greater speed when compared with previous ROS1 and in order to

allow the development of an open-source and modular source code, allowing other researchers to

reuse Plantroid’s code as a framework for future social robots since until now there are no other

ROS2 social robotics frameworks. Existing frameworks are for ROS1 but since ROS1 will have

its development ended, it will not be further update for vulnerabilities, not receive package update

for new peripherals, among many other problems.

Since ROS2 maintains a node structure where the different nodes work in parallel and commu-

nicate with each other, this allows for greater flexibility and modularity. All of Social Plantroid

software was developed with such idea in mind. There is a central main script which manages the

routines of Social Plantroid and communicates with every other node whenever necessary, albeit

the child nodes also communicate among themselves too. The node structure is as follows:

• MainNode: central node that controls the routines of the robot, taking care of communica-

tion, storing and nootifying users of problems, taking measurements of the soil parameters

from time to time and starting the navigation routines whenever necessary to the plant’s

needs.
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• SensorServer: node responsible for measuring the sunlight levels and the salinity, pH, quan-

tities of Sodium, Potassium and Nitrogen, temperature and soil moisture levels. It can also

be expanded to interface with other sensors as required;

• CameraServer: node responsible for taking pictures with the thermal and OKAO vision

cameras, detecting the position of sunlight through Gabor Kernel Filter, detecting human

presence and estimating human emotion;

• ListenServer: continuously listen to the environment and performs Voice Activity Detection;

sending recorded audio to Google to receive the speech to text, forwarding the text to the

Main node which, depending on the contents of the audio, decides to forward it to the

chatbot. If a response is warranted, the response will be sent to the GUI node.

• GUI: node responsible for controlling Plantroid’s facial expressions and of speaking, when-

ever commanded by the Main node. It implements the dialogue management functions and,

thus, it interfaces with the ListenServer to stop Plantroid from listening to its own speech,

and interfaces with the GestureServer, which is responsible for controlling Plantroid’s bod-

ily language.

• GestureServer: node responsible for interacting with the EncoderServer and the NeckSer-

voServer to control the bodily gestures of Plantroid, for example, nodding when saying yes,

inclining the head in a bowing manner when meeting someone new, rotating from one side

top the othe to express a “no" gestur etc.

• NeckServoServer: node responsible for controlling the position of the servo in Plantroid’s

neck through the GPIO pin 11, which is capable of PWM output;

• EncoderServer: the encoder server is responsible for far more than just the enconder, it

keeps track of the current robot’s current pose and issues speed commands to each of the

wheels, calculating the speed fro each smart servo from linear and angular speed commands.

There are also helper scripts, such as the NeuralNavigation.py, which is started by theMainNode

whenever it deems necessary for the robot to mve into sunlight and out of it, accordingly to the

current time, sunlight and room temperature. Such scripts are as follow:
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• NeuralNavigation.py: moves Plantroid in a out of sunlight while avoiding obstacles using

a VGG-16-based end-to-end visual navigation architecture, which is explained in detail in

Subsubsection 8.2.4;

• ChatBot.py: implements the NLTK-based chatbot which uses a GPT-J-based Dolly model

to give variety to its responses while violating any of the Gricean Maxims, which will be

explained in further detail in Subsubsection 8.2.5;

• ImageProcessing.py

The MainNode implements the routine shown in Figure 8.10

The routine consists of verifying if any humans can be seen or heard. If not, Plantroid will

then take care of the plant. It will first check if it is time to check any of the sensors and, if it

is, it will check the value and store it. If the value is withing the safe rage, no notification is

stored by MainNode. Otherwise, Plantroid will want to tell humans about detected problems, such

as dry soil or lack of Potassium in the soil. After that, if the time is between 6h and 18h (or

any other time range accordingly to the daylight period at its location), it will check if the plant

is receiving enough sunlight. If that is not the case, Plantroid will announce the it is too dark

and will use the the NeuralNavigation.py routine to get into sunlight. Otherwise, it will chek the

temperature. If it is too hot for the plant species it carries, Plantroid will move into shadow using

the NeuralNavigation.py routine; and will keep checking if the temperature has reduced.Once it

has reduced, it will restart its monitoring cycle.

If Plantroid sensed a human at the beginning, it will try looking at the human to establish eye

contact and, if there are any notifications, Plantroid will use it’s Dialogue Management System

to announce it in order to get the human to solve the present problems. If there are no problems,

Plantroid will just say a friendly “Hello" to the human, who might or not decide to strike up a

conversation. If the human talks first to Plantroid, it will address whatever the human was talking

about and, after the conversation topic has finished, Plantroid will announce the current problems

that need solving.
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Fig. 8.10: MainNode routine.
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8.2.3 Detecting sunlight and shadows

Previous Plantroid robots relied on external cameras strategically placed in the environment

for detecting sunlight and deciding where they should go. Trajectory was planned using the APF

method, where the intensity of the sunlight was used as the strength of the attractive potential field,

while walls and other robots exerted a repellent force.

Such an approach is adequate for smart greenhouses and plant factories, since business owners

might be willing to change the environment in order to gain an advantage by automating the caring

of plants. However, since the Social Plantroid is a social robot, people would are expected to be

less willing to modify their homes and setup a camera to guide the robot. Moreover, even if the

novel Plantroid had no agribot functions, it already has a camera for estimating human emotion.

Thus, using the same OMRONHVC2-B5T-007001-010 camera for detecting sunlight is a solution

that incurs in no extra costs for the robot development allows it to navigate in environments without

requiring any adaptations.

Since the OMRON camera outputs 320px×240px gray scale images, an algorithm for sunlight

detection must be able to detect lighter areas over the floor. First, it is necessary to detect the

floor itself and, assuming that Plantroid will mostly be deployed in social environments and, thus,

is expected to navigate of flat horizontal surfaces most of the time. It is safe, then, to assume

that only pixels in the lower half of the image should be considered for the analysis. Moreover,

Plantroid has a 24px× 32px thermal camera that can detect warmer spots in the floor, indicating

that it is under stronger sunlight. By adjusting the thermal image so it can be overlapped with the

gray scale image and converting it into a binary image, we can further reduce the area where it is

necessary to detect brighter spots.

Such approach makes it impossible to use the current Social Plantroid near machinery that

generate a lot of heat or near fireplaces, since their thermal signatures would convince the robot to

go into danger. If that is the case, the warm spot detection part of the proposed sunlight detection

approach can be skipped. However, the area over which the sunlit spots must be identified will be

larger, increasing computing time.

