

オンライン手書き数式解答に対する深層ニューラルネ

ットワークを用いたクラスタリングに基づく採点の研究

A Study on Clustering-based Marking using Deep Neural

Networks for Online Handwritten Mathematical Answers

By

UNG QUANG HUY

A thesis submitted in fulfillment

of the requirements for the

DEGREE OF Doctor of Philosophy OF COMPUTER SCIENCE

At the

TOKYO UNIVERSITY OF AGRICULTURE AND TECHNOLOGY

Under supervision of Prof. Masaki Nakagawa and Prof. Keiichi Kaneko

 © Copyright by Ung Quang Huy
Fall, 2021

2

ACKNOWLEDGMENT
First and foremost, I would like to express my sincere gratitude to my supervisors

Prof. Masaki Nakagawa and Prof. Keiichi Kaneko for the continuous support during my
doctoral course and related research, with my patience, motivation, and immense
knowledge. Ever since, they have supported me not only by providing me with an
excellent atmosphere for doing research over three years, but also academically and
emotionally through the rough road to finish this thesis. And during the most difficult
times in doctoral course, they gave me the moral support and the freedom I needed to
move on. In addition, I express gratitude to Prof. Richard Zanibbi for supversing me in a
short-term internship at Rochester Institute of Technology, USA.

I hereby express my gratitude to KDDI Foundation, Epson Foundation and TUAT
for offering me scholarships and a fellowship from April 2019 to March 2020, from April
2021 to March 2022, and from October 2021 to March 2022, respectively.

I take this opportunity to express gratitude to all of the laboratory members and iLabo
Company for our valuable comments and supports, exchanges of knowledge and skills
during my graduate program, especially Dr. Nguyen Tuan Cuong, Dr. Nguyen Tuan Hung,
Dr. Phan Van Truyen, Dr. Phan Minh Khanh, and Dr. Vu Tran Minh Khuong.

I would also like to acknowledge professors and teachers in International Center of
Tokyo University of Agriculture and Technology for teaching me Japanese language
since the first days I came to Japan. Thank this support, now I can communicate with
Japanese people and enjoy life in Japan.

I also thank my parents and my friends in Vietnam for unceasing encouragement,
support and attention.

3

ABSTRACT
This thesis presents a study on clustering-based marking using deep neural networks for
online handwritten mathematical answers. In education, descriptive math questions are
considered to be better than multiple-choice math questions to evaluate students’
understanding and abilities to answer. However, examiners need to scan and score a large
number of answers, which requires a huge amount of time and effort. Clustering-based
marking, a quite new topic in the research community, is a promising approach to help
examiners to mark handwritten answers. In this thesis, we present three main
contributions: (1) we present our strategy and two tools (e-testing tool and e-marking
tool) for collecting and annotating handwritten descriptive answers, (2) we present two
approaches for clustering online handwritten mathematical expressions (OHMEs), (3) we
present two methods for improving OHME recognition.

First, we propose an e-testing tool on a tablet, which works as the pattern collection tool,
and an e-marking tool as the annotation tool for creating a dataset of handwritten math
answers (HMAs) for descriptive questions. We present specifications and workflows of
those tools in detail. By providing the e-testing tool and the e-marking tool, we plan to
collaborate with other organizations for collecting a large dataset, then publish it for the
research community.

Secondly, we propose two approaches for clustering OHMEs to create a clustering-based
marking. To the best of our knowledge, we are the first group attempting to cluster
OHMEs. Mathematical expressions are 2D-structural and infinite combinations of math
symbols and spatial relationships. Our first approach is to extract features from low-level
pattern features to high-level symbolic and structural features obtained from processing
and recognizing OHMEs. The second approach is to compute pairwise similarities among
OHMEs. We achieved the best results of around 0.916 and 0.915 for purity and around
0.556 and 0.702 for the marking cost on two answer datasets, Dset_Mix and NIER_CBT,
respectively.

Thirdly, we propose two methods for improving OHME recognition. Since our proposed
clustering methods utilize the recognition results of OHMEs, we aim to improve the
recognition rate for improving the performance of the clustering process. The first method
is to utilize bidirectional context from input stroke sequences for symbol segmentation
and classification. The second method is to utilize a math language model combined with
OHME recognizers. We propose the first transformer-based math language model which
can combine with both online and offline HME recognizers. Experiments showed that
our proposed methods can improve the performance of OHME recognizers.

4

LIST OF CONTENTS

ACKNOWLEDGMENT .. 2

ABSTRACT ... 3

LIST OF FIGURES .. 6

LIST OF TABLES ... 8

LIST OF ABBREVIATIONS AND TERMINOLOGIES ... 9

CHAPTER 1. Introduction ... 10

1.1. Backgrounds .. 10

1.2. Contributions ... 11

1.3. Thesis organization .. 12

CHAPTER 2. Surveys .. 13

2.1. Surveys on HME collecting tools .. 13

2.2. HME clustering .. 13

2.3. Computer-assisted marking ... 14

2.4. Online HME recogntion ... 14

2.4.1. A general framework of OHME recognizer ... 14

2.4.2. OHME recognition methods ... 16

2.4.3. Language models for HME recognition ... 18

CHAPTER 3. Strategy and tools for collecting and annotating handwritten
descriptive answers for developing automatic and semi-automatic marking - an initial
effort to math 21

3.1. Introduction .. 21

3.2. Toward Handwritten Exam Answer Database ... 21

3.3. Specifications of the E-testing Tool ... 22

3.4. Specifications of the E-marking Tool .. 23

3.5. HMA Collection Process ... 24

3.5.1. Question Preparation .. 25

3.5.2. Collection Process .. 25

3.5.3. Design Considerations .. 26

5

3.6. HMA Annotation Process .. 27

3.6.1. Annotation Process ... 27

3.6.2. Output Structure and Format .. 29

CHAPTER 4. Clustering online handwritten mathematical answers 31

4.1. Introduction .. 31

4.2. Our proposed methods ... 31

4.2.1. Multi-level features from OHMEs ... 32

4.2.2. Distance-based representation .. 36

4.2.3. Generative sequence similarity function based on a Seq2Seq model 37

4.3. Measurements for clustering-based marking ... 40

4.4. Experiments ... 41

4.4.1. Experiments on multi-level features of OHMEs 41

4.4.2. Experiments on generative sequence similarity function 49

4.5. Conclusions .. 55

CHAPTER 5. Online Handwritten Mathematical Expression Recognition 57

5.1. Introduction .. 57

5.2. Proposed methods .. 58

5.2.1. Online handwritten mathematical symbol segmentation and recognition
with bidirectional context .. 58

5.2.2. Transformer-based math language model .. 62

5.3. Experiments ... 65

5.3.1. Experiments on online handwritten mathematical symbol segmentation and
recognition ... 65

5.3.2. Experiments on transformer-based math language model 69

5.4. Conclusions .. 75

CHAPTER 6. Conclusion and future works... 76

6.1. Conclusions .. 76

6.2. Future works .. 76

REFERENCES ... 77

APENDIX I – PUBLICATIONS ... 83

6

LIST OF FIGURES
Figure 1.1. Overview of computer-assisted marking ... 11

Figure 2.1. Flow of approaches applied for recognizing OHMEs.......................... 15

Figure 2.2. Example of grammar rules and its parsing tree. Note that each rule in the
grammar takes one of two forms: X → Y1 Y2 where X ∈ N, Y1 ∈ N, Y2 ∈ N;
or X → Y where X ∈ N, Y ∈ Σ .. 17

Figure 3.1. An example of an XML format for 2 Math questions. 25

Figure 3.2. Main interface of our e-testing tool. ... 26

Figure 3.3. Main interface for marking multiple HMAs. 28

Figure 3.4. Main interface for marking a single HMA. .. 29

Figure 4.1. Types of features. ... 32

Figure 4.2. Three main steps for extracting directional features. 33

Figure 4.3. Bag-of-symbols and bag-of-relations for a given OHME, where “recog.”
and “hor” are abbreviations of “recognition” and “horizontal” respectively. 34

Figure 4.4. Example for dividing SRT consisting of the six types of spatial
relationships. ... 35

Figure 4.5. Illustration of using the largest SRT to divide others. 35

Figure 4.6. Illustration of dividing an SRT into M×N positions, performing zero
padding, and applying a Gaussian filter over the position and its neighbors. 36

Figure 4.7. Clustering process with pairwise similarity function. 37

Figure 4.8. A standard Seq2Seq model. ... 38

Figure 4.9. Illustration of computing F(S1|S2). ... 39

Figure 4.10. Samples in subgroup 6 of Dset_Mix. ... 42

Figure 4.11. Average (lines) and standard deviation (light color areas) of purity,
those of the marking cost, and those of #OHMEs in each cluster for Dset_Mix
with feature combination in E10 for increasing number of clusters. 47

Figure 4.12. Overview of TAP consisting of point-based features as the input (A),
the encoder part (B), the decoder part (C), and the output (D)....................... 50

Figure 4.13. Details of NIER_CBT. (a) shows the number of correct\incorrect
categories in each question, and (b) shows the number of correct\incorrect
patterns in each question... 50

7

Figure 4.14. Visualization of the SbR matrix of the subgroup 3 and 8 before
normalizing them into [0, 1]. .. 55

Figure 5.1. Symbol classification by strokes query. ... 58

Figure 5.2. Temporal classification probability: (a) single symbol (b) two symbols.
Dashed line shows the probability of ‘blank’ symbol. 60

Figure 5.3. Overview of the proposed transformer-based language model with two
transformer layers. .. 63

Figure 5.4. Illustration of scale dot-product attention and masked multi-head
attention. ... 64

Figure 5.5. HME recognition time according to the number of strokes. 69

Figure 5.6. Illustration for symbol-relation temporal classifier.............................. 70

Figure 5.7. Symbol-level parser. .. 70

Figure 5.8. Examples of corrected and miscorrected cases when combining the
SRTC_SLP recognizer and TMLM_8L (LM: language model). Each case
shows an HME image, its ground truth, and its recognition candidates
with/without TMLM_8L and their corresponding scores from TMLM_8L. . 74

8

LIST OF TABLES
Table 3.1. A Description of available functions in rectangle 5 of Figure 3.2. 27

Table 3.2. A description of available functions in Figure 3.3 and Figure 3.4 29

Table 4.1. Details of the Dset_50 dataset. .. 41

Table 4.2. Details of the Dset_Mix dataset. ... 42

Table 4.3. Expression recognition rate and F1-score of symbol and spatial
relationship recognition. ... 44

Table 4.4. Experiment settings on single types of features and their combinations45

Table 4.5. Experiments on single types of features and their combinations for
Dset_50 and Dset_Mix. .. 45

Table 4.6. Results of k estimation and marking cost (MC). 48

Table 4.7. Comparison with other research on Dset_50 and Dset_Mix. 48

Table 4.8. ExpRate and CER of MTAP. .. 52

Table 4.9. Comparisons with other methods of clustering HMEs. Values are
presented in form of “average value (standard deviation)” 53

Table 4.10. Comparisons with other variants of SFs. ... 54

Table 5.1. CROHME 2016 dataset ... 65

Table 5.2. Symbol classification in CROHME 2016. .. 67

Table 5.3. Class-based recognition comparison. .. 67

Table 5.4. Expression rate (%) compare with state-of-the-arts on CROHME 2016.
 .. 68

Table 5.5. Comparisons with other language modeling methods........................... 72

Table 5.6. Expression rates on combining the HME recognizers with language
models. .. 73

Table 5.7. Percentages of corrected, miscorrected, and unchanged recognition results
when combining the SRTC_SLP recognizer with language models. 73

9

LIST OF ABBREVIATIONS AND TERMINOLOGIES
ME Mathematical Expression
HME Handwritten Mathematical Expression
HMA Handwritten Mathematical Answer
OHME Online Handwritten Mathematical Expression
CNN Convolutional Neural Network
RNN Recurrent Neural Network
LSTM Long-Short Term Memory
GRU Gated Recurrent Unit
SCFG Stochastic Context-Free Grammars
CYK Cocke-Younger-Kasami
MST Maximum Spanning Tree
LOS Line-of-Sight
SRT Symbol Relation Tree
BoS Bag-of-symbols
BoR Bag-of-relations
BoP Bag-of-positions
PbBoS Position-Based Bag-of-Symbols
PbBoR Position-Based Bag-of-Relations

CROHME
Competition on Recognition of Online
Handwritten Mathematical Expressions

DbR Distance-based Representation
SbR Similarity-based Representation
GSSF Generative Sequence Similarity Function
TMLM Transformer-based Math Language Model

10

CHAPTER 1. Introduction
1.1. Backgrounds
In 2020, the widespread of the SARS-CoV-2 (COVID-19) has a strong impact on
education over the world, which caused almost schools and universities to be temporally
closed. Many educational organizers resume the learners’ studies via online platforms in
response to significant demand. The adoption of online learning might continue persisting
in post-pandemic, and the shift would impact the worldwide education market. In this
context, the self-learning and e-testing applications would be necessary options for
students in the near future.

Nowadays, touch-based and pen-based devices are becoming very popular as learning
media. Children and students use them to read textbooks and exercise. Moreover, they
are suitable for learners to write mathematical expressions (MEs), which could be better
than using editors such as Microsoft Equation Editor, MathType, or high-quality
typesetting systems like LaTeX.

Over the past two decades, research on how to better recognize handwritten mathematical
expressions (HMEs) has significantly increased due to increased demands for its
application on tablets. Competitions on recognizing online HMEs (OHMEs) have been
ongoing under the series of CROHME [1] with improved recognition performance. With
this progress, many e-learning interfaces based on pen-based devices have been studied
[2–4] and employed in practical applications. If the recognition result is verified and
confirmed by a learner, either online or offline HME recognition can be incorporated into
self-learning and e-testing applications. Although a learner has to do additional work, the
learner can get immediate feedback.

HME recognition can also be used for marking. Automatic marking by comparing the
recognition result of an HME answer with the correct answer is one of the solutions for
marking many answers. However, there remains problems [5]. Firstly, it is not so simple
to mark partially correct answers. Secondly, there may be several correct answers as well
as some different but equivalent notations for an answer. It is hard to pre-define all
possible cases. Thirdly, it requires examiners or examinees to confirm the automatic
marking since the recognition result is not always correct. In fact, examinees in large-
scale examinations (e.g., national-wide qualification examinations) do not have
opportunities to confirm the marking so that examiners or someone else must confirm the
marking.

Computer-assisted marking as shown in Figure 1.1 is an alternative approach. One of the
most promising applications of computer assistance is clustering answers, which groups
similar answers that could be given the same score. If answers are well clustered, they

11

can be marked efficiently, and marking errors can be decreased. Since the final marking
is made by human markers, examinees’ anxieties will also decrease.

To make computer-assisted exam marking useful, however, several problems need to be
solved. Firstly, HME recognition is one of the most difficult handwriting recognitions.
We must be able to cluster them even though their recognition is fragile. Secondly, there
are several clustering algorithms using different approaches. We need to choose a
clustering mechanism suitable for the nature of the data such as the number of clusters
and the distribution of the data. In this thesis, we focus on clustering and recognition of
OHME to make a clustering-based marking.

1.2. Contributions
First, we propose an e-testing tool on a tablet, which works as the pattern collection tool
and an e-marking tool as the annotation tool for creating a dataset of handwritten math
answers (HMAs) for descriptive questions. As my best of knowledge, there is currently
no published large dataset of handwritten math answers for descriptive questions. In our
laboratory, we generated and published a synthetic dataset for evaluating our proposed
method temporally. An answer dataset is collected by a collaboration with National
Institute for Educational Policy Research (NIER) in Tokyo, Japan. However, this dataset
is small, and it just contains a small portion of common math symbols. By providing the
e-testing tool and the e-marking tool, we plan to collaborate with other organizations for
collecting large dataset, then publishing for the research community.

Secondly, we propose two approaches for clustering OHMEs to create a clustering-based
marking. As my best of knowledge, we are the first group attempting to cluster OHMEs.
MEs are 2D-structural and infinite combinations of math symbols and spatial
relationships. Our first approach is to extract features from low-level pattern features to
high-level symbolic and structural features obtained from processing and recognizing
OHMEs. The extracted features are then transformed to a distance-based representation
and inputted to a clustering algorithm for producing groups of OHMEs. The second
approach is to compute pairwise similarities among OHMEs. Experiments showed the
effectiveness of our methods in term of reducing the marking cost.

Figure 1.1. Overview of computer-assisted marking

Computer-assisted marking Human marker

12

Thirdly, we propose two methods for improving OHME recognition. Since our proposed
clustering methods utilize the recognition results of OHMEs, we aim to improve the
recognition rate for improving the performance of the clustering process. The first method
is to utilize bidirectional context from input stroke sequences for symbol segmentation
and classification. The second method is to utilize a math language model combined with
OHME recognizers. We propose the first transformer-based math language model which
can combine with both online and offline HME recognizers. Experiments showed that
our proposed methods can improve the performance of OHME recognizers.

1.3. Thesis organization
Chapter 2 presents the surveys on three above topics. Chapter 3 presents a strategy and
tools for collecting and annotating HMAs. Chapter 4 presents our proposed methods for
clustering OHMEs. Chapter 5 presents our proposed methods for improving the
recogntion rate of OHME recognition. Finally, chapter 6 gives some conclusions and
future works.

13

CHAPTER 2. Surveys
2.1. Surveys on HME collecting tools
In the recent decade, sample patterns for handwritten mathematical expressions (HMEs)
have been collected and made available for the HME recognition community, since HME
recognition has been studied intensively as the most natural method for inputting MEs
rather than math editors such as Microsoft Equation Editor and math description
languages such as LaTeX [6,7]. Several projects have been conducted for collecting
online HME patterns by MathBrush [8], Awal et al. [9], Quiniou et al. [10], Stria et al.
[11], Aguilar et al. [12], etc. The collected HME patterns have been gathered to form a
large sample dataset for the competitions on recognition of HMEs (CROHME) [6]. Some
of the products developed along the competitions are commercially available in the
market such as the products by MyScript and Wiris. Several tablet-based e-learning
interfaces have been researched [2–4] and employed for practical applications.

Most tools to collect HME patterns use the same process for capturing online HME
patterns. Pen movements captured from a tablet are stored as a list of successive pen-tip
points with each element showing x and y coordinates of the pen-tip at a time step. In
mathematics, each symbol is a group of one or more strokes where a stroke is a sequence
of pen-tip points from pen-down to pen-up. The patterns thus captured are called online
patterns, while images captured from a camera is called offline patterns. Offline patterns
are easily converted from online patterns by rendering them to bitmap images. These tools
are made for internal use and have not been released publicly.

2.2. HME clustering
There are several past works on clustering offline (bitmap image) HMEs. Khuong et al.
[13] combined low-level features (directional features) and high-levels features (bag-of-
symbols, bag-of-relations, and bag-of-positions) to represent each offline HME. However,
the high-level features are formed from offline isolated symbols classified from
connected components along with predefined heuristic rules. Hence, there still exist
problems related to segmentation and determination of spatial relationships. Recently,
Nguyen et al. [14] presented features based on spatial classification using a convolutional
neural network (CNN). Their model is trained to localize and classify objects (symbols)
in each offline HME via weakly supervised learning. Then, spatial pooling is applied to
extract hierarchical spatial classification features from the class activation maps.

In this work, we aim to address the problem of extracting features from sequential data
for clustering OHMEs. A similar problem exists on natural language processing, where
the vector space needs to be constructed to represent a word sequence {𝑤1, 𝑤2, … , 𝑤𝑛}
and express the corresponding semantics. A conventional method to address this problem

14

is via bag-of-words [15]. However, a drawback of this method is that the word order is
lost; hence, uniqueness is not guaranteed. A better solution proposed by Le and
Mikolov[16] is to construct a continuous vector space, where semantically similar
sequences are mapped onto nearby points. Besides, these vectors can be applied to
machine learning algorithms such as k-means and support vector machines.

There are deep neural network-based methods for clustering sequential data such as
OHMEs. Several methods aim to embed sequential data into feature vectors based on the
reconstruction loss and the clustering loss [17,18]. Another approach is to compute the
pairwise similarity/dissimilarity instead of embedded features [19]. However, those
methods without information about symbols and relations encounter difficulty for
clustering OHMEs since there are infinite combinations of symbols and relations to form
MEs. Nguyen et al. [14] showed that metric learning methods do not work well compared
to CNN-based spatial classification features for clustering offline HMEs.

2.3. Computer-assisted marking
Extensive research has been carried out on essay assessment [20–22] and handwritten
essay scoring [23]. Basu et al. proposed a method for clustering answers for English short
answer grading [24]. They trained a similarity metric to calculate a distance between two
different answers using logistic regression. Then, they employed a modified k-Medoids
and a latent Dirichlet allocation algorithm for forming clusters and sub-clusters of
answers. The clustering method allows graders to just score each group using one
operation, which reduces the cost of the grading process. Brooks et al. used the approach
to design a cluster-based interface [25], which is effective because it allows graders to
give feedback for clusters and sub-clusters of answers at once.

To assess handwritten paper-based work, Singh et al. [26] introduced a web-based system
that allows students to upload their scanned assignments. The system also allows teachers
to categorize the answers and give feedback for them. User reports from four years of
usage of the system demonstrate its effectiveness in terms of speed, consistency, and
flexibility.

