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Chapter 1

Introduction

Computer science has been rapidly developed, which enriches people’s lives.
With a single smartphone, we now enjoy a variety of services, such as phone
calls, e-mail, web search, electronic payments, social networking, etc. Giant
tech companies such as Google, Apple, Facebook, Amazon (GAFA) have been
providing and producing innovative services. The foundation for such services
is supported by the development of computer science.

In the last decade, one of the most successful technologies in computer sci-
ence has been Deep learning [1–4]. Deep learning is a generic term that refers to
machine learning using a neural network stacking multiple hidden layers (deep
neural network), which contain parameters called weights. Deep neural net-
works have achieved amazing results in difficult tasks, e.g., object recognition,
machine translation, speech recognition, self-driving car, point cloud processing,
and so on. These amazing results have attracted many researchers, and deep
learning is still an active research area. Deep learning seems to be a panacea,
but it has some limitations. In many cases, deep neural networks cannot work
well with small data, which is difficult to collect a large amount of data. This
is because deep neural networks require a lot of data to learn many weights
in multiple layers. For small data analysis, mathematical modeling and signal
processing techniques that utilize domain knowledge are useful tools.

Signal processing is a fundamental tool to analyze, modify and synthesize
signals such as sound, images, and various engineering measurements. Signal
processing covers a broad range of applications, such as image and audio pro-
cessing, wireless communications, control system, etc. A hot recent topic of
signal processing is graph signal processing [5, 6]. While classical signal pro-
cessing is designed to analyze signals that are arranged regularly, graph signal
processing aims at analyzing signals distributed on network structures, e.g., sen-
sor, traffic, brain, and social networks. Graph signal processing utilizes graphs
to analyze such irregularly distributed signals. Graphs, consisting of sets of
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nodes and edges, are a fundamental tool to describe the relationship among en-
tities. Graph edges and the corresponding edge weights can be used to capture
the similarity between nodes (where a higher positive weight indicates greater
similarity). Introducing a graph representation enables us to efficiently ana-
lyze signals on networks in many practical applications such as epidemics [7,8],
transportation networks [9], image processing [10–15], machine learning [16–18],
and social networks [19].

Graph signal processing provides effective tools for graph signals, such as
filtering, sampling, filter bank, and frequency analysis [20–29]. To use these
effective tools, it is required to know graphs underlying data. However, graphs
are not provided in many cases a priori. Graph learning is a method that aims
at identifying graphs from observed data [30–36]. Each observation is a vec-
tor, and each entry corresponds to the observation at one node. The goal is to
obtain the weights of all the edges connecting those nodes. Most graph learn-
ing methods identify a single static graph from all observations [37–45]. These
static graph learning methods assume that the node relationships obtained from
the observations do not change during the measurement process. However, in
many applications where the observations are obtained over a period of time, a
time-varying graph will provide a better model. Examples of such applications
include estimation of time-varying brain functional connectivity from EEG or
fMRI data [46], identification of temporal transit of biological networks such
as protein, RNA, and DNA [47], and inference of relationships among compa-
nies from historical stock price data [48], dynamic point cloud processing, and
analysis of physical measurement data such as temperature.

This dissertation addresses the problem of learning time-varying graphs from
multivariate time-series data. This problem is called time-varying graph learning
(TVGL). The main contributions of this dissertation are described in Section
1.1, and the related studies are described in Section 1.2. Section 1.3 shows the
outline of this dissertation.

1.1 Contributions

The desired properties of time-varying graph learning are summarized as follows:

1. Time-varying graph learning methods should estimate time-varying graphs
considering their temporal relationship. A straightforward approach to
estimate a time-varying graph would consist of aggregating temporal ob-
servations into non-overlapping windows and then using an existing static
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graph learning method to estimate a graph for each time window. How-
ever, such an approach estimates a graph independently for each temporal
interval, thus ignoring temporal relations that may exist in time-varying
graphs.

2. Time-varying graph learning requires estimating graphs from time win-
dows containing only a small fraction of observations due to the trade-off
between the choice of window length and temporal resolution. For exam-
ple, if we choose a short window to adapt to fast temporal changes in the
graph, then we may not have enough data to learn a graph within each
window.

This dissertation proposes two time-varying graph learning methods: one
approach with constraints of temporal graph variation and the other based on
the temporal multiresolution structure of time-varying graphs. Their contribu-
tions are listed as follows:

1. Time-varying graph learning with constraints on graph tempo-
ral variation (Chapter 4 and [49,50])
This method is a generic framework for learning time-varying graphs from
spatiotemporal measurements. Given an appropriate prior on the tempo-
ral behavior of signals, this method can estimate time-varying graphs from
a small number of available measurements. Specifically, this method fo-
cuses on two time-varying graph model: (P1) time-varying graph with
temporal homogeneity and (P2) time-varying graphs with switching be-
havior. To achieve this, we introduce two regularization terms in convex
optimization problems that constrain the sparseness of temporal varia-
tions of the time-varying networks. Moreover, a computationally-scalable
algorithm is introduced to efficiently solve the optimization problem.

2. Temporal multiresolution graph learning (Chapter 5 and [51,52])
This method is an approach for time-varying graph learning by leverag-
ing a multiresolution property. This method assumes that time-varying
graphs can be decomposed by a linear combination of graphs localized
at different temporal resolutions. Utilizing the multiresolution property
improves a trade-off between temporal resolution and the number of sam-
ples available for learning and enables to detection of graphs localized at
different temporal resolutions. This problem is formulated as a convex op-
timization problem for temporal multiresolution graph learning. In exper-
iments using synthetic and real data, the proposed method demonstrates
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the promising objective performances for synthetic data and obtains rea-
sonable temporal multiresolution graphs from real data.

In addition to the above two TVGL methods, this dissertation proposes a graph
learning information criterion (GLIC), which is a model selection method for
graph learning. The contribution of this method is summarized as follows:

3. Graph learning information criterion (Chapter 6)
Although graph learning is required in many applications, e.g., classifica-
tion, prediction, and clustering, there is no established method to deter-
mine hyperparameters that control the strength of the regularization re-
flecting prior knowledge. To resolve the problem, GLIC considers a model
selection criterion for the graph learning problem based on the Laplacian
constrained Gaussian Markov random field. GLIC is the value based on
model evidence, which is used for model selection in Bayesian statistics.
It can be estimated by averaging the negative log-likelihood over the pos-
terior distribution of a graph learning model. To compute this criterion,
an efficient sampler of the posterior distribution is presented.

1.2 Related Work

Many methods for graph learning have been proposed thus far. Most of them
are summarized in the two overview papers [30,31]. Without being exhaustive,
we review static graph learning (SGL) and time-varying graph learning methods
related to our approach.

The basic strategy of SGL is the design of optimization problems based
on some desired criteria for learned graphs. For example, [37, 38, 43] assume
that signals are smooth on a graph. This characteristic is often represented as
the Laplacian quadratic form. Instead of smoothness [39, 45, 53] assume that
signals are generated from a Laplacian constrained Gaussian Markov random
field (LGMRF), and maximize its regularized likelihood. Some studies such as
like [30,31,39] suggest a relation between the signal smoothness and the LGMRF
likelihood; the smoothness-based approach in [37] solves a relaxed problem of
the LGMRF likelihood criterion.

Among the techniques for learning time-varying graphs, the Kalofolias et
al. method [54], where constraints are introduced so that the edge weights
change smoothly over time, is close to our method described in 4. This ap-
proach uses a smoothness criterion and Tikhonov regularization of temporal
variation in graphs to learn a time-varying graph. However, it does not learn
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time-varying graphs with temporal homogeneity exactly because Tikhonov reg-
ularization promotes smooth variation of edge weights over time, i.e., it allows
changes of both edges and edge weights over short-term time horizons. While
our approach has similar cost functions as those employed in [54], we use differ-
ent regularization terms that favors learning time-varying graphs with tempo-
ral homogeneity. The optimization problem in our approach cannot be solved
straightforwardly in the same manner as [54] because the regularization terms
used are not differentiable. Therefore, we reformulate the optimization problem
to make it solvable with a primal-dual splitting algorithm that leads to efficient
learning of a time-varying graph.

In a different line of GSP research, some graph learning methods assume
that observations are generated by applying some filters, e.g., graph variation
and heat diffusion operators, to a latent signal [40, 41, 55]. Their extensions to
TVGL, proposed in [56,57], focus on estimating graphs and corresponding filters
simultaneously under the assumption of stationarities of graph signals or signal
generation models based on graph filters. Such a simultaneous estimation is out
of the scope of this study. The method proposed in this study, in contrast, is
based on a different signal generation model.

Note that all previous works mentioned above are single temporal resolution
TVGL approaches. In contrast to the existing approaches, the proposed method
described in Chapter 5 estimates graphs having multiple temporal resolutions
to capture various temporal relationships. To the best of our knowledge, this is
the first attempt in which TVGL has been used to extract a TMR behavior.

Some studies focus on learning multiple graphs (not necessarily time-varying)
from observations. While they yield multiple graphs, the learned graphs may
not represent time-varying relationships [58, 59]. From a machine learning
perspective, TVGL relates to time-varying inverse covariance estimation [48,
60–62]. The main difference between TVGL and inverse covariance estima-
tion is whether the optimization problem contains the constraint on the graph
Laplacian. For example, a well-known inverse covariance estimation, graphical
Lasso [63], yields a covariance matrix that corresponds to a graph with neg-
ative edges and self-loops. This would be inappropriate if we need to learn
time-varying graphs with nonnegative edge weights without self-loops, which is
a typical assumption of GSP.
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1.3 Outline

The remainder of this paper is organized as follows. Chapter 2 presents prelim-
inaries concerning graph signal processing and convex optimization. Chapter 3
describes static graph learning methods from a signal generation perspective.
Chapter 4 presents the regularization for temporal graph variation and the op-
timization problem to learn time-varying graphs and proposes an algorithm to
find a solution. Chapter 5 describes a temporal multiresolution graph learn-
ing. Chapter 6 presents graph learning information criterion, which is a model
selection method for graph learning. Finally, we show the conclusion of this
dissertation in Chapter 7.
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Chapter 2

Notaion and Preliminaries

This chapter shows the notation and preliminaries that are useful for under-
standing graph learning.

2.1 Notation

The notation used in this paper is summarized in Table 2.1. Throughout this
paper, vectors and matrices are written in bold lowercase and bold uppercase
letters respectively. The calligraphic capital letters, namely, V and Wm, denote
sets. O(·) and Ω(·) are the big-O and big-Omega notations used in complexity
theory.

N(µ,Σ) is a multivariate Gaussian distribution with the mean µ and the
covariance Σ. The inverse Gaussian distribution is denoted by IGau(µ̄, λ̄),
where µ̄ and λ̄ are the mean and the shape parameter, respectively. Gam(ᾱ, β̄)

represents the gamma distribution with a shape parameter ᾱ and an inverse
scale parameter β̄. The uniform distribution in the interval [x, y] is denoted by
U(x, y).

Table 2.1: List of notation

ai, (a)i, a[i] ith entry of a vector
Aij , (A)ij (i, j) entry of a matrix
(A)i ith column of A
A† Moore-Penrose pseudoinverse of A
gdet(A) Generalized determinant of A
R+ Set of the nonnegative real numbers
R++ Set of the positive real numbers
◦ Hadamard product
‖a‖22, ‖A‖2F sum of squared values of all elements
‖a‖1, ‖A‖1 sum of absolute values of all elements
Tr(A) Trace of a matrix
diag(A) vector formed by diagonal elements
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2.2 Graph Signal Processing

2.2.1 Graphs

Graphs are mathematical structures to represent the pairwise relationship be-
tween objects such as networks (see 2.1). A graph consists of nodes (which are
also called vertices), edges, and edge weights. An undirected weighted graph is
represented as G = (V , E ,W), where V is a set of nodes, E is a set of edges, and
W is a weighted adjacency matrix. The number of nodes is given by N = |V|.
Each element of the weighted adjacency matrix is defined by

(W)mn =

wmn if nodes m and n are connected,

0 otherwise,
(2.1)

where wmn ≥ 0 is the edge weight between nodes m and n. The degree matrix
D is a diagonal matrix whose diagonal element is dmm =

∑
nwmn.

Definition 2.1. (Various graph Laplacians) Graph Laplacian (also called com-
binatorial graph Laplacian) is defined as

L := D−W, (2.2)

and symmetirc normalized Laplacian is defined as

Lsym := D−1/2LD−1/2 = I−D−1/2WD−1/2. (2.3)
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2.2.2 Graph Fourier Transform

One of the fundamental tools of classical signal processing is Fourier transform,
which enables us to analyze signals and design filters in frequency domain.

Definition 2.2. (Fourier transform) The Fourier transform of a function x is
defined as

X(ω) =

∫ ∞
−∞

x(t)e−jωtdt (2.4)

where ω = 2πξ ∈ R and ξ is frequency. X(ω) is spectrum of x if X(ω) is finite
for all ω. The inverse Fourier transform of X is defined as

x(t) =
1

2π

∫ ∞
−∞

X(ω)ejωtdω (2.5)

where t ∈ R.

The function e−jωt is the eigenfunction of Laplace operator:

− ∂2

∂t2
ejωt = ω2ejωt. (2.6)

Graph Fourier transform is the counterpart of Fourier transform in graph
signal processing.

Definition 2.3. (Graph Fourier transform) Let L ∈ Rn×N be a graph Lapla-
cian, and its eigenvalue decomposition is given by L = UΛUT, where U =

[u0,u1, . . . ,uN−1] is a matrix whose i-th column is the eigenvector ui and
Λ = diag(λ0, λ1, . . . λN−1) is a diagonal eigenvalue matrix. The eigenvalues
λi are arranged in ascending order: 0 = λ0 ≤ λ1, . . . ≤ λN−1 without loss of
generality. The graph Fourier transform (GFT) is defined as

f̂ [i] = 〈ui, f〉 =
N−1∑
n=0

ui[n]f [n], (2.7)

and the inverse GFT is defined as

f [n] =
N−1∑
i=0

f̂ [i]ui[n]. (2.8)

Eigenvalues of the graph Laplacian correspond to frequencies in the classical
Fourier transform, and thus, are often called graph frequencies. The eigenvector
ui is called GFT basis.
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The GFT can be interpreted as the projection onto the subspace spanned
by the eigenvectors of a graph Laplacian, which is the counterpart of Laplace
operator in (2.6).

2.2.3 Smoothness of Graph Signal

Let f ∈ RN be a signal on the graph, then the Laplacian quadratic form is given
by

fTLf =
1

2

∑
m,n

wmn(fm − fn)2, (2.9)

where fm and fn denote the signal values at nodes m and n, respectively. This
implies that fTLf becomes small when the signals on the nodes connected to
each other are close, and thus (2.9) provides the metric that measure the vari-
ation of the signal on the graph [5].

We demonstrate the relationship between the variation of graph signal and
GFT. Consider a successive minimization problem of Rayleigh quotient of a
graph Laplacian:

arg min
fTuk′ ,k

′=0,···k−1

fTLf

fTf
. (2.10)

The solution of this problem is given by the GFT basis uk of L with λk = uTLu

if uk is normalized. Thus, the variation of the GFT basis corresponding to a
small eigenvalue is small, and that of GFT basis with a large eigenvalue is large.
Thus, the GFT basis with a small eigenvalue exhibits small variation, and that
with a large eigenvalue shows large variation. Fig. 2.2 shows the GFT bases of
a sensor graph (N = 30). As can be seen in this figure, the basis with low graph
frequency is smooth, and the one with high frequency shows large variation.

Many applications of GSP often assume the smoothness of graph signals,
e.g., image processing, graph signal sampling, and graph learning. A smooth
graph signal is one whose energy tends to lie mainly in the low graph frequency
region. Fig. 2.3 shows smooth and noisy graph signals on a polygon mesh
and their spectra. Colors on the polygon mesh represent the signal values.
Focusing on Fig 2.3(b), it finds that the energy of the spectrum of Fig 2.3(a)
is concentrated in low frequency and is hardly lying in high frequency. On the
other hand, the spectrum of the noisy signal in Fig 2.3(d) has some energy in
the high frequency.
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(a) u0

(b) u4 (c) u9

(d) u14 (e) u19

(f) u24 (g) u29

Figure 2.2: The GFT bases of a sensor graph.
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(a) (b)

(c) (d)

Figure 2.3: Graph signals and their spectra. The vertex color
(a) Smooth graph signal, (b) the spectrum of (a), (c) the graph
signal of (a) with white Gaussian noise σ2 = 0.3, (d) the spec-

trum of (c).

