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Abstract

Based on the fact that parameters of pre-trained neural networks naturally have non-uniform distribu-

tions, logarithmic quantization of network parameters can achieve better classification results than linear

quantization of the same resolution. In our practice, we found that the logarithmic quantization suffers

huge accuracy decrease on small size neural networks. This is because the parameters of trained small

neural networks are not highly concentrated around 0. In this research, we analyse in depth the attributes

of logarithmic quantization. In addition, existing compression algorithms highly rely on retraining which

requires heavy computational power. In such a situation, we propose a new logarithmic quantization al-

gorithm to mitigate the deterioration on neural networks which contain layers of small size. As the result,

our method achieves the minimum accuracy loss on GoogLeNet after direct quantization compared to

quantized counterparts.

Moreover, many deep neural network quantization algorithms use the mean square quantization error

(MSE) as the optimization objective, which we found is not suitable: MSE can easily lead the quantiza-

tion algorithm to assign more precision to weights that are near zero because they dominate in quantity.

Instead, we present a weight-aware optimization objective for deep neural network quantization. Our

method quantifies the importance of each weight by its magnitude. This method requires no sorting dur-

ing quantization; therefore, the computation cost is very low and can be easily combined with existing

quantization algorithms. We tested our method using existing state-of-the-art quantization methods. On

Additive Powers-of-Two (APoT) quantization, our method can largely reduce the retraining time and on

Piecewise Linear Quantization (PWLQ), our method improves the image classification accuracy.

In addition to the quantization algorithms, we also propose a new learning algorithm. Despite being

heavily used in the training of deep neural networks, multipliers are resource-intensive and insufficient in

many different scenarios. Previous discoveries have revealed the superiority when activation functions,

such as the sigmoid, are calculated by shift-and-add operations, although they fail to remove multipli-

cations in training altogether. Based on the aforementioned facts, we propose an innovative approach

that can convert all multiplications in the forward and backward inferences of deep neural networks into

shift-and-add operations.

Because the model parameters and backpropagated errors of a large deep neural network model are

typically clustered around zero, these values can be approximated by their sine values. Multiplications

between the weights and error signals are transferred to multiplications of their sine values, which are

replaceable with simpler operations with the help of the product to sum formula. A rectified sine ac-

tivation function is also proposed for further converting layer inputs into sine values. In this way, the

original multiplication-intensive operations can be computed through simple add-and-shift operations.

1



This trigonometric approximation method provides an efficient training and inference alternative for de-

vices with insufficient hardware multipliers. Experimental results demonstrate that this method is able to

obtain a performance close to that of classical training algorithms. The approach we propose sheds new

light on future hardware customization research for machine learning.

2



Chapter 1

Introduction

1.0.1 Background

Deep neural networks show their incomparable performance in computer vision, natural language

processing, visual art processing and so forth. However, on one hand, since the training of deep neural

networks is extremely time and resource consuming, many researchers are committed to reducing the

amount of computation so as to train neural networks fast and easily. On the other hand, the huge storage

cost of trained neural networks hinders their deployments on mobile or IoT devices.

Applications and Challenges

Although neural networks have been used in a wide range of industries, there are still some chal-

lenges that make it difficult to apply neural networks in some areas. The size of neural networks and the

difficulty of training them are among the reasons that prevent them from being more widely used. For

instance, neural network inference tasks on mobile devices face are very difficult for the limitation of the

computational performance on mobile devices. Many mobile applications require the application of neu-

ral networks. For example, today’s smartphones can do portrait recognition and segmentation by neural

networks to simulate the depth-of-field effect of an SLR (single-lens reflex camera). Neural networks are

even used in real time by mobile devices for computationally intensive video quality optimization tasks,

such as Hdrnet ( [4]), which is used by Google’s pixel phone for video tasks. Not only that, now some

smartphones can be waked up by voice or used to translate in real time without network, etc. also need a

lot of machine learning involved.

Our demand for smartphone intelligence continues to increase. Today, smartwatches can do sleep

monitoring, disease prevention, etc., and street lights on the highway even have intelligence (Figure 1.1),

these devices can not provide powerful computing power. We can expect to delegate more and more deep

learning tasks to mobile, which is limited by processor performance and battery life. Therefore, we need

to reduce the computation burden and model complexity of neural networks as much as possible when

we do neural network inference on mobile.

The training of neural networks is also facing some challenges. It often takes a lot of computational

resources when training neural networks, and some complex tasks take a long time to train. Today’s

neural networks rely heavily on matrix multiplication, which in turn relies heavily on multipliers, leading

to a particularly high importance of hardware resources in neural network training and research.
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Figure 1.1: Some scenarios that require efficient neural network inference.

Composition of this thesis

In this paper, we approach the above problem from two main aspects. One is neural network quantiza-

tion methods, and the other is an attempt to construct more efficient neural network learning algorithms.

In the next part of this chapter, we will introduce some basics of machine learning. In Chapter 2 we

will present related previous research. In Chapter 3 we will explain our work on neural network quan-

tization, and Chapter 4 introduces a neural network learning algorithm that does not rely on multipliers.

We conclude our work and bring discussions in Chapter 5.

1.0.2 Deep Neural Networks

The power of a deep neural network comes from its fitting capabilities. For instance, we can assume

an unknown objective function or probability distribution that reveals the relation between samples and

their categories. Since it is difficult to find this objective function directly, we use a neural network to fit

it. After the training stage and all inputs and outputs are consistent, we assume that the neural network

successfully fits the objective function.

As shown in Figure 1.2, a fully connected neural network is composed of neurons layer by layer. All

connections between layers are weighted and usually initialized to random variables. When training a

neural network, the training dataset is first batched and then input into the neural network. Accumulated

multiplication and addition operations are then calculated between the inputs and weights in the first

layer. The output of the first layer becomes the input to the next layer and the same computation forwards

recursively until the last layer.

The output of the last layer is compared with the output of the objective function. The difference can

be propagated back to the hidden layer of the neural network as the error signal. Through backpropaga-

tion the weights are updated to minimize the error. In addition, there is an activation function between

each layer. The purpose of the activation function is to introduce non-linearity so as to enhance the fitting

ability of neural networks. Sometimes, in order to further enhance the fitting ability, we add an offset

term to each connection. In this case, we need to add a bias term after the multiplication and addition

operation. Equation 1.1 gives the forward computation between each layer in a fully connected neural

network.

y(x) = σ

(
N−1∑
i=0

Wijxi + b

)
(1.1)
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Input Layer Hidden Layer Hidden Layer Output Layer š

Figure 1.2: A simple fully connected neural network.

Figure 1.3: A single node from the first hidden layer.

1.0.3 Network Training

As introduced in Section 1.0.2, we assume a neural network can fit the latent objective function.

In practice, we adjust the weight of every connection during training so that the output of the neural

network can be consistent with the target output as much as possible. Usually, we package multiple

inputs into a batch so that the neural network can generalize better (a theoretical analysis can be found

in [5]). Backpropagation is a mechanism to minimize the error between objective outputs and neural

network outputs (Figure 1.4).
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Figure 1.4: A simple illustration of forward and backward inference in neural network training. Subfig-
ure (a) denotes the forward inference of neural networks, where non-linearity is introduced during the
activation stage. Subfigure (b) and (c) represent the error backpropagation of neural networks. As indi-
cated by the equations in (b) and (c), the error signals are backpropagated by computing the gradients of
each weight by the chain rule.

When training a target neural network, we first feed the input batches into the neural network and

compute predictions. For a simple fully connected network this step is performed via dot products layer

by layer. A loss function is then used to derive the differences (errors) between the predictions and labels.

Note that the labels are usually encoded in the same form as the output of the target network. Note

in this step, non-linear activation functions play an important role in the neural network’s fitting ability.

The activation step is performed after dot products layer by layer. There are various forms of activation

functions and at the core of all these methods is the introduction of non-linearity for neural networks.

Subfigure (a) in Figure 1.5 is a representative case (sigmoid: ( 1
1+e−x )) of traditional activation functions.

Subfigure (b), ReLU (rectified linear unit: max(x, 0))), is widely used recently since it is highly efficient

and avoids the vanishing gradient problem.

0 0

(a) (b)

Figure 1.5: Non-linearity. (a): A traditional non-linear activation function (sigmoid). (b): A modern
non-linear activatioin function (ReLU).

Secondly, the error signal is backpropagated to compute the gradient of each weight through recursive

application of the chain rule. The gradient is used to perform a gradient descent algorithm on all weight

parameters so that the final error could be minimized. Generally, many epochs of training need to be

performed to achieve a good result (one epoch is one iteration over all training samples). When the

dataset and neural network size are huge, the training cost can be prohibitive. Some large models even

require large GPU clusters for training. For instance, in 2017 at Facebook, 256 GPUs was used for fast
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training on the ImageNet dataset ( [6]).

Gradient descent methods are used to find the set of parameters that can minimize the error of the

loss function. Since the weights always point in the opposite direction of the steepest descent, gradient

descent algorithms take the repeated steps toward the opposite direction of the gradients. When adjust-

ing the weights during training, we always chose a step size (learning rate) so that the weight will not

"overstep" (Equation 1.2).

wj := wj − α
∂

∂wj
J(w) (1.2)

In practice, the direction adjustment and step size might be computed in a more complicated ap-

proach that requires more information. For instance, one might simulate a physical way that accumulates

precious momentum so that a better direction can be obtained [7]. Many gradient descent optimization

methods are studied and it is still an important direction of tuning neural network learning ability [8–11].

In recent years, neural networks are getting deeper and more complex. Along with more layers, there

are much more model parameters. Convolutional neural networks (Figure 1.6) use filters to extract infor-

mation from inputs or former layers. Some convolutional networks use big filters such as filters of 11 by

11. In this case, only one filter itself requires 112 parameters. If many filters are used for convolution,

the network size may get large which hinders the implementation on small devices.

Max-Pool Convolution Max-Pool Dense Dense

8@128x128
8@64x64

24@48x48
24@16x16 1x256

1x128

Figure 1.6: Filters in convolutional neural networks.

1.0.4 Computation Cost Reduction

Some of the difficulties mentioned above can be effectively alleviated with the compression of neural

networks. There are several common means of neural network compression as follows.

Network Pruning

As depicted by Figure 1.7, network pruning is to reduce the computational cost by cutting off some of

the connections of the neural network. According to NVIDIA’s pruning test [12], 40% FLOPS reduction

on ResNet-101 was achieved by removing 30% of the parameters, with almost no loss in the top-1

accuracy on ImageNet.
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Figure 1.7: Network pruning.

However, current deep learning frameworks do not support pruning very well, and the operation of

pruning is basically done by a 0-setting operation, which means that the weights pruned will still be

involved in the matrix multiplication operation and will not significantly accelerate the operation.

1 de f l aye r_mask ( we igh t s , p r u n i n g _ r a t e ) :
2

3 we igh t_ab s = abs ( we i gh t s . d a t a )
4 we i gh t _ d a t a = s o r t ( xp . n d a r r a y . f l a t t e n ( we igh t_ab s ) )
5 num_prune = i n t ( l e n ( we i g h t _ d a t a ) * p r u n i n g _ r a t e )
6 i d x_p rune = min ( num_prune , l e n ( we i g h t _ d a t a ) −1)
7 t h r e s h o u l d = d a t a [ i dx_p rune ]
8

9 mask = we igh t_ab s
10 mask [ mask < t h r e s h o u l d ] = 0
11 mask [ mask >= t h r e s h o u l d ] = 1
12 r e t u r n mask
13

14 # The pruned we i gh t s a r e s t i l l i n v o l v e d i n ma t r i x m u l t i p l i c a t i o n s a f t e rw a r d s .
15 de f p rune_we igh t ( weight , mask ) :
16

17 r e t u r n we igh t * mask

Listing 1.1: forward and backward pass of the AdderNet.

Network Quantization.

Network quantization techniques quantize the original 32 bits model parameters into smaller bitwidth

(for instance 4 bits or 8 bits). The most simple quantization method is linear quantization, which projects

the model parameters to smaller quantization levels linearly.
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linear quantization
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Figure 1.8: Linear quantization.

As shown in Figure 1.8, model parameters with similar numerical values are quantified to the same

interval. It can be seen that neural network quantization is lossy, and how to minimize the loss of accuracy

of the quantized neural network is a popular research topic. The benefits of neural network quantization

are obvious. If we quantize 32 bits model parameters to 4 bits, the size of the neural network is reduced

by a factor of four (e.g., from 40M to just 10M), and the computational effort is also greatly reduced.

As we can see from the Figure, parameters close to zero are quantized to zero. As we will show later,

in today’s deep neural networks, the weights close to zero account for most of the weights, and such a

one-size-fits-all quantization is inappropriate.

Efficient Learning Methods

By changing the computational method of the neural network or the basic architecture of the neural

network, the computational reduction can also be obtained. For example, a segmentation task requires

many convolution operations. For modern encode-decode structure, there are often many 0-valued blocks

in the output feature maps of each layer, and the convolution output of these 0-valued blocks is still 0-

valued (Figure 1.9).

All zeros
0 0 0
0 0 0
0 0 0

w1 w2 w3
w4 w5 w6
w7 w8 w9

X

Filter

0

Figure 1.9: A special case that the convolution operation can be omitted.

Rather than convolving these blocks layer by layer, we can add 0-activation prediction to the forward

and backward inference and the convolution computation can be omitted when the output of a convolu-
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tion operation is predicted to be 0. By predicting the 0-value activation to reduce computation, Shomron

et al. achieved over 30% savings in MAC operations on ResNet-18 [13].
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Chapter 2

Related Works

2.1 Feature Extraction

Feature extraction is used to reduce the input complexity before the samples are fed into the neural

network. Ali et al. used CNN model OverFeat [14] as a feature extractor on different recognition

tasks and achieved superior results [15]. In practice, feature extraction and model compression could be

combined to further reduce memory size. The following example shows a feature extraction experiment

on MNIST which reduces the input size from 784 to 64.

2.1.1 An Feature Extraction Example on MNIST

Here we use the MNIST as an example owing to its simplicity. Handwritten digital images usually

have clear contours and large portions of blank background which allows for considerable dimension

reduction. Among several classifiers surveyed by Patel et al. [16], feature extraction combined with MLP

(multi-layer perceptron) gives the highest recognition rate for handwritten digits. Four View Projection

Profiles algorithm [17] with MLP, the best method in the survey, reaches a recognition rate of 98.73%.

However, their samples are normalized to 100 by 100 sizes which are vastly more dimensions than

MNIST samples. To fill the gap, we have made some modifications to the Four View Projection Profiles

and the modified algorithm outputs four peak sums in each direction. The process is explained as follows:

• Divide each (28,28) matrix to 16 zones (each of 7 rows × 7 columns).

• Find the horizontally, vertically, left diagonal and right diagonal sums in each line of 16 zones.

• Store 4 peak values of each direction.

• Generate feature vectors of 64 elements.
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Figure 2.1: Process of the algorithm.

Figure 2.1 illustrates the specific process of the proposed algorithm. Compared with the Four View

Projection Profiles algorithm, we firstly change one of the horizontal projections to left diagonal pro-

jection. Adding the left diagonal projection enables our algorithm to detect curves in four directions.

Secondly, instead of generating an average of four sums in each zone, our algorithm outputs four peak

sums as four different features. This step ensures more detailed information in each zone is retained.

Figure 2.2: An MNIST sample.
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Figure 2.3: Visualization of a sample from feature vectors (16 zones).

Figure 2.2 and Figure 2.3 show the comparison between the original data sample and extracted fea-

ture vectors. Figure 2.2 is a sample from MNIST, its greyscale has been reversed to be better compared

with Figure 2.3. In Figure 2.3, each zone contains 4 feature vectors. To better visualize it, different vec-

tor values are expressed through variations in length. In addition, we retained feature vectors’ original

orientation when drawing these line segments.

As can be seen from Figure 2.3, although we have compressed the original image to a great extent,

the information of the original image is still well preserved. Moreover, background noise is largely taken

away from the original sample. Although it might be hard to recognize with human eyes, neural networks

should be able to abstract characteristics and differences between samples like these.

2.2 Toward Efficient Inference: Quantization and Additional
Neural Networks

With the widespread use of deep learning, a growing number of scenarios require the deployment

of neural networks to low-performance devices. Neural networks are increasingly being deployed on

wearable devices and IoT devices [18]. For instance, on some wearable devices, neural networks might

be used for sleep monitoring which requires efficiency and low energy consumption [19]. Multiplications

between full-precision float point numbers are computationally expensive which hinders deployments of

deep learning on low-performance devices. Many researches are devoted to optimizing the resource-

intensive computations during training and forward inferences.

Neural Network Compression

To compress neural networks, Courbariaux et al. introduced BNN (binary neural network) [20, 21]

which constrains all weights into +1 and -1. By retraining, BNN achieves nearly state-of-the-art accuracy

on CIFAR-10, MNIST and SVHN though deteriorates drastically on ImageNet [22] dataset (22.1% of

Top-5 accuracy decrease on GoogLeNet) [23]. Either Binary or Ternary (+1, 0, -1) neural networks, at

cost of huge quantization noises, rely deeply on retraining [24].
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Hubara et al. also extended their experiments using Miyashita et al.s logarithmic quantization al-

gorithm which narrowed the accuracy gap to 8.1%. In another way, Deep Compression [25] clusters

weights via K-means. Weights grouped into the same category will share the same quantized weight

value. Specifically, Deep Compression quantizes convolution layers weights to 8 bits and fully con-

nected layers weights to 5 bits. After retraining, they realized lossless accuracy. Combined with pruning

and Huffman coding, Han et al. further reduced parameter size. Compared with Deep Compression

which performs pruning and quantization in separate steps, CLIP-Q [26] carries out these 2 approaches

in parallel during training. Googles team implements integer arithmetic only inference (see [27]) which

quantizes all weights into 8 bits integers. Integer only inference is realized via affine mapping, and now

it is the quantization scheme adopted by TensorFlow Lite [28].

Modifying the existing architecture to reduce parameter size is also studied. Iandola et al. created

SqueezeNet [29] which achieves AlexNet-level accuracy with 50Œ fewer parameters. SqueezeNet de-

creases the number of input channels to 3Œ3 filters. Besides, it also replaces 3 Œ 3 filters with 1 Œ 1

filters. SimpleNet [30] is another case, Hasanpour et al. released their 13 layers convolutional network

in 2016 outperforming deeper and heavier networks. Interestingly SimpleNet avoids using 1 Œ 1 filters

in early layers to preserve locality information.

Either pruning or quantization might cause a huge influence on the final accuracy. To restore the

original accuracy, retraining is usually performed after network compression. Some quantization or

pruning strategies are applied during the training process [31–33] therefore no retraining is needed. The

convergence of training using coarsely quantized weights was analysed by Li et al. [34]. On the other

hand, direct quantization on pre-trained neural networks relies deeply on retraining. Typically, retraining

algorithms still keep a copy of full-precision weights.

Sung et al.’s retraining method [24] applies weight update only to full-precision weights and then

generates quantized weights. They also assert that this approach takes less time to converge. Other

efforts such as INQ [32] quantizes networks incrementally. In each iteration, it quantizes only part of

the network and adapts update to the left part. Although retraining algorithms can restore the original

accuracy, they usually require big computational power since backpropagation is involved.

All compression methods mentioned above are able to improve the efficiency during inference. In this

section, we focus on quantization methods. Further we elaborate on some commonly used quantization.

2.2.1 Neural Network Quantization

Logarithmic Quantization

Most operations in a neural network are matrix multiplications, which are basically dot products

y =
∑

W Tx. In order to save computational resources, this multiplication can also be performed in

the log-domain [35]. As shown in Figure 2.4, computations in conventional neural networks require full-

precision input which is memory-intensive. In addition, multiplication between full-precision numbers is

expensive for hardware. Fortunately, in log domain the above problems can be largely relieved. Quantiz-

ing the input x to log domain can reduce the memory consumption. For instance, an input element 0.12

will be quantized to 2−3 and only the integer −3 will be kept in the memory. In this way, the original 32

bits inputs are quantized to integers with lower bitwidth. Also, the costly multiplication operations are

transferred to bit shifts operations which are extremely hardware friendly.
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Log2(x)
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Log-Domain

Figure 2.4: Logarithmic quantization is used to quantize model parameters to log-domain so that dot
product between weights and activations can be performed via bit shift operations.