With the analysis area delimited, the 2D Gabor Kernel filter [188], commonly used for texture

segmentation, is used for separating the brightest areas within the same texture. The 2D Gabor

Kernel filter parameters that yielded the best sunlight detection results regardless of floor color



176 — 第 8章： Development of the new Social Plantroid —

are:

• kernel size: 21×21;

• orientation of the normal to the parallel stripes σ : np.pi/6;

• wavelength λ of the sinusoidal factor: 10;

• spatial aspect ratio γ: 0.5;

• phase offset ψ: 10.

Which delimits brighter areas that have the same texture. The resulting image turned into a

binary image using a brightness threshold of 233, that is, any pixel whose value is over 233 is

assigned the value 1; 0 otherwise. The resulting binary image is patchy and, thus, it is necessary

to perform the dilate operation, where pixels with value 0 neighboring pixels with value 1 become

1. The best performance was obtained by three iterations ot the dilation operation with a 7 kernel

matrix whose values are all equal to 1.

The resulting image will contain, then, the sunlit areas as 1 and the non-sunlit areas as 0. Since it

is a binary image, it is possible to obtain the contour of the white blobs present it. to find a central

point to the obtained contours of the blobs, an algorithm called polylabel [189] is employed.

Polylabel is an algorithm for calculating the pole of inaccessibility [190] of a polygon, that is, the

point that is the most distant from its contour. The algorithm can be ran for all blobs but since

the plant must be within the sunlit area, polylabel is only executed on the blob with the largest

area. By selecting the point the furthest away from the contours of the sunlit area, we can ensure

that Plantroid does not need to move for the longest time possible, since it will take longer for

the sunlight to move away from the robot as the sun sets down. Since the field of view of the

camera is known (50o) and it is possible to experimentally obtain its focal distance, since the

datasheet does not disclose that information, we are able to estimate the distance between the pole

of inaccessibility of the largest sunlit area and the robot. For this purpose, we assumed that the floor

is horizontal and that there is no lens distortion. which are quite strong assumptions. However,

once at least one of the photoresistors of Plantroid detects enough sunlight, the navigation is

switched from visual navigation to a photoresistor based guidance, where the robot moves trying to
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(a) Original gray
scale image.

(b) Cropped and ad-
justed Thermal Im-
age.

(c) Binary Filter from
the Thermal Image.

(d) Original image
after being masked
by the binary thermal
image.

(e) Resulting image
after the Gabor Ker-
nel filter.

(f) Sunlight blob af-
ter inversion and di-
lation operations.

(g) Image contain-
ing the detected poles
of inaccessibility for
sunlit and shadowed
areas.

Fig. 8.11: Novel Gabor kernel filter-based algorithm for sunlight detection-step by step.

get all 3 photoresistors under enough sunlight. If the photoresistor that detects the strongest sunlit

is the one in the left ear, for example, the robot needs to keep moving forward and turning left, the

linear speed determined by the difference between the desired sunlight level and the detected level

on the right ear sensor. When both have enough sunlight, the robot moves forward until the tail

photoresistor receives enough sunlight. If the first photoresistor to detect enough sunlight is the

tail sensor, Plantroid will rotate until one of the ears get enough sunlight and, thus, the behavior

switches to the behavior initially described. This way, the estimate of the location of the pole of

inaccessibility does not need to be very precise.

A step by step result of the image processing operations described in the Subsection can be seen

in Figure 8.11.
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Fig. 8.12: Failure of the shadow detection algorithm.

The same proposed algorithm can be used for detecting shadowed areas, it is only necessary to

invert the result of the dilation operation after the Gabor Kernel filter and the results can be seen

on the final Subfigure 8.11g.

However, such algorithms might fail in the presence of obstacles, as shown in Figure 8.12,

where the detected shadowed area is the side of the step of a ladder. Thus, navigation and obstacle

avoidance techniques are necessary, since the proposed sunlight detection algorithm only detects

the robot’s final destinations. An end-to-end neural network based approach is proposed to solve

such problems in Subsection 8.2.4.

8.2.4 Vision-based navigation system

Vision is a powerful sense for navigation – it can be used to achieve the 4 principal tasks of robot

navigation: localization, mapping, path planning, and locomotion [47]. Moreover, since most

humans rely on vision to navigate in their daily lives, interest in vision-based robot navigation

research is natural. This work is inserted in that context, focusing on end-to-end locomotion

and obstacle avoidance using monocular gray scale images to estimate the heading direction of a

differential drive Plantroid robot.

The main task of a Plantroid robot (Plant + droid) [27] is to seek sunlight or shadow according

to the needs of the plant it carries, but the novel model incorporates social aspects into its goals, in

order to turn plants into pets. Thus, the environment where the robot navigates changes from smart

greenhouses and plant factories to the same places where people live, such as houses, restaurants,

and workplaces. To fulfil such requirements, the robot is equipped with a gray scale OMRON B5T
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HVC-P2 camera. Even though the proposed VGG-16-based architecture is deployed in Plantroid,

it can be extended for other ground robots.

Initially, most approaches for visual navigation were based on Image Processing [47] tech-

niques, but as computing power increased and machine learning matured, machine-learning-based

solutions became more present in the field. However, one gap in end-to-end neural-network

vision-based navigation research is that no solution was developed to directly learn the behav-

ior derived from using the Artificial Potential Field (APF) [48] method for path planning, the

same method used in the previous Plantroid models for seeking sunlight, while avoiding walls and

other robots [27].

Vision-based end-to-end methods have the advantage of eliminating the need for robot local-

ization and mapping the environment, generating locomotion decisions by directly sensing the

environment, a behavior known as reflex approach [49]. That allows to reduce necessary compu-

tation power and reduce the number of necessary sensors, making robots cheaper, lighter, smaller

and more energy efficient. Thus, in this work, localization and mapping problems are not ad-

dressed; and it assumes that for the task of seeking sunlit areas, Plantroid encoders are precise

enough, since the objective destination is an area far larger than the robot itself. Knowing the map

is not essential, since the architecture successfully learns how to avoid walls, static and mobile

obstacles.

Works [50, 51, 52] have used monocular images to estimate the distance of obstacles from the

robot and then used variations of the APF method for trajectory planning. The proposed VGG-

16[53] based architecture yields the robot heading directly from images, eliminating the need

of running the APF method while achieving comparable performance. APF was chosen as the

planning method for training data generation for the proposed architecture because Plantroid’s

main navigation goal is to move into and out of sunlight while avoiding obstacles. The intensity

of the sunlight also translates well into the attractive potential of the robot’s goal, as it was done

for the previous model, albeit from an external camera. Moreover, its implementation is simple

and has many variants. Trajectories planned through APF method are followed through the virtual

robot approach, which is also easily implemented.