2.3 Convex Optimization using Proximal Algo-

rithm

Many problems in signal processing, machine learning, image processing, and
data mining are formulated as convex optimizations, which include functions
that are not necessarily differentiable. An approach to solve such problems
is a proximal algorithm, which minimizes the objective function by successive
evaluations of the proximal operators. Time-varying graph learning methods in
introduced in this thesis are formulated as the convex optimization problem, and
this can be computed by a primal-dual splitting algorithm, a kind of proximal
algorithms. This section shows the basic definitions and an overview of proximal
algorithms.
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2.3.1 Basic Definition for Convex Optimization

In this chapter, we consider functions f defined on a real Hiilbert space X
with values in R ∪ {∞}. Some classical definitions of convex optimization are
described as follows.

Definition 2.4. (Proper function.) A function f is said to be proper if its
domain

dom(g) = {x ∈ X ; g(x) < +∞} (2.11)

is nonempty.

Definition 2.5. (Convex function.) A function f is said to be convex if

f(ax+ (1− a)y) ≤ af(x) + (1− a)f(y) (2.12)

for all x, y ∈ X and a ∈ [0, 1].

Definition 2.6. (Lower semicontinuous function.) A function f is said to be
lower semicontinuous at x0 ∈ X if and only if

lim inf
x→x0

f(x) ≥ f (x0) . (2.13)

For an operator T : X → X , the set of fixed points is denoted by:

FixT = {x ∈ X | Tx = x} (2.14)

Definition 2.7. (Lipschitz continuous and contractive mapping) Let T : X →
X defined on a metric space (X , d). Then T is Lipschitz continuous with con-
stant κ ∈ R+ if

d(Tx, Ty) ≤ κd(x, y) (∀x ∈ X ) (∀y ∈ X ) . (2.15)

The smallest κ satisfying (2.15) is said to be Lipschitz constant. T is said to be
contractvie mapping if κ ≤ 1

Banach–Picard fixed point theorem is one of the important theorems in
convex analysis.

Theorem 2.1. (Banach–Picard fixed point theorem) Let (X , d) be a complete
metric space and let T : X → X be a contractive mapping. Given x0 ∈ X , T
have the unique fixed point z ∈ X and the following hold:

lim
n→∞

T nx0 = z. (2.16)
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d(T n(x0), z) ≤ κn

1− κ
d(x0, T (x0)) (n = 0, 1, 2, · · · ). (2.17)

This theorem states that the fixed point z of an contractive mapping T can
be approximated by the iteration xn+1 = T (xn) because limn→∞ ‖xn − z‖ = 0.
For an nonexpansive operator, there exists an algorithm that can approximately
compute its fixed point. This is guaranteed by Krasnosel’skĭı–Mann algorithm
theorem.

Definition 2.8. (Nonexpansive and quasinonexpansive operator) Let T : X →
X . Then T is a nonexpansive operator if

(i) nonexpansive if

‖T (x)− T (y)‖ ≤ ‖x− y‖ (∀x, y ∈ X ). (2.18)

(ii) quasinonexpansive if

‖T (x)− y‖ ≤ ‖x− y‖ (∀x ∈ X , ∀y ∈ FixT ). (2.19)

Suppose that T is a nonexpansive operator such that

FixT := {x ∈ H | T (x) = x} 6= ∅. (2.20)

Then T is quasinonexpansive and Fix(T ) is a closed set.

Definition 2.9. (Averaged nonexpansive operator) Let T : X → X be non-
expansive, and let α ∈ [0, 1). Then T is said to be α-averaged nonexpan-
sive operator or averaged nonexpansive, if there exists a nonexpansive operator
R : X → X such that

T = (1− α) Id +αR. (2.21)

where Id is an identity function.

Theorem 2.2. (Krasnosel’skĭı–Mann algorithm) Let T : X → X be nonexpan-
sive such that Fix(T ) 6= ∅, and let αn ∈ (0, 1]/(n = 0, 1, 2, · · · ) be a sequence
such that

∑∞
n=0 αn(1− αn) =∞. A sequence

xn+1 := (1− αn)xn + αnT (xn) (n = 0, 1, 2, · · · ) (2.22)

converges weakly a fixed point z ∈ FixT .
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2.3.2 Proximal Operator

A proximal operator plays an important role in proximal algorithms. The set
of proper, convex, lower semicontinuous functions is denoted by Γ0(X ), and the
proximal operator is defined as follows.

Definition 2.10. (Proximal operator) The proximal operator proxγf : X → X
of f ∈ Γ0(X ) with a parameter γ > 0 is defined as

proxγf (x) = arg min
y

f(y) +
1

2γ
‖y − x‖2

2. (2.23)

If a proximal operator proxγf can be computed efficiently, the function f is
called proximable. Proximal operators have the following properties [64]:

(i) If a function f is separable across variables, i.e., f(x) = f1(x1) + f2(x2)

with x = [xT
1 xT

2 ]T, then

proxγf (x) = [(proxγf1(x1))T (proxγf2(x2))T]T, (2.24)

where x = [xT
1 xT

2 ]T. Thus, the computation in the proximal operator of
separable functions reduces to the computation of the proximal operator
for each separable part.

(ii) If a function f is fully separable, i.e., f(x) =
∑

i fi(xi), then

(proxγf (x))i = proxγfi(xi). (2.25)

Therefore, in this case, the computation of proximal operator can be re-
duced to the elementwise computation.

(iii) If a function f is orthogonally invariant, i.e.,

f(VXU) = f(X), (2.26)

for all X ∈ Rm×n, U ∈ Rn×n, and V ∈ Rm×m, where U and V are
orthogonal matrices, then the following hold:

proxγf (X) = V diag
(
proxγF (σ(X))

)
U,

f = F ◦ σ,
(2.27)

where σ(·) is the singular value mapping that returns its singular values
in nonincreasing order, and f is an absolutely symmetric matrix, meaning
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that f(Px) = f(x) for all x ∈ R and any signed permutation matrix P.
(2.27) implies that the proximal operator proxγf (X) can be computed by
the evaluation of the proximal operator of the corresponding absolutely
symmetric function F at σ(X). This properties is used to compute the
proximal operator of nuclear norm (also known as trace norm).

2.3.3 Proximal Gradient Method

We consider the following problem:

min
x∈RN

f(x) + g(x) (2.28)

where f ∈ Γ0(X ) is differentiable convex function such that ∇f is κ-Lipschitz
continuous with κ > 0, and g ∈ Γ0(X ) is a proximable. Note that g does not
need to be differentiable. Suppose that there exists a solution in this problem.
Proximal gradient method is an iterative algorithm to solve the problem in
(2.28), shown in Algorithm 1.

Algorithm 1 Proximal gradient method

Input: x(0), γ
while A stopping criterion is not satisfied do

x(n+1) = proxγg(x
(n) − γ∇f(x(n)))

n← n+ 1
end while

Output: x(n)

Theorem 2.3. (Averaged nonexpansiveness of proximal gradient method) The
sequential update proxγg(x

(n) − γ∇f(x(n))) in Algorithm 1 is an averaged non-
expansive operator for any γ ∈ (0, 2/κ).

Theorem 2.2 and 2.3 lead to the following theorem.

Theorem 2.4. (Convergence of proximal gradient method) A sequence (x(n))n≥1

generated from Algorithm 1 converges an optimal value of (2.28) for any x(0)

and any γ ∈ (0, 2/κ).

This theorem implies that the step size γ that guarantees convergence is
determined by the Lipschitz constant κ of ∇f .

The proximal gradient method is often used to solve a problem with `1 norm,
which is the important optimization in sparse modeling. Sparse modeling aims
to obtain a sparse solution, meaning that most of the elements in the solution are
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zero. We demonstrate a linear regression with `1 regularization as an example
of the application of the proximal gradient method. Consider the following
problem called as least absolute shrinkage and selection operator (LASSO):

min
x∈Rn

1

2
‖Φx− y‖2

2 + α‖x‖1, (2.29)

where Φ ∈ RM×N , y ∈ RM , and α ∈ R are given. The first term 1
2
‖Φx − y‖2

2

is called as data fidelity term, which measure the difference between Φx and y,
the second term is a sparse term, which promotes the sparseness of x, and α is
the hyperparamter that controls the strength of the regularization.

Since the first term is a differentiable proper convex function, and the second
term is convex but not differentiable, we assign (2.29) to the applicable form of
the proximal gradient method in (2.28) as follows:

f(x) =
1

2
‖Φx− y‖2

2,

g(x) = α‖x‖1.
(2.30)

The Lipschitz constant κ of ∇f is given by

κ = ‖ΦTΦ‖2 = λmax(ΦTΦ) (2.31)

where ‖ · ‖2 is matrix norm (also called spectral norm), which is given by the
largest singular value of a matrix. The proximal operator of `1 norm is given
by soft thresholding

proxγ‖·‖1 = Sγ(x) :=


xi − γ, xi ≥ γ

0, −γ < xi < γ

xi + γ, xi ≤ −γ.

(2.32)

Applying the proximal gradient method, (2.29) can be solved by the following
iteration:

x(n+1) = Sγ(x
(n) − γΦT(Φx(n) − y)) (n = 1, 2, · · · ). (2.33)

for any x(0) and 0 < γ ≤ 1
‖ΦTΦ‖2 . This iterative algorithm is called as iterative

shrinkage thresholiding algorithm (ISTA).
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2.3.4 Primal-Dual Splitting Algorithm

Primal-dual approaches have been growing importance in recent developments
in optimization. These approaches utilize the duality of the objective function,
and they obtains an optimal solution by concurrently solving a primal problem
(the original optimization problem) as well as a dual problem. The advantages
of primal-dual approaches are summarized as follows:

Flexibility
Primal-dual approaches can handle both differentiable and nondifferen-
tiable terms, the former using gradient operators and the latter using
proximal operators.

Full splitting
Primal-dual approaches can use separately each of the operators contained
in the problem (e.g., gradients, proximal operators, and linear operators).
This enables to avoid the computation of the inversion operator, which is
expensive computational cost, in the optimization process.

Parallelizable algorithm
Full splitting of primal-dual approaches leads to parallelizable algorithms.
These parallelizable algorithms are often used for high-dimensional prob-
lems and distributed optimization problem.

We introduce the conjucate function, which is a fundamental notion in
primal-dual approaches.

Definition 2.11. (Conjugate function) The conjugate (or Legendre transform,
or Fenchel conjugate, or Legendre–Fenchel transform) of f is defined as

f ∗ : X → (−∞,+∞] : u 7→ sup
x∈X

(〈x, u〉 − f(x)). (2.34)

min
x∈X

f(x) + g(x) +
M∑
m=1

hm(Lmx), (2.35)

where f, g ∈ Γ0(X ), hm ∈ Γ0(Um), and Lm : X → Um are bounded linear
operators. f is differentiable on X and ∇f has a Lipschitz contant κ > 0.
Suppose that the set of minimizers is nonempty, and the following is satisfied:

(0, 0, · · · , 0) ∈ sri{(Lmx = um)1≤m<M | x ∈ dom(g)

and um ∈ dom(hm), ∀m = 1, · · ·M}
(2.36)

The algorithm of the primal-dual splitting are summarized in Algorithm 2.
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Algorithm 2 Primal-dual splitting algorithm

Input: x(0) ∈ X , u(0)
1 ∈ U1, · · · u(0)

M ∈ UM , γ1, γ2

while A stopping criterion is not satisfied do
x(n+1) := proxγ1g

(
x(n) − γ1∇f(x(n))− γ1

∑M
m=1 L

∗
mu

(n)
m

)
for m = 1 to M do
u

(n+1)
m := proxγ2h∗m

(
u

(n)
m + γ2Lm(2x(n+1) − x(n))

)
end for

end while
Output: x(n)

Theorem 2.5. (Convergence of primal-dual splitting algorithm) The sequence
(x(n))n∈N generated by Algorithm 2 converges to an solution x̂ ∈ X of the prob-
lem (2.35) if

γ1

(
κ

2
+ γ2

∥∥∥∥∥
M∑
m=1

L∗mLm

∥∥∥∥∥
)
< 1. (2.37)
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Chapter 3

Graph Learning from a Signal
Generation Perspective

3.1 Graph Learning based on Factor Analysis

3.1.1 Static Graph Factor Analysis

We describe the static graph factor analysis (SGFA) [38], which introduces a
model for the generation of graph signals. The observation model of SGFA is
defined as follows [38]:

x = Uh + ε, (3.1)

where x ∈ RN is an observed signal, h ∈ RN is a latent variable represented
in the graph frequency domain, U is the GFT matrix and ε ∼ N (0, σ2

ε I) is an
additive white Gaussian noise. The observation model in (3.1) means that the
signals possessing graph structures can be represented by the inverse GFT of
latent variables in the spectral domain of the underlying graph. SGFA assumes
that the latent variable h follows the multivariate Gaussian distribution

p(h) = N (0,Λ†). (3.2)

This corresponds to the assumption that signal energy tends to be concentrated
in the low frequencies and thus encourages graph signal smoothness. Equations
(3.1) and (3.2) lead to the conditional probability of x given h:

p(x|h) = N (Uh, σ2
ε I). (3.3)

From (3.2) and (3.3), the marginal distribution of x is given by:

p(x) = N (0,L† + σ2
ε I). (3.4)
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Note that the fact L† = UΛ†UT is used in the derivation of (3.4). The marginal
distribution in (3.4) indicates that a graph signal x can be generated by the
degenerate multivariate Gaussian distribution whose precision matrix is the
graph Laplacian of the underlying graph.

Signals generated from this distribution in (3.4) satisfy graph stationary
[65] because their covariance and graph Laplacian can be jointly diagonalizable
with the eigenvectors of graph Laplacian. Consider the maximum a posteriori
estimation of h:

hMAP(x) := arg max
h

p(h|x)

= arg max
h

p(x|h)p(h)

= arg min
h

(
− log e−(x−Uh)T(x−Uh) − α log e−hTΛh

)
= arg min

h
‖x−Uh‖2

2 + αhTΛh

(3.5)

where α is a parameter, which is proportional to the noise variance σ2
ε . Substi-

tuting y = Uh for (3.5) leads to the following problem:

min
L,y
‖x− y‖2

2 + αyTLy, (3.6)

where y is regarded as a noiseless signal. Focusing on the second term in
(3.6), this optimization problem finds the graph Laplacian that minimizes the
smoothness measure as in (2.9).

3.1.2 Graph Learning for Smooth Signal Representation

Based on (3.6), graph learning problem is formulated as [38]:

min
L,Y
‖X−Y‖2

F + α tr(YTLY) + β‖L‖2
F .

s.t. tr(L) = N

Lij = Lji ≤ 0, i 6= j

L1 = 0

(3.7)

where X ∈ RN×K contains K observed data {xk}Kk=1 as columns, and α and β
are regularization hyperparameters. The third term of (3.6) added as a reg-
ularization term in the objective function controls the distribution of the the
off-diagonal entries of L. The first constraint tr(L) = N acts to avoid trivial
solutions, and the second and third terms are constraints to learn a valid graph
Laplacian.
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The problem of (3.6) can be solved by an alternative optimization that
consists of the steps to update L and Y. Alternative optimization fixes one
variable and solves the subproblem for the other variable at each step and
iterates the steps to obtain a local minimum solution. From (3.6) fixed Y, the
step to update L is given by:

min
L

α tr(YTLY) + β‖L‖2
F .

s.t. tr(L) = N, Lij = Lji ≤ 0 ( i 6= j), L1 = 0
(3.8)

This problem finds a graph Laplacian where the noiseless signals X are smooth,
and can be regarded as the graph learning step. This problem can be solved
by operator splitting methods (e.g., alternating direction method of multipliers
(ADMM) and primal-dual splitting method). The second step to update Y is
given by the following problem:

min
L
‖X−Y‖2

F + α tr(YTLY) (3.9)

This problem has the following closed form solution:

Y = (I + αL)−1X. (3.10)

This corresponds to applying a low pass graph filter to X and can be interpreted
as denoising of X. Thus, the solution of (3.6) is obtained by solving alternately
(3.8) and (3.9).

3.1.3 Kalofolias’s method

The alternative optimization such as the above problem cannot guarantee the
convergence to the optimal solution in general. To avoid this, by assuming y =

x, (3.6) is reformulated as a problem to find the weighted adjacency matrix that
minimizes the smoothness measure xTLx and some constraint terms [37,43,54]:

min
W≥0
‖W ◦ Z‖1 − α1T log(W1) + β‖W‖2

F , (3.11)

where Z is a pairwise distance matrix given by

(Z)ij =
K∑
k=1

‖(xk)i − (xk)j‖2. (3.12)
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The first term corresponds to the smoothness metric in (2.9):

2Tr(XTLtX) = Tr(WZ) = ‖W ◦ Z‖1. (3.13)

The second term is a log-barrier function for the degree of the graph, which
forces the degree on each node to be positive without preventing edge weights
from becoming zero. This problem can be solved using a primal-dual splitting
algorithm.

