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ABSTRACT 
This thesis presents a study on clustering-based marking using deep neural networks for 
online handwritten mathematical answers. In education, descriptive math questions are 
considered to be better than multiple-choice math questions to evaluate students’ 
understanding and abilities to answer. However, examiners need to scan and score a large 
number of answers, which requires a huge amount of time and effort. Clustering-based 
marking, a quite new topic in the research community, is a promising approach to help 
examiners to mark handwritten answers. In this thesis, we present three main 
contributions: (1) we present our strategy and two tools (e-testing tool and e-marking 
tool) for collecting and annotating handwritten descriptive answers, (2) we present two 
approaches for clustering online handwritten mathematical expressions (OHMEs), (3) we 
present two methods for improving OHME recognition. 

First, we propose an e-testing tool on a tablet, which works as the pattern collection tool, 
and an e-marking tool as the annotation tool for creating a dataset of handwritten math 
answers (HMAs) for descriptive questions. We present specifications and workflows of 
those tools in detail. By providing the e-testing tool and the e-marking tool, we plan to 
collaborate with other organizations for collecting a large dataset, then publish it for the 
research community. 

Secondly, we propose two approaches for clustering OHMEs to create a clustering-based 
marking. To the best of our knowledge, we are the first group attempting to cluster 
OHMEs. Mathematical expressions are 2D-structural and infinite combinations of math 
symbols and spatial relationships. Our first approach is to extract features from low-level 
pattern features to high-level symbolic and structural features obtained from processing 
and recognizing OHMEs. The second approach is to compute pairwise similarities among 
OHMEs. We achieved the best results of around 0.916 and 0.915 for purity and around 
0.556 and 0.702 for the marking cost on two answer datasets, Dset_Mix and NIER_CBT, 
respectively. 

Thirdly, we propose two methods for improving OHME recognition. Since our proposed 
clustering methods utilize the recognition results of OHMEs, we aim to improve the 
recognition rate for improving the performance of the clustering process. The first method 
is to utilize bidirectional context from input stroke sequences for symbol segmentation 
and classification. The second method is to utilize a math language model combined with 
OHME recognizers. We propose the first transformer-based math language model which 
can combine with both online and offline HME recognizers. Experiments showed that 
our proposed methods can improve the performance of OHME recognizers.  
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CHAPTER 1. Introduction 
1.1. Backgrounds 
In 2020, the widespread of the SARS-CoV-2 (COVID-19) has a strong impact on 
education over the world, which caused almost schools and universities to be temporally 
closed. Many educational organizers resume the learners’ studies via online platforms in 
response to significant demand. The adoption of online learning might continue persisting 
in post-pandemic, and the shift would impact the worldwide education market. In this 
context, the self-learning and e-testing applications would be necessary options for 
students in the near future. 

Nowadays, touch-based and pen-based devices are becoming very popular as learning 
media. Children and students use them to read textbooks and exercise. Moreover, they 
are suitable for learners to write mathematical expressions (MEs), which could be better 
than using editors such as Microsoft Equation Editor, MathType, or high-quality 
typesetting systems like LaTeX.  

Over the past two decades, research on how to better recognize handwritten mathematical 
expressions (HMEs) has significantly increased due to increased demands for its 
application on tablets. Competitions on recognizing online HMEs (OHMEs) have been 
ongoing under the series of CROHME [1] with improved recognition performance. With 
this progress, many e-learning interfaces based on pen-based devices have been studied 
[2–4] and employed in practical applications. If the recognition result is verified and 
confirmed by a learner, either online or offline HME recognition can be incorporated into 
self-learning and e-testing applications. Although a learner has to do additional work, the 
learner can get immediate feedback. 

HME recognition can also be used for marking. Automatic marking by comparing the 
recognition result of an HME answer with the correct answer is one of the solutions for 
marking many answers. However, there remains problems [5]. Firstly, it is not so simple 
to mark partially correct answers. Secondly, there may be several correct answers as well 
as some different but equivalent notations for an answer. It is hard to pre-define all 
possible cases. Thirdly, it requires examiners or examinees to confirm the automatic 
marking since the recognition result is not always correct. In fact, examinees in large-
scale examinations (e.g., national-wide qualification examinations) do not have 
opportunities to confirm the marking so that examiners or someone else must confirm the 
marking. 

Computer-assisted marking as shown in Figure 1.1 is an alternative approach. One of the 
most promising applications of computer assistance is clustering answers, which groups 
similar answers that could be given the same score. If answers are well clustered, they 
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can be marked efficiently, and marking errors can be decreased. Since the final marking 
is made by human markers, examinees’ anxieties will also decrease.  

To make computer-assisted exam marking useful, however, several problems need to be 
solved. Firstly, HME recognition is one of the most difficult handwriting recognitions. 
We must be able to cluster them even though their recognition is fragile. Secondly, there 
are several clustering algorithms using different approaches. We need to choose a 
clustering mechanism suitable for the nature of the data such as the number of clusters 
and the distribution of the data. In this thesis, we focus on clustering and recognition of 
OHME to make a clustering-based marking. 

1.2. Contributions 
First, we propose an e-testing tool on a tablet, which works as the pattern collection tool 
and an e-marking tool as the annotation tool for creating a dataset of handwritten math 
answers (HMAs) for descriptive questions. As my best of knowledge, there is currently 
no published large dataset of handwritten math answers for descriptive questions. In our 
laboratory, we generated and published a synthetic dataset for evaluating our proposed 
method temporally. An answer dataset is collected by a collaboration with National 
Institute for Educational Policy Research (NIER) in Tokyo, Japan. However, this dataset 
is small, and it just contains a small portion of common math symbols. By providing the 
e-testing tool and the e-marking tool, we plan to collaborate with other organizations for 
collecting large dataset, then publishing for the research community. 

Secondly, we propose two approaches for clustering OHMEs to create a clustering-based 
marking. As my best of knowledge, we are the first group attempting to cluster OHMEs. 
MEs are 2D-structural and infinite combinations of math symbols and spatial 
relationships. Our first approach is to extract features from low-level pattern features to 
high-level symbolic and structural features obtained from processing and recognizing 
OHMEs. The extracted features are then transformed to a distance-based representation 
and inputted to a clustering algorithm for producing groups of OHMEs. The second 
approach is to compute pairwise similarities among OHMEs. Experiments showed the 
effectiveness of our methods in term of reducing the marking cost. 

 

 

 

 

 

Figure 1.1. Overview of computer-assisted marking 

 

 

Computer-assisted marking Human marker
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Thirdly, we propose two methods for improving OHME recognition. Since our proposed 
clustering methods utilize the recognition results of OHMEs, we aim to improve the 
recognition rate for improving the performance of the clustering process. The first method 
is to utilize bidirectional context from input stroke sequences for symbol segmentation 
and classification. The second method is to utilize a math language model combined with 
OHME recognizers. We propose the first transformer-based math language model which 
can combine with both online and offline HME recognizers. Experiments showed that 
our proposed methods can improve the performance of OHME recognizers. 

1.3. Thesis organization 
Chapter 2 presents the surveys on three above topics. Chapter 3 presents a strategy and 
tools for collecting and annotating HMAs. Chapter 4 presents our proposed methods for 
clustering OHMEs. Chapter 5 presents our proposed methods for improving the 
recogntion rate of OHME recognition. Finally, chapter 6 gives some conclusions and 
future works. 
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CHAPTER 2. Surveys 
2.1. Surveys on HME collecting tools 
In the recent decade, sample patterns for handwritten mathematical expressions (HMEs) 
have been collected and made available for the HME recognition community, since HME 
recognition has been studied intensively as the most natural method for inputting MEs 
rather than math editors such as Microsoft Equation Editor and math description 
languages such as LaTeX [6,7]. Several projects have been conducted for collecting 
online HME patterns by MathBrush [8], Awal et al. [9], Quiniou et al. [10], Stria et al. 
[11], Aguilar et al. [12], etc. The collected HME patterns have been gathered to form a 
large sample dataset for the competitions on recognition of HMEs (CROHME) [6]. Some 
of the products developed along the competitions are commercially available in the 
market such as the products by MyScript and Wiris. Several tablet-based e-learning 
interfaces have been researched [2–4] and employed for practical applications.  

Most tools to collect HME patterns use the same process for capturing online HME 
patterns. Pen movements captured from a tablet are stored as a list of successive pen-tip 
points with each element showing x and y coordinates of the pen-tip at a time step. In 
mathematics, each symbol is a group of one or more strokes where a stroke is a sequence 
of pen-tip points from pen-down to pen-up. The patterns thus captured are called online 
patterns, while images captured from a camera is called offline patterns. Offline patterns 
are easily converted from online patterns by rendering them to bitmap images. These tools 
are made for internal use and have not been released publicly. 

2.2. HME clustering 
There are several past works on clustering offline (bitmap image) HMEs. Khuong et al. 
[13] combined low-level features (directional features) and high-levels features (bag-of-
symbols, bag-of-relations, and bag-of-positions) to represent each offline HME. However, 
the high-level features are formed from offline isolated symbols classified from 
connected components along with predefined heuristic rules. Hence, there still exist 
problems related to segmentation and determination of spatial relationships. Recently, 
Nguyen et al. [14] presented features based on spatial classification using a convolutional 
neural network (CNN). Their model is trained to localize and classify objects (symbols) 
in each offline HME via weakly supervised learning. Then, spatial pooling is applied to 
extract hierarchical spatial classification features from the class activation maps. 

In this work, we aim to address the problem of extracting features from sequential data 
for clustering OHMEs. A similar problem exists on natural language processing, where 
the vector space needs to be constructed to represent a word sequence {𝑤1, 𝑤2, … , 𝑤𝑛} 
and express the corresponding semantics. A conventional method to address this problem 
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is via bag-of-words [15]. However, a drawback of this method is that the word order is 
lost; hence, uniqueness is not guaranteed. A better solution proposed by Le and 
Mikolov[16] is to construct a continuous vector space, where semantically similar 
sequences are mapped onto nearby points. Besides, these vectors can be applied to 
machine learning algorithms such as k-means and support vector machines. 

There are deep neural network-based methods for clustering sequential data such as 
OHMEs. Several methods aim to embed sequential data into feature vectors based on the 
reconstruction loss and the clustering loss [17,18]. Another approach is to compute the 
pairwise similarity/dissimilarity instead of embedded features [19]. However, those 
methods without information about symbols and relations encounter difficulty for 
clustering OHMEs since there are infinite combinations of symbols and relations to form 
MEs. Nguyen et al. [14] showed that metric learning methods do not work well compared 
to CNN-based spatial classification features for clustering offline HMEs. 

2.3. Computer-assisted marking 
Extensive research has been carried out on essay assessment [20–22] and handwritten 
essay scoring [23]. Basu et al. proposed a method for clustering answers for English short 
answer grading [24]. They trained a similarity metric to calculate a distance between two 
different answers using logistic regression. Then, they employed a modified k-Medoids 
and a latent Dirichlet allocation algorithm for forming clusters and sub-clusters of 
answers. The clustering method allows graders to just score each group using one 
operation, which reduces the cost of the grading process. Brooks et al. used the approach 
to design a cluster-based interface [25], which is effective because it allows graders to 
give feedback for clusters and sub-clusters of answers at once. 

To assess handwritten paper-based work, Singh et al. [26] introduced a web-based system 
that allows students to upload their scanned assignments. The system also allows teachers 
to categorize the answers and give feedback for them. User reports from four years of 
usage of the system demonstrate its effectiveness in terms of speed, consistency, and 
flexibility. 

2.4. Online HME recogntion 
This section presents a common framework for the OHME recognizer and current several 
approaches to solve this problem. 

2.4.1. A general framework of OHME recognizer 

Recognition of HMEs is one of the current challenges in handwriting recognition. It 
consists of four main tasks: symbol segmentation, symbol recognition, spatial relationship 
classification, and ME structure analysis. Figure 2.1 shows common architectures for 
OHME recognition with its key modules. 
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Given an OHME, symbol segmentation firstly produces symbol hypotheses - each of 
which may form a symbol; the symbol recognition secondly proposes a list of symbols 
for each symbol hypothesis; spatial relationship classification thirdly identifies the 
relation between two symbol hypotheses and forms a symbol relation tree of an OHME, 
and structure analysis finally determines the best ME interpretations. In many approaches, 
tasks could be processed sequentially, or an earlier task can be processed in parallel with 
a later process. For example, symbol segmentation could be joined with symbol 
recognition, and relation classification could be integrated into structure analysis and so 
on.  

Several systems perform more tasks, such as pre-processing, normalization, noise 
reduction, training language models, and so on. For pre-processing OHMEs, it usually 

 

 
(a) A flow of the general approach with four major modules 

 

 
(b) A flow of the approach having modulriven by other module(s). The dashed 

arrows indicate the driving modules and driven modules. 
 

 
(c) A flow of the end-to-end approach. 

 
Figure 2.1. Flow of approaches applied for recognizing OHMEs. 
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utilizes resampling and smoothing [27]. Normalization and interpolation are often applied 
to make the later processing easier such as writing speed normalization and size 
normalization [28]. Preparing or constructing a language model for ME is crucial to assist 
structure analysis, but it is considered a sub-task of the structure analysis.  

The end-to-end approach has been proposed for recognizing OHME, which commonly 
includes four main components: trajectory feature extractor, encoder, decoder, and 
attention mechanism, as shown in Figure 2.1(c). Although it utilizes layers of neural 
networks to recognize input OHMEs, they still have functions corresponding to those key 
tasks. Particularly, the encoder firstly exploits useful features and represent them as high-
level features, symbol segmentation is carried out via the attention mechanism; secondly, 
the decoder the focused parts in encoded features, which pointed out by the attention 
model; spatial relationship classification is also made based on the attention model that 
guides the decoder precisely attend to the direction between the current predicted symbol 
and the next predicted symbol; the combination of this information forms a 2D structure 
of a ME often represented by a LaTeX string. Note that the end-to-end recognizer does 
not need to pre-defined grammar rules of ME so that they could output invalid structure 
of LaTeX strings. To address this problem, a pre-trained or simultaneous-trained 
language model is jointly applied to learn the long-term dependencies of math symbols. 

2.4.2. OHME recognition methods 

In this section, we present three common approaches for OHME recognition. 

2.4.2.1. ME grammar-based methods 

Same as any language, mathematics can be described by the grammar. Generation of a 
complete ME requires not only a correct combination of symbol segmentation hypotheses, 
symbol recognition candidates, and spatial relationships but also correct mathematical 
syntaxes. Many studies have been conducted on ME grammar-based methods, which 
utilize 2-dimensional stochastic context-free grammars (2D-SCFG) with Cocke-
Younger-Kasami (CYK) algorithm such as [28–33]. We briefly describe these two 
techniques here. 

In formal language theory, a context-free grammar (CFG) contains a set of derivation 
rules with no priorities. A sentence may have multiple parses in a CFG, and all these 
parses are equivalent. The probabilities of occurrences of these parses in mathematics are 
not the same. Hence, to assign probability factors to multiple parses of a sentence, 
Stochastic context-free grammars (SCFG) are presented, which have an additional 
property that each grammar rule is defined with a score that can be set manually or 
obtained through a training procedure. Then, 2D-SCFG is defined by adding a finite set 
of relations between two elements to represent 2-dimensional languages like mathematics. 
Figure 2.2 illustrates the 2D-SCFG by presenting an example of the grammar rules and a 
parsing tree of an ME “𝑥m + 1”. To parse a tree from the given set of grammar rules, we 



17 

 

extract the symbols from “𝑥m + 1” where “𝑥” is a letter (denoted by “Let”), “1” are 
numbers (denoted by “Num”), and “+” is an operator (denoted by “Op”). Then, new non-
terminal nodes are formed from one or two non-terminal nodes according to the unary or 
binary grammar rules, respectively. This step is repeated until we get a non-terminal node 
that cannot produce any non-terminal node. 

Cocke-Younger-Kasami (CYK) algorithm, a dynamic programming algorithm, is used to 
parse an HME with 2D-SCFG. It is a bottom-up parser that constructs a CYK table of 
terminal and non-terminal symbols by combining smaller substrings into larger substrings 
in a bottom-up scheme. A stochastic version of the CYK algorithm computes the 
probabilities of possible derivations of a given string. The complexity of CYK is O(n3|G|), 
where n is the length of the parsed string and |G| is the size of the grammar set G. A 
recognition score is a combination of the segmentation score, recognition score, relation 
score, and grammar score. The first candidate in the top cell is the final recognition result 
of the input HME. 

2.4.2.2. ME graph-based methods 

In graph-based methods, symbol recognition and spatial relationship recognition of an 
OHME are represented as a graph, in which each node represents a symbol hypothesis, 
and each edge represents the relationship between two symbol hypotheses. Each path or 
sub-graph follows some constraints and generates a possible interpretation for a sub-
expression within a given OHME. All their possible interpretations are evaluated by 
combining segmentation scores and classification scores, and the interpretation with the 
best score is selected as the recognition result. Since MEs follow a hierarchical language, 
ME grammar-based methods and ME graph-based methods often use appearance or 

 

Let →{a, b, c, d, e, f} 

Num → {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 

Op → {+, -, \times, \div} 

Sub 
𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡
→      Let Let 

LExp 
ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙
→       Sub Op 

Exp 
ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙
→       LExp Num 

(a) A set of grammar rules 

 

(b) A parsing tree of 2D-SCFG for “𝑥𝑚 + 1”. 

