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Chapter 1. Introduction 

 

 

 

1.1. History of crystal growth technique  

Semiconductive materials have made great progress in the recent half a century. At first, silicon 

(Si) and germanium (Ge) were developed for diodes, thyristors, transistors. After Si, various 

compound semiconductors such as gallium arsenide (GaAs), indium phosphide (InP), and 

gallium nitride (GaN) and so on were widely developed for the high-frequency device and light-

emitting devices. And today, for next-generation power electric devices, GaN, silicon carbide 

(SiC), and gallium oxide (Ga2O3) are now developing.  

Along with the progress of semiconductive materials, crystal growth techniques for compound 

semiconductors have also been developed. Epitaxial wafers of compound semiconductors are 

commercially fabricated by vapor phase epitaxy (VPE), such as metal-organic vapor phase 

epitaxy (MOVPE) and halide vapor phase epitaxy (HVPE). MOVPE is a VPE method using 

metal-organics as precursors and is widely utilized for the growth of compound semiconductors, 

but HVPE is used for few materials such as GaN and Ga2O3 commercially.  

 

 

1.2. The problem of HVPE and the merit of THVPE  

HVPE is a relatively new method using metal monochlorides such as gallium monochloride 

(GaCl) for the growth of bulk GaN and Ga2O3 wafers. Other metal monochlorides, aluminum 



monochloride (AlCl) and indium monochloride (InCl), have unique reactivity, e.g., AlCl reacts 

with quartz reactor. On the other hand, InCl hardly reacted with nitrogen precursor. To expand 

the possibility of HVPE, tri-halide vapor phase epitaxy (THVPE) using metal trichlorides as 

precursors of III-nitrides has been suggested. The HVPE method using metal monochloride still 

has some problems. For example, in GaN, it is challenging to grow an ultra-thick film due to the 

problem that the diameter shrinks during growth, and in Ga2O3, the raw material molecules 

undergo a gas phase reaction due to the large driving force of growth, reported to cause killer 

defects. In order to solve these problems, this study proposes the THVPE method using metal 

trichloride as the raw material molecule. By using metal trichloride as raw material, the issue of 

GaN diameter reduction can be solved, and InN growth, which was difficult with monochloride, 

can be achieved, and a mixed crystal substrate of AlN, GaN, and InN can be fabricated. It has 

also been suggested that the driving force can be widely controlled in the growth of Ga2O3, and 

it is expected that the particle that causes killer defects will be suppressed. By applying THVPE 

using metal trichloride, the HVPE method can be expected to be applied to more compound 

semiconductors and has the potential to be commercially used in a wide range of compound 

semiconductors. Therefore, in this study, in order to expand the industrial application of the 

HVPE method, the THVPE method is expected to be used to fabricate a mixed crystal substrate 

of InGaN, which is one of the mixed crystals of nitride semiconductors, and to apply Ga2O3 to 

power devices.  

 

 

1.3. Consist of this thesis  

In this study, to overcome the problems on the growth of InGaN and Ga2O3 (details are described 

later.), THVPE-InGaN and -Ga2O3 growth was performed, and the possibility of THVPE was 



investigated. This thesis is made of two parts of the growth by THVPE for InGaN and Ga2O3. 

Part I describes the growth of InGaN by THVPE for the fabrication of InGaN quasi-substrate, 

aiming to further improvement of the InGaN-based light-emitting devices. Using the THVPE 

method for the growth of InGaN, high-speed growth and high crystalline quality are available 

compared with the conventional method such as MOVPE. Part II describes the first growth of β-

Ga2O3 by THVPE for resolving the problems of the growth by HVPE.  

 

 

 

  



 

Part I 

  



 

Chapter 2. Introduction  

 

 

 

1.4. III-nitride semiconductors  

III-nitrides such as AlN, GaN, and InN have the same crystal structure of wurtzite and largely 

different bandgap energy, 6.2 eV of AlN, 3.4 eV of GaN, and 0.62 eV of InN, respectively.[1-5] 

AlN and GaN are called wide gap semiconductors (or ultra-wide gap semiconductors) and are 

expected for next-generation power electronic devices[1,2] due to their superior physical 

properties such as a high withstand voltage, high electron mobility, and high thermal conductivity, 

to conventional semiconductive materials, for example, Si, Ge, or GaAs. GaN has already been 

widely used for various applications such as high-brightness blue light-emitting diodes 

(LEDs)[3] and high-speed power chargers. InN has high electron mobility, and it is expected for 

high-frequency devices.[5] Furthermore, these III-nitrides can form alloy crystals such as AlGaN, 

InGaN, or AlInN, and they can be controlled the bandgap energy by changing their composition 

in themselves. Especially, InGaN is a ternary alloy semiconductor of InN and GaN, and it can 

emit and absorb all the visible light by changing the solid composition of InN in itself. Therefore, 

InGaN is widely used for active layers in high brightness blue LEDs and blue-violet laser diodes 

(LDs).  

 

 



 

Table 2.1. Crystal structure and bandgap of III nitrides. 

  AlN GaN InN 
crystal structure wurtzite wurtzite wurtzite 

a 3.112 Å 3.189 Å 3.537 Å 
c 4.982 Å 5.185 Å 5.703 Å 
α 

120° 120° 120° 
β 
γ 90° 90° 90° 

Bandgap 6.2 eV 3.4 eV 0.69 eV 
 

 

1.5. Progress of III-nitride application  

Group-III nitride semiconductors, GaN and its related materials, are expected to be applied for 

optical and electrical devices due to their superior physical property. In particular, InGaN, a 

ternary alloy of GaN and InN, is focused on as a promising material that can emit and absorb all 

the visible light by changing the solid composition of InN in itself. Actually, high brightness blue 

LEDs and blue-violet LDs have been realized using InGaN as an active layer. There are three 

breakthrough technologies in the invention of the blue LED, high-quality GaN single crystal, p-

type GaN layer, and InGaN growth for light emitting layer. First, the breakthrough of realization 

of high-quality GaN single crystal was realized by introducing a low-temperature AlN buffer 

layer on a sapphire substrate by I. Akasaki, and H. Amano et al.[6] Second, p-type GaN layer 

was also realized by electron beam irradiation of Mg-doped GaN by I. Akasaki, and H. Amano 

et al. [7]. Finally, InGaN growth for light emitting layer was realized by T. Matsuoka et al., 



NIPPON TELEGRAPH AND TELEPHONE CORPORATION (NTT), and T. Nagatomo et al., 

Shibaura Institute of Technology, at almost the same time by achieving the world's first InGaN 

crystal with an In composition of 40% or more.[8,9] The points of the technology established by 

Matsuoka et al. were replacing the carrier gas that carries the raw materials with nitrogen from 

conventional hydrogen, increasing the supply ratio of the ammonia gas approximately 100 times, 

and lowering the growth temperature. Furthermore, all three breakthroughs were surprisingly 

achieved in the late 1980s and early 1990s. Then, in 1993, the world's first blue LED was 

commercialized by Nakamura et al., Nichia Corporation.[10,11] For these achievements, I. 