3.2 Graph Learning based on Laplacian-Constrained

Gaussian Markov Random Fields

Graph learning is a problem of learning graph Laplacian(s) from observations
X ∈ RN×K = [x1, . . .xK ], where K is the number of observations. Assume that
the following signal observation model based on Laplacian constrained Gaussian
Markov random field (LGMRF) [38,39,45]:

p(x | Θ) =
1

(2π)K/2 (gdet(Θ†))1/2
exp

(
−1

2
xTΘx

)
, (3.14)

where Θ ∈ L is the precision matrix satisfying graph Laplacian constraints.
The negative log-likelihood function L(Θ) of (3.14) is given by

L(Θ) = − log(
K∏
k=1

p (xk | Θ))

=
1

2

K∑
k=1

Tr
(
xT
kΘxk

)
− K

2
log gdet(Θ).

(3.15)

Furthermore, suppose that the prior distribution p(Θ) is the following Laplace
distribution.

p(Θ | Λ) =
∏
i<j

p(θij) =
∏
i<j

λ

2
exp(−λ|θij|), (3.16)

where λ is a scale parameter of the Laplace distribution. The maximum a
posteriori (MAP) estimation of Θ with (3.15) and (3.16) leads to the following
the optimization problem [39]:

minimize
Θ∈L

1

K
Tr(ΘS)− log gdet(Θ) + α‖Θ‖1,off (3.17)
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where S = XXT, α = λ/K, ‖Θ‖1,off represents the absolute sum of off-diagonal
elements in Θ, and L is the set of valid graph Laplacians given by:

L =

{
L ∈ RN×N : Lij = Lji ≤ 0 (i 6= j), Lii =

∑
i 6=j

Lij

}
. (3.18)

The optimization problem in (3.17) can be solved using the block coordinate
descent algorithm [39].
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Chapter 4

Time-varying Graph Learning with
Constraints on Graph Temporal
Variation

This chapter presents a time-varying graph learning method based on time-
varying graph factor analysis (TGFA), which is an extension of its static coun-
terpart, static graph factor analysis (SGFA) [38]. We propose the TGFA-based
method to estimate time-varying graphs from a collection of spatiotemporal
measurements. The SGFA formulates a signal generation model based on a
graph signal processing (GSP) perspective, where it is assumed that the ob-
served signals have some specific spectral properties with respect to graph
Fourier transform (GFT) of the graph to be learned. For example, if a mul-
tivariate Gaussian model is chosen, it leads to the observed signals generated
from a Gaussian distribution whose inverse covariance matrix (i.e., precision
matrix) is given by the graph Laplacian of the underlying graph [30,38]. Unlike
SGFA, TGFA considers the graph evolution as illustrated in Fig. 4.1. The
graph evolution can be represented by a sequence of graph Laplacians and their
corresponding temporal variations.

This study focuses on two time-varying graph models, with the following
two properties:

(P1) Temporal homogeneity: Most edges and their weights in the time-
varying graph should remain unchanged over a short-term time horizon. In
other words, at any given time, only a small number of edges in time-varying
graphs change. Time-varying graphs in many applications satisfy this prop-
erty. For example, consider a sensor network where nodes and edges represent
sensor locations and correlations among sensor measurements, respectively. If
the sensors record the temperature in a building, various factors such as air
conditioning, sunlight, and the number of people in the room, locally affect
the correlations among the sensor measurements. However, these factors vary
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Temporal Variation

Observed signal

Graph evolution

Figure 4.1: An overview of time-varying graph factor analysis.
Lt and ∆Lt represent the graph Laplacian at the tth time slot
and the graph temporal variation. This study focuses on learn-
ing a time-varying graph, which is the sequence of the graph

Laplacian, from the observed signal x.

smoothly over time. As a result, this sensor network will be a time-varying graph
such that most edges remain constant, while the weights change only slightly
over time, i.e., it follows (P1). In addition to this example, time-varying graphs
in fMRI and various biological networks seem to have this property [47,66].

(P2) Switching behavior: Edges and weights remain almost unchanged
over time; however, they may suddenly change within a few time slots. This type
of time-varying graph appears in situations where some factors cause sudden
changes in graph topologies. Prominent examples include brain networks, where
epileptic seizures make their topology change suddenly [67].

We design an algorithm to estimate the two types of time-varying graphs,
namely, graphs with temporal homogeneity and graphs with switching behav-
ior. For this purpose, we formulate the graph learning problem as a convex
optimization with regularization of temporal variation derived from TGFA. To
solve the convex optimization problem, we utilize a primal-dual splitting algo-
rithm [68], which enables us to estimate time-varying graphs more successfully
than static graph learning methods.

4.1 Time-varying Graph Factor Analysis

Suppose that we have a multivariate time series data divided by non-overlapping
time windows {X1, . . . ,XT}, where Xt = [x

(t)
1 , . . . ,x

(t)
K ] ∈ RN×K contains K

observations at a time window t, and the graph corresponding to observations
in the same time window is invariant. The choice of K depends on a sampling
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frequency in measurements. In this paper, for simplicity we use nonoverlapping
time windows to formulate the observation model for simplicity. Note that the
overlapping sliding windows can also be used instead, with slight modifications.
Our goal is to learn a sequence of graph Laplacians L1, . . . ,LT from the data
sequence. We first introduce a time-varying graph factor analysis (TGFA) to
formulate the time-varying graph learning. By incorporating a graph evolution
process into SGFA, we define TGFA as:

x(t) ∼ N (0,L†t + σ2
ε I), (4.1)

Lt =

0 t = 0

Lt−1 + ∆Lt t ≥ 1.
(4.2)

where x(t), Lt, and ∆Lt are a signal, the graph Laplacian of the underlying graph
and a temporal graph variation at a given time t, respectively. In Section 3.1, we
discuss (4.1), which indicates that time-varying graph learning requires the time-
varying observations to be smooth on the learned graphs at the corresponding
time slots.

Besides the smoothness criterion, this approach allows us to incorporate
prior knowledge about temporal graph variation and will lead to more robust
graph learning. Thus, we generalize the time-varying graph learning problem
as that of solving the following optimization:

min
Lt∈L

T∑
t=1

Tr(XT
t LtXt) + f(Lt) + η

T∑
t=2

R(∆Lt ◦H), (4.3)

where L is the valid set of graph Laplacians and is given by

L = { L ∈ RN×N |L = LT, Lij ≤ 0 (i 6= j),

Lii = −
∑
j 6=i

Lij}, (4.4)

H = I−11T, R(∆Lt◦H) is a regularization term that characterizes the temporal
change in graph edges, that is, the off-diagonal elements of the temporal graph
variation ∆Lt. The first term in (4.3) corresponds to the smoothness term in the
static case (3.6), and quantifies the smoothness of the signals on time-varying
graphs. The function in the second term f(Lt) is a regularization to avoid
obtaining trivial solutions. This function, of which examples will be given later,
depends on the assumptions made about the graph model. The parameter η
controls the regularization strength.
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We reformulate the problem (4.3) with a constraint (4.4) by using weighted
adjacency matrices. As shown in the following, this leads to a tractable for-
mulation because using weighted adjacency matrices allows us to simplify the
condition for the valid set. A problem equivalent to that of (4.3) is then given
by:

min
Wt∈Wm

T∑
t=1

1

2
‖Wt ◦ Zt‖1 + f(Wt) + η

T∑
t=2

R(Wt −Wt−1), (4.5)

where the valid set of weighted adjacency matrices is defined by

Wm =
{
W ∈ RN×N+ |W = WT,Wii = 0

}
. (4.6)

The first term of (4.5) is equivalent to Tr(XT
t LtXt), given that [37]:

Tr(XT
t LtXt) =

1

2
Tr(WtZt) =

1

2
‖Wt ◦ Zt‖1, (4.7)

where Zt is the pairwise distance matrix defined by

(Zt)ij =
K∑
k=1

‖(x(t)
k )i − (x

(t)
k )j‖2. (4.8)

In this paper, we solve the optimization problem in (4.5) to learn a time-
varying graph. Throughout this paper, we set the regularization for the weighted
adjacency matrix to be [54]:

f(Wt) = −α1>log(Wt1) + β||Wt||2F , (4.9)

where α and β are the parameters. The first term in (4.9) forces the degree on
each node to be positive without preventing edge weights from becoming zero.
The second term controls the sparsity of the resulting graphs. Lower value leads
to sparser graphs, and higher value leads to denser graphs. Next, we describe
how to select the regularization for the graph temporal variation R(·) and solve
the optimization problem.

4.2 Learning Time-Varying Graph with Tempo-

ral Variation Regularization

The choice of the regularization term for graph temporal variation should be
based on our prior knowledge, i.e., the assumption about the temporal graph
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evolution. In [54], a temporal variation regularizer R(·) = ‖ · ‖2
F is selected

to learn time-varying graphs such that the edge weights change smoothly over
time. In this paper, we consider two types of graph evolution terms different
from [54], which appear in many applications. Because our regularization terms
are not differentiable, the optimization problem in our approach cannot be
solved directly using the same methods as in [54]. Therefore, we also present
an algorithm for solving our optimization problem.

4.2.1 Regularization of Graph Temporal Variation

Formulation with Fused Lasso

In the first model, we assume that most edges and their weights are likely to
remain unchanged over a short-term time horizon (P1). Thus, we select a
regularizer R(·) = ‖ · ‖1 in (4.5) and formulate the optimization problem as:

min
Wt∈Wm

T∑
t=1

1

2
‖Wt ◦ Zt‖1 + f(Wt) + η

T∑
t=2

‖Wt −Wt−1‖1, (4.10)

A penalty on `1-norm of the difference between neighboring time windows leads
to a fused Lasso problem [69], which encourages sparse differences, leading to
local temporal constancy of weighted adjacency matrices, and thus, solution
graphs that tend to satisfy the (P1) property. This penalty can also be inter-
preted as the total variation between neighboring graphs.

In order to make the optimization problem tractable, we rewrite (4.10)
and (4.9) in vector form, with Wt and Zt replaced by wt ∈ RN(N−1)/2

+ and
zt ∈ RN(N−1)/2

+ respectively. Only the upper-triangular parts of Wt and Zt are
considered given that the graph is undirected.

Let us define w = [wT
1 wT

2 . . .w
T
T ]T, z = [zT

1 zT
2 . . . z

T
T ]T, and d = [dT

1 dT
2 . . .d

T
T ]T

where dt = Wt1. We also introduce the linear operators S and Φ that satisfy
Sw = d and Φw = w − ŵ respectively, where ŵ = [wT

1 wT
1 wT

2 . . .w
T
T−1]T.

Then, we can rewrite (4.10) and (4.9) as

min
w∈Wv

zTw − α1Tlog(Sw) + β‖w‖2
2 + η‖Φw‖1, (4.11)

where
Wv =

{
w ∈ RTN(N−1)/2 | wi ≥ 0 (i = 1, 2, . . .)

}
(4.12)

represents the nonnegativity constraint. By expressing (4.6) in vector form, the
symmetric and diagonal constraints of (4.6) can be simplified.
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Formulation with Group Lasso

The second model aims at learning graphs having the switching behavior (P2).
This is achieved by choosing R(·) = ‖ · ‖2 as the regularizer in (4.5), leading to
a group Lasso [70] penalty as follows:

min
Wt∈Wm

T∑
t=1

1

2
‖Wt ◦ Zt‖1 + f(Wt) + η

T∑
t=2

‖Wt −Wt−1‖F , (4.13)

where only the last term differs from (4.10). Group Lasso penalizes the sum of
the `2-norm, leading to a `2,1-norm that encourages sparsity in each group. In
this formulation, the temporal variation of the weighted adjacency matrices at
a certain time slot is regarded as one group. Thus the group Lasso yields graphs
whose edge weights can vary significantly at a few time slots while they remain
almost constant at all the other time slots, thus satisfying the (P2) property.

In order to make the optimization problem tractable, we rewrite (4.13) in
the same manner as in the previous model as:

min
w∈Wv

zTw − α1Tlog(Sw) + β‖w‖2
2 + η

∑
j

‖[Φw]j‖2, (4.14)

where [Φw]j = wT
j −wT

j−1, j = 2, . . . T .

4.2.2 Optimization

We solve (4.10) and (4.13) with a primal-dual splitting (PDS) method [68],
which solves a problem in the form,

min
w

f1(w) + f2(w) + f3(Mw), (4.15)

where f1 is a differentiable convex function with gradient ∇f1 and Lipschitz
constant ξ; f2 and f3 are proper lower semi-continuous convex functions which
are proximable; and M is a linear operator.

Many algorithms to solve (4.15) have been proposed [68, 71, 72]. In this
proposed method, we use a forward-backward-forward (FBF) approach [73],
which makes it possible to compute the proximal operators of functions f2 and
f3 in parallel.
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Fused Lasso

By introducing the indicator function of Wv in (4.12), we rewrite (4.11) as
follows:

min
w

zTw − α1Tlog(Sw) + β‖w‖2
2 + η‖Φw‖1 + ιWv(w), (4.16)

where the indicator function ιWv is defined by

ιWv(w) =

0 wi ≥ 0

∞ otherwise.
(4.17)

The objective function (4.16) further reduces to the applicable form of the PDS
as follows:

f1(w) = β‖w‖2
2 with ξ = 2β,

f2(w) = zTw + ιWv(w),

f3(v) = −α1Tlog(v1) + η‖v2‖1,

M =

[
S

Φ

]
,

(4.18)

where the dual variable is v := Mw = [vT
1 vT

2 ]T.
The proximal operator of f2 is given by

(
proxγ(‖·‖1+ιWv )(x)

)
i

=

0 xi ≤ γ

xi − γ otherwise.
(4.19)

Because f3 is separable across variables, the proximal operator can be computed
separately for each term (see (2.24)). The proximal operator for the log barrier
function [64] as the first term of f3 is given by

(
proxγ(−1T log(·))(x)

)
i

=
xi +

√
x2
i + 4γ

2
. (4.20)

The proximal operator for the `1-norm, i.e., the second term in f3, is well known
to be the element-wise soft-thresholding operation [64]:

(
proxγ‖·‖1(x)

)
i

=

0 |xi| ≤ γ

sgn(xi)(|xi| − γ) otherwise.
(4.21)

See Algorithm 3 for the complete algorithm.
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Group Lasso

Similarly, the second objective function (4.14) can be reduced to the applicable
form of the PDS by replacing f3 with

f3(v) = −α1Tlog(v1) + η
∑
j

‖(v2)j‖2, (4.22)

where [v2]j = [Φw]j. The proximal operator of the group Lasso in f3 is well
known to be the blockwise soft-thresholding operation [64] :

proxγ‖·‖2([x]j) =

0 ‖[x]j‖2 ≤ γ

(1− γ/‖[x]j‖2)([x]j) otherwise.
(4.23)

Because the proximal operator of the functions f2 and f3 can be computed
efficiently, the second model can also be solved with the PDS algorithm. See
Algorithm 3.

The computational complexity for both of our learning problems is O(TN2)

per iteration. The hyperparameter γ in the PDS algorithm is determined such
that the convergence condition [71] is satisfied. Since the optimization problem
in the proposed method is convex and lower-semicontinuous, convergence of the
algorithms is guaranteed.

Algorithm 3 Proposed PDS Algorithm for solving (4.11) and (4.14)

Input: w(0),v
(0)
1 ,v

(0)
2

Output: w(i)

while ‖w(i+1) −w(i)‖/‖w(i)‖ > ε do
y(i) = w(i) − γ(2βw(i) + STv

(i)
1 + ΦTv

(i)
2 )

ȳ
(i)
1 = v

(i)
1 + γ(Sw(i))

ȳ
(i)
2 = v

(i)
2 + γ(Φw(i))

p(i) = proxγ(‖·‖1+ιWv )(y
(i))

p̄
(i)
1 = ȳ

(i)
1 − γprox 1

γ
(−1T log(·))

( ȳ
(i)
1

γ

)
p̄

(i)
2 =

ȳ
(i)
2 − γprox 1

γ
‖·‖1

( ȳ
(i)
2

γ

)
for solving (4.11)

ȳ
(i)
2 − γprox 1

γ
‖·‖2

( ȳ
(i)
2

γ

)
for solving (4.14)

q(i) = p(i) − γ(2βp(i) + STp̄
(i)
1 + ΦTp̄

(i)
2 )

q̄
(i)
1 = p̄

(i)
1 + γ(Sp(i))

q̄
(i)
2 = p̄

(i)
2 + γ(Φp(i))

w(i+1) = w(i) − y(i) + q(i)

v
(i+1)
1 = v

(i)
1 − ȳ

(i)
1 + q̄

(i)
1

v
(i+1)
2 = v

(i)
2 − ȳ

(i)
2 + q̄

(i)
2

end while
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4.3 Experimental Results with Synthetic Dataset

Table 4.1: List of alternative and proposed methods

Method Temporal Regularization Complexity

Static SGL-GLasso [39] - O(T (N2 + Ω(N3)))
SGL-Smooth [37] - O(TN2)

Time
Varying

TGL-Tikhonov [54] Tikhonov O(TN2)
TGL-TH (proposed) Fused Lasso O(TN2)
TGL-SB (proposed) Group Lasso O(TN2)

In this section, we present the experimental results with synthetic data and
compare the performance of our proposed method with related graph learning
methods (see Table 4.1 for a summary of all the methods we compare).