Figure 2.2. Example of grammar rules and its parsing tree. Note that each rule in the 
grammar takes one of two forms: X → Y1 Y2 where X ∈ N, Y1 ∈ N, Y2 ∈ N; or X → Y 

where X ∈ N, Y ∈ Σ 
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content-based encoding to represent an ME in the form of a symbol relation (or layout) 
tree or an operator tree. 

There are many publications on graph-based methods. The early graph-based methods for 
OHME recognition [34–36] are based on probability maximization or penalty 
minimization. These methods share a common approach in that all possible symbol 
hypotheses are computed from the symbol segmentation and the symbol recognition 
scores. An advantage of these methods is that local recognition errors can be corrected by 
considering the evaluation of the full recognition tree. In these methods, the problem of 
OHME recognition is transformed into finding the most probable sequence of symbols 
and their relations within the generated graph. Hu et al. [37] proposed a parser based on 
Minimum Spanning Tree (MST) with a language model embedded in the set of classes 
and MST extraction algorithm as a graph-based parsing method without using grammars. 
First, they constructed a directed Line-of-Sight (LOS) graph in which an edge is a line of 
sight from the center of a stroke to the convex hull of every other stroke. An MST, which 
represents a symbol layout, is formed by applying the Edmonds’ algorithm on LOS graph. 
Among graph-based methods, some methods employ graph grammars to resolve 
ambiguities in an ME graph or a sub-graph, which are called graph grammar-based 
methods in [38,39]. 

2.4.2.3. End-to-end methods 

Seq2Seq models for recognizing OHMEs are deep learning models that directly convert 
an input sequence into an output sequence. A Seq2Seq model consists of two main 
components, an encoder and a decoder. The encoder, an LSTM or a BLSTM network, 
accepts a time series input of arbitrary length and encodes information from the input into 
a hidden state vector. The decoder, commonly an LSTM network, generates a sequence 
corresponding to the input sequence. 

Zhang et al. [27] proposed a track, attend and parse (TAP) architecture, which parses an 
OHME into a LaTeX sequence by tracking a sequence of input points. The encoder or the 
tracker stacks several layers of bidirectional Gated Recurrent Units (GRUs) to get the 
high-level representation. The decoder or the parser is composed of unidirectional GRUs 
combined with a hybrid attention mechanism and a GRU-based language model. The 
hybrid attention consists of two attentions: coverage based spatial attention and temporal 
attention. Hong et al. [40] improved TAP by adding residual connections in the encoder 
to strengthen the feature extraction and jointly using a transition probability matrix in the 
decoder to learn the long-term dependencies of mathematical symbols. 

2.4.3. Language models for HME recognition 

There remain challenging problems in HME recognition. One problem is that there are 
lots of ambiguities in the interpretation of HMEs. For instance, there exist math symbols 
that are very similar in the writing style, such as “0”, “o”, and “O” or dot and comma. 
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These ambiguities challenge HME recognition without utilizing contextual information. 
In addition, recognition systems without using predefined grammar rules such as the 
encoder-decoder model [27,41] might result in syntactically unacceptable 
misrecognitions. One promising solution for these problems is to combine an HME 
recognition system with a math language model. Employing language models for 
handwritten text recognition has shown effectiveness in previous research [42–44]. 

An ME has a 2D structure represented by several formats such as MathML, one-
dimensional LaTeX sequences, and two-dimensional symbol layout trees [7]. Almost all 
recent HME recognition systems output their predictions as the LaTeX sequences since 
LaTeX is commonly used in real applications. 

There are some common challenges in modeling MEs similar to natural language 
processing. First, there is a lack of corpora of MEs as MEs rarely appear in daily 
documents. Secondly, there are infinite combinations of symbols and spatial relationships 
in MEs. Thirdly, there are long-term dependencies and correlations among symbols and 
relations in an ME. For example, “(” and “)” are often used to contain a sub-expression, 
and if they contain a long sub-expression, it is challenging to learn the dependency 
between them. 

There are several methods to modeling MEs. The statistical N-gram model was used in 
[45]. It assigns a probability for the n-th tokens given (n-1) previous tokens based on the 
maximum likelihood estimation. However, the N-gram model might not represent the 
long dependencies due to the limitation of the context length. Increasing this length might 
lead to the problem of estimating a high-dimensional distribution, and it requires a 
sufficient amount of training corpus. In practical applications, the trigram model is 
usually used, and the 5-gram model is more effective when the training data is sufficient. 
The recurrent neural network-based language model (RNNLM) proposed by [46] was 
utilized in HME recognition systems [1,27]. RNNLM predicts the n-th token given (n-1) 
previous tokens in previous time steps. However, they still face the problem of the long-
term dependencies. 

Language models are well-known as generative models and autoregressive models since 
they predict the next state of a variable given its previous states. In NLP, Radford et al. 
[47,48] proposed Generative Pre-Training models (GPT and GPT-2) with high 
achievements on NLP benchmarks based on the vanilla transformer-based network in 
[49]. Their models are trained by the casual language modeling loss, then fine-tuned for 
multitask learning such as text classification, question answering, and similarity. Dai et 
al. [50] presented a Transformer-XL for capturing extended length of context using a 
recurrent architecture for context segments. Transformer-XL can learn dependency that 
is 80% longer than RNNs, 450% longer than TLM. The inference speed is 1,800 times 
faster than TLM by caching and reusing previous computations. XLNet presented by 
Yang et al. [51], is the first model utilizing bidirectional contexts for transformer-based 
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language models. This model significantly outperformed the conventional BERT model 
[52] in 20 tasks of NLP benchmarks. 

There are several studies combining HME recognition systems with pre-trained language 
models. Wu et al. [45] combined their encoder-decoder HME recognizer with a pre-
trained 4-gram model to get the N best paths. Zhang et al. [27] utilized a Gated Recurrent 
Unit-based language model (GRULM) for their HME recognizer that is an encoder-
decoder model with temporal attention. This attention is to help the decoder determine 
the reliability of spatial attention and that of the language model per time step. The 
language models improved the expression rate by around 1 percentage point. Hence, the 
approach for combining language models into recognition systems is essential to study. 

In CROHME 2019 [1], the Samsung R&D team used a probabilistic context-free 
grammar-based recognizer combined with two bigram language models, i.e., a language 
sequence model and a language model for spatial relationships. Besides, the MyScript 
team used LSTM-based language models for their grammar-based recognition system. 
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CHAPTER 3. Strategy and tools for collecting and 
annotating handwritten descriptive answers for developing 
automatic and semi-automatic marking - an initial effort to 
math 

3.1. Introduction 
Descriptive questions can far better test learners’ understanding and abilities to think than 
multiple-choice questions for which learners can select correct answers by chance. 
Moreover, descriptive questions foster learners to think rather than to select. On the other 
hand, the drawback of descriptive questions is that it requires large time and effort for 
marking them. Therefore, automatic and semi-automatic marking is sought recently. 

For both automatic and semi-automatic marking, we need a large database of handwritten 
answers for descriptive questions to support research and development on automatic and 
semi-automatic marking. As the database is larger, the effect and reliability of the research 
are more significant. This database will also be useful for handwriting recognition 
research since it is a collection of most casually and naturally written patterns. 

We can employ the tablet-based exam since a tablet is the best device where an examinee 
can input his/her profile, read a question and write an answer. Moreover, online 
trajectories can be easily converted to offline so that online and offline recognition and 
clustering methods can be tested. 

To make a database of handwritten answers, we propose an e-testing tool on a tablet, 
which works as the pattern collection tool and an e-marking tool as the annotation tool. 
Those tools are useful to collect natural and casual handwritten answers, although 
annotating ground-truth is challenging.  

Here, we focus on handwritten math answers, since math is the subject for which 
descriptive questions are most effective. Moreover, the performance of recognizing 
handwritten math expressions is still lower than natural languages so that more sample 
patterns, which are casually and naturally written, are needed to improve their recognition. 

This chapter is organized as follows. Section 3.2 presents our strategy to build an exam 
answer database, not restricted to math answers. Section 3.3 and section 3.4 describes the 
specification of e-testing tool and e-marking tool, respectively. Section 3.5 and section 
3.6 describes processes for an HMA collection and annotation, respectively. The HMAs 
collection methodology and related issues are described in section 3.6. 

3.2. Toward Handwritten Exam Answer Database 
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One way to collect handwritten patterns is to ask each participant to write according to 
predefined ground-truth. Although we design the collection methods to collect natural 
patterns, in such a way that a meaningful sentence is shown and it is written in the flow 
of the sentence, it is basically “copy style”. This style is used to collect handwriting 
databases such as online handwritten Japanese text [53] and Vietnamese [54]. The merit 
of this style is that a required vocabulary can be covered and the labor to provide ground-
truth is lightened. Erroneous patterns for ground-truth may be deleted. However, collected 
patterns may not be completely natural. The other way to overcome this problem is to let 
participants write whatever they want to write. Later, ground-truth is provided manually 
using some tools. This collection is called “freestyle” by Matsushita et al. in [55]. The 
drawback of this style is that it requires a large time and effort to provide ground-truth 
for collected handwritten samples. To make research on automatic and semi-automatic 
marking, however, the freestyle to collect handwritten answer patterns must be selected.  

Therefore, we have set up a strategy to build a large database of handwritten exam 
answers. We first provide two tools: 

1. A simple e-testing tool, which accepts a list of questions from an examiner, display 
each question on a tablet and allows each examinee to write an answer for each 
question. This E-testing tool should collect the profile of the examiner when he/she 
registers a list of questions and the profiles of all the examinees when they answer the 
questions. 

2. An e-marking tool, by which the simplest ground-truth of “correct” or “incorrect” is 
tagged to each handwritten answer. Intermediate scores for partially correct answers 
should also be given. More detailed ground-truth can be provided by editing and 
annotating functions to segment lines into sentences, words, characters, mathematical 
expressions, etc., and provide ground-truth to each object. Recognition engines can 
be incorporated.  

Since the work for preparing questions, answering questions, and marking answers 
require large time and effort, we ask collaborations who want to share the large data set 
of annotated handwritten answers. We also invite volunteers. 

This way of collecting handwritten answer patterns enables us to collect natural and 
casual handwriting rather than those copied or simulated. Although it is labor-intensive, 
once it is made, it is also useful for developing handwriting recognition methods. 

We provide these tools rather than define the common format for an exchange since we 
expect many institutions to collaborate to make a large database of handwritten answer 
patterns. 

3.3. Specifications of the E-testing Tool 
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We propose the following requirements for designing the e-testing tool: 

• R1: The profile of each participant must be recorded, but some privacy 
information must be concealed. This information is useful for further research, 
such as analysis and improvement of user experience. 

• R2: Multiple lines of an HMA should be allowed since people may need to write 
many intermediate steps before getting the final result.  

• R3: A friendly user interface that navigates an answerer from a question to another 
or goes back to any question to revise the answer easily.  

• R4: The user interface should use common and meaningful icons or images to 
replace or minimize the display of explanatory text since the users may come from 
many cultures and countries. It must support the methods for undo/redo, erasing 
and rewriting HMAs. 

• R5: Multiple types of pen-based devices should be allowed. Then, the 
specification of each device used must be recorded, such as its type, sampling rate, 
spatial resolution, and additional information such as pressure. Among various 
pen input devices on the market, we prefer to use PCs or hybrid tablets or external 
digitizing tablets (e.g., from Wacom) connected to PCs.  

• R6: The sampling rate and resolution should be high enough to capture quick pen 
movement since the pen trace is usually sampled with a constant rate and thus 
pen-tip points are evenly in time but not in space. 

• R7: The output format must follow the common format being used by the 
community such as Ink Markup Language (InkML) format [56] for online patterns 
and bitmap images for offline patterns. 

For intermidiate steps of answers, we consider using them in further research in the future. 
Here, our target is to build general tools for collecting patterns as much as possible for 
future research. 

3.4. Specifications of the E-marking Tool 
This section presents the basic requirements for the e-marking tool: 

• R1: The user interface must show each question, participants’ answers, and the 
specimen answers.  

• R2: It should provide a menu (checkbox, up/down counter, slider, etc.) for a 
human marker to select correct, wrong, or partial points. 

• R3: The interface should allow the human marker to utilize two common 
strategies in assessment: marking all answers of each person before moving to 
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other ones, and marking all answers to the same question in a group or the whole 
of the participants. The first way allows the marker to completely tag the ground-
truths for the answers by a single participant while the second one helps them to 
concentrate on assessing the answers for each question, avoiding making mistakes 
or variations among participants. Moreover, the second method is possible to 
apply a computer-assisted marking, such as a clustering-based approach [5,57] in 
order to reduce the marking cost. 

• R4: This user interface, again the same as the e-testing tool, should use common 
and meaningful icons or images to replace or minimize the display of explanatory 
text. 

• R5: Showing the current status of marking progress, as well as marking results 
(annotation tags) might be useful. This information is useful to support the marker 
to mark, review, and revise marking. In addition, this display allows the marker 
to be able to utilize suitable marking strategies and make effective collaborations 
among human markers. 

• R6: Sort and search functions might be useful for the marker to search particular 
items for reviews and revisions. 

3.5. HMA Collection Process 
This section describes question preparation, process to collect HMAs and some design 
considerations. 
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3.5.1. Question Preparation 

An examiner (HMA collector) prepares a set of questions for an examination. For our 
purpose, it is useful that the questions are designed so that various HMAs can be collected. 
This set of questions is stored under the Extensible Markup Language (XML) file format, 
as shown in Figure 3.1. Each paragraph in the tag name “question_t” corresponds to the 
tenth question. Our tool uses an open-source display engine MathJax, which receives a 
question including LaTeX as an input and outputs an HTML, a Scalable Vector Graphics 
or a MathML. Then, a web browser panel loads and displays the question in the question 
window of our interface. Due to this setting, the examiner can use any character, symbol, 
or format that is supported by LaTeX in the end-user device. Moreover, he/she might set 
a time limit for participants to take the exam. 

3.5.2. Collection Process 

We assume the following steps to collect HMAs from each participant. 

Step 1: We explain the purpose of our research and ask a participant whether he/she 
agrees to contribute. We also explain how the e-testing tool collects, stores, uses, and 
shares his/her HMAs. 

<question> 
<annotationXML> 

<numQuestion>2</numQuestion> 
<timeLimit>10M< /timeLimit> 
<question_1> 
          <point>2</point> 
          <content> 

Solve \(x\): 
$$3x^2+5x+3=0$$ 

           </content> 
</question_1> 
<question_2> 

<point>2</point> 
          <content> 

Simplify the following expression: 
             $$\frac{1}{2} + \frac{1}{3}$$ 
           </content> 

</question_2> 
</annotationXML> 

</question> 

Figure 3.1. An example of an XML format for 2 Math questions. 
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Step 2: If agreed by the participant, the tool collects personal information about the 
participant including gender, age, dominant hand, writing hand, occupation, and mother 
tongue in the same way as collections of previous online handwriting databases [53–55]. 
This information is only used for academic purposes, and some of them will be eliminated 
when publicly releasing the dataset. 

Step 3: The participant selects a set of questions prepared by the examiner. 

Step 4: Each question is displayed in Window 2 in Figure 3.2. The participant can write 
intermediate progress in Window 3 and the final answer in Window 4 in Figure 3.2. When 
the participant completes writing their answer for the current question or skips the 
question to do later, he/she can easily move to another question. This step is repeated until 
finishing all the questions.  

3.5.3. Design Considerations 

The aim of using two writing windows is to develop two kinds of datasets which allow 
researching two levels of answers for questions, full answers, and short answers. This 
collecting strategy is designed not only for math but also for analysis-required subjects.  

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Main interface of our e-testing tool. 
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Our collection tool is designed and implemented for recording and storing the pen 
trajectory in the entire writing area via ink-space (HIMETRIC) by the unit of 0.01 mm, 
which is independent of the display resolution. Thus, the tool can be used on devices with 
different resolutions. This collection tool records not only the pen trajectory but also the 
stroke duration time and pressure information. To support participants, we provide nine 
necessary functions which are presented in Table 3.1. 

 

3.6. HMA Annotation Process 
This section describes the process to mark or annotate HMAs and the output format of 
collected HMAs. 

3.6.1. Annotation Process 

Figure 3.3 and Figure 3.4 show the displays of the e-marking tool. A user as a marker 
takes the following steps to mark participants’ answers. Our tool is designed to allow the 
marker to mark answers for each question. 

Table 3.1. A Description of available functions in rectangle 5 of Figure 3.2. 

# Icon Description 

1  
Display the previous question with the handwritten 

answer (if existing). 

2  
Display the next question with the handwritten answer 

(if existing). 

3  
Create a new participant’s profile for collecting new 

patterns. 

4  Open an existing answer file 

5  
Erases the last change done in the current writing 

windows to an older state 

6  Reverses the undo. 

7  

A deletion mode that works as an eraser for removing 

strokes the computer pointer touches while holding the 

left mouse. 