Akasaki, H. Amano, and S. Nakamura were awarded the Nobel Prize in Physics in 2014. Recently, 

InGaN-based LEDs have been taking place of incandescent light bulbs and fluorescent lamps, 

and InGaN-based LDs are utilized for recording on Blu-ray Discs, which enable to record larger 

volume than conventional compact discs (CDs) and digital video discs (DVDs). Additionally, in 

2019, a car called All GaN Vehicle using GaN devices as a headlamp, high beam lamp, converter, 

an inverter, and battery charger was demonstrated by Institute of Materials and Systems for 

Sustainability (IMaSS), Nagoya University at Tokyo Motor Show 2019.[12] GaN and its related 

materials have been applied not only for light-emitting devices but also for electronic devices.  

 

 

1.6. The problem of InGaN devices  

InGaN-based light-emitting devices are widely utilized as light sources. However, a decrease in 

the luminous efficiency of light-emitting devices called the green gap is a serious issue.[13] The 

optical devices using InGaN have low luminous efficacy in the long-wavelength region caused 

by the internal electric field derived from self and piezo polarization called quantum-confined 



Stark effect (QCSE)[14] due to lattice mismatch in the InGaN/GaN quantum well and the 

degradation of crystalline quality due to misfit dislocations at the InGaN/GaN interface. 

Although the entire visible region emission has recently been achieved by InGaN multiple 

quantum wells (MQWs) grown on an N-polar GaN substrate,[15] the luminous efficiency of the 

long-wavelength region was still low. Eu doped GaN has a sharp peak of emission around 2.0 eV 

which is red luminescence at the wavelength of 621 nm.[16] However, Eu doped GaN is inferior 

in terms of mass production because Eu is one of the rare metals and high cost.  

 

 

1.7. Investigation toward fabrication of InGaN quasi-substrate  

One approach to solve the problem is the fabrication of InGaN quasi-substrate with high 

crystalline quality. Using the thick InGaN layer as a quasi-substrate, lattice mismatch between 

the light-emitting layer and the substrate can be reduced. Recently, several reports on buffer layer 

have been carried out either by molecular beam epitaxy (MBE) or metal-organic vapor phase 

epitaxy (MOVPE) using an InGaN graded buffer layer,[17] for example, stress relaxed InGaN 

buffer layer by the generation of misfit dislocations between the GaN substrate and InGaN 

layer,[18] and an InGaN buffer layer grown on sputtered InGaN directly deposited on 

sapphire.[19] There are also other growth techniques such as an InGaN layer grown on a GaN 

template using droplet elimination by radical-beam irradiation,[20] a porous GaN substrate,[21] 

an InGaN quasi-substrate called InGaNOS by Smart Cut method,[22] and InGaN platelet which 

is hexagonal InGaN sub-micrometer platelets having an extension of a few hundred nanometers 

by selective area MOVPE.[23]However, the driving forces for InN deposition by MOVPE and 

MBE are quite small. Since this small driving force leads to a small growth rate and 



compositionally unstable nature in InGaN alloys, fabrication of high crystalline quality thick 

InGaN layers is difficult by these growth methods.[24-30]  

 

 

1.8. Outline of Part I  

In this thesis of Par I, the first lattice-relaxed thick InGaN growth by THVPE is studied. Part I of 

this thesis consists of 5 chapters and the contents are as follows:  

Chapter 2 describes the details of the experimental procedure and equipment. Selective 

generation of metal tri-chlorides inside the reactor is discussed by thermodynamic analysis. the 

author optimized the generation condition of metal tri-chlorides.  

In chapter 3, the lattice-relaxed thick InGaN grown on an N-polar freestanding GaN substrate by 

THVPE is described. The lattice relaxation of the InGaN layer is controlled by the double 

intermediate InGaN layer, one is grown at a low speed, and the other is grown at a high speed.  

Chapter 4 describes the lattice-relaxed thick InGaN with high crystalline quality grown on the 

pattered sapphire substrates (PSSs). An important role of the GaN intermediate layer between the 

InGaN epilayer and the PSS to obtain high crystalline quality InGaN layer is described here.  

Finally, chapter 5 serves as the summarization and conclusion of Part I.  
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Chapter 3. Experimental procedure and purpose 

 

 

 

3.1. Growth technique of InGaN  

There are various methods for GaN growth including the liquid phase epitaxy (LPE) and vapor 

phase epitaxy (VPE). For the bulk GaN growth, the ammonothermal method and Na flux method 

are used as LPE[1,2] and halide vapor phase epitaxy (HVPE) is used as VPE.[3] However, InGaN 

cannot be grown by these methods. In an equilibrium system like LPE, the phase separation 

occurs and the region having different In composition is formed.[4] This is caused by the 

immiscibility between GaN and InN.[5] Therefore, InGaN growth is possible in a quasi-

equilibrium system like VPE. A conventional method for the growth of InGaN is metal-organic 

vapor phase epitaxy (MOVPE) using organic metals such as tri-ethyl gallium (TEGa) and tri-

methyl indium (TMIn) as group III precursors. Typical LED structures are fabricated by 

MOVPE.[6] However, the growth rate of MOVPE-InGaN is too low to fabricate InGaN 

templates or free-standing InGaN substrates. Molecular beam epitaxy (MBE), which needs a high 

vacuum and large equipment, is inferior on thick InGaN growth. In the case of HVPE, according 

to thermodynamics analysis, the driving force of InN growth using indium mono-chloride is 

much small and the reaction does not undergo (discussed below). In order to obtain thick InGaN 

layer for InGaN substrate, a new growth method to overcome these issue is required.  

 



 

3.2. Investigation of InGaN growth by HVPE and THVPE  

Our previous study has proposed the InGaN growth by tri-halide vapor phase epitaxy(THVPE). 