Miyashita et al. proposed two approaches to optimize neural network training [35]. One is to quantize

layer inputs only so that all multiplications are performed through bit shifts (Equation 2.1). Another

method is to quantize both inputs and weight parameters so that dot product can be obtained via integer

additions (Equation 2.2).

wTx ≃
n∑

i=1

wi × 2x̃i

=

n∑
i=1

Bitshift (wi, x̃i)

(2.1)

wTx ≃
n∑

i=1

2Quantize (log2(wi))+ Quantize (log2(xi))

=
n∑

i=1

Bitshift (1, w̃i + x̃i)

(2.2)

Miyashita et al. also used a FSR (full scale range) parameter to control the output scale during

quantization. The complete quantization process can refer to Equation 2.3.
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central region

tail region

Quantization levels at tail region are very sparse.

Figure 2.5: Sparsity of quantization levels at tail region (4 bits quantization with LogQuant). Note: the
sparsity at tail region problem cannot be solved with increasing the quantization bitwidth.

LogQuant (x, bitwidth, FSR ) =

{
0 x = 0

2x̃ otherwise

where

x̃ = Clip
(
Round (log2(|x|)) , FSR − 2bitwidth , FSR

)
Clip(x,min,max) =


0 x ≤ min

max−1 x ≥ max

x otherwise

(2.3)

Paper [35] showed that with 3 bits quantization, the final accuracy can be close to the original on

AlexNet and VGG16. Besides, the model size can be largely reduced thanks to the logarithmic quanti-

zation. Elhoushi et al. [36] implemented a shift-based GPU kernel that trains a neural network by shift

from the start. DeepShift removes all multiplications during training. Instead, only shift and sign re-

verse operations are used. They reported about 25% reduction in latency time on modern GPUs. With

6-bits shift format, training ResNet-18 from scratch using DeepShift on ILSVRC-2012 reported a 4.48%

accuracy loss.

Although LogQuant reduces the computational effort and the size of the model, there is a problem

that the method does not overcome, that is, after quantizing the neural network with this method, the

accuracy of the model decreases significantly and thus needs to be retrained to make up for the accuracy.

Here we briefly analyze the reason why the method decreases a lot in accuracy. We used the

LogQuant to quantize a hidden layer of a simple fully connected neural network trained on MNIST.

The quantized results are illustrated in Figure 2.5. As shown in the Figure, the problem with LogQuant is

that neural network quantization with this method will be more focused on smaller model parameters and

very sparse in larger parameter regions (tail regions). We will discuss the importance of large parameters

in detail in Chapter 3, and we can find experimentally that large parameters are much more important
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The "rigit resolution " phenomenon of LogQuant.

LogQuant APoT

Figure 2.6: 3-bits quantization comparison (left: LogQuant, right: APoT). Compared with LogQuant,
APoT is more balanced and assigns more quantization levels to weights on tail regions, therefore can
obtain better accuracy without retraining.

than small model parameters. This tail region sparse quantization method ignores the importance of the

large parameters and instead enhances the resolution of the small parameter part.

Li et al. adopted a method to solving the sparsity on edges (larger weights) after logarithmic quantiza-

tion. In [37] the APoT (additive powers of two quantization) quantization approach was proposed. They

referred to the phenomenon that larger weights cannot benefit from increasing the quantization bit-width

as rigid resolution. As Equation 2.4 indicates, APoT introduces extra additive terms for logarithmic

quantization. Note γ is a scaling factor and α denotes the maximum of the quantization.

Qa(α, kn) = γ ×

{
n−1∑
i=0

pi

}
where pi ∈

{
0,

1

2i
,

1

2i+n
, . . . ,

1

2i+(2
k−2)n

}
(2.4)

As shown in Figure 2.6, APoT can resolve the sparsity on edges and, at the same time, preserve the

merit of logarithmic quantization which is the efficient shift based computation. Although a scaling factor

is introduced and can cause the decrease in efficiency, the multiplication with the factor is performed

only once after the multiply-accumulate step. Li et al. reported 22% faster computation compared with

uniform quantization.

Linear Quantization

Linear quantization is another quantization research direction that produces neural networks with

efficient inference. The simplest linear quantization method is ULQ (uniform linear quantization). ULQ

linearly maps full-precision parameters into low-precision representations. However, direct ULQ has

been reported to cause decreases in accuracy. Baluja et al. [38] presented an approach that adaptively
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cluster the weight throughout the training process. Their quantization algorithm clusters weights in every

1000 steps during training with a one dimension K-means method [39].

To achieve inference without multiplication operations of float point numbers, Baluja et al. also

quantized activations of each layer so that they can make a multiplication table. In this way all possible

entries are pre-computed therefore can be stored in memory. The multiplication operations in a neural

networks are then transferred to table look-up operations.

Fang et al. [40] proposed PWLQ (piecewise linear quantization) that can compress the neural network

without retraining. Previous linear quantization methods suffer large accuracy losses, therefore a post-

training linear quantization method is desirable. To overcome this drawback, Fang et al. designed an

algorithm that aims to quantize the neural network with minimal quantization error.

linear quantizationQ

r

PWLQQ

rA breakpoint

Figure 2.7: Comparison of ULQ and PWLQ quantization. In PWLQ the quantization range is divided
into several pieces with different quantization precision.

A uniform quantization [27, 41] method is given in Equation 2.5, where r is the parameter to be

quantized, [a,b] is the quantization range, n is the number of quantization levels. s is a scaling factor and

[ů] denotes rounding to the nearest integer. Fang et al. think that ULQ always divide the quantization

range evenly despite the parameter distribution. Since weights and activations of pre-trained neural

networks are normally Guassian or Laplacian distributed [25,42], direct ULQ cannot preserve the original

accuracy because of its large quantization error.

clamp(r; a, b) := min(max(x, a), b)

s(a, b, n) :=
b− a

n− 1

q(r; a, b, n) :=

[
clamp(r; a, b)− a

s(a, b, n)

]
s(a, b, n) + a,

(2.5)

Instead, PWLQ is dedicated to minimizing the quantization error. PWLQ divides the the quantization

range to two non-overlapping part, which consists of the central region and the high-magnitude region.

A breakpoint k is set to divide the quantization range. Say if the quantization range is [−q, q] then the

central region is set to [−k, k] and the sparse region is set to [q, k)∪(k, q]. PWLQ divides the quantization

range to four pieces and within each piece, for B-bits quantization, B-1 bits Uniform quantization is

performed. PWLQ quantization results can be seen from Figure 3.15. The value of k controls the

quantization precision of each region. In [40] the k is limited to 0 < k < q
2 so that central region
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can have higher approximation precision. Fang et al. also gave a proof that the optimal k∗ exists by

minimizing the quantization error. In practice k∗/q = ln(0.8614q+0.6079)was adopted for normalized

Gaussian. PWLQ was experimented on several computer vision tasks including ImageNet [22], semantic

segmentation and so forth. Experimental results confirm that PWLQ can obtain better accuracy without

retraining.

Another problem of linear quantization is that it usually has a min-max limitation. As Equation

2.5 shows, the outlier weights are clipped to minimal or maximal values that determined in advance.

Zhao et al. [43] used an outlier channel splitting (OCS) method to overcome this problem. Their OCS

method can be explained by Equation 2.6. Note Equation 2.6 is a rewritten version of Equation 1.1. In

their method the outlier weights are split to multiple duplicates. Therefore the width of certain layers is

enlarged but the quantization error can be reduced. A graphical explanation is shown in Figure 2.8. The

outlier neurons are duplicated thus the activations of these neurons can be reduced in half.

yj =

m−1∑
i=1

xi ∗Wij +

(
xm ∗ Wmj

2

)
+

(
xm ∗ Wmj

2

)

yj =

m−1∑
i=1

xi ∗Wij +
(xm

2
∗Wmj

)
+
(xm

2
∗Wmj

) (2.6)

Outlier Channel Splitting

Figure 2.8: Outlier Channel splitting. The outlier activation is duplicated so that the layer width is
enlarged but direct clipping is avoided.

Zhou et al. demonstrated that OCS can effectively reduce the quantization error and achieve bet-

ter performance at the cost of wider layers. Since the clipping methodology is also used in NVIDIA

TensorRT [44], this method can be easily adopted on commodity GPUs.

Binary Neural Network (BNN)

BNN [45] is an extreme case of neural network model compression. The method constrain all weights

and activations to +1 and -1. BNNs can achieve good accuracy on small datasets such as MNIST and

CIFAR-10. During the training of BNNs, a deterministic binarization function is adopted to transform

the real-valued variables to +1 or -1 (see equation 2.7). It is worth mentioning that apart from the deter-

ministic binarization function, Courbariaux et al. also developed a stochastic binarization function. The
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stochastic binarization function transforms weights and activations to +1 or -1 stochastically. However,

stochastic binarization is not easy to implement therefore usually not adopted.

xb = Sign (x) =

+1 if x > 0,

−1 otherwise
(2.7)

Although weights and activation are constrained to +1 and -1, real-valued gradients are kept for pa-

rameter updating. The network would not be able to converge if gradients are also binarized. Another

problem is the backpropagation of gradients. The backpropagation algorithm utilizes chain rule to as-

sign error to all connections. However the derivative of the Sign function is always zero which makes it

incompatible with the backpropagation algorithm. To solve this, Htanh function is used during backprop-

agation instead of Sign function (Figure 2.9). Suppose we know a binarized weight which is q = Sign(r)

and the derivative for q is
∂C

∂q
. The derivative to r is then given by gr = Htanh(gq).

Figure 2.9: Htanh function for backpropagation instead of Sign function.

Parameters in BNN could be updated in a similar way to normal real-value neural networks, only

an extra clip step is required to ensure the updated weights are still constrained to +1 and -1. Though

the convergence speed of BNNs is slower than normal DNNs, they can output similar accuracy on small

datasets. The drawbacks BNNs are listed as follows:

• To implement BNN, one needs to train a neural network from the beginning. Pre-trained networks

are useless for BNN.

• BNN fails to converge on complex tasks such as Imagenet.

• The training speed of BNN is very slow.

Bi-Real Net

As we mentioned in the last section, BNN suffers accuracy loss on complex dataset like Imagenet.

Bi-Real Net [46] proposed by Liu et al. is a recent research aiming to solve the deterioration of the final

accuracy. Figure 2.10 illustrates a forward pass from inputs to binarized activations. Although weight

parameters are binarized, activations after a convolution layer are real values. These activations in BNN

are then transformed by Sign functions therefore again binarized. However, the real activations contain

more information thus binarized activation could cause the decrease of final accuracy.
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Figure 2.10: A typical forward pass in BNNs.

To preserve the information, Bi-Real Net adds shortcuts between different layers (Figure 2.11). Real

activations are connected via an addition operator which brings no additional memory cost. The addition

operation is element-wise, therefore this method is able to increase the representational capability of the

whole network. Besides, Bi-Real Net also proposes some new methods for training. The paper claims

these methods are more suitable for training binary neural networks. These methods are summarized as

the following:

• Using a differentiable piecewise polynomial function instead of the Htanh function. The derivative

of the function is triangle-shaped rather than rectangular shaped derivative of the Htanh function.

• When using backpropagation to update weights in BNNs, the gradient for each weight is only

related to the sign of the current real weight. To compute more efficient gradients, the sign function

used for weight updating is transformed to a magnitude-aware version.

• Using Htanh function in pre-training step instead of ReLU.

Compared to BNNs, Bi-Real Net can achieve up to 10% higher top-1 accuracy. Though outperforms

BNNs, its accuracy still lags behind the full precision neural networks by more than 10%. And for all

neural networks that use only binary or ternary weights, network retraining could be time and resource

consuming.
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Figure 2.11: Adding shortcuts to increase the representational capability.

Deep Compression

Deep Compression consists of three stages: pruning, quantization and Huffman coding. In the prun-

ing stage, small weights are removed since these weights are unimportant (less contribution during the

forward pass). After pruning, the rest weights are clustered via K-means. And finally, the quantized

weights are Huffman encoded.

In the pruning step, weights are processed through equation 2.8 and this step will output sparse

matrices. To store these sparse matrices, CSC (compressed sparse column) or CSR (compressed sparse

row) is used. The author made some modifications to the original CSC or CSRmethod. Instead of storing

absolute positions, offset is used to reduce the bitwidth of indices.

Pruning (x) =

0 |x| ≤ t

x |x| > t
(2.8)

The quantization step clusters weights in the same layer into shared values. For AlexNet, Deep Com-

pression is able to quantize weights in convolutional layers to 8 bits and fully connected layers to 5 bits.

Only indices and a copy of shared value are required to be stored. For K-means method, initialization of

the shared weights is important. Linear initialization can better preserve the weights distribution there-

fore is used to initialize the shared weights. Quantization partition weights {w1, w2, ..., wn} into clusters
{c1, c2, ..., ck}.

argminc

k∑
i=1

∑
w∈ci

|w − ci|2 (2.9)
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BNN+

BNN+ [47] was released recently (on December 31th, 2018). Darabi et al. made several improve-

ments to BNN. Firstly, they change the activation function to equation 2.10. In equation 2.10, the σ is

sigmoid function and β is a hyper parameter controlling how fast the activation function asymptotes to

-1 and +1. Equation 2.11 is used to compute the gradient.

SSβ(x) = 2σ(βx)[1 + βx{1− σ(βx)}]− 1 (2.10)

dSSβ(x)

dx
=

β
{
2− βx tanh

(
βx
2

)}
1 + cosh(βx)

(2.11)

Equation 2.10 offers the freedom to adjust the location where the gradients start saturating. The merit

using this method to train is that the weights are still differentiable near -1 and +1. BNN poposed by

Courbariaux et al. adopts Htanh function than the sign function for avoiding zero gradients. However,

using Htanh functioin will cause gradients be disappear when the value is not in the [-1,1] interval (Figure

2.12).

Figure 2.12: Derivatives of Htanh function. During backpropagation, gradients are disappear on two
sides.

Activation function proposed in BNN+ is the solution to the problem above. Figure 2.13 presents the

gradients of the proposed activation equation. It is claimed to be a closer approximation to sign function.

Apart from modification on activation function, BNN+ also introduces a regularization term. This

regularization term in BNN+ is used to encourage the wegiths around -1 and +1. In the paper they used

Manhatan and Euclidean regularization functions and the loss function is then given in equation 2.12.

J(W, b) = L(W, b) + λ
∑
l

R (Wl, αl) (2.12)
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Figure 2.13: Derivative of the activation function with beta set for different values. From left to right
and top to bottom, the β is set to 1, 2, 3 and 5.

In practice, these two main modifications do contribute to better accuracy. But for large datasets such

as Imagenet, the improvements are limited. BNN+ performs better than BNN with about 5% accuracy

increase on Imagenet. However, there is still a 10% accuracy gap between BNN+ and the full precision

counterpart.

2.2.2 Hardware Optimization for Hyperbolic Functions with CORDIC

Hardware optimization for hyperbolic activation functions has been reported in previous studies. Al-

though the chip area and power consumption are reduced, related studies apply hyperbolic functions only

to activation computations, which limits the optimization gains. The CORDIC algorithm [48] is consid-

ered an efficient method for computing hyperbolic activations. Here, we briefly introduce the CORDIC

algorithm, which is widely used in microcontrollers and FPGAs. Initially proposed in 1959, the CORDIC

algorithm is an efficient way to calculate hyperbolic and trigonometric functions. A CORDIC module

computes the trigonometric value of a certain angle through accumulative rotations of the preset base

angles. It decomposes a certain angle into discrete base angles that are pre-stored in a look-up table.

Note that all the base angles are chosen as powers of 2; thus, iterative rotations of an angle are computed

through shift operations. The CORDIC algorithm then iteratively applies accumulative rotations of the

base angles until the required precision is met.

Many accelerated CORDIC algorithms have been proposed over the years. For example, Jaime et al.

proposed a scale-free CORDIC engine that can reduce the chip area and power consumption by 36% [49].

Mokhtar et al. proposed a sine and cosine CORDIC compute engine that requires only seven iterations

for 16-bit precision [50]. An improved rotation strategy was also studied in [51], which achieved 32
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precision with only approximately five iterations on average.

Chen et al. used a CORDIC engine to compute an application-specific algorithm [52], i.e., an inde-

pendent component analysis (ICA), which is used for the direct separation of a number of mixed signals.

In their research, only a part of the updating scalar tanh(x) was computed using the CORDIC engine.

The method still relies on a comparatively large number of multipliers. A similar approach was adopted

by Tiwari et al., who used CORDIC to compute activations in neural networks [53].

Another direction to take advantage of hyperbolic functions is by applying them to specific compu-

tation tasks. Heidarpur et al. utilize the CORDIC engine to compute modified Izhikevich neurons [54].

Similarly, Hao et al. realized an efficient implementation of a cerebellar Purkinje model [55].

To the best of our knowledge, there is still a lack of training algorithms that can remove the usage of

multipliers on deep neural networks during the training stage.

2.2.3 Addition based Neural Networks

Introduction

AdderNet is recently revealed by Huawei Noah’s Ark Lab [56]. In this research, multiplications

are replaced by addition operations in the forward pass. Chen et al. took a different way of thinking.

According to the paper, the function of convolution operations is feature extraction. Kernels in the

convolution stage can extract various features during training. In the multiplication convolution stage,

the output of each kernel functions as a similarity measurement.

As finding the correlation between two vectors, convolution operations can also be seen as the inner

product operation of filter and input vectors which are similar to correlation computation. When visu-

alizing the convolution kernels, usually they are divided by their angles. AdderNets utilize l1-norm to

differentiate different kernels therefore visualization of features for AdderNets is mainly expressed by

distances of the center points.

As shown in Figure 2.14, the trained network’s filters are clearly differentiated by their Euclidean

distances. This result suggests that the l1 norm can serve as a similarity measurement between inputs

and convolution kernels.

Training of AdderNet.

Although the name is AdderNet, it actually uses subtraction in the forward pass. As indicated by

Equation 2.13, the l1 distance of the kernels and inputs of each layer is computed.

Y (m,n, t) = −
d∑

i=0

d∑
j=0

cin∑
k=0

|X(m+ i, n+ j, k)− F (i, j, k, t)| (2.13)

During the backpropagation stage, some tricks are made for promoting the learning. Rather than

compute the gradient directly as the Equation 2.14 indicates, they use Equation 2.15 and 2.16 instead.

This is because the result of Equation 2.14 can never obtain the steepest gradient.

∂Y (m,n, t)

∂F (i, j, k, t)
= sgn(X(m+ i, n+ j, k)− F (i, j, k, t)) (2.14)

∂Y (m,n, t)

∂F (i, j, k, t)
= X(m+ i, n+ j, k)− F (i, j, k, t) (2.15)
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(a) Features in CNNs are differentiated by their angles.
(b) Features in AdderNets are differentiated by their central points.

(a) (b)

Figure 2.14: Visualization of features in AdderNets and CNNs. Unlike conventional CNNs that its
kernels are differentiated by their angles, AdderNets’ kernel are divided by their center points. This
phenomenon suggests that l1-norm between inputs and filters might be able to server as a inference
method.

∂Y (m,n, t)

∂X(m+ i, n+ j, k)
= HT(F (i, j, k, t)−X(m+ i, n+ j, k)) (2.16)

where the hard tangent function is:

HT(x) =


x if −1 < x < 1

1 x > 1

−1 x < −1

(2.17)

Since the output of Equation 2.13 is always negative, batch normalization is introduced after each

addition layer [57]. Also, the variances of layers in normal CNN and AdderNet are largely different.

Equation 2.18 and 2.19 give estimations of variance in normal CNN and AdderNet. In practice, Adder-

Net layers tend to produce much larger variances. These larger variances will cause the failure of back-

propagation since the gradients are much smaller.

Var [YCNN ] =

d∑
i=0

d∑
j=0

cin∑
k=0

Var[X × F ]

= d2cinVar[X] Var[F ].

(2.18)

Var [YAdderNet] =
d∑

i=0

d∑
j=0

cin∑
k=0

Var[|X − F |]

=

(
1− 2

π

)
d2cin (Var[X] + Var[F ]),

(2.19)

To solve the small gradients problem, an adaptive learning rate method was introduced in the paper.

Equation 2.20 shows how to compute the adaptive learning rate of each layer. Note k denotes the con-

volutional kernel size and ∆L (Fl) is the gradient of the corresponding kernel. η is a hyper parameter to

adjust the final learning rate. In the source code they offered, the η was set to 0.25 [3].
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αl =
η
√
k

∥∆L (Fl)∥2
(2.20)

The core component of AdderNet source code is as follows. Note this version of the source code

has not been optimized for CuDNN [58] thus the training speed is slow compared to normal CNN and

requires much larger memory. Although multiplication in the forward pass is avoided,the backward pass

is more complicated than conventional CNNs thus more computation expensive.