8  Erase all strokes in the current writing windows. 

9  Finish the current collecting section and save HMAs. 
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Step 1: Load HMA files containing participants’ answers. Then, a list of questions in the 
selected files is displayed on Window 1 in Figure 3.3. To view the state of the marking 
progress, the number of marked answers to each question is shown under text-based and 
color-based displays. 

Step 2: Select a question to mark by checking the corresponding box of the question. 
Then, Windows 3 and 4 present the question and its specimen answers, respectively. 

Step 3: Mark answers. In our e-marking tool, a clustering algorithm is applied for 
grouping similar short HMAs together, and then the marker could take a single action to 
mark a group of answers. Since the number of answers might be too large for clustering 
and marking at once time, the marker should set this number by directly inputting the 
limit into the third column corresponding to the question. Besides, a default limitation of 
the quantity can be set, as shown in Figure 3.3. After executing the clustering function by 
utilizing the button #3 in Table 2, Window 5 displays multiple short answers to the 
selected question in many groups. The marker taps on each group of answers to view the 
clustering result. If they are well clustered, he/she can mark each group at the same time. 
Otherwise, some HMAs outside are included in the group, an incremental refinement 
approach proposed in [5] could be applied to re-assigned them into other groups. In case 
that the short answer of an HMA is not clear, the marker can tap on the answer to view 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Main interface for marking multiple HMAs.  
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the full answer carefully and mark it by comparing the participant’s answer and the 
specimen. An annotation as “correct” or “incorrect” can be tagged to each HMA by using 
buttons #4 and #5 described in Table 3.2. He/she also can input an intermediate score by 
using a drop-down list. To remove the tag or the score, the marker can use button #6. 
Besides, two checkboxes in Window 2: “marked” and “unmarked”, work as filters of 
marked and unmarked questions to review and mark HMAs, respectively. The whole step 
is repeated until the last selected answers.  

3.6.2. Output Structure and Format 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Main interface for marking a single HMA.  

Table 3.2. A description of available functions in Figure 3.3 and Figure 3.4 

# Icon Description 
1  Load participant’s answers 

2  
Save participants’ file containing marked 
answers to a specified folder 

3  Execute clustering to group similar answers 

4  Mark the current answer with “correct” tag 

5  Mark the current answer with “incorrect” tag 

6  
Clear the annotation tag or the intermediate 
score of the current answer 
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This section presents the basic structure of the collected data. For each examination, a 
specific folder is created. The disclosable profile of the examiner is recorded as well as 
the set of questions. Then, for each examinee, a specific folder inside the examination 
folder is created. In each sub-folder, the disclosable profile of the examinee and the tablet 
used are recorded. Then, all his answers to questions are recorded in InkML. Offline 
patterns can be rendered from the corresponding online patterns. 
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CHAPTER 4. Clustering online handwritten mathematical 
answers 

4.1. Introduction 
We present two approaches for clustering OHMEs. The first approach is to extract 
features from each OHME and apply a clustering algorithm on the set of extracted 
features. We extract features from low-level pattern features to high-level symbolic and 
structural features obtained from processing and recognizing OHMEs. We employ bag-
of-features composed of low-level directional features and high-level recognition-based 
features, i.e., bag-of-symbols, bag-of-relations, bag-of-positions, position-based bag-of-
symbols, and position-based bag-of-relations. Low-level features are free from 
recognition accuracy but are not robust to various ways of writing an ME. Features from 
several levels of OHME recognition may be fragile due to its immaturity, but they may 
provide useful distinctive features. To reduce the dimensionality of our proposed feature 
spaces, we present distance-based representation (DbR). We also consider a method for 
combining these types of features to improve the performance.  

The second approach is to compute pairwise similarities among OHMEs. We present a 
method that utilizes a generative sequence similarity function (GSSF) and a data-driven 
representation for each OHME. GSSF is formed by high-level sequential features, 
probability terms of the output sequence generated from a sequence-to-sequence 
(Seq2Seq) OHME recognizer. The sequential features are dynamic, and they could 
represent the global structure of OHME. Each OHME is then represented by a vector of 
similarity scores with other OHMEs, namely similarity-based representation (SbR). SbR 
allows controlling the dimensionality of the feature space to reduce the influence of the 
concentration phenomenon. Finally, we input the SbR matrix into a clustering algorithm 
such as k-means to obtain the clusters of OHMEs. 

The rest of this chapter is organized as follows. Section 4.2 introduces our proposed 
methods in detail. Section 4.3 presents problems related to the cost of a clustering-based 
marking. Section 4.4 presents our experiments for evaluating the proposed methods. 
Finally, section 6 concludes the work.  

4.2. Our proposed methods 
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We first present the approach of extracting multi-level features from HMEs. Then, we 
present the second approach which utilize a pairwise similarity function. Finally, we 
present measurements for clustering-based marking proposed in [13]. 

4.2.1. Multi-level features from OHMEs 

We propose two types of features, i.e., low-level pattern features and high-level symbolic 
and structural features, as shown in Figure 4.1. 

4.2.1.1. Low-level features 

Low-level features are extracted from patterns without their recognition and interpretation. 
To avoid stroke direction and order variations, we convert OHMEs to offline images 
(denoted as OHME images) and extract image-based directional features of all strokes. 
These are common features for offline handwritten character recognition [58] [59]. 

The feature extraction process consists of three steps, as shown in Figure 4.2Figure 4.2. 
Three main steps for extracting directional features., i.e., non-linear normalization, 
directional decomposition, and Gaussian filtering and feature assembly. To recognize a 
single character image, it is usually normalized into a fixed-size box and four or eight 
directional features are extracted and partitioned into a fixed-size grid of regions. Since 
we want to handle various sizes of OHMEs instead of characters or symbols, the size of 
the normalized images and the grid sizes are adapted with respect to each OHME. On the 
other hand, feature vectors with a fixed length are convenient for comparison. Therefore, 
we use the average height and width of all input OHME images denoted as �̅� and �̅�, 
respectively, to normalize them into the same dimension. For each OHME image, we 
perform directional decomposition and divide each decomposed direction into 𝑅 × 𝐶 
partitions such that each region captures at most one symbol. This is expected to represent 
directional features effectively for most input OHME images although it is difficult for 
some. We set 𝑅 and 𝐶 as follows: 

 
𝑅 =

�̅�

�̅�𝑚𝑎𝑥
, 𝐶 =

�̅�

�̅�𝑚𝑎𝑥
 (1) 

 

 

Figure 4.1. Types of features. 

Bag-of-features

Low-level featuresHigh-level features

Directional features Bag-of-symbols Bag-of-relations

Position-based 
bag-of-symbols

Position-based 
bag-of-relations

Bag-of-positions
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where 

�̅�𝑚𝑎𝑥 = max(�̅�𝐶𝐶
𝐼1 , 𝐻𝐶𝐶

𝐼2 , … , �̅�𝐶𝐶
𝐼𝑁) 

�̅�𝑚𝑎𝑥 = max (�̅�𝐶𝐶
𝐼1̅̅ ̅̅ ̅, �̅�𝐶𝐶

𝐼2 , … , �̅�𝐶𝐶
𝐼𝑁) 

𝐼 = {𝐼1, 𝐼2, … , 𝐼𝑁} is the set of normalized HME images and �̅�𝑐𝑐
𝐼𝑖  and �̅�𝑐𝑐

𝐼𝑖 (CC: connected 
component) are the average height and width of the connected components in each 𝐼𝑖, 
respectively. 

Then, we blur the partitioned regions using a low-pass Gaussian filter with size (𝐻𝑔𝑟𝑖𝑑 +
𝑊𝑔𝑟𝑖𝑑) × (𝐻𝑔𝑟𝑖𝑑 +𝑊𝑔𝑟𝑖𝑑) , where 𝐻𝑔𝑟𝑖𝑑  and 𝑊𝑔𝑟𝑖𝑑  are the height and width of the 
partitioned regions, respectively. Finally, we obtain a feature vector with length 
𝑅 × 𝐶 × 8 by taking the Cartesian product of all columns and all rows. 

4.2.1.2. High-level features 

High-level features are symbolic and structural features obtained by OHME recognition 
and represented by a symbol relation tree (SRT). An SRT is a directed graph representing 
symbols (nodes) and spatial relationships (edges) between two symbols in an OHME, as 
shown in Figure 4.3. Since an SRT carries rich information, it is difficult to represent it 
entirely on a vector space. One way to achieve this is to present each kind of information 
in the SRT separately and then combine them. In this study, we decompose the 
information into 4 types of features: 

• Bag-of-symbols (BoS): occurrences of symbols. 

• Bag-of-relations (BoR): occurrences of spatial relationships. 

• Bag-of-positions (BoP): occurrences of partitioned positions having symbols. 

Input 
 

Non-linear 

normalization  

Directional 

decomposition 

 

 Gaussian filtering 

and feature 

assembly  
Figure 4.2. Three main steps for extracting directional features. 
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• Position-based BoS (PbBoS) and position-based BoR (PbBoR): BoS and BoR 
extracted within each partitioned position and aggregated from all of them, 
respectively. 

We can capture these features from several candidates of recognition, but we select the 
top candidate to extract them. 

A. Bag-of-symbols 

The bag-of-words model and its enhancements have been demonstrated to be efficient for 
representing documents in text classification [60], natural language processing [61], and 
document clustering [62]. For OHME clustering, the occurrences of symbols play an 
important role in clustering. In this work, we use BoS to represent how often each symbol 
appears in an OHME. Then, we put it into a vector representing the frequencies of 
appearances in an available list of symbols, as shown in Figure 4.3. 

B. Bag-of-relations 

We consider six types of spatial relationships between symbols, i.e., horizontal, 
superscript, subscript, upper, lower, and inside, as shown in Figure 4.4. BoR represents 
how many of each type of spatial relationship occurs in an OHME in the form of a vector. 

HME pattern 
 

Recog. result 
𝒙

𝟐
+
𝒚

𝟑
 

SRT 

 

Bag-of-symbols 
[0, 1, 2, 3, …9, +, … fraction bar, …, a, b, … x, y, z] 

[0, 0, 1, 1, … 0, 1, …, 2 , …, 0, 0, … 1, 1, 0] 

Bag-of-relations 
[horizontal, superscript, subscript, upper, lower, inside] 

[2,        0,        0,        2,        2,        0] 

Figure 4.3. Bag-of-symbols and bag-of-relations for a given OHME, where “recog.” and 
“hor” are abbreviations of “recognition” and “horizontal” respectively. 
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C. Bag-of-positions 

While BoS and BoR reflect information about symbols and spatial relationships, BoP 
represents the occurrences of some symbols in partitioned positions in an SRT. An SRT 
is divided into 𝑀 ×𝑁 positions, each of which is expected to contain at most one symbol. 
This division also reflects the spatial relationships among symbols. An example for 
dividing SRT is shown in Figure 4.4(b). The parameters, M and N, could be set as the size 
of SRT. However, because the size of SRT depends on each ME, we cannot generate the 
feature vectors in the same dimension. To address this issue, we use the size of the largest 
SRT among OHMEs to normalize others, as shown in Figure 4.5. Then, the partitioned 
position containing a symbol is marked 1 and 0, otherwise, and expressed by a matrix 
𝑃𝑀×𝑁 = (𝑃𝑖𝑗) with𝑃𝑖𝑗 ∈ {0, 1}. To make these features more robust, we apply a Gaussian 
filter with size of  3 × 3 for blurring. Finally, a feature vector is formed by taking the 
Cartesian product of all columns and all rows. 

D. Position-based bag-of-symbols and bag-of-relations 

In BoS and BoR, the captured information is discrete and does not explicitly express the 
structure of an OHME. Besides, BoP only provides features of symbols’ positions without 
mentioning the classes of symbols. Therefore, we add another type of features while 
extracting symbols and spatial relationships, as shown in Figure 4.6. Firstly, we divide 
the SRT into 𝑀 ×𝑁 positions as mentioned in the previous section. Then, from each 
partitioned position, we extract BoS and BoR. We extend the position to its neighbors or 
perform zero-padding to obtain 3 × 3  positions. We convolute the values of 3 × 3 
positions with the 3 × 3 Gaussian mask and take the sum of all the values for the position. 

 

 

(a) HME (b) SRT and its division into 𝑀 ×𝑁 positions. 

Figure 4.4. Example for dividing SRT consisting of the six types of spatial relationships. 

  

(a) Largest SRT (b) Case of a simple SRT 
Figure 4.5. Illustration of using the largest SRT to divide others. 
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We finally obtain two types of feature vectors, i.e., PbBoS and PbBoR, by taking the 
Cartesian product of all columns and all rows for each type of features.  

4.2.1.3. Feature combination 

A single type of bag-of-features may not contain enough information for clustering; hence, 
we combine multiple types to improve the performance. That is, we concatenate multiple 
feature vectors into a single vector. However, this method may become ineffective 
because different feature vectors have different meanings and belong to separate spaces. 
Here, we use weighting parameters to optimize the method, where the distance between 
two samples is calculated according to Eq. (2): 

 
𝐷𝑖𝑠𝑡(𝑂𝐻𝑀𝐸1, 𝑂𝐻𝑀𝐸2) =∑𝛼𝑖𝑑(𝑓𝑖(𝑂𝐻𝑀𝐸1), 𝑓𝑖(OH𝑀𝐸2))

𝐼

𝑖=1

 (2) 

where 𝑂𝐻𝑀𝐸1  and 𝑂𝐻𝑀𝐸2  are two OHMEs to compute the distance, 𝑓𝑖  is a type of 
features, I is the number of types of features, 𝑑(𝑣1, 𝑣2) is the Euclidean distance between 
two vectors 𝑣1 and 𝑣2 , and 𝛼𝑖 > 0 is a weighting parameter for each type of features 
satisfying ∑ 𝛼𝑖

𝐼
𝑖=1 = 1. These parameters are determined by applying the enumeration 

method with 𝛼𝑖 ∈ {0.1, 0.2, 0.3, … , 0.9}. 

4.2.2. Distance-based representation 

High-level recognition-based features composed of the occurrences of symbols and 
spatial relationships appearing in an OHME make their feature space sparse, especially 
for PbBoS and PbBoR. For example, with a dictionary of 101 math symbols, the length 
of PbBoS of the expression “a+b” is 303 (𝑀 ×𝑁 × 101 = 1 × 3 × 101), but only 5 
values in this feature vector are non-zero after applying the Gaussian filter. In practice, 
M and N could be large when MEs are complex. According to the study in [63], all p-
norms ‖𝑋‖𝑝 = (∑ |𝑋𝑖|𝑝𝑖 )1/𝑝  (𝑝 > 0) including the Euclidean distance (𝑝 = 2) seem 
ineffective for high-dimensional data due to the concentration phenomenon, where all 
distances among pairs of data points seem to be very similar. Hence, the sparse features 
and high dimensionality of combined features might result in low performance when 
using the p-norms. Inspired by the idea of using dissimilarities of each OHME to all other 
OHMEs as a representation for the OHME [14], we similarly calculate the distance from 

 

Figure 4.6. Illustration of dividing an SRT into M×N positions, performing zero padding, 
and applying a Gaussian filter over the position and its neighbors. 
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each OHME’s feature vector to all other OHMEs’ feature vectors to form distance-based 
representation (DbR). OHMEs belonging to the same cluster could produce similar DbR 
while those belonging to different clusters could not so that DbR could be used for 
clustering. Moreover, we expect that DbR containing pairwise distances among the 
feature vectors is informative, it has a lower dimensional space, and it is less sparse than 
the original feature space. Given a set of N OHMEs {𝑋1, 𝑋2, … , 𝑋𝑁} , DbR of 𝑋𝑖  is 
calculated according to Eq. (3): 

 𝐷𝑏𝑅(𝑋𝑖) = {𝐷𝑖,𝑗}𝑗=1,𝑁̅̅ ̅̅ ̅ (3) 

where 

 𝐷𝑖,𝑗 = 𝑑(𝑓(𝑋𝑖), 𝑓(𝑋𝑗)) (4) 

𝑑(𝑣1, 𝑣2) is the distance between two vectors 𝑣1 and 𝑣2, f is a feature mapping function. 
Note that the dimensionality of DbR depends on the number of OHMEs. If this number 
is large, we also obtain a high-dimensional feature space. However, markers can divide a 
large group of OHMEs into small ones, then they can apply clustering on each of them to 
avoid this problem in practical cases. Also, we may apply mini-batch clustering. In our 
experiments, we show that DbR improves the clustering performance in almost all cases 
even though we set the distance function d as the Euclidean distance to compute the 
pairwise distances. 

4.2.3. Generative sequence similarity function based on a Seq2Seq model 

Cluster analysis is useful for exploratory analysis by partitioning unlabeled samples into 
meaningful groups. For this problem, we traditionally extract useful features from each 
sample and pass them to a clustering algorithm such as k-means to partition them into 
groups. Here, we utilize a type of data-driven representation for each sample. We 
represent each sample by pairwise similarities between it and other samples. This idea is 
the same as the distance-based representation presented in section 4.2.2. Then, we form 
a similarity-based representation (SbR) matrix. The SbR matrix is inputted to a clustering 
algorithm to obtain clusters of OHMEs. The overall process of our proposed method is 
shown in Figure 4.7. This section presents our proposed similarity function (SF), then 
describes the SbR. 