2.4. Online HME recogntion
This section presents a common framework for the OHME recognizer and current several
approaches to solve this problem.

2.4.1. A general framework of OHME recognizer

Recognition of HMEs is one of the current challenges in handwriting recognition. It
consists of four main tasks: symbol segmentation, symbol recognition, spatial relationship
classification, and ME structure analysis. Figure 2.1 shows common architectures for
OHME recognition with its key modules.

15

Given an OHME, symbol segmentation firstly produces symbol hypotheses - each of
which may form a symbol; the symbol recognition secondly proposes a list of symbols
for each symbol hypothesis; spatial relationship classification thirdly identifies the
relation between two symbol hypotheses and forms a symbol relation tree of an OHME,
and structure analysis finally determines the best ME interpretations. In many approaches,
tasks could be processed sequentially, or an earlier task can be processed in parallel with
a later process. For example, symbol segmentation could be joined with symbol
recognition, and relation classification could be integrated into structure analysis and so
on.

Several systems perform more tasks, such as pre-processing, normalization, noise
reduction, training language models, and so on. For pre-processing OHMEs, it usually

(a) A flow of the general approach with four major modules

(b) A flow of the approach having modulriven by other module(s). The dashed

arrows indicate the driving modules and driven modules.

(c) A flow of the end-to-end approach.

Figure 2.1. Flow of approaches applied for recognizing OHMEs.

16

utilizes resampling and smoothing [27]. Normalization and interpolation are often applied
to make the later processing easier such as writing speed normalization and size
normalization [28]. Preparing or constructing a language model for ME is crucial to assist
structure analysis, but it is considered a sub-task of the structure analysis.

The end-to-end approach has been proposed for recognizing OHME, which commonly
includes four main components: trajectory feature extractor, encoder, decoder, and
attention mechanism, as shown in Figure 2.1(c). Although it utilizes layers of neural
networks to recognize input OHMEs, they still have functions corresponding to those key
tasks. Particularly, the encoder firstly exploits useful features and represent them as high-
level features, symbol segmentation is carried out via the attention mechanism; secondly,
the decoder the focused parts in encoded features, which pointed out by the attention
model; spatial relationship classification is also made based on the attention model that
guides the decoder precisely attend to the direction between the current predicted symbol
and the next predicted symbol; the combination of this information forms a 2D structure
of a ME often represented by a LaTeX string. Note that the end-to-end recognizer does
not need to pre-defined grammar rules of ME so that they could output invalid structure
of LaTeX strings. To address this problem, a pre-trained or simultaneous-trained
language model is jointly applied to learn the long-term dependencies of math symbols.

2.4.2. OHME recognition methods

In this section, we present three common approaches for OHME recognition.

2.4.2.1. ME grammar-based methods

Same as any language, mathematics can be described by the grammar. Generation of a
complete ME requires not only a correct combination of symbol segmentation hypotheses,
symbol recognition candidates, and spatial relationships but also correct mathematical
syntaxes. Many studies have been conducted on ME grammar-based methods, which
utilize 2-dimensional stochastic context-free grammars (2D-SCFG) with Cocke-
Younger-Kasami (CYK) algorithm such as [28–33]. We briefly describe these two
techniques here.

In formal language theory, a context-free grammar (CFG) contains a set of derivation
rules with no priorities. A sentence may have multiple parses in a CFG, and all these
parses are equivalent. The probabilities of occurrences of these parses in mathematics are
not the same. Hence, to assign probability factors to multiple parses of a sentence,
Stochastic context-free grammars (SCFG) are presented, which have an additional
property that each grammar rule is defined with a score that can be set manually or
obtained through a training procedure. Then, 2D-SCFG is defined by adding a finite set
of relations between two elements to represent 2-dimensional languages like mathematics.
Figure 2.2 illustrates the 2D-SCFG by presenting an example of the grammar rules and a
parsing tree of an ME “𝑥m + 1”. To parse a tree from the given set of grammar rules, we

17

extract the symbols from “𝑥m + 1” where “𝑥” is a letter (denoted by “Let”), “1” are
numbers (denoted by “Num”), and “+” is an operator (denoted by “Op”). Then, new non-
terminal nodes are formed from one or two non-terminal nodes according to the unary or
binary grammar rules, respectively. This step is repeated until we get a non-terminal node
that cannot produce any non-terminal node.

Cocke-Younger-Kasami (CYK) algorithm, a dynamic programming algorithm, is used to
parse an HME with 2D-SCFG. It is a bottom-up parser that constructs a CYK table of
terminal and non-terminal symbols by combining smaller substrings into larger substrings
in a bottom-up scheme. A stochastic version of the CYK algorithm computes the
probabilities of possible derivations of a given string. The complexity of CYK is O(n3|G|),
where n is the length of the parsed string and |G| is the size of the grammar set G. A
recognition score is a combination of the segmentation score, recognition score, relation
score, and grammar score. The first candidate in the top cell is the final recognition result
of the input HME.

2.4.2.2. ME graph-based methods

In graph-based methods, symbol recognition and spatial relationship recognition of an
OHME are represented as a graph, in which each node represents a symbol hypothesis,
and each edge represents the relationship between two symbol hypotheses. Each path or
sub-graph follows some constraints and generates a possible interpretation for a sub-
expression within a given OHME. All their possible interpretations are evaluated by
combining segmentation scores and classification scores, and the interpretation with the
best score is selected as the recognition result. Since MEs follow a hierarchical language,
ME grammar-based methods and ME graph-based methods often use appearance or

Let →{a, b, c, d, e, f}

Num → {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Op → {+, -, \times, \div}

Sub
𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡
→ Let Let

LExp
ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙
→ Sub Op

Exp
ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙
→ LExp Num

(a) A set of grammar rules

(b) A parsing tree of 2D-SCFG for “𝑥𝑚 + 1”.

Figure 2.2. Example of grammar rules and its parsing tree. Note that each rule in the
grammar takes one of two forms: X → Y1 Y2 where X ∈ N, Y1 ∈ N, Y2 ∈ N; or X → Y

where X ∈ N, Y ∈ Σ

18

content-based encoding to represent an ME in the form of a symbol relation (or layout)
tree or an operator tree.

There are many publications on graph-based methods. The early graph-based methods for
OHME recognition [34–36] are based on probability maximization or penalty
minimization. These methods share a common approach in that all possible symbol
hypotheses are computed from the symbol segmentation and the symbol recognition
scores. An advantage of these methods is that local recognition errors can be corrected by
considering the evaluation of the full recognition tree. In these methods, the problem of
OHME recognition is transformed into finding the most probable sequence of symbols
and their relations within the generated graph. Hu et al. [37] proposed a parser based on
Minimum Spanning Tree (MST) with a language model embedded in the set of classes
and MST extraction algorithm as a graph-based parsing method without using grammars.
First, they constructed a directed Line-of-Sight (LOS) graph in which an edge is a line of
sight from the center of a stroke to the convex hull of every other stroke. An MST, which
represents a symbol layout, is formed by applying the Edmonds’ algorithm on LOS graph.
Among graph-based methods, some methods employ graph grammars to resolve
ambiguities in an ME graph or a sub-graph, which are called graph grammar-based
methods in [38,39].

2.4.2.3. End-to-end methods

Seq2Seq models for recognizing OHMEs are deep learning models that directly convert
an input sequence into an output sequence. A Seq2Seq model consists of two main
components, an encoder and a decoder. The encoder, an LSTM or a BLSTM network,
accepts a time series input of arbitrary length and encodes information from the input into
a hidden state vector. The decoder, commonly an LSTM network, generates a sequence
corresponding to the input sequence.

Zhang et al. [27] proposed a track, attend and parse (TAP) architecture, which parses an
OHME into a LaTeX sequence by tracking a sequence of input points. The encoder or the
tracker stacks several layers of bidirectional Gated Recurrent Units (GRUs) to get the
high-level representation. The decoder or the parser is composed of unidirectional GRUs
combined with a hybrid attention mechanism and a GRU-based language model. The
hybrid attention consists of two attentions: coverage based spatial attention and temporal
attention. Hong et al. [40] improved TAP by adding residual connections in the encoder
to strengthen the feature extraction and jointly using a transition probability matrix in the
decoder to learn the long-term dependencies of mathematical symbols.

2.4.3. Language models for HME recognition

There remain challenging problems in HME recognition. One problem is that there are
lots of ambiguities in the interpretation of HMEs. For instance, there exist math symbols
that are very similar in the writing style, such as “0”, “o”, and “O” or dot and comma.

19

These ambiguities challenge HME recognition without utilizing contextual information.
In addition, recognition systems without using predefined grammar rules such as the
encoder-decoder model [27,41] might result in syntactically unacceptable
misrecognitions. One promising solution for these problems is to combine an HME
recognition system with a math language model. Employing language models for
handwritten text recognition has shown effectiveness in previous research [42–44].

An ME has a 2D structure represented by several formats such as MathML, one-
dimensional LaTeX sequences, and two-dimensional symbol layout trees [7]. Almost all
recent HME recognition systems output their predictions as the LaTeX sequences since
LaTeX is commonly used in real applications.

There are some common challenges in modeling MEs similar to natural language
processing. First, there is a lack of corpora of MEs as MEs rarely appear in daily
documents. Secondly, there are infinite combinations of symbols and spatial relationships
in MEs. Thirdly, there are long-term dependencies and correlations among symbols and
relations in an ME. For example, “(” and “)” are often used to contain a sub-expression,
and if they contain a long sub-expression, it is challenging to learn the dependency
between them.

There are several methods to modeling MEs. The statistical N-gram model was used in
[45]. It assigns a probability for the n-th tokens given (n-1) previous tokens based on the
maximum likelihood estimation. However, the N-gram model might not represent the
long dependencies due to the limitation of the context length. Increasing this length might
lead to the problem of estimating a high-dimensional distribution, and it requires a
sufficient amount of training corpus. In practical applications, the trigram model is
usually used, and the 5-gram model is more effective when the training data is sufficient.
The recurrent neural network-based language model (RNNLM) proposed by [46] was
utilized in HME recognition systems [1,27]. RNNLM predicts the n-th token given (n-1)
previous tokens in previous time steps. However, they still face the problem of the long-
term dependencies.

Language models are well-known as generative models and autoregressive models since
they predict the next state of a variable given its previous states. In NLP, Radford et al.
[47,48] proposed Generative Pre-Training models (GPT and GPT-2) with high
achievements on NLP benchmarks based on the vanilla transformer-based network in
[49]. Their models are trained by the casual language modeling loss, then fine-tuned for
multitask learning such as text classification, question answering, and similarity. Dai et
al. [50] presented a Transformer-XL for capturing extended length of context using a
recurrent architecture for context segments. Transformer-XL can learn dependency that
is 80% longer than RNNs, 450% longer than TLM. The inference speed is 1,800 times
faster than TLM by caching and reusing previous computations. XLNet presented by
Yang et al. [51], is the first model utilizing bidirectional contexts for transformer-based

20

language models. This model significantly outperformed the conventional BERT model
[52] in 20 tasks of NLP benchmarks.

There are several studies combining HME recognition systems with pre-trained language
models. Wu et al. [45] combined their encoder-decoder HME recognizer with a pre-
trained 4-gram model to get the N best paths. Zhang et al. [27] utilized a Gated Recurrent
Unit-based language model (GRULM) for their HME recognizer that is an encoder-
decoder model with temporal attention. This attention is to help the decoder determine
the reliability of spatial attention and that of the language model per time step. The
language models improved the expression rate by around 1 percentage point. Hence, the
approach for combining language models into recognition systems is essential to study.

In CROHME 2019 [1], the Samsung R&D team used a probabilistic context-free
grammar-based recognizer combined with two bigram language models, i.e., a language
sequence model and a language model for spatial relationships. Besides, the MyScript
team used LSTM-based language models for their grammar-based recognition system.

21

CHAPTER 3. Strategy and tools for collecting and
annotating handwritten descriptive answers for developing
automatic and semi-automatic marking - an initial effort to
math

3.1. Introduction
Descriptive questions can far better test learners’ understanding and abilities to think than
multiple-choice questions for which learners can select correct answers by chance.
Moreover, descriptive questions foster learners to think rather than to select. On the other
hand, the drawback of descriptive questions is that it requires large time and effort for
marking them. Therefore, automatic and semi-automatic marking is sought recently.

For both automatic and semi-automatic marking, we need a large database of handwritten
answers for descriptive questions to support research and development on automatic and
semi-automatic marking. As the database is larger, the effect and reliability of the research
are more significant. This database will also be useful for handwriting recognition
research since it is a collection of most casually and naturally written patterns.

We can employ the tablet-based exam since a tablet is the best device where an examinee
can input his/her profile, read a question and write an answer. Moreover, online
trajectories can be easily converted to offline so that online and offline recognition and
clustering methods can be tested.

To make a database of handwritten answers, we propose an e-testing tool on a tablet,
which works as the pattern collection tool and an e-marking tool as the annotation tool.
Those tools are useful to collect natural and casual handwritten answers, although
annotating ground-truth is challenging.

Here, we focus on handwritten math answers, since math is the subject for which
descriptive questions are most effective. Moreover, the performance of recognizing
handwritten math expressions is still lower than natural languages so that more sample
patterns, which are casually and naturally written, are needed to improve their recognition.

This chapter is organized as follows. Section 3.2 presents our strategy to build an exam
answer database, not restricted to math answers. Section 3.3 and section 3.4 describes the
specification of e-testing tool and e-marking tool, respectively. Section 3.5 and section
3.6 describes processes for an HMA collection and annotation, respectively. The HMAs
collection methodology and related issues are described in section 3.6.

3.2. Toward Handwritten Exam Answer Database

22

One way to collect handwritten patterns is to ask each participant to write according to
predefined ground-truth. Although we design the collection methods to collect natural
patterns, in such a way that a meaningful sentence is shown and it is written in the flow
of the sentence, it is basically “copy style”. This style is used to collect handwriting
databases such as online handwritten Japanese text [53] and Vietnamese [54]. The merit
of this style is that a required vocabulary can be covered and the labor to provide ground-
truth is lightened. Erroneous patterns for ground-truth may be deleted. However, collected
patterns may not be completely natural. The other way to overcome this problem is to let
participants write whatever they want to write. Later, ground-truth is provided manually
using some tools. This collection is called “freestyle” by Matsushita et al. in [55]. The
drawback of this style is that it requires a large time and effort to provide ground-truth
for collected handwritten samples. To make research on automatic and semi-automatic
marking, however, the freestyle to collect handwritten answer patterns must be selected.

Therefore, we have set up a strategy to build a large database of handwritten exam
answers. We first provide two tools:

1. A simple e-testing tool, which accepts a list of questions from an examiner, display
each question on a tablet and allows each examinee to write an answer for each
question. This E-testing tool should collect the profile of the examiner when he/she
registers a list of questions and the profiles of all the examinees when they answer the
questions.

2. An e-marking tool, by which the simplest ground-truth of “correct” or “incorrect” is
tagged to each handwritten answer. Intermediate scores for partially correct answers
should also be given. More detailed ground-truth can be provided by editing and
annotating functions to segment lines into sentences, words, characters, mathematical
expressions, etc., and provide ground-truth to each object. Recognition engines can
be incorporated.

Since the work for preparing questions, answering questions, and marking answers
require large time and effort, we ask collaborations who want to share the large data set
of annotated handwritten answers. We also invite volunteers.

This way of collecting handwritten answer patterns enables us to collect natural and
casual handwriting rather than those copied or simulated. Although it is labor-intensive,
once it is made, it is also useful for developing handwriting recognition methods.

We provide these tools rather than define the common format for an exchange since we
expect many institutions to collaborate to make a large database of handwritten answer
patterns.

3.3. Specifications of the E-testing Tool

23

We propose the following requirements for designing the e-testing tool:

• R1: The profile of each participant must be recorded, but some privacy
information must be concealed. This information is useful for further research,
such as analysis and improvement of user experience.

• R2: Multiple lines of an HMA should be allowed since people may need to write
many intermediate steps before getting the final result.

• R3: A friendly user interface that navigates an answerer from a question to another
or goes back to any question to revise the answer easily.

• R4: The user interface should use common and meaningful icons or images to
replace or minimize the display of explanatory text since the users may come from
many cultures and countries. It must support the methods for undo/redo, erasing
and rewriting HMAs.

• R5: Multiple types of pen-based devices should be allowed. Then, the
specification of each device used must be recorded, such as its type, sampling rate,
spatial resolution, and additional information such as pressure. Among various
pen input devices on the market, we prefer to use PCs or hybrid tablets or external
digitizing tablets (e.g., from Wacom) connected to PCs.

• R6: The sampling rate and resolution should be high enough to capture quick pen
movement since the pen trace is usually sampled with a constant rate and thus
pen-tip points are evenly in time but not in space.

• R7: The output format must follow the common format being used by the
community such as Ink Markup Language (InkML) format [56] for online patterns
and bitmap images for offline patterns.

For intermidiate steps of answers, we consider using them in further research in the future.
Here, our target is to build general tools for collecting patterns as much as possible for
future research.

3.4. Specifications of the E-marking Tool
This section presents the basic requirements for the e-marking tool:

• R1: The user interface must show each question, participants’ answers, and the
specimen answers.

• R2: It should provide a menu (checkbox, up/down counter, slider, etc.) for a
human marker to select correct, wrong, or partial points.

• R3: The interface should allow the human marker to utilize two common
strategies in assessment: marking all answers of each person before moving to

24

other ones, and marking all answers to the same question in a group or the whole
of the participants. The first way allows the marker to completely tag the ground-
truths for the answers by a single participant while the second one helps them to
concentrate on assessing the answers for each question, avoiding making mistakes
or variations among participants. Moreover, the second method is possible to
apply a computer-assisted marking, such as a clustering-based approach [5,57] in
order to reduce the marking cost.

• R4: This user interface, again the same as the e-testing tool, should use common
and meaningful icons or images to replace or minimize the display of explanatory
text.

• R5: Showing the current status of marking progress, as well as marking results
(annotation tags) might be useful. This information is useful to support the marker
to mark, review, and revise marking. In addition, this display allows the marker
to be able to utilize suitable marking strategies and make effective collaborations
among human markers.

• R6: Sort and search functions might be useful for the marker to search particular
items for reviews and revisions.

3.5. HMA Collection Process
This section describes question preparation, process to collect HMAs and some design
considerations.

25

3.5.1. Question Preparation

An examiner (HMA collector) prepares a set of questions for an examination. For our
purpose, it is useful that the questions are designed so that various HMAs can be collected.
This set of questions is stored under the Extensible Markup Language (XML) file format,
as shown in Figure 3.1. Each paragraph in the tag name “question_t” corresponds to the
tenth question. Our tool uses an open-source display engine MathJax, which receives a
question including LaTeX as an input and outputs an HTML, a Scalable Vector Graphics
or a MathML. Then, a web browser panel loads and displays the question in the question
window of our interface. Due to this setting, the examiner can use any character, symbol,
or format that is supported by LaTeX in the end-user device. Moreover, he/she might set
a time limit for participants to take the exam.

3.5.2. Collection Process

We assume the following steps to collect HMAs from each participant.

Step 1: We explain the purpose of our research and ask a participant whether he/she
agrees to contribute. We also explain how the e-testing tool collects, stores, uses, and
shares his/her HMAs.

<question>
<annotationXML>

<numQuestion>2</numQuestion>
<timeLimit>10M< /timeLimit>
<question_1>
 <point>2</point>
 <content>

Solve \(x\):
$$3x^2+5x+3=0$$

 </content>
</question_1>
<question_2>

<point>2</point>
 <content>

Simplify the following expression:
 $$\frac{1}{2} + \frac{1}{3}$$
 </content>

</question_2>
</annotationXML>

</question>

Figure 3.1. An example of an XML format for 2 Math questions.

26

Step 2: If agreed by the participant, the tool collects personal information about the
participant including gender, age, dominant hand, writing hand, occupation, and mother
tongue in the same way as collections of previous online handwriting databases [53–55].
This information is only used for academic purposes, and some of them will be eliminated
when publicly releasing the dataset.

Step 3: The participant selects a set of questions prepared by the examiner.

Step 4: Each question is displayed in Window 2 in Figure 3.2. The participant can write
intermediate progress in Window 3 and the final answer in Window 4 in Figure 3.2. When
the participant completes writing their answer for the current question or skips the
question to do later, he/she can easily move to another question. This step is repeated until
finishing all the questions.

3.5.3. Design Considerations

The aim of using two writing windows is to develop two kinds of datasets which allow
researching two levels of answers for questions, full answers, and short answers. This
collecting strategy is designed not only for math but also for analysis-required subjects.

Figure 3.2. Main interface of our e-testing tool.

27

Our collection tool is designed and implemented for recording and storing the pen
trajectory in the entire writing area via ink-space (HIMETRIC) by the unit of 0.01 mm,
which is independent of the display resolution. Thus, the tool can be used on devices with
different resolutions. This collection tool records not only the pen trajectory but also the
stroke duration time and pressure information. To support participants, we provide nine
necessary functions which are presented in Table 3.1.

3.6. HMA Annotation Process
This section describes the process to mark or annotate HMAs and the output format of
collected HMAs.