1

2 c l a s s adde r ( Func t i o n ) :
3 @sta t i cme thod
4 de f fo rwa rd ( c tx , W_col , X_col ) :
5 c t x . s ave_ fo r_backwa rd (W_col , X_col )
6 ou t p u t = −(W_col . unsqueeze ( 2 ) −X_col . unsqueeze ( 0 ) ) . abs ( ) . sum ( 1 )
7 r e t u r n o u t p u t
8

9 @sta t i cme thod
10 de f backward ( c tx , g r a d _ ou t p u t ) :
11 W_col , X_col = c t x . s a v e d _ t e n s o r s
12 grad_W_col = ( ( X_col . unsqueeze ( 0 ) −W_col . unsqueeze ( 2 ) ) * g r a d _ou t p u t . unsqueeze

( 1 ) ) . sum ( 2 )
13 grad_W_col = grad_W_col / grad_W_col . norm ( p=2) . clamp ( min=1e −12) *math . s q r t (

W_col . s i z e ( 1 ) *W_col . s i z e ( 0 ) ) / 5
14 grad_X_col = ( −( X_col . unsqueeze ( 0 ) −W_col . unsqueeze ( 2 ) ) . clamp ( −1 ,1 ) *

g r a d _ou t p u t . unsqueeze ( 1 ) ) . sum ( 0 )
15

16 r e t u r n grad_W_col , g rad_X_col

Listing 2.1: forward and backward pass of the AdderNet.

Multiplication as Integer Addition Method

The introduction of an addition based neural network is a very new concept, so there are not many

updates at present. Nevertheless, some methods have been proposed to improved addition based neural

networks.

Tsuguo Mogami used an approximate multiplication method by using an "integer-add instruction"

[1]. A similar method had been used before [59] but not for training a neural network. Mogami took

advantage of the data representation in IEEE 754 standard that all floating point numbers are actually

stored in a logarithmic form. As shown in Figure 2.15, a decimal is divided into three parts consist of

sign, exponent and mantissa. The exponent part is the logarithm of the original number and the mantissa

keeps the decimal part. Multiplication between decimals always includes operations of the exponents and

mantissa. Mogami omits the operations mantissa and focus on only operations of exponent part therefore

the multiplication could be accelerated in principle. The paper reported that this way of approximation

causes 12.5% error at most and it functions as Mitchells approximate multiplication [60]. The method

was tested with Chainer [61, 62] and the training curve showed no difference with the multiplication

counterpart.

27



Figure 2.15: An example of a floating point number representation in IEEE 754 form. All floating points
are represented by three part: sign, exponent and mantissa. In [1], multiplications between mantissas are
omitted.

The pseudo-code is as follows. Note on modern GPU the speed of this method cannot surpass that of

normal multiplications. Acceleration on ASICs requires future researches. As for accuracy, on ResNet-

50, there was no deviation from the author’s report.

1 f l o a t i n t mul ( c o n s t f l o a t a , c o n s t f l o a t b ) {
2 i n t c = *( i n t * )&a + *( i n t * )&b − 0 x3f800000 ;
3 r e t u r n * ( f l o a t * )&c ;
4 }

Listing 2.2: Pseudo-code of [1] with mantissa multiplications omitted.

ShiftAddNet

Although AdderNet can partly remove multiplication operations in the forward pass, it still largely

relies on multiplications during the backpropagation (see Listing 2.1). How to reduce the use of multi-

plication operations during backpropagation had become a problem. You et al. [63] released their shift

based addition neural network training method in late 2020. In this work, they reported that their method

can reduce the energy cost of over 80% on hardware DNN training and inference.

Figure 2.16: Backpropagation and inference of ShiftAddNet. During the backward pass, all gradients
are quantized to powers of two, therefore the multiplication operations are transferred to bit shifts.

28



As shown in Figure 2.20, ShiftAddNet combines additional convolution and quantization techniques.

During the forward inference, ShiftAddNer works exactly as the AdderNet. When the error signals are

propagated backward, ShiftAddNet firstly quantizes all gradients to powers of 2. In this way all multi-

plications between kernels and layer outputs are transferred to bit shift operations which are hardware-

friendly.

When compared with pure shift based neural networks such as DeepShift [36], ShiftAddNet can

achieve much better accuracy with very little more energy consumption. Wang et al. designed a hardware

kernel for ShiftAddNet [64] recently. In their work, they presented a hardware efficient shared-scaling-

factor quantization method for AdderNets. As the result they achieved 81% resource saving on FPGAs

with adder kernels than multiplication kernels.

1 c l a s s adde r2d ( nn . Module ) :
2 de f _ _ i n i t _ _ ( s e l f , i n p u t _ c h ann e l , o u t p u t _ ch anne l , k e r n e l _ s i z e , s t r i d e =1 , padd ing =0 ,

b i a s = F a l s e ) :
3 s up e r ( adder2d , s e l f ) . _ _ i n i t _ _ ( )
4 s e l f . s t r i d e = s t r i d e
5 s e l f . padd ing = padd ing
6 s e l f . i n p u t _ c h a n n e l = i n p u t _ c h a n n e l
7 s e l f . o u t p u t _ c h a n n e l = o u t p u t _ c h a n n e l
8 s e l f . k e r n e l _ s i z e = k e r n e l _ s i z e
9 s e l f . adde r = t o r c h . nn . Pa r ame t e r ( nn . i n i t . normal_ ( t o r c h . r andn ( ou t pu t _ ch anne l ,

i n pu t _ c h ann e l , k e r n e l _ s i z e , k e r n e l _ s i z e ) ) )
10

11 # q u a n t i z a t i o n
12 s h i f t = s e l f . adde r . abs ( ) . l og2 ( ) . round ( )
13 s h i f t = 2** s h i f t
14 s h i f t [ s e l f . adder <0] = s h i f t [ s e l f . adder <0] * −1
15 s e l f . adde r = t o r c h . nn . Pa r ame t e r ( s h i f t )
16

17 s e l f . b i a s = b i a s
18 i f b i a s :
19 s e l f . b = t o r c h . nn . Pa r ame t e r ( nn . i n i t . un i fo rm_ ( t o r c h . z e r o s ( o u t p u t _ c h a n n e l )

) )
20

21 de f fo rwa rd ( s e l f , x ) :
22 ou t p u t = a d d e r 2 d _ f u n c t i o n ( x , s e l f . adder , s e l f . s t r i d e , s e l f . padd ing )
23 i f s e l f . b i a s :
24 ou t p u t += s e l f . b . unsqueeze ( 0 ) . unsqueeze ( 2 ) . unsqueeze ( 3 )
25

26 r e t u r n o u t p u t

Listing 2.3: A sample code for shift-based AdderNet.

Knowledge Distillation

Knowledge distillation was used to bring up the accuracy of AdderNet [65]. It is verified that knowl-

edge distillation can eliminate the accuracy drop compared with CNN for AdderNet. Here we first

introduce some basics of knowledge distillation. Knowledge distillation can effectively learn a smaller

student model from a giant teacher model [66]. In this way the large model can be compressed. As
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(a) Features in CNNs are differentiated by their angles.
(b) Features in AdderNets are differentiated by their central points.

(a) (b) (b)

(c) Distll the angle differentiation based knowledge to distance based knowledge.

Figure 2.17: Progressive Distillation for Adder Neural Networks. A visualization of filters.

showed in 2.18, the knowledge that large model learned can be distilled to a smaller network. As for

distillation strategies, there are many different types which play important roles.

In practice, first, we train the teacher network until it achieves the best accuracy. Then as indicated

in Equation 2.21, we compute a KD loss in order to teach the student network. Where Hcross denotes

the cross entropy and ys and yt are outputs of student and teacher network respectively. At last, a blend

loss is computed to transfer the knowledge to the student network.

Lkd =
n∑

i=1

Hcross (ys,yt) (2.21)

Lblend =
n∑

i=1

{αHcross (ys,yt) +Hcross (ys,ygt)} (2.22)

In [65], Xu et al. adopted a different method. In their work, the knowledge in teacher network is

distilled progressively layer by layer from a CNN teacher network. They also compute the mean squared

error and then combine it with the cross entropy to formulate the KD loss (Equation 2.23).

L = βLmid + Lblend

=

n∑
i=1

M∑
m=1

βHmse (y
m
a ,ym

c ) +

n∑
i=1

{αHcross (ys,yt) +Hcross (ys,ygt)}
(2.23)

With knowledge distillation, the AdderNet is able to learn from CNN and the learned features are

more reasonably distributed (see Figure 2.17). The experimental results showed that the accuracy of

PKKD (progressive kernel based knowledge distillation) can achieve the same or even better accuracy

than the conventional CNNs. On Cifar and ImageNet datasets, the results are shown in Tables 2.1 and

2.2.

AdderNet for Super Resolution Tasks

Reconstructing a high-resolution image from a low-resolution image has been a challenging problem

for a long time. In 2014, SRCNN ( Super-Resolution Convolutional Neural Network [67]) was proposed
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Teacher Network

Student Network

Knowledge Transfer

Data

Figure 2.18: Teacher student framework of knowledge distillation. First, the teacher network is trained
(usually a large model), then the knowledge is distilled to the student model (a small one for compression).
Note the training samples are the same for both teacher and student models.

Table 2.1: Classification results on CIFAR-10 and CIFAR-100 datasets [3]

Model Method CIFAR-10 CIFAR-100

VGG-small CNN 94.25 % 75.96 %
ANN 93.72 % 74.58 %

PKKD ANN 95.03 % 76.94 %

ResNet-20 CNN 92.93 % 68.75 %
ANN 92.02 % 67.60 %

PKKD ANN 92.96 % 69.93 %
ShiftAddNet 85.10 % -

ResNet-32 CNN 93.59 % 70.46 %
ANN 93.01 % 69.17 %

PKKD ANN 93.62 % 72.41 %
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Table 2.2: Classification results on ImageNet datasets of AdderNets [3]

Model Method Top-1 Acc Top-5 Acc

ResNet-18 CNN 69.8% 89.1%

ANN 67.0% 87.6%

PKKD ANN 68.8% 88.6%

ResNet-50 CNN 76.2% 92.9%

ANN 74.9% 91.7%

PKKD ANN 76.8% 93.3%

to solve this problem via convolutional neural networks. Since then, many methods based on the neural

network have been proposed, such as VDSR [68] and EDSR [69].

Using adder filters, Song et al. achieved a comparable performance while reducing energy con-

sumption by about 50% [70]. They applied the addition neural networks on several datasets (Set5 [71],

Set14 [72], B100 [73] and Urban100 [74]). The experimental results show that there is almost no perfor-

mance gap between AdderNets and the original CNNs (see Table 2.3).

Table 2.3: Experimental results of super resolution with AdderNets.

Scale Model Type Set5 Set14 B100 Urban100
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

×2 VDSR ANN 37.37/0.9575 32.91/0.9112 31.82/0.8947 30.48/0.9099

CNN 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140

EDSR ANN 37.92/0.9589 33.82/0.9183 32.23/0.9000 32.63/0.9309

CNN 38.11/0.9601 33.92/0.9195 32.32/0.9013 32.93/0.9351

×3 VDSR ANN 33.47/0.9151 29.62/0.8276 28.72/0.7953 26.95/0.8189

CNN 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279

EDSR ANN 34.35/0.9212 30.33/0.8420 29.13/0.8068 28.54/0.8555

CNN 34.65/0.9282 30.52/0.8462 29.25/0.8093 28.80/0.8653

×4 VDSR ANN 31.27/0.8762 27.93/0.7630 27.25/0.7229 25.09/0.7445

CNN 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524

EDSR ANN 32.13/0.8864 28.57/0.7800 27.58/0.7368 26.33/0.7874

CNN 32.46/0.8968 28.80/0.7876 27.71/0.7420 26.64/0.8033

2.2.4 Decoupled Learning

Learning with Feedback Alignment

Training a deep neural network relies on the chain rule (Equation 2.24), where we do back propaga-

tion layer by layer with a global loss function. In the actual training process this is very computationally

intensive, and each layer needs to wait for all subsequent layers to complete their gradient computations.

If we can decouple the layers, we can save a lot of computation. Based on this idea, many decoupled
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gradient methods have been proposed.

∆C ≈ ∂C

∂aLm

∂aLm
∂aL−1

n

∂aL−1
n

∂aL−2
p

. . .
∂al+1

q

∂alj

∂alj

∂wl
jk

∆wl
jk (2.24)

Recent researches showed that strict weight symmetry between the forward and backward propaga-

tion pass is not necessary for learning in deep neural networks [75–77]. As shown in Figure 2.19, rather

than backpropagate the precise symmetric error matrices, feedback alignment methods backpropagate

pseudo error signals which are not precisely computed via the chain rule. Although it is not clear why

random pseudo error feedback signals can provide learning in the neural network [76], experimental

results showed that useful features could be learned with this method.

W3

W2

W1

B2

B1

(a) (b)

Figure 2.19: Training with feedback alignment. Arrows in black indicate forward signals (activations)
and arrows in grey indicate backward error signals. Compared with the traditional backpropagation
method (a), feedback alignment backpropagate pseudo error signals are not precisely computed.

Learning with Local Error Signals

Another way to avoid a global loss function is to use local error signals [78, 79]. The traditional

approaches follow a forward-backward loop to train the neural network. If the depth of the neural network

is large, there are many difficulties in parallelizing neural network computation.

Mostafa et al. took a novel approach by localizing the gradient computation for each layer without

relying on a global loss function, as opposed to backpropagating the gradient layer by layer [79]. The

advantage of this scheme is that the dependency between the layers can be reduced, thus the synchro-

nization requirement of the training of each layer is reduced, and it has important implications in the

parallelization of the network computation.
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Figure 2.20: training with local error signals.
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Chapter 3

Quantization

In this section, our contributions are mainly twofold, first we propose a new logarithmic quantization

algorithm which transfer the original integer quantization exponents to decimal. And second, we argue

that the widely used quantization error minimization objective is not suitable for designing quantization

algorithms. We propose a weight aware quantization error minimization objective that better suits the

quantization error computation. It can be assumed that memory reads are very frequent during the

convolution operation (Listing 3.1).

3.1 On Hardware Efficiency

Amajor overhead during neural network training and inference is the memory read operation. Figure

3.1 gives the usual matrix multiplication operation, which is performed in the forward inference of a

fully connected neural network. In the case of convolutional neural networks, we usually need to do the

unrolling of the convolutional kernel and the input blocks first, and then do the matrix multiplication

operation (Figure 3.2).

9x8 8x6
mul

9x6

Figure 3.1: General matrix multiplication.
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Convolution Kernel

Mul

Figure 3.2: Unrolling of an input and convolution kernel.

Quantization can not only reduce the model size of neural networks, but make the neural network

inference more efficient as well. Some companies make their own ASICs (application-specific integrated

circuit) to accelerate the inference or training of deep neural networks. There are already some special

hardware on the market at this point such as Huawei Kirin series’ NPU (neural processing unit) and

Google’s TPU [80] (tensor processing unit, recently Google have customized a TPU acceleration unit on

their latest generation mobile phone). Optimizing memory access is common in modern ASICs, CPUs

and GPUs. For instance, with little change we can reduce the memory access by 4× as Listing 3.2.

Today’s processors are largely SIMD (single instruction, multiple data) enabled, so optimizations that

reduce memory read frequency operations are also very common even on the mobile side.

1 f o r m t o M {
2 f o r n t o N {
3 Out [m] [ n ] = 0 ;
4 f o r k t o K {
5 Out [m] [ n ] += In [m] [ k ] * Kerne l [ k ] [ n ] ;
6 }
7 }
8 }

Listing 3.1: For loops of GEMM.

1 f o r m t o M {
2 f o r n t o N {
3 Out [m] [ n + 0] = 0 ;
4 Out [m] [ n + 1] = 0 ;
5 Out [m] [ n + 2] = 0 ;
6 Out [m] [ n + 3] = 0 ;
7 f o r k t o K {
8 Out [m] [ n + 0] += In [m] [ k ] * Kerne l [ k ] [ n + 0 ] ;
9 Out [m] [ n + 1] += In [m] [ k ] * Kerne l [ k ] [ n + 1 ] ;
10 Out [m] [ n + 2] += In [m] [ k ] * Kerne l [ k ] [ n + 2 ] ;
11 Out [m] [ n + 3] += In [m] [ k ] * Kerne l [ k ] [ n + 3 ] ;
12 }
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13 }
14 }

Listing 3.2: A simple trick to accelerate the GEMM with less memory access.

Some quantization methods constrain model parameters to very low bit widths and use shift opera-

tions to replace MAC (multiplyaccumulate) operations since shift operation is faster and less hardware

resource intensive. The hardware costs on FPGA (field pragrammable gate array) for different bitwidths’

MAC operations also differ [81]. Increasing bitwidth of model parameters can cost a lot more LUTs abd

DSPs on an FPGA.

Figure 3.3: Low efficiency if flash memory is accessed frequently.

In real world applications on embedded devices, large storage requirements could cause high latency.

Figure 3.10 presents the fact that waiting for parameters from flash memory may cause high latency if

the low speed flash memory is accessed frequently. For resource limited devices, it is common to store

model parameters in flash memory and then fetch them piece by piece. However this will make the CPU

wait and we can expect much faster speed if we can store more parameters in the RAM during inference.

Also, reducing the model size is also helpful in reducing the memory bottleneck.

3.1.1 Logarithmic Quantization

The main purpose of quantization is to compress the original deep neural networks. Quantization

is an effective way to reduce memory consumption and has recently been adopted by Google’s Tensor-

Flow [82]. Various compression methods are detailed in the Chapter 2, and here we give a brief overview

of logarithmic quantization (Figure 3.4) proposed by Miyashita et al. [35]. As we can judge from Figure

3.4, logarithmic quantization algorithm takes logarithms of the original weights and saves only expo-

nents. Besides, to constrain the exponents within a smaller bitwidth, the decimal parts of the exponents

are removed. As a trade-off, quantized weights incur relatively large quantization noises. To decrease

the accuracy deterioration of quantized neural networks, despite troublesome, retraining of quantized

networks is widely used and often plays an important role.

Given different bitwidths, the dynamic range of quantized weights varies. Supposing the given

bitwidth is 4 then we have at most 16 exponents. Thus we get quantized weights as the equation 3.1.

Note ‘s’ in the equation refers to a hyper parameter used to adjust the dynamic range of the quantized

weights. In real world applications empirically adjusting this hyper parameter could be cumbersome

since the range of model parameters vary between layers. This power of 2 based encoding also enables

Zhou et al.’s INQ (Incremental Network Quantization) [32] to function.
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Figure 3.4: An overview of logarithmic quantization.

QuanWeights = {±20+s,±2−1+s...± 2−16+s} (3.1)

To compare the weights distribution before and after logarithmic quantization, we trained a fully

connected neural network on MNIST [83]. The network contains 2 hidden layers with 1000 neurons

each. We set s to 0 and the weights distribution is illustrated in Figure 3.5 before and after quantization

on the first hidden layer. It is clear that quantized weights on the tail region are sparse. This phenomenon

is attributed to the adoption of integer-only exponents. More specifically, only 3 quantized weights

between 0.1 and 1 namely 2−1, 2−2 and 2−3.

Although the accuracy decrease roots from the sparsity on bigger weights can be alleviated to some

extent through retraining, its time and resource consuming. Compared with some large companies with

massive datasets and computational resources, small, medium-sized enterprises and universities do not

have access to the same volume of datasets and computational resources. Moreover, nowadays open

source models in some fields (e.g., image recognition) are publicly available, but the training datasets

are not. In this case the retraining of quantized models is not possible. For the above reasons, what we

need more is a quantization algorithm that does not require retraining, i.e., the reduction in accuracy after

direct quantification is within an acceptable range.
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Figure 3.5: Distribution of weights before and after logarithmic quantization. The sparsity of quantiza-
tion levels on the tail region causes huge accuracy loss.

For some quantization algorithms, such as linear quantization algorithms, the loss of accuracy can

be greatly reduced by increasing the bitwidth. For example, for linear quantization, a 4-bit quantization

to a 5-bit quantization results in a uniform increase in the precision on the tail region in Figure 3.5.

However, for LogQuant, the 4-bit to 5-bit shift does not change anything in the tail region, and all the

new quantization levels added in are wasted in the middle region near the 0 value. By improving this

problem we can significantly improve the accuracy loss problem.