Using the APF method and the virtual robot approach, over 30h of simulations were run in

3 distinct environments: a house, a cafe, and a meeting room, where the robot navigates from
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an initial position pi = (xi,yi) to a final position p f = (x f ,y f ) while avoiding mobile and static

obstacles. Every second, an image is saved, together with the current robot pose (xr, yr and

θr), current destination, and the future heading of the robot obtained through the aforementioned

techniques. Generating data, training, and evaluating the navigation architecture in a simulated

environment allows for cheaper and faster development since it does not wear out real robots,

does not require modifications to the environment and does not need to run in real-time.

Problem definition

This work solves the problem of safely navigating a Plantroid robot r, shown in Figure 8.13 in

a social environment Σi that has a set of obstacles OΣi = Os,Σi ∪Om,Σi , where Os,Σi is the subset of

static obstacles os,Σi, j and Om,Σi is the subset of mobile obstacles om,Σi, j.

The robot state is defined as: sr(xr,yr,θr,vlr ,vθr), where xr,yr,θr are the location and heading

of the robot and vlr , vθr are the linear and rotational speeds. Thus, ẋr = vlrcos(θr), ẏr = vlrsin(θr),

θ̇r = vθr .

For an obstacle on, its state is defined as son(xon ,yon ,θon), where xon ,yon ,θon : are position and

heading of the obstacle; and vlon , vθon : are its linear and rotational speeds. Thus, ˙xon = vlon cos(θon),

˙yon = vlon sin(θon), ˙θon = vθon .

The robot navigation problem consists, then, of reaching a final state sr, f : (xr, f ,yr, f ,−) from an

arbitrary initial state sr,i: (xr,i,yr,i,θr,i) without colliding with obstacles or walls. Currently, θr, f is

not considered for the final desired state – the robot only needs to reach coordinates (xr, f ,yr, f ).

The robot is considered to have reached its final destination if it is within a distance D of the final

point, which, for this work is considered to be of 0.1m.

Plantroid only uses its encoders to obtain its present pose in relation to its origin and the 240×

320 px gray scale images from its camera to avoid collisions. In order to accomplish that task, the

robot uses the current robot orientation θr, the angle θl the robot should be heading if it were to

go in a straight line to its goal (x f ,y f ), the distance d f =
2
√

(x f − xr)2+(y f − yr)2 and the camera

image I to estimate the next heading angle o θr,n for a time horizon of T seconds. For this paper,

experiments were run considering a time horizon T = 1s, but a higher or lower update rate can be

used accordingly to the available computing power of the robot.
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Fig. 8.13: The New Plantroid Robot.

Fig. 8.14: Trajectories of the robot obtained
through the artificial potential field method
(teal line), the proposed navigation policy P
(blue triangle line).
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Fig. 8.15: Proposed heading direction estimation architecture.

Proposed architecture

To solve the problem described in Section 8.2.4, an DCNN architecture capable of using the

current robot orientation θr, angle θl , distance d f and the camera image I (resized to 120×160×1

due to RAM memory constraints) to estimate the next heading angle θr,n for the robot is used.

Since two different types of data are being used, two neural networks are used, a VGG-16 DCNN,

which receives I as input and a regression neural network, which receives both the output of the

VGG-16 network and vector [θr,θl,d f ] as inputs. The regression neural network, then, estimates

θr,n. The layers of the proposed architecture are shown in Figure 8.15.

Data Generation and Neural Network Training

In order to train the proposed architecture, a data set consisting of navigation images and asso-

ciated data is necessary; and simulation is a great way of generating one, since it does not wear

out the robot, does not require modifications to the environment; allows for easy changes on the

environment and might even save time since simulations do not need to run in real-time.
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Fig. 8.16: From left to right, simulated environments Σ1, Σ2 and Σ3. Static obstacles are high-
lighted in red and mobile obstacles are highlighted in blue.

Thus, three social environments Σ1, Σ2 and Σ3, shown in Figure 8.16, were created in Gazebo

Simulator, representing, respectively, a cafe, a house and a meeting room (a virtual version of a

real meeting room in Tokyo University of Agriculture and Technology). Those environments have

static and mobile obstacles (highlighted in red and blue, respectively in Figure 8.16), with the

exception of Σ3, which only has static obstacles.

The navigation task is the same as defined in Section 8.2.4, but the navigation goal (x f ,y f ,−)

is randomly chosen, while the initial robot pose is either (0,0,0) or the final goal position of the

previous navigation task. In order to verify if the chosen goal point is reachable, the Artificial

Potential Field Method is used and, if after an arbitrary time horizon of 2000 iterations the robot

cannot reach the goal point, a new goal is chosen until a reachable destiny is picked. An example

of such check can be seen in the teal-colored line trajectory shown in Figure 8.14.

After a destination is selected, the robot navigates to it using the following navigation policy P:

1. If an obstacle or wall is at a distance d ≤ 1.5m and within the field of view of the camera

of the robot, use the Artificial potential field method to obtain a θr,n which avoids obstacles

and walls;

2. Otherwise, move in a straight line towards the goal position, that is θr,n = tan−1((y f −
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yr)/(x f − xr));

3. Every second save current camera image I, navigation information θr, d f , θl and next robot

heading θr,n.

The navigation policy P considers that the robot cannot dodge obstacles it cannot see unless

other sensors are used. To verify which obstacles were inside the robot’s field of view and the

arbitrary distance d, the virtual Plantroid was equipped with a LiDAR which has the same field of

view of the camera, even if the real robot has not such sensor. This was done because it allows

for detecting close obstacles in a computationally inexpensive way. An example of a trajectory

navigated using this policy can be seen in the blue trajectory present in Figure 8.14.

Data generation

Simulations were ran in all three environments Σ1, Σ2 and Σ3 using navigation policy P during

two stages S1 and S2. During S1, Plantroid performed navigation tasks in a given environment Σi

until more than 33,333 pictures were taken for each environment, totaling over 100,000 images.

Since less than 25% of the generated data had |θl − θr,n| > 0.01rad, a second stage S2 where

the images and navigation information are saved only when the robot is close to an obstacle was

necessary. Plantroid navigated in all 3 environments once again until no less than 8,900 images

per environment were saved, bringing the total saved image number to almost 130,000.

During both stages, the lighting conditions, the position of obstacles and, for Σ1, the texture of

the ground were periodically changed to enrich the data set in an attempt to give the proposed

architecture generalization capabilities. With the combined data set, it became possible to train

the proposed architecture.

Model Training

The proposed DCNN-based architecture was trained first using the generated data set it learned

how to navigate from the starting position of the task to the goal point in a straight line and

could successfully learn obstacle-avoiding behavior which is similar to the results presented by

the navigation policy P.
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In order to train the model, Adam [191], with a Learning rate of 10−3 and a Learning rate decay

of 0 was used. The chosen batch size was of 32 images and the training was performed in 20

Epochs.