 

Figure 4.7. Clustering process with pairwise similarity function. 
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4.2.3.1. Generative sequence similarity function 

Our proposed SF gives a similarity score between two OHMEs based on a Seq2Seq 
OHME recognizer. We expect that the similarity score of two OHMEs containing the 
same ME is significantly higher than those with different MEs. 

A standard Seq2Seq model, as shown in Figure 4.8, consists of two parts: an encoder that 
receives an input sequence to represent high-level features and a decoder that sequentially 
generates an output sequence from the encoded features and the previous prediction. 
Given two input OHMEs denoted as 𝑆1  and 𝑆2 , the recognizer generates LaTeX 
sequences of {𝑦𝑖1}𝑖=1,𝑁̅̅ ̅̅ ̅  and {𝑦𝑗2}𝑗=1,𝑀̅̅ ̅̅ ̅ , where 𝑦𝑖1  and 𝑦𝑗2  are symbol classes in the 

vocabulary, and 𝑁 and 𝑀 are the lengths of the output sequences.  

A simple idea to form the similarity score of two OHMEs is to calculate the edit distance 
of the two output sequences {𝑦𝑖1}𝑖  and {𝑦𝑗2}𝑗 . However, this method might not be 

effective since the edit distance only utilizes the differences in terms of recognized 
symbol classes, but the probabilities of recognized symbols seem more important than 
the symbol classes. Our proposed SF utilizes terms of probabilities of recognized symbol 
classes instead of the symbol classes.  

Another difficulty of directly comparing two output sequences or generated probabilities 
is that their lengths are variant. The proposed SF uses the symbol predictions of an OHME 
to input into the decoder of another OHME for computing the terms of probabilities. 
Those probabilities are formed on the output sequence of one of those two OHMEs. 
Hence, the SF is not influenced by the size-variant problem.  

Our SF consists of two main components: the similarity score of 𝑆1 compared to 𝑆2 and 
the one of 𝑆2 compared to 𝑆1 denoted as 𝐹(𝑆1|𝑆2) and 𝐹(𝑆2|𝑆1), respectively. We firstly 
define 𝐹(𝑆1|𝑆2) as follows: 

 𝐹(𝑆1|𝑆2) =∑ (log (𝑃(𝑦𝑖
1|𝑆2, 𝑦𝑖−1

1 )) − log (𝑃(𝑦𝑖
1|𝑆1, 𝑦𝑖−1

1 )))
𝑁

𝑖=1
 (5) 

where 𝑃(𝑥|𝑦, 𝑧)  is the probability of 𝑥  given y and z. An illustration of computing 
𝐹(𝑆1|𝑆2) is shown in Figure 4.9. The predicted symbol 𝑦𝑖1 at the i-th time step is inputted 

 

Figure 4.8. A standard Seq2Seq model.  
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to the (i+1)-th time step of the 𝑆2 decoder for computing the probability 𝑃(𝑦𝑖1|𝑆2, 𝑦𝑖−11 ). 
Similarly, we define 𝐹(𝑆2|𝑆1) as follows: 

 𝐹(𝑆2|𝑆1) =∑ (log (𝑃(𝑦𝑗
2|𝑆1, 𝑦𝑗−1

2 )) − log (𝑃(𝑦𝑗
2|𝑆2, 𝑦𝑗−1

2 )))
𝑀

𝑗=1
 (6) 

The 𝐹 function is not appropriate for the clustering algorithms such as k-means because 
it is asymmetrical. Thus, we compute an average of  𝐹(𝑆1|𝑆2)  and 𝐹(𝑆2|𝑆1)  that is 
symmetrical measurement. We name it as the Generative Sequence Similarity Function 
(GSSF), which is computed as follows: 

 
GSSF(𝑆1, 𝑆2) =

𝐹(𝑆1|𝑆2) + 𝐹(𝑆2|𝑆1)

2
  

(7) 

Assume that the Seq2Seq recognizer are well recognized 𝑆1  and 𝑆2 . GSSF has some 
properties as follows: 

• GSSF(𝑆1, 𝑆1) equals to zero if and only if 𝐹(𝑆1|𝑆1) equals to zero. 

• GSSF(𝑆1, 𝑆2) is approximately zero if 𝑆1 and 𝑆2 denote the same ME. In this case, 
𝐹(𝑆1|𝑆2) and 𝐹(𝑆2|𝑆1) are both around zero.  

• GSSF(𝑆1, 𝑆2) is negative if 𝑆1 and 𝑆2  denote two different MEs. In this case, both 
𝐹(𝑆1|𝑆2) and 𝐹(𝑆2|𝑆1) are much lower than zero. 

• GSSF is a symmetric function. 

4.2.3.2. Similarity-based representation 

Given N OHMEs {𝑋1, 𝑋2, … , 𝑋𝑁}, SbR of 𝑋𝑖 is formed by a pre-defined pairwise SF: 

 𝑆𝑏𝑅(𝑋𝑖) = [SF(𝑋𝑖, 𝑋1), … , SF(𝑋𝑖, 𝑋𝑖),… , SF(𝑋𝑖, 𝑋𝑁)] (8) 
 

 

Figure 4.9. Illustration of computing 𝐹(𝑆1|𝑆2). 
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4.3. Measurements for clustering-based marking 
In clustering-based marking systems, a human marker marks the major set of answers for 
each cluster collectively and selects the minor ones for manual marking separately. Hence, 
the cost of the marking process depends on how many samples belong to the major set 
and how few answers in the minor sets are included in each cluster. For this reason, we 
measure purity to evaluate the performance of the clustering task as shown in Eq. (9): 

 𝑃𝑢𝑟𝑖𝑡𝑦(𝐺, 𝐶) =
1

𝐻
∑max

1≤𝑖≤𝐽
|𝑔𝑘 ∩ 𝑐𝑖|

𝐾

𝑘=1

 (9) 

where H is the number of samples, J is the number of categories (the right number of 
clusters), 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝐽} is a set of categories, K is the number of clusters, and 𝐺 =
{𝑔1, 𝑔2, … , 𝑔𝐾} is a set of obtained clusters. 

However, high purity is easy to achieve when the number of clusters is large. For example, 
when K is equal to H, we obtain a perfect purity of 1.0. Hence, we set the number of 
clusters as the number of categories to evaluate in our experiments. 

The purity alone does not show the quality of clustering in the clustering-based marking 
systems. We employ a cost function presented in Khuong et al. [13], reflecting a scenario 
of verifying and marking answers in the clustering-based marking systems. For each 
cluster, the verifying task is to find a major set of answers by filtering minor answers, 
while the marking task is to compare the major set and minor answers with the correct 
answer or the partially correct answers. The marking cost (MC) is composed of the 
verifying time 𝐶𝑣𝑒𝑟 and the marking time 𝐶𝑚𝑎𝑟𝑘 as shown in Eq. (10): 

 
𝑓(𝐺, 𝐶) =∑𝑐𝑜𝑠𝑡(𝑔𝑖, 𝐶)

𝐾

𝑖=1

=∑(𝐶𝑣𝑒𝑟(𝑔𝑖, 𝐶) + 𝐶𝑚𝑎𝑟𝑘(𝑔𝑖, 𝐶))

𝐾

𝑖=1

=∑(|𝑔𝑖| × 𝛼𝑇 + (1 + |𝑔𝑖| − |𝑀𝑖|) × 𝑇

𝐾

𝑖=1

) 

(10) 

where T is the time unit to mark an answer. There exists a real number 𝛼 (0 < 𝛼 ≤ 1) so 
that the verifying cost of an answer is 𝛼𝑇. 𝐶𝑣𝑒𝑟(𝑔𝑖, 𝐶) = |𝑔𝑖| × 𝛼𝑇 is the cost of verifying 
all answers in the cluster 𝑔𝑖 𝐶𝑚𝑎𝑟𝑘(𝑔𝑖, 𝐶) = (1 + |𝑔𝑖| − |𝑀𝑖|) × 𝑇 is the cost of marking 
the major set of answers 𝑀𝑖 and all minor answers in the cluster 𝑔𝑖. For simplicity, we 
assume 𝛼 = 1, implying that the verification time is the same as the marking time T. We 
normalize Eq. (10) into [0, 1], and obtain Eq. (11) as follows: 

 
 𝑀𝐶(𝐺, 𝐶) =

𝑓(𝐺, 𝐶)

2𝑁𝑇
=
𝐾

2𝐻
+ (1 −

1

2
𝑃𝑢𝑟𝑖𝑡𝑦(𝐺, 𝐶)) (11) 

MC equals 1 in the worst case if the number of clusters equals the number of answers. It 
implies that MC approaches the cost of marking all answers one-by-one. 
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4.4. Experiments 
In this section, we present evaluations for our two proposed approaches. 

4.4.1. Experiments on multi-level features of OHMEs 

This section presents an evaluation on multi-level features of OHMEs on two datasets: 
Dset_50 and Dset_Mix. 

4.4.1.1. Datasets 

We use two datasets of OHMEs to evaluate our proposed method. The first dataset, named 
Dset_50, was collected from 21 students. Each student wrote 50 OHMEs three times on 
three kinds of writing interfaces (i.e., without any guiding line, with a centerline, and with 
the center, top, and bottom lines). As a result, the total number of online OHMEs is 3150 
samples, which belong to 50 classes. This dataset contains common symbols that belong 
to 101 classes used in the CROHME 2019 competition. Table 4.1 provides the details of 
the Dset_50 dataset.  

The second dataset, named Dset_Mix1, has mixed patterns of real (genuine) OHMEs from 
CROHME 2016 and synthesized patterns made from LaTeX sequences and isolated 
handwritten symbol patterns from CROHME 2016. Note that collecting real answers 
from students in a real examination is ideal but it requires agreement among all 
participants, teachers, and schools. Hence, we generated synthesized answers and publish 
this dataset for the research community to use [64].  

 
1Uploaded at: http://tc11.cvc.uab.es/datasets/Dset_Mix_1 

Table 4.1. Details of the Dset_50 dataset. 

Dset_50 
# Students 21 
# OHMEs categories 50 
# Interface styles 3 
Total # of OHMEs 21 × 50 × 3 = 3150 
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Dset_Mix stores ten subgroups corresponding to ten questions. Each subgroup consists 
of 200 OHMEs, which is a mixture of genuine patterns and synthesized patterns and a 
few correct answers and several incorrect answers for a math question. Note that OHMEs 
in each subgroup are very similar to those in Dset_50. The sample size for each question 
is set based on the number of students in each grade of common schools. Table 4.2 
provides the details of the Dset_Mix dataset.  

The synthesized OHMEs were generated according to the method proposed in [65]. This 
method consists of three main steps. Given a LaTeX sequence or a MathML script, the 
method firstly generated a template that presents the sizes and positions of the symbols 
based on their spatial relationships to each other (i.e., horizontal, superscript, subscript, 
upper, lower, and inside). Secondly, the method made the generated patterns look more 
natural by randomly changing the sizes and positions of the symbols slightly. Finally, the 
isolated handwritten symbol patterns in CROHME 2016 are filled in the generated 
template. Figure 4.10 shows some samples in subgroup 6 of Dset_Mix.  

4.4.1.2. Online HME recognizer 

Table 4.2. Details of the Dset_Mix dataset. 

# Categories and patterns 
Subgroup No. 

1 2 3 4 5 6 7 8 9 10 
# Categories of correct answers 2 1 1 1 1 1 2 1 1 1 
# Genuine patterns of correct 
answers 26 0 0 20 20 20 20 27 0 0 

# Synthesized patterns of correct 
answers 21 40 50 20 35 10 81 49 50 50 

# Categories of incorrect answers 8 4 5 4 4 6 2 5 3 3 
# Genuine patterns of incorrect 
answers 21 18 3 19 2 39 1 27 0 0 

# Synthesized patterns of incorrect 
answers 132 142 147 141 143 131 98 97 150 150 

# Total answers 200 200 200 200 200 200 200 200 200 200 
 

 

 
 

    
Correct answer 

(Genuine OHME patterns) 
Incorrect answer  

(Genuine) 
Incorrect answer 

(Genuine) 
Incorrect answer 

(Synthesized) 
Incorrect answer 

(Synthesized) 

     

   
  

Correct answer 
(Synthesized OHME 

patterns) 

Incorrect answer 
(Synthesized) 

Incorrect answer 
(Synthesized) 

Incorrect answer 
(Synthesized) 

Incorrect answer 
(Synthesized) 

Figure 4.10. Samples in subgroup 6 of Dset_Mix. 
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In our previous work [57], we used the OHME recognition engine by Le et al. [31]. In 
this thesis, we employed its enhanced version with a significantly better recognition rate. 

In our enhanced engine, we improved the symbol classification with bidirectional context 
by utilizing a deep bidirectional long short-term memory (BLSTM) and connectionist 
temporal classification (CTC) [66]. The BLSTM model consists of three BLSTM layers 
with 128 hidden units for each layer. Four basic point-based features, i.e., the sine and 
cosine of writing directions, the normalized distance between the preceding and the 
succeeding of the current point and the binary value of pen state were extracted from each 
point of an OHME. Then, a sequence of point-based features was input to the BLSTM 
model and the CTC decoder to produce a sequence of classification probabilities 
corresponding to the input sequence. Next, the hypotheses of symbol segmentation and 
symbol recognition were formed from the obtained probabilities. Finally, Stochastic 
Context-Free Grammar (SCFG) with a list of predefined grammar rules was applied for 
producing the recognition result based on these hypotheses obtained. By the context 
information, it is expected to solve several ambiguous cases that the previous version 
could not handle. We call the method Context SCFG (C_SCFG). Moreover, an n-gram 
language model was applied as part of the post-processing of the top-5 best recognition 
candidates and a large number of grammar rules was added to help the engine cover more 
math expressions. The engine and the n-gram model were separately trained on the 
CROHME 2016 training set and the corpus of LaTeX formulas from English Wikipedia 
provided in CROHME 2016 [67], respectively. The detail of this recognizer is presented 
in section 5.2.1. 

Table 4.3 shows an improvement of the C_SCFG engine in terms of the average value of 
the expression recognition rates, the F1-score of symbol recognition, and the F1-score of 
spatial relationship recognition on the CROHME 2016 testing set, Dset_50, and 
Dset_Mix. Because the parameters for combining features need to be trained, Dset_50 
was divided into 5 subsets, with each engine trained by 4 subsets and tested for the 
remaining subset; then, the performance for the 5 subsets are averaged (5-fold cross-
validation). Thus, values in each row for Dset_50 correspond to averages with standard 
deviations for each engine. On the other hand, values for Dset_Mix correspond to 
averages and standard deviations among its subgroups.  

We obtained these values by using the LgEval tool proposed in [68]. Compared with the 
state-of-the-art end-to-end OHME recognition system [40], which is an extension of the 
record-breaking end-to-end OHME recognition method named TAP [27], our C_SCFG 
engine is 3.75% point better in expression rate on the CROHME 2016 testing set.  

4.4.1.3. Experiment settings 

Experiments was conducted on an Intel Xeon CPU@3.30GHz Desktop PC. 
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We utilized the k-means algorithm for the clustering task using the Euclidean distance. 
In addition, we initialized centroids by using k-means++ [69], which is a popular variant 
of the k-means algorithm that tries to spread out initial centroids. To evaluate the proposed 
features, we set the number of clusters as the number of categories in our experiments. 

To evaluate the performance of single types of features and their combinations, we 
implemented the experiments shown in Table 4.4 on the Dset_50 and Dset_Mix datasets. 
Then, we compared the results using the original features with those using DbR to cluster 
OHMEs. For DbR, we set the distance function d in Eq. (4) also as the Euclidean distance. 

4.4.1.4. Evaluation 

We evaluated the performance of the clustering task when applying single types of 
features and combined features. Since this combination requires the weighting parameters 
to form the distance metric, we used a 5-fold cross-validation for Dset_50 and Dset_Mix 
in the same way as described in section 4.4.1.2. For feature combination, we firstly trained 
the combining parameters by using the original features, then applied the same parameters 
for DbR.  

Table 4.3. Expression recognition rate and F1-score of symbol and 
spatial relationship recognition. 

Version Dataset 
Expression 

rate (%) 

F1-score (%) 

Symbols 
Spatial 

Relationships 

Le et al. 
[58] 

CROHME 
2016 

43.94 65.81 83.27 

Dset_50 71.65±5.67 85.94±2.90 95.07±1.52 
Dset_Mix 14.70±21.86 78.79±11.88 75.58±21.54 

C_SCFG 

CROHME 
2016 

51.70 74.30 85.99 

Dset_50 75.62±3.34 90.38±2.15 96.72±0.99 

Dset_Mix 46.9±24.73 78.56±15.97 82.74±17.66 
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A. Experiment on Dset_50 

Table 4.5 shows the purity for all the types of features and their combinations on the 
Dset_50 dataset. The results show that we achieve the best value of purity around 0.992 
when BoS with DbR is utilized. Moreover, BoS produces a better result compared with 
the other types of features. The feature type of spatial relationships alone (E3) or that of 
positions alone (E4) produces a low purity. We also find that adding positional 
information to BoS or BoR, i.e., PbBoS (E5) and PbBoR (E6), does not increase purity. 
Moreover, clustering with DbR yields better performance than using the original features.  