In the growth by THVPE, metal tri-chlorides are used as sources of group-III, and NH3 are used 

as sources of group-V, respectively. Figure 2.1. shows the temperature dependence of the 

equilibrium constant of InGaN and Ga2O3 growth by THVPE compared with by HVPE. In the 

case of InGaN growth, the four kinds of combination of the raw material are considered, GaCl-

InCl-NH3, GaCl3-InCl-NH3, GaCl-InCl3-NH3, and GaCl3-InCl3-NH3 systems. In the cases of 

GaCl-InCl-NH3 and GaCl3-InCl-NH3 systems, the reaction of InCl and NH3 does not undergo 

due to the low equilibrium constant at all, and InN does not grow at any temperatures. In the case 

of the GaCl-InCl3-NH3 system, it is considered the trans-chlorine reaction occurs, and GaCl3 and 

InCl are generated, resulting in InN does not grow. Finally, only in the case of GaCl3-InCl3-NH3 

systems, InGaN could be grown at a high temperature where it is advantageous for the crystal 

growth with high crystalline quality. The chemical reaction formula of GaN and InN growth by 

HVPE and THVPE is described as follows:  

 

GaCl +  NH3  ⇄  GaN +  HCl +  H2    (2-1) 

InCl +  NH3  ⇄  InN +  HCl +  H2     (2-2) 

GaCl3 +  NH3  ⇄  GaN + 3HCl     (2-3) 

InCl3 +  NH3  ⇄  InN + 3HCl     (2-4) 

 



 

Figure 3.1. The dependence of the equilibrium constant of each reaction on the temperature.  

 

 

3.3. Consideration by thermodynamics for generation of the sources of THVPE  

Figure 2.2. shows the schematics of the generation of group-III precursors by a one-step reaction, 

and figure 2.3. shows the thermodynamics analysis of the temperature dependence of the partial 

pressure of possible gaseous species in the source zone. In the case of the one-step reaction, it is 

clearly found that the main products are the metal mono-chlorides almost the entire temperature. 

A certain amount of gaseous metals (Ga and In) are produced from the surface of the liquid metals 

as followed by the vapor pressure of them. Therefore, input Cl2 reacted with gaseous metals 

priority, and metal mono-chlorides are generated without generation of metal tri-chlorides from 

the reaction between metal mono-chlorides and Cl2. Therefore, by the one-step reaction, it is 

impossible that metal trichlorides are obtained. On the other hand, figure 2.4. shows the 

schematics of the generation of group-III precursors by a two-step reaction using two separated 
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chambers, one contains metals and is supplied 1st chlorine and the other is only supplied 2nd 

chlorine. Figure 2.5. shows the thermodynamic analysis of the reaction for metal tri-chlorides 

generation compared with a one-step reaction and a two-step reaction in the source zone. 

However, in the case of a two-step reaction, it is found that the main products are the metal tri-

chlorides at the temperature between 400℃ and 900℃. In the 1st chamber, metal mono-chlorides 

were generated via reaction of metals and Cl2, and only metal mono-chlorides are introduced into 

the 2nd chamber. Next, in the 2nd chamber, metal tri-chlorides are generated by the reaction of 

metal mono-chlorides and 2nd Cl2. The reactions occurring in the source zone are as follows;  

 

M +  1
2

Cl2 → MCl      (2-5) 

MCl + Cl2 → MCl3      (2-6) 

 

where M is metal Ga or In. In addition, thermodynamic analysis shows GaCl3 is prior to GaCl 

the entire temperature till 1200℃, on the other hand, InCl3 is prior to InCl till the temperature of 

approximately 1000℃. Therefore, the author adopted the temperature of 800℃ at the source 

zone in InGaN growth .  

 

 
Figure 3.2. The schematics of one-step reaction of the generation of gallium and indium 
precursors. M is gallium or indium.  

 

 



 

 

 
Figure 3.3. The temperature dependence of partial pressure of each gaseous species at one-step 
reaction of the generation of (a) gallium and (b) indium precursors.  
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Figure 3.4. The schematics of two-step reaction of the generation of gallium and indium 
precursors. M is gallium or indium.  

 

 

 

 

 



 

 
Figure 3.5. The temperature dependence of partial pressure of each gaseous species at two-step 
reaction of the generation of (a) gallium and (b) indium precursors.  
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3.4. Previous studies and problems  

Previously, our group has proposed thick InGaN growth by THVPE. Our previous study showed 

that the bulkiness of the THVPE precursors causes unique adsorption behavior on the N-polar 

GaN substrate and THVPE-InGaN growth has plane selectivity. Then, the growth rate of InGaN 

on an N-polar GaN substrate of 15.6 µm/h was realized. The In composition could be widely 

controlled by changing the growth temperature between 650℃ and 950℃, and moreover, thick 

(> 10 µm), high crystalline quality In0.05Ga0.95N growth could be achieved. However, the thick 

In0.05Ga0.95N layer remains lattice-matched with a GaN bulk substrate. In other words, the a-axis 

of the InGaN layer was the same as that of the GaN substrate.  

On the heteroepitaxy, the epilayer grows strained by the substrate at the initial stage. However, 

when the thickness of the epilayer reaches certain values, the dislocation is introduced at the 

interface between the epilayer and the substrate because the epilayer could not bear the stress. 

This thickness is called critical thickness, and this phenomenon is called lattice relaxation. 

Matthews and Blakeslee theoretically calculated the critical thickness from the mechanical 

balance on the dislocation,[7] on the other hand, People and Bean also calculated from the energy 

balance stored in the dislocation.[8] The equations calculated by Matthews and Blakeslee, and 

People and Bean are described as follows, respectively;  

 

ℎ𝑐𝑐 =  𝑏𝑏
2𝜋𝜋𝜋𝜋

∙ �1−𝜈𝜈𝑐𝑐𝑐𝑐𝑐𝑐
2𝛼𝛼�

(1+𝜈𝜈)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
∙ (𝑙𝑙𝑙𝑙 ℎ𝑐𝑐

𝑏𝑏
+ 1)     (2-7) 

ℎ𝑐𝑐 =  1−𝜈𝜈
1+𝜈𝜈

∙ 1
16𝜋𝜋√2

∙ 𝑏𝑏
2

𝑎𝑎
∙ 1
𝜋𝜋2
∙ 𝑙𝑙𝑙𝑙 ℎ𝑐𝑐

𝑏𝑏
     (2-8) 

 

where hc is the critical thickness, b is the magnitude of buggers vector, ν is Poisson’s ratio, f is 



the lattice mismatch, α is the angle between dislocation and buggers vector, and λ is the angle 

between the slip plane and the epilayer-substrate interface. According to these equations, the 

critical thickness of the InGaN epilayer with In composition of 10% grown on the GaN substrate 

is several dozen of nanometers. However, our previous study reported several micrometers thick 

of InGaN epilayer with a coherent state on the GaN substrate. Using the InGaN thick layer as a 

quasi-substrate for optoelectronic devices, the lattice relaxation of InGaN must be required. On 

the other hand, the relaxation state of InGaN divides three-state, fully relax, partially relax, and 

coherent (strained). The relaxation ratio of the InGaN layer against the GaN substrate oriented to 

the c-plane is given by the following equation.  