4.3.1 Synthetic Datasets

We create three types of synthetic graph signals generated from time-varying
graphs: A time-varying graph based on random waypoint model (abbreviated
as TV-RW graph) [74], a temporal homogeneity-based Erdős–Rényi graph (TH-
ER graph), and a

The dataset construction consists of two steps:

1. Constructing a time-varying graph.

2. Generating time-varying graph signals from probability distributions based
on graph Laplacians of the created time-varying graph.

We then describe the details of three datasets by referring to the desired prop-
erties (P1) and (P2).

Time-Varying Graph Construction

The TV-RW graph is constructed in two steps. First, we simulate the RW
model to obtain the time-varying coordinates over time. The model simulates
some sensors moving around a square space of 400 m2 with random speed and
directions. We obtain the time-varying data corresponding to the position of
each sensor at any given time. The number of sensors is set to N = 36 and the
motion speeds is set in the range of 0.05–0.5 m/s. We sample sensor positions
with sampling period τ = 0.1s for a total of 300 observations. In the second
step, we construct a 3-nearest-neighbor graph at each time from the position
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data. These edge weights are given by

w(i, j) = exp

(
−dist(i, j)

2θ

)
, (4.24)

where dist(i, j) is the Euclidean distance between nodes i and j, and θ is a
parameter. The edge weights in this graph generally vary smoothly as in (4.24);
however, some edges will (dis)appear in the next time slot due to the nature
of the k-neighborhood graph. Note that our method estimates time-varying
graphs robustly for various k. This graph partially satisfies (P1) because the
topology mostly remains unchanged in a short time horizon while the edge
weights change smoothly over time.

The TH-ER graph is constructed by varying edges in an ER graph over
time. We first construct an initial static ER graph W1 with N = 36 and an
edge connection probability p = 0.05. The obtained graph satisfies (P1). The
tth graph Wt is obtained by resampling 5% of edges from the previous graph
Wt−1. In this way, we construct a set of graphs that varies over 300 time slots.
The edge weights on this graph are set to be uniformly distributed in the interval
[0, 1]. Once they are randomly selected, they remain fixed until the edges are
resampled. In this graph, only a few edges switch at any given time while most
of the edges remain unchanged, i.e., this graph also follows (P1).

The SB-ER graph is a simulated example of the time-varying graph with
(P2). It is often observed in temporal brain connectivity dynamics [75, 76].
First, we generate six connectivity states, i.e., six static graphs. Each of the
graph is an ER graph withN = 36 and an edge connection probability p = 0.05.1

Second, the initial state is selected randomly from the six states.
Its state remains unchanged with a 98% probability and changes to another

connectivity state with the 2% probability at each time. This graph follows
the (P2) property. An SB-ER is constructed in this way and we have 300
observations in time.

Generating Data Samples

We create data samples from the constructed time-varying graphs in the same
manner for all the graphs. Let Lt be the graph Laplacian corresponding to Wt.
A data sample xt is generated from a Gaussian Markov random field model
defined by

p(xt|L(t)) = N (xt|0,L†t + σ2I), (4.25)
1In our preliminary experiments, p hardly affects the graph learning performances.
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where σ2 is the covariance of the Gaussian noise. We set σ = 0.5 in this
experiments. Pairs of variables generated from this distribution have closer
values to each other when the corresponding nodes connect with a larger edge
weight.

4.3.2 Performance Comparison

Experimental Conditions

We evaluate the performance in terms of relative error and F-measure, each
averaged over all the time slots. Relative error is given by

Relative error =
‖Ŵ −W∗‖F
‖W∗‖F

, (4.26)

where Ŵ is the estimated weighted adjacency matrix, and W∗ is the ground
truth. It reflects the accuracy of edge weights on the estimated graph. The
F-measure is given by

F-measure =
2tp

2tp + fn + fp
, (4.27)

where the true positive (tp) is the number of edges that are included both in
Ŵ and W∗, the false positive (fn) is the number of edges that are not included
in Ŵ but are included in W∗, and the false positive (fp) is the number of edges
that are included in Ŵ but are not included in W∗. The F-measure, which
is the harmonic average of the precision and recall, represents the accuracy of
the estimated graph topology. The F-measure takes values between 0 and 1.
The higher the F-measure is, the higher the performance of capturing the graph
topology is.

In this experiment, our goal is to compare all the methods based on their best
achievable performance. We perform Monte-Carlo simulations for each method
to find the parameters minimizing the relative error. Note that, as shown in
the next section, fixed parameters still work well for our graph learning with
real dataset. For SGL-Smooth, TGL-Tikhonov, TGL-TH, and TGL-SB, α is
selected by fine-tuning, and β is selected from the following set:

{0} ∪ {0.75rzmax | r = 1, 2, . . . , 14}, (4.28)

where zmax = maxi 6=j(Z)ij. The parameter η for TGL-TH and TGL-SB is
selected from 0.1 to 2 in steps of 0.1. The parameter for SGL-GLasso is selected
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by the method described in [39]. The tolerance value ε in Algorithm 3 is set
to 1.0 × 10−3. We evaluate the performance of each method with the different
number of data samples K = {1, 5, 10, 25, 50, 100} and measure the average of
the relative error and the F-measure over all the time frames. Note that SGL-
GLasso is not evaluated with K = 1 because the sample covariance used in
SGL-GLasso cannot be calculated.

Results

Fig. 4.2 shows the performance comparisons according to K. Figs. 4.2(a) and
(d) show the average F-measure and the relative error for TV-RW graphs; Figs.
4.2(c) and (e) show those for TH-ER graphs; Figs. 4.2(e) and (f) show those
for SB-ER graphs. As shown in Fig. 4.2, the existing static graph learning
methods, i.e., SGL-GLasso and SGL-Smooth, present worse performance than
the time-varying methods. This is because SGL-Smooth learns a graph from
each time slot independently. It does not consider the temporal relation of
graphs. Note that SGL-GLasso sometimes presents a comparable performance
with time-varying methods when K is large.

Fig. 4.2(a) and (d) present that TGL-TH and TGL-SB outperform TGL-
Tikhonov despite the fact that the edges in a TV-RW graph vary smoothly in
this case. As can be seen in this figure, TGL-Smooth yields undesirable edges.
This could be due to the Tikhonov regularization, i.e., the squared `2 norm of
the temporal variation. In TGL-Tikhonov, when the hyperparameter η is large,
it yields time-varying graphs that have small temporal variations (in terms of
the `2 variation) but the resulting graphs can be dense. In contrast, choosing
small η may not properly reflect the assumption (P1). Refer to Section 4.6.1
for experiments that relate graph density to the choice of η.

TGL-TH significantly outperforms the other methods for TH-ER graphs as
shown in Figs. 4.2(c) and (d). This indicates that the fused Lasso constraint
on the difference between graphs in neighboring time slots works well. In con-
trast, TGL-Tikhonov and TGL-SB present almost the same performance as the
static methods. This can be attributed to the fact that the assumptions on
the temporal variation of TGL-Tikhonov and TGL-SB are not valid. Thus,
since a TH-ER graph has neither smooth nor sudden changes, TGL-Tikhonov
and TGL-SB may not be suited to learn TH-ER graph. It is also worth noting
that, thanks to the regularization term, TGL-TH can successfully learn accurate
time-varying graphs from a small number of measurements.

As can be seen in Fig. 4.2, the performance gain for TH-ER graphs is much
better than that of TV-RW graphs. This is because the TH-ER graphs have



4.3. Experimental Results with Synthetic Dataset 39

(a) (b)

(c) (d)

(e) (f)

Figure 4.2: The performance of learning time-varying graph for
different number of data samples. Top row demonstrates the F-
measure for the datasets based on TV-RW graph, TH-ER graph,
and SB-ER graph, respectively. Bottom row demonstrates the

relative error for those datasets.

the (P1) properties while the TV-RW graphs lack a part of (P1), as previously
mentioned.

Focusing on Fig. 4.2(e) and (f), TGL-SB also outperforms the other methods
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(a) Ground truth (b) SGL-GLasso [39]

(c) SGL-Smooth [37] (d) TGL-Tikhonov

(e) TGL-TH (proposed) (f) TGL-SB (proposed)

Figure 4.3: The visualization of the temporal variations in the
time-varying graph learned from the dataset based on the graph
in which large fluctuations occur at a few time slots. Red points
in these figures represent time slots where the connectivity state

changes.

for smallK. This indicates that TGL-SB works well even in the situations where
the number of available samples is small. In this result, we can also see that
the regularization deviated from the assumption of temporal variation cannot
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(a) Ground truth (b) SGL-GLasso [39]

(c) SGL-Smooth [37] (d) TGL-Tikhonov [54]

(e) TGL-TH (proposed) (f) TGL-SB (proposed)

Figure 4.4: The visualization of the temporal variations in TV-
RW graph. Top row demonstrates the variations for the dataset
based on the TV-RW graph. Bottom row is the variations for
TH-ER graph datasets. Colors in these figures represent the

weights of the edges.

improve the performance as TGL-Tikhonov and TGL-TH shown in Fig. 4.2(e)
and (f): The performance of the relative error for TGL-Tikhonov and TGL-TH
is inferior to the static methods especially when K is large. Note that TGL-TH
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(a) Ground truth (b) SGL-GLasso [39]

(c) SGL-Smooth [37] (d) TGL-Tikhonov [54]

(e) TGL-TH (proposed) (f) TGL-SB (proposed)

Figure 4.5: The visualization of the temporal variations in
TV-ER graph.

has high performance on F-measure. Since the structure of the SB-ER graph is
unchanged in most time slots and partially satisfies (P1), it can be considered
that TGL-TH can successfully capture the structure.

Fig. 4.3 shows the L2-norm of the temporal difference of learned adjacency
matrices in each time slots, i.e., ‖Wt −Wt−1|‖2. Clearly, it can be observed
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(a) Ground truth (b) SGL-GLasso [39]

(c) SGL-Smooth [37] (d) TGL-Tikhonov

(e) TGL-TH (proposed) (f) TGL-SB (proposed)

Figure 4.6: The visualization of the temporal variations in
TV-SB graph.

that TGL-TH and TGL-SB can detect sudden changes of the graph in time
slots, while SGL-GLasso and SGL-Smooth have several unclear jumps. On the
other hand, TGL-Tikhonov can suppress the temporal variation of graphs than
SGL-Smooth but obscures the change points in the time-varying graph. As a
result, TGL-SB is a graph learning method suitable for change detection, and
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the group Lasso of temporal variation is effective in graph learning.
Figs. 4.4, 4.5 and 4.6 visualizes the temporal variation of a part of edge

weights on the learned graphs from the datasets of TV-RW, TH-ER, and SB-ER
graphs with K = 10. The vertical and horizontal axes of these figures represent
the edge and time slot indices of the learned graph, and the color represents
the intensity of the edge weights. To make an easy view, they visualize the
first 50 edge indices. As can be seen in these figures, SGL-GLasso and SGL-
Smooth cannot capture the original graph structure, and they are sensitive to
noise and output the graph ignoring its temporal relations. TGL-Tikhonov is
slightly superior to the static graph learning methods. However, it yields many
undesirable edges and the edge weights are relatively small. In contrast, TGL-
TH estimates the original structure better than the other methods and outputs
the graph considering its temporal relationships.

Focusing on Fig. 4.6, it can be observed that SGL-GLasso and SGL-Smooth
cannot capture the change points in the graph. In contrast, TGL-SB can detects
large edge changes in the original time-varying graph.

4.3.3 Effect of Temporal Resolution

To verify the robustness of the proposed method against the temporal graph
transition, i.e., temporal resolution, we evaluate the performance for the dataset
of the TV-RW graph with different sampling periods τ = 0.1, 0.5, 1.0, 1.5, 2.0.
Table 4.2 shows the performance comparisons with the dataset of TV-RW graph
with K = 10 according to τ . TGL-TH outperforms other methods when the
sampling period τ is small. On the other hand, TGL-TH and TGL-Tikhonov
have comparable performance for the average relative error with τ = 1.0, and
TGL-TH gets worse performance than TGL-Tikhonov when τ gets large. This
is because many edge weights of graphs may vary over time when the sam-
pling period is long, i.e., it does not satisfy (P1). For the same reason, the
performance of TGL-SB also is not improved as the sampling period is longer.

4.3.4 Computation Time

We compare the computation time of the proposed methods with some related
works. All methods are implemented in MATLAB R2018b and run on a 2.3-GHz
Intel Xeon W processor with 128-GB RAM. The experiments are tested on the
TH-ER graph dataset for different number of nodes N = {10, 50, 100, 250, 500}.
The tolerance value ε in each methods is set to 1.0× 10−3.
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Table 4.2: The performance of learning time-varying graph for
different sampling periods.

Average F-measure
Sampling period 0.1 0.5 1.0 1.5 2.0
SGL-GLasso 0.613 0.574 0.574 0.580 0.575
SGL-Smooth 0.639 0.562 0.562 0.563 0.534
TGL-Tikhonov 0.681 0.606 0.613 0.611 0.596

TGL-TH 0.718 0.636 0.656 0.664 0.627
TGL-SB 0.712 0.614 0.583 0.582 0.519

Average Relative Error
Sampling period 0.1 0.5 1.0 1.5 2.0
SGL-GLasso 0.602 0.690 0.699 0.697 0.696
SGL-Smooth 0.612 0.683 0.692 0.685 0.731
TGL-Tikhonov 0.529 0.606 0.607 0.605 0.633

TGL-TH 0.431 0.574 0.609 0.656 0.701
TGL-SB 0.439 0.597 0.649 0.639 0.738

Fig. 4.7 shows the computation time of each method, demonstrating that the
proposed methods (TGL-TH and TGL-SB) converge faster than SGL-GLasso.
Because SGL-GLasso needs to solve nonnegative quadratic programs as the
subproblem in each iteration, it requires very significant computation time.
The computational complexity of one iteration in SGL-GLasso is O(T (N2 +

Tp(N))) complexity where O(Tp(N)) is the worst-case complexity of solving the
subproblem, and Tp(N) = Ω(N3). On the other hand, the complexity iteration
in TGL-TH and TGL-SB is O(TN2) complexity.

TGL-TH and TGL-SB required longer computation time than SGL-Smooth
and TGL-Tikhonov, where they estimate a graph using almost the same algo-
rithm; that is, they have the same computational complexity O(TN2). However,
TGL-TH and TGL-SB introduce dual variables to solve the optimization prob-
lem with temporal variation regularization, i.e., they have more variables to
update than SGL-Smooth and TGL-Tikhonov. Although TGL-Tikhonov also
has temporal variation regularization, it can be computed without introducing a
dual variable because its temporal variation regularization can be differentiable.

4.4 Denoising of Dynamic Point Clouds

Our proposed method is applied to dynamic point cloud data denoising. Dy-
namic point cloud data contains 3D coordinates of dynamically evolving points.
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Figure 4.7: The comparison of computation time for the dif-
ferent number of N .

Table 4.3: Denoising Results: SNR (dB)

dog handstand skirt wheel
noisy 12.12 13.97 13.73 15.45
k-NN 12.35 14.29 14.01 15.76

SGL-Smooth 13.13 15.37 15.03 16.74
TGL-Tikhonov 13.34 15.69 15.34 17.06

TGL-TH 20.05 21.32 21.58 22.97

When point cloud data are acquired, the measurement error leads to the dis-
placements of the geometric coordinates of the point clouds. Here, we consider
graph-based denoising approaches. The performance of noise removal depends
on the underlying graph. In this experiment, denoising is performed by using
graph heat kernel filtering [77]. The time-varying graph used in the denoising
is estimated from noisy point cloud data.

We use the dynamic point cloud dataset in [78], which contains five dynamic
point clouds: dance, dog, handstand, skirt, and wheel. As this dataset is clean
data, with position ranges from −260 to 1932, we added Gaussian noise with
σ = 90, which is a significantly higher noise level. The time-varying graph
is learned from the dataset downsampled to 357 points and evolving over 240
time slots. In this experiment, we use fixed parameters for each method, which
is determined by a grid search with dance data, and evaluate the denoising
performance with the other four data.
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(a) Ground truth (b) Noisy

(c) k-nearest neighbor (d) SGL-Smooth [37]

(e) TGL-Tikhonov [54] (f) TGL-TH (proposed)

Figure 4.8: The visualization of denoising result of wheel at a
certain time.
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(a) k-nearest neighbor (b) SGL-Smooth [37]

(c) TGL-Tikhonov [54] (d) TGL-TH (proposed)

Figure 4.9: The visualization of a graph at a certain time in
the time-varying graph learned from the noisy point cloud data.