8.2.5 Experiments and Results

To validate the proposed architecture, two series of experiments were ran. First, in Subsec-

tion 8.2.5, several experiments were run in the virtual environments Σ1,Σ2 and Σ3, out of which

6 will be showcased. They consisted of simulating pairs of navigation tasks in each one of the

simulated environments; the first task is executed using navigation policy P and the second is

performed using the proposed architecture. For every figure in this Subsection 8.2.5, trajectories

obtained through P are shown in blue, while the trajectories obtained by the proposed architecture

are shown in yellow.

In each experiment, resulting trajectories are compared using the discrete Fréchet distance met-

ric [192]. The aforementioned metric represents the maximum deviation distance between a tra-

jectory and a given reference curve. It is obtained by calculating the minimum distance between

every point of the trajectory and the reference curve, and then selecting the maximum distance

among these.

Moreover, to validate the effectiveness of the proposed architecture in real-world settings, ex-

periments were conducted in the real version of environment Σ3. These experiments demonstrated

the architecture’s capability to transfer simulated data-learned behaviors to real-world scenarios in

a sim-to-real manner.

Simulated experiments

For the environment Σ1, two navigation tasks were performed, one in which the robot needed to

avoid two tables in their original location (which have one leg and the robot can go under it) and

a second task where the robot must avoid a sequence of 4 tables, none in their original location.

For the first task, shown in the left side of Figure 8.17, both trajectories are quite close, with a

maximum deviation of 0.233m and an average deviation of 0.072m. In the second task, shown in

the right side of Figure 8.17, the robot presented a greater reaction to the presence of the table for
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the navigation Policy P, causing a larger Fréchet distance of 0.574m, with an average deviation of

0.142m. However, it is possible to see that the trajectory obtained with the proposed architecture

was very close to the one obtained by P from the third table onward.

Experiment 3, whose trajectories can be seen in the left side of Figure 8.18, was executed in Σ2.

The robot moved from its starting position to an arbitrary point (−4,2), where it should avoid a

woman standing in its way. The maximum deviation presented was of 0.338m, with an average

deviation of 0.102m.

In experiment 4, also executed in Σ2, the robot had to dodge a tree, moving from (−9.5,−3) to

(−6,−3). The interesting result is that despite repeating the experiment multiple times, the pro-

posed architecture and navigation policy P avoid the tree by going in different directions, yielding

a Fréchet distance of 0.621m with an average distance of 0.2m, the largest in the experiments.

Environment Σ3 has proven to be very hard for navigation, given the large quantity of chairs

and tables, whose thin legs easily escape the field of view of the camera once Plantroid moves.

Experiment 5 (whose results are show in the left side of Figure 8.19)is a simple task of avoiding

the legs of the last table from the bottom row of the meeting room and both P and the proposed ar-

chitecture achieve the goal, with a Fréchet distance of 0.245m with an average distance of 0.101m.

Policy P once more is more reactive to the presence of obstacles than the proposed architecture,

but both trajectories are not so distant from each other.

Finally, in experiment 6, two of the chairs were moved to the middle of the room, making it

harder for the robot to move around. Policy P fails the navigation task, as one can see by the short

blue trajectory in the right side of Figure 8.19). The robot becomes trapped in a local minimum and

cannot reach its destination, while the proposed architecture successfully avoids both chairs and

reaches its destination, showing that the proposed architecture is more robust than the traditional

APF method.

The simulation results were quite satisfactory; the Social Plantroid robot has a width of 0.4m

and, thus, its body would be over the trajectory obtained by using P most of the time. Moreover,

since Plantroid’s navigation task does not require extreme precision, it is an acceptable result,

specially because the proposed architecture is more robust than the APF method, since it does not

get trapped in local minima. All experiments were executed in distinct lightning conditions and

the results were virtually identical, showing that the proposed architecture is robust to changes
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Fig. 8.17: Trajectories of the robot obtained through the policy P proposed architecture in experi-
ments 1(left) and 2(right).

in illumination. Additionally, experiments were ran with obstacles in distinct positions from the

original setup and the architecture managed to avoid them.

Fig. 8.18: Trajectories of the robot obtained through the proposed navigation policy P proposed
architecture in experiments 3(left) and 4(right).

Fig. 8.19: Trajectories of the robot obtained through the proposed navigation policy P proposed
architecture in experiments 5(left) and 6(right).
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Real scenario experiments

In order to further test the performance of the proposed architecture and the viability of using

data obtained through simulation in rather simplistic Gazebo environments, we have deployed the

trained neural network in the physical Social Plantroid robot. Since environment Σ3 is based in

a meeting room in Tokyo University of Agriculture and Technology, the experiments were ran in

the aforementioned room.

In the real experiments, the navigation task was to move the robot into an area with stronger

light, one Plantroid’s actual tasks. Figure 8.20 showcase successful experiments were Plantroid

achieved the goal in all tries without problems. Figure 8.21 showcase problematic experiments

were the limitations of vision-based end-to-end navigation were evident, since the robot tried to

avoid the obstacles, but ultimately collided against them once they were out of its field of view.

Fig. 8.20: Trajectories of the real Plantroid without obstacles (left), avoiding a chair(center) and
dodging a person (right).

Fig. 8.21: Problematic results, many tries were necessary until Plantroid could avoid the legs of
the table (left), could not dodge the chairs after losing sight of its legs (center and right).

The experiments in the real scenario can be seen in this video., but the results show that the

architecture can actually be deployed in a real case scenario and shows that the behavior learned

https://youtu.be/HlbUbJ-CHB4
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form simulation is transferred for the real robot.

Sensoring system

By storing the sensor data in an SQLite database and leveraging the plant growth models de-

scribed in Section 2.3, Plantroid is able to learn many unknown parameter of the carried plant and,

with enough data, is able to predict when the plant will next need water and fertilization. It is also

capable of predicting the long term impact on the health of the plant if any deficiency is kept for a

longer period of time.

Dialogue Management system

With the advent of large language models (LLM) [193], particularly Generative Pre-Trained

(GPT) [194] models, the conversational capabilities of artificial intelligence has tremendously in-

creased and, thus, dialogue management architectures must take advantage of the novel expanded

capabilities, but also take care with new problems. Even though there was no unified framework or

clear paradigms for the development of such systems [195], how researcher and developers create

dialogue management systems is bound to change a lot. For example, OpenAI’s GPT-3 davinci

model was able to hold open-ended conversations with research volunteers in the GSIP experi-

ment. The problem of using such stock chatbot models is that they are user driven, that is, the

human user needs to take initiative. Thus, even with the expanded capabilities of the more recent

models, Dialogue managers are still necessary.