 

𝑅𝑅 =  𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒−𝑎𝑎𝐺𝐺𝐺𝐺𝐺𝐺
𝑎𝑎𝐼𝐼𝐼𝐼𝐺𝐺𝐺𝐺𝐺𝐺−𝑎𝑎𝐺𝐺𝐺𝐺𝐺𝐺

       (2-9) 

 

Where R is the relaxation ratio, aepi is the real in-plane lattice constant of the InGaN epilayer, 

aInGaN is the ideal in-plane lattice constant of InGaN, and aGaN is the ideal in-plane lattice constant 

of GaN. In order to obtain the lattice relaxed InGaN layer with a high crystalline quality, 

controlling the relaxation ratio is needed.  

 

 

3.5. Purpose of this work  

In this study, to fabricate InGaN quasi-substrate, the lattice-relaxation of the InGaN epilayer was 

investigated by two approaches, one is inserting the intermediate InGaN layers between InGaN 

epilayer and the N-polar GaN substrate to occur the lattice-relaxation gradually, and the other is 

using sapphire substrates having larger lattice-mismatch than GaN substrates to occur the lattice-



relaxation intentionally.  
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Chapter 4. Influence of intermediate layers on thick InGaN 

growth using Tri-Halide Vapor Phase Epitaxy  

 

 

4.1. Introduction  

InxGa1-xN is a ternary alloy semiconductor of InN and GaN, and it can emit and absorb all the 

visible light by changing the solid composition of InN in itself. Therefore, InGaN is widely used 

for active layers in high brightness blue light-emitting diodes (LEDs) and blue-violet laser diodes 

(LDs). However, degradation of the crystalline quality of the InGaN epilayer called the green 

gap is a serious issue[1]. The optical devices using InGaN have low luminous efficacy in the 

long-wavelength region caused by internal electric field derived from piezo polarization due to 

lattice mismatch in the InGaN/GaN quantum well and degradation of crystalline quality due to 

misfit dislocations at the InGaN/GaN interface. Although the entire visible region emission has 

recently been achieved by InGaN multiple quantum wells (MQWs) grown on an N-polar GaN 

substrate[2], the luminous efficiency of the long-wavelength region was still low.  

One approach to solve the problem is the fabrication of InGaN quasi-substrate with high 

crystalline quality. Using the thick InGaN layer as a quasi-substrate, lattice mismatch between 

the light-emitting active layer and the substrate can be relieved. Recently, several reports on 

buffer layer have been carried out either by molecular beam epitaxy (MBE) or metal-organic 

vapor phase epitaxy (MOVPE) using an InGaN graded buffer layer[3,4], for example, stress 

relaxed InGaN buffer layer by the generation of misfit dislocations between the GaN substrate 

and InGaN layer[5], and an InGaN buffer layer grown on sputtered InGaN directly deposited on 



sapphire[6]. There are also other growth techniques such as an InGaN layer grown on a GaN 

template using droplet elimination by radical-beam irradiation[7], or an InGaN quasi-substrate 

called InGaNOS[8]. However, the driving forces for InN deposition by MOVPE and MBE are 

quite small. Since this small driving force leads to a small growth rate and compositionally 

unstable nature in InGaN alloys, fabrication of high crystalline quality thick InGaN layers is 

difficult by these growth methods [9-15].  

Recently, we proposed thick InGaN growth with high crystalline quality using Tri-Halide Vapor 

Phase Epitaxy (THVPE). According to the thermodynamic analyses for InGaN growth, metal 

trichlorides (GaCl3 and InCl3) are suitable for the growth of InGaN alloys with a high growth 

rate[16-20]. In fact, the growth rate of InGaN on a GaN substrate of 15.6 µm/h was realized[21]. 

Moreover, thick (> 10 µm), high crystalline quality In0.05Ga0.95N growth could be achieved[22]. 

However, the thick In0.05Ga0.95N layer remains lattice-matched with a GaN bulk substrate. In 

other words, the a-axis of the InGaN layer was the same as that of the GaN substrate. In order to 

use the InGaN thick layer as a quasi-substrate for optoelectronic devices, the method for the 

lattice relaxation of InGaN must be required. In this work, the relationship of growth rate on the 

surface morphology and lattice relaxation of the InGaN layer was investigated, and then, by 

changing the growth rate to control the lattice relaxation, the influence of double intermediate 

layers on the growth of lattice relaxed InGaN layers with In composition of 5% using THVPE 

was investigated.  

 

 

4.2. Experimental  

InGaN epilayers were grown in a cold-wall type horizontal quartz reactor by THVPE using metal 

trichlorides (GaCl3 and InCl3) as group-Ⅲ sources[21,22]. The partial pressure of ammonia, as a 



source of group V (𝑃𝑃V0), was fixed at 4.0×10-2 atm in a total pressure of 1.0 atm using N2 as carrier 

gas without H2 gas[23,24]. The total flow rate was 18000 sccm. InGaN layers for all samples 

were grown on the (0001�) free-standing GaN substrate at 840℃. GaN growth by THVPE has 

plane selectivity, namely, it can be grown on the (0001�) (N-polar, -c) GaN substrate but cannot 

be grown on the (0001)  (Ga-polar, +c) GaN substrate. This phenomenon was discussed 

elsewhere[21,25].  

At first, two InGaN layers were grown with different growth condition, one is at a low growth 

rate with InCl3 partial pressure (𝑃𝑃In0 ) of 4.75×10-4 atm, GaCl3 partial pressure (𝑃𝑃Ga0 ) of 0.25×10-4 

atm and group III supply ratio (RIn = 𝑃𝑃In0  / (𝑃𝑃In0  + 𝑃𝑃Ga0 )) of 0.95 and the other is at a high growth 

rate with InCl3 partial pressure (𝑃𝑃In0 ) of 2.85×10-3 atm, GaCl3 partial pressure (𝑃𝑃Ga0 ) of 0.15×10-3 

atm and RIn of 0.95, in order to investigate the relationship of growth rate and relaxation. Next, 

the growth condition of the intermediate InGaN layers for fully relaxed InGaN growth was 

optimized. The first InGaN layer was grown with the thickness from approximately 50 nm to 400 

nm with InCl3 partial pressure (𝑃𝑃In0 ) of 6.75×10-5 atm, GaCl3 partial pressure (𝑃𝑃Ga0 ) of 0.75×10-5 

atm and RIn of 0.90, and then, second InGaN layer was grown with the fixed thickness of 

approximately 2.0 µm with InCl3 partial pressure (𝑃𝑃In0 ) of 3.60×10-4 atm, GaCl3 partial pressure 

(𝑃𝑃Ga0 ) of 0.40×10-4 atm and RIn of 0.90, and finally, the topmost InGaN layer was grown with the 

thickness from approximately 1.0 µm to 3.0 µm with InCl3 partial pressure (𝑃𝑃In0 ) of 7.5×10-5 atm, 

GaCl3 partial pressure (𝑃𝑃Ga0 ) of 2.5×10-5 atm and RIn of 0.75. All samples were fabricated after 

growing GaN homo-epilayer to prepare a reproducible surface at 1050℃ for 60 min with the 

GaCl3 partial pressure of 5.0×10-5 atm.  