3.2 Towards Retraining-Free Quantization

3.2.1 Difficulties of Model Retraining.

In chapter 2 we analyzed several compression methods. To largely reduce the parameter size, all

of these methods require retraining after model compression. Methods like pruning will even change

the network structure of given pre-trained neural networks. Nevertheless, BNNs still cannot keep the

accuracy after quantization when challenge large datasets. Figure 3.1 illustrates work flow for normal

compression methods. All these methods cannot well preserve the performance of original pre-trained

neural networks.
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Figure 3.6: Workflow of quantization with retraining.

Many researches are committed to the retraining (right) part of Figure 3.6. It is acquiesced that quan-

tizaiton will cause a huge accuracy loss on pre-trained models therefore retraining is inevitable. However,

retraining is not always easy for it usually takes longer to train. Some modern deep learning frameworks

do not support quantitative neural network training very well either. Let’s take the quantization aware

training of Tensorflow as an example. Tensorflow was developed by Google and has received wide

adoption in industry and academia.

Listing 3.3 gives an overview for a retrianing sample for a convolution layer. Since the training

hardware or platform might not support our datatype when we quantize a model parameter to a specific

bitwidth, the retraining (also called quantization aware training in Tensorflow) step is performed by sim-

ulation, i.e. fake quantization.

1 c l a s s Conv2d_Q (Module ) :
2 de f fo rwa rd ( s e l f , x ) :
3 # q u a n t i z e t h e l a y e r we i gh t s t o lower b i t w i d t h
4 s e l f . conv_m .w. d a t a = s e l f . q u a n t i z e _ t e n s o r ( s e l f . conv_m .w. d a t a )
5

6 # d e q u a n t i z e t h e l a y e r we i gh t s t o f l o a t 3 2 .
7 s e l f . conv_m .w. d a t a = s e l f . d e q u a n t i z e _ t e n s o r ( s e l f . conv_m .w. d a t a )
8

9 x = s e l f . conv_m ( x )
10 r e t u r n x

Listing 3.3: Quantizatioin aware training.

As indicated in Listing 3.4, the ’quantize_tensor’ method is used to reduce the weight precision to our

target precision. The ’num_bits’ parameter in the function denotes the quantization bitwidth. From the

above analysis we can learn that current deep learning frameworks do not natively support low precision
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training. This also leads to the need to insert many extra nodes during the training process, which reduces

the training speed.

As shown in Figure 3.7, the fake quantization and dequantization nodes are inserted into the training

graph which bring extra computation burden. The fake quantization node is used to reduce the weights

precision to the target precision, and the dequantization node is used to dequantize the quantized weight

to float32 data type, so as to be compatible with the framework. Here for simplicity we depict a single

layer quantization procedure, for models with large depth, say ResNet-100, these extra computation

burdens will be huge.

Inference

W

Wq

fake quantization

Dequantization

L

Inserted nodes for quantization aware training,
which brings extra computation burden.

Backpropagation

Grad

update

Figure 3.7: Quantization aware training. For compatibility with modern deep learning frameworks,
extra nodes such as fake quantization and dequantization are inserted into the graph, which brings extra
computation burden.

1 de f q u a n t i z e _ t e n s o r ( x , s c a l e , z e r o _po i n t , num_bi t s =8 , s i g n ed = F a l s e ) :
2 i f s i g n ed :
3 qmin = − 2 . ** ( num_bi t s − 1 )
4 qmax = 2 . ** ( num_bi t s − 1 ) − 1
5 e l s e :
6 qmin = 0 .
7 qmax = 2 .** num_bi t s − 1 .
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8

9 q_x = z e r o _ p o i n t + x / s c a l e
10 q_x . clamp_ ( qmin , qmax ) . round_ ( )
11

12 r e t u r n q_x . f l o a t ( )

Listing 3.4: A simulated quantization kernel.

Listing 3.4 contains a round function, which is also something to be noted in the retraining algorithm.

As shown in Figure 3.8, the round function can only be 0 when calculating the gradient, and this causes

the gradient to disappear, so that the neural network cannot continue training. An easy way to do this is

to skip all the round functions (straight through estimator) during training and jump directly to the next

layer when the gradient needs to be calculated. As shown in Listing 3.5, this skipping strategy could be

realized by customizing the backward function.

Figure 3.8: Round function. Gradient vanishing happens at round function nodes.

1 c l a s s Conv2d_Q (Module ) :
2 de f fo rwa rd ( s e l f , x ) :
3 s e l f . conv_m .w. d a t a = s e l f . q u a n t i z e _ t e n s o r ( s e l f . conv_m .w. d a t a )
4 s e l f . conv_m .w. d a t a = s e l f . d e q u a n t i z e _ t e n s o r ( s e l f . conv_m .w. d a t a )
5 x = s e l f . conv_m ( x )
6 r e t u r n x
7

8 # s t r a i g h t t h r ough e s t im a t o r , p a s s g r a d i e n t d i r e c t l y f o r s k i p p i n g round
f u n c t i o n s .

9 de f backward ( s e l f , g r a d _ ou t p u t ) :
10 r e t u r n g r a d _ou t p u t

Listing 3.5: Straight through estimator

3.2.2 Retraining Free Quantization

We found that retraining is not always necessary if the quantization algorithm is designed well. We

will show that if the distribution of weights and strong connections (connections with large weight value)
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in the neural network are preserved well in precision, the quantized model can perform as well as the

full-precision one.

More importantly, a retraining free quantization algorithm can save the time and resource to train the

quantized neural network. For practical implementations, there would be no need to design the retraining

algorithm since our proposed algorithm can generalize well on both small and large datasets. The work

flow of network quantization is then simplified to Figure 3.9.

Figure 3.9: Workflow of proposed retraining-free quantization method. The quantized model can be
loaded to the end device for inference directly. The time and resource intensive retraining step can be
removed.

3.2.3 Drawbacks of LogQuant

Weights of trained neural networks with large complexity are usually highly concentrated around

zero. This non-uniformity motivates Miyashita et al. to replace original parameters with logarithmic

data representation since logarithmic quantized weights have a similar trend. We restate Miyashita et

al.’s algorithm as the following and a graphical view of logarithmic quantization processes is given in

Figure 3.10. Their algorithm (details in [35]) will be used as the baseline for comparison.

LogQuant(x,bitwidth,FSR)=

0 x=0,

2x̃ otherwise
(3.2)
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Figure 3.10: Processes of logarithmic quantization. (a) In the first step, weights are extracted for quanti-
zation. (b) Weights are quantized. The quantization algorithm takes logarithm of each weight and then
rounds it to an integer. (c) Quantized weights are loaded to the target device. Since quantized weights
consume less storage, inference on small ram devices could be accelerated.

where

FSR: Full scale range,

x̃ = Clip(Round(log2|x|),FSR-2bitwidth,FSR) (3.3)

Clip(x,min,max)=


0 x ≤ min,

max-1 x ≥ max,

x otherwise

(3.4)

In addition, we define the rounding to the nearest scheme as the following:{
⌊x⌋ if

(
2x − 2⌊x⌋

)
≤ 2⌈x⌉−2⌊x⌋

2

⌈x⌉ if
(
2x − 2⌊x⌋

)
> 2⌈x⌉−2⌊x⌋

2

(3.5)

Quantized weights are given by Clip (equation 3.4) and the FSR parameter is manually tuned during

the quantization process. The algorithm quantizes both activations and weights to replace multiplication

operations with accumulations. Quantization of activation can eliminate the floating multiplications.

This can be explained as the following:

if:

a = logx2 , b = logw2

then:

wx = 2a+b = Bitshift (1, a+ b)

Based on previous discussions, here we summarize the drawbacks of LogQuant as the following:

• 4bits or larger bit-width quantization brings little to no accuracy improvement than 3 bits quanti-

zation.
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Figure 3.11: Activation quantization brings extra nodes to the computational graph.

• Manually fine tuning the FSR (full scale range) parameter is cumbersome.

FSR is a hyperparameter that requires manually adjusting. However, it is troublesome if we have

to set the FSR parameter for every layer. And it will restrict the implementation for different

network architectures. For example, in [35], the value of FSR parameter varies between AlexNet

and VGG16. Moreover, introducing FSR to the logarithmic quantization algorithm also brings

extra computations such as minus and comparison operations.

• Using only integers in the log domain suffers accuracy decrease under some conditions since it

penalizes strong connections (connections with larger weight values).

• Quantization of activations would incur local quantization processing on target devices.

As shown in Figure 3.11, quantizing the activation introduces extra nodes to the computational

graph and it is not necessary since the activation information is not saved to the model (memory

compression merit does not exist on activation quantization). If all the weights are quantized

to the logarithmic domain, then the multiplication operations between weights and real-valued

activations are efficient without activation quantization.

3.2.4 Visualization of LogQuant

Unlike linear quantization, enlarging the bit width of logarithmic quantization can only cause the

quantized weights to concentrate around zero. Figure 3.15 and Figure 3.12 show the output of logarith-

mic quantization, both original weights and quantized weights gather around zero. It can be concluded

from Figure 3.13 and Figure 3.14 that regardless of how much we increase the bit width of LogQuant,

quantized weights that are away from zero are not affected. For instance, LogQuant can only gener-

ate two values that are greater than 0.2. One important point is that when increasing the number of

the hidden layer neurons, the Law of Large Numbers begins to function. When the number of hidden

layer neurons is relatively small, increasing the number of neurons will cause the weights distribution to

become smooth.
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Figure 3.12: 3 bits logarithmic quantization (16 neurons in hidden layer)

Figure 3.13: 3 bits logarithmic quantization (50 neurons in hidden layer).
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Figure 3.14: 4 bits logarithmic quantization (50 neurons in hidden layer).
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Figure 3.15: 7 bits logarithmic quantization (50 neurons in hidden layer).
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Figure 3.16: 32 bits logarithmic quantization (50 neurons in hidden layer)
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Figure 3.17: 3 bits logarithmic quantization (10000 neurons in hidden layer)

Figure 3.17 shows an example that the number of hidden layer neurons is relatively large (10000

in this case). The density distribution shows that weights density near two sides is almost squeezed to

zero. It is also noticeable that the proportion of quantized weights on the tail region is small compared to

Figure 3.15 and Figure 3.12. This phenomenon, from another point of view, well explains whyMiyashita

et al.s work on large neural networks can achieve no deterioration in accuracy. In this case, the network

is oversized therefore the weights in the hidden layer are relatively small. The larger layer size we have,

the more concentration of weights around zero we will get, which leads to concordance between original
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and quantized weights.

3.3 Experiment on A Microprocessor

3.3.1 RISC-V

We experimented with digital recognition on a RISC-V device. RISC-V is an open source ISA

(Instruction set architecture) which is available for both academia and industry. Compared with other

commercial ISAs such as X86 and ARM, RISC-V is free, simple and highly customizable. We believe

in the near future there will be many kinds of RISC-V based IoT devices functioning everywhere.

RISC-V ISA is defined as a base integer ISA with optional extensions. There are only 47 basic

instructions which is easy to implement. The specification sheet of RISC-V is just 145 pages (version

2.2) which is much less than any other ISAs.

3.3.2 On Hifive-1 Board

Freedom E310 development board is chosen as our testing platform (on Sive Hive-1 board). The

following explains why we choose Hifive-1 (RISC-V) to perform the implementation:

• Clock speed: 320+ MHz, Performance: 1.61 DMIPs/MHz, 2.73 Coremark/MHz.

• GNU tool chain support.

• Open and extensible ISA which allows customized commands.

• Compared to other models, Hifive-1 is cheap.

The RAM size of Hifive-1 is limited to only 16KB. Figure 3.18 presents the architecture of Hifive-

1 board and Figure 3.19 is the actual picture of the development board. To perform tasks based on

neural networks, a traditional method would store the weight and bias parameters in the external flash

first, then load them into the RAM piece by piece for calculation. However, this method is exceedingly

inefficient and unlikely to be implemented in practical applications. Therefore, to meet the needs of

real-world applications on low cost ends, it is necessary to reduce the parameter size and access to low

speed memories.
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Figure 3.18: Architecture of Hifive-1 borad.

Figure 3.19: hifive board..

Although the training processes are time-consuming and require a large amount of computations, a
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trained model is purely a group of matrices. We exported these matrices to arrays in C and performed

several recognition tests on the Hive-1 board. On account of the fact that adding depth to the network

will exponentially increase both the weights size and the amount of computation, we choose a single

hidden layer neural network as the classifier. This setting is useful for embedded systems since their

RAM size might be extremely limited. The algorithm is tested on neural networks containing 784 or 64

input neurons, one hidden layer of 16 neurons and an output layer of 10 neurons. Table 3.1 gives the

evaluation result.

Table 3.1: Accuracy of a small size FC network

Input size Accuracy

784 (without feature extraction) 94.125
64 (with feature extraction) 96.035

We used Chainer [62] to define and train the simple fully connected network. The network definition

is given in Listing 3.6. Chainer adopts a define-by-run strategy so that the architecture of the entire neu-

ral network is dynamic and can be adjusted in real time while the neural network is running. Recently

Tensorflow has enabled an eager execution mode, which is similar to Chainer’s define-by-run strategy.

1 c l a s s MLP( c h a i n e r . Chain ) :
2

3 de f _ _ i n i t _ _ ( s e l f , n _un i t s , n_ou t ) :
4 s up e r (MLP, s e l f ) . _ _ i n i t _ _ ( )
5 wi th s e l f . i n i t _ s c o p e ( ) :
6

7 s e l f . l 1 = L . L i n e a r ( None , n _ u n i t s ) # n_ in −> n _ u n i t s
8 s e l f . l 2 = L . L i n e a r ( None , n _ u n i t s ) # n _ u n i t s −> n _ u n i t s
9 s e l f . l 3 = L . L i n e a r ( None , n_ou t ) # n _ u n i t s −> n_ou t
10

11 de f fo rwa rd ( s e l f , x ) :
12 h1 = F . r e l u ( s e l f . l 1 ( x ) )
13 h2 = F . r e l u ( s e l f . l 2 ( h1 ) )
14 r e t u r n s e l f . l 3 ( h2 )

Listing 3.6: Network definition.

As the result, the feature extraction algorithm reduced the input neurons by 12.25×. Moreover, the

combination of feature extraction and neural network outperforms the original fully connected neural

network on the small size FC network. We also added some control experiments with small feasibility

on Hive-1 for reference, the results are listed in Table 3.2.

The combination of feature extraction algorithm and quantization achieves a reasonable accurate

recognition rate. Although Miyashita et al.s work show negligible or no loss in classification perfor-

mance when logarithmic quantization been applied to fully connected layers [35]. Our work reveals that

small sized DNNs cannot maintain the accuracy merit of logarithmic quantization. After quantized, the
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networks recognition performance decreased substantially compared to the results in Table 3.1. There is

a trade-off between accuracy and efficiency, especially on resource limited microchips.

Our work explores the practicability of implementing a small sized DNN on a microprocessor of

extremely limited RAM and computational capability. Here we summarize the workflow of the entire

processes targeting on embedded devices of limited resources. This should work on other datasets like

fashion mnist, cifar10 and some other real world application datasets.

• Design a feature extraction algorithm which performs dimension reduction and preserves the rele-

vant characteristics.

• Decide a network that meets the precision of the target application. Shallow depth with a hidden

layer of considerable size is preferred by the Law of Large Numbers.

• Logarithmic Quantization of model parameters.

• Export the model parameters to the target device(s).

Table 3.2: Accuracy results.

Bit width and hidden layer size Accuracy(%)

3 bits with 16 neurons 82.48
3 bits with 32 neurons 82.55
3 bits with 64 neurons 90.28
3 bits with 128 neurons 93.66
3 bits with 256 neurons 93.78
3 bits with 10240 neurons 95.88
3 bits with 102400 neurons 96.60
7 bits with 16 neurons 74.74
7 bits with 32 neurons 90.30
7 bits with 64 neurons 90.08
7 bits with 128 neurons 94.58
7 bits with 256 neurons 94.36
7 bits with 10240 neurons 96.58
7 bits with 102400 neurons 96.20
32 bits with 16 neurons 85.48
32 bits with 32 neurons 86.42
32 bits with 64 neurons 93.22
32 bits with 128 neurons 94.92
32 bits with 256 neurons 94.82
32 bits with 10240 neurons 96.36
32 bits with 102400 neurons 96.90
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3.4 Decimal LogQuant

The weak points mentioned in section 3.2.3 might restrict the real world implementations of the

proposed logarithmic quantization algorithm. Our purpose is to develop a new algorithm that keeps the

advantages of the existing logarithmic quantization, while this algorithm shall get rid of the disadvan-

tages from algorithm 1 (or LogQuant, existing logarithmic quantization algorithm). To achieve this goal,

we extend the exponents from the integer domain to the real number field thus quantized weights now

have a higher density. Extended exponents which beyond the precision of given bitwidth are kept in a

lookup table. Moreover, We remove quantization of activations since quantized weights can be directly

loaded into small devices of low computational power, while quantization of activations will incur local

computing for quantization on these devices. Another benefit we gain from removing quantization of

activations is that the time of tuning FSR parameter is largely saved. Therefore the generality of the

algorithm is significantly increased.

In addition, we round all weights below a threshold to a minimumweight value. Stronger connections

often perform prior roles in the forward computation. To better illustrate this point, we did some pruning

tests on several networks. Making the use of Chainer [61] we take a snapshot of all parameters in a

two layers FC (fully connected) network trained on MNIST, VGG [84] on Cifar10 and GoogLeNet on

ImageNet dataset. Note networks we used are pre-trained ones from caffe’s model zoo [85]. We pruned

certain proportions of stronger connections in a certain layer and record the result. Then we repeated the

same experiment but this time we pruned the weaker connections of the same proportion. Specifically,

the FC network contains 2 hidden layers of 1000 neurons in each and we pruned 10 percent connections

in the second hidden layer. On the GoogLeNet, 10 percent connections in the second convolution layer

were pruned and to our surprise, a loss of 10 percent stronger connections would dramatically decrease

the accuracy. Another interesting fact is that the accuracy loss on pruned VGG was inconspicuous until

we pruned 30 percent of the connections. It is evident that VGG on Cifar10 is over-parameterized. The

accuracy loss is presented in Table 3.3.

Table 3.3: Accuracy Loss After Pruning

Model Upper pruning Lower pruning

FC Network 38.56% 0%
GoogLeNet 78.45% 0%
VGG 11.19% 0%

The unimportance of smaller weights inspired us to round weights below a threshold to a specific

minimum value. Here we provide details of our algorithm. We firstly generate an arithmetic progression

via equation 3.5. Parameter R is a positive real number. In our cases, we set R to 7 on account of the

fact that quantized values range from 0 to -7 can be decoded to weights ranging from 7.8e − 3 to 1. In

practice, this range is appropriate for our tested networks and R could be tuned based on the complexity

of a specific layer.

QuanSeries = {−Rx
2n

| (x ∈ 0 ∼ 2n) ∩ (x ∈ Z), n=bitwidth} (3.6)
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Secondly, produced series contains float numbers which cannot be stored within the given bitwidth.

Hence a lookup table is utilized to store these exponents. In this way, higher bitwidth offers denser

exponents which are particularly useful for strong connections. Note that when the bitwidth is 3 our

algorithm performs similar to algorithm 1. For the simplicity of implementation, we do not prune all

connections below the threshold but round them to the bottom of the arithmetic progression, namely 2−7.

We will show in chapter 4 that this rounding scheme does not affect the accuracy.

After quantization, only indexes of the series are stored in the memory. We use Numpy’s argmin [86]

method to perform rounding to the nearest scheme (Listing 3.1). Note that the ′−′ operator would be

executed element-wisely. We ignore the process of fetching weight signs for ease of explanation.

1 I nd exe s = ( QuanSe r i e s − numpy . log2 ( numpy . abs (W) ) ) . a rgmin ( )
2 / / W: we igh t m a t r i c e s

Listing 3.7: Generating Indexes

Indexes could be directly loaded to target devices. Before inference on targets devices, the quantized

weights should be reconstructed via equation 3.6. ‘W̃ ’ denotes the quantized weights.

W̃ = 2QuanSeries[Indexes] (3.7)

An overview of our algorithm is given in Figure 3.20. Compared with the existing logarithmic

quantization algorithm, algorithm 2 (or Decimal LogQuant) can round original weights to a quantized

version with smaller quantization noise on strong connections. Figure 3.21, 3.22 and 3.23 show weight

distributions after 4 or 5 bits quantization. Weights are extracted from the same layer of the pre-trained

FC network (shown in Figure 3.5). Compared with Figure 3.5, it is notable that our algorithm outputs a

more reasonable distribution especially for stronger connections.