3.6.1. Annotation Process

Figure 3.3 and Figure 3.4 show the displays of the e-marking tool. A user as a marker
takes the following steps to mark participants’ answers. Our tool is designed to allow the
marker to mark answers for each question.

Table 3.1. A Description of available functions in rectangle 5 of Figure 3.2.

Icon Description

1
Display the previous question with the handwritten

answer (if existing).

2
Display the next question with the handwritten answer

(if existing).

3
Create a new participant’s profile for collecting new

patterns.

4 Open an existing answer file

5
Erases the last change done in the current writing

windows to an older state

6 Reverses the undo.

7

A deletion mode that works as an eraser for removing

strokes the computer pointer touches while holding the

left mouse.

8 Erase all strokes in the current writing windows.

9 Finish the current collecting section and save HMAs.

28

Step 1: Load HMA files containing participants’ answers. Then, a list of questions in the
selected files is displayed on Window 1 in Figure 3.3. To view the state of the marking
progress, the number of marked answers to each question is shown under text-based and
color-based displays.

Step 2: Select a question to mark by checking the corresponding box of the question.
Then, Windows 3 and 4 present the question and its specimen answers, respectively.

Step 3: Mark answers. In our e-marking tool, a clustering algorithm is applied for
grouping similar short HMAs together, and then the marker could take a single action to
mark a group of answers. Since the number of answers might be too large for clustering
and marking at once time, the marker should set this number by directly inputting the
limit into the third column corresponding to the question. Besides, a default limitation of
the quantity can be set, as shown in Figure 3.3. After executing the clustering function by
utilizing the button #3 in Table 2, Window 5 displays multiple short answers to the
selected question in many groups. The marker taps on each group of answers to view the
clustering result. If they are well clustered, he/she can mark each group at the same time.
Otherwise, some HMAs outside are included in the group, an incremental refinement
approach proposed in [5] could be applied to re-assigned them into other groups. In case
that the short answer of an HMA is not clear, the marker can tap on the answer to view

Figure 3.3. Main interface for marking multiple HMAs.

29

the full answer carefully and mark it by comparing the participant’s answer and the
specimen. An annotation as “correct” or “incorrect” can be tagged to each HMA by using
buttons #4 and #5 described in Table 3.2. He/she also can input an intermediate score by
using a drop-down list. To remove the tag or the score, the marker can use button #6.
Besides, two checkboxes in Window 2: “marked” and “unmarked”, work as filters of
marked and unmarked questions to review and mark HMAs, respectively. The whole step
is repeated until the last selected answers.

3.6.2. Output Structure and Format

Figure 3.4. Main interface for marking a single HMA.

Table 3.2. A description of available functions in Figure 3.3 and Figure 3.4

Icon Description
1 Load participant’s answers

2
Save participants’ file containing marked
answers to a specified folder

3 Execute clustering to group similar answers

4 Mark the current answer with “correct” tag

5 Mark the current answer with “incorrect” tag

6
Clear the annotation tag or the intermediate
score of the current answer

30

This section presents the basic structure of the collected data. For each examination, a
specific folder is created. The disclosable profile of the examiner is recorded as well as
the set of questions. Then, for each examinee, a specific folder inside the examination
folder is created. In each sub-folder, the disclosable profile of the examinee and the tablet
used are recorded. Then, all his answers to questions are recorded in InkML. Offline
patterns can be rendered from the corresponding online patterns.

31

CHAPTER 4. Clustering online handwritten mathematical
answers

4.1. Introduction
We present two approaches for clustering OHMEs. The first approach is to extract
features from each OHME and apply a clustering algorithm on the set of extracted
features. We extract features from low-level pattern features to high-level symbolic and
structural features obtained from processing and recognizing OHMEs. We employ bag-
of-features composed of low-level directional features and high-level recognition-based
features, i.e., bag-of-symbols, bag-of-relations, bag-of-positions, position-based bag-of-
symbols, and position-based bag-of-relations. Low-level features are free from
recognition accuracy but are not robust to various ways of writing an ME. Features from
several levels of OHME recognition may be fragile due to its immaturity, but they may
provide useful distinctive features. To reduce the dimensionality of our proposed feature
spaces, we present distance-based representation (DbR). We also consider a method for
combining these types of features to improve the performance.

The second approach is to compute pairwise similarities among OHMEs. We present a
method that utilizes a generative sequence similarity function (GSSF) and a data-driven
representation for each OHME. GSSF is formed by high-level sequential features,
probability terms of the output sequence generated from a sequence-to-sequence
(Seq2Seq) OHME recognizer. The sequential features are dynamic, and they could
represent the global structure of OHME. Each OHME is then represented by a vector of
similarity scores with other OHMEs, namely similarity-based representation (SbR). SbR
allows controlling the dimensionality of the feature space to reduce the influence of the
concentration phenomenon. Finally, we input the SbR matrix into a clustering algorithm
such as k-means to obtain the clusters of OHMEs.

The rest of this chapter is organized as follows. Section 4.2 introduces our proposed
methods in detail. Section 4.3 presents problems related to the cost of a clustering-based
marking. Section 4.4 presents our experiments for evaluating the proposed methods.
Finally, section 6 concludes the work.

4.2. Our proposed methods

32

We first present the approach of extracting multi-level features from HMEs. Then, we
present the second approach which utilize a pairwise similarity function. Finally, we
present measurements for clustering-based marking proposed in [13].

4.2.1. Multi-level features from OHMEs

We propose two types of features, i.e., low-level pattern features and high-level symbolic
and structural features, as shown in Figure 4.1.

4.2.1.1. Low-level features

Low-level features are extracted from patterns without their recognition and interpretation.
To avoid stroke direction and order variations, we convert OHMEs to offline images
(denoted as OHME images) and extract image-based directional features of all strokes.
These are common features for offline handwritten character recognition [58] [59].

The feature extraction process consists of three steps, as shown in Figure 4.2Figure 4.2.
Three main steps for extracting directional features., i.e., non-linear normalization,
directional decomposition, and Gaussian filtering and feature assembly. To recognize a
single character image, it is usually normalized into a fixed-size box and four or eight
directional features are extracted and partitioned into a fixed-size grid of regions. Since
we want to handle various sizes of OHMEs instead of characters or symbols, the size of
the normalized images and the grid sizes are adapted with respect to each OHME. On the
other hand, feature vectors with a fixed length are convenient for comparison. Therefore,
we use the average height and width of all input OHME images denoted as �̅� and �̅�,
respectively, to normalize them into the same dimension. For each OHME image, we
perform directional decomposition and divide each decomposed direction into 𝑅 × 𝐶
partitions such that each region captures at most one symbol. This is expected to represent
directional features effectively for most input OHME images although it is difficult for
some. We set 𝑅 and 𝐶 as follows:

𝑅 =

�̅�

�̅�𝑚𝑎𝑥
, 𝐶 =

�̅�

�̅�𝑚𝑎𝑥
 (1)

Figure 4.1. Types of features.

Bag-of-features

Low-level featuresHigh-level features

Directional features Bag-of-symbols Bag-of-relations

Position-based
bag-of-symbols

Position-based
bag-of-relations

Bag-of-positions

33

where

�̅�𝑚𝑎𝑥 = max(�̅�𝐶𝐶
𝐼1 , 𝐻𝐶𝐶

𝐼2 , … , �̅�𝐶𝐶
𝐼𝑁)

�̅�𝑚𝑎𝑥 = max (�̅�𝐶𝐶
𝐼1̅̅ ̅̅ ̅, �̅�𝐶𝐶

𝐼2 , … , �̅�𝐶𝐶
𝐼𝑁)

𝐼 = {𝐼1, 𝐼2, … , 𝐼𝑁} is the set of normalized HME images and �̅�𝑐𝑐
𝐼𝑖 and �̅�𝑐𝑐

𝐼𝑖 (CC: connected
component) are the average height and width of the connected components in each 𝐼𝑖,
respectively.

Then, we blur the partitioned regions using a low-pass Gaussian filter with size (𝐻𝑔𝑟𝑖𝑑 +
𝑊𝑔𝑟𝑖𝑑) × (𝐻𝑔𝑟𝑖𝑑 +𝑊𝑔𝑟𝑖𝑑) , where 𝐻𝑔𝑟𝑖𝑑 and 𝑊𝑔𝑟𝑖𝑑 are the height and width of the
partitioned regions, respectively. Finally, we obtain a feature vector with length
𝑅 × 𝐶 × 8 by taking the Cartesian product of all columns and all rows.

4.2.1.2. High-level features

High-level features are symbolic and structural features obtained by OHME recognition
and represented by a symbol relation tree (SRT). An SRT is a directed graph representing
symbols (nodes) and spatial relationships (edges) between two symbols in an OHME, as
shown in Figure 4.3. Since an SRT carries rich information, it is difficult to represent it
entirely on a vector space. One way to achieve this is to present each kind of information
in the SRT separately and then combine them. In this study, we decompose the
information into 4 types of features:

• Bag-of-symbols (BoS): occurrences of symbols.

• Bag-of-relations (BoR): occurrences of spatial relationships.

• Bag-of-positions (BoP): occurrences of partitioned positions having symbols.

Input

Non-linear

normalization

Directional

decomposition

 Gaussian filtering

and feature

assembly
Figure 4.2. Three main steps for extracting directional features.

34

• Position-based BoS (PbBoS) and position-based BoR (PbBoR): BoS and BoR
extracted within each partitioned position and aggregated from all of them,
respectively.

We can capture these features from several candidates of recognition, but we select the
top candidate to extract them.

A. Bag-of-symbols

The bag-of-words model and its enhancements have been demonstrated to be efficient for
representing documents in text classification [60], natural language processing [61], and
document clustering [62]. For OHME clustering, the occurrences of symbols play an
important role in clustering. In this work, we use BoS to represent how often each symbol
appears in an OHME. Then, we put it into a vector representing the frequencies of
appearances in an available list of symbols, as shown in Figure 4.3.

B. Bag-of-relations

We consider six types of spatial relationships between symbols, i.e., horizontal,
superscript, subscript, upper, lower, and inside, as shown in Figure 4.4. BoR represents
how many of each type of spatial relationship occurs in an OHME in the form of a vector.

HME pattern

Recog. result
𝒙

𝟐
+
𝒚

𝟑

SRT

Bag-of-symbols
[0, 1, 2, 3, …9, +, … fraction bar, …, a, b, … x, y, z]

[0, 0, 1, 1, … 0, 1, …, 2 , …, 0, 0, … 1, 1, 0]

Bag-of-relations
[horizontal, superscript, subscript, upper, lower, inside]

[2, 0, 0, 2, 2, 0]

Figure 4.3. Bag-of-symbols and bag-of-relations for a given OHME, where “recog.” and
“hor” are abbreviations of “recognition” and “horizontal” respectively.

35

C. Bag-of-positions

While BoS and BoR reflect information about symbols and spatial relationships, BoP
represents the occurrences of some symbols in partitioned positions in an SRT. An SRT
is divided into 𝑀 ×𝑁 positions, each of which is expected to contain at most one symbol.
This division also reflects the spatial relationships among symbols. An example for
dividing SRT is shown in Figure 4.4(b). The parameters, M and N, could be set as the size
of SRT. However, because the size of SRT depends on each ME, we cannot generate the
feature vectors in the same dimension. To address this issue, we use the size of the largest
SRT among OHMEs to normalize others, as shown in Figure 4.5. Then, the partitioned
position containing a symbol is marked 1 and 0, otherwise, and expressed by a matrix
𝑃𝑀×𝑁 = (𝑃𝑖𝑗) with𝑃𝑖𝑗 ∈ {0, 1}. To make these features more robust, we apply a Gaussian
filter with size of 3 × 3 for blurring. Finally, a feature vector is formed by taking the
Cartesian product of all columns and all rows.

D. Position-based bag-of-symbols and bag-of-relations

In BoS and BoR, the captured information is discrete and does not explicitly express the
structure of an OHME. Besides, BoP only provides features of symbols’ positions without
mentioning the classes of symbols. Therefore, we add another type of features while
extracting symbols and spatial relationships, as shown in Figure 4.6. Firstly, we divide
the SRT into 𝑀 ×𝑁 positions as mentioned in the previous section. Then, from each
partitioned position, we extract BoS and BoR. We extend the position to its neighbors or
perform zero-padding to obtain 3 × 3 positions. We convolute the values of 3 × 3
positions with the 3 × 3 Gaussian mask and take the sum of all the values for the position.

(a) HME (b) SRT and its division into 𝑀 ×𝑁 positions.

Figure 4.4. Example for dividing SRT consisting of the six types of spatial relationships.

(a) Largest SRT (b) Case of a simple SRT
Figure 4.5. Illustration of using the largest SRT to divide others.

36

We finally obtain two types of feature vectors, i.e., PbBoS and PbBoR, by taking the
Cartesian product of all columns and all rows for each type of features.

4.2.1.3. Feature combination

A single type of bag-of-features may not contain enough information for clustering; hence,
we combine multiple types to improve the performance. That is, we concatenate multiple
feature vectors into a single vector. However, this method may become ineffective
because different feature vectors have different meanings and belong to separate spaces.
Here, we use weighting parameters to optimize the method, where the distance between
two samples is calculated according to Eq. (2):

𝐷𝑖𝑠𝑡(𝑂𝐻𝑀𝐸1, 𝑂𝐻𝑀𝐸2) =∑𝛼𝑖𝑑(𝑓𝑖(𝑂𝐻𝑀𝐸1), 𝑓𝑖(OH𝑀𝐸2))

𝐼

𝑖=1

 (2)

where 𝑂𝐻𝑀𝐸1 and 𝑂𝐻𝑀𝐸2 are two OHMEs to compute the distance, 𝑓𝑖 is a type of
features, I is the number of types of features, 𝑑(𝑣1, 𝑣2) is the Euclidean distance between
two vectors 𝑣1 and 𝑣2 , and 𝛼𝑖 > 0 is a weighting parameter for each type of features
satisfying ∑ 𝛼𝑖

𝐼
𝑖=1 = 1. These parameters are determined by applying the enumeration

method with 𝛼𝑖 ∈ {0.1, 0.2, 0.3, … , 0.9}.

4.2.2. Distance-based representation

High-level recognition-based features composed of the occurrences of symbols and
spatial relationships appearing in an OHME make their feature space sparse, especially
for PbBoS and PbBoR. For example, with a dictionary of 101 math symbols, the length
of PbBoS of the expression “a+b” is 303 (𝑀 ×𝑁 × 101 = 1 × 3 × 101), but only 5
values in this feature vector are non-zero after applying the Gaussian filter. In practice,
M and N could be large when MEs are complex. According to the study in [63], all p-
norms ‖𝑋‖𝑝 = (∑ |𝑋𝑖|𝑝𝑖)1/𝑝 (𝑝 > 0) including the Euclidean distance (𝑝 = 2) seem
ineffective for high-dimensional data due to the concentration phenomenon, where all
distances among pairs of data points seem to be very similar. Hence, the sparse features
and high dimensionality of combined features might result in low performance when
using the p-norms. Inspired by the idea of using dissimilarities of each OHME to all other
OHMEs as a representation for the OHME [14], we similarly calculate the distance from

Figure 4.6. Illustration of dividing an SRT into M×N positions, performing zero padding,
and applying a Gaussian filter over the position and its neighbors.

37

each OHME’s feature vector to all other OHMEs’ feature vectors to form distance-based
representation (DbR). OHMEs belonging to the same cluster could produce similar DbR
while those belonging to different clusters could not so that DbR could be used for
clustering. Moreover, we expect that DbR containing pairwise distances among the
feature vectors is informative, it has a lower dimensional space, and it is less sparse than
the original feature space. Given a set of N OHMEs {𝑋1, 𝑋2, … , 𝑋𝑁} , DbR of 𝑋𝑖 is
calculated according to Eq. (3):

 𝐷𝑏𝑅(𝑋𝑖) = {𝐷𝑖,𝑗}𝑗=1,𝑁̅̅ ̅̅ ̅ (3)

where

 𝐷𝑖,𝑗 = 𝑑(𝑓(𝑋𝑖), 𝑓(𝑋𝑗)) (4)

𝑑(𝑣1, 𝑣2) is the distance between two vectors 𝑣1 and 𝑣2, f is a feature mapping function.
Note that the dimensionality of DbR depends on the number of OHMEs. If this number
is large, we also obtain a high-dimensional feature space. However, markers can divide a
large group of OHMEs into small ones, then they can apply clustering on each of them to
avoid this problem in practical cases. Also, we may apply mini-batch clustering. In our
experiments, we show that DbR improves the clustering performance in almost all cases
even though we set the distance function d as the Euclidean distance to compute the
pairwise distances.

4.2.3. Generative sequence similarity function based on a Seq2Seq model

Cluster analysis is useful for exploratory analysis by partitioning unlabeled samples into
meaningful groups. For this problem, we traditionally extract useful features from each
sample and pass them to a clustering algorithm such as k-means to partition them into
groups. Here, we utilize a type of data-driven representation for each sample. We
represent each sample by pairwise similarities between it and other samples. This idea is
the same as the distance-based representation presented in section 4.2.2. Then, we form
a similarity-based representation (SbR) matrix. The SbR matrix is inputted to a clustering
algorithm to obtain clusters of OHMEs. The overall process of our proposed method is
shown in Figure 4.7. This section presents our proposed similarity function (SF), then
describes the SbR.

Figure 4.7. Clustering process with pairwise similarity function.

38

4.2.3.1. Generative sequence similarity function

Our proposed SF gives a similarity score between two OHMEs based on a Seq2Seq
OHME recognizer. We expect that the similarity score of two OHMEs containing the
same ME is significantly higher than those with different MEs.

A standard Seq2Seq model, as shown in Figure 4.8, consists of two parts: an encoder that
receives an input sequence to represent high-level features and a decoder that sequentially
generates an output sequence from the encoded features and the previous prediction.
Given two input OHMEs denoted as 𝑆1 and 𝑆2 , the recognizer generates LaTeX
sequences of {𝑦𝑖1}𝑖=1,𝑁̅̅ ̅̅ ̅ and {𝑦𝑗2}𝑗=1,𝑀̅̅ ̅̅ ̅ , where 𝑦𝑖1 and 𝑦𝑗2 are symbol classes in the

vocabulary, and 𝑁 and 𝑀 are the lengths of the output sequences.

A simple idea to form the similarity score of two OHMEs is to calculate the edit distance
of the two output sequences {𝑦𝑖1}𝑖 and {𝑦𝑗2}𝑗 . However, this method might not be

effective since the edit distance only utilizes the differences in terms of recognized
symbol classes, but the probabilities of recognized symbols seem more important than
the symbol classes. Our proposed SF utilizes terms of probabilities of recognized symbol
classes instead of the symbol classes.

Another difficulty of directly comparing two output sequences or generated probabilities
is that their lengths are variant. The proposed SF uses the symbol predictions of an OHME
to input into the decoder of another OHME for computing the terms of probabilities.
Those probabilities are formed on the output sequence of one of those two OHMEs.
Hence, the SF is not influenced by the size-variant problem.

Our SF consists of two main components: the similarity score of 𝑆1 compared to 𝑆2 and
the one of 𝑆2 compared to 𝑆1 denoted as 𝐹(𝑆1|𝑆2) and 𝐹(𝑆2|𝑆1), respectively. We firstly
define 𝐹(𝑆1|𝑆2) as follows:

 𝐹(𝑆1|𝑆2) =∑ (log (𝑃(𝑦𝑖
1|𝑆2, 𝑦𝑖−1

1)) − log (𝑃(𝑦𝑖
1|𝑆1, 𝑦𝑖−1

1)))
𝑁

𝑖=1
 (5)

where 𝑃(𝑥|𝑦, 𝑧) is the probability of 𝑥 given y and z. An illustration of computing
𝐹(𝑆1|𝑆2) is shown in Figure 4.9. The predicted symbol 𝑦𝑖1 at the i-th time step is inputted

Figure 4.8. A standard Seq2Seq model.

39

to the (i+1)-th time step of the 𝑆2 decoder for computing the probability 𝑃(𝑦𝑖1|𝑆2, 𝑦𝑖−11).
Similarly, we define 𝐹(𝑆2|𝑆1) as follows:

 𝐹(𝑆2|𝑆1) =∑ (log (𝑃(𝑦𝑗
2|𝑆1, 𝑦𝑗−1

2)) − log (𝑃(𝑦𝑗
2|𝑆2, 𝑦𝑗−1

2)))
𝑀

𝑗=1
 (6)

The 𝐹 function is not appropriate for the clustering algorithms such as k-means because
it is asymmetrical. Thus, we compute an average of 𝐹(𝑆1|𝑆2) and 𝐹(𝑆2|𝑆1) that is
symmetrical measurement. We name it as the Generative Sequence Similarity Function
(GSSF), which is computed as follows:

GSSF(𝑆1, 𝑆2) =

𝐹(𝑆1|𝑆2) + 𝐹(𝑆2|𝑆1)

2

(7)

Assume that the Seq2Seq recognizer are well recognized 𝑆1 and 𝑆2 . GSSF has some
properties as follows:

• GSSF(𝑆1, 𝑆1) equals to zero if and only if 𝐹(𝑆1|𝑆1) equals to zero.