InGaN layers were analyzed by X-ray diffraction (XRD). The indium solid composition and the 

relaxation ratio of InGaN epilayers were estimated from reciprocal space mapping (RSM) 

measurements around the 11����24� diffraction by XRD. To confirm the In composition, the optical 



characteristics were also measured by cathodoluminescence (CL) measurements at room 

temperature. The surface morphology and epilayer thickness were observed by field emission - 

scanning electron microscopy (FE-SEM).  

 

 

4.3. Results and discussion  

4.3.1. Low growth rate and high growth rate InGaN growth on N-polar GaN substrates.  

First, in order to confirm the influence of growth rate on the surface morphology and lattice 

relaxation of the InGaN layer, two kinds of InGaN layer were grown by THVPE with low growth 

rate and high growth rate. The thickness of each layer was adjusted at approximately 11µm by 

changing the growth time. Figure 1 shows the bird’s eye view SEM images of these two InGaN 

layers. At a low growth rate, a 10.9-µm-thick InGaN epilayer with a mirror-like surface was 

obtained. On the other hand, at a high growth rate, 11.2-µm-thick InGaN epilayer with a rough 

and finger-like structure was obtained.  

Figure 2 shows the X-ray RSM at 11����24� diffraction of InGaN layers grown with low growth 

rate and high growth rate. Two lines are drawn in each figure ((a) and (b)). One is a vertical line 

which is the same Qx value of GaN substrate, and the other is a diagonal line connecting the 

coordinates of GaN and InN. When the peak of RSM measurement of the InGaN epilayer lies on 

the vertical line, it means this InGaN epilayer has the same Qx value and coherently grew on the 

GaN substrate. Conversely, when the peak lies on the diagonal line, the InGaN epilayer has its 

own Qx value and grew with fully relaxed. If the peak lies between these two lines, the InGaN 

epilayer grew with partially relaxed. The same lines are also drawn in figure 4 and figure 6. Since 

the only single peak of the GaN was observed, the GaN homo-epilayer grown before the growth 

of InGaN layers has the same lattice constant with the GaN substrate according to RSM in figure 



2, figure 4, and figure 6. At a low growth rate, the Qx value of the InGaN epilayer showed almost 

the same as that of the GaN substrate. This means that the InGaN epilayer grown with a low 

growth rate had almost the same a-axis lattice constant as the GaN substrate. On the other hand, 

at a high growth rate, the peak of the InGaN layer shifted to the partially relaxed region. It means 

that the InGaN epilayer grown at a high growth rate had its own a-axis lattice constant different 

from the GaN substrate. The estimated In the composition of both samples with low growth rate 

and high growth rate was 4.8% and 4.5%, respectively, and the estimated relaxation ratio of these 

two samples were 16% and 57%, respectively.  

According to the RSM, a thick InGaN layer having a smooth surface at a low growth rate was 

coherently grown on the (0001�) GaN substrate. This result was completely different from any 

other previously reported results, both experimental and calculated[26-28]. Further investigation 

is needed to provide an accurate description of this phenomenon. On the other hand, at a high 

growth rate, the thick InGaN layer was partially relaxed. Generally, it is well known that the 

higher the growth rate is, the less the crystalline quality gets due to the generation of defects such 

as dislocations. This unique characteristic that the growth rate of InGaN epilayer grown by 

THVPE strongly influences lattice relaxation suggested that it is possible to control the relaxation 

ratio of the InGaN epilayer by controlling the growth rate of the InGaN layer using THVPE. 

Furthermore, it is possible to grow a fully relaxed InGaN layer on the intermediate InGaN layers 

using several InGaN layers grown at different growth rates as intermediate layers.  

 

 

 



      

(a)                        (b) 

Figure 4.1. The bird’s eye view SEM images of thick InGaN layer (a) with a low growth rate for 

360 minutes and (b) with a high growth rate for 60 minutes. 

 

       
   (a)                          (b) 

Figure 4.2. The RSM measurements around the 11����24� diffraction of thick InGaN layer (a) with 

a low growth rate for 360 minutes and (b) with a high growth rate for 60 minutes. Two lines are 

drawn in each figure ((a) and (b)). One is a vertical line which is the same Qx value of GaN 

substrate, and the other is a diagonal line connecting the coordinates of GaN and InN. When the 

peak of RSM measurement of the InGaN epilayer lies on the vertical line, it means this InGaN 

epilayer has the same Qx value and coherently grew on the GaN substrate. Conversely, when the 

peak lies on the diagonal line, the InGaN epilayer has its own Qx value and grew with fully 

relaxed. If the peak lies between these two lines, the InGaN epilayer grew with partially relaxed. 

The same lines are also drawn in figure 4 and figure 6. 

 



 

4.3.2. Optimization of intermediate InGaN layers  

The thickness of the first InGaN layers grown with a low growth rate was varied to optimize the 

relaxation ratio under the fixed thickness of the second InGaN layer. The first InGaN layer was 

coherently grown on the GaN substrate with a low growth rate, following the second InGaN layer 

was grown with a high growth rate. The role of the first InGaN layer was to control the lattice 

relaxation of the second InGaN layer. Figure 3 shows the bird’s eye view and cross-sectional 

SEM images of two InGaN layers with the different thickness of the first layer from 50 nm to 

400 nm. As seen from the figures, cracking and peeling were observed in the sample of the 50-

nm-thick first layer. It was considered that cracking and peeling were caused by compressive 

stress between the GaN substrate and the InGaN epilayers. In this case, the first InGaN layer was 

too thin to bear the stress. It was conceived that the stress could be decreased by increasing the 

thickness of the first layer.  

Figure 4 shows the X-ray RSM around the 11����24� diffraction of the three samples of InGaN 

layers grown on the GaN substrates. It was found that the Qx value changed with the increase of 

the first InGaN thickness. In addition, it was observed that the peaks of the sample with the first 

layer thickness of 50 nm are divided into three positions, that is, the coherent position, the 

partially relaxed position, and the fully relaxed position. As for the samples with the first layer 

thickness of 200 nm and 400 nm, the peaks of the InGaN layer exist at the partially relaxed 

position and fully relaxed position. The estimated In composition of the sample of the first layer 

thickness of 50 nm, 200 nm, and 400 nm was 10.8%, 11.3%, and 10.1% at the partially relaxed 

position, respectively, and 15.7%, 16.5%, and 16.7% at the fully relaxed position, respectively. 