Figure 3.20: An overview of the proposed quantization algorithm.

It is clear that increasing the bitwidth can solve the sparsity of strong connections in our algorithm.

Particularly, 4 bits and 5 bits quantization with the original LogQuant show almost no difference. On

the contrary, our algorithm with the same condition can increase the density of quantized weights on

the tail region. The ability to maintain the coherence of strong connections between original and quan-
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tized weights is the key to realize retraining-free quantization. Owing to its simplicity, we realize the

quantization kernel within 20 lines of code (listing 3.8).

-0.79 -0.54 -0.29 -0.04 0.21 0.45
Weights value (before quantization)

0

20000

40000

60000

De
ns
ity
  
ith
in
 0
.0
12
 in
te
rv
al

−0.6 −0.4 −0.2 0.0 0.2 0.4
Weights value (after quantization)

0

20000

40000

60000

Co
un
t

Figure 3.21: 4 bits quantization via proposed algorithm.
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Figure 3.22: 5 bits quantization via algorithm 1. The distribution of quantized weights on tail region
shows almost no difference with 4 bits quantization.
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Figure 3.23: 5 bits quantization via proposed algorithm.

We set R to 7 in equation 3.6 which can quantize small weights to value 0.0078125. In our experi-

ence this value is already small enough for weak connections. Listing 3.8 gives the quantization kernel

of our algorithm. Key operations in the kernel are computed element wisely using numpy. Therefore it

is compatible with most deep learning platforms.

1 impo r t numpy
2 c l a s s LogQuant :
3 de f _ _ i n i t _ _ ( s e l f , l a y e r , b i t w i d t h =4) :
4 s e l f . l a y e r _ d a t a = l a y e r
5 s e l f . w id th = b i t w i d t h
6 s e l f . s i g n = numpy . s i g n ( l a y e r )
7 s e l f . lookup = numpy . l i n s p a c e (0 , −7 ,2** s e l f . w id th )
8 de f __round ( s e l f , x ) :
9 i dx = ( numpy . abs ( s e l f . l ookup − x ) ) . a rgmin ( )
10 r e t u r n i dx
11 @proper ty
12 de f l o g _ q u a n t i z e d ( s e l f ) :
13 round = numpy . v e c t o r i z e ( s e l f . __round )
14 r e t u r n numpy . a r r a y ( round ( numpy . log2 ( numpy . abs ( s e l f . l a y e r _ d a t a ) ) ) , d t ype=numpy

. i n t 8 )
15 @proper ty
16 de f d e _qu an t i z e d ( s e l f ) :
17 x = numpy . power ( 2 . 0 , s e l f . l ookup [ s e l f . l o g _ q u a n t i z e d ] )
18 x = numpy . a r r a y ( x , d t ype=numpy . f l o a t 3 2 )
19 r e t u r n x * s e l f . s i g n

Listing 3.8: Quantization kernel
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3.4.1 Quantization Error

Quantization error (equation 3.8) is used to measure the performance of the quantization algorithm in

[35] and [24], whereas we would argue that it is inaccurate to use equation 3.8 as the evaluation criterion

especially for over-parameterized networks. Equation 3.8 treats all weights equally while we already

know that pruning different parts of a neural network will cause different effects. When all connections

are treated equally, the prior role of stronger connections is ignored. Nonetheless, we measured the mean

squared error of two algorithms on a pre-trained VGG network and the results are collected in Table 3.4.

E=
1

2

N∑
i=1

(Q(wi)− wi)
2 (3.8)

Table 3.4: Quantization Noise (4 Bits Quantization)

VGG Weights Number (K) LogQuant Decimal LogQuant

conv1 1 1.7 0.300 0.079
conv1 2 36.9 0.501 0.228
conv2 1 73.7 0.802 0.384
conv2 2 147.5 1.274 0.710
conv3 1 294.9 1.664 1.455
conv3 2 589.8 1.893 3.206
conv3 3 589.8 1.870 3.311
conv4 1 1179.6 1.840 8.816
conv4 2 2359.3 1.064 28.395
conv4 3 2359.3 0.369 44.201
conv5 1 2359.3 0.139 53.469
conv5 2 2359.3 0.148 50.590
conv5 3 2359.3 0.201 51.053
fc1 26.2 0.154 4.057
fc2 5.1 0.599 0.214

Obviously, our proposed algorithm (Decimal LogQuant in the table) outperforms the original one

(LogQuant) if we judge through their quantization error. However, as we will demonstrate in the follow-

ing sections, our algorithm still surpasses the original logarithmic quantization algorithm. We can then

conclude that over-parameterized networks are more capable of noise tolerance. Though quantization

error of certain layers is heavier, it wouldn’t impose a huge impact on final accuracy.

3.4.2 Benchmark on a Fully Connected Neural Network

At first, a simple FC network with 2 hidden layers is used to explore the limits of our algorithm. We

gradually decrease the number of hidden layer neurons thus the size of each layer decreases respectively.

Then the network is quantized using two algorithms. The results of two algorithms are gathered in Table

3.5.
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Table 3.5: 2 Layers fully connected network on MNIST

Hidden Layer Size LogQuant DLQ FP.

1000 0.9831 0.9846 0.9841
600 0.9796 0.9801 0.9792
200 0.9798 0.9814 0.9811
100 0.9726 0.9753 0.9751
80 0.9748 0.9744 0.9751
60 0.9611 0.9683 0.9723
40 0.9510 0.9690 0.9701
20 0.9159 0.9550 0.9626
10 0.8056 0.9300 0.9376

It is noticeable that even when hidden layers contain only 10 neurons, algorithm 2 can still keep

close to the original accuracy. On the contrary, the original logarithmic quantization algorithm suffers

big accuracy loss when the hidden layer size is small.

3.4.3 Benchmark on Convolutional Networks

VGG and GoogLeNet

Figure 3.24: Network architecture of VGG16.

VGG [84] is a convolutional neural network model proposed by Simonyan et al from Visual Geom-

etry Group at Oxford University. The network was used on ILSVRC2014 and showed that adding depth

to the network can bring better results. VGG has several architectures which differ in depth, in this pa-

per we use VGG16 (Figure 3.24) for evaluation. In addition, compared with AlexNet [87], VGG uses

smaller 3 by 3 convolution filters rather than 7 by 7 or 11 by 11 filters in AlexNet. All 3 by 3 filters are

convolved with input at every pixel. Smaller filters can better preserve the original information of the

dataset and reduce the size of model parameters. Two 3 by 3 filters could be used to replace one 5 by 5

filter (illustrated in Figure 3.25). About the reduction of parameter size, 7 by 7 convolution needs 49C2

(C is the number of channels) parameters while three 3 by 3 convolution only requires 27C2 parameters.
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Figure 3.25: Two 3 by 3 filter replacing one 5 by 5 filter.

GoogLeNet [88] is the champion of ILSVRC2014. It utilizes Inception modules to solve some

problems of the previous neural network models. Large CNN models are always accompanied by the

very large size of parameters, which make it hard to train. Sometimes large network size could be a

problem of overfitting. Another problem that CNNs bring is the sparse data structure, which makes it

inefficient to process during training.

GoogLeNet shares some similar ideas of NiN [89]. In the Inception module, filters of different sizes

can extract various abstractions. Inception use 1 by 1, 3 by 3, 5 by 5 convolutional filters along with

a 3 by 3 max pooling filter. The 1 by 1 filters could be used to reduce dimension and they can also be

used the same way as ReLU functions. All four filters are applied to the input array and their outputs are

concatenated. A typical inception module looks like Figure 3.27.

filter concatenation

previous layer

1x1 convolutions 3x3 convolutions 5x5 convolutions 3x3 max pooling

Figure 3.26: Inception module, naive version.

Much of the previous work was based on networks such as Alexnet and VGG to further deepen the

neural network, while directly deepening the neural network tends to lead to problems such as gradient
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vanishing, gradient exploiting and overfitting. The proposal of Inception improves the network perfor-

mance from another perspective: it can use computational resources more efficiently and extract more

features with less computation.

As shown in Figure 3.27, compared with Figure 3.26, many 1x1 convolutions are used for dimension

reduction. Note in Figure 3.27 every convolution operation is followed by an activation function (ReLU)

for increasing the non-linearity. 1x1 convolution is operationally equivalent to a fully connected neural

network.

Here we give an example to illustrate how 1x1 convolution reduces the computational effort. Sup-

pose the input is 192 32x32 feature maps, and the output is 256 32x32 feature maps generated by 3x3

convolution, which requires about 453 million multiplications. With 1x1 convolution we can first reduce

the 192 32x32 feature maps to half (96) and then perform a 3x3 convolution and upscale the number of

feature maps to 256, in which case we add nonlinearity and reduce the number of multiplications to 245

million.

filter concatenation

previous layer

1x1 convolutions 3x3 convolutions 5x5 convolutions

3x3 max pooling1x1 convolutions 1x1 convolutions

1x1 convolutions

Figure 3.27: Inception module, with dimension reductions.

The GoogLeNet is composed of several inception modules (refer to Listing 3.9 and Figure 3.28).

Through the architecture of GoogLeNet we can see that increasing the sparsity of the network can effec-

tively enhance the learning ability of the network as the depth of the neural network deepens.

1 c l a s s I n c e p t i o n ( l i n k . Chain ) :
2 de f _ _ i n i t _ _ ( s e l f , i n _ ch anne l s , out1 , p ro j3 , out3 , p ro j5 , out5 , p r o j _poo l ,
3 c o n v _ i n i t =None , b i a s _ i n i t =None ) :
4 s up e r ( I n c e p t i o n , s e l f ) . _ _ i n i t _ _ ( )
5 wi th s e l f . i n i t _ s c o p e ( ) :
6 s e l f . conv1 = convo l u t i o n_2d . Convolu t ion2D (
7 i n _ ch anne l s , out1 , 1 , i n i t i a lW = conv_ i n i t ,
8 i n i t i a l _ b i a s = b i a s _ i n i t )
9 s e l f . p r o j 3 = convo l u t i o n_2d . Convolu t ion2D (
10 i n _ ch anne l s , p ro j3 , 1 , i n i t i a lW = conv_ i n i t ,
11 i n i t i a l _ b i a s = b i a s _ i n i t )
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12 s e l f . conv3 = convo l u t i o n_2d . Convolu t ion2D (
13 p ro j3 , out3 , 3 , pad =1 , i n i t i a lW = conv_ i n i t ,
14 i n i t i a l _ b i a s = b i a s _ i n i t )
15 s e l f . p r o j 5 = convo l u t i o n_2d . Convolu t ion2D (
16 i n _ ch anne l s , p ro j5 , 1 , i n i t i a lW = conv_ i n i t ,
17 i n i t i a l _ b i a s = b i a s _ i n i t )
18 s e l f . conv5 = convo l u t i o n_2d . Convolu t ion2D (
19 p ro j5 , out5 , 5 , pad =2 , i n i t i a lW = conv_ i n i t ,
20 i n i t i a l _ b i a s = b i a s _ i n i t )
21 s e l f . p r o j p = convo l u t i o n_2d . Convolu t ion2D (
22 i n _ ch anne l s , p r o j _poo l , 1 , i n i t i a lW = conv_ i n i t ,
23 i n i t i a l _ b i a s = b i a s _ i n i t )
24

25 de f fo rwa rd ( s e l f , x ) :
26 ou t1 = s e l f . conv1 ( x )
27 ou t3 = s e l f . conv3 ( r e l u . r e l u ( s e l f . p r o j 3 ( x ) ) )
28 ou t5 = s e l f . conv5 ( r e l u . r e l u ( s e l f . p r o j 5 ( x ) ) )
29 poo l = s e l f . p r o j p ( max_pool ing_nd . max_pool ing_2d (
30 x , 3 , s t r i d e =1 , pad =1) )
31 y = r e l u . r e l u ( c on c a t . c o n c a t ( ( out1 , out3 , out5 , poo l ) , a x i s =1) )
32 r e t u r n y

Listing 3.9: Inception module.

Fully Connected

AvgPooling

Inception

3x3 maxpool

2 x

Inception

3x3 maxpool

Inception

3x3 maxpool

5 x

2 x

3x3 conv

1x1 conv

3x3 maxpool

7x7 conv

Figure 3.28: Architecture of the GoogLeNet.
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Evaluation

We used Cifar10 [2] dataset to train the VGG16 model on Chainer [61]. Cifar10 dataset consists of

60K 32x32 color images in 10 classes, with 6K images of each class. Figure 3.29 shows some samples

from the Cifar10 dataset. VGG reached 89.9% of accuracy which is acceptable since we did not use

batch normalization, dropout, data augmentation or any other training methods to improve the final

results. This accuracy will be used as the baseline for the comparison of quantization algorithms.

Figure 3.29: Cifar10 samples [2].

GoogLeNet with ImageNet dataset [22], however, requires hardware with strong performance and

long time training. Instead, we use the off the shelf pre-trained network from caffe’s model zoo. This also

matches our main purpose: better utilize pre-trained networks without retraining. For large models like

GoogLeNet, a retraining-free quantization algorithm could be a beneficial tool for both time and power

saving. Besides, to bring back the accuracy as the original full-precision model, one needs to design the

retraining algorithm. Therefore a quantization algorithm that can quantize without hurting the accuracy

saves a lot of work in practical implementations.

Note the size of the first and the last layer in normal convolution networks is relatively small. Since

layers of small complexity are weak in noise tolerance, Miyashita et al. and Zhou et al. [90] chose not

to quantize the first layer. Another reason is that the first layer often contains only a few channels and

constitutes a small proportion of total computation [90]. Thus it does not affect much without quantizing

the first layer. As shown in Figure 3.30, compared with the second convolution layer, weights in layer 1

are not as concentrated as layer 2 and also feature a higher dynamic range.
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Figure 3.30: Weights distribution of the first two layers in GoogLeNet.

Rather than skipping the first layer, we quantize all layers in both VGG and GoogLeNet since it is

conducive to the simplicity of forwarding computation. Moreover, quantization of small complexity lay-

ers would be helpful for seeking the performance difference between two algorithms. The distribution of

quantized weights is shown in Figures 3.31 and 3.32. As we introduced in the former section, algorithm

1 penalizes all strong connections regardless of bitwidth.
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Figure 3.31: 4 bits quantization of the first layer in GoogLeNet via algorithm 1.
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Figure 3.32: 4 bits quantization of the first layer in GoogLeNet via algorithm 2.

A tabular representation of results is shown in Table 3.6. We set FSR parameter to 1 in algorithm

1. The result shows that our algorithm is in the lead in every item. Particularly, 6 bits quantization via

our algorithm causes almost no loss on GoogLeNet. Since GoogLeNet consists of only 28 megabytes

of model parameters in full resolution, it is quite challenging to quantize it without retraining. To the

best of our knowledge, our algorithm achieved by far the minimum accuracy loss of quantized neural

networks originates from GoogLeNet. We also expect that a better pre-trained GoogLeNet can increase

the accuracy of the quantized version.

Table 3.6: Benchmark on GoogLeNet and VGG (GoogLeNet on ImageNet and VGG on Cifar10)

Model LogQuant Decimal LogQuant Std.

3 bits quantization
GoogLeNet(Top-5) 0.7629 0.8021 0.8914
GoogLeNet(Top-1) 0.5143 0.560 0.6950
VGG 0.8894 0.8911 0.8993
4 bits quantization
GoogLeNet(Top-5) 0.7593 0.8836 0.8914
GoogLeNet(Top-1) 0.5093 0.6607 0.6950
VGG 0.8942 0.8957 0.8993
6 bits quantization
GoogLeNet(Top-5) 0.7593 0.8886 0.8914
GoogLeNet(Top-1) 0.5093 0.6914 0.6950
VGG 0.8910 0.8962 0.8993
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3.5 Weight Aware Optimization Objective

As discussed in section 3.4.1, we empirically found that computing the quantization error via equa-

tion 3.8 is not appropriate since it treats all connections as equal importance. Compressing the original

32-bit parameter to 8 bits or even lower is bound to introduce quantization error, and optimizing the

quantization error from quantization is a common technique in many quantization studies [40]. Many

previous studies have considered minimizing the mean square error (MSE) as the goal, and have used

various schemes to reduce the MSE, thus improving the accuracy of the compressed model. The results

of a large number of studies indicate that this is a feasible solution.

However, in our experiments, we found that the direct optimization of MSE is not a good solution.

Because the parameter distribution of well-trained neural networks tends to be bell-shaped Gaussian or

Laplacian distributed [25, 37, 40], the direct optimization of MSE will result in quantization algorithms

assigning higher precision to parameters with smaller values. Usually, a trained neural network has

a large number of weight parameters close to zero and a very small number of parameters with higher

values. A situation similar to that in Figure 3.33 is common in neural networks. Assuming that we design

the quantitative algorithm with the goal of minimizing MSE, in the example of Figure 3.33 because the

smaller weights are more in number, it is easy to cause the algorithm to bias the precision of the smaller

weights, thus ignoring the precision of the larger weights.

minE =
1

2

N∑
i=1

(Q (wi)− wi)
2 (3.9)

Many previous studies have noted this and performed somemodifications for large-valued parameters

in the design of the quantization algorithm from an empirical point of view, rather than optimizing the

algorithm from the perspective of the optimization objective.

Value-aware Quantization.
In [91], Park et al. proposed a value-aware quantization method (V-Quant) that applies low precision

quantization only on small values which occupy the majority of data and a small number of activations

are kept in full-precision. This approach requires retraining to restore accuracy. After retraining, they

achieved state-of-the-art accuracy on ResNet-101 and DenseNet-121 with less than a 1% top-1 accuracy

drop. In V-Quant, the percentage (1% ∼ 5% reported in this paper) of values that will maintain full

precision is determined empirically. Moreover, V-Quant requires sorting during training, which is time-

consuming.

Hessian Based Quantization.
Hessian-based loss-aware quantization methods have also been well studied [33, 92–97]. In loss-

aware quantization methods, the importance of weights is quantified using the Hessian of the weight

matrices. The quantization contribution to performance loss can be approximately quantified by the

Hessian-weighted distortion measure [92]. Hessian-aware methods assign the importance of each weight

according to its second-order derivative, which is computationally intensive. To reduce computational

consumption, these methods choose to compute the Hessian approximately. Hessian-based approaches

rely on backpropagation and require retraining because of the need to compute Hessian.

We reconsidered the suitability of MSE as an optimization objective and performed some improve-

ments to propose our new weight-aware optimization objective. We found that this method greatly im-
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proves the accuracy of some existing algorithms and reduces the retraining time. We hope that this

approach can be generalized and will hopefully bring better accuracy to existing algorithms.

1

0.0025

0.0025

0.0025

0.0025

0.0025

Figure 3.33: A simple case that one weight dominates the activation. Assuming the quantization levels
are [0.3,0.5,0.8], minimizing the MSE will lead the quantization algorithm to assign higher precision for
smaller weights.

In the following part of this section our main contributions are summarized as follows:

• We propose weight-aware optimization objective for the first time and found that this method can

significantly improve some existing quantization algorithms.

• Our method requires only minimal modifications in quantization algorithms and does not require

sorting of the inputs (weights), resulting in substantial savings in time and computational resources.

• We tested our method on state-of-the-art quantization algorithms. For a quantization algorithm that

requires retraining, our method can significantly reduce the retraining time, and in a post-training

quantization algorithm, our method achieves better classification accuracy.

3.5.1 Weight-aware minimization objective

An empirical study [25, 40, 42, 43] showed that the weight parameters in deep neural networks tend

to exhibit a bell-shaped distribution such as Gaussian or Laplacian. As shown in Figure 3.34, a large

number of weights are concentrated at zero values, and a very small number of weights are distributed at

the tails. Empirically, the weights at the ends of the distribution are more important than the weights at

the center [91].

Many quantization algorithms are designed to minimize the MSE as the optimization objective (Equa-

tion 3.9) [37, 40, 98–102]; however, we found that this is not an optimal objective. In practice, we found

that this direct minimization of quantization error is not appropriate because the weights are not of equal

importance. A direct minimization of Equation 3.9 can easily lead the quantization algorithm to assign

higher precision to small weights. Whereas, in general, larger weights are more important. Therefore,

they should be assigned higher precision in the quantization process.

To better understand the importance of weights, we conducted a pruning experiment from an em-

pirical perspective. For some common neural networks, we pruned different weights according to the
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Figure 3.34: Weight distribution of a convolutional layer in VGG16. More weights in the center region
and fewer weights in the tail region.

l1-norm. The weights of each layer were sorted and divided into ten groups according to the l1-norm,

and pruned one group at a time. Thereafter, we performed the inference to determine the final accuracy.