Regarding feature combination, the combination of BoS, BoR, and BoP (E7) gives the 
highest purity when using DbR. Combining PbBoS and PbBoR (E8) does not increase 
purity. On the other hand, combining Dir with high-level features (E9, E10, and E11) 

Table 4.4. Experiment settings on single types of features and their combinations 

Feature 
type Exp. Dir BoS BoR BoP PbBoS PbBoR 

 

Single 

E1 ✓ - - - - -  

E2 - ✓ - - - -  

E3 - - ✓ - - -  

E4 - - - ✓ - -  

E5 - - - - ✓ -  

E6 - - - - - ✓  

Feature 
Combination 

E7 - ✓ ✓ ✓ - -  

E8 - - - - ✓ ✓  

E9 ✓ ✓ ✓ ✓ - -  

E10 ✓ ✓ ✓ - ✓ ✓  

E11 ✓ ✓ ✓ ✓ ✓ ✓  

 
Table 4.5. Experiments on single types of features and their combinations for Dset_50 

and Dset_Mix. 

Feature 
type Exp. 

Dset_50  Dset_Mix 
Original features C_SCFG  

+ DbR 

Original 
features + 
C_SCFG 

C_SCFG  
+ DbR Old engine 

[58] C_SCFG 

Single 

E1 0.866±0.03 0.882±0.08  0.716±0.14 0.649±0.15 
E2 0.871±0.02 0.919±0.02 0.992±0.01  0.690±0.11 0.684±0.08 
E3 0.758±0.10 0.787±0.11 0.774±0.10  0.569±0.16 0.576±0.16 
E4 0.753±0.15 0.734±0.14 0.759±0.17  0.602±0.15 0.612±0.16 
E5 0.851±0.01 0.764±0.08 0.769±0.07  0.729±0.15 0.696±0.15 
E6 0.755±0.10 0.708±0.10 0.724±0.10  0.586±0.14 0.575±0.11 

Feature 
Combination 

E7 0.857±0.03 0.922±0.03 0.990±0.01  0.674±0.17 0.693±0.15 
E8 0.807±0.03 0.777±0.07 0.758±0.08  0.709±0.14 0.681±0.16 
E9 0.904±0.03 0.923±0.03 0.972±0.04  0.726±0.12 0.755±0.17 

E10 0.919±0.02 0.923±0.03 0.973±0.04  0.764±0.11 0.777±0.17 
E11 0.894±0.01 0.933±0.03 0.925±0.05  0.753±0.13 0.745±0.14 
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works well when using the original features, but it decreases purity when applying DbR. 
This phenomenon could be due to that BoS and DbR could achieve very high purity and 
Dir becomes redundant for this dataset. Moreover, DbR works better than the original 
features. 

B. Experiment on Dset_Mix 

Then, we evaluated our proposed method on the Dset_Mix dataset. Table 4.5 shows the 
average values of purity on the 10 subgroups via a 5-fold cross-validation. Firstly, 
directional features (E1) yield a comparable result with using the original features. 
Secondly, within the single types of features, position-based BoS (PbBoS) in E5 achieves 
the best performance. Thirdly, feature combinations show better performance than 
individual types of features. Fourthly, DbR is not so efficient compared with the original 
features. Fifthly, purity is not improved without using the directional features as in E7 
and E8. However, with directional features, purity in E10, E11, and E12 is increased 
significantly, where E10 yields the highest value of purity around 0.777 when using DbR. 
This demonstrates the importance of combining low-level features and high-level features. 
Overall, purity values obtained in this dataset are lower compared with those obtained in 
the Dset_50 dataset.  

This is because OHMEs in each subgroup are more similar to one another than those in 
Dset_50, which reflects the complication in realistic answers. Distances among OHMEs 
within the same category (intra-class distances) and distances among OHMEs belonging 
to different categories (inter-class distances) are not significantly different such that the 
DbR representation could not be effective.  

Another reason for obtaining a low purity is that the number of clusters could be too small 
for a similar set of 200 answers for each question. If human markers viewed a smaller 
subset of answers without impure answers, they could mark each set more efficiently 
compared to marking a larger set of answers with several impure ones.  

In practice, human markers do not know the exact number of clusters (denoted as 𝑘𝑟𝑖𝑔ℎ𝑡) 
for a set of OHMEs. Hence, they may set the number of clusters (denoted as k) as p 
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percent of the number of OHMEs (denoted as N). Obviously, k should not be equal to N 
to benefit from clustering. To test this, we added another experiment on Dset_Mix by 
using the setting that achieved the best performance on Dset_Mix to present purity values 
when setting k as p percent of N and when increasing q times of 𝑘𝑟𝑖𝑔ℎ𝑡 . To avoid k 
becoming large, we limited 1% ≤ 𝑝 ≤ 25% (2 ≤ 𝑘 ≤ 50) and 1 ≤ 𝑞 ≤ 6 (4 ≤ 𝑘 ≤ 60). 
The average and standard deviation of purity, the marking cost (MC), and the number of 
OHMEs of each cluster are shown in Figure 4.11. The results show that we could achieve 
purity in the range of [0.85±0.14, 0.93±0.06] and [0.84±0.13, 0.93±0.07] when p is in 
[5%, 20%] and q is in [1.5, 5.5], respectively. Regarding MC, we could achieve MC in 
the range of [0.60±0.07, 0.63±0.03] and [0.60±0.08, 0.61±0.04] when p is in [5%, 20%] 
and q is in [1.5, 5.5], respectively. With these settings of k according to p in [5%, 20%] 
and q in [1.5, 5.5], the markers could benefit from clustering, where the clusters are quite 
pure, the average number of OHMEs in each cluster is in [20±9, 5±4] and [24±13, 7±4], 
and MC is reduced by around [0.37, 0.4] and [0.39, 0.41] than manually marking OHMEs, 
respectively.  

From this experiment, in the ideal case of the exact number of clusters, setting k as its q 
times in some range such as [2, 4.5] in Figure 4.11(b) would be slightly better than setting 

 
(a) Setting k as p percent of the number of OHME patterns. 

 

 
(b) Setting k as q times of 𝑘𝑟𝑖𝑔ℎ𝑡 . 

Figure 4.11. Average (lines) and standard deviation (light color areas) of purity, those of the 
marking cost, and those of #OHMEs in each cluster for Dset_Mix with feature combination in 

E10 for increasing number of clusters. 
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k with p percent of the number of OHMEs. In practice, however, 𝑘𝑟𝑖𝑔ℎ𝑡 is unavailable 
before marking, so that k could be chosen as some percent of N. 

C. Estimating the number of clusters 

We also made an experiment to estimate k using two traditional indexes, i.e., Silhouette 
width [70] and Hartigan index [71]. Silhouette width is a ratio-type index measuring the 
ratio of within-cluster cohesion and between-cluster separation. Hartigan index is a 
heuristic rule of thumb based on the Euclidean within-cluster sum of squares. We 
estimated k values of subgroups on Dset_Mix by using the setting that achieved the best 
performance on Dset_Mix. For both methods, we searched for k in the range of [2, 20] 
for fair comparison. We measured the error of the estimation by using Relative Error (RE) 
as shown in Eq. (12): 

 
𝑅𝐸 =

|𝑘𝑒𝑠𝑡 − 𝑘𝑟𝑖𝑔ℎ𝑡|

𝑘𝑟𝑖𝑔ℎ𝑡
 

(12) 

Table 4.6. Results of k estimation and marking cost (MC). 

Subgroup  𝒌𝒓𝒊𝒈𝒉𝒕 
Silhoutte Hartigan 

𝒌𝒆𝒔𝒕 MC 𝒌𝒆𝒔𝒕 MC 
1 10 4 0.79 8 0.71 

2 5 3 0.78 5 0.78 
3 6 2 0.81 6 0.59 

4 5 2 0.82 4 0.74 
5 5 2 0.77 5 0.51 

6 7 2 0.86 6 0.71 
7 4 2 0.72 5 0.55 

8 6 2 0.76 6 0.68 
9 4 2 0.76 6 0.54 

10 4 18 0.55 16 0.55 

Avg. & Std. of MC 0.76±0.08  0.64±0.09 

                               (Avg.: average, Std.: standard deviation) 

Table 4.7. Comparison with other research on Dset_50 and Dset_Mix. 

Type Method Dset_50 Dset_Mix 
Offline 
HMEs 

Khuong et al. [13] 0.930±0.12 0.830±0.07 
Nguyen et al. [14] 0.98 *0.723±0.15 

DAC [74] 0.61 - 
Siamese Net [19] 0.79 - 

OHMEs Our: E2 + C_SCFG + DbR 0.992±0.01 0.684±0.08 
Our: E10 + C_SCFG + DbR 0.973±0.04 0.777±0.17 

                          (*: our retested result) 
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where 𝑘𝑒𝑠𝑡 is estimated by these two methods. The marking costs (MCs) are presented in 
Table 4.6. According to 𝑘𝑒𝑠𝑡, RE of Silhouette and Hartigan are 0.38±0.14 and 0.19±0.34, 
respectively. RE and MC of the Hartigan index is significantly better than those of the 
Silhoutte witdth. Although the variance of RE by Hartigan is large, its MC is acceptable. 
Moreover, Figure 4.11(a) implies that when 𝑘𝑒𝑠𝑡 is in [10, 30], MC is still reduced by 
around [0.24, 0.41]. Therefore, we can apply the Hartigan index in practice. However, 
this 𝑘𝑒𝑠𝑡  is not the best for our experiment. Heuristically assigning k according to p 
percent of N with 𝑝 ∈ [5%, 20%] is better than 𝑘𝑒𝑠𝑡  produced by the Hartigan index. 
Hence, we consider this problem as a remaining work. 

4.4.1.5. Comparing with other methods 

We compare our results with recent research on clustering HMEs. So far, clustering 
OHMEs is not shown on the common dataset, Table 4.7 shows comparison with 
clustering offline HMEs converted from OHMEs in Dset_50 and Dset_Mix. Although 
our method is for online patterns, it performs better than the methods using bag-of-
features [13], CNN-based features [14], Deep Adaptive Clustering (DAC) [72], and 
Siamese Net [19] on Dset_50. However, the performance of our proposed method is still 
lower than the offline bag-of-feature [73]. 

4.4.2. Experiments on generative sequence similarity function 

This section presents the evaluation of our proposed SF on two answer datasets, i.e., 
Dset_Mix and NIER_CBT, by using the TAP recognizer proposed in [27] without the 
language model. We name this modified recognizer as MTAP. 

4.4.2.1. Datasets 
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NIER_CBT is a real answer dataset collected by a collaboration with National Institute 
for Educational Policy Research (NIER) in Tokyo, Japan. NIER carried out math tests for 
256 participants, consisting of 249 students of grade 11 and 7 students of grade 7 at nine 
high schools. The participants answered a set of 5 questions within 50 minutes, then wrote 
their results on iPad by using an Apple pen and a developed tool with OHMEs captured. 
The details of the collection are presented in [74]. There are three sets of questions to 
obtain 934 answers for 15 questions. Since our OHME recognizer was trained for 101 
common math symbols that appeared in the dataset of CROHME [1], we removed 15 
OHMEs that contain out-of-vocab symbols. The number of correct/incorrect answer 

  
(a) (b) 

Figure 4.13. Details of NIER_CBT. (a) shows the number of correct\incorrect categories in 
each question, and (b) shows the number of correct\incorrect patterns in each question. 
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Figure 4.12. Overview of TAP consisting of point-based features as the input (A), the 
encoder part (B), the decoder part (C), and the output (D). 
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categories and the number of correct/incorrect answer patterns in NIER_CBT are shown 
in Figure 4.13. 

4.4.2.2. Online HME recognizer 

The overview of MTAP is shown in Figure 4.12. It includes three main parts: the feature 
extraction, the encoder, and the decoder. 

A. Trajectory feature extraction 

We utilized the set of point-based features used in [27]. An OHME is a sequence of 
trajectory points of pen-tip movements. We denote the sequence of L points as 
{𝑋1, 𝑋2, 𝑋3, … , 𝑋𝐿} with 𝑋𝑖 = (𝑥𝑖, 𝑥𝑖 , 𝑠𝑖) where (𝑥𝑖, 𝑦𝑖) are the coordination of each point 
and 𝑠𝑖 is the corresponding stroke index of the i-th point. We store the sequence {𝑋𝑖} in 
the order of writing process. Before extracting the features, we firstly interpolate and 
normalize the original coordinates accoding to [75]. They are necessary to deal with non-
uniform sampling in terms of writing speed and the size variations of the coordinate by 
using different devices to collect patterns. For each point, we extract an 8-dimensional 
feature vector as follows: 

 [𝑥𝑖, 𝑦𝑖 , 𝑑𝑥𝑖 , 𝑑𝑦𝑖, 𝑑
′𝑥i, 𝑑

′𝑦𝑖, 𝛿(𝑠𝑖 = 𝑠𝑖+1), 𝛿(𝑠𝑖 ≠ 𝑠𝑖+1)] (13) 
where 𝑑𝑥𝑖 = 𝑥𝑖+1 − 𝑥𝑖, 𝑑𝑦𝑖 = 𝑦𝑖+1 − 𝑦𝑖 , 𝑑′𝑥𝑖 = 𝑥𝑖+2 − 𝑥𝑖 , 𝑑′𝑦𝑖 = 𝑦𝑖+2 − 𝑦𝑖  and 𝛿(∙) =
1 when the conditional expression is true or otherwise zero, which presents the state of 
the pen (down/up). 

B. Encoder 

The encoder of MTAP is a combination of 4 stacked bidirectional GRUs [76] (BiGRUs) 
with a pooling operator, as shown in Figure 4.12. Stacking multiple BiGRU layers could 
make the model learn high-level representation from the input. The input  

sequence of an upper BiGRU layer is the sequence of the hidden state of its lower BiGRU 
layer. Each layer has 250 forward and 250 backward units. Since the encoded features of 
two adjacent points are slightly different, the pooling layers are applied to reduce the 
complexity of the model and make the decoder part easier to parse with a fewer number 
of hidden states of the encoder. The pooling operator applied on the 2 top BiGRUs layers 
is to drop the even time steps of the lower BiGRU layer outputs and receive the odd 
outputs as the inputs. The hidden states outputted from the 4th layer are inputted to the 
decoder. 

C. Decoder 

The MTAP decoder receives the hidden states {ℎ𝑖}𝑖=1,𝐾̅̅ ̅̅̅ from the encoder and generates 
a corresponding LaTeX sequence of the input traces. The decoder consists of a word 
embedding layer of 256 dimensions, two layers of unidirectional GRU with 256 forward 
units, spatial attention, and a coverage model. The spatial attention points out the suitable 
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local region in {ℎ𝑖} to attend for generating the next LaTeX symbol by assigning higher 
weights to a corresponding local annotation vector {𝑎𝑖}𝑖=1,𝐾̅̅ ̅̅̅. The coverage model is a 1-
dimensional convolutional layer to indicate whether a local region in {ℎ𝑖}  has been 
attended to the generation. The model is trained with an attention guider using the oracle 
alignment information from the training OHMEs to force the attention mechanism to 
learn well. 

D. Training and testing 

We trained MTAP by the training data of CROHME 2016 on an Intel Xeon 
CPU@2.10GHz, a Tesla K80 GPU with 12Gb of RAM workstation. We removed 
genuine OHME patterns in Dset_Mix for fair evaluation, because they are in the training 
data set. The optimizer and hyperparameters are the same as in [27]. Then, we measured 
the expression rate (ExpRate) and the character error rate (CER) on the testing data of 
CROHME 2014, Dset_Mix, and NIER_CBT, as shown in Table 4.8. The recognition rate 
of MTAP is 1.53 percentage points lower than the original TAP model on the CROHME 
2014 testing set.  

4.4.2.3. Experiment settings 

We utilized the k-means algorithm and the complete linkage (CL) method for the 
clustering task. For k-means, we applied the Euclidean distance and initialized centroids 
using k-means++ [69], a popular variant of the k-means algorithm that tries to spread out 
initial centroids. To evaluate the proposed features, we set the number of clusters as the 
number of categories in our experiments. 

4.4.2.4. Evaluation 

In this section, we compare the proposed method with the previous methods. Moreover, 
we conduct experiments to evaluate our proposed SF. 

A. Comparison with other methods 

So far, clustering OHMEs is not shown on the common dataset. Here, we compare with 
our first approach presented in section 4.2.1. In addition, we compared with the method 
using the edit distance, which is to compute the dissimilarity between two LaTeX 

Table 4.8. ExpRate and CER of MTAP. 

Dataset 
MTAP TAP [15] 

ExpRate (%) CER (%) ExpRate (%) CER (%) 
CROHME 2014 testing set 48.88 14.54 50.41 13.39 
Dset_Mix 34.62 17.51 - - 
NIER_CBT 57.89 18.57 - - 
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sequences outputted from MTAP, denoted as M2. SbRs produced by the edit distance are 
inputted to the k-means algorithm.  

We carried out several experiments to evaluate the effectiveness of GSSF and SbR on the 
representation. Firstly, we directly used the absolute of GSSF as the distance function to 
input into CL, denoted as M3. Secondly, we used the SbR matrix produced by MTAP and 
GSSF to input into CL by using the Euclidean distance, denoted as M4. Thirdly, we used 
the SbR matrix produced by MTAP and GSSF to input into the k-means algorithm, 
denoted as M5.  