The estimated relaxation ratio of each sample was 59%, 32%, and 25% at the partially relaxed 

position, respectively. According to the RSM measurements, it was found that the position of the 



peak of the InGaN layer differs for each sample due to the difference in the thickness of the first 

InGaN layer. As cracking and peeling were observed in the sample of 50-nm-thick first layer, it 

was suggested that lattice relaxation occurred in the second InGaN layer, so the peaks at the 

partially relaxed position and fully relaxed position were second InGaN layer. In the case of 200 

nm and 400 nm, there seems to be no peak at the coherent position in the RSM, however, since 

the growth rate of the first InGaN layer was too low to relax, and the peak of the first InGaN 

layer was slightly overlapped by that of the second InGaN layer and so thin compared with the 

second InGaN layer that has weaker intensity, it was thought that the first InGaN layer was 

coherently grown on GaN substrate. However, since no cracking or peeling was observed, the 

stress at the second InGaN layer was gradually released. The peak at the partially relaxed position 

of the sample of the first layer thickness of 400 nm slightly shifted to the coherent region 

compared with that of 200 nm. Generally speaking, on InGaN growth on a GaN substrate, the 

thicker the InGaN layer gets, the more lattice relaxation proceeds[26,29,30]. However, in this 

study, it was considered that lattice relaxation proceeded for the sample of 400 nm less than the 

sample of 200 nm. This is explained by the difference in the thickness of the first layer of these 

two samples. The thin first layer could not bear the stress between the GaN substrate and the 

second InGaN epilayer, so the cracking and peeling were generated and the second InGaN layer 

drastically relaxed. On the other hand, the thick first layer could bear the stress and the second 

InGaN layer gradually relaxed. Thus, the partial relaxation proceeded at the sample of 50-nm-

thick first layer more than at that of 400-nm-thick, and it was found that the partially relaxed 

peak position of the sample of 200-nm-thick first layer was lattice-matched to a-axis length of 

the In0.05Ga0.95N. The peak of the fully relaxed position will be discussed below. For the reasons 

above, the sample of 200-nm-thick first layer, crack free and a-axis lattice-matched with 5% 

InGaN, was chosen as the intermediate layer for the fully relaxed In0.05Ga0.95N growth.  



 

   
(a)                       (b)                      (c) 

 

   
(d)                       (e)                      (f) 

Figure 4.3. The bird’s eye view SEM images and the cross-sectional SEM images of two InGaN 

layers grown on a (0001�) GaN substrate with a low growth rate with the thickness of (a), (d) 

50 nm, (b), (e) 200 nm and (c), (f) 400 nm and with a high growth rate with the thickness of 2.0 

µm all three samples. 

 

 

   (a)                    (b)                     (c) 

Figure 4.4. The RSM measurements around the 11����24� diffraction of two InGaN layers grown 



on a (0001�) GaN substrate with a low growth rate with the thickness of (a) 50 nm, (b) 200 nm, 

and (c) 400 nm and with a high growth rate with the thickness of 2.0 µm all three samples. 

 

 

4.3.3. Growth of the relaxed thick In0.05Ga0.95N  

In0.05Ga0.95N was grown on the double intermediate InGaN layers. As shown in figure 5, surface 

morphology was drastically improved compared with the sample directly grown on the GaN 

substrate seen in figure 1(b). The thickness of the topmost InGaN layer was approximately 1.1 

μm for 60 min growth. The thickness of the topmost layer linearly increased to 2.0 μm in the 

sample grown for 120 minutes and 3.0 μm in the sample grown for 180 minutes. The surface 

morphology of the topmost InGaN layer was maintained for 180 minutes of growth.  

The RSM around the 11����24� diffraction was shown in figure 6. In addition to the peak of the GaN 

substrate and the InGaN epilayer at the partially relaxed position, a peak was observed at the 

fully relaxed position with an estimated In composition of 4.8%. As shown in figure 7, the near 

band edge emission peaking at around 394 nm was observed by CL measurement, which 

corresponds to the In composition of 6.3% by using the bowing parameter of 1.3[31]. Thus, we 

succeeded to grow a smooth surface, fully relaxed and thick In0.05Ga0.95N layer by controlling the 

relaxation ratio of intermediate InGaN layers. Based on the results of RSM measurements, since 

the value of Qx in the figure are substantially equal to that of the topmost InGaN layer and the 

intermediate InGaN layer, it was found that the topmost InGaN layer was grown with lattice-

matched on the intermediate InGaN layers. The peak at the fully relaxed position with In 

composition of 16.5% observed in the sample grown only the intermediate layers disappeared. If 

the relaxation proceeds in the growth process of the high growth rate intermediate InGaN layer, 

it is considered that the same peak is observed in figure 6. However, such a peak was not observed 



in this sample. It was considered that in the sample in which only the intermediate layer was 

grown, the relaxation of the high growth rate intermediate layer proceeded during the cooling 

process after the growth of the intermediate layer. When InGaN is grown on the GaN substrate, 

compressive stress is accumulated in the InGaN layer due to not only the effect of lattice 

mismatch but also the large difference in the thermal expansion coefficient between GaN and 

InN[32]. At the interface between InGaN and GaN, it was thought that compressive stress 

increased during the cooling process, resulting in a state where relaxation is more likely to 

proceed. In our case, it was considered that the tensile stress was generated to compensate for the 

compressive stress, and cracking and peeling were suppressed because In composition of the 

intermediate InGaN layers is higher than that of the topmost In0.05Ga0.95N layer. From now on, 

in order to control the lattice relaxation more accurately, it is necessary to study not only the 

crystal growth condition but also the cooling process.  

As shown in figure 5, there was a region where decomposition occurred in the high growth rate 

intermediate layer. Because this was not observed in the sample shown in figure 3, it was thought 

that thermal decomposition proceeded during the growth of the topmost InGaN layer due to the 

higher In composition and low thermal stability at a high temperature around 840 ºC[33,34]. 

Moreover, since the peak intensity of the topmost InGaN layer observed in the RSM was also 

small, the crystalline quality of the topmost InGaN layer was thought not to be high. However, 

since the topmost layer was not decomposed and grown steadily, by optimizing growth condition, 

it was suggested that a fully relaxed InGaN thick layer could be obtained by inserting the double 

intermediate InGaN layers with low growth rate and high growth rate.  

 



   

(a)                       (b)                      (c) 

   

(d)                       (e)                      (f) 

Figure 4.5. The bird’s eye view SEM images and the cross-sectional SEM images of three InGaN 

layers, 200-nm-thick first intermediate layer with a low growth rate, 2.0-µm-thick second 

intermediate layer with a high growth rate, and the topmost layer for (a), (d) 60 minutes, (b), (e) 

120 minutes and (c), (f) 180 minutes. 