Table 4.3 summarizes the dynamic point cloud denoising qualities. Time-
varying graph learning methods, TGL-Tikhonov and TGL-TH, show better
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results than SGL-Smooth and k-nearest neighbor. This indicates that the k-
nearest neighbor cannot construct the meaningful graph from noisy data. Ad-
ditionally, TGL-TH outperformed TGL-Tikhonov up to 6 dB.

Fig. 4.8 shows the visualization of denoising results of the wheel at a certain
time. Similar to the numerical performance, the k-nearest neighbor cannot
capture the structure of the human body. SGL-Smooth and TGL-Tikhonov
yield slightly better outputs than that by the k-nearest neighbor; however,
the arms and legs are still problematic. On the other hand, TGL-TH can
successfully capture the structure of the human body than the other methods.

Fig. 4.9 visualizes a graph at a certain time in the time-varying graph
estimated from the noisy wheel data in the dynamic point cloud dataset. In
this figure, the nodes in the graphs are plotted in the correct position for vi-
sualization. As shown in Fig. 4.9, k-nearest neighbor yields a sparse graph
but nodes are connected without a temporal relationship. SGL-Smooth and
TGL-Tikhonov yielded very dense edges along with connecting different parts
in the body. In contrast, TGL-TH yields the graph whose nodes are connected
accurately and preserves the human body structure.

4.5 Application to Temperature Data

We apply the proposed method to estimate a time-varying graph from tempera-
ture data in the island of Hokkaido, the northernmost region in Japan. The goal
of this experiment is to learn a time-varying graph to explore the relationship
between geographical regions over time. In this experiment, we use the average
daily temperature data2 collected from 172 locations in Hokkaido in 2015, i.e.,
the overall the dataset has 365 time slots with N = 172 and K = 24. From this
data, we estimate a time-varying graph by using TGL-TH.

Fig. 4.10 shows the graph learned from temperature data3. For visualiza-
tion, we remove edges having very small weight (< 1.0×10−4). From the figure,
the inferred characteristics of the learned graph are as follows:

• Nodes close to each other are basically connected. This is reasonable
because the temperature is similar in the same geographical area. Note
that, if the recording points are separated by mountain ranges, nodes may
not be connected even if the distances are short.

2The Japan Meteorological Agency provided the daily temperature data from their website
at https://www.jma.go.jp/jma/index.html

3The Geospatial Information Authority of Japan provided the map in Hokkaido with
altitude from their website at http://www.gsi.go.jp/
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: The visualization of the graph learned from the
temperature data. (a) Map of Hokkaido with altitude. (b) The
graph learned on January 8, 2015 (winter graph). (c) The graph
learned on August 9, 2015 (summer graph). (d) Edges common
in winter and summer. (e) The winter graph from which the
common edges have been removed (winter-specific graph). (f)
The summer graph from which the common edges have been

removed (summer-specific graph).
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(a) (b)

Figure 4.11: Daily sea surface temperature (SST) on (a) 8
January 2015. (b) 9 August 2015.

• Nodes along the coast are often connected to each other, and the inland
nodes are also connected to each other. Especially, coastal nodes may
connect to each other despite being far away.

• Locally connected structures in the learned graph mostly remain un-
changed over time as shown in Fig. 4.10(d).

Figs. 4.10(e) and 4.10(f) show the season-specific graphs. We have found
that a coastal node often has a connection to another coastal node even if they
are not close to each other. This can be justified by the warming or cooling
effect of sea currents that occur seasonally in this area and that affect coastal
areas in similar ways. Fig. 4.11 represents daily sea surface temperatures (SST)
on January 8 and August 9, 2015 4. As can be seen in Figs. 4.10(e), 4.10(f),
and 4.11, nodes in similar SST areas are connected to each other in the learned
graph. It is important to emphasize that there was no prior information about
the SST areas used in the graph learning process.

4.6 Learning Graphs from COVID-19 data

In this section, we apply the proposed method to another set of real-world data:
Daily confirmed cases of COVID-19 spread in Italy and California. We use daily
confirmed cases in Italy [79] from February 26 to July 28, 2020 in 103 provinces5

and those in California6 [80] from March 1 to July 12, 2020, in 58 counties. We
4The daily SST was provided by Japan Meteorological Agency, from their website at

https://www.jma.go.jp/jma/index.html
5We excluded the island of Sardinia because it is far from the Italian Peninsula.
6The COVID-19 cases in California were provided from COVID-19 Data Repository by

the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University.
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split the data into segments, one per week, and time-varying graphs are learned
for each of the segments.

4.6.1 Graph Sparseness and Parameter Tuning

First, we study the relation between the sparseness of the graph and the hyper-
parameter η that controls the temporal variation of the learned time-varying
graphs. We measure the sparseness of time-varying graphs as the temporal
average of the average degree (abbreviated as TAAD):

TAAD =
2
∑T

t=1 |Et|
NT

(4.29)

where |Et| represents the number of edges in the graph at t.
Fig. 4.12 shows TAAD with different η when α = 1 and β = 0 where we

only have the log barrier term for avoiding trivial solutions. Note that TAAD
of SGL-Smooth is constant because it is a static approach and does not depend
on η.

As can be seen in Fig. 4.12, TGL-Tikhonov yields denser graphs as η becomes
larger. In contrast, TGL-TH yields sparser graphs than those by the other
methods. The sparsest graphs by TGL-TH have the average degree less than
four: This cannot be obtained by SGL-Smooth and TGL-Tikhonov.

In the following experiments, we set the hyperparameters of the proposed
and alternative methods such that TAAD becomes a predetermined value. For
all the methods, TAAD = 6 is selected. We also present the results of the
sparser version of TGL-TH with TAAD = 4. This could not be obtained by the
other methods in this experiment. Table 4.4 summarizes the hyperparameters
for each method.

Table 4.4: Hyperparameter tuning for each method

α β η
SGL-Smooth 1 Adjusted -
TGL-Tikhonov 1 0 Adjusted

TGL-TH 1 Adjusted 1

4.6.2 Case Study: Italy

In Italy, the first lockdown was started on February 21 in the northern provinces
of Lodi and Padua. On March 9, the quarantine zones were expanded to the en-
tire country, and nonessential movements were restricted. Then, the nationwide
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(a) Italy (b) California

Figure 4.12: The average degree in the learned graph with
different parameter η.

(a) Italy (b) California

Figure 4.13: Weekly new confirmed cases of COVID-19 and
the average degrees of the learned graphs.

(a) Italy (b) California

Figure 4.14: The temporal variation of time-varying graphs
learned by each method.
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travel restrictions were relaxed on June 3.
Fig. 4.13(a) shows the weekly new confirmed cases of COVID-19 in Italy

and the average degree of the learned graphs. The two vertical lines represent
the period between the start of the lockdown and the relaxation of it. As can
be seen in Fig. 4.13(a), all of the methods show the same tendency during
the lockdown: The average degree is almost unchanged first and then slightly
decreased. This implies the effect of the travel restriction, i.e., the relationship
among nodes (provinces) is decreased.

4.6.3 Case Study: California

In California, a state of emergency was in place on March 4, 2020. A mandatory
statewide stay-at-home order was issued on March 19, and people were directed
to stay home except to go to an essential job or to shop for essential needs.
The stay-at-home order was relaxed on May 4: Some business were allowed to
reopen.

Fig. 4.13(b) shows the weekly new confirmed cases of COVID-19 in Cali-
fornia and the average degrees of the learned graphs. The two vertical lines
represent the beginning of the stay-at-home order and its relaxation, respec-
tively. As can be seen in this figure, during the stay-at-home order, the average
degree of the learned graph by the TGL-TH presents a similar behavior to that
in Italy. While the average degrees of the graph learned by SGL-Smooth and
TGL-Tikhonov seem to be decreased during the stay-at-home order, they are
oscillated. After the relaxation of the order, all the graphs grow the number of
edges which imply the increased relationship between counties.

4.6.4 Discussion

We then discuss the characteristics of the learned graphs. As shown in Figs. 4.13(a)
and 4.13(b), every method yields graphs that exhibit global behavior similar to
each other, but the graphs learned by TGL-TH have smoother changes in the
average degree than the other methods. Fig. 4.14 shows the temporal variation
‖Wt−Wt−1‖1 as a function of t. This figure also demonstrates that the graphs
learned by TGL-TH have the smallest temporal variation, as expected from its
objective function even under the same TAAD condition.

Finally, we compare the visualization of the graphs by TGL-Tikhonov and
TGL-TH. Figs. 4.15(a)–4.15(f) show the learned graphs for two periods: 1)
graphs between March 4 to March 10 (after the first lockdown and starting the
expansion of the quarantine zone) and 2) graphs between May 27 to June 2 (just
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before relaxing the travel restrictions). Two red nodes in each graph represent
the provinces of Lodi and Padua, two of the first locked-down large cities.

As shown in Figs. 4.15(a), 4.15(c), and 4.15(e), all graphs have sparser edges
in northern Italy. Especially, TGL-TH (TAAD=4) is very sparse. It is observed
that the graph by TGL-TH (TAAD=4) has few edges around Lodi and Padua.
In Figs. 4.15(b), 4.15(d), and 4.15(f), all the graphs become sparser than those
before lockdown. TGL-TH (TAAD=4) has sparser edges in the southern regions
than the other two, that would reflect the effect of the nation-wide lockdown:
It would weaken the relationship among neighboring regions.

4.7 Summary

In this paper, we have presented a framework for learning time-varying graphs
suitable for analysis of spatiotemporal data and change detection. The frame-
work formulates a time-varying graph learning problem as convex optimization
problems with the constraints on the temporal variation in the graph. Specif-
ically, the framework introduces fused Lasso regularization and group Lasso
regularization of the temporal variation to learn the graph having temporal
homogeneity and one reflecting a sudden change in networks respectively. We
also propose algorithms solving the optimization problems based on the primal-
dual splitting algorithm. In the applications with synthetic and real data, we
demonstrated that our proposed model can successfully learn the time-varying
graphs, especially under the condition that the number of observations is small.
Our future work includes implementing an automatic parameter tuning method
and extending the algorithm for online graph learning.
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0 1

(a) TGL-Tikhonov
0 1

(b) TGL-Tikhonov

0 1

(c) TGL-TH (TAAD=6)
0 1

(d) TGL-TH (TAAD=6)

0 1

(e) TGL-TH (TAAD=4)
0 1

(f) TGL-TH (TAAD=4)

Figure 4.15: The visualization of the graph learned at a certain
time slot from the COVID-19 confirmed cases in Italy. (a), (c),
(e) Graphs learned for the period March 4th to March 10th (after
the first lockdown and starting the expansion of the quarantine
zone). (b), (d), (f) Graphs learned for the period between May

27 to June 2 (just before relaxing the travel restrictions)
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Temporal Multiresolution Graph
Learning

To handle these dynamic behaviors, time-varying graph learning (TVGL) meth-
ods have been proposed [49,50,54,81]. Technically, a time-varying graph consists
of multiple graphs where one graph corresponds to the relationship among ver-
tices in a certain time slot. Typically, TVGL divides multivariate time-series
data into consecutive (overlapped or nonoverlapped) data segments, and learns
multiple graphs from these segments.

Time-varying graph learning (TVGL) methods often suffer from a trade-off
in the temporal resolution. For example, a large time window allows the capture
of a global structure but results in the loss of the local temporal behavior. In
contrast, selecting a small time window enables the capture of fast-changing
behaviors but may also result in noise sensitivity. To tackle this problem, most
TVGL methods (including TVGL method introduced in Chapter 4) [49,50,54]
impose constraints for temporal variations of graphs between neighboring time
slots. However, they have two main limitations. First, they are not suitable
when the data are not fitted to the prior assumption of temporal variations.
Second, even if the temporal variation information is known, it is often difficult
to determine the hyperparameter(s) such as those in the constraints on the
temporal variation and the temporal window size.

In this chapter, we propose a TVGL method without using a specific prior
for network evolution. Instead, we assume that the time-varying graphs have
a temporal multiresolution (TMR) structure : They can be represented by the
combination of graphs at different temporal resolutions from local (i.e., short
time period) to global (i.e., static) ones. This is desirable because multivari-
ate time-series data tend to have a multiresolution property. An example of
such TMR data is temperature data observed in multiple sensor locations. The
measurements in each location exhibit the interdependence relationships which
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change hourly, daily, monthly, and even yearly, where the relationships corre-
spond to structures localized at different temporal resolutions. Our proposed
method automatically reveals which edge sets are localized at which tempo-
ral variation. In our problem setting, temporal resolution levels correspond to
time window sizes in the time-varying graphs, but are not necessarily set as a
hyperparameter.

The proposed TVGL is formulated as a convex optimization problem derived
from the generation model. We also present an iterative algorithm for solving
the optimization problem efficiently, which guarantees the convergence of the
solution.

5.1 Graph Laplacian Operator

Let w ∈ RN(N−1)/2
+ be a vector composed of edge weights. It corresponds to

the vectorized version of the lower triangular part in W (excluding diagonal
elements). The graph Laplacian operator L : w ∈ RN(N−1)/2

+ → Lw ∈ RN×N is
defined as [53]

[Lw]i,j =


−wi+dj i > j

[Lw]j,i i < j∑
i 6=j[Lw]i,j i = j

(5.1)

where dj = −j + j−1
2

(2N − j). Simply speaking, L transforms w into L. Its
adjoint operator L∗ : Y ∈ RN×N → L∗Y ∈ RN(N−1)/2

+ is given by

[L∗Y]k = yii − yij − yji + yjj,

k = i− j +
j − 1

2
(2N − j), (i > j).

(5.2)

5.2 Learning Graphs with LGMRF from Multi-

variate Time-Series Data

Here, we present an overview of a generic formulation of SGL and (single-
resolution) TVGL methods based on LGMRF in the literature because our
formulation also leverages it. The formulation is also useful to distinguish the
proposed method from existing methods.

Several existing approaches can be written using this generic formulation, al-
though they have been proposed independently. We derive some representative
graph learning methods from the generic formulation and reveal the relationship
between them.
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5.2.1 General Formulation

Suppose that multivariate time-series data {xt}T−1
t=0 are given where xt ∈ RN

and T is the duration of the time-series. We also assume that xt is generated
by LGMRF as follows:

p(xt|Lt) = (2π)−N/2
(

gdet(L†t)
)−1/2

exp

(
−1

2
xT
t Ltxt

)
, (5.3)

where Lt is the graph Laplacian at time t that corresponds to the underlying
graph of xt, and gdet represents the generalized determinant [82]. Letting
Lt = Lwt, wt ∈ RE, and E = N(N − 1)/2, (5.3) can be rewritten as

p(xt|wt) = (2π)−N/2
(
gdet((Lwt)

†)
)−1/2

exp

(
−1

2
xT
t Lwtxt

)
. (5.4)

The edge weight vector wt will be sparse and nonnegative. Assume that the
prior distribution of wt is the following E-variate exponential distribution [39]:

p(wt) =
(α

2

)E
exp

(
−α

2
1Twt

)
for wt ≥ 0, (5.5)

The maximum a posteriori (MAP) estimation of p(xt|wt) leads to the following
optimization problem:

min
w0...wT−1≥0

T−1∑
t=0

− log gdet(Lwt) + α‖wt‖1 + xT
t Lwtxt, (5.6)

where α controls the sparsity of the graph.
The optimization problem in (5.6) is the general form for the SGL and TVGL

problems based on LGMRF. We also utilize (5.6) for the multiresolution TVGL
proposed in this study.

While the problem itself is generic, directly solving this problem is impracti-
cal because it needs to learn one graph from one data sample due to overfitting.
Therefore, we often need to divide the data into multiple segments. By assum-
ing that the data within the same segment have one common graph, (5.6) is
reduced to well-known SGL and TVGL problems. In the following subsections,
we derive representative SGL and TVGL settings from (5.6).

5.2.2 Static Graph Learning

Suppose that wt is constant for all time instances t, i.e., the graph is static over
time. This leads to wt = w, t = 0, . . . T − 1. Then, (5.6) is reduced to the
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following problem:

min
w≥0

− log gdet(Lw) + α‖w‖1 +
1

T

T−1∑
t=0

xT
t Lwxt. (5.7)

The third term in (5.7) represents the smoothness of the signal as the Lapla-
cian quadratic form xT

t Lxt. This term can be rewritten by using the sample
covariance matrix S as

T−1∑
t=0

xT
t Lwxt = tr(

T−1∑
t=0

xtx
T
t Lw) = T tr(SLw). (5.8)

As a result, (5.7) can be rewritten using (5.8) as

min
w≥0

− log gdet(Lw) + α‖w‖1 + tr(SLw). (5.9)

It is equivalent to the graphical Lasso problem with graph Laplacian constraints
[39].