Since Plantroid is not expected to engage in extremely complex conversations, as its social

presence should be more akin to a very friendly pet who also helps you take care of plants, a

smaller, yet powerful GPT-J-based Dolly LLM [196, 197] is used in a similar fashion to how

the GPT-2 model is used in [195], where it is responsible for translating precise information into

natural language. The problem of current GPT models is that the Transformers they use as their

building blocks only learn probability distribution association between words and, thus, cannot

guarantee that they will answer the truth, specially when it is able to output associations with lower

probabilities. [198, 199]. While this allows the models to sound more creative and interesting to

interact with, it also makes them more dangerous, as they will confidently tell non-truths and make
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up information on the flight, instead of admitting not knowing something. The models are not lying

because there is no malice or deceptive intent behind, thus, calling it hallucination is adequate. In

[195], the authors found a way of leveraging the creativity of the models and giving accurate

information, by creating an intermediate language that the manager uses, which is translated into

natural language by the GPT-2 model; which allows the developed system to be used in many

languages, although it seems to have better performance in some of them.

In order to allow Plantroid to work in several languages and to respect the Maxim of Quality (do

not say what you believe to be false; and do not say that for which you lack adequate evidence.)

and Quantity(Contributions to the conversation are as informative as required; do not make your

contributions more informative than is required.), at which GPT models tend to not to be good at

respecting, Plantroid’s Dialogue Manager uses a similar approach, where there are two chatbots.

First chatbot is a simple Python NLTK rule-based chatbot which was handcrafted to give very

exact and precise information. The NLTK chatbot answers with requests to the MainNode, such

as to measure the salinity of the soil, produce a complete checkup of the plant, move the robot, alter

its facial expression or precisely repeat what a user has commanded it to repeat. It is also capable

of requesting that information is fetched from trusted source on the internet, when users make

questions like "What is X?" or "What is the definition of Y". Currently a dictionary is used for

the definition of words and Wikipedia is used in the "what is X?" questions, even though the open

encyclopedia may contain falsehoods. However, since this is done ot demonstrate the capacities

of the system, it is deemed as appropriate. Once the NLTK chatbots requests have been fulfilled

by the MainNode, if necessary, the information obtained by the managing script will be sent to

the GPT-J Dolly model, which will convert the information into natural language while giving it

variety and keeping the conversation interesting. If the NKLTK chatbot has no answer for what a

user has said or asked, the resulting text of the speech to text operation will be forwarded to the

GPT-J Dolly model and its output will be synthesized by espeak.

I’m sorry, I do not know. Plantroid, currently, is capable of admitting that i does not know an

answer for a question. It is important to do so, as the robot might be consulted for information

that it should not be consulted, such as medical, financial or political advice. If the robot tries to

fetch some information and is unable to find it from a reputable source, instead of forwarding the
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Fig. 8.22: Plantroid’s Dialogue Manager.

question to the GPT-J Dolly model, it admits that it does not know and that the user should ask an

expert or seek information from a reputable source. Misinformation can be very problematic and

Plantroid was designed to avoid it at any cost, even if it might limit the performance of the system

as a conversation partner.

MainNode also interacts with the CameraServer and performs sentiment analysis on the speech

of users, trying to guess their internal emotional state. After understanding the emotional state of

the interlocutor, Plantroid changes its facial expressions accordingly to the emotional state and the

meaning it wants to convey; also selecting appropriate prosody parameters using GSIP as a way

of improving the emotional state of listeners, if the current emotion is negative.

The proposed dialogue manager, thus, executes the algorithm displayed in Figure 8.22.

The many faces of Plantroid

Body language is very important in communication and, thus, if the social Plantroid was not

able to display emotions through gestures and facial expressions, only voice could convey its
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Fig. 8.23: Some of the possible facial expressions of Social Plantroid.

feelings and, thus, it could be perceived as insincere, if, for example, it says it is sorry with a

neutral or happy facial expression. The facial expression and body language system is controlled

by the Dialogue Manager, which is under the GUINode. Plantroid’s face has a cartoonish cat-like

appearance, but the system was developed in a way to easily allow to change the facial expressions.

The face itself is modular, with right and left eyes, mouth, and emotional symbol, a character that

emphasizes the current emotion displayed, such as an exclamation mark for surprise, question

mark for confusion or doubt, among others. The system, albeit simple, is very powerful; there are

13 distinct eye types, 5 emotional symbols (6 with no symbol) and 4 mouths (5 with no mouth),

allowing to generate 5,070 distinct facial expressions; a few of which can be seen in Figure 8.23.
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This thesis investigated how speech characteristics and the appearance of embodied conver-

sational agents shape human impression, with main focus on the study of how speech content

(Gibberish or English), Phone choice and acoustic prosody characteristics immediately change

the emotion of listeners. It also focused on how embodiment and anthropomorphism level of

ECAs shape human immediate and post-hoc impression of the agents. Since previous research

had glossed over the possible interference of preference for novelty affecting their results, I also

investigated how embodiment and experience with robots affect human impression of three distinct

representations of the same Social Plantroid entity. However, since it was necessary to develop

a robot for the experiment and to test the developed prosody selection systems, this thesis also

covered the development process of the Social Plantroid Robot and it’s end-to-end VGG-16-based

navigation architecture.

9.1 Conclusions from “Talk to Kotaro”

In the “Talk to Kotaro” experiment, 37 participants from 10 different regions, speaking a total

of 14 languages between them, contributed over 730 audio and video samples of their conversa-

tion with a 2D animated screen-based ECA, Kotaro. In order to investigate how gibberish speech

whose phone distribution does not follow a traditional Yulean-like distribution and not a traditional

syllabic structure, many different analysis were performed over the audiovisual data recorded in

the “Talk to Kotaro” web-based crowdsourcing experiment. The research was mostly interested in

the immediate emotional changes caused by listening to utterances S(w,P) with distinct w vectors

of IPA phones and the matrix of the associated acoustic prosody characteristics P, which were cho-

sen accordingly to Algorithm 1. Moreover, we have also analyzed the average emotion displayed

by volunteers while listening to Kotaro’s GS utterances, since it gives a very useful insight of how

participants felt during the overall experiment, instead of focusing in their momentary emotional

state. Moreover, the quantitative and qualitative investigation performed over the optional Likert

scale experiment helped us understand and validate the results of the previous analyses.

By analyzing the facial expressions of volunteers in the video samples and the main features of

their speech through the MFCC of the audio samples, we were able to verify the findings of [56]

that gibberish speech is not very engaging for talking with conversational agents. The experi-

ments yielded little to no positive emotional impact, as indicated by the negative average emotion
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scores. While the diversity of valence responses suggests sporadic positive experiences, the pre-

vailing estimated sentiment among participants was of impatience and frustration. The difficulty

of changing the emotional state of participants and the mostly neutral and negative stance towards

the prompts of the Likert scale questionnaire further reinforces the notion that engagement and

overall experience provided by gibberish speech in a conversational setting were sub-optimal. The

study’s alignment with previous research underscores the challenge of forging engaging interac-

tions with GS-speaking agents for adults, which suggests that it is not a recommended means of

communication for a conversational setting, since conversations tend to feel one-sided, as high-

lighted by the attitude towards prompt P6.