• GSSF(𝑆1, 𝑆2) is approximately zero if 𝑆1 and 𝑆2 denote the same ME. In this case,
𝐹(𝑆1|𝑆2) and 𝐹(𝑆2|𝑆1) are both around zero.

• GSSF(𝑆1, 𝑆2) is negative if 𝑆1 and 𝑆2 denote two different MEs. In this case, both
𝐹(𝑆1|𝑆2) and 𝐹(𝑆2|𝑆1) are much lower than zero.

• GSSF is a symmetric function.

4.2.3.2. Similarity-based representation

Given N OHMEs {𝑋1, 𝑋2, … , 𝑋𝑁}, SbR of 𝑋𝑖 is formed by a pre-defined pairwise SF:

 𝑆𝑏𝑅(𝑋𝑖) = [SF(𝑋𝑖, 𝑋1), … , SF(𝑋𝑖, 𝑋𝑖),… , SF(𝑋𝑖, 𝑋𝑁)] (8)

Figure 4.9. Illustration of computing 𝐹(𝑆1|𝑆2).

40

4.3. Measurements for clustering-based marking
In clustering-based marking systems, a human marker marks the major set of answers for
each cluster collectively and selects the minor ones for manual marking separately. Hence,
the cost of the marking process depends on how many samples belong to the major set
and how few answers in the minor sets are included in each cluster. For this reason, we
measure purity to evaluate the performance of the clustering task as shown in Eq. (9):

 𝑃𝑢𝑟𝑖𝑡𝑦(𝐺, 𝐶) =
1

𝐻
∑max

1≤𝑖≤𝐽
|𝑔𝑘 ∩ 𝑐𝑖|

𝐾

𝑘=1

 (9)

where H is the number of samples, J is the number of categories (the right number of
clusters), 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝐽} is a set of categories, K is the number of clusters, and 𝐺 =
{𝑔1, 𝑔2, … , 𝑔𝐾} is a set of obtained clusters.

However, high purity is easy to achieve when the number of clusters is large. For example,
when K is equal to H, we obtain a perfect purity of 1.0. Hence, we set the number of
clusters as the number of categories to evaluate in our experiments.

The purity alone does not show the quality of clustering in the clustering-based marking
systems. We employ a cost function presented in Khuong et al. [13], reflecting a scenario
of verifying and marking answers in the clustering-based marking systems. For each
cluster, the verifying task is to find a major set of answers by filtering minor answers,
while the marking task is to compare the major set and minor answers with the correct
answer or the partially correct answers. The marking cost (MC) is composed of the
verifying time 𝐶𝑣𝑒𝑟 and the marking time 𝐶𝑚𝑎𝑟𝑘 as shown in Eq. (10):

𝑓(𝐺, 𝐶) =∑𝑐𝑜𝑠𝑡(𝑔𝑖, 𝐶)

𝐾

𝑖=1

=∑(𝐶𝑣𝑒𝑟(𝑔𝑖, 𝐶) + 𝐶𝑚𝑎𝑟𝑘(𝑔𝑖, 𝐶))

𝐾

𝑖=1

=∑(|𝑔𝑖| × 𝛼𝑇 + (1 + |𝑔𝑖| − |𝑀𝑖|) × 𝑇

𝐾

𝑖=1

)

(10)

where T is the time unit to mark an answer. There exists a real number 𝛼 (0 < 𝛼 ≤ 1) so
that the verifying cost of an answer is 𝛼𝑇. 𝐶𝑣𝑒𝑟(𝑔𝑖, 𝐶) = |𝑔𝑖| × 𝛼𝑇 is the cost of verifying
all answers in the cluster 𝑔𝑖 𝐶𝑚𝑎𝑟𝑘(𝑔𝑖, 𝐶) = (1 + |𝑔𝑖| − |𝑀𝑖|) × 𝑇 is the cost of marking
the major set of answers 𝑀𝑖 and all minor answers in the cluster 𝑔𝑖. For simplicity, we
assume 𝛼 = 1, implying that the verification time is the same as the marking time T. We
normalize Eq. (10) into [0, 1], and obtain Eq. (11) as follows:

 𝑀𝐶(𝐺, 𝐶) =

𝑓(𝐺, 𝐶)

2𝑁𝑇
=
𝐾

2𝐻
+ (1 −

1

2
𝑃𝑢𝑟𝑖𝑡𝑦(𝐺, 𝐶)) (11)

MC equals 1 in the worst case if the number of clusters equals the number of answers. It
implies that MC approaches the cost of marking all answers one-by-one.

41

4.4. Experiments
In this section, we present evaluations for our two proposed approaches.

4.4.1. Experiments on multi-level features of OHMEs

This section presents an evaluation on multi-level features of OHMEs on two datasets:
Dset_50 and Dset_Mix.

4.4.1.1. Datasets

We use two datasets of OHMEs to evaluate our proposed method. The first dataset, named
Dset_50, was collected from 21 students. Each student wrote 50 OHMEs three times on
three kinds of writing interfaces (i.e., without any guiding line, with a centerline, and with
the center, top, and bottom lines). As a result, the total number of online OHMEs is 3150
samples, which belong to 50 classes. This dataset contains common symbols that belong
to 101 classes used in the CROHME 2019 competition. Table 4.1 provides the details of
the Dset_50 dataset.

The second dataset, named Dset_Mix1, has mixed patterns of real (genuine) OHMEs from
CROHME 2016 and synthesized patterns made from LaTeX sequences and isolated
handwritten symbol patterns from CROHME 2016. Note that collecting real answers
from students in a real examination is ideal but it requires agreement among all
participants, teachers, and schools. Hence, we generated synthesized answers and publish
this dataset for the research community to use [64].

1Uploaded at: http://tc11.cvc.uab.es/datasets/Dset_Mix_1

Table 4.1. Details of the Dset_50 dataset.

Dset_50
Students 21
OHMEs categories 50
Interface styles 3
Total # of OHMEs 21 × 50 × 3 = 3150

42

Dset_Mix stores ten subgroups corresponding to ten questions. Each subgroup consists
of 200 OHMEs, which is a mixture of genuine patterns and synthesized patterns and a
few correct answers and several incorrect answers for a math question. Note that OHMEs
in each subgroup are very similar to those in Dset_50. The sample size for each question
is set based on the number of students in each grade of common schools. Table 4.2
provides the details of the Dset_Mix dataset.

The synthesized OHMEs were generated according to the method proposed in [65]. This
method consists of three main steps. Given a LaTeX sequence or a MathML script, the
method firstly generated a template that presents the sizes and positions of the symbols
based on their spatial relationships to each other (i.e., horizontal, superscript, subscript,
upper, lower, and inside). Secondly, the method made the generated patterns look more
natural by randomly changing the sizes and positions of the symbols slightly. Finally, the
isolated handwritten symbol patterns in CROHME 2016 are filled in the generated
template. Figure 4.10 shows some samples in subgroup 6 of Dset_Mix.

4.4.1.2. Online HME recognizer

Table 4.2. Details of the Dset_Mix dataset.

Categories and patterns
Subgroup No.

1 2 3 4 5 6 7 8 9 10
Categories of correct answers 2 1 1 1 1 1 2 1 1 1
Genuine patterns of correct
answers 26 0 0 20 20 20 20 27 0 0

Synthesized patterns of correct
answers 21 40 50 20 35 10 81 49 50 50

Categories of incorrect answers 8 4 5 4 4 6 2 5 3 3
Genuine patterns of incorrect
answers 21 18 3 19 2 39 1 27 0 0

Synthesized patterns of incorrect
answers 132 142 147 141 143 131 98 97 150 150

Total answers 200 200 200 200 200 200 200 200 200 200

Correct answer

(Genuine OHME patterns)
Incorrect answer

(Genuine)
Incorrect answer

(Genuine)
Incorrect answer

(Synthesized)
Incorrect answer

(Synthesized)

Correct answer
(Synthesized OHME

patterns)

Incorrect answer
(Synthesized)

Incorrect answer
(Synthesized)

Incorrect answer
(Synthesized)

Incorrect answer
(Synthesized)

Figure 4.10. Samples in subgroup 6 of Dset_Mix.

43

In our previous work [57], we used the OHME recognition engine by Le et al. [31]. In
this thesis, we employed its enhanced version with a significantly better recognition rate.

In our enhanced engine, we improved the symbol classification with bidirectional context
by utilizing a deep bidirectional long short-term memory (BLSTM) and connectionist
temporal classification (CTC) [66]. The BLSTM model consists of three BLSTM layers
with 128 hidden units for each layer. Four basic point-based features, i.e., the sine and
cosine of writing directions, the normalized distance between the preceding and the
succeeding of the current point and the binary value of pen state were extracted from each
point of an OHME. Then, a sequence of point-based features was input to the BLSTM
model and the CTC decoder to produce a sequence of classification probabilities
corresponding to the input sequence. Next, the hypotheses of symbol segmentation and
symbol recognition were formed from the obtained probabilities. Finally, Stochastic
Context-Free Grammar (SCFG) with a list of predefined grammar rules was applied for
producing the recognition result based on these hypotheses obtained. By the context
information, it is expected to solve several ambiguous cases that the previous version
could not handle. We call the method Context SCFG (C_SCFG). Moreover, an n-gram
language model was applied as part of the post-processing of the top-5 best recognition
candidates and a large number of grammar rules was added to help the engine cover more
math expressions. The engine and the n-gram model were separately trained on the
CROHME 2016 training set and the corpus of LaTeX formulas from English Wikipedia
provided in CROHME 2016 [67], respectively. The detail of this recognizer is presented
in section 5.2.1.

Table 4.3 shows an improvement of the C_SCFG engine in terms of the average value of
the expression recognition rates, the F1-score of symbol recognition, and the F1-score of
spatial relationship recognition on the CROHME 2016 testing set, Dset_50, and
Dset_Mix. Because the parameters for combining features need to be trained, Dset_50
was divided into 5 subsets, with each engine trained by 4 subsets and tested for the
remaining subset; then, the performance for the 5 subsets are averaged (5-fold cross-
validation). Thus, values in each row for Dset_50 correspond to averages with standard
deviations for each engine. On the other hand, values for Dset_Mix correspond to
averages and standard deviations among its subgroups.

We obtained these values by using the LgEval tool proposed in [68]. Compared with the
state-of-the-art end-to-end OHME recognition system [40], which is an extension of the
record-breaking end-to-end OHME recognition method named TAP [27], our C_SCFG
engine is 3.75% point better in expression rate on the CROHME 2016 testing set.

4.4.1.3. Experiment settings

Experiments was conducted on an Intel Xeon CPU@3.30GHz Desktop PC.

44

We utilized the k-means algorithm for the clustering task using the Euclidean distance.
In addition, we initialized centroids by using k-means++ [69], which is a popular variant
of the k-means algorithm that tries to spread out initial centroids. To evaluate the proposed
features, we set the number of clusters as the number of categories in our experiments.

To evaluate the performance of single types of features and their combinations, we
implemented the experiments shown in Table 4.4 on the Dset_50 and Dset_Mix datasets.
Then, we compared the results using the original features with those using DbR to cluster
OHMEs. For DbR, we set the distance function d in Eq. (4) also as the Euclidean distance.

4.4.1.4. Evaluation

We evaluated the performance of the clustering task when applying single types of
features and combined features. Since this combination requires the weighting parameters
to form the distance metric, we used a 5-fold cross-validation for Dset_50 and Dset_Mix
in the same way as described in section 4.4.1.2. For feature combination, we firstly trained
the combining parameters by using the original features, then applied the same parameters
for DbR.

Table 4.3. Expression recognition rate and F1-score of symbol and
spatial relationship recognition.

Version Dataset
Expression

rate (%)

F1-score (%)

Symbols
Spatial

Relationships

Le et al.
[58]

CROHME
2016

43.94 65.81 83.27

Dset_50 71.65±5.67 85.94±2.90 95.07±1.52
Dset_Mix 14.70±21.86 78.79±11.88 75.58±21.54

C_SCFG

CROHME
2016

51.70 74.30 85.99

Dset_50 75.62±3.34 90.38±2.15 96.72±0.99

Dset_Mix 46.9±24.73 78.56±15.97 82.74±17.66

45

A. Experiment on Dset_50

Table 4.5 shows the purity for all the types of features and their combinations on the
Dset_50 dataset. The results show that we achieve the best value of purity around 0.992
when BoS with DbR is utilized. Moreover, BoS produces a better result compared with
the other types of features. The feature type of spatial relationships alone (E3) or that of
positions alone (E4) produces a low purity. We also find that adding positional
information to BoS or BoR, i.e., PbBoS (E5) and PbBoR (E6), does not increase purity.
Moreover, clustering with DbR yields better performance than using the original features.

Regarding feature combination, the combination of BoS, BoR, and BoP (E7) gives the
highest purity when using DbR. Combining PbBoS and PbBoR (E8) does not increase
purity. On the other hand, combining Dir with high-level features (E9, E10, and E11)

Table 4.4. Experiment settings on single types of features and their combinations

Feature
type Exp. Dir BoS BoR BoP PbBoS PbBoR

Single

E1 ✓ - - - - -

E2 - ✓ - - - -

E3 - - ✓ - - -

E4 - - - ✓ - -

E5 - - - - ✓ -

E6 - - - - - ✓

Feature
Combination

E7 - ✓ ✓ ✓ - -

E8 - - - - ✓ ✓

E9 ✓ ✓ ✓ ✓ - -

E10 ✓ ✓ ✓ - ✓ ✓

E11 ✓ ✓ ✓ ✓ ✓ ✓

Table 4.5. Experiments on single types of features and their combinations for Dset_50

and Dset_Mix.

Feature
type Exp.

Dset_50 Dset_Mix
Original features C_SCFG

+ DbR

Original
features +
C_SCFG

C_SCFG
+ DbR Old engine

[58] C_SCFG

Single

E1 0.866±0.03 0.882±0.08 0.716±0.14 0.649±0.15
E2 0.871±0.02 0.919±0.02 0.992±0.01 0.690±0.11 0.684±0.08
E3 0.758±0.10 0.787±0.11 0.774±0.10 0.569±0.16 0.576±0.16
E4 0.753±0.15 0.734±0.14 0.759±0.17 0.602±0.15 0.612±0.16
E5 0.851±0.01 0.764±0.08 0.769±0.07 0.729±0.15 0.696±0.15
E6 0.755±0.10 0.708±0.10 0.724±0.10 0.586±0.14 0.575±0.11

Feature
Combination

E7 0.857±0.03 0.922±0.03 0.990±0.01 0.674±0.17 0.693±0.15
E8 0.807±0.03 0.777±0.07 0.758±0.08 0.709±0.14 0.681±0.16
E9 0.904±0.03 0.923±0.03 0.972±0.04 0.726±0.12 0.755±0.17

E10 0.919±0.02 0.923±0.03 0.973±0.04 0.764±0.11 0.777±0.17
E11 0.894±0.01 0.933±0.03 0.925±0.05 0.753±0.13 0.745±0.14

46

works well when using the original features, but it decreases purity when applying DbR.
This phenomenon could be due to that BoS and DbR could achieve very high purity and
Dir becomes redundant for this dataset. Moreover, DbR works better than the original
features.

B. Experiment on Dset_Mix

Then, we evaluated our proposed method on the Dset_Mix dataset. Table 4.5 shows the
average values of purity on the 10 subgroups via a 5-fold cross-validation. Firstly,
directional features (E1) yield a comparable result with using the original features.
Secondly, within the single types of features, position-based BoS (PbBoS) in E5 achieves
the best performance. Thirdly, feature combinations show better performance than
individual types of features. Fourthly, DbR is not so efficient compared with the original
features. Fifthly, purity is not improved without using the directional features as in E7
and E8. However, with directional features, purity in E10, E11, and E12 is increased
significantly, where E10 yields the highest value of purity around 0.777 when using DbR.
This demonstrates the importance of combining low-level features and high-level features.
Overall, purity values obtained in this dataset are lower compared with those obtained in
the Dset_50 dataset.

This is because OHMEs in each subgroup are more similar to one another than those in
Dset_50, which reflects the complication in realistic answers. Distances among OHMEs
within the same category (intra-class distances) and distances among OHMEs belonging
to different categories (inter-class distances) are not significantly different such that the
DbR representation could not be effective.

Another reason for obtaining a low purity is that the number of clusters could be too small
for a similar set of 200 answers for each question. If human markers viewed a smaller
subset of answers without impure answers, they could mark each set more efficiently
compared to marking a larger set of answers with several impure ones.

In practice, human markers do not know the exact number of clusters (denoted as 𝑘𝑟𝑖𝑔ℎ𝑡)
for a set of OHMEs. Hence, they may set the number of clusters (denoted as k) as p

47

percent of the number of OHMEs (denoted as N). Obviously, k should not be equal to N
to benefit from clustering. To test this, we added another experiment on Dset_Mix by
using the setting that achieved the best performance on Dset_Mix to present purity values
when setting k as p percent of N and when increasing q times of 𝑘𝑟𝑖𝑔ℎ𝑡 . To avoid k
becoming large, we limited 1% ≤ 𝑝 ≤ 25% (2 ≤ 𝑘 ≤ 50) and 1 ≤ 𝑞 ≤ 6 (4 ≤ 𝑘 ≤ 60).
The average and standard deviation of purity, the marking cost (MC), and the number of
OHMEs of each cluster are shown in Figure 4.11. The results show that we could achieve
purity in the range of [0.85±0.14, 0.93±0.06] and [0.84±0.13, 0.93±0.07] when p is in
[5%, 20%] and q is in [1.5, 5.5], respectively. Regarding MC, we could achieve MC in
the range of [0.60±0.07, 0.63±0.03] and [0.60±0.08, 0.61±0.04] when p is in [5%, 20%]
and q is in [1.5, 5.5], respectively. With these settings of k according to p in [5%, 20%]
and q in [1.5, 5.5], the markers could benefit from clustering, where the clusters are quite
pure, the average number of OHMEs in each cluster is in [20±9, 5±4] and [24±13, 7±4],
and MC is reduced by around [0.37, 0.4] and [0.39, 0.41] than manually marking OHMEs,
respectively.

From this experiment, in the ideal case of the exact number of clusters, setting k as its q
times in some range such as [2, 4.5] in Figure 4.11(b) would be slightly better than setting

(a) Setting k as p percent of the number of OHME patterns.

(b) Setting k as q times of 𝑘𝑟𝑖𝑔ℎ𝑡 .

Figure 4.11. Average (lines) and standard deviation (light color areas) of purity, those of the
marking cost, and those of #OHMEs in each cluster for Dset_Mix with feature combination in

E10 for increasing number of clusters.

0.85 0.93
0.79

0.60 0.60 0.61 0.63 0.65

20
5

0
20
40
60
80
100
120
140

0

0.2

0.4

0.6

0.8

1

1% 5% 10% 15% 20% 25%

#O
H

M
Es

 in
 e

ac
h

cl
us

te
r

Pu
rit

y
&

m
ar

ki
ng

 c
os

t

p

Purity Marking cost #OHMEs

0.84
0.930.76

0.63
0.60

0.59

0.60

0.59

0.60

0.60

0.60

0.61

0.61

0.62

24
7

0
20
40
60
80
100
120
140

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
#O

H
M

Es
 in

 e
ac

h
cl

us
te

r

Pu
rit

y
&

m
ar

ki
ng

 c
os

t

q

Purity Marking cost #OHMEs

48

k with p percent of the number of OHMEs. In practice, however, 𝑘𝑟𝑖𝑔ℎ𝑡 is unavailable
before marking, so that k could be chosen as some percent of N.

C. Estimating the number of clusters

We also made an experiment to estimate k using two traditional indexes, i.e., Silhouette
width [70] and Hartigan index [71]. Silhouette width is a ratio-type index measuring the
ratio of within-cluster cohesion and between-cluster separation. Hartigan index is a
heuristic rule of thumb based on the Euclidean within-cluster sum of squares. We
estimated k values of subgroups on Dset_Mix by using the setting that achieved the best
performance on Dset_Mix. For both methods, we searched for k in the range of [2, 20]
for fair comparison. We measured the error of the estimation by using Relative Error (RE)
as shown in Eq. (12):

𝑅𝐸 =

|𝑘𝑒𝑠𝑡 − 𝑘𝑟𝑖𝑔ℎ𝑡|

𝑘𝑟𝑖𝑔ℎ𝑡

(12)

Table 4.6. Results of k estimation and marking cost (MC).

Subgroup 𝒌𝒓𝒊𝒈𝒉𝒕
Silhoutte Hartigan

𝒌𝒆𝒔𝒕 MC 𝒌𝒆𝒔𝒕 MC
1 10 4 0.79 8 0.71

2 5 3 0.78 5 0.78
3 6 2 0.81 6 0.59

4 5 2 0.82 4 0.74
5 5 2 0.77 5 0.51

6 7 2 0.86 6 0.71
7 4 2 0.72 5 0.55

8 6 2 0.76 6 0.68
9 4 2 0.76 6 0.54

10 4 18 0.55 16 0.55

Avg. & Std. of MC 0.76±0.08 0.64±0.09

 (Avg.: average, Std.: standard deviation)

Table 4.7. Comparison with other research on Dset_50 and Dset_Mix.