As per the experimental results shown in Figure 3.35, the importance of the weights of neural networks

increases with the magnitude of the weight. Although, in general, this change is not linear, it shows that

the larger the value is, the more important it is.

Although many previous studies have clarified the importance difference of weights, none of them

have incorporated this importance difference into the quantization minimization objective. As a result,

we proposed our weight-aware minimization objective (WAMO). Note that we intend to improve the ex-

isting algorithms with the weight-aware minimization objective instead of proposing a new quantization

algorithm.

In the calculation of quantization error, we assign a weight to each weight parameter, and the value

of this weight is exactly equal to the weight parameter itself (Equation 3.10). The calculation formula

is simple and eliminates the need to sort the weights in the calculation process, thereby significantly

simplifying the calculation.

E =
1

2

N∑
i=1

wi × (Q (wi)− wi)
2 (3.10)

To further elucidate our approach, we incorporate WAMOwith two state-of-the-art quantization algo-

rithms, and on both quantization algorithms, our method pushes the limits to obtain better performance.

In the next two sections, we introduce these two algorithms and the two algorithms after merging with

WAMO.
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Figure 3.35: Impact of weight pruning on common neural network models (all performed on Imagenet-
ILSVRC2012). For each model, the weights of each layer are divided into 10 groups according to the
l1-norm and at each time one group of weights is pruned. The results displayed from left to right are the
pruning test from small to large weights.

3.5.2 Weight-aware additive powers of two quantization.

The additive power of two (APoT) quantization [37] is a quantization method that constrains all quan-

tization levels as the sum of the powers of two terms. In 2016, Miyashita et al. proposed a logarithmic

quantization algorithm [35] that can convert weights in a neural network to powers-of-two representa-

tions so that expensive multiplications can be replaced by cheap shift operations. For instance, 0.06

is quantized to 2−4, and -4 is then stored in the memory. Moreover, multiplication with 0.06 is then

replaced by 4 bits right shift instead of using bulky digital multipliers. This approach substantially im-

proves the inference performance [36, 103]. The quantization levels are given in Equation 3.11, where b

indicates the bit width.

Qp(b) =
{
0,±2−2b−1+1,±2−2b−1+2, . . . ,±2−1,±1

}
(3.11)

The main drawback of power-of-two (PoT) quantization is that it cannot benefit from a larger bit

width. In Equation 3.11, if we increase b from 4 to 5, the newly added quantization levels range from
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2−8 to 2−15, which can only increase the resolution for small weights because all other quantization

levels are unchanged.

APoT quantization is proposed to solve the abovementioned problem. In APoT quantization, all

quantization levels are the sum of the n PoT levels. As indicated in Equation 3.12, each quantization

level is a summation of the n PoT quantization levels. Note that in Equation 3.12, the sign is omitted

for simplicity. k is computed by b/n, which is the bitwidth for each additive term. By adding different

quantization levels in PoT, APoT offers a balanced resolution for both small and large weights. In

addition, this is achieved in an additive manner; therefore, no huge computation cost is introduced.

Qa(kn) =
∑n−1

i=0 pi

where

pi ∈
{
0, 1

2i
, 1
2i+n , . . . ,

1

2i+(2
k−2)n

} (3.12)

However, in practice, we found that APoT relies heavily on retraining because the quantization lev-

els are set empirically, and large quantization noises are introduced during quantization. Because the

APoT quantization levels are pre-set, the range of these levels cannot be dynamically adjusted during the

quantization process. For example, in VGG, as illustrated in Figure 3.34, the weight range in this case is

[−0.22, 0.39], whereas the pre-set 4 bits APoT quantization contains useless levels such as 0.6875, 0.75,

1.0, and so forth. To solve this problem, Li et al. used weight normalization [104] to adjust the weight

distribution with zero minimum and unit variance (Equation 3.13). However, in our opinion, this is not

worth the gain because it increases the computing cost during network inference, while one of the biggest

purposes of quantization is to speed up network inference.

W̃ = W−µ
σ+ϵ ,

where

µ = 1
I

∑I
i=1Wi, σ =

√
1
I

∑I
i=1 (Wi − µ)2,

(3.13)

With WAMO, APoT can significantly reduce the retraining time, and more excitingly, weight normal-

ization can be removed. Instead of empirically presetting the quantization levels, weight-aware APoT

(WA-ApoT) can actively choose the most suitable quantization levels during the quantization process.

We have included WA-APoT in our Algorithm 1. The idea of WA-APoT is to minimize Equation

3.10 by actively selecting the quantization levels. Given 2b+1 APoT quantization levels, we project the

full-precision weights to the nearest quantization levels and then compute the accumulated weight aware

quantization error (WAQE) for each quantization level. The top 2b APoT quantization levels with the

largest WAQE will be selected as the WA-APoT quantization levels because they contribute most to

WAQE and therefore should be preserved with the best precision by maintaining the nearest quantization

levels.

1 a , b , c = 0 . , 0 . , 0 .
2 f o r i i n r ange ( 3 ) :
3 i f i < 2 :
4 a . append (2 ** ( −2 * i − 1) )
5 b . append (2 ** ( −2 * i − 2) )
6 e l s e :
7 c . append (2 ** ( −2 * i − 1) )
8 a . append (2 ** ( −2 * i − 2) )
9 b . append (2 ** ( −2 * i − 3) )
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Algorithm 1 WA-APoT quantization levels
Input: The full precision pre-trained weight tensor W , the bit-width b of the quantized weight tensor.
Output: WA-APoT quantization levels Qwa.
1: Compute the APoT quantization levels Qa by Equation 3.12 with bit-width equals to b+1.
2: Project all full-precision weights to the nearest quantization levels: W → Wq

3: Compute accumulated weight aware quantization error Ea of each quantization level inQa by Equa-
tion 3.10.

4: Output the top 2b quantization levels Qwa with the largest weight aware quantization errors in Ea.

10 v a l u e s = [ ]
11 f o r i i n a :
12 f o r j i n b :
13 f o r k i n c :
14 v a l u e s . append ( ( i + j + k ) )
15 v a l u e s = Tensor ( v a l u e s ) )
16 v a l u e s = v a l u e s . mul ( 1 . 0 / max ( v a l u e s ) )
17

18 r e t u r n v a l u e s

Listing 3.10: APoT quantizaiton level generator (5 bits) [37].

1 v a l u e s = t e n s o r ( [ 0 . 0 0 0 0 , 0 . 0100 , 0 . 0200 , 0 . 0300 , 0 . 0400 , 0 . 0500 , 0 . 0600 , 0 . 0700 ,
0 . 0800 , 0 . 1000 , 0 . 1200 , 0 . 1400 , 0 . 1600 , 0 . 1700 , 0 . 2000 , 0 . 2100 , 0 . 2400 , 0 . 2800 ,
0 . 3200 , 0 . 3400 , 0 . 3600 , 0 . 3800 , 0 . 4800 , 0 . 5200 , 0 . 6400 , 0 . 6500 , 0 . 6800 , 0 . 6900 ,
0 . 7200 , 0 . 7600 , 0 . 9600 , 1 . 0 0 0 0 ] )

Listing 3.11: APoT quantizaiton levels (5 bits) [37].

3.5.3 Weight-aware piecewise linear quantization.

In some scenarios, we need to use pretrained models trained on datasets that are not publicly acces-

sible, and for those models, a post quantization algorithm is desired. Proposed by Sumsang Semicon-

ductors in 2020, piecewise linear quantization (PWLQ) is a state-of-the-art post-training quantization

algorithm that does not require retraining [40].

PWLQ is an improved uniform quantization algorithm that divides the weight distribution into several

regions and then performs uniform quantization separately. Here, we first introduce a uniform quanti-

zation. Uniform quantization linearly maps all the full-precision weights to low-precision quantization

levels. A b-bit uniform quantization can be defined by Equation 3.14. For each full-precision weight,

uniform quantization replaces it with the nearest quantized weight inQu(α, b). Note that α indicates the

range of the quantization levels.

uni(w,α, b) = argmin
Qu(α,b)

∑k
i=0

∑
q∈Qu(α,b) |wi − q|2

where Qu(α, b) =

α×
{
0, ±1

2b−1−1
, ±2
2b−1−1

, ±3
2b−1−1

, . . . ,±1
} (3.14)

To improve the accuracy after direct quantization, PWLQ uses breakpoints to divide the weights into

different groups. For instance, if one breakpoint p is used and the weights range from [−m,m] (m > 0,

70



assuming symmetric weight distribution), the weights are grouped into the following regions: the center

region R1: [−p, p] and tail region R2: [−m,−p)∪ (p,m]. The center and tail regions are then uniformly

quantized separately as in Equation 3.15. In this case, if p < m
2 , the center region has a smaller range

and higher precision than the tail region, and conversely, if p > m
2 , the tail region has a larger precision .

pwlq(r, b, α1, α2) =

{
uni(r, α1, b), r ∈ R1

uni(r, α2, b), r ∈ R2

(3.15)

Although multiple breakpoints can improve the performance of the model, they also introduce ad-

ditional storage consumption. For a PWLQ with one breakpoint, two sets of α are obtained (Equation

3.14). For hardware implementation, these two sets of α are realized by using two accumulators, and

PWLQ uses one additional bit per weight to indicate the region. Note that the extra bit is only used

to determine the accumulator, and it does not increase the multiply accumulate computation (MAC). In

practice, PWLQ with one breakpoint is recommended because multiple breakpoints increase hardware

overhead [40].

For PWLQ, finding the optimal breakpoint p∗ is the most important. In [40], p∗ was set by minimiz-

ing the MSE quantization error, as shown in Equation 3.16.

p∗ = argminp∈(0,m2 )
MSE (W,Qu) (3.16)

For comparison, we propose a weight-aware PWLQ (WA-PWLQ). The WA-PWLQ changes only

the minimization objective in Equation 3.16. The MSE quantization error was replaced with our weight-

aware version. The new p∗ is found by Equation 3.17, where WAE (weight aware error) is defined by

Equation 3.10.

p∗ = argminp∈(0,m2 )
WAE (W,Qu) (3.17)

Sample codes for the two methods are given in Listing 3.12 and Listing 3.13.

1 de f pw l q_qu an t _ e r r o r (w, b i t s , s c a l e _ b i t s , abs_max , b r e a k _ p o i n t ) :
2

3 i f o v e r l a p :
4 qw_ t a i l = u lq (w, b i t s = b i t s , s c a l e _ b i t s = s c a l e _ b i t s , minv=−abs_max , maxv=

abs_max ) # u lq : un i fo rm l i n e a r q u a n t i z a t i o n .
5 qw_middle = u lq (w, b i t s = b i t s , s c a l e _ b i t s = s c a l e _ b i t s , minv=− b r e ak_po i n t , maxv

= b r e a k _ p o i n t )
6

7 qw = t o r c h . where ( − b r e a k _ p o i n t < w, qw_middle , qw_ t a i l )
8 qw = t o r c h . where ( b r e a k _ p o i n t > w, qw , qw_ t a i l )
9 e l s e :
10 qw_ t a i l _ n eg = u lq (w, b i t s = b i t s , s c a l e _ b i t s = s c a l e _ b i t s , minv=−abs_max , maxv=−

b r e a k _ p o i n t )
11 qw_ t a i l _ po s = u lq (w, b i t s = b i t s , s c a l e _ b i t s = s c a l e _ b i t s , minv= b r e ak_po i n t ,

maxv=abs_max )
12 qw_middle = u lq (w, b i t s = b i t s −1 , s c a l e _ b i t s = s c a l e _ b i t s , minv=− b r e ak_po i n t ,

maxv= b r e a k _ p o i n t )
13

14 qw = t o r c h . where ( − b r e a k _ p o i n t < w, qw_middle , qw_ t a i l _ n eg )
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15 qw = t o r c h . where ( b r e a k _ p o i n t > w, qw , qw_ t a i l _ po s )
16

17 # PWLQ e r r o r m i n im i z a t i o n :
18 e r r = t o r c h . s q r t ( t o r c h . sum ( t o r c h . mul (qw − w, qw − w) ) )
19 r e t u r n e r r , qw

Listing 3.12: PWLQ quantization logic.

1 de f pw l q_qu an t _ e r r o r (w, b i t s , s c a l e _ b i t s , abs_max , b r e a k _ p o i n t ) :
2

3 . . .
4

5 # WA−PWLQ’ s we igh t aware e r r o r m i n im i z a t i o n o b j e c t i v e :
6 e r r = t o r c h . s q r t ( t o r c h . sum ( t o r c h . mul ( t o r c h . abs (w) , t o r c h . mul (qw−w, qw−w) ) ) )
7 r e t u r n e r r , qw

Listing 3.13: WA-PWLQ’s weight aware quantization error minimization objective.

3.5.4 Experiments

In this section, we evaluate our weight-aware minimization objective on the aforementioned two

quantization algorithms: APoT and PWLQ. Note that our goal is not to propose another state-of-the-art

quantization algorithm, but to improve existing quantization algorithms.

ResNet and EfficientNet

(1) ResNet
ResNet [105], surpasses GoogLeNet in achieving further improvements on the ImageNet dataset.

With the advent of ResNet, neural networks that were usually considered difficult to train (e.g. 1000

layers) in the past can be trained effectively. ResNet proposed residual learning (as shown in Figure

3.36). By shortcut connecting the layers as Figure 3.36, in extreme cases, the output of the residual

module can exactly replicate the output of the previous layer, thus not causing network performance

degradation by increasing the number of network layers.
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Figure 3.36: Residual unit of ResNet.

A typical ResNet module is defined as Listing 3.14. Equation 3.18 indicates the computation of a

residual module. When backpropagate the gradient from the loss function, according to equation 3.20,

the 1 in parentheses indicates that the gradient can be short-circuited to the previous layer as well.

1 c l a s s ResModule ( l i n k . Chain ) :
2

3 de f _ _ i n i t _ _ ( s e l f , i n _ ch anne l s , m id_channe l s ) :
4 s up e r ( ResModule , s e l f ) . _ _ i n i t _ _ ( )
5 wi th s e l f . i n i t _ s c o p e ( ) :
6 s e l f . conv1 = Convolu t ion2D ( i n_ ch anne l s , mid_channe l s , 1 , 1 , 0 , )
7 s e l f . bn1 = Ba t c hNo rma l i z a t i o n ( mid_channe l s )
8 s e l f . conv2 = Convolu t ion2D ( mid_channe l s , mid_channe l s , 3 , 1 , 1 )
9 s e l f . bn2 = Ba t c hNo rma l i z a t i o n ( mid_channe l s )
10 s e l f . conv3 = Convolu t ion2D ( mid_channe l s , i n _ ch anne l s , 1 , 1 , 0 )
11 s e l f . bn3 = Ba t c hNo rma l i z a t i o n ( i n _ c h a n n e l s )
12

13 de f fo rwa rd ( s e l f , x ) :
14 h = r e l u ( s e l f . bn1 ( s e l f . conv1 ( x ) ) )
15 h = r e l u ( s e l f . bn2 ( s e l f . conv2 ( h ) ) )
16 h = s e l f . bn3 ( s e l f . conv3 ( h ) )
17

18 # s h o r t c u t c o nn e c t i o n
19 r e t u r n r e l u ( h + x )

Listing 3.14: Sample code of a ResNet module.

yl = h (xl) + F (xl,Wl)

xl+1 = f (yl)
(3.18)
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xL = xl +

L−1∑
i=l

F (xi,Wi) (3.19)

∂ loss
∂xl

=
∂ loss
∂xL

· ∂xL
∂xl

=
∂ loss
∂xL

·

(
1 +

∂

∂xl

L−1∑
i=l

F (xi,Wi)

)
(3.20)

ResNet-50 ResNet-101

7× 7, 64, stride 2

3× 3 max pool, stride 2 1× 1, 64

3× 3, 64

1× 1, 256

× 3

 1× 1, 64

3× 3, 64

1× 1, 256

× 3

 1× 1, 128

3× 3, 128

1× 1, 512

× 4

 1× 1, 128

3× 3, 128

1× 1, 512

× 4

 1× 1, 256

3× 3, 256

1× 1, 1024

× 6

 1× 1, 256

3× 3, 256

1× 1, 1024

× 23

 1× 1, 512

3× 3, 512

1× 1, 2048

× 3

 1× 1, 512

3× 3, 512

1× 1, 2048

× 3

average pooling, fc layer, softmax

Table 3.7: Network configuration of ResNet-50 and ResNet-101.

(2) EfficientNet
Unlike ResNet or GoogLeNet in the previous section, which relies on experience-based design. Ef-

ficientNets are products of neural network search techniques. Google’s team first design a baseline

network called EfficientNet-B0, then this baseline network is scaled up by adjusting its width, depth

and resolution. To test our quantization method, we chose the baseline EfficientNet-B0 with the fewest

parameters so that the challenge would be greater when going through quantization compression. Table

3.8 summarizes the configuration of EfficientNet-B0. As a comparison, EfficientNet-B0 has only 5.3

million parameters while ResNet-50 has 26 million (4.9×). With such a gap, both can achieve similar

top5 accuracy on ImageNet.
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Module Resolution H ×W Channels Layers

Conv3x3 224× 224 32 1
MBConv1, k3x3 112× 112 16 1
MBConv6, k3x3 112× 112 24 2
MBConv6, k5x5 56× 56 40 2
MBConv6, k3x3 28× 28 80 3
MBConv6, k5x5 14× 14 112 3
MBConv6, k5x5 14× 14 192 4
MBConv6, k3x3 7× 7 320 1

Conv1x1 & Pooling & FC 7× 7 1280 1

Table 3.8: Configuration of EfficientNet-B0
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0.0

0.2

0.4

0.6

0.8

1.0

3 bits 3 bits 3 bits

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

4 bits

0.0 0.5 1.0

4 bits

0.0 0.5 1.0

4 bits

Qu
an

tiz
ed

 le
ve

ls

(a) LogQuant (b) APoT (c) WA-APoT

Figure 3.37: Comparison of quantization levels of LogQuant, APoT and WA-APoT (ResNet-20 on
Cifar10). WA-APoT has a more reasonable resolution and eliminates the empirical quantization levels
settlments.
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We used Cifar-10 to test the effectiveness of WA-APoT. To ensure the accuracy of the test results,

we used the same pre-trained ResNet-20 network as APoT [37]. As we introduced in Section 4, we

removed the weight normalization because it would bring an extra computational burden. Without weight

normalization, the APoT suffers a huge accuracy loss when the quantization bit width is less than 4.

First, we compared the quantization levels for ResNet-20 on Cifar-10. As shown in Figure 3.37,

when 3 bits quantization is adopted, WA-APoT assigns most of the precision to weights near 0.3. For

logarithmic quantization, the difference between the 3-bits and 4 bits quantization is not visible. With the

increase in bitwidth, the increased bitwidth is assigned to quantization levels near 0 by logarithmic quan-

tization; therefore, the quantization levels for larger weights are the same for 3-and 4 bits quantization

(Equation 3.11).

APoT solves the low-resolution problem of large weights after quantization, and it can be clearly seen

in Figure 3.37 that the resolution of large weights increased significantly as compared to the logarithmic

quantization. However, for different neural networks or different layers of the same network, the weights

are fixed when the number of bitwidths is given, which results in poor adaptability of APoT and requires

the use of weight normalization to enforce the weights of each layer to obey the standard distribution.

In contrast, WA-APoT assigns quantization levels adaptively through the autonomous perception of

the importance of weights via Algorithm 1. In this resent20 example, we can see that larger weights

are assigned more quantization levels. Interestingly, in the case of 3 bits, the weights that are close to 0

are all dropped (quantized to 0), which is different from the PoT and APoT quantizations; however, it is

in line with our previous conjecture, that is, large weights are more important than small weights, and

weights that are close to 0 will have low or no impact even if they are pruned.

Figure 3.38 shows the results of this test. Compared with APoT, WA-APoT has two obvious advan-

tages. (1) Whether it is 3 bits or 4 bits quantization, WA-APoT can quickly restore the original perfor-

mance of the pre-trained model. In the case of Cifar-10, WA-APoT can restore the original performance

of the pre-trained model after only one epoch of retraining, which greatly reduces the fine-tuning time

and computational resource consumption as compared to APOT. (2) In the absence of weight normaliza-

tion, WA-APoT can completely restore the original performance of the model, whereas APOT suffers

accuracy loss in the case of three bits. The restriction that the APOT requires weight normalization is

lifted on WA-APoT.
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Figure 3.38: Retraining curves of APoT and WA-APoT (ResNet-20 on Cifar10). On both 3 bits and 4
bits quantization, WA-APoT can restore the original performance within one epoch. In contrast, APoT
requires a much longer training time. Especially in the case of 3 bits quantization, APoT cannot restore
the original performance in the absence of weight normalization.