Delving deeper into the analysis of prosody, interaction duration, and phone choice, attempts

to understand what characteristics of the GS utterances generated the estimated impressions, the

results of Subsections 5.3.2 and 5.5 show that the correlation between the prosodic parameters

and the immediate emotion change on volunteers were not statistically relevant, barring a very

weak correlation between pitch and arousal. Divergent impression patterns among participants

from different cultural backgrounds (Japanese and Brazilian) suggest that the initial hypothesis of

a cross-cultural preference for specific prosodic attributes does not hold, underscoring the com-

plexity of cross-cultural communication preferences. However, further investigation on the effect

of sample size on calculated p-values show that much more data are necessary to strengthen the

finding of our work, which will be achieved through a longer user study.

The trainedGRUphones neural networks used for predicting valence and arousal changes from the

tokenized IPA phones of the generated GS utterances achieved good performance for training and

validation data; however, its generalization capabilities were lackluster. The interest in the pre-

trained GRUphones models lies in their learned embedding hyperspaces, particularly where each

phone is positioned relative to other phones. The initial hypothesis to be tested in such analysis

is that phones with close articulation location in the human mouth were expected to be close to

each other in the valence and arousal embedding spaces, since it was expected that they would

generate similar impressions on listeners. Yet, limitations stemming from the stochastic nature

of the algorithm while selecting phones for Kotaro’s utterances did not allow all phones to figure

in the data set, and thus reduced the capacity to which deeper investigations can be performed.

Nonetheless, through the K-means clustering method and by computing the distances among all
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phones, we found out that the phones that are the closest to each other in the embedding space,

more often than not, do not have a close articulation locus, showing no support for the original

hypothesis. However, since not all phones were used in the experiment, Algorithm 1 needs to be

modified to take into account phone frequency and which phones have not yet been used during

interactions.

The results of Subsection 5.3.5 help to understand why most of the impressions presented by

the research subjects were of low valence and low-to-moderate arousal, which is consistent with

the mostly neutral or slightly negative attitude towards the ECA revealed by the analysis of the

responses to the Likert scale prompts. It also shows that participants attribute a low level of

intelligence to humanoid-like ECAs that only speak gibberish. The turn-based conversation was

not a good interface for the research, since the participants did not particularly enjoy it, and for

further experiments, VAD should be used to guarantee more natural conversations.

The route of predicting human impression from the gibberish speech patterns does not seem

promising, as well as its use for human–computer and human–robot conversation, since research

subjects seemed to not enjoy the experience, since they could not understand what the robot avatar

was trying to convey. Even though research subjects were aware of the fact that the Kotaro avatar

did not speak semantic speech, they seemed to still be trying to understand what meaning it was

trying to convey. This way, it is necessary to compare the performance non-Yulean gibberish

speech with Yulean gibberish speech and against other semantic-free utterances in order to better

understand how it performs against other SFUs. Moreover, it is necessary to compare how those

SFUs perform in a conversational vs. expressive setting, where conversational agents use SFUs to

make the listeners believe the agent feels a certain way.

Regarding prosody selection, the GSIP system was not able to predict human impression very

well for test data, showing a lack of generalization capabilities. Yet, it obtained a better perfor-

mance than MLPpro f ile+prosody and GRUphones, showing that taking information about the conver-

sation partner, acoustic prosody capabilities, and the phones of the GS utterance allows the system

to make more accurate predictions, even though it shows a strong preference for small emotional

change predictions, which is in accordance with most of the data set. It is necessary to take into

account that the lack of correlation shown between prosody parameters and the clash between the

attitudes towards prompts P3 and P6 for male respondents might hint towards a complicated re-
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lationship between phone choice and impression. Another issue that is worth investigating is the

validity of using facial expressions to estimate the emotional state of participants in low valence

and arousal states, since it might be difficult to distinguish their actual emotion, since it is very

close to neutrality.

9.2 Conclusions from the GSIP experiment

In order to address gaps in the first experiment and to test the developed GSIP system as a mean

of generating adequate prosody for semantic-free and semantic speech, Phases 1 and 2 of the GSIP

experiment were performed. In the experiment volunteers talked once again with Kotaro avatar,

but had also to interact with two new agents, Plantroid Avatar and the Social Plantroid Robot,

which spoke Gibberish Speech in P1 and English Language during Phase P2. The prosody for said

speech contents were select using three different methods, constant prosody, GSIP-based prosody

selection and random prosody selection. In order to measure the performance of the prosody

selection systems, gibberish speech itself and the agents themselves, two adapted Godspeed Scale

Questionnaires were proposed together with ranking questionnaires and video recordings of the

volunteers were taken, which allowed to estimate their emotional state from the displayed facial

expressions. The experiment had 7 research hypotheses, 6 which were tested in phases P1 and P2

and the 7th one during phase P3, which was more of a very welcome bonus of investigating the

role of the embodiment level of ECA, novelty bias and the perception of several characteristics

about the agents.

From the obtained responses to the questionnaires and the video analysis, there is no support for

H1 – speech generated by the proposed system is perceived as more human-like than speech with

constant prosody or with randomly generated prosody. It seems to be on par with prosody gen-

erated by other systems for Gibberish speech; it only seems less responsive, but such perception

does not extend to semantic speech. However, regarding how natural the generated utterances are,

GSIP performs worse than constant and random prosody selection in P2.

Regarding H2 – speech generated by the proposed system generates more positive impression

on volunteers than speech with constant or random prosody patterns; from the results of the video

analysis, it is possible to say that for Gibberish speech, the GSIP-based prosody selection system
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does not generate a better experience than constant prosody, despite generating more positive emo-

tions that Random prosody. However, for semantic speech, GSIP seems to have a better average

performance, but, by breaking the performance down to a per-user basis, results are identical to P1,

which seems to show that more intense positive emotion peaks skew the results in favor of GSIP.

For Hypothesis H3, GSIP successfully generated the desired impression on volunteers, even

outperforming the results obtained for training data. Since it is the first system of its kind, it

has, by default, the best human impression prediction performance, but it allows for automatically

verifying how much an utterance will change the emotional state of humans.

In order for H4 – test subjects are more lenient with a non-humanoid looking avatar regarding

semantic-free speech and eventual bad selection of prosody; to be true, volunteers would have had

to be more lenient while evaluating the perceived intelligence, pleasantness and responsiveness

of the more animal-like agents and the effect was quite the opposite. Volunteers evaluated the

pet-like robots worse, showing that the intelligence evaluation is linked to the anthropomorphism

degree of the agent.