We also compared our proposed method with previous methods for clustering offline 
HMEs (OfHMEs), which consists of the offline bag-of-features proposed by Khuong et 
al. [13] (denoted as M6) and the CNN-based features proposed by Nguyen et al. [14] 
(denoted as M7). OfHMEs are converted from OHMEs. We used a symbol classifier to 
extract the offline bag-of-features in M6. We also trained a CNN model to extract spatial 
classification features for M7. Those models in M1, M6, and M7 were trained in the same 
dataset with MTAP. 

Table 4.9 shows that our proposed GSSF combined with MTAP, i.e., M3 and M5, 
outperforms M1, M2, and M7 in purity and MC on both Dset_Mix and NIER_CBT. M4 
has slightly lower performance than M1 on Dset_Mix but it seems to be comparable. Also, 
M3 and M4 have lower performance than M6 on Dset_Mix. M5 yields the best 
performance on Dset_Mix, while M3 performs best on NIER_CBT. However, M5 
achieves a high purity on both datasets. Regarding MC, M5 achieves the marking cost of 
around 0.556 and 0.702 in Dset_Mix and NIER_CBT. Consequently, the marking cost is 
reduced by 0.444 and 0.298 than manual marking. 

Table 4.9. Comparisons with other methods of clustering HMEs. Values are presented in 
form of “average value (standard deviation)” 

HME  
type 

Name Features Clustering 
algorithm 

Dset_Mix NIER_CBT 
Purity MC Purity MC 

O
H

M
E 

Ours (M1) Online bag-of-
features + DbR 

k-means 0.777 
(0.17) 

0.629 
(0.09) 

0.898 
(0.05) 

0.702 
(0.06) 

Ours (M2) MTAP + Edit 
distance + SbR 

k-means 0.638 
(0.12) 

0.700 
(0.05) 

0.867 
(0.05) 

0.725 
(0.07) 

Ours (M3) MTAP + GSSF CL 
(GSSF) 

0.806 
(0.10) 

0.611 
(0.05) 

0.921 
(0.05) 

0.698 
(0.06) 

Ours (M4) MTAP + GSSF 
+ SbR 

CL 
(Euclidean) 

0.775 
(0.15) 

0.633 
(0.07) 

0.920 
(0.04) 

0.700 
(0.06) 

Ours (M5) MTAP + GSSF 
+ SbR 

k-means 0.916 
(0.05) 

0.556 
(0.03) 

0.915 
(0.03) 

0.702 
(0.07) 

O
fH

M
E Khuong et 

al. (M6) 
Offline bag-of-
features 

k-means 0.841 
(0.15) 

0.595 
(0.07) 

0.834 
(0.07) 

0.739 
(0.08) 

Nguyen et 
al. (M7) 

CNN-based 
features 

k-means 0.723 
(0.16) 

0.653 
(0.08) 

0.829 
(0.06) 

0.744 
(0.06) 
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There are some discussions based on the results of M3, M4, and M5. Firstly, our GSSF 
without SbR works well when using the CL method on NIER_CBT. Secondly, GSSF 
combined with SbR achieves more stable performance when using the k-means algorithm 
than the CL method with the Euclidean distance. 

B. Evaluations on our similarity function 

We conducted experiments on forming our proposed GSSF. According to Eq. (7), GSSF 
is formed by taking an average of two similarity components 𝐹(𝑆1|𝑆2) and 𝐹(𝑆2|𝑆1) 
since we aim to make SF symmetric. We compare GSSF with three possible variants as 
follows: 

• We directly use function 𝐹(𝑥|𝑦)  as SF so that SbR of 𝑋𝑖  in Eq. (8) is as 
[𝐹(𝑋𝑖|𝑋1),… , 𝐹(𝑋𝑖|𝑋𝑖),… , 𝐹(𝑋𝑖|𝑋𝑁)] . Since 𝐹  is not a symmetric function, we 
denote this SF as Asymmetric_GSSF. 

• We define two SFs by getting the minimum and maximum value between 𝐹(𝑆1|𝑆2) 
and 𝐹(𝑆2|𝑆1) instead of taking the average of them. We denote them as Min_GSSF 

and Max_GSSF, respectively. 

Table 4.10 presents the performance of our proposed SF with Asymmetric_GSSF, 
Min_GSSF, and Max_GSSF in terms of purity by using the k-means algorithm. Our 
GSSF performs better than the other SFs on Dset_Mix and NIER_CBT, which implies 
that taking the average of two similarity components is better than using them directly or 
taking the minimum or maximum value between them. However, Max_GSSF yields 
comparable results with GSSF.  

4.4.2.5. Visualizing similarity-based representation matrix 

 Table 4.10. Comparisons with other variants of SFs. 

Method 
Purity 

Dset_Mix NIER_CBT 
Asymmetric_GSSF 0.857±0.07 0.907±0.05 
Min_GSSF 0.861±0.08 0.907±0.04 
Max_GSSF 0.909±0.08 0.913±0.04 
GSSF 0.916±0.05 0.915±0.03 
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This section shows the visualization of the SbR matrix to see how this representation 
discriminates for clustering. Figure 4.14 presents the SbR matrix of the subgroup 3 and 8 
in Dset_Mix. OHMEs belonging to the same class are placed together in both dimensions. 
For subgroup 3, its categories are significantly distinct. We can see that SbR well 
represents for OHMEs in the same category. The similarity scores among intra-category 
OHMEs almost near 0, and they are much higher than those among inter-category 
OHMEs. On the other hand, some categories in subgroup 8 are slightly different, such as 
categories 𝐶3 and 𝐶5 or category 𝐶4 and 𝐶6 , and SbR among them is not so different. 
Purity on subgroups 3 and 8 are 0.984 and 0.832, respectively. 

4.5. Conclusions 
To provide computer-assisted marking for handwritten mathematics answers, this chapter 
presented two approaches for clustering OHMEs: (1) multi-level bag-of-features and (2) 
a generative sequence similarity function (GSSF) based on the Seq2Seq recognizer. 

For the first approach, we presented multi-level bag-of-features consisting of a low-level 
type of image-based features from an OHME sample and high-level recognition-based 
symbolic and structural types of features obtained from an OHME recognizer. We 

 
(a) SbR matrix of subgroup 3 

 
(b) SbR matrix of subgroup 8 

Figure 4.14. Visualization of the SbR matrix of the subgroup 3 and 8 before normalizing them 
into [0, 1]. 
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presented DbR to avoid the problem of applying the Euclidean distance on sparse feature 
spaces. We also proposed an approach to combine all types of features to enhance the 
performance of clustering OHMEs. We conducted experiments by using k-means++ on 
the Dset_50 and Dset_Mix datasets. On Dset_50, which contains OHMEs with distinctly 
different math expressions, BoS with the DbR method alone achieved the highest 
performance without combining other types of features. Moreover, as the recognition 
accuracy of symbols and spatial relationships was higher, purity was improved. On 
Dset_Mix, which is more similar to the realistic OHME answers, combining low-level 
features (Dir) and high-level features (BoS, BoR, PbBoS, and PbBoR) with DbR was 
better than using the individual types of features and some other combinations. For 
Dset_Mix, setting the number of clusters according to the number of answers could be 
beneficial. 

For the second approach, we presented a similarity-based representation (SbR) and a 
generative sequence similarity function (GSSF) based on the Seq2Seq recognizer for 
clustering to provide computer-assisted marking for handwritten mathematics answers 
OHMEs. The SbR matrix is then inputted to the k-means algorithm by setting the number 
of clusters as the number of categories. We achieved around 0.916 and 0.915 for purity 
and around 0.556 and 0.702 for the marking cost on the two answer datasets, Dset_Mix 
and NIER, respectively. Our method outperforms other methods on clustering HMEs. 
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CHAPTER 5. Online Handwritten Mathematical Expression 
Recognition 

5.1. Introduction 
There are challenging problems in OHME recognition. One problem is that there are lots 
of ambiguities in the interpretation of OHMEs. For instance, there exist math symbols 
that are very similar in the writing style, such as “0”, “o”, and “O” or dot and comma. 
These ambiguities challenge OHME recognition without utilizing contextual information. 
In this thesis, we propose two methods to address this problem. 

The first method is to utilize bidirectional context from input stroke sequences for symbol 
segmentation and classification using deep Bidirectional Long-Short Term Memory 
(BLSTM) encoder. Discriminating ambiguous symbols requires the adoption of the 
context from other strokes. Conventional methods sequentially implement symbol 
segmentation and symbol classification so that the classification step is made by only 
using the local context obtained from segmentation hypotheses. Therefore, the ambiguous 
symbols are challenging to be distinguished in the symbol classification step. In 
handwritten text recognition, temporal recognition of characters benefits from 
bidirectional context of preceding strokes and succedding strokes by a Recurrent Neural 
Network (RNN) [77]. Instead of considering isolated character recognition, we consider 
recognition of the symbols in an HME as temporal recognition, where the bidirectional 
context from input stroke sequences is used for symbol segmentation and classification. 
The deep BLSTM processes an input HME as a stroke sequence to produce a sequence 
of classification probability corresponding to the input sequence. The segment hypotheses 
are produced by making queries to retrieve the symbol recognition probability. We also 
derive the method to detect junk symbols from the retrieved recognition probability 
without learning junk symbols. 

The second method is to utilize a math language model combined with OHME 
recognizers. Here, we present the first transformer-based math language model (TMLM). 
Based on the self-attention mechanism, the high-level representation of an input token in 
a sequence of tokens is computed by how it is related to the previous tokens so that 
TMLM can capture long dependencies and correlations in MEs. Then, we propose a 
method to combine TMLM into a stochastic context-free grammar-based HME 
recognizer. In our experiments, we show that our TMLM outperforms the traditional N-
gram model and RNNLM in the task of modeling MEs. 

The rest of this chapter is organized as follows. Section 5.2 describes our proposed 
methods in detail. Section 5.3 presents our experiments for evaluating the proposed 
method. Finally, section 5.4 concludes our work. 



58 

 

5.2. Proposed methods 
In this section, we firstly present a method for online handwritten math symbols 
segmentation and classification for improving OHME recognition. Then, we present a 
transformer-based math language model. 

5.2.1. Online handwritten mathematical symbol segmentation and recognition with 
bidirectional context 

We improve the symbol recognition of HME by using a deep BLSTM-CTC model to 
encode global context information. 

5.2.1.1. Bidirectional context for symbol classification 

We improve the context for symbol classification by considering the classifier, which 
incorporates the whole input sequence instead of individual handwritten symbols. An 
input sequence is processed by bidirectional recurrent neural networks where the 
classification of each time step can access the context from both forward and backward 
directions of input. The classification of symbols at every time step is used for retrieving 
the classification of segmentation hypotheses. 

5.2.1.2. Temporal classification with RNN 

We apply a deep Bidirectional Long Short-Term Memory (BLSTM) to incorporate 
bidirectional context for symbol classification as shown in Figure 5.1. A BLSTM is a 
combination of two LSTM layers which process the input in forward and backward 

 

Figure 5.1. Symbol classification by strokes query. 
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directions [78]. The forward and backward context by the two LSTM layers is combined 
and feed to the next BLSTM layer in the networks. Deep BLSTM stack multi-level of 
BLSTM to learn high-level features. LSTM [79] is an advanced architecture of RNN 
designed to overcome the problem of vanishing or exploding gradients allow it to 
incorporate long-range context for improving handwriting recognition. 

CTC [77] is an objective function for RNN designed to make RNN learn directly from an 
input sequence to a target sequence without requiring pre-segmented input. The alignment 
between the input sequence and output label sequence is learned automatically with the 
assumption that the two sequences are in the same order. 

CTC introduces a label called ‘blank’ that denotes no label. It defines the output yt of 
RNN for each time 𝑡 with respect to an input sequence 𝑥  length 𝑇 as the probability 
distribution over a fixed set of classes 𝐶 and the ‘blank’ label. 

 𝑦𝑘
𝑡 =  𝑝(𝑘,  𝑡 | 𝑥), ∀𝑘 ∈ 𝐶 ∪ 𝑏𝑙𝑎𝑛𝑘 (14) 

where ykt  is the output  yt for class 𝑘. 

An output label sequence 𝑙  is obtained by a reduction process 𝐵  over a path 𝜋1:𝑇 =
𝑘1, 𝑘2, . . , 𝑘𝑇  through the lattice of output labels, i.e., 𝑘𝑖 ∈ 𝐶 ∪ 𝑏𝑙𝑎𝑛𝑘, 𝑖 = 1, 𝑇̅̅ ̅̅ ̅ . The 
reduction process firstly removes repeated labels, then removes ‘blank’ labels in this path. 

 𝑝(𝑙, 𝜋1:𝑇|𝑥) = 𝑝(𝜋1:𝑇|𝑥) =∏𝑝(𝑘𝑡 , 𝑡|𝑥)

𝑇

𝑡=1

 (15) 

where 𝑙 = 𝐵(𝜋). 

The probability for output label sequence 𝑙  from an input sequence 𝑥  is the total 
probability of all the paths 𝜋1:𝑇, where each path is reduced into 𝑙. 

 𝑝(𝑙|𝑥) = ∑ 𝑝(𝑙, 𝜋1:𝑇|𝑥) 

𝜋1:𝑇∈𝐵−1(𝑙)

 (16) 

where 𝐵−1(𝑙) is the set of all paths which reduced into l. 𝑝(𝑙|𝑥) is calculated by CTC 
forward-backward algorithm applied to the temporal classification output 𝑦 [77]. 

For a pair of input sequence 𝑥  and output sequence 𝑙  from the training dataset, the 
network is trained by minimizing CTC loss obtained by: 

 𝐿𝑜𝑠𝑠 = −𝑙𝑜𝑔(𝑝(𝑙|𝑥)) (17) 
 

5.2.1.3. Symbol classification by strokes query 

As for the traditional symbol classifier, a sequence of strokes is inputted to the recognizer. 
Instead of inputting the stroke sequence to the classifier, we use it to retrieve the 
classification results from temporal classification.  
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We first obtain the temporal classification output y for an input sequence of 𝑛 strokes 
𝑥 = (𝑠1, 𝑠2, … , 𝑠𝑛)  by deep BLSTM. Let 𝑟1, 𝑟2, … , 𝑟𝑛  denote the range of time steps 
corresponding to 𝑠1, 𝑠2, … , 𝑠𝑛 , respectively. For a hypothesis ℎ = (𝑠𝑖, . . , 𝑠𝑗) ⊂
(𝑠1, 𝑠2, … , 𝑠𝑛) we obtain the query output 𝑦′ = 𝑦(𝑟𝑖..𝑟𝑗) as the output 𝑦 in range of time 
steps corresponding to hypothesis ℎ. 

The probability of a symbol hypothesis ℎ  belonging to class 𝑐  derived from (16) is 
described as follows: 

 𝑝(𝑐|ℎ) = ∑ 𝑝(𝑐, 𝜋′|𝑥)

𝜋′∈𝐵−1(𝑐)

 (18) 

where 𝜋′ is a path through the time steps of the hypothesis ℎ produces the 𝑐 -class symbol. 

The probability 𝑝(𝑐|ℎ) is calculated by the CTC forward-backward algorithm on the 
query output 𝑦′ as similar to 𝑝(𝑙|𝑥). However, applying the algorithm for all the symbol 
classes in each recognition is not practical due to its complexity. For implementation, we 
make a fast approximation of (18) as the probability of the highest path to produce c-class 
symbol: 

 𝑝(𝑐|ℎ) ≈ max
𝜋′∈𝐵−1(𝑐)

𝑝(𝑐, 𝜋′|𝑥) (19) 

The best path to produce 𝑐 -class symbol would have the form of 𝜋 ′̂ =
{(blank)u(c)v(blank)w}, 𝑢, 𝑤 ≥ 0, 𝑣 ≥ 1, where (𝑠𝑦𝑚𝑏𝑜𝑙)𝑛 denotes the repeat of the 
symbol 𝑛 times. We approximate the probability of outputing c-class through 𝜋 ′̂ by 

 𝑝(𝑐, 𝜋 ′̂|𝑥) = ∏ 𝑦′
𝑏𝑙𝑎𝑛𝑘

𝑡

𝑡; 𝜋′̂𝑡=𝑏𝑙𝑎𝑛𝑘

× ∏ 𝑦′
𝑐

𝑡

𝑡; 𝜋′̂𝑡=𝑐

 (20) 

where 𝑡 is the time step of the query output 𝑦′, 𝑦′
𝑘

𝑡  denotes the probability of class 𝑘 at 
the time step 𝑡. 