WA-PWLQ

The Imagenet-ILSVRC2012 [22] dataset was used to validate the effectiveness of our weight-aware

quantization optimization objective on post-training image classification tasks. As explained in Section

4, we only changed MSE to WAE during the quantization error minimization step in PWLQ to formWA-

PWLQ. Moreover, we used one breakpoint because multiple breakpoints increase the hardware overhead.

We first tested two quantization methods on the widely used ResNet-50 and ResNet-101 [105]. Note

that the neural network models are pretrained models provided by PyTorch’s torchivision module [106].

The test results are summarized in Table 3.9. For both ResNet-50 and ResNet-101, our WA-PWLQ

is superior to the PWLQ, especially for 4 bitwidth quantization. Both PWLQ and WA-PWLQ assign

larger precision to tail regions; however, WA-PWLQ maintains the tail region in a narrower range than

PWLO. For instance, on ResNet-50 4 ∼ 5%, the tail region is divided by WA-PWLQ compared with

approximately 10% by PWLQ. It is clear that the piecewise linear quantization method can achieve good

performance, mainly because it assigns larger precision for larger weights. WA-PWLQ tends to narrow

the large weight percentage and the result that 4 ∼ 5% of larger weights are assigned larger precision is

very close to [91]’s empirical percentage (1 ∼ 5%).

We also used EfficientNet-b0 [107] to test the performance of the two methods under extreme condi-

tions. EfficientNet-b0 has only 5.4M parameters, which is already 4.9× smaller than that of ResNet-50.

With 4 bits quantization, WA-PWLQ leads PWLQ by a large margin.
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Table 3.9: Comparison of PWLQ and WA-PWLQ on Top-1 and Top-5 Imagenet-ILSVRC2012 classifi-
cation accuracy (%).

Network Weight Bit-width 4-bit 6-bit 8-bit

ResNet-50 PWLQ (Top1) 74.650 75.920 76.014

(76.102(top1)) WA-PWLQ (Top1) 74.868 75.804 76.038

(92.934(top5)) PWLQ (Top5) 91.966 92.898 92.954

WA-PWLQ (Top5) 92.150 92.794 92.932

ResNet-101 PWLQ (Top1) 75.968 79.168 79.298

(79.210(top1)) WA-PWLQ (Top1) 76.758 79.082 79.266

(94.556(top5)) PWLQ (Top5) 92.968 94.516 94.510

WA-PWLQ (Top5) 93.332 94.528 94.524

EfficientNet-b0 PWLQ (Top1) 44.972 72.148 73.562

(73.636(top1)) WA-PWLQ (Top1) 56.666 72.616 73.662

(91.316(top5)) PWLQ (Top5) 68.114 90.496 91.296

WA-PWLQ (Top5) 79.126 90.688 91.284

weight value

Importance

weight-aware importance

true empical importance

MSE based importance

(a) (b)

Figure 3.39: Comparison of weight importance assignments of different strategies. The red curve in
subfigure (b) is an empirical importance fitting curve for subfigure (a).

3.5.5 Future Works of Quantization

In the future, we plan to research a new weight aware optimization objective that can actively adjust

the importance of each weight according to the distribution of the weights.

As shown in Figure 3.39, compared with vanilla MSE based methods, assigning each weight with

importance that linear to its magnitude is more realistic. However, this strategy also does not fit the true

importance curve very well. As indicated by the red line, the importance of the weights does not change

linearly, but jumps up when the weights reach a certain level. In our tests, the weight importance curves

of different networks are not the same, but without exception, they all show a nonlinear importance

change. We have tried to nonlinearize the importance during our experiments (w ×MSE to w2 ×MSE
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for instance), but this change did not bring much difference in performance. The next step we want to do

is to do an adaptive weight importance assignment on different neural networks to better fit the weight

importance curve of that network, so as to protect the information of the original neural network to a

greater extent when quantizing.

RISC-V Core for Quantized Neural Networks

We also set a goal to implement RISC-V cores for quantized neural networks. Since RISC-V is

highly modifiable and open source, we can build a many cores system for low bitwidth computations. In

addition, a many cores system can offer scalable computing resources for neural networks. We would

like to develop learning methods for discontinuous weights and design a RISC-V core for these special

purpose algorithms.
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Chapter 4

Trigonometric inference

4.1 trigonometric inference

As neural networks increase in size, the training of the neural network becomes more dependent on

specialized hardware consisting of thousands of computing units. General matrix multiply (GEMM) is at

the core of deep learning because a tremendous amount of matrix multiplication operations are required

for neural network training. To accelerate the training and inference of deep neural networks, hardware

vendors are constantly increasing the chip area and the number of processing units. Nevertheless, ac-

celerating matrix multiplication operations remains cost-ineffective, in contrast to accelerating simple

operations, such as addition, subtraction, and a bit shift.

In terms of hardware implementation, multipliers are bulky and power-intensive compared to other

logic resources. Consequently, this prohibits deployment to scenarios when the multipliers are insuffi-

cient. For instance, digital signal processing (DSP) used for floating-point multiplication is often found

to be a scarce resource when attempting to implement neural networks on field-programmable gate arrays

(FPGAs). To reduce the usage of hardware multipliers, many researchers use a coordinate rotation digital

computer (CORDIC) [48]) module to compute layer activations rather than the direct usage of DSPs on

FPGAs when hyperbolic activation functions are applied. This method involves only additions, subtrac-

tions, a bit shift, and look-up tables, and has been confirmed to be more hardware efficient [52,108,109].

Although widely used in microcontrollers and FPGAs, CORDIC can only partially eliminate dependence

on multipliers, and a large number of multipliers are still required for inference and error backpropaga-

tion, which hinders on-FPGA neural network training.

Efforts had been put into hardware optimizations. Many optimization possibilities are motivated by

the various inherent characteristics of the CNN models. For instance, CNN’s spatially correlated charac-

teristics, i.e., adjacent output feature map activations will share close values per feature map, motivated

Shomron et al. to propose a value prediction based method that reduces MAC operations [110] in DNNs.

In [13], a lightweight CNN is implemented to predict zero-valued activations. The prediction step is

calculated prior to the convolution step, thus the convolution operations can be largely saved. In addition,

the sparsity of DNN values causes the underutilization of the underlying hardware. For example, DNN

tensors usually follow a bell-shaped distribution that is concentrated on zero, therefore a high percent-

age of values will only be represented by a portion of least-significant bits (LSBs). These zero-valued

bits may cause inefficiencies when executed on hardware. To address it, a non-blocking simultaneous
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multithreading (NB-SMT) method [111] was designed to better utilize the execution resources. Many

quantization algorithms have also been proposed to reduce the usage of multipliers in DNNs. For ex-

ample, to quantize all network weights into powers of 2, one can avoid multiplications [103]. However,

the calculation of weight parameters directly involved only accounts for a part of the neural network

training. If we further quantize the layer inputs, we can reduce the use of multipliers to a greater extent,

which will cause a huge accuracy loss and is only suitable for simple tasks [112]. For circumstances

in which hardware multipliers are insufficient, we propose a trigonometric approach to eliminate the

dependence on multipliers.

Consider a simple case in which only fully connected layers are used, and the non-linearity is omitted.

As shown in Figure 1.4, to back propagate error signals, each layer conducts multiplications between

the weight matrix and error matrix from the last layer (see subfigure (b)). In addition, to update the

weights, the dot product of the activation and error matrix is computed (see subfigure (c)). It is clear

that multiplications between errors, activations, and weights dominate the computation cost. However,

in modern neural network models, both the weight parameters and error signals are highly concentrated

around zero with an extremely small variance. This characteristic enables us to approximate the original

error and weight using its sine value. Then, using the product to sum formula, we can convert the

multiplications to easier operations. Here, we briefly introduce the ideas behind this study.

lim
x→0

sinx

x
= 1 (4.1)

sinα sinβ = −1

2
[cos(α+ β)− cos(α− β)] (4.2)

From Equation (4.1), we know that when x is infinitesimal, we regard sin(x) and x as equivalent.

Moreover, we have sin(x) ≈ x when x is a small value, and, thus, we can approximate x as sin(x).

For example, the error gap is within 1.67e−7 when |x| is smaller than 0.01. The upper subfigure of

Figure 4.1 shows a typical distribution of weight parameters extracted from a random layer of a 28-layer

WideResNet trained on the CIFAR-100 dataset. The bottom subfigure of Figure 4.1 shows the error curve

when we replace x with sin(x). Apparently, using the sine value as an approximation does not add much

noise to the network when the parameters are highly concentrated at near 0.
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Figure 4.1: Weight distribution and approximation error curve. The upper subfigure shows the distri-
bution of weight parameters extracted from a random layer of a 28-layer WideResNet trained on the
CIFAR-100 dataset. The bottom subfigure is drawn from | sin(x) − x|, which denotes the approxima-
tion error.

By applying Equation (4.2), i.e., the product to sum formula, we can convert multiplications of sine

values into simpler addition, subtraction, and bit shift operations, which are far more economical than

classical multiplication operations. Note that the cosine value can be computed by the aforementioned

CORDIC engine, which is also hardware friendly and only requires simple operations. We also introduce

a sine-based activation function. Rather than a mere sine activation, we adopt a rectified variant that

combines the ReLU [113] and sine activation. In this way, we realize the sine value replacement of

activation, error, and weight, between which the multiplications are removable in inference and training.

We call this method trigonometric inference.

Trigonometric inference offers an alternative training method when the hardware multipliers are

insufficient. In addition, the method is superior when a hyperbolic function, such as tanh(x), is adopted

as the activation function. The approach is evaluated on image classification tasks, and the experimental

results confirm a performance comparable to that of the classical training method.

In this section we will cover the following points:

• We propose a novel training and inference method that utilizes trigonometric approximations.
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To the best of our knowledge, this is the first work that shows trigonometric inference can pro-

vide learning in deep neural networks;

• By replacing the model parameters and activations with their sine value, we analyze that multipli-

cations could be transferred to shift-and-add operations in training and inference. To achieve this,

a rectified sine activation function is proposed;

• We evaluate trigonometric inference on several models and show that it can achieve performance

that is close to conventional CNNs on MNIST, Cifar10, and Cifar100 datasets.

4.1.1 Cordic Introduction

Since we will be using trigonometric operations instead of the original multiplication operations,

here we introduce some of the underlying operational mechanisms of trigonometric functions. When

calculating trigonometric functions, an accurate method is to expand the function in Taylor series and

then calculate the result of the first N terms of the series to approximate the true value (equation 4.4 and

4.4).

sin(x) = x− 1

3!
x3 +

1

5!
x5 + o

(
x5
)

(4.3)

sin(1) ≈ 1− 1

2!
13 +

1

5!
15 = 1− 1

6
+

1

120
=

101

120
(4.4)

However, this method involves too much multiplication and is therefore very hardware intensive. In

contrast, the CORDIC algorithm is a lookup table based method.

a1

a2

a3

Figure 4.2: Cordic rotation illustration.

As shown in Figure 4.2, assuming that the Figure is a quarter unit circle, what we want to require is

the angle formed by a3 and the bottom edge. Note for a unit circle if we know the coordinate of a certain

angle then the sine and cosine of that angle are solved. The problem is that it is very difficult to find the

angle of a3 so we can decompose the angle into combinations of other known angles, for example here

the angle a3 can be decomposed into combinations of three angles as shown in the figure. At first, Volder

was inspired by the formula as equation 4.5 with Kn =
√
1 + 2−2n, tan(φ) = 2−n.
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KnR sin(θ ± φ) = R sin(θ)± 2−nR cos(θ)

KnR cos(θ ± φ) = R cos(θ)∓ 2−nR sin(θ)
(4.5)

In practice many elementary angles are precomputed and saved in a lookup table. By iteratively

accumulate precomputed micro-angles the target angle can be approximated. As shown in equation 4.6,

the computation strategy is consists of two parts: rotation and scaling [114]). Note in equation 4.6 a is

the precomputed angle and d denoted rotation direction.
x(i+1) = x

(i)
s + diy

(i)
s 2−i

y(i+1) = y
(i)
s + dix

(i)
s 2−i

z(i+1) = z(i) − dia
(i){

x
(i+1)
s = Six

(i+1)

y
(i+1)
s = Siy

(i+1)

(4.6)

4.2 Methodology

In this section, we elaborate on our trigonometric inference learning algorithm. For ease of de-

scription, we explain the algorithm based on fully connected neural networks. In convolutional models,

the background idea is the same, and the only change is to replace multiplication marks with convolu-

tion marks.

4.2.1 Forward and Backward Inference

Forward Inference

Let w denotes the model weights and a activations of an arbitrary layer. Note that we use subscript

j to indicate a middle layer, and i denotes the previous layer of j. Equation (4.7) provides the standard

forward inference and Equation (4.8) indicates the activation calculation of our proposed trigonomet-

ric inference.

aj =
∑
j

wjσ(ai) + bj (4.7)

aj =
∑
j

sin (wj)σsine (ai) + bj (4.8)

where σ(xj) is an activation function and σsine(xj) is our newly proposed sine-based activation function

for trigonometric inferences. A sine function has been studied as an activation function in previous

studies. In 1999, Sopena et al. [115] found that a multiplayer perceptron with sine as the activation learns

faster than one with sigmoid activation on certain tasks. As a significant difference, the sine is periodic,

whereas common activation functions are monotonic. Parascandolo et al. [116] found that sine activation

functions perform reasonably well on current datasets, and the network ignores the periodic nature of

sine functions. After training, only the central region at near zero of the sine activation function was

used. Ramachandran et al. [117] used automatic search techniques to discover new activation functions.

They then found that min(x, sin(x)) activation can achieve a performance comparable to that of ReLU
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for image classification. Zhang et al. [118] proposed a sine-activated algorithm for a multi-input function

approximation that can efficiently obtain a relatively optimal structure.

Based on previous findings, herein we propose our sine-based activation. Rather than directly apply-

ing the activation function as sin(x), we combine the ReLU activation and sine activation because this

combination has two merits: First, ReLU excludes negative outputs and, therefore, the computational

burden is considerably reduced. In addition, regulating the activations to only positive values can lessen

the poor influence caused by the periodicity property of the sine activation. In Section 4.3, we show that

this rectified sine activation performs much better than a pure sine activation for trigonometric training.

Equation (4.9) gives our activation function, and from Figure 4.3, we know that sin(x) and tanh(x) are

extremely similar for small values.

σsine =

{
0, if x < 0

sin(x), else
(4.9)

0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.5

1.0

1.5

2.0

2.5 sine
tanh
relu

Figure 4.3: Activation functions. The sine activation behaves similarly to the hyperbolic tangent activa-
tion for |x| < π/2.

Backward Inference

When training a neural network, the error E calculated from the loss function is backpropagated

to each layer (error backpropagation) for weight update. The weights in each layer are then updated for

narrowing the errorE. This parameter optimization problem can be solved using gradient descent, which

requires calculating ∂E
∂w for all w in the model. Here we denoted Ej as the backpropagated error signal

from the latter layer to the layer j. According to the chain rule, we can use Equation (4.10) to calculate

the error signal Ei at layer i, which is backpropagated from layer j. For conventional CNNs, the error

Ei is calculated by Ej
∂ai
∂wi

, which equals the multiplication of Ej and xi ( ∂ai∂wi
= xi).

Ei =
∂E

∂wi
=

∂E

∂ai

∂ai
∂wi

= Ej
∂ai
∂wi

(4.10)
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For our trigonometric inference, Ei is calculated differently since we use sine(x) and sine(W )

to approximate x and W , respectively, in the forward pass (as Equation (4.8)). By taking the partial

derivative of ai overwi, we get
∂aj
∂wi

= sin(ai)cos(wi). Therefore, the errorEi in trigonometric inference

should be calculated as Equation (4.11) when the activation is larger than zero (Equation (4.9)).

Ei = Ej
∂ai
∂wi

= Ejsin(ai)cos(wi) (4.11)

Equation (4.11) gives the precise error signal ∂E
∂wi

for weight update in the middle layer i during

gradient descent. However, the direct calculation of Equation (4.11) will incur multiplication overheads,

so here we developed two methods for computing Ei. As shown in Table 4.1, the mean and variance of

the weights and errors are very small in a downsized VGG of eight convolutional layers. This property,

which makes the approximation possible, is common in modern deep neural networks. Experimental

results show the trade-off between these two approaches; here, we outline the computation details:

(1) Equation (4.11) is divided into two parts and approximately computed. Equation (4.12) indicates

a recursive approximation computation (Ej is approximated by sin(Ej)). In this way, multipliers are not

required, and precise error signals are calculated despite the computation complexity being increased.

Tj = sin (Ej) sin (ai)

Ei = sin (Tj) cos (wi)
(4.12)

(2) First, we replace Ej with sin(Ej) in Equation (4.11). The above approximation strategy enables

us to compute gradients using Equation (4.13).

∂E

∂wi
= sin(Ei) sin(ai) cos(wi) (4.13)

Second, we use a pseudo-error signal for backpropagation. Because the cosine term in Equation (4.13)

adds extra computational complexity, we replace it with shift operations. Since the values of the weights

are generally highly concentrated around the value of zero, in an ideal situation we can simply omit

the cosine term (cos(x) ≈ 1 if x → 0). However, in practice, we found that omitting the cosine term

directly sometimes causes an excessive error, which is contributed by those weights of larger magnitude,

so we replace the cosine term with 1/2. By simply scaling the original error signals to half, the algorithm

provided learning in our experiments. The half-scaling strategy is formulated as in Equation (4.14): A

similar concept was found in feedback alignment methods [75, 119] for error backpropagation. Lilli-

crap et al. [75] discovered that the weights do not have to be symmetric in the forward and backward

inferences during the training. In his research, Arild Nøkland [76] provided a theoretical analysis that

supports the learning capabilities of backpropagation with pseudo-error signals.

∂E

∂wi
= sin(Ei) sin(ai)/2 (4.14)

86



Weight Update

For conventional CNNs, the learning rate (η in Equation (4.15)) can be set to an arbitrary value

within a certain range. This may introduce an additional multiplicative burden when performing gradient

descent calculations.

Wnew = Wold − η ∗ ∂(E)

∂ (Wold)
(4.15)

To avoid divisions, shift operations may be used instead when the learning rate is set to powers of 2.

In this way, the divisions are converted into bit shifts.

Wnew = Wold − 2n ∗ ∂(E)

∂ (Wold)
(4.16)

4.2.2 Precision Analysis

Our training algorithm performs several approximations to significantly decrease the usage of multi-

pliers. It omits the cosine term when the value is very small and recursively approximates small values

by their sine values (Equation (4.14)). Here, we analyze the precision loss of the approximation strategy.

By applying the binomial theorem, we rewrite product xy as Equation (4.17) for comparison. By the

Taylor theorem, sin(x)sin(y) is expanded to its polynomial form (Equation (4.18)).[(
1− (x− y)2

2

)
−
(
1− (x+ y)2

2

)]
/2 (4.17)

[(
1− (x− y)2

2
+Rn(x− y)

)
−(

1− (x+ y)2

2
+Rn(x+ y)

)]
/2

(4.18)

where Rn(x) denotes the Lagrange form of the remainder:

Rn(x) =
f (n+1)(ξ)

(n+ 1)!
(x)n+1 (4.19)

The difference of Equations (4.17) and (4.18) gives the error gap of our xy-to-sin(x) sin(y) approx-

imation. Because the f (n+1)(ξ) term is still trigonometric, the Lagrange remainders in Equation (4.18)

are then bounded by:

Rn(x± y) <
(x± y)3

6
(4.20)

We substitute Equation (4.20) into (Rn(x−y)−Rn(x+y))/2 and through simple unequal relations,

we have the error of our approximation upper bounded by:

(|x|+ |y|)3

6
(4.21)

Equation (4.21) indicates a fast error decay if the ℓ1-norm between x and y is less than 1, which is a

loose constraint for modern deep neural network models. As shown in Table 4.1, all convolutional layers

of a downsized VGG easily meet the above conditions.
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4.2.3 A Toy Example

To better illustrate how the learning algorithm works, we let a simple model fit a straight line. Con-

sider a model of only two neurons, each forming a layer, and we have a model that outputs W2(W1(x))

in which the non-linearity is omitted. Using the trigonometric training method, we trained this model

with different choices of parameter initials, input ranges, and target line slopes. If the target line is de-

noted as y = 0.3x, the goal is to train the model that will be stable at sin(w1) sin(w2) = 0.3. Figure 4.4

summarizes the fitting results and learning dynamics of the proposed algorithm under various conditions.