Since the GSIP-based prosody selection system achieved similar performance for the virtual

Plantroid Avatar and for the robot in P1 and even outperformed the Avatar in P2, the data seems to

support that the system can be successfully used in Physical robots, there is support for hypothesis

H5.

Finally, regarding Hypothesis H6, it came as a surprise that, on average, GSIP outperformed

constant and random prosody selection methods in several instances, while it failed to do so for

gibberish speech. However, since H6 presumed that Hn, n = 1,2,3,4 would hold true, it is not

possible to say that there is support for it. Nonetheless, it achieves better results other systems

on average, but not on a by-case basis. Such results suggest that, for semantic speech, some

volunteers found the lack of prosody variation to be less desirable than some variety, given by the

GSIP-based system; and both were better than the great and sudden prosody changes caused by

the random prosody selection.

Such results, however, do not imply that GSIP does not generate good prosody, since its predic-

tions of the impression of volunteers were accurate. It means, however that it is necessary to speed

up the prediction s of the neural networks in order o allow for generating a larger pool of candidate

prosodies and, given that the result of the Talk to Kotaro experiment suggests good prosody se-
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lection to be a personalization task, to develop and online learning version of the proposed neural

network, capable of learning while interacting with users.

Moreover, the system must be retrained with all the new gathered data, which has higher quality

than the data obtained through crowdsourcing, given every participant had different system setups

and environment conditions. By including all data, performance is bound to improve.

Regarding Phase P3, analysis has shown that the ECAs were well rated by participants and,

from the adapted Godspeed scale questionnaire, a strong negative correlation between the percep-

tion of friendliness and the level of physical embodiment for male volunteers with at least some

experience with robots (τC = −0.38, p-value=0. 046) was obtained. For male volunteers with

little experience with robots (level 1) a very strong negative correlation between embodiment level

and perceived intelligence (τC =−0.88, p value=0.053) was shown. A strong negative correlation

was found between perceived intelligence of all ECA and level of experience with robots for male

participants (τC =−0.38, p value=0.002).

For female participants, there was a moderate correlation between the perceived responsiveness

of all ECA and experience with robots, with τC = 0.24 and p-value=0.042. Regarding the ranking,

male respondents showed a negative correlation between the level of experience with robots and

the ranking given to the screen agent, with τC of -0.47 and p-value=0.049; the correlation between

gender and the ranking of the screen agent is quite strong, with τC = 0.75 and p-value=0.083, i.e.

male respondents tend to give the screen agent a higher ranking.

Regarding the ranking, male respondents showed a negative correlation between the level of ex-

perience with robots and the ranking given to the screen agent, with τC of -0.47 and p-value=0.049,

showing preference for it. The holographic agent, contrary to expectation, was deemed to be the

least favorite for every level of experience with robots. Both the robot and the holographic agents

were novel for inexperienced volunteers; and the robot received better rankings from this group,

suggesting that both novelty and physical embodiment play a role in shaping volunteers’ per-

ceptions. However, how much each aspect contributes still requires future investigation. Many

volunteers attributed not ranking the holographic agent higher due to its small size. Thus, for fu-

ture studies it is necessary to obtain a larger display or use an alternative medium for holography,

such as VR or AR goggles.

The analysis performed on the interaction recordings show that the holographic display, on av-
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erage, was more engaging than other agents for volunteers with higher levels of experience with

robots (levels 2 and 3), and the robot was more engaging for those with little or no previous

experience with robots, seemingly showing support for hypothesis H7,a. However, the obtained

correlations between the valence and the experience with robots were weak or moderate, while

some strong correlations were obtained between the embodiment level and valence suggest oth-

erwise. Moreover, no relevant correlation was found between arousal and embodiment level or

arousal and experience with robots, which warrants further investigation.

Such results do not fully support hypothesis H7, since it only shows that the agents that volun-

teers are familiar with have lower questionnaire scores and rankings, but there is no increase in

the score for the agents that are novel. For the inexperienced participants, both the robot and the

holographic agents were novel; and the robot received better ratings and rankings from this group,

showing, together with the significant correlation with embodiment level, that both familiarity

with robots and physical embodiment play a role in shaping volunteers’ perceptions. However,

how much each aspect contributes requires future investigation.

The analysis performed on the recordings of the interactions with the agents showed average

negative values for valence, showing that the users had serious, concentrated facial expressions

when listening to the responses of the agents, but the variances were quite high, showing some

moments where the mood was lighter. The immediate response to the interaction was quite differ-

ent from that of the ranking questionnaire, with the holographic display having a better result for

all groups except those who had no experience with robots, showing partial support for H7, but

also showing that physical embodiment matters when both experiences are new.

However, since the holographic display was quite small, it is necessary either to obtain a larger

display for future experiments or to use a smaller robot and reduce the size of the screen agent;

however, the second solution does not seem ideal since it worsens the performance of the other

agents.

9.3 Conclusions from the development of Plantroid

The Social Plantroid robot was successfully develop taking into account the findings of pre-

vious experiments and other research, in order to provide a test platform for the findings of this

research and to test the findings of other researchers’ works, helping to create a full embodied
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conversation agent design philosophy where conversational agents are also workers and have a

meaning outside of their owners. It was used in the GSIP experiment, receiving good scores in the

adapted Godspeed Scale and ranking questionnaire, being the favorite agent of many volunteers –

specially those who had no previous experience with robots. Although that is not captured by the

questionnaires, many volunteers mentioned, after the experiment was finished, that the robot was

considered to be cure; the exact goal of giving it a pet-like appearance. Multiple volunteers also

stated to the robot itself that it looked like a cat, specially during phase P1.

The VGG-16-based architecture described in this work has shown that it can successfully learn

how to avoid obstacles in the different environments using from monocular gray scale images

from the data generated with the artificial potential field method. It has learned how to implicitly

behave in a similar fashion of the artificial potential field method, that is, does not need to explicitly

estimate the distance of obstacles and then run the APFmethod. The proposed architecture reduces

the need for other distance measuring sensors such as LiDAR, sonars etc.

It has also shown to be resistant to changes in the position of obstacles in the environment and

changes in the lightning conditions. The weaknesses to the proposed architecture is that, for some

obstacles, it has shown an extreme avoidance, mainly for the tables of Σ1. Its greatest weakness,

however, is inherent to vision-only methods - the robot can only avoid obstacles inside its field of

view. For the present architecture, this can be mitigated by using cameras with a wider field of

view or a neural network architecture with memory, such as LSTM, so it remembers obstacles that

were inside the field of view of the robot, but exited it as the robot rotates or moves closer, which

remains as a future work.