From Eq. (19) and Eq. (20) we obtain the approximation for symbol classification 𝑝(𝑐|ℎ) 
on the query output 𝑦′. The approximation in Eq. (20), however, requires finding the best 

 

Figure 5.2. Temporal classification probability: (a) single symbol (b) two symbols. 
Dashed line shows the probability of ‘blank’ symbol. 
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path 𝜋 ′̂ for all the class c in each symbol recognition. We make it simpler by considering 
∏ 𝑦′

𝑐

𝑡
𝑡; 𝜋′̂𝑡=𝑐

 as the symbol recognition probability and ∏ 𝑦′
𝑏𝑙𝑎𝑛𝑘

𝑡
𝑡; 𝜋′̂𝑡=𝑏𝑙𝑎𝑛𝑘

 as the 
penalty if the hypotheses contain more than one symbol. We visualize symbol recognition 
probability for two cases of one-symbol hypotheses and two-symbols hypotheses in 
Figure 5.2. Typically, the output yields the number of peaks as the same as the number of 
symbols and the remaining are ‘blank’. For the case of one symbol, ∏ 𝑦′

𝑐

𝑡
𝑡; 𝜋′̂𝑡=𝑐

 is at the 

peak and there is no penalty since 𝑦′
𝑏𝑙𝑎𝑛𝑘

𝑡  is equal to 1.0 at the base. For the case of two 
or more symbols, ∏ 𝑦′

𝑐

𝑡
𝑡; 𝜋′̂𝑡=𝑐

 is at the highest peak and the penalty could be determined 

by min
𝑡,𝜋′̂𝑡=𝑏𝑙𝑎𝑛𝑘

𝑦′
𝑏𝑙𝑎𝑛𝑘

𝑡 , which is the point of the second-best peak. 

Let 𝑐’̂ be the symbol at the second-best peak and 𝑛𝑠 is the number of recognized symbols 
in the hypotheses, we obtain the symbol probability as follows: 

 𝑝(𝑐|h) ≈ max
𝑡
𝑦′
𝑐

𝑡
× (1 −max

𝑡
𝑦′
𝑐’̂

𝑡
)
𝑛𝑠−1

 (21) 

where the penalty (1 − max
𝑡
𝑦′
𝑐’̂

𝑡
)
𝑛𝑠−1

 is active when there is more than one symbol in 

the hypotheses. 

For implementation, we obtain 𝑛𝑠 by making the best path decoding method [77] and find 
𝑐’̂ by getting the second-best symbol of the probability 𝑝(𝑐|ℎ) = max

𝑡
𝑦′
𝑐

𝑡  . There are 

cases that 𝑐’̂ is not obtainable by 𝑝(𝑐|ℎ) due to it is the same with the best symbol. 
Therefore, we further add a penalty of 0.5 to deal with the problem since a peak is 
typically larger than 0.5. We obtain the formula as in (9): 

 𝑝(𝑐|h) ≈ max
𝑡
𝑦′
𝑐

𝑡
× (1 −max

𝑡
𝑦′
𝑐’̂

𝑡
)
𝑛𝑠−1

(0.5)𝑛𝑠−1 (22) 

The method is also appropriate for delayed handwritten strokes, where the strokes of the 
current symbol are written after the strokes of other symbols. 

For stroke query classification, the alignment must be correct at stroke level. The 
requirements are in the formula: 

 𝐿𝑜𝑠𝑠 = −∑𝑙𝑜𝑔(𝑝(𝑐|ℎ)) (23) 

where the pair (h, c) is obtained from the ground truth of stroke label alignment. 

We may use the alignment loss with stroke symbol annotations for providing correct 
alignment for the networks to learn. As in experiments, we found that the model could 
learn proper stroke alignment without supervised alignment annotations. The alignment 
could be learned correctly as a similar mechanism of weakly supervised learning for 
object detection by CNNs [80,81]. 

5.2.1.4. Detect junk symbols 
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The probability of junk class is obtained from the penalty for the hypotheses containing 
more than one symbol as in Eq. (22): 

 𝑝(𝑗𝑢𝑛𝑘|h) ≈ 1 − (1 −max
𝑡
𝑦′
𝑐’̂

𝑡
)
𝑛𝑠−1

(0.5)𝑛𝑠−1 (24) 

We can also obtain it after the probability for all the symbols is calculated: 

 𝑝(𝑗𝑢𝑛𝑘|h) = 1 −∑𝑝(𝑐|ℎ)

𝑐∈𝐶

 (25) 

 

5.2.1.5. Online features 

For online handwriting recognition, various features have been studies [82,83]. Some 
spatial features such as distance and differences (∆𝑥  and ∆𝑦) between two adjacent 
coordinates, pen up/down information, curvature at each point, etc. Also, aspect and 
curliness of trajectory, stroke slope and linearity are applied as well. All of the above 
features are point-based features, i.e., they are extracted from each point of pen trajectory. 
Hence, they are known as local features. 

In our experiment, input stroke sequences are firstly sampling the coordinates by Ramer 
methods [84]. For each sampled point, we then extract four basic features: the sine and 
cosine of the writing directions, the normalized distance between the preceding and the 
succeeding points of the current point, and a binary value of pen state (pen-up/pen-down). 

5.2.2. Transformer-based math language model 

Given a sequence of tokens 𝑋 = (𝑥1, 𝑥2… , 𝑥𝑁), constructing a language model is to 
estimate the joint probability 𝑃(𝑋), which is often auto-regressively factorized as 𝑃(𝑋) =
∏ 𝑃(𝑥𝑡|𝑋<𝑡)𝑡  where 𝑋<𝑡 = (𝑥1, … , 𝑥𝑡−1). According to this factorization, the problem 
reduces to estimating each conditional factor 𝑃(𝑥𝑡|𝑋<𝑡). In this thesis, our proposed 
model with a self-attention mechanism encodes the context 𝑋<𝑡 to produce the categorical 
probability of the token 𝑥𝑡. 

In this section, we first describe our proposed TMLM, which is mainly based on [85]. 
Then, we present a method for combining our model with an HME recognizer. 

5.2.2.1. Proposed language model 

TMLM consists of three main parts: an input embedding layer, a positional encoding layer 
(PE), and a stack of transformer layers, as shown in Figure 5.3. First, sequential input 
tokens {𝑥1, 𝑥2, … , 𝑥𝑁}  are fed into the input embedding to embed the categories of 
discrete tokens into a continuous space for better representation. Secondly, each 
embedded vector according to each input token is added by a PE vector to present the 
token’s position in the sequence. The detail of the PE is presented later in this section. 
Thirdly, the outputs of the input embedding, and positional encoding are passed into 
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stacked transformer layers to learn high-level representation based on the self-attention 
mechanism. Finally, the output of the top transformer layer is input to a softmax layer to 
obtain the categorical probability for the token 𝑥𝑡 given {𝑥1, … , 𝑥𝑡−1}. Although all input 
tokens are fed into our model at the same time, the model is restricted to attend only 
tokens on the left side of 𝑥𝑡 to produce 𝑃(𝑥𝑡|𝑥1, … , 𝑥𝑡−1) by a mask in the transformer 
layer.  

The architecture of the transformer layer is based on the decoder of the conventional 
transformer-based model [52]. It consists of a masked multi-head self-attention (MMSA), 
layer normalization [86], and a feedforward neural network, as shown in Figure 5.3. In 
addition, residual connections are added for the model to learn better. Here, we present 
MMSA and PE, which play important roles in our model. 

A. Masked multi-head self-attention 

This layer receives the representation of input tokens and outputs the higher 
representation for the tokens based on how each token is related to others. MMSA 
includes multiple attention functions, which allow the model to attend information from 
different representation subspace. We firstly present a masked single-head self-attention.  

A traditional attention function can be described as the mapping of a query and a set of 
key-value pairs to produce an output. Note that the query, the keys, and the values are all 
vectors. The output is a weighted sum of the values, where the weight assigned to each 
value is computed by a compatibility function of the query with the corresponding key of 
the value. 

The masked single-head self-attention function, called scaled dot-product attention 
(SDPA), are also based on the queries (Q), the keys (K) of dimension 𝑑𝑘, and the values 

 

Figure 5.3. Overview of the proposed transformer-based language model with two 
transformer layers. 
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(V) of dimension 𝑑𝑣 as shown in Figure 5.4(a). We compute the dot products of the query 
with all keys, then scale them by √𝑑𝑘. Next, we apply a mask to restrict the model to 
attend only the left side of the current predicted token. We then apply a softmax function 
to obtain the weights on the values. The output of this attention function is formulated as 
follows: 

 𝐴𝑡𝑡(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 (26) 

SDPA is called a “head” in MMSA. The architecture of MMSA including h heads is 
shown in Figure 5.4(b). With multiple heads, we project the queries, keys, and values h 
times with three different learnable linear projections. On each of these projected versions 
of queries, keys, and values, we then perform SDPAs in parallel. Then, we concatenate 
their outputs and once again project to obtain the final output of MMSA.  

B. Positional encoding 

Since tokens (𝑥1, 𝑥2, … , 𝑥𝑁) are input to our model at the same time and there is no 
convolutional/recurrent layer, the model cannot exploit the positional information of 
tokens. It is a serious problem for the task of language modeling. To address it, we utilize 
PE having the same dimensionality as the input embedded vector, 𝑅𝑁×𝑑𝑒𝑚𝑏𝑒𝑑  (𝑑𝑒𝑚𝑏𝑒𝑑 is 
the dimension of the input embedded vector). Then, we add PE to the input embedded 
vector to provide the positional information for our model. PE of the p-th token and the 
i-th dimension is computed by the sine and cosine function as follows: 

 𝑃𝐸(𝑝, 𝑖) = {
sin (

𝑝

10000𝑖/𝑑𝑒𝑚𝑏𝑒𝑑
)          𝑖𝑓 𝑖 𝑖𝑠 𝑒𝑣𝑒𝑛 

cos (
𝑝

10000(𝑖−1)/𝑑𝑒𝑚𝑏𝑒𝑑
)      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (27) 

  
(a) (b) 

Figure 5.4. Illustration of scale dot-product attention and masked multi-head attention. 
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5.2.2.2. Combining language model with HME recognizer 

In this study, we use a language model to sort the top-M best candidates outputted from 
the stochastic context-free grammar-based HME recognizer. Given M candidates 
{𝑐1, 𝑐2, … , 𝑐𝑀} of LaTeX sequences and their corresponding scores, the combined scores 
are computed as follows: 

 𝑆𝑐𝑜𝑟𝑒𝑐𝑜𝑚𝑏(𝑐𝑖) = 𝑆𝑐𝑜𝑟𝑒𝑟𝑒𝑐𝑜𝑔(𝑐𝑖) + 𝛼 × 𝑆𝑐𝑜𝑟𝑒𝐿𝑀(𝑐𝑖) (28) 
where 𝑆𝑐𝑜𝑟𝑒𝑟𝑒𝑐𝑜𝑔(𝑐𝑖) and 𝑆𝑐𝑜𝑟𝑒𝐿𝑀(𝑐𝑖) are the scores of the i-th candidate, 𝑐𝑖, from the 
HME recognizer and the language model, respectively. 𝑆𝑐𝑜𝑟𝑒𝑐𝑜𝑚𝑏(𝑐𝑖) is the combined 
score of 𝑐𝑖 . 𝛼 is a weighting parameter to balance between recognition and language 
scores. Note that 𝑆𝑐𝑜𝑟𝑒𝐿𝑀(𝑐𝑖) is the sum of logarithms of conditional probabilities output 
from the language model and normalized by the length of the candidate, 𝑐𝑖 . For this 
combination method, we refer to the HME recognizer producing 𝑆𝑐𝑜𝑟𝑒𝑟𝑒𝑐𝑜𝑔(𝑐𝑖) based 
on the sum of logarithms of probability terms. The candidate having the highest combined 
score is the final recognition result. 

5.3. Experiments 
In this section, we present evaluations of our proposed method for improving OHME 
recognition on the CROHME datasets. 

5.3.1. Experiments on online handwritten mathematical symbol segmentation and 
recognition 

In this section, we conducted the experiments to assess the performance of context for 
mathematical symbol classification and the overall performance for ME recognition. The 
deep BLSTM was trained using the Tensorflow library. The experiment of the recognition 
system was run on an Intel Core i9 9900X CPU@3.5 GHz desktop PC. 

5.3.1.1. Dataset 

We conducted the experiments on CROHME 2016 competitions [67] for both the isolated 
symbol recognition and mathematical expression recognition. The detail of the datasets 
used for training, validation and testing is shown in Table 5.1. The number of symbol’s 
classes is 101.  

Table 5.1. CROHME 2016 dataset 

 Train Validation Test 
# Symbols 85802 10061 10019 

# Junk symbols - - 8416 

# Expressions 8836 986 1147 
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We extracted a supervised label sequence of symbols for each mathematical expression 
from the stroke-level annotations in the dataset. The label sequence is represented in the 
same order with the writing order of strokes. 

5.3.1.2. Experimental settings 

We use a stack of three BLSTM layers. Each BLSTM contains two LSTM layers with 
128 cells. The outputs of each time step by two LSTM layers are concatenated into a 
feature vector of 256 dimensions before input into the next BLSTM layer. We trained the 
networks by Stochastic Gradient Descent (SGD) with a learning rate of 0.0001 and a 
momentum of 0.9. 

For evaluation, we evaluated the symbol classification by stroke query in temporal output 
and evaluated the expression rate in recognizing HME. To evaluate junk symbol detection, 
we used the same evaluation method of false acceptance rate (FAR) and true acceptance 
rate (TAR) as in [67]. Here, accepted symbols or accepted ‘junk’ means the symbols or 
‘junk’ are classified as valid symbols by the system. 

 
TAR =

# {accepted symbols}

# {total symbols}
 

(29) 

 
FAR =

 # {accepted junk} 

# {total junk}
 (30) 

5.3.1.3. Results 

We show the results of symbol classification with context and without context in Table 
5.2. The model with context is named BLSTM_CTC and that without context is named 
BLSTM_iso. The architecture of BLSTM_iso is also composed of three BLSTM layers 
of 128 cells each. With bidirectional context, the model better learns symbol classification 
due to the reduction of ambiguous symbols. Consequently, symbol classification results 
in test set improve from 89.55% to 92.30% as a reduction of 26.32% of the classification 
error. The recognition rate almost comparable with MyScript and Tokyo, although 
MyScript used additional training sets and Tokyo used a combination of online and offline 
recognizers. For junk symbol detection, BLSTM_CTC got the best TAR of 98.03%, 
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which is important since it rejects fewer symbols. Without training on junk symbols, 
BLSTM_iso is unable to reject junk symbols as FAR being 89.76%.  

We notice the improvements in recognition of ambiguous symbols that are difficult to 
discriminate without context. Table 5.3 shows the differences of recognition rate by 
symbol class by the recognition system with and without context. The symbols of \prime, 
O, V, C, X which are unable to recognized by the system without context, can be 
recognized by the system with context. 

Although symbol recognition has been improved by using the context, the recognition 
rate of almost ambiguous symbols is still around 40%. Moreover, there are some symbols 
which their recognition rate is decreased when applying the context. This denotes that 
there is still a room to encode better context or combine the methods using and without 
using context to enhance the performance of recognizing the symbols.  

We verify the effect of the improvement to the performance of the HMEs recognition. 
We combine the symbol recognition with an SCFG based parser to build an online HMEs 

Table 5.2. Symbol classification in CROHME 2016. 

 101 
classes 

102 
classes 

TAR FAR 

MyScript 92.81 86.77 89.82 11.16 

Tokyo [94] 92.27 - - - 

RIT [95] 88.85 83.34 95.86 19.71 

BLSTM_CTC 92.30 84.82 98.03 23.24 

BLSTM_iso 89.5 50.79 84.86 89.76 

 

Table 5.3. Class-based recognition comparison. 

 Symbols 
No context With context 

Correct 
Most 

confusion 
Correct 

Most 
confusion 

Improved 

\prime 0.00  1 (0.55)  0.38  , (0.23) 
O 0.00  0 (0.91)  0.33  0 (0.67) 
V 0.00  v (0.73)  0.33  v (0.60) 
C 0.06  c (0.87)  0.47  c (0.36) 
X 0.07  x (0.80)  0.41  x (0.46) 
. 0.19  - (0.33)  0.89  1 (0.05) 
s 0.24  S (0.67)  0.43  5 (0.23) 
, 0.34  ) (0.22)  0.85  1 (0.14) 

Degraded 

\lambda 0.43  h (0.29)  0.00  ) (0.40) 
\div 0.89  = (0.11)  0.11  + (0.39) 
Y 0.15  y (0.77)  0.12  y (0.88) 

\sigma 0.54  \theta 
(0.38)  0.13  \infty 

(0.25) 
\mu 0.71  u (0.14) 0.14  u (0.86) 
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recognition module. The system with BLSTM_iso uses the segmentation provided by Le 
et al. [87]. We then evaluate the module on CROHME 2016 and show the results in Table 
IV. From the results, the recognition rate of HMEs by using the CTC based symbol 
recognition is 44.81%, which is nearly 17 points higher than that of 27.72% by the model 
using the BLSTM based symbol recognition. Moreover, the recognition rate with the 
number of errors less or equal than 1 and 2 are also increase to 57.02% and 60.94%, which 
are higher than those recognition results of the module using BLSTM with additional junk 
pruning provided by BLSTM_CTC. The results show that the better symbol recognizer 
helps to recognize HMEs more correctly. 

We also compare the HMEs recognition module with other state-of-the-art methods on 
CROHME 2016 and show the results in Table 5.4. Details of other works can be found 
in the CROHME competition [67]. We can see that our method using BLSTM_CTC 
symbol recognizer accounts for a competitive result compared with other methods. 