5.2.3 Time-varying Graph Learning

As previously mentioned, learning one graph from one sample from (5.6) causes
overfitting. Instead, we consider a TVGL problem by dividing the time-series
data with nonoverlapping time windows in the same manner as [49,50,54].

Let X(k) = [xkr, . . .x(k+1)r−1] (k = 0, . . . , K − 1) be the kth data chunk
where r is the time window size and k is the index for the time window. We
denote w(k) as the edge weight vector corresponding to the underlying graph of
X(k).

Under the assumption that the graph within the same time window is fixed,
i.e., wt = w(k), (t = kr, . . . , (k + 1)r − 1), TVGL is formulated as follows:

min
w(0)...w(K−1)≥0

K−1∑
k=0

− log gdet(Lw(k)) + α‖w(k)‖1

+
1

r
tr((X(k))TLw(k)X(k)) + β

K−1∑
k=1

ψ(w(k) −w(k−1))

(5.10)

where ψ(·) is an additional regularizer that characterizes the temporal evolution
based on the prior knowledge of time-varying graphs and β is its parameter.
Note that the problem is identical to the SGL in (5.7) if ψ(·) = 0. The algorithm
to solve (5.10) is described in Appendix A.
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As possible regularizers, ψ(·) = ‖ · ‖2
2 reflects a time-varying graph whose

edge weights change smoothly over time, and ψ(·) = ‖ · ‖1 leads to the graph
wherein only a small number of edges change at any given time. A similar
problem to (5.10) is proposed in [81].

This approach is effective as long as we have appropriate prior knowledge of
the temporal evolution, i.e., ψ(·), and the accurate window size r. However, an
inappropriate choice of ψ(·) or r leads to inappropriate graphs. To tackle this
problem, we propose TMR TVGL in the next section.

5.3 Multiresolution Time-Varying Graph Learn-

ing

In this section, we present the formulation of the TMR TVGL and an algorithm
for solving it.

5.3.1 Formulation

Here, we introduce a TVGL method that learns {wt}T−1
t=0 based on a multires-

olution assumption. For simplicity, suppose that T is divisible by 2L, however,
this method is applicable to general values of T .

Suppose that Wt can be represented as a combination of graphs localized at
a temporal resolution Wl,m, as illustrated in Fig. 5.1. We refer to Wl,m as the
TMR graph at the temporal resolution l and the segment index m. Therefore,
the multiscale representation of {wt}T−1

t=0 is given by the sum of TMR graphs
corresponding to time t as

wt ≈ w̄t =
L∑
i=0

wi,bq(t)/2(L−i)c, (5.11)

where q(t) =
⌊
t
T

2L
⌋
and L is the maximum temporal resolution level.

This TMR representation has two advantages. First, it reduces the num-
ber of parameters to learn. For TMR TVGL, we need E(2(L+1) − 1) param-
eters, whereas the number of parameters in a single-resolution TVGL is ET .
E(2(L+1) − 1) ≤ ET when L ≤ log2 T − 1. It is beneficial if we only have
a limited amount of available data. Second, the TMR representation enables
the capture of the edges localized in an arbitrary temporal resolution, without
specifying the temporal window size.
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Figure 5.1: Overview of multiresolution graph learning.
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Now, we consider the detailed formulation of the proposed TVGL. The goal
is to learn wl,m from {xt}T−1

t=0 . Substituting (5.11) into (5.6) leads to the follow-
ing problem:

min
w0,0,...,wL,2L−1≥0

T−1∑
t=0

− log gdet

(
L(

L∑
k=0

wk,bq(t)/2(L−k)c)

)

+α‖
L∑
k=0

wk,bq(t)/2(L−k)c‖1 + xT
t L(

L∑
k=0

wk,bq(t)/2(L−k)c)xt.

(5.12)

Letting

F = [w0,0,w1,0,w1,1, . . . ,wL,2L−1] ∈ RE×2(L+1)−1,

Xk = [xkr, . . .xkR+R−1] (k = 0, . . . , 2L − 1, R = T/2L),
(5.13)

(5.12) can be rewritten as:

min
F ≥0

α‖FM‖1 +
2L−1∑
k=0

1

R
tr((Xk)

TL([FM]k)Xk)

− log gdet(L([FM]k)),

(5.14)

where M ∈ R2(L+1)−1×2L is given by

[M]i,j =

1 2L−lm ≤ j ≤ 2L−l(m+ 1)− 1

0 otherwise,

in which l = blog2(i + 1)c and m = mod(i + 1, 2l). Note that [FM]k = w̄kR =

· · · = w̄kR+R−1.
In (5.14), we need to obtain a sparse wl,m to capture the temporally localized

structure. However, the direct constraint on the sparseness of FM does not
result in a sparse F. Therefore, we replace the first term in (5.14) with the
sparse constraint on F as follows:

min
F ≥0

α‖F‖1 +
2L−1∑
k=0

1

R
tr((Xk)

TL([FM]k)Xk)

− log gdet(L([FM]k).

(5.15)

This is the proposed TVGL formulation for learning TMR graphs. In the fol-
lowing subsection, we describe an algorithm to solve (5.15).
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5.3.2 Algorithm

The optimization problem in (5.15) is convex and can be solved using the PDS
algorithm. Here, we reformulate (5.15) to the PDS applicable form.

Let Zk ∈ RN×N be a pairwise distance matrix computed from

[Zk]i,j =
R−1∑
n=0

‖[Xk]i,n − [Xk]j,n‖2, (5.16)

and zk ∈ RE be the vector form representation of Zk. The third term of (5.15)
can then be rewritten as

2L−1∑
k=0

tr((Xk)
TL([FM]k)Xk)

=
2L−1∑
k=0

zT
k [FM]k = ‖Zall ◦ (FM)‖1 = ‖(MZT

all) ◦ FT‖1

(5.17)

where Zall = [z0, . . . , z2L−1]. Here, we denote F̄ = FT and L̄iX = L(XT)i for
notation simplicity. By using the indicator function, (5.15) can be reduced to
the following optimization problem:

min
F̄
α‖F̄‖1 +

1

R
‖MZT

all ◦ F̄‖1 + ι(F̄)

−
2L−1∑
k=0

log gdet(L̄i(MTF̄)).

(5.18)

where ι is defined by

ι(F̄) =

0 F̄ ≥ 0

∞ otherwise.
(5.19)

Owing to the nonnegative constraint on F̄, the first and second terms in (5.18)
can be merged as

min
F̄

1

R
‖(αH + MZT

all) ◦ F̄‖1 + ι(F̄)

−
2L−1∑
k=0

log gdet(L̄i(MTF̄)),

(5.20)
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where H = 11T ∈ RE×2(L+1)−1 . By introducing the linear operator L̄ : RE×2L →
R2LN×N defined as

L̄(X) = [L̄0(X), . . . , L̄2L−1(X)]T, (5.21)

and a dual variable V := [VT
0 , . . . ,V

T
2L−1]T = L̄(MTF̄), we can convert (5.20)

into the form in (2.35) as follows:

f(F̄) = 0,

g(F̄) =
1

R
‖(αH + MZT

all) ◦ F̄‖1 + ι(F̄),

h(V) = −
2L−1∑
k=0

log gdet(Vk).

(5.22)

The proximal operator for the function g corresponds to that of the weighted
`1 norm with the nonnegative constraint, and it is given by

[
proxγg(A)

]
i,j

=

0 [A]i,j ≤ γ[B]i,j

[A]i,j − γ[B]i,j otherwise,
(5.23)

where B = αH + MZT
all.

The proximal operator of h can be computed as follows. In general, the
logarithm of a generalized determinant is a nonconvex function. Under the
assumption that the learned graph is connected (which is often the case), it can
be replaced with a convex function as follows [39, Proposition 1]:

log gdet(A) = log det(A +
1

N
11T). (5.24)

Then, the proximal operator is given by

proxγ(− log gdet(·))(A) = U


φ (λ0) 0

. . .

0 φ (λN−1)

UT, (5.25)

where φ (λi) =
λi+
√
λ2i+4γ

2
and U and λi are the eigenvector matrix and the

eigenvalue of A + 1
N

11T, respectively. The eignvalues are ordered as λ0 ≤ λ1 ≤
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λ2 · · · ≤ λN−1
1.

Finally, we present the algorithm for the multiresolution TVGL in Algorithm
4. The condition of convergence is given by

γ1γ2‖ML̄∗L̄MT‖ < 1. (5.27)

Based on the submultiplicativity of the operator norm, the upper-bound of
‖ML̄∗L̄MT‖ can be computed from

‖ML̄∗L̄MT‖ ≤ ‖M‖‖L̄∗L̄‖‖MT‖ = ‖L̄∗L̄‖‖MMT‖

= N(2L+2 − 2)
(5.28)

because of ‖L̄∗L̄‖ = 2N and ‖MMT‖ = 2L+1 − 1. Consequently, the conver-
gence condition in (5.27) can be rewritten as

γ1 <
1

γ2N(2L+2 − 2)
. (5.29)

The computational complexity of our algorithm is O(2LN3) per iteration.

Algorithm 4 Temporal multiresolution graph learning

Input: F̄(0), V(0), {xt}T−1
t=0 , L, ε

Output: F
Divide {xt}Tt=0 into 2L data segments X0 . . .X2L−1

Compute {Zk}2L−1
k=0 from {Xk}2L−1

k=0

while ‖F̄(i+1) − F̄(i)‖/‖F̄(i)‖ > ε do
F̄(i+1) := proxγ1g(F̄

(i) − γ1ML̄∗V(i))

V(i) ← V(i) + γ2L̄M(2F̄(i+1) − F̄(i))
for k = 0, . . . , 2L − 1 do

V
(i+1)
k := V

(i)
k − γ2 prox 1

γ2
(− log gdet(·))

(
V

(i)
k

γ2

)
end for
V(i+1) =

[
V

(i+1)T
0 , . . . ,V

(i+1)T

2L−1

]T
i← i+ 1

end while

1Even if the original graph has disconnected components, we can avoid the problem of the
calculation of the proximal operator by adding a small regularizing parameter c to the input
as follows [58]:

log gdet(A) ≈ log det(A + c2I), (5.26)

The proximal operator of this approximation also can be computed in the same manner as
(5.25).
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(a) W0,0 (b) W1,0 (c) W1,1 (d) W2,0 (e) W2,1

(f) W2,2 (g) W2,3 (h) W3,0 (i) W3,1 (j) W3,2

(k) W3,3 (l) W3,4 (m) W3,5 (n) W3,6 (o) W3,7

Figure 5.2: Visualization of the ground-truth graphs.

5.4 Experimental Results

In this section, we present experimental results on synthetic and real datasets.
The existing and proposed methods are abbreviated as follows:

• SGL based on smoothness criterion (SGL-S) [37].

• SGL with LGMRF (SGL-LG) [39].

• TVGL introduced in Section 4 (TVGL-S) [49,50,54].

• TVGL with LGMRF incorporating the temporal variation constraint (TVGL-
LG) [81].

• Proposed TMR TVGL (TVGL-MR) described in Section 5.3.

The stopping criterion of the iterations for each methods is set to ‖w(n+1) −
w(n)‖/‖w(n)‖ < 1.0× 10−3.

5.4.1 Experiments on Temporal Multiresolution Graphs

To demonstrate the concept of TVGL for TMR graphs, we first present the
results by constructing a simple TMR graph dataset.
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Table 5.1: Comparison of the performance for learning time-
varying graph.

Methods Window size F-measure Relative Error

SGL-S

20 0.571 0.710
40 0.717 0.624
80 0.790 0.581
avg. 0.693 0.638

SGL-LG

20 0.596 0.730
40 0.726 0.576
80 0.831 0.431
avg. 0.718 0.579

TVGL-S

20 0.798 0.479
40 0.817 0.508
80 0.855 0.431
avg. 0.823 0.472

TVGL-LG

20 0.890 0.370
40 0.888 0.419
80 0.871 0.513
avg. 0.883 0.434

TVGL-MR

20 0.842 0.415
40 0.895 0.341
80 0.915 0.314
avg. 0.884 0.357

Dataset

The dataset is constructed in two sequential steps: 1) construction of time-
varying graphs and 2) generation of data samples based on the time-varying
graphs.

First, we construct TMR graphs with four levels (l = 0, . . . , 3) as shown
in Fig. 5.2. The number of vertices N is set to N = 81 and the edge weights
between vertices are random values drawn from a uniform distribution from
the interval [0.1, 3]. The lowest resolution graph, i.e., the graph reflecting the
global structure, is W0,0, as shown in Fig. 5.2(a), where the graph has a grid-like
structure while the edges only run vertically, except for the horizontal edges at
the center of the grid. As shown in Figs. 5.2(b)–(o), the graphs at levels 1 to
3 have horizontal edges, diagonal edges from the upper right to lower left, and
diagonal edges from the upper left to lower right, respectively. By combining
Wl,m’s, we obtain prototype graphs W(0), . . . ,W(7), as shown in Fig. 5.3.

From the prototype graphs, we then construct time-varying graphs {W0, . . . ,WT−1}.
We set T = 640 in this experiment. As the number of mutiresolution graphs in
the highest resolution is eight, each of them has been duplicated 80 times and
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(a) W(0) (b) W(1) (c) W(2) (d) W(3)

(e) W(4) (f) W(5) (g) W(6) (h) W(7)

Figure 5.3: Time-varying graphs obtained from the multireso-
lution graphs in Fig. 5.2.

then they are concatenated, i.e., Wt := W(bt/80c) (t = 0, . . . , T − 1).
Second, multivariate time-series signals X are generated from the following

GMRF:
xt ∼ N (0, (Lt + σ2I)†), (5.30)

where Lt is the graph Laplacian associated with Wt. We set σ to 0.5.

Experimental Condition

We evaluate the performance in terms of relative error and F-measure, each
averaged over all time slots. Relative error is given by

Relative error =
‖Ŵ −W∗‖F
‖W∗‖F

, (5.31)

where Ŵ is the estimated weighted adjacency matrix, and W∗ is the ground-
truth. It reflects the accuracy of edge weights on the estimated graph.

The F-measure is given by

F-measure =
2tp

2tp + fn + fp
, (5.32)

where the true positive (tp) is the number of edges that are included both in
Ŵ and W∗, the false positive (fn) is the number of edges that are not included
in Ŵ but are included in W∗, and the false positive (fp) is the number of edges
that are included in Ŵ but are not included in W∗. The F-measure, which
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(a) W(0) (b) W(1) (c) W(2) (d) W(3)

(e) W(4) (f) W(5) (g) W(6) (h) W(7)

Figure 5.4: Visualization of time-varying graphs learned by
TVGL-S

(a) W(0) (b) W(1) (c) W(2) (d) W(3)

(e) W(4) (f) W(5) (g) W(6) (h) W(7)

Figure 5.5: Visualization of time-varying graphs learned by
TVGL-LG



5.4. Experimental Results 71

(a) W(0) (b) W(1) (c) W(2) (d) W(3)

(e) W(4) (f) W(5) (g) W(6) (h) W(7)

Figure 5.6: Visualization of time-varying graphs learned by
TVGL-MR

is the harmonic average of the precision and recall, represents the accuracy of
the estimated graph topology. The F-measure takes values between 0 and 1.
The higher the F-measure, the higher the performance of capturing the graph
topology.

In this experiment, we construct training and test data and evaluate the
performance of graph learning on the test data using the hyperparameters that
minimize the relative error on the training data. We search for optimal hyper-
parameters using Bayesian optimization [83]. Additionally, `1 norm is used for
the temporal variation regularization of the existing TVGL approaches.

We evaluate the performance with different window sizes to study the robust-
ness of each method for the choice of the window size K. The existing methods
use K = 20, 40, or 80, and the proposed method uses the maximum tempo-
ral resolution level L = 5. The proposed method can reconstruct time-varying
graphs corresponding to K = {20, 40, 80} from a set of TMR graphs. Note that
the existing methods need to fix K before running their algorithms, whereas
the proposed TVGL method simultaneously estimates time-varying graphs in
the different window sizes.

Results

Table 5.1 summarizes the average performance of the learned graphs. As shown
in the table, TVGL-MR nearly outperforms the other methods both in terms
of F-measure and relative error. This indicates that the TVGL performances
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(a) W0,0 (b) W1,0 (c) W1,1 (d) W2,0 (e) W2,1

(f) W2,2 (g) W2,3 (h) W3,0 (i) W3,1 (j) W3,2

(k) W3,3 (l) W3,4 (m) W3,5 (n) W3,6 (o) W3,7

Figure 5.7: Visualization of the TMR graphs learned by
TVGL-MR.

can be improved by TVGL-MR if time-varying graphs can be assumed to have
multiresolution characteristics.