Type Method Dset_50 Dset_Mix
Offline
HMEs

Khuong et al. [13] 0.930±0.12 0.830±0.07
Nguyen et al. [14] 0.98 *0.723±0.15

DAC [74] 0.61 -
Siamese Net [19] 0.79 -

OHMEs Our: E2 + C_SCFG + DbR 0.992±0.01 0.684±0.08
Our: E10 + C_SCFG + DbR 0.973±0.04 0.777±0.17

 (*: our retested result)

49

where 𝑘𝑒𝑠𝑡 is estimated by these two methods. The marking costs (MCs) are presented in
Table 4.6. According to 𝑘𝑒𝑠𝑡, RE of Silhouette and Hartigan are 0.38±0.14 and 0.19±0.34,
respectively. RE and MC of the Hartigan index is significantly better than those of the
Silhoutte witdth. Although the variance of RE by Hartigan is large, its MC is acceptable.
Moreover, Figure 4.11(a) implies that when 𝑘𝑒𝑠𝑡 is in [10, 30], MC is still reduced by
around [0.24, 0.41]. Therefore, we can apply the Hartigan index in practice. However,
this 𝑘𝑒𝑠𝑡 is not the best for our experiment. Heuristically assigning k according to p
percent of N with 𝑝 ∈ [5%, 20%] is better than 𝑘𝑒𝑠𝑡 produced by the Hartigan index.
Hence, we consider this problem as a remaining work.

4.4.1.5. Comparing with other methods

We compare our results with recent research on clustering HMEs. So far, clustering
OHMEs is not shown on the common dataset, Table 4.7 shows comparison with
clustering offline HMEs converted from OHMEs in Dset_50 and Dset_Mix. Although
our method is for online patterns, it performs better than the methods using bag-of-
features [13], CNN-based features [14], Deep Adaptive Clustering (DAC) [72], and
Siamese Net [19] on Dset_50. However, the performance of our proposed method is still
lower than the offline bag-of-feature [73].

4.4.2. Experiments on generative sequence similarity function

This section presents the evaluation of our proposed SF on two answer datasets, i.e.,
Dset_Mix and NIER_CBT, by using the TAP recognizer proposed in [27] without the
language model. We name this modified recognizer as MTAP.

4.4.2.1. Datasets

50

NIER_CBT is a real answer dataset collected by a collaboration with National Institute
for Educational Policy Research (NIER) in Tokyo, Japan. NIER carried out math tests for
256 participants, consisting of 249 students of grade 11 and 7 students of grade 7 at nine
high schools. The participants answered a set of 5 questions within 50 minutes, then wrote
their results on iPad by using an Apple pen and a developed tool with OHMEs captured.
The details of the collection are presented in [74]. There are three sets of questions to
obtain 934 answers for 15 questions. Since our OHME recognizer was trained for 101
common math symbols that appeared in the dataset of CROHME [1], we removed 15
OHMEs that contain out-of-vocab symbols. The number of correct/incorrect answer

(a) (b)

Figure 4.13. Details of NIER_CBT. (a) shows the number of correct\incorrect categories in
each question, and (b) shows the number of correct\incorrect patterns in each question.

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

#C
at

eg
or

ie
s

Question ID

Incorrect answer categories

Correct answer categories

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

#S
am

pl
es

Question ID

Correct answer patterns

Incorrect answer patterns

Figure 4.12. Overview of TAP consisting of point-based features as the input (A), the
encoder part (B), the decoder part (C), and the output (D).

51

categories and the number of correct/incorrect answer patterns in NIER_CBT are shown
in Figure 4.13.

4.4.2.2. Online HME recognizer

The overview of MTAP is shown in Figure 4.12. It includes three main parts: the feature
extraction, the encoder, and the decoder.

A. Trajectory feature extraction

We utilized the set of point-based features used in [27]. An OHME is a sequence of
trajectory points of pen-tip movements. We denote the sequence of L points as
{𝑋1, 𝑋2, 𝑋3, … , 𝑋𝐿} with 𝑋𝑖 = (𝑥𝑖, 𝑥𝑖 , 𝑠𝑖) where (𝑥𝑖, 𝑦𝑖) are the coordination of each point
and 𝑠𝑖 is the corresponding stroke index of the i-th point. We store the sequence {𝑋𝑖} in
the order of writing process. Before extracting the features, we firstly interpolate and
normalize the original coordinates accoding to [75]. They are necessary to deal with non-
uniform sampling in terms of writing speed and the size variations of the coordinate by
using different devices to collect patterns. For each point, we extract an 8-dimensional
feature vector as follows:

 [𝑥𝑖, 𝑦𝑖 , 𝑑𝑥𝑖 , 𝑑𝑦𝑖, 𝑑
′𝑥i, 𝑑

′𝑦𝑖, 𝛿(𝑠𝑖 = 𝑠𝑖+1), 𝛿(𝑠𝑖 ≠ 𝑠𝑖+1)] (13)
where 𝑑𝑥𝑖 = 𝑥𝑖+1 − 𝑥𝑖, 𝑑𝑦𝑖 = 𝑦𝑖+1 − 𝑦𝑖 , 𝑑′𝑥𝑖 = 𝑥𝑖+2 − 𝑥𝑖 , 𝑑′𝑦𝑖 = 𝑦𝑖+2 − 𝑦𝑖 and 𝛿(∙) =
1 when the conditional expression is true or otherwise zero, which presents the state of
the pen (down/up).

B. Encoder

The encoder of MTAP is a combination of 4 stacked bidirectional GRUs [76] (BiGRUs)
with a pooling operator, as shown in Figure 4.12. Stacking multiple BiGRU layers could
make the model learn high-level representation from the input. The input

sequence of an upper BiGRU layer is the sequence of the hidden state of its lower BiGRU
layer. Each layer has 250 forward and 250 backward units. Since the encoded features of
two adjacent points are slightly different, the pooling layers are applied to reduce the
complexity of the model and make the decoder part easier to parse with a fewer number
of hidden states of the encoder. The pooling operator applied on the 2 top BiGRUs layers
is to drop the even time steps of the lower BiGRU layer outputs and receive the odd
outputs as the inputs. The hidden states outputted from the 4th layer are inputted to the
decoder.

C. Decoder

The MTAP decoder receives the hidden states {ℎ𝑖}𝑖=1,𝐾̅̅ ̅̅̅ from the encoder and generates
a corresponding LaTeX sequence of the input traces. The decoder consists of a word
embedding layer of 256 dimensions, two layers of unidirectional GRU with 256 forward
units, spatial attention, and a coverage model. The spatial attention points out the suitable

52

local region in {ℎ𝑖} to attend for generating the next LaTeX symbol by assigning higher
weights to a corresponding local annotation vector {𝑎𝑖}𝑖=1,𝐾̅̅ ̅̅̅. The coverage model is a 1-
dimensional convolutional layer to indicate whether a local region in {ℎ𝑖} has been
attended to the generation. The model is trained with an attention guider using the oracle
alignment information from the training OHMEs to force the attention mechanism to
learn well.

D. Training and testing

We trained MTAP by the training data of CROHME 2016 on an Intel Xeon
CPU@2.10GHz, a Tesla K80 GPU with 12Gb of RAM workstation. We removed
genuine OHME patterns in Dset_Mix for fair evaluation, because they are in the training
data set. The optimizer and hyperparameters are the same as in [27]. Then, we measured
the expression rate (ExpRate) and the character error rate (CER) on the testing data of
CROHME 2014, Dset_Mix, and NIER_CBT, as shown in Table 4.8. The recognition rate
of MTAP is 1.53 percentage points lower than the original TAP model on the CROHME
2014 testing set.

4.4.2.3. Experiment settings

We utilized the k-means algorithm and the complete linkage (CL) method for the
clustering task. For k-means, we applied the Euclidean distance and initialized centroids
using k-means++ [69], a popular variant of the k-means algorithm that tries to spread out
initial centroids. To evaluate the proposed features, we set the number of clusters as the
number of categories in our experiments.

4.4.2.4. Evaluation

In this section, we compare the proposed method with the previous methods. Moreover,
we conduct experiments to evaluate our proposed SF.

A. Comparison with other methods

So far, clustering OHMEs is not shown on the common dataset. Here, we compare with
our first approach presented in section 4.2.1. In addition, we compared with the method
using the edit distance, which is to compute the dissimilarity between two LaTeX

Table 4.8. ExpRate and CER of MTAP.

Dataset
MTAP TAP [15]

ExpRate (%) CER (%) ExpRate (%) CER (%)
CROHME 2014 testing set 48.88 14.54 50.41 13.39
Dset_Mix 34.62 17.51 - -
NIER_CBT 57.89 18.57 - -

53

sequences outputted from MTAP, denoted as M2. SbRs produced by the edit distance are
inputted to the k-means algorithm.

We carried out several experiments to evaluate the effectiveness of GSSF and SbR on the
representation. Firstly, we directly used the absolute of GSSF as the distance function to
input into CL, denoted as M3. Secondly, we used the SbR matrix produced by MTAP and
GSSF to input into CL by using the Euclidean distance, denoted as M4. Thirdly, we used
the SbR matrix produced by MTAP and GSSF to input into the k-means algorithm,
denoted as M5.

We also compared our proposed method with previous methods for clustering offline
HMEs (OfHMEs), which consists of the offline bag-of-features proposed by Khuong et
al. [13] (denoted as M6) and the CNN-based features proposed by Nguyen et al. [14]
(denoted as M7). OfHMEs are converted from OHMEs. We used a symbol classifier to
extract the offline bag-of-features in M6. We also trained a CNN model to extract spatial
classification features for M7. Those models in M1, M6, and M7 were trained in the same
dataset with MTAP.

Table 4.9 shows that our proposed GSSF combined with MTAP, i.e., M3 and M5,
outperforms M1, M2, and M7 in purity and MC on both Dset_Mix and NIER_CBT. M4
has slightly lower performance than M1 on Dset_Mix but it seems to be comparable. Also,
M3 and M4 have lower performance than M6 on Dset_Mix. M5 yields the best
performance on Dset_Mix, while M3 performs best on NIER_CBT. However, M5
achieves a high purity on both datasets. Regarding MC, M5 achieves the marking cost of
around 0.556 and 0.702 in Dset_Mix and NIER_CBT. Consequently, the marking cost is
reduced by 0.444 and 0.298 than manual marking.

Table 4.9. Comparisons with other methods of clustering HMEs. Values are presented in
form of “average value (standard deviation)”

HME
type

Name Features Clustering
algorithm

Dset_Mix NIER_CBT
Purity MC Purity MC

O
H

M
E

Ours (M1) Online bag-of-
features + DbR

k-means 0.777
(0.17)

0.629
(0.09)

0.898
(0.05)

0.702
(0.06)

Ours (M2) MTAP + Edit
distance + SbR

k-means 0.638
(0.12)

0.700
(0.05)

0.867
(0.05)

0.725
(0.07)

Ours (M3) MTAP + GSSF CL
(GSSF)

0.806
(0.10)

0.611
(0.05)

0.921
(0.05)

0.698
(0.06)

Ours (M4) MTAP + GSSF
+ SbR

CL
(Euclidean)

0.775
(0.15)

0.633
(0.07)

0.920
(0.04)

0.700
(0.06)

Ours (M5) MTAP + GSSF
+ SbR

k-means 0.916
(0.05)

0.556
(0.03)

0.915
(0.03)

0.702
(0.07)

O
fH

M
E Khuong et

al. (M6)
Offline bag-of-
features

k-means 0.841
(0.15)

0.595
(0.07)

0.834
(0.07)

0.739
(0.08)

Nguyen et
al. (M7)

CNN-based
features

k-means 0.723
(0.16)

0.653
(0.08)

0.829
(0.06)

0.744
(0.06)

54

There are some discussions based on the results of M3, M4, and M5. Firstly, our GSSF
without SbR works well when using the CL method on NIER_CBT. Secondly, GSSF
combined with SbR achieves more stable performance when using the k-means algorithm
than the CL method with the Euclidean distance.

B. Evaluations on our similarity function

We conducted experiments on forming our proposed GSSF. According to Eq. (7), GSSF
is formed by taking an average of two similarity components 𝐹(𝑆1|𝑆2) and 𝐹(𝑆2|𝑆1)
since we aim to make SF symmetric. We compare GSSF with three possible variants as
follows:

• We directly use function 𝐹(𝑥|𝑦) as SF so that SbR of 𝑋𝑖 in Eq. (8) is as
[𝐹(𝑋𝑖|𝑋1),… , 𝐹(𝑋𝑖|𝑋𝑖),… , 𝐹(𝑋𝑖|𝑋𝑁)] . Since 𝐹 is not a symmetric function, we
denote this SF as Asymmetric_GSSF.

• We define two SFs by getting the minimum and maximum value between 𝐹(𝑆1|𝑆2)
and 𝐹(𝑆2|𝑆1) instead of taking the average of them. We denote them as Min_GSSF

and Max_GSSF, respectively.

Table 4.10 presents the performance of our proposed SF with Asymmetric_GSSF,
Min_GSSF, and Max_GSSF in terms of purity by using the k-means algorithm. Our
GSSF performs better than the other SFs on Dset_Mix and NIER_CBT, which implies
that taking the average of two similarity components is better than using them directly or
taking the minimum or maximum value between them. However, Max_GSSF yields
comparable results with GSSF.

4.4.2.5. Visualizing similarity-based representation matrix

 Table 4.10. Comparisons with other variants of SFs.

Method
Purity

Dset_Mix NIER_CBT
Asymmetric_GSSF 0.857±0.07 0.907±0.05
Min_GSSF 0.861±0.08 0.907±0.04
Max_GSSF 0.909±0.08 0.913±0.04
GSSF 0.916±0.05 0.915±0.03

55

This section shows the visualization of the SbR matrix to see how this representation
discriminates for clustering. Figure 4.14 presents the SbR matrix of the subgroup 3 and 8
in Dset_Mix. OHMEs belonging to the same class are placed together in both dimensions.
For subgroup 3, its categories are significantly distinct. We can see that SbR well
represents for OHMEs in the same category. The similarity scores among intra-category
OHMEs almost near 0, and they are much higher than those among inter-category
OHMEs. On the other hand, some categories in subgroup 8 are slightly different, such as
categories 𝐶3 and 𝐶5 or category 𝐶4 and 𝐶6 , and SbR among them is not so different.
Purity on subgroups 3 and 8 are 0.984 and 0.832, respectively.

4.5. Conclusions
To provide computer-assisted marking for handwritten mathematics answers, this chapter
presented two approaches for clustering OHMEs: (1) multi-level bag-of-features and (2)
a generative sequence similarity function (GSSF) based on the Seq2Seq recognizer.

For the first approach, we presented multi-level bag-of-features consisting of a low-level
type of image-based features from an OHME sample and high-level recognition-based
symbolic and structural types of features obtained from an OHME recognizer. We

(a) SbR matrix of subgroup 3

(b) SbR matrix of subgroup 8

Figure 4.14. Visualization of the SbR matrix of the subgroup 3 and 8 before normalizing them
into [0, 1].

56

presented DbR to avoid the problem of applying the Euclidean distance on sparse feature
spaces. We also proposed an approach to combine all types of features to enhance the
performance of clustering OHMEs. We conducted experiments by using k-means++ on
the Dset_50 and Dset_Mix datasets. On Dset_50, which contains OHMEs with distinctly
different math expressions, BoS with the DbR method alone achieved the highest
performance without combining other types of features. Moreover, as the recognition
accuracy of symbols and spatial relationships was higher, purity was improved. On
Dset_Mix, which is more similar to the realistic OHME answers, combining low-level
features (Dir) and high-level features (BoS, BoR, PbBoS, and PbBoR) with DbR was
better than using the individual types of features and some other combinations. For
Dset_Mix, setting the number of clusters according to the number of answers could be
beneficial.

For the second approach, we presented a similarity-based representation (SbR) and a
generative sequence similarity function (GSSF) based on the Seq2Seq recognizer for
clustering to provide computer-assisted marking for handwritten mathematics answers
OHMEs. The SbR matrix is then inputted to the k-means algorithm by setting the number
of clusters as the number of categories. We achieved around 0.916 and 0.915 for purity
and around 0.556 and 0.702 for the marking cost on the two answer datasets, Dset_Mix
and NIER, respectively. Our method outperforms other methods on clustering HMEs.

57

CHAPTER 5. Online Handwritten Mathematical Expression
Recognition

5.1. Introduction
There are challenging problems in OHME recognition. One problem is that there are lots
of ambiguities in the interpretation of OHMEs. For instance, there exist math symbols
that are very similar in the writing style, such as “0”, “o”, and “O” or dot and comma.
These ambiguities challenge OHME recognition without utilizing contextual information.
In this thesis, we propose two methods to address this problem.

The first method is to utilize bidirectional context from input stroke sequences for symbol
segmentation and classification using deep Bidirectional Long-Short Term Memory
(BLSTM) encoder. Discriminating ambiguous symbols requires the adoption of the
context from other strokes. Conventional methods sequentially implement symbol
segmentation and symbol classification so that the classification step is made by only
using the local context obtained from segmentation hypotheses. Therefore, the ambiguous
symbols are challenging to be distinguished in the symbol classification step. In
handwritten text recognition, temporal recognition of characters benefits from
bidirectional context of preceding strokes and succedding strokes by a Recurrent Neural
Network (RNN) [77]. Instead of considering isolated character recognition, we consider
recognition of the symbols in an HME as temporal recognition, where the bidirectional
context from input stroke sequences is used for symbol segmentation and classification.
The deep BLSTM processes an input HME as a stroke sequence to produce a sequence
of classification probability corresponding to the input sequence. The segment hypotheses
are produced by making queries to retrieve the symbol recognition probability. We also
derive the method to detect junk symbols from the retrieved recognition probability
without learning junk symbols.

The second method is to utilize a math language model combined with OHME
recognizers. Here, we present the first transformer-based math language model (TMLM).
Based on the self-attention mechanism, the high-level representation of an input token in
a sequence of tokens is computed by how it is related to the previous tokens so that
TMLM can capture long dependencies and correlations in MEs. Then, we propose a
method to combine TMLM into a stochastic context-free grammar-based HME
recognizer. In our experiments, we show that our TMLM outperforms the traditional N-
gram model and RNNLM in the task of modeling MEs.

The rest of this chapter is organized as follows. Section 5.2 describes our proposed
methods in detail. Section 5.3 presents our experiments for evaluating the proposed
method. Finally, section 5.4 concludes our work.

58

5.2. Proposed methods
In this section, we firstly present a method for online handwritten math symbols
segmentation and classification for improving OHME recognition. Then, we present a
transformer-based math language model.

5.2.1. Online handwritten mathematical symbol segmentation and recognition with
bidirectional context

We improve the symbol recognition of HME by using a deep BLSTM-CTC model to
encode global context information.

5.2.1.1. Bidirectional context for symbol classification

We improve the context for symbol classification by considering the classifier, which
incorporates the whole input sequence instead of individual handwritten symbols. An
input sequence is processed by bidirectional recurrent neural networks where the
classification of each time step can access the context from both forward and backward
directions of input. The classification of symbols at every time step is used for retrieving
the classification of segmentation hypotheses.

5.2.1.2. Temporal classification with RNN

We apply a deep Bidirectional Long Short-Term Memory (BLSTM) to incorporate
bidirectional context for symbol classification as shown in Figure 5.1. A BLSTM is a
combination of two LSTM layers which process the input in forward and backward

Figure 5.1. Symbol classification by strokes query.

59

directions [78]. The forward and backward context by the two LSTM layers is combined
and feed to the next BLSTM layer in the networks. Deep BLSTM stack multi-level of
BLSTM to learn high-level features. LSTM [79] is an advanced architecture of RNN
designed to overcome the problem of vanishing or exploding gradients allow it to
incorporate long-range context for improving handwriting recognition.

CTC [77] is an objective function for RNN designed to make RNN learn directly from an
input sequence to a target sequence without requiring pre-segmented input. The alignment
between the input sequence and output label sequence is learned automatically with the
assumption that the two sequences are in the same order.

CTC introduces a label called ‘blank’ that denotes no label. It defines the output yt of
RNN for each time 𝑡 with respect to an input sequence 𝑥 length 𝑇 as the probability
distribution over a fixed set of classes 𝐶 and the ‘blank’ label.

 𝑦𝑘
𝑡 =  𝑝(𝑘,  𝑡 | 𝑥), ∀𝑘 ∈ 𝐶 ∪ 𝑏𝑙𝑎𝑛𝑘 (14)

where ykt is the output yt for class 𝑘.

An output label sequence 𝑙 is obtained by a reduction process 𝐵 over a path 𝜋1:𝑇 =
𝑘1, 𝑘2, . . , 𝑘𝑇 through the lattice of output labels, i.e., 𝑘𝑖 ∈ 𝐶 ∪ 𝑏𝑙𝑎𝑛𝑘, 𝑖 = 1, 𝑇̅̅ ̅̅ ̅ . The
reduction process firstly removes repeated labels, then removes ‘blank’ labels in this path.

 𝑝(𝑙, 𝜋1:𝑇|𝑥) = 𝑝(𝜋1:𝑇|𝑥) =∏𝑝(𝑘𝑡 , 𝑡|𝑥)

𝑇

𝑡=1

 (15)

where 𝑙 = 𝐵(𝜋).