The parameters for the different conditions are summarized in Table 4.2. In this case, the learning rate

is chosen as 2−2 for avoiding multipliers in the gradient descent stage (note 2−2 is not required, other

approximate values can work as well), and the learning dynamics subplots are drawn from the first 100

iterations. In addition, the training sample size is 300, and the final fitting curves are the results of 100

epochs of training.

Table 4.2: Initial parameters of the toy example. Note that m stands for the target slope, and Nx denotes
the mean and variance of the samples. All samples were normally distributed.

Initials a b c d

w1 0.5 0.43 −0.78 0
w2 0.1 500 −0.07 1.83
Nx (0.03, 0.3) (0.3, 0.3) (0.03, 0.3) (0.03, 2)
m 0.07 −0.61 1.73 −0.54

It is clear that the gradient descent functions when Equation (4.21) is satisfied. When the target

slope is larger than 1 (see subfigure (c,g)) or sample data are drawn with large variance (subfigure (d,h)),

the proposed algorithm struggles to reach the target; however, samples around 0 are still well approxi-

mated (subfigure (d)). Fortunately, in modern deep neural networks, these situations are not common

and can be avoided. In addition, even if w2 was set to 500 at the beginning, the algorithm still provided

learning. Because trigonometric functions are periodic, a weight that is too large will not affect the

convergence of the network.
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Figure 4.4: Line fitting and learning dynamics of trigonometric inference under various conditions.
The initial parameters for (a–d) are listed in Table 4.2. (a,e) represent an ideal condition in which
samples are concentrated around 0. (b,f) represents a situation in which samples are drawn from com-
paratively large means. (c,g) depict the learning dynamics when the slope is larger than 1, which is
impossible for sine activation to reach. (d,h) designate a large sample variance.

4.2.4 Suitable Scenarios

Trigonometric inference allows forward and backward computations without using multipliers. It in-

volves only simple shift-and-add operations to compute trigonometric functions when the CORDIC [48]

algorithm is employed. Trigonometric inference is preferred when hardware multipliers are insufficient.

Although ReLU is widely used owing to its simplicity and computational ease, many neural network

models rely on hyperbolic activation functions. In FPGAs, where hardware multipliers are extremely

limited resources, the CORDIC module is a more efficient alternative for computing hyperbolic activa-

tion functions [54,120]. When CORDIC modules are utilized for computing activations, a trigonometric

inference is preferred because it does not require extra multipliers. By contrast, a classical training

approach still requires a large number of multiplications for inference and training, even if CORDIC

modules are used for activation calculations.
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4.3 Evaluation

In this section, we use the CIFAR and MNIST datasets to test the effectiveness of the proposed

learning algorithm. All computations were conducted on the CUDA devices. Note that in CUDA devices,

our algorithm will have no speed gains because CUDA devices (see cuDNN [58]) and modern machine

learning frameworks are specially optimized for matrix multiplication operations. We used Chainer [61]

to construct the learning system and neural network models. All experiments were conducted on NVIDIA

Tesla P100 and GTX1660 Super GPUs.

4.3.1 Experiments on MNIST

MNIST is a dataset used for handwritten digit classification. OnMNIST, even a small neural network

can achieve a good accuracy. By using a small neural network, we can easily adjust the model shapes to

investigate the performance of a trigonometric inference under various situations. The MNIST images

were 32× 32 in size, and only fully connected layers were used to build the neural net model. In this case,

we discuss the training conditions suitable for the algorithm and test the performance for different sine

activations. We used a three-layer neural network and tested the convergence of the network by changing

the number of intermediate neurons. The results are presented in Table 4.3. We use Momentum SGD to

optimize the models with momentum set to 0.9 and a learning rate of 0.01. The batch size was set to 128,

and no data augmentation was used. For the standard model, ReLU was used as the activation function,

and as the final accuracy of the pure sine activation and the proposed rectified sine activation.

As the results summarized in Table 4.3 indicate, it is noticeable that trigonometric inference fails to

provide learning when the last layer size is inadequate. As the reason for this phenomenon, when the last

layer size is too small, the error assigned to each connection will be too large, thus reducing the precision

of the sine approximation. For comparison, Net3 confirms that trigonometric inference functions when

the last layer size is sufficient. It also shows a performance decrease when small layers are adopted in

the model. We also tested a model with each layer having 10,000 neurons to check the difference in

performance between the proposed algorithm and the classical inference. For small neural net models

with large layer sizes, the two algorithms show almost no difference, and interestingly, trigonometric

inference outperforms the baseline inference method.

Rows Acctrig−sine and ACCtrig_rectsine in Table 4.3 represent the validation results from a network

with a full sine activation and a rectified sine activation, respectively. By comparing their final accuracy,

it is clear that the proposed rectified sine activation outperforms the full sine activation by a wide margin.

Table 4.3: MNIST test accuracy.

Model Net1 Net2 Net3 Net4

layer 1 1000 1000 100 10,000
layer 2 1000 1000 100 10,000
layer 3 1000 100 1000 10,000

Accstd_relu 0.9827 0.9832 0.9802 0.9833
Acctrig_sine 0.9239 0.1087 0.9221 0.9241

Acctrig_rectsine 0.9832 0.1153 0.9289 0.9836
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4.3.2 Experiments on CIFAR

We then tested our method on the CIFAR-10 and CIFAR-100 datasets, each containing 60,000 32×
32× 3 RGB images. We trained a downsized VGG model [84] and a 22-layer WideResNet [121] on the

CIFAR-10 and CIFAR-100 datasets. Note that Equation (4.12) is used for backpropagation for TrigInf 1

(method 1), and for TigInf 2 (method 2), Equation (4.14) is adopted. The configurations of the downsized

VGG and WideResNet are shown in Table 4.4. For VGG, the model width was much smaller than that of

the original VGG-11. By decreasing the layer width, we can observe the learning results of trigonometric

inference when the network size is relatively small. We trained the model using momentum SGD with

the momentum set to 2−4 and decayed to half for every 25 epochs. The same training method is also used

on WideResNet, in which the momentum decays every 40 epochs. The MNIST test indicates that a layer

that is too narrow has a negative influence on the overall performance. Therefore, on WideResNet, we

avoid using a trigonometric inference on the first layer because the number of filters is too small, which

will cause performance deterioration. We conducted trigonometric inference only on convolutional layers

because they contribute the most computational burden. The batch norm was also utilized to accelerate

the convergence, and all tasks were trained for 300 epochs with data augmentation. The batch size was

set to 128. For comparison, we trained VGG and WideResNet without approximations. ReLU was used

as the activation function for comparison groups. We chose VGG because it is representative of the

traditional CNNs. As for why we chose wide resnet over resnet, it is because we found that wide resnet

performs better on Cifar-100 after several rounds of testing. Compared with Cifar-10, training on Cifar-

100 is much more difficult because there are only 600 images per category. We used resnet at first, but

neither CNN nor TrigInf could obtain an accuracy close to 80% without transfer learning. In comparison,

wide resnet can achieve a higher accuracy of approximately 78%.

Table 4.4: Network configuration of the downsized VGG and the 22-layer WideResNet.

VGG WideResNet

[3× 3, 64]× 2 [3× 3, 16]

[3× 3, 128]× 2

[
3× 3, 16× 10

3× 3, 16× 10

]
× 3

[3× 3, 256]× 4

[
3× 3, 32× 10

3× 3, 32× 10

]
× 3

1024-linear × 2

[
3× 3, 64× 10

3× 3, 64× 10

]
× 3

[7× 7] avg-pool
640-linear

Table 4.5 summarizes the classification results on two datasets. The training accuracy and loss curves

of WideResNet are illustrated in Figure 4.5. As Figure 4.5 implies, trigonometric inference provides a

close performance to standard convolution counterparts on both CIFAR-10 and CIFAR-100. TriInf 1,

which calculates more precise error signals, achieves higher accuracy and the final results decrease by

approximately 1%. Although the accuracy deteriorates by approximately 8% on CIFAR-100, coarse error

signals (TrigInf 2) are still recommended on simple tasks because a similar performance is provided on

CIFAR-10 and the computations are easier.
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Table 4.5: Final validation accuracy of CIFAR-10 and CIFAR-100.

Model and Dataset CIFAR 10 CIFAR 100

VGG Stdandard 0.9309 0.7158
VGG TrigInf 1 0.9192 0.7009
VGG TrigInf 2 0.9213 0.6957
WRN Stdandard 0.9564 0.7861
WRN TrigInf 1 0.9537 0.7759
WRN TrigInf 2 0.9334 0.7053
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Figure 4.5: Training curves of WideResNet on CIFAR-10 and CIFAR-100. The left subplots denote the
validation accuracy and loss records on CIFAR-10 and the right subplots denote those on CIFAR-100.

4.3.3 Narrowing the Accuracy Loss

As Equation (4.21) indicates, the approximation error of trigonometric inference is upper bounded

by: (|x|+|W |)3
6 Where x denotes layer inputs and W weights. This approximation error is negligible if the

ℓ1 norm between x and W is less than 1. Although most weights and activations in DNNs are very small,

there are still a few large ones that affect the final performance.

Batch normalization is used to overcome the internal covariate shift problem [57,122]. As the training

progresses, the weights in the network are constantly updated. On the one hand, when the parameters
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in the underlying network changes, these changes are amplified as the number of layers deepens due to

the linear and nonlinear mapping between layers; on the other hand, the parameter changes cause the

input distribution to change constantly in each layer, and the network in the upper layers needs to adapt

to these distribution changes in real time, which makes the converge difficult. Batch normalization is

proved can reduce the internal covariate shift effect, and accelerate training (equation 4.22).

For conventional CNNs the mean of BatchNorm layer is usually set to 1, which is problematic for

trigonometric inference since it will bring larger approximation errors.

µB = 1
m

∑m
i=1 xi

σ2
B = 1

m

∑m
i=1 (xi − µB)

2

x̂i =
xi−µB√
σ2
B+ϵ

yi = γx̂i + β = BNγ,β (xi)

(4.22)

A simple trick to compensate for the accuracy loss is the enforcement of small activations in the

batch normalization layers, which introduces no extra computation burdens. The sample code is given

in Listing 4.1. To demonstrate this, we did experiments to observe the effect of the mean parameter of

batch normalization layers.

1 de f B a t c h n o rm_ s imp l e _ f o r _ t r a i n ( x , be t a , eps , momentum , cache , gamma=0 . 1 ) :
2

3 mean=x . mean ( )
4 va r =x . va r ( )
5

6 # compute moving mean and va r
7 mvg_mean = momentum * cache . mvg_mean + (1 − momentum ) * mean
8 mvg_var = momentum * cache . mvg_var + (1 − momentum ) * va r
9

10 # n o rm a l i z a t i o n
11 x_no rma l i z ed =( x − mvg_mean ) / s q r t ( mvg_var + eps )
12

13 # Th i s s t e p s c a l e s t h e o u t p u t . O r i g i n a l l y i t i s s e t 0 , h e r e we f o r c e i t t o a
sma l l v a l u e t o e n s u r e t h e s u c c e s s o f t r i g o n om e t r i c i n f e r e n c e .

14 x_new = gamma * x_no rma l i z ed + b e t a
15

16 cache [ ’mvg_mean ’ ] = mvg_mean
17 cache [ ’mvg_var ’ ] = mvg_var
18

19 r e t u r n x_new , cache

Listing 4.1: Our batch normalization layer, where we enforce small scaling (small gamma) so that the

approximation error of trigonometric inference is negligible.

We trained ResNet50 models on Cifar-100 dataset, and Momentum SGD was used for gradient de-

scent. For the conventional CNN, we set the mean of BN layers to the default value 1. For TrigInf models,

the mean values of BN layers are set to 0.1, 0.5, and 0.7, respectively. We trained each model for 200

epochs (with learning rate decayed to half at (60, 100, 140, 180) epochs) and the results are summarized

in Table 4.7. We can clearly see that the same accuracy and validation loss as the baseline CNN can be

obtained by reducing the mean parameter of BN layers.
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Table 4.6: Evaluation results on Cifar-100 with BN layers’ mean set to different values.

Model (ResNet50) and Result Accuracy Training Loss Validation Loss

CNN (µ(BN) = 1.0) 0.7171 0.0582 1.0614
TrigInf (µ(BN) = 0.7) 0.7058 0.0701 1.2853
TrigInf (µ(BN) = 0.5) 0.7124 0.0644 1.6003
TrigInf (µ(BN) = 0.1) 0.7205 0.0577 0.9063

4.3.4 Compatibility with Other Optimizers

Optimizers

(1) SGD
The simplest optimizer is SGD (stochastic gradient descent), which is used for our explanation in

previous sections. The SGD is defined as equation 4.23. A vanilla SGD is implemented as Listing 4.2.

θ = θ − η · ∇J(θ) (4.23)

1 f o r i i n r ange ( epoch ) :
2 gd = grad ( l o s s , da t a , we i gh t s )
3 we igh t s = we i gh t s − l r * gd

Listing 4.2: Vanilla SGD optimizer.

(2) Momentum SGD
Momentum SGD remembers gradients from the last iteration, and updates weights according to not

only the current gradient, but gradients of last iteration as well. The update rule is shown in equation

4.24. The formula shows that if the gradient of this time is the same as the last time, the gradient of this

time is strengthened, and on the contrary, the gradient is weakened (as in Figure 4.6).

vt = γvt−1 + η∇θJ(θ)

θ = θ − vt
(4.24)

1 f o r i i n r ange ( epoch ) :
2 gd = grad ( l o s s , da t a , we i gh t s )
3 we igh t s = momentum + we igh t s − l r * gd

Listing 4.3: Momentum SGD optimizer.

(3) Nesterov Optimizer
Nesterov is a way to update parameters with a predictive nature. It ’looks ahead’ and knows that in

the next update iteration the weight would be updated to θ−γvt−1, then the next ’weight’ is incorporated

into the current iteration. In this way, the optimizer can prevent the gradient descent from going too fast.

vt = γvt−1 + η∇θJ (θ − γvt−1)

θ = θ − vt
(4.25)
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Figure 4.6: Comparison of Momentum SGD and SGD.

1 f o r i i n r ange ( epoch ) :
2 gd = grad ( l o s s , da t a , we i gh t s )
3 we igh t s = momentum + we igh t s − l r * gd_ahead

Listing 4.4: Nesterov optimizer.

(4) Adagrad
Adagrad offers an adaptive learning rate for each weight in the update iteration. As shown in equation

4.5, for each parameter θi, the learning rate is computed with attention to other weights in the layer.

Specifically, the Gt,i is squared sum of the past gradient of θi. In this way the optimizer updates each

weight based on its past gradients, and assigns larger gradients it the weight moves too slow in the past.

The ϵ parameter in the optimizer is for avoiding dividing by 0.

θt+1,i = θt,i −
η√

Gt,ii + ϵ
· gt,i (4.26)

1 f o r i i n r ange ( epoch ) :
2 gd = grad ( l o s s , da t a , we i gh t s )
3 we igh t s = we i gh t s − l r * gd / ( s q r t ( gd_cache ) + eps )

Listing 4.5: Adagrad optimizer.

(5) Adam
Adam (adaptive moment estimation) [8] also computes gradient adaptively for each weight. The

differences are twofold. 1) Adam places more importance on the most recent part of the historical

gradient than on treating past gradients as equally important. 2) Adam does not only refer to squared

gradients, but to gradients as well. The update logic is as follows:

mt = β1mt−1 + (1− β1) gt

vt = β2vt−1 + (1− β2) g
2
t

(4.27)

96



m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

(4.28)

θt+1 = θt −
η√

v̂t + ϵ
m̂t (4.29)

1 f o r i i n r ange ( epoch ) :
2 m = be t a 1 *m + (1 − be t a 1 ) *gd
3 v = be t a 2 *v + (1 − be t a 2 ) * ( gd **2)
4 we igh t s = we i gh t s − l r * m / ( s q r t ( v ) + eps )

Listing 4.6: Adam optimizer.

The trigonometric inference is compatible with other gradient descent optimizers such as AdaDelta,

Adam, Nesterov Accelerated Gradient (NesterovAG), etc. To show this, we evaluated trigonometric

inference on different gradient descent optimizers. Apart from SGD, we tested Adam and NesterovAG

with ResNet50 and GoogleNet on Cifar-100, respectively. Figure 4.7 demonstrates the training curves

and validation loss descent curves. As illustrated in Figure 4.7, on both optimizers trigonometric infer-

ence can achieve the same accuracy as conventional CNNs.

Table 4.7: Evaluation results of GoogleNet & ResNet50 on Cifar-100.

Model Accuracy Training Loss Validation Loss

ResNet50 CNN 0.7245 0.0056 1.2234
ResNet50 TrigInf 0.7311 0.0158 1.3095
GoogleNet CNN 0.7418 0.0089 0.9284
GoogleNet TrigInf 0.7479 0.0170 0.9570

4.3.5 Future Works of Trigonometric Inference

To the best of our knowledge, this is the first study to utilize a trigonometric approximation of all

parameters in the training of deep neural networks. However, on modern GPUs and CPUs, we were

unable to show the efficiency of our training methods because they are specifically optimized for mul-

tiplication. We set as our future study the design of a hardware computation engine for trigonometric

inference. Here, we briefly discuss the challenges. Although a simple serial CORDIC module requires

significantly fewer logic resources than a multiplier, it has certain flaws in terms of speed. To accelerate

the CORDIC module for neural network inference, the following two schemes are worth applying:

(1) CORDIC optimization for small values:

Although randomly distributed, layer inputs, weights, and back-propagated errors tend to have small

variances in large deep neural networks. Starting the rotation from the mean value can reduce the number

of iterations for the CORDIC modules because the mean value can be selected as a pre-computed angle.

(2) Neural network training with lower-precision CORDIC:
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Figure 4.7: Training curves and Validation loss of GoogleNet and ResNet50 on CIFAR-100 dataset.
The left subplots denote the validation accuracy and loss records on GoogleNet and the right subplots
denote those on ResNet50.

As mentioned in Section 4.2, training with a lower precision can provide a comparable performance

under many scenarios. Reducing the model precision to 16-bits, 8-bits, or even fewer bits will signifi-

cantly decrease the CORDIC iteration times. Therefore, the training efficiency is higher when a lower

precision is required.
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Chapter 5

Conclusion

In this research, our main contribution is twofold:

First, we have analysed the disadvantages of existing quantization algorithms and proposed a new

logarithmic algorithm that is simple yet powerful. We applied our algorithm to all layers of several

popular neural networks showing its generality of handling layers of both large and small complexity.

In convolutional neural networks such as GoogLeNet that use small filters, our algorithm performs sub-

stantially better than other algorithms without retraining. We also pointed out that quantization error is

not suitable for evaluating the performance of quantization algorithms since it treats strong and weak

connections equally.

By quantifying the importance of each weight to its magnitude, we present a weight-aware quantiza-

tion optimization objective. We combined this weight-aware methodology with existing state-of-the-art

quantization algorithms and achieved superior performance. For the additive power-of-two quantization

method that requires retraining, our algorithm can significantly reduce the training time and eliminate

the need for weight normalization. For the post-training quantization algorithm, our method can push

the performance to an even better degree.

Although previous studies have realized that the importance of each weight is different, to the best

of our knowledge, this is the first study to propose a weight-aware quantization optimization objective.

We hope that there will be more research to use WAE (weight aware error) to replace the original MSE

(mean squared error), and we believe that this simple modification will yield very good results for the

algorithm.

Second, a novel technique called trigonometric inference for neural network training was also intro-

duced in this study. Trigonometric inference is promising in removing multipliers altogether in deep

neural network training and inference. We analyzed the precision of the sine approximation for deep

neural network parameters. In addition, we exploited a rectified sine activation function to remove mul-

tiplications in inference and training. Trigonometric inference is suitable for scenarios in which the

hardware multiplier is insufficient and is preferred when a hyperbolic activation function is utilized. Our

experimental results demonstrate that a comparable performance was achieved using this approach.

The results of this research shed new light on future hardware customization for deep neural networks

that aim to take advantage of the CORDIC computation engine and reduce the logic resources and power

consumption. It is also practical for applications on weak terminals, such as microcontrollers equipped

with CORDIC modules.
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