Figs. 5.4, 5.5 and 5.6 visualizes the time-varying graphs learned by TVGL-S,
TVGL-LG, and TVGL-MR. As shown in these figures, the alternative TVGL
methods fail to capture temporal multiresolution structures, particularly those
at the high-resolution level. In contrast, the proposed method captures edges
localized at various temporal resolutions.

Furthermore, Fig. 5.7 shows the TMR graphs learned by TVGL-MR. The
figure also demonstrates that the proposed method can successfully learn TMR
graphs.

5.4.2 Experiments on Single Resolution Graphs

The previous experiment demonstrates the effectiveness of the proposed method
for TMR graphs. While the proposed method is not specifically designed for
learning single resolution TVGL, here, we compare TVGL performances with
the other methods for some single resolution time-varying graphs.
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Datasets

The dataset is constructed with the same steps described in Section 5.4.1. In
this experiment, we construct two types of time-varying graphs as follows:

Edge-Markovian Evolving Graph (EMEG): EMEG is a stochastic time
dependency evolving graph [84]. Each edge in EMEG follows the Markovian
process. EMEG Gs = {Gt = (Vt, Et,Wt)} is satisfied as{

p (e ∈ Et+1 | e /∈ Et) = q1

p (e /∈ Et+1 | e ∈ Et) = q2

(5.33)

where q1 and q2 are called birth rate and death rate, respectively. We generate
an Erdős–Rényi graph with N = 36, p = 0.1 as the initial graph G0. The edge
weights of the initial graph are selected from the uniform distribution with the
interval [0.1, 3], and the weights of the newborn edges are also selected from the
same distribution. We set q1 = 0.001 and q2 = 0.01.

Switching Behavior Graph (SBG): SBG is a time-varying graph that
exhibits the transition of connectivity states. It often appears in brain connec-
tivity dynamics [75, 76]. We construct an SBG using the following procedure.
We generate six static graphs used as the connectivity states. Each of the
graphs is initialized to an Erdős–Rényi graph with N = 36, an edge connection
probability p = 0.05, and edge weights drawn from a uniform distribution in the
interval [0.1, 3]. The initial state is selected randomly from the six connectivity
states, and its state remains with a 98% probability and transits to another
connectivity state with the 2% probability at each time.

Generating Graph Signals: Given graph Laplacians L(0), . . . ,L(127) of
the constructed time-varying graphs, we generate multivariate time-series signal
x0, . . . ,x5119 from the following GMRF:

xt ∼ N (0, (L(bt/40c) + σ2I)†), (5.34)

where σ2 is the variance of the white Gaussian noise. We set σ = 0.5 in this
experiment.

Regularization Functions for Alternative TVGL Methods: TVGL
methods, i.e., TVGL-S and TVGL-LG, require choosing the regularization func-
tion based on the prior knowledge of temporal graph evolution. For EMEG and
SBG, we adopt `1 and `2,1-norm as the possible regularization functions, respec-
tively.
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Table 5.2: Comparison of the F-measure and relative error
for learning time-varying graph. The bold and underlined val-
ues represent the best and second-best performance among the

methods, respectively.

F-measure
Dataset WS SGL-S SGL-LG TVGL-S TVGL-LGTVGL-MR

EMEG

10 0.320 0.367 0.525 0.710 0.800
20 0.389 0.448 0.523 0.748 0.776
40 0.495 0.530 0.518 0.727 0.772
avg. 0.401 0.448 0.522 0.601 0.783

SBG

10 0.303 0.313 0.804 0.418 0.754
20 0.449 0.382 0.800 0.579 0.722
40 0.524 0.436 0.818 0.664 0.696
avg. 0.425 0.377 0.807 0.557 0.724

Relative error

EMEG

10 0.885 0.906 0.537 0.191 0.296
20 0.874 0.832 0.532 0.196 0.262
40 0.720 0.713 0.527 0.269 0.254
avg. 0.826 0.817 0.532 0.219 0.271

SBG

10 0.882 0.888 0.419 0.571 0.410
20 0.777 0.774 0.399 0.349 0.376
40 0.658 0.618 0.402 0.354 0.359
avg. 0.772 0.760 0.406 0.424 0.382

Results

Table 5.2 summarizes the performances of SGL/TVGL methods on different
datasets. TVGL methods outperform the static methods on all datasets. This
implies that the regularization for the temporal graph evolution or TMR as-
sumption improves the graph learning performance.

Among the TVGL methods, TVGL-MR ranks first or second in this exper-
iment. This suggests the effectiveness and robustness of the proposed method
even for single resolution time-varying graphs. It is also worth noting that,
TVGL-MR can exhibit performance comparable to that of time-varying meth-
ods without the prior knowledge of the graph evolution over time, i.e., the reg-
ularization function. Typically, existing TVGL approaches require both prior
knowledge and hyperparameter(s). In contrast, the only assumption in the
proposed method is that time-varying graphs are characterized by the mul-
tiresolution property, which is a natural assumption of signal processing. This
implies the flexibility of the proposed method.

Figs. 5.8, 5.9 and 5.10 show the visualization of the temporal variation in
the ground-truth graphs and the learned graphs with a window size of 40. The



5.4. Experimental Results 75

(a) Edge-Markovian evolving graph (b) Switching behavior graph

Figure 5.8: Visualization of the temporal variations in the
ground-truth time-varying graph of each dataset.

vertical and horizontal axes of these figures represent the edge and time slot
indices of the time-varying graph, and the color represents the intensity of the
edge weights. For simple visualization, the first 100 edge indices are visualized.

As can be seen in Figs. 5.9 and 5.10, SGL-S and SGL-LG lose the temporal
relations, whereas TVGL-S, TVGL-LG, and TVGL-MR can capture the original
structures more precisely than static methods. Time-varying graphs by TVGL-
S, TVGL-LG, and TVGL-MR are similar, but the proposed method tends to
yield larger edge weights.

5.4.3 Learning Temporal Multiresolution Graphs From Real

Temperature Data

Finally, we apply TVGL-MR to the real temperature data in Hokkaido, the
northernmost island in Japan. The goal of this experiment is to explore the
common (time-invariant) and seasonal relationships among geographical regions
using the proposed method.

We use the average temperature data2 measured at 172 recording locations
in Hokkaido from March 2014 to February 2015. We perform TVGL-MR with
L = 3 (i.e., the number of graphs is four at the highest level).

Fig. 5.11 shows the lowest resolution graph W0,0 obtained by TVGL-MR
and the graph obtained by SGL-LG from data of all time slots. Note that both
of them can be regarded as static graphs. Focusing on the graph learned by
TVGL-MR, the following characteristics are observed:

2The Japan Meteorological Agency provided the daily temperature data from their website
at https://www.jma.go.jp/jma/index.html
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(a) SGL-S (b) SGL-LG

(c) TVGL-S (d) TVGL-LG

(e) TVGL-MR

Figure 5.9: Visualization of the temporal variations in the
learned time-varying graph for EMEG dataset. The colors in

these figures represent the weights of the edges.
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(a) SGL-S (b) SGL-LG

(c) TVGL-S (d) TVGL-LG

(e) TVGL-MR

Figure 5.10: Visualization of the temporal variations in the
learned time-varying graph for SBG dataset. The colors in these

figures represent the weights of the edges.
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• Vertices close to each other are basically connected, and edges between
closer nodes tend to have large weights. However, if the recording loca-
tions are separated by a mountain (brown-ish area), nodes may not be
connected even if they are geographically close.

• Vertices with similar geographic features are often connected, i.e., ones
along the coast are connected to each other, and the similar characteristic
is observed for inland vertices.

The above-mentioned characteristics seem reasonable because the relationship
based on the distance between nodes or geographic features is static.

In contrast, the graph learned by SGL-LG is denser than that by TVGL-MR
and includes many edges connecting distant nodes. Such edges may be derived
from the seasonal behavior, which is described later. As SGL-LG learns a static
graph from all the time slots without separating structures localized at various
temporal resolutions, the learned graph may include both common and seasonal
edges.

Fig. 5.12 shows W2,0, . . . ,W2,3 learned by TVGL-MR, which corresponds
to season-specific graphs. In contrast to the static graph, these seasonal graphs
have few edges connecting nodes close to each other. This suggests that the
distance-based relationship would have a weak effect on the seasonal behavior.
Furthermore, the summer- and winter-specific graphs have more edges than
those of the spring and autumn-specific graphs. This seems intuitive because
the seasonal effects in summer and winter are expected to be stronger than
those in mild , such as spring and fall.

Furthermore, edges connecting distant coastal nodes in the summer and
winter-specific graphs (which are also observed in SGL-LG in Fig. 5.11(b)) can
be attributed to the effects of seasonal sea currents. Fig. 5.13 shows the sea
surface temperature (SST) 3 on August 7, 2014, and January 8, 2015. As can be
seen in Figs. 5.12(b), 5.12(d), and 5.13, vertices connected along coasts in the
summer- and winter-specific graphs reflect SST behaviors for the two seasons.

5.5 Summary

This chapter demonstrated a temporal multiresolution graph learning method
from multivariate time-series data. The proposed method is designed based on
a signal generation model in accordance with an LGMRF, and enables the cap-
ture of time-varying structures having a multiresolution property in one single

3The daily SST was provided by Japan Meteorological Agency, from their website at
https://www.jma.go.jp/jma/index.html



5.5. Summary 79

(a) (b)

Figure 5.11: Visualization of learned graphs. (a) W0,0 learned
by the TVGL-MR. (b) Graph learned by SGL-LG from data of

all time slots.

framework. The TVGL is formulated as a convex optimization problem and
can be solved efficiently using a primal-dual splitting algorithm. The experi-
ments on synthetic and real datasets demonstrate that the proposed method
outperforms the existing static and time-varying graph learning methods.
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(a) Spring-specific graph (b) Summer-specific graph

(c) Autumn-specific graph (d) Winter-specific graph

Figure 5.12: Visualization of the season-specific graphs learned
by TVGL-MR: (a)–(b) corresponds to W2,0, . . . ,W2,3, respec-

tively.

(a) (b)

Figure 5.13: Daily sea surface temperature. (a) August 7,
2014. (b) January 8, 2015.
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Chapter 6

Graph Learning Information
Criterion

Most studies on graph learning formulate their problem as a convex optimiza-
tion that minimizes some criteria (e.g., signal smoothness on graphs) [37–39,45,
49,50]. Since their formulations generally contain regularization terms based on
prior knowledge, we need to tune hyperparameters that control the strength of
the regularization to obtain the desired graph. A typical example of the regular-
ization used in graph learning is the `1 regularization, and its hyperparameter
controls the edge sparsity of the learned graph. However, we do not know how
sparse the actual graph is. As a result, it is difficult to determine the optimal
hyperparameters in real applications and we often determine the parameters in
an ad hoc manner.

The question we consider in this chapter is: How should we choose the
optimal hyperparameter(s) for graph learning? Although the choice of hyper-
parameters strongly affects the performance of graph learning, the research on
hyperparameter selection still remains insufficient. When graph learning is ap-
plied for supervised learning problems such as prediction and classification, the
hyperparameters could be determined by cross-validation (but they do not have
a theoretical guarantee in general). In contrast, for unsupervised learning such
as clustering, there is few methods to determine hyperparameters.

Some studies of graph learning determine hyperparameters using Bayesian
information criterion (BIC) [85,86]. BIC is a criterion based on model evidence
and is used for model selection among a finite set of models, i.e., a set of graphs
learned under different parameters. However, BIC is only a rough approxima-
tion of model evidence and fails to choose a good model in graph learning (we
later show it in the experiment in Section 6.3).

In this chapter, we propose a new model selection criterion specifically de-
signed for graph learning: Graph learning information criterion (GLIC). The
strategy of our method is to introduce the Bayesian model equivalent to the
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formulation based on Laplacian constrained Gaussian Markov random field
(LGMRF) model [39] and to compute the approximation of the model evi-
dence of this Bayesian model using the result in [87]. Since this approximation
computation requires sampling from the posterior distribution of the Bayesian
model, we also present an efficient sampling method using block Gibbs sampling
scheme.

6.1 Graph Learning and Bayesian Information

Criterion

6.1.1 Graph Learning with LGMRF

In this chapter, we assume the following signal observation model based on
Laplacian constrained Gaussian Markov random field (LGMRF) [38,39,45]:

p(x | Θ) =
1

(2π)K/2 (gdet(Θ†))1/2
exp

(
−1

2
xTΘx

)
, (6.1)

where Θ ∈ L is the precision matrix satisfying graph Laplacian constraints.
The negative log-likelihood function L(Θ) of (6.1) is given by

L(Θ) = − log(
K∏
k=1

p (xk | Θ))

=
1

2

K∑
k=1

Tr
(
xT
kΘxk

)
− K

2
log gdet(Θ).

(6.2)

Furthermore, suppose that the prior distribution p(Θ) is the following Laplace
distribution.

p(Θ | λ) =
∏
i<j

p(θij) =
∏
i<j

λ

2
exp(−λ|θij|), (6.3)

where λ is a scale parameter of the Laplace distribution. The maximum a
posteriori (MAP) estimation of Θ with (6.2) and (6.3) leads to the following
the optimization problem [39]:

minimize
Θ∈L

1

K
Tr(ΘS)− log gdet(Θ) + α‖Θ‖1,off (6.4)
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where S = XXT, α = λ/K, ‖Θ‖1,off represents the absolute sum of off-diagonal
elements in Θ, and L is the set of valid graph Laplacians given by:

L =

{
L ∈ RN×N : Lij = Lji ≤ 0 (i 6= j), Lii =

∑
i 6=j

Lij

}
. (6.5)

The optimization problem in (6.4) can be solved using the block coordinate
descent algorithm [39]. In (6.4), the hyperparameter α controls the sparsity
of the learned graph Laplacian Θ. If we do not have prior information on the
graph sparsity, selecting the optimal α becomes a difficult problem.

6.1.2 Bayesian Information Criterion

In Bayesian statistics, model evidence is often used for model selection among
a finite set of models [88]. The model evidence is a likelihood function in which
some parameters are marginalized.

The model evidence of the graph learning model introduced in Section 6.1.1
is given by

p(X | λ) =

∫
Θ

p(X | Θ)p(Θ | λ)dΘ. (6.6)

Unfortunately, (6.6) cannot be analytically computed. Hence, the approximate
computation of the model evidence is required.

Bayesian information criterion (BIC) is a criterion for model selection based
on the model evidence [86]. BIC is an approximation of the negative logarithmic
model evidence, which is computed using the Laplace method. It is defined as
follows:

BIC = L(Θ) +
d

2
logK, (6.7)

where L(·) is the negative log-likelihood function of the estimated parameter,
d is the number of estimated parameters in the model, and K is the number of
observations.

The BIC of the graph learning in (6.4) can be computed as follows:

BIC(α) =
1

2
(Tr(Θ̂S)−K log gdet(Θ̂) + ‖Θ̂‖0 logK), (6.8)

where Θ̂ is the solution of (6.4) with the parameter α and ‖Θ̂‖0 is the number
of nonzero elements in Θ̂.

When selecting a model among a finite model set, the ones with small BIC
are preferred. Thus, the hyperparameter α of (6.4) can be determined by the
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following steps: 1) Estimating Θ with different α’s; 2) Computing BIC(α) of
the estimated Θ; and 3) Selecting the one with the smallest BIC.

However, BIC is only a rough approximation of model evidence [87] and
often fails to choose a good model for graph learning. We will show it later in
the experiment of Section 6.3.

6.2 GLIC

In this section, we present a computation method of GLIC, which is a new
criterion for the model selection of graph learning. The strategy of the proposed
method is to estimate the negative logarithmic model evidence in a different way
from BIC.

For GLIC, we use an approximation of the negative logarithmic model evi-
dence based on WBIC [87]:

− log p(X | λ) ≈
∫
L(Θ)

∏K
k=1 p (xk | Θ)η p(Θ)dΘ∫ ∏K

k=1 p (xk | Θ)η p(Θ)dΘ
, (6.9)

where η = 1/ log(K). This indicates that the negative logarithmic model evi-
dence can be estimated by the expectation of the negative log-likelihood over the
posterior distribution p(Θ | X, λ, η) using Markov chain Monte Carlo (MCMC)
method. Hence, (6.9) is rewritten as follows:

− log p(X | λ) ≈
1

M

M∑
m=1

L(Θm), Θm ∼ p(Θ | X, λ, η),

p(Θ | X, λ, η) =

∏K
k=1 p (xk | Θ)η p(Θ)∫ ∏K
k=1 p (xk | Θ)η p(Θ)dΘ

.