The probability for output label sequence 𝑙 from an input sequence 𝑥 is the total
probability of all the paths 𝜋1:𝑇, where each path is reduced into 𝑙.

 𝑝(𝑙|𝑥) = ∑ 𝑝(𝑙, 𝜋1:𝑇|𝑥)

𝜋1:𝑇∈𝐵−1(𝑙)

 (16)

where 𝐵−1(𝑙) is the set of all paths which reduced into l. 𝑝(𝑙|𝑥) is calculated by CTC
forward-backward algorithm applied to the temporal classification output 𝑦 [77].

For a pair of input sequence 𝑥 and output sequence 𝑙 from the training dataset, the
network is trained by minimizing CTC loss obtained by:

 𝐿𝑜𝑠𝑠 = −𝑙𝑜𝑔(𝑝(𝑙|𝑥)) (17)

5.2.1.3. Symbol classification by strokes query

As for the traditional symbol classifier, a sequence of strokes is inputted to the recognizer.
Instead of inputting the stroke sequence to the classifier, we use it to retrieve the
classification results from temporal classification.

60

We first obtain the temporal classification output y for an input sequence of 𝑛 strokes
𝑥 = (𝑠1, 𝑠2, … , 𝑠𝑛) by deep BLSTM. Let 𝑟1, 𝑟2, … , 𝑟𝑛 denote the range of time steps
corresponding to 𝑠1, 𝑠2, … , 𝑠𝑛 , respectively. For a hypothesis ℎ = (𝑠𝑖, . . , 𝑠𝑗) ⊂
(𝑠1, 𝑠2, … , 𝑠𝑛) we obtain the query output 𝑦′ = 𝑦(𝑟𝑖..𝑟𝑗) as the output 𝑦 in range of time
steps corresponding to hypothesis ℎ.

The probability of a symbol hypothesis ℎ belonging to class 𝑐 derived from (16) is
described as follows:

 𝑝(𝑐|ℎ) = ∑ 𝑝(𝑐, 𝜋′|𝑥)

𝜋′∈𝐵−1(𝑐)

 (18)

where 𝜋′ is a path through the time steps of the hypothesis ℎ produces the 𝑐 -class symbol.

The probability 𝑝(𝑐|ℎ) is calculated by the CTC forward-backward algorithm on the
query output 𝑦′ as similar to 𝑝(𝑙|𝑥). However, applying the algorithm for all the symbol
classes in each recognition is not practical due to its complexity. For implementation, we
make a fast approximation of (18) as the probability of the highest path to produce c-class
symbol:

 𝑝(𝑐|ℎ) ≈ max
𝜋′∈𝐵−1(𝑐)

𝑝(𝑐, 𝜋′|𝑥) (19)

The best path to produce 𝑐 -class symbol would have the form of 𝜋 ′̂ =
{(blank)u(c)v(blank)w}, 𝑢, 𝑤 ≥ 0, 𝑣 ≥ 1, where (𝑠𝑦𝑚𝑏𝑜𝑙)𝑛 denotes the repeat of the
symbol 𝑛 times. We approximate the probability of outputing c-class through 𝜋 ′̂ by

 𝑝(𝑐, 𝜋 ′̂|𝑥) = ∏ 𝑦′
𝑏𝑙𝑎𝑛𝑘

𝑡

𝑡; 𝜋′̂𝑡=𝑏𝑙𝑎𝑛𝑘

× ∏ 𝑦′
𝑐

𝑡

𝑡; 𝜋′̂𝑡=𝑐

 (20)

where 𝑡 is the time step of the query output 𝑦′, 𝑦′
𝑘

𝑡 denotes the probability of class 𝑘 at
the time step 𝑡.

From Eq. (19) and Eq. (20) we obtain the approximation for symbol classification 𝑝(𝑐|ℎ)
on the query output 𝑦′. The approximation in Eq. (20), however, requires finding the best

Figure 5.2. Temporal classification probability: (a) single symbol (b) two symbols.
Dashed line shows the probability of ‘blank’ symbol.

61

path 𝜋 ′̂ for all the class c in each symbol recognition. We make it simpler by considering
∏ 𝑦′

𝑐

𝑡
𝑡; 𝜋′̂𝑡=𝑐

 as the symbol recognition probability and ∏ 𝑦′
𝑏𝑙𝑎𝑛𝑘

𝑡
𝑡; 𝜋′̂𝑡=𝑏𝑙𝑎𝑛𝑘

 as the
penalty if the hypotheses contain more than one symbol. We visualize symbol recognition
probability for two cases of one-symbol hypotheses and two-symbols hypotheses in
Figure 5.2. Typically, the output yields the number of peaks as the same as the number of
symbols and the remaining are ‘blank’. For the case of one symbol, ∏ 𝑦′

𝑐

𝑡
𝑡; 𝜋′̂𝑡=𝑐

 is at the

peak and there is no penalty since 𝑦′
𝑏𝑙𝑎𝑛𝑘

𝑡 is equal to 1.0 at the base. For the case of two
or more symbols, ∏ 𝑦′

𝑐

𝑡
𝑡; 𝜋′̂𝑡=𝑐

 is at the highest peak and the penalty could be determined

by min
𝑡,𝜋′̂𝑡=𝑏𝑙𝑎𝑛𝑘

𝑦′
𝑏𝑙𝑎𝑛𝑘

𝑡 , which is the point of the second-best peak.

Let 𝑐’̂ be the symbol at the second-best peak and 𝑛𝑠 is the number of recognized symbols
in the hypotheses, we obtain the symbol probability as follows:

 𝑝(𝑐|h) ≈ max
𝑡
𝑦′
𝑐

𝑡
× (1 −max

𝑡
𝑦′
𝑐’̂

𝑡
)
𝑛𝑠−1

 (21)

where the penalty (1 − max
𝑡
𝑦′
𝑐’̂

𝑡
)
𝑛𝑠−1

 is active when there is more than one symbol in

the hypotheses.

For implementation, we obtain 𝑛𝑠 by making the best path decoding method [77] and find
𝑐’̂ by getting the second-best symbol of the probability 𝑝(𝑐|ℎ) = max

𝑡
𝑦′
𝑐

𝑡 . There are

cases that 𝑐’̂ is not obtainable by 𝑝(𝑐|ℎ) due to it is the same with the best symbol.
Therefore, we further add a penalty of 0.5 to deal with the problem since a peak is
typically larger than 0.5. We obtain the formula as in (9):

 𝑝(𝑐|h) ≈ max
𝑡
𝑦′
𝑐

𝑡
× (1 −max

𝑡
𝑦′
𝑐’̂

𝑡
)
𝑛𝑠−1

(0.5)𝑛𝑠−1 (22)

The method is also appropriate for delayed handwritten strokes, where the strokes of the
current symbol are written after the strokes of other symbols.

For stroke query classification, the alignment must be correct at stroke level. The
requirements are in the formula:

 𝐿𝑜𝑠𝑠 = −∑𝑙𝑜𝑔(𝑝(𝑐|ℎ)) (23)

where the pair (h, c) is obtained from the ground truth of stroke label alignment.

We may use the alignment loss with stroke symbol annotations for providing correct
alignment for the networks to learn. As in experiments, we found that the model could
learn proper stroke alignment without supervised alignment annotations. The alignment
could be learned correctly as a similar mechanism of weakly supervised learning for
object detection by CNNs [80,81].

5.2.1.4. Detect junk symbols

62

The probability of junk class is obtained from the penalty for the hypotheses containing
more than one symbol as in Eq. (22):

 𝑝(𝑗𝑢𝑛𝑘|h) ≈ 1 − (1 −max
𝑡
𝑦′
𝑐’̂

𝑡
)
𝑛𝑠−1

(0.5)𝑛𝑠−1 (24)

We can also obtain it after the probability for all the symbols is calculated:

 𝑝(𝑗𝑢𝑛𝑘|h) = 1 −∑𝑝(𝑐|ℎ)

𝑐∈𝐶

 (25)

5.2.1.5. Online features

For online handwriting recognition, various features have been studies [82,83]. Some
spatial features such as distance and differences (∆𝑥 and ∆𝑦) between two adjacent
coordinates, pen up/down information, curvature at each point, etc. Also, aspect and
curliness of trajectory, stroke slope and linearity are applied as well. All of the above
features are point-based features, i.e., they are extracted from each point of pen trajectory.
Hence, they are known as local features.

In our experiment, input stroke sequences are firstly sampling the coordinates by Ramer
methods [84]. For each sampled point, we then extract four basic features: the sine and
cosine of the writing directions, the normalized distance between the preceding and the
succeeding points of the current point, and a binary value of pen state (pen-up/pen-down).

5.2.2. Transformer-based math language model

Given a sequence of tokens 𝑋 = (𝑥1, 𝑥2… , 𝑥𝑁), constructing a language model is to
estimate the joint probability 𝑃(𝑋), which is often auto-regressively factorized as 𝑃(𝑋) =
∏ 𝑃(𝑥𝑡|𝑋<𝑡)𝑡 where 𝑋<𝑡 = (𝑥1, … , 𝑥𝑡−1). According to this factorization, the problem
reduces to estimating each conditional factor 𝑃(𝑥𝑡|𝑋<𝑡). In this thesis, our proposed
model with a self-attention mechanism encodes the context 𝑋<𝑡 to produce the categorical
probability of the token 𝑥𝑡.

In this section, we first describe our proposed TMLM, which is mainly based on [85].
Then, we present a method for combining our model with an HME recognizer.

5.2.2.1. Proposed language model

TMLM consists of three main parts: an input embedding layer, a positional encoding layer
(PE), and a stack of transformer layers, as shown in Figure 5.3. First, sequential input
tokens {𝑥1, 𝑥2, … , 𝑥𝑁} are fed into the input embedding to embed the categories of
discrete tokens into a continuous space for better representation. Secondly, each
embedded vector according to each input token is added by a PE vector to present the
token’s position in the sequence. The detail of the PE is presented later in this section.
Thirdly, the outputs of the input embedding, and positional encoding are passed into

63

stacked transformer layers to learn high-level representation based on the self-attention
mechanism. Finally, the output of the top transformer layer is input to a softmax layer to
obtain the categorical probability for the token 𝑥𝑡 given {𝑥1, … , 𝑥𝑡−1}. Although all input
tokens are fed into our model at the same time, the model is restricted to attend only
tokens on the left side of 𝑥𝑡 to produce 𝑃(𝑥𝑡|𝑥1, … , 𝑥𝑡−1) by a mask in the transformer
layer.

The architecture of the transformer layer is based on the decoder of the conventional
transformer-based model [52]. It consists of a masked multi-head self-attention (MMSA),
layer normalization [86], and a feedforward neural network, as shown in Figure 5.3. In
addition, residual connections are added for the model to learn better. Here, we present
MMSA and PE, which play important roles in our model.

A. Masked multi-head self-attention

This layer receives the representation of input tokens and outputs the higher
representation for the tokens based on how each token is related to others. MMSA
includes multiple attention functions, which allow the model to attend information from
different representation subspace. We firstly present a masked single-head self-attention.

A traditional attention function can be described as the mapping of a query and a set of
key-value pairs to produce an output. Note that the query, the keys, and the values are all
vectors. The output is a weighted sum of the values, where the weight assigned to each
value is computed by a compatibility function of the query with the corresponding key of
the value.

The masked single-head self-attention function, called scaled dot-product attention
(SDPA), are also based on the queries (Q), the keys (K) of dimension 𝑑𝑘, and the values

Figure 5.3. Overview of the proposed transformer-based language model with two
transformer layers.

…

Left-to-right masked multi-
head self-attention

Add & Norm
Transformer layer

Transformer layer
Feedforward Neural Net

Add & Norm

…

…

…

…

Softmax

Input embedding layer

Positional encoding layer
+

64

(V) of dimension 𝑑𝑣 as shown in Figure 5.4(a). We compute the dot products of the query
with all keys, then scale them by √𝑑𝑘. Next, we apply a mask to restrict the model to
attend only the left side of the current predicted token. We then apply a softmax function
to obtain the weights on the values. The output of this attention function is formulated as
follows:

 𝐴𝑡𝑡(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 (26)

SDPA is called a “head” in MMSA. The architecture of MMSA including h heads is
shown in Figure 5.4(b). With multiple heads, we project the queries, keys, and values h
times with three different learnable linear projections. On each of these projected versions
of queries, keys, and values, we then perform SDPAs in parallel. Then, we concatenate
their outputs and once again project to obtain the final output of MMSA.

B. Positional encoding

Since tokens (𝑥1, 𝑥2, … , 𝑥𝑁) are input to our model at the same time and there is no
convolutional/recurrent layer, the model cannot exploit the positional information of
tokens. It is a serious problem for the task of language modeling. To address it, we utilize
PE having the same dimensionality as the input embedded vector, 𝑅𝑁×𝑑𝑒𝑚𝑏𝑒𝑑 (𝑑𝑒𝑚𝑏𝑒𝑑 is
the dimension of the input embedded vector). Then, we add PE to the input embedded
vector to provide the positional information for our model. PE of the p-th token and the
i-th dimension is computed by the sine and cosine function as follows:

 𝑃𝐸(𝑝, 𝑖) = {
sin (

𝑝

10000𝑖/𝑑𝑒𝑚𝑏𝑒𝑑
) 𝑖𝑓 𝑖 𝑖𝑠 𝑒𝑣𝑒𝑛

cos (
𝑝

10000(𝑖−1)/𝑑𝑒𝑚𝑏𝑒𝑑
) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (27)

(a) (b)

Figure 5.4. Illustration of scale dot-product attention and masked multi-head attention.

MatMul

Scale

Softmax

MatMul

Q K V

Scale dot-product attention (SDPA)

Mask
…

h heads

Q K V

Linear Linear Linear

Scale dot-product attention

Concat

Linear

Masked multi-head self-attention (MMSA)

65

5.2.2.2. Combining language model with HME recognizer

In this study, we use a language model to sort the top-M best candidates outputted from
the stochastic context-free grammar-based HME recognizer. Given M candidates
{𝑐1, 𝑐2, … , 𝑐𝑀} of LaTeX sequences and their corresponding scores, the combined scores
are computed as follows:

 𝑆𝑐𝑜𝑟𝑒𝑐𝑜𝑚𝑏(𝑐𝑖) = 𝑆𝑐𝑜𝑟𝑒𝑟𝑒𝑐𝑜𝑔(𝑐𝑖) + 𝛼 × 𝑆𝑐𝑜𝑟𝑒𝐿𝑀(𝑐𝑖) (28)
where 𝑆𝑐𝑜𝑟𝑒𝑟𝑒𝑐𝑜𝑔(𝑐𝑖) and 𝑆𝑐𝑜𝑟𝑒𝐿𝑀(𝑐𝑖) are the scores of the i-th candidate, 𝑐𝑖, from the
HME recognizer and the language model, respectively. 𝑆𝑐𝑜𝑟𝑒𝑐𝑜𝑚𝑏(𝑐𝑖) is the combined
score of 𝑐𝑖 . 𝛼 is a weighting parameter to balance between recognition and language
scores. Note that 𝑆𝑐𝑜𝑟𝑒𝐿𝑀(𝑐𝑖) is the sum of logarithms of conditional probabilities output
from the language model and normalized by the length of the candidate, 𝑐𝑖 . For this
combination method, we refer to the HME recognizer producing 𝑆𝑐𝑜𝑟𝑒𝑟𝑒𝑐𝑜𝑔(𝑐𝑖) based
on the sum of logarithms of probability terms. The candidate having the highest combined
score is the final recognition result.

5.3. Experiments
In this section, we present evaluations of our proposed method for improving OHME
recognition on the CROHME datasets.

5.3.1. Experiments on online handwritten mathematical symbol segmentation and
recognition

In this section, we conducted the experiments to assess the performance of context for
mathematical symbol classification and the overall performance for ME recognition. The
deep BLSTM was trained using the Tensorflow library. The experiment of the recognition
system was run on an Intel Core i9 9900X CPU@3.5 GHz desktop PC.

5.3.1.1. Dataset

We conducted the experiments on CROHME 2016 competitions [67] for both the isolated
symbol recognition and mathematical expression recognition. The detail of the datasets
used for training, validation and testing is shown in Table 5.1. The number of symbol’s
classes is 101.

Table 5.1. CROHME 2016 dataset

 Train Validation Test
Symbols 85802 10061 10019

Junk symbols - - 8416

Expressions 8836 986 1147

66

We extracted a supervised label sequence of symbols for each mathematical expression
from the stroke-level annotations in the dataset. The label sequence is represented in the
same order with the writing order of strokes.

5.3.1.2. Experimental settings

We use a stack of three BLSTM layers. Each BLSTM contains two LSTM layers with
128 cells. The outputs of each time step by two LSTM layers are concatenated into a
feature vector of 256 dimensions before input into the next BLSTM layer. We trained the
networks by Stochastic Gradient Descent (SGD) with a learning rate of 0.0001 and a
momentum of 0.9.

For evaluation, we evaluated the symbol classification by stroke query in temporal output
and evaluated the expression rate in recognizing HME. To evaluate junk symbol detection,
we used the same evaluation method of false acceptance rate (FAR) and true acceptance
rate (TAR) as in [67]. Here, accepted symbols or accepted ‘junk’ means the symbols or
‘junk’ are classified as valid symbols by the system.

TAR =

{accepted symbols}

{total symbols}

(29)

FAR =

 # {accepted junk}

{total junk}
 (30)

5.3.1.3. Results

We show the results of symbol classification with context and without context in Table
5.2. The model with context is named BLSTM_CTC and that without context is named
BLSTM_iso. The architecture of BLSTM_iso is also composed of three BLSTM layers
of 128 cells each. With bidirectional context, the model better learns symbol classification
due to the reduction of ambiguous symbols. Consequently, symbol classification results
in test set improve from 89.55% to 92.30% as a reduction of 26.32% of the classification
error. The recognition rate almost comparable with MyScript and Tokyo, although
MyScript used additional training sets and Tokyo used a combination of online and offline
recognizers. For junk symbol detection, BLSTM_CTC got the best TAR of 98.03%,

67

which is important since it rejects fewer symbols. Without training on junk symbols,
BLSTM_iso is unable to reject junk symbols as FAR being 89.76%.

We notice the improvements in recognition of ambiguous symbols that are difficult to
discriminate without context. Table 5.3 shows the differences of recognition rate by
symbol class by the recognition system with and without context. The symbols of \prime,
O, V, C, X which are unable to recognized by the system without context, can be
recognized by the system with context.

Although symbol recognition has been improved by using the context, the recognition
rate of almost ambiguous symbols is still around 40%. Moreover, there are some symbols
which their recognition rate is decreased when applying the context. This denotes that
there is still a room to encode better context or combine the methods using and without
using context to enhance the performance of recognizing the symbols.

We verify the effect of the improvement to the performance of the HMEs recognition.
We combine the symbol recognition with an SCFG based parser to build an online HMEs

Table 5.2. Symbol classification in CROHME 2016.

 101
classes

102
classes

TAR FAR

MyScript 92.81 86.77 89.82 11.16

Tokyo [94] 92.27 - - -

RIT [95] 88.85 83.34 95.86 19.71

BLSTM_CTC 92.30 84.82 98.03 23.24

BLSTM_iso 89.5 50.79 84.86 89.76

Table 5.3. Class-based recognition comparison.

 Symbols
No context With context

Correct
Most

confusion
Correct

Most
confusion

Improved

\prime 0.00 1 (0.55) 0.38 , (0.23)
O 0.00 0 (0.91) 0.33 0 (0.67)
V 0.00 v (0.73) 0.33 v (0.60)
C 0.06 c (0.87) 0.47 c (0.36)
X 0.07 x (0.80) 0.41 x (0.46)
. 0.19 - (0.33) 0.89 1 (0.05)
s 0.24 S (0.67) 0.43 5 (0.23)
, 0.34) (0.22) 0.85 1 (0.14)

Degraded

\lambda 0.43 h (0.29) 0.00) (0.40)
\div 0.89 = (0.11) 0.11 + (0.39)
Y 0.15 y (0.77) 0.12 y (0.88)

\sigma 0.54 \theta
(0.38) 0.13 \infty

(0.25)
\mu 0.71 u (0.14) 0.14 u (0.86)

68

recognition module. The system with BLSTM_iso uses the segmentation provided by Le
et al. [87]. We then evaluate the module on CROHME 2016 and show the results in Table
IV. From the results, the recognition rate of HMEs by using the CTC based symbol
recognition is 44.81%, which is nearly 17 points higher than that of 27.72% by the model
using the BLSTM based symbol recognition. Moreover, the recognition rate with the
number of errors less or equal than 1 and 2 are also increase to 57.02% and 60.94%, which
are higher than those recognition results of the module using BLSTM with additional junk
pruning provided by BLSTM_CTC. The results show that the better symbol recognizer
helps to recognize HMEs more correctly.

We also compare the HMEs recognition module with other state-of-the-art methods on
CROHME 2016 and show the results in Table 5.4. Details of other works can be found
in the CROHME competition [67]. We can see that our method using BLSTM_CTC
symbol recognizer accounts for a competitive result compared with other methods.