9.4 Future Research

Since the results from the “Talk to Kotaro" and the subsequent GSIP evaluation experiment

strongly suggested that GS is not the best communication means for ECA, at least for adults,

it becomes necessary then to test its performance in a passive setting, as was done in previous

research, such as in works [100, 98, 97, 96]. Moreover, since there are no other works comparing

other modalities of SFU to Gibberish Speech, it is necessary to obtain a better understanding on

how their performance compare to each other, allowing researchers and engineers to choose the

most appropriate SFU for a given application.
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Regarding the selection of prosody, it is necessary to re-evaluate the prosody selection strat-

egy being employed. For future experimentation, another possible route to establish rapport and

show that the agent understands the emotion behind the words said by users is to use the prosody

synchronicity approach [200], where the conversational agent establishes rapport by copying the

prosodic parameters of the interlocutor.

The present experiments, have not investigate all the capabilities of the Plantroid robot, such

as its dialogue management system, bodily language manager, soil monitoring and plant health

prediction based of the recordings of the soil nutrients. Testing all such systems remains as very

necessary future work, which will greatly contribute to the further adoption of the proposed robot

platform. Its navigation systems, however, were tested in an objective manner, but the subjective

performance necessary to evaluate the perception of users about comfort levels of staying in the

same environment where the robot navigate, if the proxemics consideration of having the robot

looking into the interlocutor eyes and keeping its position while talking, leaving to the human

to adjust the distance between the two according to his or her liking, all remain to be tested and

validated. Such experiments remain as future works, as well as comparing the proposed architec-

ture against other end-to-end solutions, such as reinforcement-learning approaches, and to extend

the present architecture to a recurrent one, enabling the system to remember encountered obsta-

cles and avoid them after they are no longer visible to the onboard camera as the robot navigates

through the environment.
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Vladimir Crnojević. Agrobot lala―an autonomous robotic system for real-time, in-field
soil sampling, and analysis of nitrates. Sensors, Vol. 22, No. 11, p. 4207, 2022.

[124] Shiva Gorjian, Hossein Ebadi, Max Trommsdorff, H Sharon, Matthias Demant, and Stephan
Schindele. The advent of modern solar-powered electric agricultural machinery: A solution
for sustainable farm operations. Journal of cleaner production, Vol. 292, p. 126030, 2021.

[125] B R Jerosheja and C Mythili. Solar powered automated multi-tasking agricultural robot. In
2020 International Conference on Innovative Trends in Information Technology (ICITIIT),
pp. 1–5, 2020.

[126] Giuseppe Quaglia, Carmen Visconte, Leonardo Sabatino Scimmi, Matteo Melchiorre,
Paride Cavallone, and Stefano Pastorelli. Design of a ugv powered by solar energy for
precision agriculture. Robotics, Vol. 9, No. 1, p. 13, 2020.

[127] G. M. Sharif Ullah Al-Mamun, Md Imran Hossain, Md.Rokib Hasan, Ashfaqur Rahman,
Sokhorio MargonD C̓osta, Al Jubair Hossain, Md.Rabiul Islam, Md.Tusher Alam, Arpita
Hoque. Performance analysis of multipurpose agrobot. In 2019 IEEE International WIE
Conference on Electrical and Computer Engineering (WIECON-ECE), pp. 1–4, 2019.

[128] Ayumi Kawakami, Koji Tsukada, Keisuke Kambara, and Itiro Siio. Potpet: Pet-like flow-
erpot robot. In Proceedings of the Fifth International Conference on Tangible, Embedded,
and Embodied Interaction, TEI ’11, p. 263–264, New York, NY, USA, 2010. Association
for Computing Machinery.

[129] Juan Pablo Vasconez, Leonardo Guevara, and Fernando Auat Cheein. Social robot navi-
gation based on hri non-verbal communication: A case study on avocado harvesting. In



220 関連図書

Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, SAC ’19, p.
957–960, New York, NY, USA, 2019. Association for Computing Machinery.

[130] Juan P Vasconez, George A Kantor, and Fernando AAuat Cheein. Human–robot interaction
in agriculture: A survey and current challenges. Biosystems engineering, Vol. 179, pp. 35–
48, 2019.

[131] Paul Baxter, Grzegorz Cielniak, Marc Hanheide, and Pål From. Safe human-robot inter-
action in agriculture. In Companion of the 2018 ACM/IEEE International Conference on
Human-Robot Interaction, HRI ’18, p. 59–60, New York, NY, USA, 2018. Association for
Computing Machinery.

[132] Thomas B Sheridan. A review of recent research in social robotics. Current opinion in
psychology, Vol. 36, pp. 7–12, 2020.

[133] Iolanda Leite, Carlos Martinho, and Ana Paiva. Social robots for long-term interaction: a
survey. International Journal of Social Robotics, Vol. 5, No. 2, pp. 291–308, 2013.

[134] AIST. PARO Therapeutic Robot — parorobots.com. http://www.parorobots.

com/, 2014. [Accessed 26-Aug-2022].

[135] SoftBank Robotics. NAO the humanoid and programmable robot | SoftBank Robotics —
softbankrobotics.com. https://www.softbankrobotics.com/emea/en/nao,
2018. [Accessed 26-Aug-2022].

[136] SoftBank Robotics. Pepper the humanoid and programmable robot | SoftBank Robotics
— softbankrobotics.com. https://www.softbankrobotics.com/emea/en/

pepper, 2018. [Accessed 26-Aug-2022].

[137] Cesar Vandevelde, Jelle Saldien, Maria-Cristina Ciocci, and BramVanderborght. Ono, a diy
open source platform for social robotics. In International conference on tangible, embedded
and embodied interaction, 2014.

[138] Jelle Saldien, Stan Notebaert, Cesar Vandevelde, and Dries Bovijn. Demonstration of op-
soro’s grid system: Design a working social robot in only 2 hours. In Proceedings of the
Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction,
HRI ’17, p. 46–47, New York, NY, USA, 2017. Association for Computing Machinery.

[139] Victor C. Dibia, Maryam Ashoori, Aaron Cox, and Justin D. Weisz. Tjbot: An open source
diy cardboard robot for programming cognitive systems. In Proceedings of the 2017 CHI
Conference Extended Abstracts on Human Factors in Computing Systems, CHI EA ’17, p.
381–384, New York, NY, USA, 2017. Association for Computing Machinery.

http://www.parorobots.com/
http://www.parorobots.com/
https://www.softbankrobotics.com/emea/en/nao
https://www.softbankrobotics.com/emea/en/pepper
https://www.softbankrobotics.com/emea/en/pepper


関連図書 221

[140] Micol Spitale, Chris Birmingham, R. Michael Swan, and Maja J Matarić. Composing
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