 

 

Figure 4.6. The RSM measurements around the 11����24� diffraction of three InGaN layers, 200-

nm-thick first intermediate layer with a low growth rate, 2.0-µm-thick second intermediate layer 

with a high growth rate, and the topmost layer for 60 minutes. 



 

 

Figure 4.7. The CL measurements of three InGaN layers, 200-nm-thick first intermediate layer 

with a low growth rate, 2.0-µm-thick second intermediate layer with a high growth rate, and the 

topmost layer for 60 minutes. 

 

 

4.4. Conclusion  

The influence of intermediate InGaN layers for relaxed InGaN growth using THVPE was 

investigated. It was found that the difference in growth rate influenced the relaxation ratio of the 

InGaN layer. We had succeeded to control the relaxation by changing the thickness of the 

intermediate layer grown with a low growth rate. Moreover, a smooth surface, fully relaxed and 

thick In0.05Ga0.95N layer was obtained by inserting partially relaxed double intermediate InGaN 

layers which are grown with low growth rate and high growth rate.  
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Chapter 5. Growth of Lattice-Relaxed InGaN Thick Films 

on Patterned Sapphire Substrates by Tri-Halide Vapor Phase 

Epitaxy  

 

5.1. Introduction  

Group-III nitride semiconductors, GaN and its related materials, are expected to be applied for 

optical and electrical devices owing to their superior physical properties. In particular, InGaN, a 

ternary alloy of GaN and InN, is focused on as a promising material that can emit and absorb all 

the visible light by changing the solid composition of InN in itself. High-brightness blue light-

emitting diodes and blue-violet laser diodes have been realized using InGaN as light-emitting 

active layers. However, especially in In-rich regions, the degradation of the crystalline quality of 

InGaN epilayers grown on GaN substrates is a severe issue for achieving high-efficiency light-

emitting devices with a longer wavelength. To overcome this problem, several approaches have 

been proposed, the use of InGaN platelets fabricated by the in-situ annealing of the InGaN 

pyramids grown on a masked substrate,[1] the porous GaN substrate to grow the InGaN layer 

with a lattice-relaxed state,[2] and InGaNOS, which is a quasi-substrate fabricated by Smart Cut 

process using mesa patterned structures.[3] High crystalline quality InGaN layers lattice-matched 

with light-emitting layers are required for further developments with respect to InGaN-based 

light-emitting devices.  

Previously, several studies for fabricating the InGaN quasi-substrate have been reported. We 

have proposed thick InGaN growth for fabricating the InGaN quasi-substrate by tri-halide vapor 



phase epitaxy (THVPE), a method using metal trichlorides as precursors. The thermodynamic 

analysis revealed the possibility of higher temperature growth of InGaN by THVPE compared 

with by metalorganic vapor phase epitaxy (MOVPE).[4-6] We have succeeded in the high-speed 

InGaN growth at 15.6 μm/h,[7] and 10.9-μm-thick, high-quality In0.05Ga0.95N grown on an N-

polar freestanding GaN substrate were obtained at 930°C by THVPE.[8] Recently, several 

studies on the growth of InGaN on the N-polar GaN substrate were carried out owing to its unique 

physical or chemical properties, which are different from Ga-polar, e.g., polarization,[9] thermal 

stability,[10] and impurity incorporation.[11,12] Our focus on using the N-polar GaN substrate 

is the unique adsorption behavior of adatoms. Our previous study showed that the bulkiness of 

the THVPE precursors causes unique adsorption behavior on the N-polar GaN substrate[8] and 

THVPE-InGaN growth (especially GaN growth) has plane selectivity [7,13]. However, the thick 

InGaN layer was coherently grown, having almost the same a-axis length as the GaN substrate. 

As for the InxGa1-xN growth on the GaN substrate by THVPE, the lattice mismatch between the 

substrate crystal and epilayer is relatively small in the region wherein In composition is small (x 

< 0.10), and it has been found that the a-axis lattice constant of the InGaN epilayer is easily 

constrained by the substrate crystal. Fabricating the desired InGaN quasi-substrate for 

optoelectronic devices, the InGaN epilayer must have a relaxed a-axis lattice constant that is not 

strained by the substrate crystal. Previously, we reported the relationship between the InGaN 

growth rate and lattice relaxation, and a smooth surface, fully relaxed, and thick In0.05Ga0.95N 

layer was obtained by inserting the partially relaxed double intermediate InGaN layers with the 

In composition of approximately 10% that are grown with a low and a high growth rate.[14] 

However, the intermediate InGaN layers had low thermal stability, and in a long-time growth, 

thermal decomposition occurred in the intermediate InGaN layers. To grow lattice-relaxed 



InGaN epilayers having their relaxed a-axis lattice constant free from the restraint of substrates, 

it is necessary to grow them on substrates having larger lattice mismatch with the InGaN epilayer.  

In this study, lattice-relaxed InGaN layers were grown by THVPE on sapphire substrates having 

a larger lattice mismatch than GaN substrates with InGaN epilayers. Furthermore, there are many 

reports on GaN growth on patterned sapphire substrates (PSSs), and it is well known that the 

GaN growth on PSSs reduces dislocation densities in GaN epilayers.[15-18] However, there are 

no reports on thick InGaN growth on PSSs by THVPE. The bulkiness of THVPE precursors may 

cause unique adsorption behavior on PSSs. Therefore, to obtain lattice-relaxed InGaN epilayers 

with high crystalline quality, growth on a PSS was also performed.  

 

 

5.2. Experimental  

InGaN layers were grown on an N-polar GaN substrate, a c-plane sapphire substrate, and a c-

plane PSS using InCl3 and GaCl3 as group-III precursors, and NH3 as the group-V precursor. N2 

gas was used as the carrier gas throughout the entire growth sequence.[19,20] All InGaN layers 

were grown at the same condition except the substrates. The growth temperature was fixed at 

930°C during InGaN growth. The partial pressures of group III precursors and NH3 were fixed 

at 7.75 × 10−4 and 2.4 × 10−2 atm, respectively. The input ratio of InCl3 in group-III precursors 

(RIn = PInCl3/(PInCl3 + PGaCl3)) was 0.968, and the InGaN growth time was 60 min. Before the 

growth on a sapphire substrate, the nitridation of the sapphire surface was performed for 20 min 

at 1020°C using H2 gas and the partial pressure of NH3 was 4.0 × 10−2 atm to obtain reproductivity 

independent the surface state of the sapphire substrate.[21,22] Moreover, further investigation 

was carried out by inserting the GaN intermediate layer between an InGaN epilayer and a PSS 

(GaN/PSS) that was grown at the GaCl3 partial pressure of 5.0 × 10−5 atm and NH3 partial 



pressure of 1.6 × 10−2 atm at a growth temperature of 1030°C. The thickness dependence of the 

GaN intermediate layer on the InGaN epilayer was also investigated by changing the growth time 

for 45, 90, 135 min.  