Recognizing isolated characters one-by-one incurs the symbol recognition complexity of
𝑜(𝑛2) for an 𝑛 -strokes expression while recognizing by CTC only performs once.
Symbol query does not need much calculation; therefore, the recognition system largely
speeds up. Theoretically, recognizing by stroke query incurs symbol recognition
complexity of 𝑜(1) for an HME.

Table 5.4. Expression rate (%) compare with state-of-the-arts on CROHME 2016.

System
Expr. Rate

 (%)
<= 1

error
<= 2

errors
Wiris 49.61 60.42 64.69

Tokyo [87] 43.94 50.91 53.70

Sao Paolo [88] 33.39 43.5 49.17

Nantes 13.34 21.02 28.33

TAP [27] 57.02 72.28 75.59

BLSTM_iso 16.56 20.66 22.84

BLSTM_iso+JunkPrun 27.72 37.31 42.28

BLSTM_CTC 44.81 57.02 60.94

69

We show the recognition time of the two systems with pruning by segmentation and
pruning by junk symbol detection in Figure 5.5. Junk symbol detection makes slightly
better than rejection by segmentation classifier. Using a CTC classifier with a stroke
query clearly reduces the recognition time even for ME with a large number of strokes.

5.3.2. Experiments on transformer-based math language model

In this section, we present evaluations for our proposed TMLM on CROHME datasets.

5.3.2.1. Dataset

We uses a corpus of 68,862 LaTeX sequences provided in CROHME 2016 [67]. For
preprocessing steps, we first filtered invalid syntax LaTeX sequences and removed style-
related characters such as “\mathrm”, “\textrm”, and so on. Then, we normalized the
LaTeX sequences into the same format as the output of our HME recognizer. For example,
“{a}^{2}” is normalized as “a^{2}”. The corpus is partitioned into a training set, a
validation set, and a testing set according to the ratio of 8:1:1. The number of symbols in
the dictionary is 108, including the padding “<pad>” and the end-of-sequence symbol
“<eos>”.

5.3.2.2. HME recognizer

In this section, we present the online HME recognizer [89] used in our experiments. The
recognizer receives a sequence of point-based features extracted from an input HME and
outputs recognition result as a LaTeX sequence. It consists of two main stages: (1) A
symbol-relation temporal classifier (SRTC) for segmenting and classifying symbols and
spatial relationships in an HME and (2) A symbol-level parser (SLP). We denoted this
HME recognizer as SRTC_SLP.

A. Symbol-relation temporal classifier

Figure 5.5. HME recognition time according to the number of strokes.

0
1
2
3
4
5
6
7
8
9

10

0 10 20 30 40 50 60 70

Ti
m

e
(s

)

Number of strokes

CTC LSTM+JunkPrune LSTM

70

SRTC consists of three stacked Bidirectional Long-Short Term Memory (BLSTM) layers
and a Connectionist Temporal Classification (CTC) layer at the top, as shown in Figure
5.6. Its input is a sequence of point-based features, including the representation of off-
strokes (pen movements between strokes). Here, we ideally assume that there are no
delayed strokes in the input HMEs. The stacked multiple BLSTM layers encode
bidirectional context from the input and learn high-level representation. Then, the CTC
layer generates a sequence of symbols and spatial relationships. There are 7 types of
spatial relationships: superscript, subscript, upper, lower, horizontal, inside, and no
relation (denoted as “NoRel”).

B. Symbol-level parser

Given the output of SRTC, SLP based on the Cocke–Younger–Kasami (CYK) algorithm
[90] is applied to merge recognized symbols and spatial relationships along with
predefined grammar rules, as shown in Figure 5.7. This bottom-up method considers
many possible combinations of hypotheses at the intermediate levels. Hence, it produces
several candidates at the top of the combination tree even if the less promising candidates
are pruned. Each candidate has a corresponding score computed based on the
classification probabilities of symbols and spatial relationships.

Figure 5.6. Illustration for symbol-relation temporal classifier.

Figure 5.7. Symbol-level parser.

x 8 + i

Sup NoRel Right

x 9

Right Sup

x ^ { 8 }

i x ^ { 9 }x ^ { 8 }

x ^ { 8 } + i x ^ { 9 }LaTeX output

Structure
analysis

Symbol-relation
output

x ^ { 9 }

71

C. Training and testing

SRTC_SLP was trained on the CROHME 2016 and CROHME 2019 training sets and
tested on the CROHME 2016 and CROHME 2019 testing sets, respectively. Without
using a language model, it achieved the expression rate of 53.44% and 52.38% on the
CROHME 2016 and CROHME 2019 testing sets, respectively. This expression rate is
higher than that of the state-of-the-art TAP recognizer (without using language models
and/or ensemble methods) [27] by 3.22 percentage points in the expression rate on the
CROHME 2016 testing set.

5.3.2.3. Experimental settings

In this section, we present settings for training the proposed TMLM. We run our
experiments on an AMD Ryzen 32 core processor CPU@2.16GHz, an RTX A6000 GPU
with 48Gb RAM workstation. We evaluated TMLM with different numbers of
transformer layers. The number of heads is fixed to 4 heads. The dimension of each head
is set to 16. The context length of TMLM is fixed to 256, which covers the maximum
sequence length in our LaTeX corpus. The dimension of vectors of input embedding and
the dimension of hidden states are set to 256 and 512, respectively. The number of hidden
nodes in the feedforward neural net layer is set to 1024. The dropout rate is set to 0.1. We
applied an adaptive log-softmax function proposed in [91]. Our model is trained by the
AdamW optimizer [92] with a learning rate of 10−5. The model is implemented based on
the “Hugging Faces” library [93]. For combining language models with SRTC_SLP, we
determined the parameter 𝛼 ∈ 𝑅+ in Eq. (28) by applying the enumeration method on
{0, 0.1, 0.2, … , 2.0}. The chosen 𝛼 parameters achieved the best expression rates on the
CROHME 2014 testing set.

To evaluate language models, we utilized the perplexity measurement. Given a sequence
of tokens 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑁), the perplexity of 𝑋 is the exponentiated average negative
log-likelihood formulated as follows:

 𝑝𝑝𝑙(𝑋) = exp {−
1

𝑁
∑log 𝑝(𝑥𝑡|𝑋<𝑡)

𝑁

𝑡=1

} (31)

where 𝑝(𝑥𝑡|𝑋<𝑡) is the conditional probability outputted from the language model.

5.3.2.4. Evaluation

In this section, we compare the proposed language model with the previous methods.
Then, we conduct experiments to compare the performance of those models when
combined with the SRTC_SLP recognizer.

A. Comparisons with other language modeling methods

72

We compared our TMLM with the traditional N-gram model and GRULM. We increased
the context length N in the N-gram model to 11 since TMLM can attend all the past
contexts for a fair comparison. For GRULM, we increased the number of GRU layers up
to 3 layers for evaluating the performance as well as comparing with TMLM in the
condition of a similar number of trainable parameters. The dimension of an input
embedded vector and hidden states in GRULM are set as the same as in TMLM.

Table 5.5 presents the perplexity of the models on the testing set extracted from our
LaTeX corpus, as mentioned in section 4.3. The results show that our proposed TMLM
models outperform all N-gram models and all GRULMs, even using fewer trainable
parameters. For the N-gram models, increasing the context length can improve the
perplexity, but it seems to converge when N reaches 11. GRULMs perform better than
the N-gram models. Among GRULMs, the perplexity of GRULM_2L achieves the best,
which implies that increasing the number of GRU layers is not adequate. On the other
hand, TMLMs can learn better when increasing the number of transformer layers.

With nearly the same number of trainable parameters, TMLM_2L performs significantly
better than GRULM _2L. It implies that the architecture of TMLM is much more effective
than the traditional GRULM on modeling MEs.

B. Evaluation on combining language models into the HME recognizer

We combined the SRTC_SLP recognizer with the language models that achieved the best
performance in the previous experiment (i.e., 11-grams, GRULM_2L, and TMLM_8L).
In detail, the combined score in Eq. (28) is computed for the top-10 best candidates from
SRTC_SLP.

Table 5.5. Comparisons with other language modeling methods.

Model #Layers in model #Parameters Perplexity
3-grams - - 9.603
5-grams - - 7.557
9-grams - - 6.550
11-grams - - 6.500
GRULM_1L 1 1.3M 6.050
GRULM _2L 2 2.8M 6.049
GRULM _3L 3 4.4M 6.377
Ours: TMLM_2L 2 2.7M 4.598
Ours: TMLM_5L 5 6.3M 4.509
Ours: TMLM_8L 8 10M 4.420

73

Table 5.6 presents the expression rates of the combined recognizers on the CROHME
2016 and CROHME 2019 testing sets. The combination of SRTC_SLP and TMLM_8L
achieves the best expression rates in both testing sets. TMLM_8L improves 2.97 and 0.83
percentage points of the expression rates on the CROHME 2016 and CROHME 2019
testing set, respectively. The SRTC_SLP + 11-grams is better than SRTC_SLP +
GRULM_2L in the CROHME 2016 testing set, but that result is opposed in the CROHME
2019 testing set.

Table 5.6 also presents the expression rates of the state-of-the-art HME recognizers that
utilized math language models, i.e., TAP [27] and PAL_v2 [45]. Compared to those
models, SRTC_SLP combined with our TMLM_8L yields the best expression rate on the

CROHME 2016 testing set. Combining the language models only improved around 1
percentage point in the case of TAP and PAL_v2 while TMLM_8L improves 2.97
percentage points. Here, we cannot conclude that our method for utilizing a math
language model is better than their methods since they utilized different types of HME

Table 5.6. Expression rates on combining the HME recognizers with language models.

Recognition system
Expression rate (%)

CROHME 2016 CROHME 2019
SRTC_SLP 53.44 52.38
SRTC_SLP + 11-grams 56.15 52.54
SRTC_SLP + GRULM_2L 55.36 52.88
(Ours) SRTC_SLP + TMLM_8L 56.41 53.21
(Zhang et al. [27]) TAP 49.29 -
(Zhang et al. [27]) TAP + GRUs 50.41 -
(Wu et al. [46]) PAL-v2 49.00 -
(Wu et al. [46]) PAL-v2 + 4-grams 49.35 -

 LM: language model

Table 5.7. Percentages of corrected, miscorrected, and unchanged recognition results when
combining the SRTC_SLP recognizer with language models.

Dataset Method Corrected
(%)

Miscorrected
(%)

Unchanged
(%)

CROHME
2016

11-grams 4.01 1.31 94.68
GRULM_2L 2.96 1.05 95.99
TMLM_8L 4.62 1.66 93.72

CROHME
2019

11-grams 1.83 1.67 96.50
GRULM_2L 1.92 1.42 96.66
TMLM_8L 2.50 1.67 95.83

74

recognizers as well as different LaTeX corpora to train their language models. We
consider conducting more experiments on the combination method as a remaining work.

Table 5.7 shows the recognition results in more detail about the percentage of corrected
cases, miscorrected cases, and unchanged cases when combining SRTC_SLP with three
different language models on the CROHME 2016 and CROHME 2019 testing sets. The
percentages of the corrected cases by TMLM_8L are the highest compared to 11-grams
and GRULM_2L on both testing sets. However, that of the miscorrected cases by
TMLM_8L is the worst compared to others. GRULM_2L caused the least miscorrections
compared to others, but it could not correct many cases. 11-grams and TMLM_8L have
comparable percentages of miscorrected cases, but TMLM_8L corrected more cases than
11-grams did.

5.3.2.5. Error analysis

In this section, we present some samples which are corrected or miscorrected when
applying TMLM_8L with the SRTC_SLP recognizer.

Figure 5.8(a) and Figure 5.8(b) show two corrected cases. In Figure 5.8(a), “𝛼” in the
HME sample are recognized as “2” without using TMLM_8L since it seems to be
similarly written as “2”. However, the language score of the candidate with “𝛼” is
significantly higher than the one with “2”. Therefore, the recognizer combined
TMLM_8L results in the correct prediction. TMLM_8L performs well since “𝛼” seems

Groundtruth: 2 \cos \alpha Groundtruth: x ^ { 9 } – x ^

{ 8 }

W/o LM: 2 \cos 2 (-6.162) W/o LM: x ^ { g } – x ^ { 8 } (-2.309)
W/ LM: 2 \cos \alpha (-3.144) W/ LM: x ^ { 9 } – x ^ { 8 } (-1.361)

(a) Corrected case (b) Corrected case

Groundtruth: \sqrt { \beta } H Groundtruth: m = 2 \tan \Delta

\pi

W/o LM: \sqrt { \beta } H (-3.893) W/o LM: m = 2 \tan \Delta \pi (-4.995)
W/ LM: \sqrt { \beta H } (-2.714) W/ LM: m = 2 \tan \alpha \pi (-4.561)

(c) Miscorrected case (d) Miscorrected case
Figure 5.8. Examples of corrected and miscorrected cases when combining the SRTC_SLP
recognizer and TMLM_8L (LM: language model). Each case shows an HME image, its ground
truth, and its recognition candidates with/without TMLM_8L and their corresponding scores
from TMLM_8L.

75

more likely to appear next to the trigonometry function (e.g., sine, cosine, and tangent)
than a number. Similarly, “9” in the HME sample of Figure 5.8(b) are correctly
recognized by TMLM_8L.

Figure 5.8(c) and Figure 5.8(d) show two miscorrected cases. The case in Figure 5.8(c)
is miscorrected since the language model score of the incorrect result is higher than that
of the correct result. We can realize that the context, in this case, is not clear. The case in
Figure 5.8(d) is miscorrected since “𝛼” seems more likely to appear next to the tangent
symbol than “Δ”.

According to those examples, we can see that modeling MEs is still challenging since the
context in an ME is not clear and our corpus of MEs might not be enough to estimate the
distribution of MEs.

5.4. Conclusions
We introduced the Bidirectional Context for symbol classification to solve the problem
of recognizing ambiguous symbols. The proposed method improved the symbol
recognition rate as compared to the previous approach without context. The proposed
method is then integrated with the Stochastic Context-Free Grammar recognition system
for the problem of HMEs recognition. We measured the effectiveness of the improvement
on the CROHME 2016 dataset and recorded competitive results, from the tasks of symbol
segmentation, symbol classification to the task of HMEs recognition. The results showed
that the proposed method encode better context to distinguish symbols.

In addition, we presented a transformer-based math language model (TMLM) for
improving the recognition rate of HME recognition systems. We showed that our TMLMs
perform better than the traditional language models for MEs, i.e., the N-gram and
GRULM. The best perplexity achieved is 4.42, resulted from TMLM_8L of 8 transformer
layers. Combining TMLM_8L with the online HME recognizer in [89] improved the
expression rate by 2.97 and 0.83 percentage points on the CROHME 2016 and CROHME
2019 testing set, respectively.

76

CHAPTER 6. Conclusion and future works
6.1. Conclusions
In this thesis, we presented our strategy and two tools for collecting and annotating
handwritten descriptive answers. They should be important resources for the study on
automatic and semi-automatic marking for descriptive questions as well as the study on
handwriting recognition methods for the most natural patterns. We currently published
the e-testing tool for the research community.

To provide clustering-based marking for handwritten mathematics answers, we proposed
two approaches for clustering online handwritten mathematical expressions (OHMEs).
We achieved the best results of around 0.916 and 0.915 for purity and around 0.556 and
0.702 for the marking cost on the two answer datasets, Dset_Mix and NIER_CBT,
respectively. Those values of the marking cost indicate that we can reduce the cost more
than 0.298 point than manually marking OHME answers. We also showed that setting the
number of clusters according to the number of answers could be beneficial.

Improving OHME recogntion can be beneficial for the clustering-based marking. We
presented a deep BLSTM_CTC model with the bidirectional context for symbol
classification to solve the problem of recognizing ambiguous symbols. The experimental
results showed that the proposed method encode better context to distinguish symbols.

In addition, we presented a transformer-based math language model (TMLM) to solve
the problem of recognizing ambiguous symbols. The experimental results showed that
our TMLM ourperfomed the traditional math language models. TMLM can combined
with both online and offline HME recognizers to improve the performance.

6.2. Future works
For the plan of collecting HMAs, we are now preparing the first versions of the e-testing
and e-marking tools. Then, we will collect HMAs from some students and provide
collected HMAs for collaborators on a web-based hosting service. By releasing the tools
publicly and freely, we intend to scale our initial effort to a larger number and variety of
participants and volunteers.

For the clustering of OHMEs, we need to evaluate our methods in a large dataset of
handwritten answers. In addition, we should consider mini-batch clustering for larger
answer sets. User interface for markers is also another problem to study.

For the proposed deep BLSTM-CTC model with the bidirectional context, our model is
trained using pre-extracted features, which currently include basic features for each point

77

of a stroke. We can utilize other features so that the model can represent a better context
to recognize the mathematical symbols.

For the math language model, we should enrich the source of ME LaTeX by collecting
open sources on the internet. Secondly, we should modify our TMLM to exploit the
bidirectional context in MEs. Thirdly, the method for jointly training an HME recognizer
and a math language model should be studied for better optimization.

REFERENCES
[1] M. Mahdavi, R. Zanibbi, H. Mouchere, C. Viard-Gaudin, U. Garain, CROHME +

TFD: Competition on recognition of handwritten mathematical expressions and
typeset formula detection, in: Proc. Inter. Conf. Doc. Anal. Recognit., 2019: pp.
1533–1538.

[2] J.J. LaViola, R.C. Zeleznik, MathPad2: A system for the creation and exploration
of mathematical sketches, ACM Trans. Graph. 23 (2004) 432–440.

[3] K. F. Chan, D. Y. Yeung, PenCalc: a novel application of on-line mathematical
expression recognition technology, in: Proc. Int. Conf. Doc. Anal. Recognit., 2001:
pp. 774–778.

[4] T. O’Connell, C. Li, T. S Miller., R. C. Zeleznik, J. J. LaViola, A usability
evaluation of AlgoSketch: a pen-based application for mathematics, in: Proc.
Eurographics Symp. Sketch-Based Interfaces Model., New York, New York, USA,
2009: pp. 149–157.

[5] V. T. M. Khuong, H. Q. Ung, C. T. Nguyen, M. Nakagawa, Clustering Offline
Handwritten Mathematical Answers for Computer-Assisted Marking, in: Proc. of
Inter. Conf. Pattern Recognit. Artif. Intell., Montreal, 2018: pp. 122–126.

[6] H. Mouchère, R. Zanibbi, U. Garain, C. Viard-Gaudin, Advancing the state of the
art for handwritten math recognition: the CROHME competitions, 2011–2014, Int.
J. Doc. Anal. Recognit. 2016 192. 19 (2016) 173–189.

[7] R. Zanibbi, D. Blostein, Recognition and retrieval of mathematical expressions,
Int. J. Doc. Anal. Recognit. 15 (2012) 331–357.

[8] G. Labahn, E. Lank, M. Marzouk, A. Bunt, S. MacLean, D. Tausky, MathBrush:
a case study for pen-based interactive mathematics, Proc. Fifth Eurographics Conf.
Sketch-Based Interfaces Model. (2008) 143–150.

[9] A.-M. Awal, H. Mouchère, C. Viard-Gaudin, Towards Handwritten Mathematical
Expression Recognition, in: 2009 10th Int. Conf. Doc. Anal. Recognit., 2009: pp.
1046–1050.

[10] S. Quiniou, H. Mouchère, S.P. Saldarriaga, C. Viard-Gaudin, E. Morin, S.
Petitrenaud, S. Medjkoune, HAMEX - a Handwritten and Audio Dataset of
Mathematical Expressions, in: 11th Int. Conf. Doc. Anal. Recognit., 2011: pp.
452–456.

[11] J. Stria, M. Bresler, D. Průša, V. Hlaváč, MfrDB: Database of annotated on-line
mathematical formulae, in: Proc. - Int. Work. Front. Handwrit. Recognition,
IWFHR, 2012: pp. 542–547.

78

[12] F.D.J. Aguilar, N.S.T. Hirata, ExpressMatch: A system for creating ground-truthed
datasets of online mathematical expressions, in: 10th IAPR Int. Work. Doc. Anal.
Syst. DAS 2012, 2012: pp. 155–159.

[13] V. T. M. Khuong, K. M. Phan, H. Q. Ung, C. T. Nguyen, M. Nakagawa, Clustering
of Handwritten Mathematical Expressions for Computer-Assisted Marking, IEICE
Trans. Inf. Syst. E104.D (2021) 275–284.

[14] C. T. Nguyen, V. T. M. Khuong, H. T. Nguyen, M. Nakagawa, CNN based spatial
classification features for clustering offline handwritten mathematical expressions,
Pattern Recognit. Lett. 131 (2020) 113–120.

[15] Z. S. Harris, Distributional Structure, Word. 10 (1954) 146–162.

[16] Q. Le, T. Mikolov, Distributed Representations of Sentences and Documents, in:
Proc. Int. Conf. Mach. Learn., 2014: pp. 1188–1196.

[17] D. Ienco, R. Interdonato, Deep Multivariate Time Series Embedding Clustering
via Attentive-Gated Autoencoder, in: Lect. Notes Comput. Sci. (Including Subser.
Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 2020: pp. 318–329.