Recognizing isolated characters one-by-one incurs the symbol recognition complexity of 
𝑜(𝑛2)  for an 𝑛 -strokes expression while recognizing by CTC only performs once. 
Symbol query does not need much calculation; therefore, the recognition system largely 
speeds up. Theoretically, recognizing by stroke query incurs symbol recognition 
complexity of 𝑜(1) for an HME. 

Table 5.4. Expression rate (%) compare with state-of-the-arts on CROHME 2016. 

System 
Expr. Rate 

 (%) 
<= 1 

error 
<= 2 

errors 
Wiris 49.61 60.42 64.69 

Tokyo [87] 43.94 50.91 53.70 

Sao Paolo [88] 33.39 43.5 49.17 

Nantes 13.34 21.02 28.33 

TAP [27] 57.02 72.28 75.59 

BLSTM_iso 16.56 20.66 22.84 

BLSTM_iso+JunkPrun 27.72 37.31 42.28 

BLSTM_CTC 44.81 57.02 60.94 
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We show the recognition time of the two systems with pruning by segmentation and 
pruning by junk symbol detection in Figure 5.5. Junk symbol detection makes slightly 
better than rejection by segmentation classifier. Using a CTC classifier with a stroke 
query clearly reduces the recognition time even for ME with a large number of strokes.  

5.3.2. Experiments on transformer-based math language model 

In this section, we present evaluations for our proposed TMLM on CROHME datasets. 

5.3.2.1. Dataset 

We uses a corpus of 68,862 LaTeX sequences provided in CROHME 2016 [67]. For 
preprocessing steps, we first filtered invalid syntax LaTeX sequences and removed style-
related characters such as “\mathrm”, “\textrm”, and so on. Then, we normalized the 
LaTeX sequences into the same format as the output of our HME recognizer. For example, 
“{a}^{2}” is normalized as “a^{2}”. The corpus is partitioned into a training set, a 
validation set, and a testing set according to the ratio of 8:1:1. The number of symbols in 
the dictionary is 108, including the padding “<pad>” and the end-of-sequence symbol 
“<eos>”. 

5.3.2.2. HME recognizer 

In this section, we present the online HME recognizer [89] used in our experiments. The 
recognizer receives a sequence of point-based features extracted from an input HME and 
outputs recognition result as a LaTeX sequence. It consists of two main stages: (1) A 
symbol-relation temporal classifier (SRTC) for segmenting and classifying symbols and 
spatial relationships in an HME and (2) A symbol-level parser (SLP). We denoted this 
HME recognizer as SRTC_SLP. 

A. Symbol-relation temporal classifier 

 

Figure 5.5. HME recognition time according to the number of strokes. 
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SRTC consists of three stacked Bidirectional Long-Short Term Memory (BLSTM) layers 
and a Connectionist Temporal Classification (CTC) layer at the top, as shown in Figure 
5.6. Its input is a sequence of point-based features, including the representation of off-
strokes (pen movements between strokes). Here, we ideally assume that there are no 
delayed strokes in the input HMEs. The stacked multiple BLSTM layers encode 
bidirectional context from the input and learn high-level representation. Then, the CTC 
layer generates a sequence of symbols and spatial relationships. There are 7 types of 
spatial relationships: superscript, subscript, upper, lower, horizontal, inside, and no 
relation (denoted as “NoRel”). 

B. Symbol-level parser 

Given the output of SRTC, SLP based on the Cocke–Younger–Kasami (CYK) algorithm 
[90] is applied to merge recognized symbols and spatial relationships along with 
predefined grammar rules, as shown in Figure 5.7. This bottom-up method considers 
many possible combinations of hypotheses at the intermediate levels. Hence, it produces 
several candidates at the top of the combination tree even if the less promising candidates 
are pruned. Each candidate has a corresponding score computed based on the 
classification probabilities of symbols and spatial relationships.  

 
Figure 5.6. Illustration for symbol-relation temporal classifier. 

 

 
Figure 5.7. Symbol-level parser. 
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C. Training and testing 

SRTC_SLP was trained on the CROHME 2016 and CROHME 2019 training sets and 
tested on the CROHME 2016 and CROHME 2019 testing sets, respectively. Without 
using a language model, it achieved the expression rate of 53.44% and 52.38% on the 
CROHME 2016 and CROHME 2019 testing sets, respectively. This expression rate is 
higher than that of the state-of-the-art TAP recognizer (without using language models 
and/or ensemble methods) [27] by 3.22 percentage points in the expression rate on the 
CROHME 2016 testing set. 

5.3.2.3. Experimental settings 

In this section, we present settings for training the proposed TMLM. We run our 
experiments on an AMD Ryzen 32 core processor CPU@2.16GHz, an RTX A6000 GPU 
with 48Gb RAM workstation. We evaluated TMLM with different numbers of 
transformer layers. The number of heads is fixed to 4 heads. The dimension of each head 
is set to 16. The context length of TMLM is fixed to 256, which covers the maximum 
sequence length in our LaTeX corpus. The dimension of vectors of input embedding and 
the dimension of hidden states are set to 256 and 512, respectively. The number of hidden 
nodes in the feedforward neural net layer is set to 1024. The dropout rate is set to 0.1. We 
applied an adaptive log-softmax function proposed in [91]. Our model is trained by the 
AdamW optimizer [92] with a learning rate of 10−5. The model is implemented based on 
the “Hugging Faces” library [93]. For combining language models with SRTC_SLP, we 
determined the parameter 𝛼 ∈ 𝑅+ in Eq. (28) by applying the enumeration method on 
{0, 0.1, 0.2, … , 2.0}. The chosen 𝛼 parameters achieved the best expression rates on the 
CROHME 2014 testing set. 

To evaluate language models, we utilized the perplexity measurement. Given a sequence 
of tokens 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑁), the perplexity of 𝑋 is the exponentiated average negative 
log-likelihood formulated as follows: 

 𝑝𝑝𝑙(𝑋) = exp {−
1

𝑁
∑log 𝑝(𝑥𝑡|𝑋<𝑡)

𝑁

𝑡=1

} (31) 

where 𝑝(𝑥𝑡|𝑋<𝑡) is the conditional probability outputted from the language model. 

5.3.2.4. Evaluation 

In this section, we compare the proposed language model with the previous methods. 
Then, we conduct experiments to compare the performance of those models when 
combined with the SRTC_SLP recognizer. 

A. Comparisons with other language modeling methods 
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We compared our TMLM with the traditional N-gram model and GRULM. We increased 
the context length N in the N-gram model to 11 since TMLM can attend all the past 
contexts for a fair comparison. For GRULM, we increased the number of GRU layers up 
to 3 layers for evaluating the performance as well as comparing with TMLM in the 
condition of a similar number of trainable parameters. The dimension of an input 
embedded vector and hidden states in GRULM are set as the same as in TMLM. 

Table 5.5 presents the perplexity of the models on the testing set extracted from our 
LaTeX corpus, as mentioned in section 4.3. The results show that our proposed TMLM 
models outperform all N-gram models and all GRULMs, even using fewer trainable 
parameters. For the N-gram models, increasing the context length can improve the 
perplexity, but it seems to converge when N reaches 11. GRULMs perform better than 
the N-gram models. Among GRULMs, the perplexity of GRULM_2L achieves the best, 
which implies that increasing the number of GRU layers is not adequate. On the other 
hand, TMLMs can learn better when increasing the number of transformer layers. 

With nearly the same number of trainable parameters, TMLM_2L performs significantly 
better than GRULM _2L. It implies that the architecture of TMLM is much more effective 
than the traditional GRULM on modeling MEs. 

B. Evaluation on combining language models into the HME recognizer 

We combined the SRTC_SLP recognizer with the language models that achieved the best 
performance in the previous experiment (i.e., 11-grams, GRULM_2L, and TMLM_8L). 
In detail, the combined score in Eq. (28) is computed for the top-10 best candidates from 
SRTC_SLP. 

Table 5.5. Comparisons with other language modeling methods. 

Model #Layers in model #Parameters Perplexity 
3-grams - - 9.603 
5-grams - - 7.557 
9-grams - - 6.550 
11-grams - - 6.500 
GRULM_1L 1 1.3M 6.050 
GRULM _2L 2 2.8M 6.049 
GRULM _3L 3 4.4M 6.377 
Ours: TMLM_2L 2 2.7M 4.598 
Ours: TMLM_5L 5 6.3M 4.509 
Ours: TMLM_8L 8 10M 4.420 
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Table 5.6 presents the expression rates of the combined recognizers on the CROHME 
2016 and CROHME 2019 testing sets. The combination of SRTC_SLP and TMLM_8L 
achieves the best expression rates in both testing sets. TMLM_8L improves 2.97 and 0.83 
percentage points of the expression rates on the CROHME 2016 and CROHME 2019 
testing set, respectively. The SRTC_SLP + 11-grams is better than SRTC_SLP + 
GRULM_2L in the CROHME 2016 testing set, but that result is opposed in the CROHME 
2019 testing set. 

Table 5.6 also presents the expression rates of the state-of-the-art HME recognizers that 
utilized math language models, i.e., TAP [27] and PAL_v2 [45]. Compared to those 
models, SRTC_SLP combined with our TMLM_8L yields the best expression rate on the 

CROHME 2016 testing set. Combining the language models only improved around 1 
percentage point in the case of TAP and PAL_v2 while TMLM_8L improves 2.97 
percentage points. Here, we cannot conclude that our method for utilizing a math 
language model is better than their methods since they utilized different types of HME 

Table 5.6. Expression rates on combining the HME recognizers with language models. 

Recognition system 
Expression rate (%) 

CROHME 2016 CROHME 2019 
SRTC_SLP 53.44 52.38 
SRTC_SLP + 11-grams 56.15 52.54 
SRTC_SLP + GRULM_2L 55.36 52.88 
(Ours) SRTC_SLP + TMLM_8L 56.41 53.21 
(Zhang et al. [27]) TAP 49.29 - 
(Zhang et al. [27]) TAP + GRUs 50.41 - 
(Wu et al. [46]) PAL-v2 49.00 - 
(Wu et al. [46]) PAL-v2 + 4-grams 49.35 - 

                 LM: language model 

Table 5.7. Percentages of corrected, miscorrected, and unchanged recognition results when 
combining the SRTC_SLP recognizer with language models. 

Dataset Method Corrected 
(%) 

Miscorrected 
(%) 

Unchanged 
(%) 

CROHME 
2016 

11-grams 4.01 1.31 94.68 
GRULM_2L 2.96 1.05 95.99 
TMLM_8L 4.62 1.66 93.72 

CROHME 
2019 

11-grams 1.83 1.67 96.50 
GRULM_2L 1.92 1.42 96.66 
TMLM_8L 2.50 1.67 95.83 
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recognizers as well as different LaTeX corpora to train their language models. We 
consider conducting more experiments on the combination method as a remaining work. 

Table 5.7 shows the recognition results in more detail about the percentage of corrected 
cases, miscorrected cases, and unchanged cases when combining SRTC_SLP with three 
different language models on the CROHME 2016 and CROHME 2019 testing sets. The 
percentages of the corrected cases by TMLM_8L are the highest compared to 11-grams 
and GRULM_2L on both testing sets. However, that of the miscorrected cases by 
TMLM_8L is the worst compared to others. GRULM_2L caused the least miscorrections 
compared to others, but it could not correct many cases. 11-grams and TMLM_8L have 
comparable percentages of miscorrected cases, but TMLM_8L corrected more cases than 
11-grams did. 

5.3.2.5. Error analysis 

In this section, we present some samples which are corrected or miscorrected when 
applying TMLM_8L with the SRTC_SLP recognizer.  

Figure 5.8(a) and Figure 5.8(b) show two corrected cases. In Figure 5.8(a), “𝛼” in the 
HME sample are recognized as “2” without using TMLM_8L since it seems to be 
similarly written as “2”. However, the language score of the candidate with “𝛼” is 
significantly higher than the one with “2”. Therefore, the recognizer combined 
TMLM_8L results in the correct prediction. TMLM_8L performs well since “𝛼” seems 

 
 

 
Groundtruth: 2 \cos \alpha   Groundtruth: x ^ { 9 } – x ^ 

{ 8 } 
 

W/o LM: 2 \cos 2    (-6.162)  W/o LM: x ^ { g } – x ^ { 8 } (-2.309) 
W/ LM:   2 \cos \alpha (-3.144)  W/ LM:   x ^ { 9 } – x ^ { 8 } (-1.361) 

(a) Corrected case (b) Corrected case 
 

 
 

 
Groundtruth: \sqrt { \beta } H   Groundtruth: m = 2 \tan \Delta 

\pi 
 

W/o LM: \sqrt { \beta } H (-3.893)  W/o LM: m = 2 \tan \Delta \pi (-4.995) 
W/ LM:   \sqrt { \beta H } (-2.714)  W/ LM:   m = 2 \tan \alpha \pi (-4.561) 

(c) Miscorrected case  (d) Miscorrected case 
Figure 5.8. Examples of corrected and miscorrected cases when combining the SRTC_SLP 
recognizer and TMLM_8L (LM: language model). Each case shows an HME image, its ground 
truth, and its recognition candidates with/without TMLM_8L and their corresponding scores 
from TMLM_8L.  
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more likely to appear next to the trigonometry function (e.g., sine, cosine, and tangent) 
than a number. Similarly, “9” in the HME sample of Figure 5.8(b) are correctly 
recognized by TMLM_8L. 

Figure 5.8(c) and Figure 5.8(d) show two miscorrected cases. The case in Figure 5.8(c) 
is miscorrected since the language model score of the incorrect result is higher than that 
of the correct result. We can realize that the context, in this case, is not clear. The case in 
Figure 5.8(d) is miscorrected since “𝛼” seems more likely to appear next to the tangent 
symbol than “Δ”. 

According to those examples, we can see that modeling MEs is still challenging since the 
context in an ME is not clear and our corpus of MEs might not be enough to estimate the 
distribution of MEs. 

5.4. Conclusions 
We introduced the Bidirectional Context for symbol classification to solve the problem 
of recognizing ambiguous symbols. The proposed method improved the symbol 
recognition rate as compared to the previous approach without context. The proposed 
method is then integrated with the Stochastic Context-Free Grammar recognition system 
for the problem of HMEs recognition. We measured the effectiveness of the improvement 
on the CROHME 2016 dataset and recorded competitive results, from the tasks of symbol 
segmentation, symbol classification to the task of HMEs recognition. The results showed 
that the proposed method encode better context to distinguish symbols. 

In addition, we presented a transformer-based math language model (TMLM) for 
improving the recognition rate of HME recognition systems. We showed that our TMLMs 
perform better than the traditional language models for MEs, i.e., the N-gram and 
GRULM. The best perplexity achieved is 4.42, resulted from TMLM_8L of 8 transformer 
layers. Combining TMLM_8L with the online HME recognizer in [89] improved the 
expression rate by 2.97 and 0.83 percentage points on the CROHME 2016 and CROHME 
2019 testing set, respectively.  
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CHAPTER 6. Conclusion and future works 
6.1. Conclusions 
In this thesis, we presented our strategy and two tools for collecting and annotating 
handwritten descriptive answers. They should be important resources for the study on 
automatic and semi-automatic marking for descriptive questions as well as the study on 
handwriting recognition methods for the most natural patterns. We currently published 
the e-testing tool for the research community.  

To provide clustering-based marking for handwritten mathematics answers, we proposed 
two approaches for clustering online handwritten mathematical expressions (OHMEs). 
We achieved the best results of around 0.916 and 0.915 for purity and around 0.556 and 
0.702 for the marking cost on the two answer datasets, Dset_Mix and NIER_CBT, 
respectively. Those values of the marking cost indicate that we can reduce the cost more 
than 0.298 point than manually marking OHME answers. We also showed that setting the 
number of clusters according to the number of answers could be beneficial. 

Improving OHME recogntion can be beneficial for the clustering-based marking. We 
presented a deep BLSTM_CTC model with the bidirectional context for symbol 
classification to solve the problem of recognizing ambiguous symbols. The experimental 
results showed that the proposed method encode better context to distinguish symbols. 

In addition, we presented a transformer-based math language model (TMLM) to solve 
the problem of recognizing ambiguous symbols. The experimental results showed that 
our TMLM ourperfomed the traditional math language models. TMLM can combined 
with both online and offline HME recognizers to improve the performance. 

6.2. Future works 
For the plan of collecting HMAs, we are now preparing the first versions of the e-testing 
and e-marking tools. Then, we will collect HMAs from some students and provide 
collected HMAs for collaborators on a web-based hosting service. By releasing the tools 
publicly and freely, we intend to scale our initial effort to a larger number and variety of 
participants and volunteers. 

For the clustering of OHMEs, we need to evaluate our methods in a large dataset of 
handwritten answers. In addition, we should consider mini-batch clustering for larger 
answer sets. User interface for markers is also another problem to study. 

For the proposed deep BLSTM-CTC model with the bidirectional context, our model is 
trained using pre-extracted features, which currently include basic features for each point 
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of a stroke. We can utilize other features so that the model can represent a better context 
to recognize the mathematical symbols. 

For the math language model, we should enrich the source of ME LaTeX by collecting 
open sources on the internet. Secondly, we should modify our TMLM to exploit the 
bidirectional context in MEs. Thirdly, the method for jointly training an HME recognizer 
and a math language model should be studied for better optimization. 
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