(6.10)

To compute the approximation of − log p(X | λ) efficiently, we need to sample
the the posterior distribution p(Θ | X, λ, η). In the following, we present an
effective sampler of the posterior distribution.

6.2.1 Block Gibbs Sampler for GLIC

It is generally difficult to directly sample from the posterior distribution under
the graph Laplacian constraint. Hence, we generate pseudo-samples {Lm}Mm=1

(Lm ∈ L) from p(Θ | X, λ, η) by the following steps:

1. Sampling {Θm}Mm=1 from a posterior distribution using Gaussian Markov
random field without the Laplacian constraint (i.e., N(0,Θ−1)).
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2. Constructing the graph Laplacian Lm closest to Θm.

Here, we describe the sampling method in Step 1 using block Gibbs sampling.
First, the Laplace distribution in (6.3) is rewritten by scale mixture of Gaussians
[89, 90] to derive a hierarchical representation to which block Gibbs sampling
can be applied:

λ

2
e−λ|θ| =

∫ ∞
0

1√
2πτ

e−θ
2/(2τ)λ

2

2
e−λ

2τ/2dτ, λ > 0, (6.11)

where τij is a latent scale parameter. From p(x | Θ) = N(0,Θ−1) and (6.11), it
can be derived that p(Θ, τ | X, λ, η) is proportional to the following quantity:

p(Θ, τ | X, λ, η) ∝|Θ|
ηK
2 exp

{
−ηTr

(
1

2
SΘ

)}
×
∏
i<j

{
τ
− 1

2
ij exp

(
−
θ2
ij

2τij

)
exp

(
−λ

2

2
τij

)}
.

(6.12)

Let T ∈ RN×N([T]ij = τij) be a symmetric matrix whose all diagonal el-
ements are zero. Then, the block matrix representations of Θ, S, and T are
respectively denoted by

Θ =

[
Θ11 θ12

θT12 θ22

]
, S =

[
S11, s12

sT12, s22

]
, T =

[
T11, τ12

τT
12, 0

]
. (6.13)

The block Gibbs sampler iterates sampling of θ12, θ22 and τij from their
conditional posterior distributions to obtain samples {Θm}Mm=1. From (6.12),
(6.13), and the following Schur complement lemma [91]

det

([
Θ11 θ12

θT12 θ22

])
= det(Θ11) det

(
θ22 − θT12Θ

−1
11 θ12

)
, (6.14)

the conditional posterior of θ12 and θ22 are given by

p (θ12, θ22 | Θ11,T,X, λ, η)

∝
(
θ22 − θT12Θ

−1
11 θ12

) ηK
2

× exp

[
−1

2

{
θT12D

−1
τ θ12 + 2ηsT12θ12 + (ηs22 + λ) θ22

}]
,

(6.15)
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where Dτ = diag(τ12). Making a change of variables as β := θ12 and γ :=

θ22 − θT12Θ
−1
11 θ12, (6.15) is reduced to the following form:

p (β, γ | Θ11,T,X, λ, η)

∝ γ
ηK
2 exp

(
−ηs22 + λ

2
γ

)
× exp

(
−1

2

[
βT
{
D−1

τ + (ηs22 + λ) Θ−1
11

}
β + 2ηsT12β

])
.

(6.16)

This indicates that γ and β can be sampled from the following gamma and
multivariate Gaussian distributions:

γ | (Θ11,T,X, λ, η) ∼ Gam

(
ηK

2
+ 1,

s22 + λ

2

)
,

β | (Θ11,T,X, λ, η) ∼ N (−ηCs12,C) ,

(6.17)

where C = ((ηs22 + λ)Θ11 + Dτ ). Focusing on τij in (6.12), the conditonal
distribution of uij = 1/τij is given by

uij | (θij, λ) ∼ IGau(
√

(λ2/θ2
ij), λ

2). (6.18)

As a result, the block Gibbs sampler procedure of (6.17) and (6.18) allows us
to sample {Θm}Mm=1 from the posterior distribution (6.12).

In Step 2, the sampled Θm is replaced by the graph Laplacian Lm closest
to Θm. This graph Laplacian Lm is obtained by solving the problem:

minimize
Lm∈L

‖Θm − Lm‖1. (6.19)

This problem can be easily solved using the result in [92].

6.2.2 Computation of GLIC

Let {Lm}Mm=1 be samples from the block Gibbs sampler presented in Section
6.2.1. Based on (6.10), we define the GLIC as follows:

GLIC =
1

2M

(
M∑
m=1

Tr(LmS)−K log gdet(Lm)

)
. (6.20)

Although GLIC seems similar to (6.8), it is computed based on WBIC and
MCMC and can yield a more reliable model evidence approximation.
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Table 6.1: Average performance of graph learning under hy-
perparameters selected by BIC and GLIC.

Dataset Relative error F-measure

BIC ER 0.867 0.518
RM 0.968 0.231

GLIC ER 0.541 0.546
RM 0.451 0.572

The algorithm of the proposed method is summarized in Algorithm 5. For
the hyperparameter selection in graph learning, the hyperparameter having the
smallest GLIC is selected as an appropriate hyperparameter.

Algorithm 5 GLIC
Input: α, S, M
Output: GLIC,

Initialize Θ = I
for m = 0 to M do
for i = 0 to N do

Sample γ and β from (6.17)
Update θ12 = β and θ22 = γ + θT12Θ

−1
11 θ12

Rearrange row/columns of Θ, S, and T
end for
for i < j do

Sample uij from (6.18)
Update τij = 1/uij

end for
Obtain Lm by solving (6.19)

end for
Compute GLIC in (6.20)

6.3 Experiments

In this section, we conduct graph learning experiments using random graphs to
validate the efficiency of the proposed method.

6.3.1 Dataset and Setup

We construct datasets by the following two steps: 1) Constructing random
graphs and 2) generating signals from the constructed graph. In this experi-
ment, we use two types of random graphs:

• Erdős–Rényi (ER) graph G(p)
ER where p is the edge connection probability.
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• Random modular (RM) graph G(p1,p2)
RM (also known as graphs with stochas-

tic block model), where p1 and p2 are intra-cluster and inter-cluster edge
connection probabilities, respectively.

All graphs have N = 36, and the edge weights are selected randomly from the
uniform distribution U(0.1, 3). We construct 30 graphs for each graph model: p
of ER graph is chosen from U(0.08, 0.12); p1 and p2 of RM graph are chosen from
U(0.25, 0.3) and U(0.08, 0.12), respectively. Based on the constructed graph, we
generate 100 graph signals from LGMRF in (6.1). For both datasets, graphs
are learned with different α and compute BIC and GLIC.

The performance of graph learning is evaluated by F-measure and relative
error. The F-measure, which is the harmonic average of the precision and recall,
represents the accuracy of the estimated graph structure. Relative error is given
by:

RE
(
Θ̂,Θ∗

)
=

∥∥∥Θ̂−Θ∗
∥∥∥
F

‖Θ∗‖F
(6.21)

where Θ̂ is the estimated graph Laplacian, Θ∗ is the ground truth, and ‖ · ‖F
is the Frobenius norm.

6.3.2 Results

Table 6.1 summarizes the average performance under the hyperparameters se-
lected by BIC and GLIC. For both graphs, the graph selected with GLIC sig-
nificantly outperforms that with BIC for the F-measure and relative error.

Fig. 6.1 shows the BIC and GLIC with different α and the objective per-
formances. Let us denote α̂ as the α having the smallest information criterion.
For the ER graph, the optimal α̂ with BIC is 0.12, and that with GLIC is 0.06;
for the RM graph, α̂ with BIC is 0.12, and that with GLIC is 0.03. As observed
from the figure, GLIC selects the parameter that indicates a good trade-off
between F-measure and relative error, while BIC fails to do so.

Fig. 6.2 shows the visualization of the learned graph Laplacian with hyper-
parameters selected by BIC and GLIC. The graph selected by BIC is too sparse
compared to the ground truth. In contrast, GLIC can select graphs with almost
the same edge density as that of the ground truth.

6.4 Summary

In this chapter, we propose a model selection criterion for graph learning us-
ing the approximation of the model evidence. It is based on WBIC and is
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computed with an efficient sampler of the posterior distribution of the graph
learning model based on LGMRF. The experimental results demonstrated that
the proposed method can successfully select a valid parameter set among can-
didates.
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(a) ER graph

(b) RM graph

Figure 6.1: BIC and GLC with different α. (a) BIC: α̂ = 0.12,
GLIC: α̂ = 0.06. (b) BIC: α̂ = 0.12, GLIC: α̂ = 0.03.
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(a) Ground truth (b) BIC (c) GLIC

(d) Ground truth (e) BIC (f) GLIC

Figure 6.2: Visualization of the learned graph Laplacian with
hyperparameters selected by BIC and GLIC. The top rows and
bottom rows depict the learned graphs from ER graph dataset

and RM graph dataset, respectively.
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Chapter 7

Conclusion

This dissertation addressed the problem of learning time-varying graphs and the
model selection problem that are a hot research topic in graph signal processing
and a fundamental tool to utilize graph signal processing. Time-varying graph
learning requires 1) estimating time-varying graphs from a small number of
data and 2) taking into account the temporal relationships of the underlying
time-varying graphs. To fulfill these requirements, the following methods were
proposed:

1. Time-varying graph learning with constraints on graph tempo-
ral variation (Chapter 4 and [49,50])
A generic framework for learning time-varying graphs was proposed. This
method imposes constraints for temporal variations of graphs between
neighboring time slots based on prior knowledge of underlying time-varying
graphs. Specifically, the framework introduces the fused Lasso regulariza-
tion and group Lasso regularization of the temporal variation to capture
graphs with temporal homogeneity and switching behavior. These con-
straints enable us to learn time-varying graphs successfully from small
data samples and to consider the temporal relationship of time-varying
graphs. This framework is formulated as convex optimization, and an
efficient algorithm for solving the problem was presented.

2. Temporal multiresolution graph learning (Chapter 5 and [51,52])
Temporal multiresolution graph learning was proposed. This method di-
rectly learns graphs localized at different temporal resolutions (which are
called temporal multiresolution graphs), and reconstructs time-varying
graphs by the linear combination of the temporal multiresolution graphs.
Temporal multiresolution graphs are learned by the proposed algorithm
based on a primal-dual splitting algorithm. The experiments using syn-
thetic and real data demonstrated that the proposed method can learn
efficiently temporal multiresolution graphs from data.
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This dissertation also presented an answer to the question: How should we
choose the optimal hyperparameter(s) for graph learning?

3. Graph learning information criterion (Chapter 6)
Graph learning information criterion (GLIC), which is a tool to determine
hyperparameter of graph learning, was proposed. GLIC selects optimal
hyperparameters based on model evidence, the model selection criterion
used in Bayesian statistics. GLIC computes the approximation of the
model evidence with an efficient Gibbs sampler of the posterior distribu-
tion of the graph learning model based on LGMRF. The experimental
results demonstrated that GLIC can successfully select a valid parameter.

Each of them or their combinations extend the scope of the application of graph
signal processing. We expect that our work will be applied in a wide range of
fields.
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Appendix A

Algorithm for Time-varying Graph
Learning with LGMRF

The TVGL problem (5.10) can be solved using a primal-dual splitting (PDS)
algorithm while it cannot be directly applied to (5.10). Here, we reformulate
(5.10) to the applicable form of the PDS algorithm. Let Z(k) ∈ RN×N be a
pairwise distance matrix defined by

[Z(k)]i,j =
r−1∑
n=0

‖[X(k)]i,n − [X(k)]j,n‖2. (A.1)

We also denote the vector form representation of Z(k) as z(k) ∈ RE, which
corresponds to the lower-triangular part of Z(k). We further define the following
two vectors:

wall = [w(0)T, . . . ,w(K−1)T]T ∈ RET ,

zall = [z(0)T, . . . , z(K−1)T]T ∈ RET .
(A.2)

Then, the second term of (5.10) can be rewritten as

K−1∑
k=0

tr((X(k))TLw(k)X(k)) =
K−1∑
k=0

(z(k))Tw(k) = zT
allwall. (A.3)

Hereafter, we define L̂(k)wall = L(w(k)) for notation simplicity. By introducing
an indicator function ι, (5.10) can be rewritten as

min
wall

1

r
zT

allwall +α‖wall‖1 +βψ(Φwall) + ι(wall)−
K−1∑
k=0

log gdet(L̂(k)(wall)) (A.4)
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where Φ is a linear operator that satisfies Φwall = wall − ŵall in which ŵall =

[w(0)T,w(0)T,w(1)T, . . . ,w(K−2)T]T, and ι is defined by:

ι(w) =

0 w ≥ 0

∞ otherwise.
(A.5)

By introducing a linear operator L̂ : RE×2L → R2LN×N defined as

L̂(wall) := [L̂(0)(wall), . . . , L̂(K−1)(wall)]
T, (A.6)

dual variables p := Φwall, and V := [VT
0 , . . . ,V

T
K−1]T = L̂(wall), we can convert

(A.4) into the form of (2.35) as follows:

f(wall) = 0,

g(wall) =
1

r
(α1 + zall)

Twall + ι(wall),

h1(p) = βψ(p),

h2(V) = −
K−1∑
k=0

log gdet(Vk).

(A.7)

We then consider the proximal operators of g, h1 and h2 in (A.4). The
proximal operator of g corresponds to that of the weighted `1 norm with the
non-negative constraint. This proximal operator is known to be computed as
follows [64]:

[
proxγg(x)

]
i,j

=

0 [x]i,j ≤ γ
r
[α1 + zall]i,j

[x]i,j − γ
r
[α1 + zall]i,j otherwise.

(A.8)

Typical examples of the regularizer in h1 are ψ(·) = ‖ · ‖2
2 and ψ(·) = ‖ · ‖1.

It is well known that their proximal operator can be computed efficiently [64].
In general, the logarithm of generalized determinant in h2 is non-convex.

Fortunately, under the assumption that the learned graph is connected (and
it is often the case), it can be replaced with a following convex function [39,
Proposition 1]:

log gdet(A) = log det(A +
1

N
11T). (A.9)
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Its proximal operator is given by

proxγ(− log gdet(·))(A) = U


φ (λ0) 0

. . .

0 φ (λN−1)

UT, (A.10)

where φ (λi) =
λi+
√
λ2i+4γ

2
, U and λi are the eigenvector matrix and the eigen-

value of A + 1
N

11T, respectively.
Even if the original graph has disconnected components, we can avoid the

problem of the calculation of the proximal operator by adding a small regular-
izing parameter c to the input as follows [58]:

log gdet(A) ≈ log det(A + c2I), (A.11)

Its proximal operator can also be computed with the same manner as (A.10).
Finally, We summarize the entire iterative algorithm in Algorithm 6. The

convergence of this algorithm is guaranteed by choosing step sizes γ1 and γ2 so
that they satisfy

γ1γ2‖ΦTΦ + L̂∗L̂‖ < 1. (A.12)

Based on the submultiplicativity of the operator norm, the upper-bound of
‖ΦTΦ + L̂∗L̂‖ is given by

‖ΦTΦ + L̂∗L̂‖ ≤ ‖ΦTΦ‖+ ‖L̂∗L̂‖ ≤ 2(N + 2) (A.13)

because of ‖L̂∗L̂‖ = 2N and ‖ΦTΦ‖ ≤ 4. Consequently, the convergence
condition in (A.12) can be rewritten as

γ1 <
1

2γ2(N + 2)
. (A.14)

In the proposed algorithm, most of the computation burden comes from the
computation of the proximal operator of log gdet(·). It needs the eigendecompo-
sition and its computation cost is O(N3). Thus, the computational complexity
of Algorithm 6 is O(KN3) per iteration.
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Algorithm 6 Time-varying graph learning

Input: w
(0)
all , p(0), V(0), {xt}T−1

t=0 , K, ε
Output: wall

Divide {xt}Tt=0 into K data segments X(0) . . .X(K−1)

Compute {Z(k)}K−1
k=0 from {X(k)}K−1

k=0

while ‖w(i+1)
all −w

(i)
all‖/‖w

(i)
all‖ > ε do

w
(n+1)
all := proxγ1g(w

(n)
all − γ1(ΦTp + L̂∗V))

p(n) ← p(n) + γ2Φ(2w
(n+1)
all −w

(n)
all )

V(n) ← V(n) + γ2L̂(2w
(n+1)
all −w

(n)
all )

p(n+1) := p(n) − γ2 prox 1
γ2
h1

(
p(n)

γ2

)
for k = 0, . . . , K − 1 do

V
(n+1)
k := V

(n)
k − γ2 prox 1

γ2
(− log gdet(·))

(
V

(n)
k

γ2

)
end for
V(n+1) =

[
V

(n+1)T
0 , . . . ,V

(n+1)T
K−1

]T
i← i+ 1

end while
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