[18] Q. Ma, J. Zheng, S. Li, G.W. Cottrell, Learning Representations for Time Series
Clustering, in: Adv. Neural Inf. Process. Syst., 2019: pp. 3776–3786.

[19] S. J. Rao, Y. Wang, G. Cottrell, A Deep Siamese Neural Network Learns the
Human-Perceived Similarity Structure of Facial Expressions Without Explicit
Categories, in: Proc. 38th Annu. Conf. Cogn. Sci. Soc., 2016: pp. 217–222.

[20] R. Cummins, M. Zhang, T. Briscoe, Constrained Multi-Task Learning for
Automated Essay Scoring, in: Proc. Annu. Meet. Assoc. Comput. Linguist.,
Stroudsburg, PA, USA, 2016: pp. 789–799.

[21] V. Salvatore, N. Francesca, C. Alessandro, An Overview of Current Research on
Automated Essay Grading, J. Inf. Technol. Educ. Res. 2 (2003) 319–330.

[22] T. Ishioka, M. Kameda, Automated Japanese essay scoring system:jess, in: Proc.
Int. Work. Database Expert Syst. Appl., 2004: pp. 4–8.

[23] S. Srihari, J. Collins, R. Srihari, H. Srinivasan, S. Shetty, J. Brutt-Griffler,
Automatic scoring of short handwritten essays in reading comprehension tests,
Artif. Intell. 172 (2008) 300–324.

[24] S. Basu, C. Jacobs, L. Vanderwende, Powergrading: a Clustering Approach to
Amplify Human Effort for Short Answer Grading, Trans. Assoc. Comput. Linguist.
1 (2013) 391–402.

[25] M. Brooks, S. Basu, C. Jacobs, L. Vanderwende, Divide and correct: Using clusters
to grade short answers at scale, in: Proc. ACM Conf. Learn. @ Scale, New York,
New York, USA, 2014: pp. 89–98.

[26] A. Singh, S. Karayev, K. Gutowski, P. Abbeel, Gradescope: A Fast, Flexible, and
Fair System for Scalable Assessment of Handwritten Work, in: Proc. ACM Conf.
Learn. @ Scale, New York, New York, USA, 2017: pp. 81–88.

[27] J. Zhang, J. Du, L. Dai, Track, Attend, and Parse (TAP): An End-to-End
Framework for Online Handwritten Mathematical Expression Recognition, IEEE
Trans. Multimed. 21 (2019) 221–233.

[28] F. Álvaro, J. A. Sánchez, J. M. Benedí, Recognition of on-line handwritten
mathematical expressions using 2D stochastic context-free grammars and hidden

79

Markov models, Pattern Recognit. Lett. 35 (2014) 58–67.

[29] R. Yamamoto, S. Sako, T. Nishimoto, S. Sagayama, On-Line Recognition of
Handwritten Mathematical Expressions Based on Stroke-Based Stochastic
Context-Free Grammar, 2006. (accessed February 1, 2021).

[30] F. Simistira, V. Katsouros, G. Carayannis, Recognition of online handwritten
mathematical formulas using probabilistic SVMs and stochastic context free
grammars, Pattern Recognit. Lett. 53 (2015) 85–92.

[31] A. D. Le, T. V. Phan, M. Nakagawa, A System for Recognizing Online
Handwritten Mathematical Expressions and Improvement of Structure Analysis,
in: Proc. IAPR Int. Work. Doc. Anal. Syst., 2014: pp. 51–55.

[32] A. M. Awal, H. Mouchère, C. V. Gaudin, A global learning approach for an online
handwritten mathematical expression recognition system, Pattern Recognit. Lett.
35 (2014) 68–77.

[33] M. Celik, B. Yanikoglu, Probabilistic mathematical formula recognition using a
2D context-free graph grammar, in: Proc. Int. Conf. Doc. Anal. Recognition,
ICDAR, 2011: pp. 161–166.

[34] Y. Shi, H. Y. Li, F. K. Soong, A unified framework for symbol segmentation and
recognition of handwritten mathematical expressions, in: Proc. Int. Conf. Doc.
Anal. Recognition, ICDAR, 2007: pp. 854–858.

[35] M. Koschinski, H.-J. Winkler, M. Lang, Segmentation and recognition of symbols
within handwritten mathematical expressions, in: ICASSP, IEEE Int. Conf. Acoust.
Speech Signal Process. - Proc., 1995: pp. 2439–2442.

[36] H.-J. Winkler, M. Lang, On-line symbol segmentation and recognition in
handwritten mathematical expressions, in: ICASSP, IEEE Int. Conf. Acoust.
Speech Signal Process. - Proc., 1997: pp. 3377–3380.

[37] L. Hu, R. Zanibbi, MST-based visual parsing of online handwritten mathematical
expressions, in: Proc. Int. Conf. Front. Handwrit. Recognition, ICFHR, 2016: pp.
337–342.

[38] A. Kosmala, G. Rigoll, S. Lavirotte, L. Pottier, On-line handwritten formula
recognition using hidden Markov models and context dependent graph grammars,
in: Proc. Int. Conf. Doc. Anal. Recognition, ICDAR, 1999: pp. 107–110.

[39] F. J. Aguilar, H. Mouchère, C. V. Gaudin, N. S. T. Hirata, Top-down online
handwritten mathematical expression parsing with graph grammar, in: Lect. Notes
Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), 2015: pp. 444–451.

[40] Z. Hong, N. You, J. Tan, N. Bi, Residual BiRNN based Seq2Seq model with
transition probability matrix for online handwritten mathematical expression
recognition, in: Proc. Int. Conf. Doc. Anal. Recognition, ICDAR, 2019: pp. 635–
640.

[41] J. Zhang, J. Du, S. Zhang, D. Liu, Y. Hu, J. Hu, S. Wei, L. Dai, Watch, attend and
parse: An end-to-end neural network based approach to handwritten mathematical
expression recognition, Pattern Recognit. 71 (2017) 196–206.

[42] A. Poznanski, L. Wolf, CNN-N-Gram for HandwritingWord Recognition, in: Proc.
IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2016: pp. 2305–2314.

80

[43] B. Zhu, X.D. Zhou, C.L. Liu, M. Nakagawa, A robust model for on-line
handwritten japanese text recognition, Int. J. Doc. Anal. Recognit. 13 (2010) 121–
131.

[44] R. Reeve Ingle, Y. Fujii, T. Deselaers, J. Baccash, A.C. Popat, A scalable
handwritten text recognition system, in: Proc. Int. Conf. Doc. Anal. Recognition,
ICDAR, 2019: pp. 17–24.

[45] J.W. Wu, F. Yin, Y.M. Zhang, X.Y. Zhang, C.L. Liu, Handwritten Mathematical
Expression Recognition via Paired Adversarial Learning, Int. J. Comput. Vis. 128
(2020) 2386–2401.

[46] T. Mikolov, M. Karafiát, L. Burget, J. Cernocky, Recurrent neural network based
language model, in: 11th Annu. Conf. Int. Speech Commun. Assoc., 2010: pp.
1045–1048.

[47] A. Radford, K. Narasimhan, T. Salimans, L. Sutskever, Improving Language
Understanding by Generative Pre-Training, Https://S3-Us West-
2.Amazonaws.Com/Openai-Assets/Research-Covers/Language-
Unsupervised/Language_understanding_paper.Pdf. (2018). (accessed May 12,
2021).

[48] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, Language Models
are Unsupervised Multitask Learners,
Https://D4mucfpksywv.Cloudfront.Net/Better-Language-
Models/Language_models_are_unsupervised_multitask_learners.Pdf. (2019).

[49] A. Vaswani, G. Brain, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez,
Ł. Kaiser, I. Polosukhin, Attention Is All You Need, in: Adv. Neural Inf. Process.
Syst., 2017.

[50] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, R. Salakhutdinov, Transformer-
XL: Attentive Language Models Beyond a Fixed-Length Context, in: ACL 2019 -
57th Annu. Meet. Assoc. Comput. Linguist., 2019: pp. 2978–2988. (accessed May
12, 2021).

[51] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, Q. V Le, XLNet:
Generalized Autoregressive Pretraining for Language Understanding, in: Adv.
Neural Inf. Process. Syst., 2019.

[52] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding - ACL Anthology, in:
Proc. 2019 Conf. North Am. Chapter Assoc. Comput. Linguist. Hum. Lang.
Technol., 2019: pp. 4171–4186.

[53] M. Nakagawa, K. Matsumoto, Collection of on-line handwritten Japanese
character pattern databases and their analyses, Int. J. Doc. Anal. Recognit. 7 (2004)
69–81.

[54] H.T. Nguyen, C.T. Nguyen, P.T. Bao, M. Nakagawa, A database of unconstrained
Vietnamese online handwriting and recognition experiments by recurrent neural
networks, Pattern Recognit. 78 (2018) 291–306.

[55] T. Matsushita, M. Nakagawa, A Database of On-Line Handwritten Mixed Objects
Named “Kondate,” in: Int. Conf. Front. Handwrit. Recognition, ICFHR, 2014: pp.
369–374.

[56] Stephen M. Watt, Tom Underhill, Ink Markup Language (InkML), 2009.

81

[57] H. Q. Ung, V. T. M. Khuong, A. D. Le, C. T. Nguyen, M. Nakagawa, Bag-of-
features for clustering online handwritten mathematical expressions, in: Proc. of
Inter. Conf. Pattern Recognit. Artif. Intell., 2018: pp. 127–132.

[58] S. Mori, C.Y. Suen, K. Yamamoto, Historical Review of OCR Research and
Development, Proc. IEEE. 80 (1992) 1029–1058.

[59] S. Mori, K. Yamamoto, M. Yasuda, Research on Machine Recognition of
Handprinted Characters, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6 (1984)
386–405.

[60] R. Zhao, K. Mao, Fuzzy Bag-of-Words Model for Document Representation, IEEE
Trans. Fuzzy Syst. 26 (2018) 794–804.

[61] M. D. El-Din, Enhancement Bag-of-Words Model for Solving the Challenges of
Sentiment Analysis, Int. J. Adv. Comput. Sci. Appl. 7 (2016) 244–252.

[62] B. Aljaber, N. Stokes, J. Bailey, J. Pei, Document clustering of scientific texts
using citation contexts, Inf. Retr. Boston. 13 (2010) 101–131.

[63] D. François, V. Wertz, M. Verieysen, The concentration of fractional distances,
IEEE Trans. Knowl. Data Eng. 19 (2007) 873–886.

[64] S. I. Nikolenko, [1909.11512] Synthetic Data for Deep Learning, (n.d.). (accessed
March 6, 2020).

[65] K. M. Phan, V. T. M. Khuong, H. Q. Ung, M. Nakagawa, Generating Synthetic
Handwritten Mathematical Expressions from a LaTeX Sequence or a MathML
Script, in: Proc. Int. Conf. Doc. Anal. Recognit., 2020: pp. 922–927.

[66] C. T. Nguyen, T. N. Truong, H. Q. Ung, M. Nakagawa, Online Handwritten
Mathematical Symbol Segmentation and Recognition with Bidirectional Context,
in: Proc. Int. Conf. Front. Handwrit. Recognit., 2020: pp. 355–360.

[67] H. Mouchere, C. Viard-Gaudin, R. Zanibbi, U. Garain, ICFHR2016 CROHME:
Competition on Recognition of Online Handwritten Mathematical Expressions, in:
2016 15th Int. Conf. Front. Handwrit. Recognit., 2016: pp. 607–612.

[68] M. Mahdavi, R. Zanibbi, Tree-Based Structure Recognition Evaluation for Math
Expressions: Techniques and Case Study, in: Proc. IAPR Int. Work. Graph.
Recognit., Sydney, 2019.

[69] D. Arthur, S. Vassilvitskii, k-means++: the advantages of careful seeding, in: Proc.
Annu. ACM-SIAM Symp. Discret. Algorithms, 2007: pp. 1027–1035.

[70] P. J. Rousseeuw, Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis, J. Comput. Appl. Math. 20 (1987) 53–65.

[71] J. A. Hartigan, Clustering Algorithms, 1975.

[72] J. Chang, L. Wang, G. Meng, S. Xiang, C. Pan, Deep Adaptive Image Clustering,
in: Proc. IEEE Int. Conf. Comput. Vis., 2017: pp. 5880–5888.

[73] H.Q. Ung, C.T. Nguyen, K.M. Phan, V.T.M. Khuong, M. Nakagawa, Clustering
online handwritten mathematical expressions, Pattern Recognit. Lett. 146 (2021)
267–275.

[74] F. Yasuno, K. Nishimura, S. Negami, Y. Namikawa, Development of Mathematics
Items with Dynamic Objects for Computer-Based Testing Using Tablet PC, Int. J.
Technol. Math. Educ. 26 (2019) 131–137.

82

[75] X. Y. Zhang, F. Yin, Y. M. Zhang, C. L. Liu, Y. Bengio, Drawing and Recognizing
Chinese Characters with Recurrent Neural Network, IEEE Trans. Pattern Anal.
Mach. Intell. 40 (2018) 849–862.

[76] K. Cho, B. V. Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
Y. Bengio, Learning phrase representations using RNN encoder-decoder for
statistical machine translation, in: Conf. Empir. Methods Nat. Lang. Process. 2014,
2014: pp. 1724–1734.

[77] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, J. Schmidhuber, A
Novel Connectionist System for Unconstrained Handwriting Recognition, IEEE
Trans. Pattern Anal. Mach. Intell. 31 (2009) 855–868.

[78] A. Graves, J. Schmidhuber, Framewise phoneme classification with bidirectional
LSTM and other neural network architectures., Neural Networks. 18 (2005) 602–
10.

[79] S. Hochreiter, J. Schmidhuber, Long Short-Term Memory, Neural Comput. 9
(1997) 1735–1780.

[80] M. Oquab, L. Bottou, I. Laptev, J. Sivic, Is object localization for free? - Weakly-
supervised learning with convolutional neural networks, in: 2015 IEEE Conf.
Comput. Vis. Pattern Recognit., 2015: pp. 685–694.

[81] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, A. Torralba, Learning Deep Features
for Discriminative Localization, in: 2016 IEEE Conf. Comput. Vis. Pattern
Recognit., 2016: pp. 2921–2929.

[82] S. Jaeger, S. Manke, J. Reichert, A. Waibel, Online handwriting recognition: The
NPen++ recognizer, Int. J. Doc. Anal. Recognit. 3 (2001) 169–180.

[83] F. Alvaro, J.A. Sanchez, J.M. Benedi, Offline features for classifying handwritten
math symbols with recurrent neural networks, in: Proc. - Int. Conf. Pattern
Recognit., 2014: pp. 2944–2949.

[84] U. Ramer, An iterative procedure for the polygonal approximation of plane curves,
Comput. Graph. Image Process. 1 (1972) 244–256.

[85] R. Al-Rfou, D. Choe, N. Constant, M. Guo, L. Jones, Character-level language
modeling with deeper self-attention, in: 33rd AAAI Conf. Artif. Intell., 2019: pp.
3159–3166.

[86] J.L. Ba, J.R. Kiros, G.E. Hinton, Layer Normalization,
Http://Arxiv.Org/Abs/1607.06450. (2016). (accessed May 12, 2021).

[87] A.D. Le, M. Nakagawa, A system for recognizing online handwritten
mathematical expressions by using improved structural analysis, Int. J. Doc. Anal.
Recognit. 19 (2016) 305–319.

[88] F. Julca-Aguilar, N.S.T. Hirata, C. Viard-Gaudin, H. Mouchere, S. Medjkoune,
Mathematical Symbol Hypothesis Recognition with Rejection Option, in: 14th Int.
Conf. Front. Handwrit. Recognit., 2014: pp. 500–505.

[89] C.T. Nguyen, N.-T. Truong, H.T. Nguyen, M. Nakagawa, Global Context for
improving recognition of Online Handwritten Mathematical Expressions, in: Proc.
Int. Conf. Doc. Anal. Recognition, ICDAR, 2021.

[90] J. Cocke, J. T. Schwartz, Programming Languages and Their Compilers:
Preliminary Notes, 1970. (accessed May 13, 2021).

83

[91] E. Grave, A. Joulin, M. Cisse, D. Grangier, H. Jegou, Efficient softmax
approximation for GPUsÉdouard, in: 34th Int. Conf. Mach. Learn., 2017: pp.
1302–1310.

[92] I. Loshchilov, F. Hutter, Decoupled Weight Decay Regularization, in: Int. Conf.
Learn. Represent., 2019.

[93] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault,
R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J.
Plu, C. Xu, T. Le Scao, S. Gugger, M. Drame, Q. Lhoest, A.M. Rush,
HuggingFace’s Transformers: State-of-the-art Natural Language Processing,
Http://Arxiv.Org/Abs/1910.03771. (2019). (accessed May 13, 2021).

[94] H. Dai Nguyen, A.D. Le, M. Nakagawa, Deep neural networks for recognizing
online handwritten mathematical symbols, in: Proc. - 3rd IAPR Asian Conf.
Pattern Recognition, ACPR 2015, 2016: pp. 121–125.

[95] K. Davila, S. Ludi, R. Zanibbi, Using Off-Line Features and Synthetic Data for
On-Line Handwritten Math Symbol Recognition, in: Proc. Int. Conf. Front.
Handwrit. Recognition, ICFHR, 2014: pp. 323–328.

APENDIX I – PUBLICATIONS
Journal papers

1. H. Q. Ung, C. T. Nguyen, K. M. Phan, V. T. M. Khuong, and M. Nakagawa,
“Clustering online handwritten mathematical expressions”, Pattern Recognition
Letters, Vol. 146, pp. 267-275, 2021.

2. V. T. M. Khuong, K. M. Phan, H. Q. Ung, C. T. Nguyen, and M. Nakagawa,
“Clustering of Handwritten Mathematical Expressions for Computer-assisted
marking”, IEICE Transactions on Information and Systems, Vol.E104-D, pp. 275-
284, 2021.

3. H. Duong, U. Q. Huy, P. T. Bao, J. Y. Kim, "A Method for Selecting the Most
Informative Iris Image from Real Time Video Stream", The Journal of Korean
Institute of Information Technology, Vol. 12, No. 9, pp. 61-67, 2014.

International Conference Papers

1. H. Q. Ung, C. T. Nguyen, H. T. Nguyen, T.-N. Truong, and M. Nakagawa, “A
Transformer-based Math Language Model for Handwritten Math Expression
Recognition”, in Proceedings of ICDAR Workshop on Document Images and
Language, pp. 403-415, Lausanne, 2021.

2. H. Q. Ung, C. T. Nguyen, H. T. Nguyen, and M. Nakagawa, “GSSF: A Generative
Sequence Similarity Function based on a Seq2Seq Model for Clustering Online

84

Handwritten Mathematical Answers”, in Proceedings of International Conference
on Document Analysis and Recognition, pp. 145-159, Lausanne, 2021.

3. H. Q. Ung, K. M. Phan, M. Nakagawa, “Strategy and Tools for Collecting and
Annotating Handwritten Descriptive Answers for Developing Automatic and
Semi-Automatic Marking - an Initial Effort to Math”, in Proceedings of 2nd
International Workshop on Open Services and Tools for Document Analysis, pp. 13-
18, Sydney, 2019.

4. H. Q. Ung, V. T. M. Khuong, A. D. Le, C. T. Nguyen, M. Nakagawa, "Bag-of-
Features for Clustering Online Handwritten Mathematical Expressions," in
Proceedings of International Conference on Pattern Recognition and Artificial
Intelligence, pp. 127-132, Montreal, 2018.

Joint Works

1. T.-N. Truong, H. Q. Ung, H. T. Nguyen, C. T. Nguyen, and M. Nakagawa,
“Relation-Based Representation for Handwritten Mathematical Expression
Recognition”, in Proceedings of 14th IAPR International Workshop on Graphics
Recognition, pp. 7-19, Lausanne, 2021.

2. C.T. Nguyen, T.-N. Truong, H. Q. Ung, and M. Nakagawa “Online Handwritten
Mathematical Symbol Segmentation and Recognition with Bidirectional
Context”, in Proceedings of 17th International Conference on Frontiers in
Handwriting Recognition, pp. 355-360, Dortmund, 2020.

3. K. M. Phan, V. T. M. Khuong, H. Q. Ung, M. Nakagawa, “Generating Synthetic
Handwritten Mathematical Expressions from a LaTeX Sequence or a MathML
Script”, in Proceedings of International Conference on Document Analysis and
Recognition, pp. 922-927, Sydney, 2019.

4. V. T. M. Khuong, H. Q. Ung, C. T. Nguyen, M. Nakagawa, "Clustering Offline
Handwritten Mathematical Answers for Computer-Assisted Marking", in
Proceedings of International Conference on Pattern Recognition and Artificial
Intelligence, pp. 127-132, Montreal, 2018.

5. D. M. H. Nguyen, H. T. Vu, H. Q. Ung, B. T. Nguyen, "3D-brain segmentation
using deep neural network and Gaussian mixture model", in Proceedings of IEEE
Winter Conference on Applications of Computer Vision, pp. 815-824, Santa Rosa,
2017.

Patents

85

中川正樹, ヴ・トラン・ミン・クオン, ウン・コアン・フィ. プログラム, 情報記
憶媒体及びクラスタリング装置, 特願 2018-082354.