InGaN layers were analyzed by X-ray diffraction (XRD) using PANalytical X’Pert PRO MRD. 

The indium solid composition and relaxation ratio of InGaN epilayers were estimated from 

reciprocal space mapping (RSM) measurements around the 1�015� diffraction by XRD, and the 

crystalline quality of the InGaN epilayers was evaluated using the full width at half maximum 

(FWHM) of the XRD ω-rocking curve (XRC) measurements around the 0004�  symmetrical 

reflection and around the 101�2�  skew-symmetrical reflection. The stress acting on the GaN 

epilayer was evaluated by Raman spectroscopy using JASCO NRS-3100. To confirm the In 

composition and In inhomogeneity, the optical characteristics were also measured by 

photoluminescence (PL) measurements using KIMMON He-Cd laser IK3452R-F (325 nm, 45 

mW) at room temperature. The surface morphology and thickness of the epilayers were observed 

by JEOL JSM-6700F field emission-scanning electron microscope (FE-SEM).  

 

 

5.3. Results and discussion  

5.3.1. Lattice-relaxed InGaN growth on a GaN substrate, a sapphire substrate, and a PSS 

by THVPE  

The InGaN layers were grown directly on an N-polar GaN substrate, a c-plane sapphire substrate, 

and a c-plane PSS. Figure 1 shows the RSM around the 1�015�  diffraction of these InGaN 

epilayers. The peak of the InGaN epilayer grown on a GaN substrate (shown in Figure 1 (a)) lay 

on the vertical line, and it was found that the InGaN epilayer had the same Qx value as the GaN 



substrate, namely the same a-axis lattice constant. The estimated a-axis lattice constants of GaN 

and InGaN were 3.1907 and 3.1907 Å, respectively, and the estimated c-axis lattice constants 

were 5.1840 and 5.2426 Å, respectively. In other words, the InGaN epilayer grown on a GaN 

substrate was strained by the substrate. On the other hand, the peaks of the InGaN epilayer grown 

on a sapphire substrate and a PSS (shown in Figure 1 (b) and (c)) lay on the diagonal lines 

connecting the bulk GaN 1�015� and InN 1�015� in reciprocal space, and the InGaN epilayer had 

relaxed a-axis lattice constant. The estimated a-axis lattice constant of each InGaN epilayer was 

3.22(43) Å and 3.22(25) Å, respectively, and the estimated c-axis lattice constant was 5.23(17) 

Å and 5.22(73) Å, respectively, indicating that the lattice-relaxed InGaN layer was obtained on 

a sapphire substrate and a PSS. The estimated In compositions were 7.5% for the InGaN epilayer 

grown on the GaN substrate, 9.8% for that grown on the sapphire substrate, and 9.0% for that 

grown on the PSS. It was considered that this difference in the In composition between the growth 

on a GaN substrate and sapphire substrates was due to the composition pulling effect by the 

coherent growth on the GaN substrate.[23,24] In the case of the growth on the GaN substate, the 

InGaN epilayer grows coherently. Thus, the In composition decreased compared with the other 

two samples. According to the bird’s-eye-view SEM images in Figure 2, many pits and cracks 

were observed in the sample grown on a sapphire substrate and PSS. These cracks were generated 

owing to the large lattice mismatch between epilayers and substrates, and pits were also generated 

on these micro-cracks in the process of filling the cracks during the growth. The FWHM of XRC 

measurements around the 0004�  symmetrical reflection of the InGaN epilayer grown on the 

GaN substrate, the sapphire substrate, and the PSS was 93, 4476, and 2961 arcsec, respectively. 

To grow a lattice-relaxed InGaN epilayer with a high crystalline quality, further investigation 

was carried out.  

 



 

 
 

Figure 5.1. RSM around the 1�015� diffraction of the three InGaN epilayers grown on (a) an N-

polar freestanding GaN substrate, (b) a sapphire substrate, and (c) a PSS. Two lines are drawn in 

each figure. One is a vertical line which is the Qx value of the bulk GaN 1�015� in reciprocal 

space, and the other is a diagonal line connecting the bulk GaN 1�015�  and InN 1�015�  in 

reciprocal space. The same lines are also drawn in figure 5.   

 

 

 

 

Figure 5.2. Bird’s-eye-view SEM images of the InGaN epilayer grown directly on (a) an N-polar 

freestanding GaN substrate, (b) a sapphire substrate, and (c) a PSS. The InGaN epilayers grown 

on a sapphire substrate and a PSS had many cracks owing to the large lattice mismatch.  
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5.3.2. Influence of inserting GaN intermediate layer on the growth of InGaN  

Further investigation on inserting a GaN intermediate layer between a InGaN epilayer and a PSS 

was carried out. Figure 3 shows the bird’s-eye-view and cross-sectional SEM images of the 

samples of a GaN epilayer grown on a PSS and an InGaN epilayer grown on a GaN/PSS. The 

GaN epilayer had no cracks and smooth surface morphology (shown in Figure 3 (a)). Moreover, 

in the GaN epilayer, many voids were observed above the cone-shaped pattern on the PSS. On 

the growth of GaN using sapphire substrates, the GaN epilayer was grown with compressive 

strain due to the large lattice mismatch between the GaN epilayer and sapphire substrate and the 

difference in thermal expansion coefficient.[25] However, on the PSS, the GaN epilayer was 

grown over the cones with forming voids, resulting in these voids relieving the stress in the GaN 

epilayer. To confirm the influence of the voids, Raman spectroscopy was carried out on the GaN 

epilayer grown on a sapphire substrate and a PSS. Figure 4 shows the Raman Shift around the E2 

(High) of the GaN epilayer grown on a sapphire substrate and a PSS. The GaN epilayer grown 

on a sapphire substrate has no voids in the GaN epilayer. On the other hand, that grown on a PSS 

has a lot of voids. The E2 (High) peaks of the bulk GaN and GaN epilayers grown on a sapphire 

substrate and a PSS are 567.8,[26,27] 570.3, 568.7 cm-1, respectively. The E2 (High) peaks of the 

two GaN epilayers shifted to a higher wavenumber than the bulk GaN, meaning the compressive 

stress acted on each GaN epilayer.[28] Furthermore, the peak shift of the GaN epilayer grown on 

a sapphire substrate was larger than that grown on a PSS, indicating the more significant stress 

acted on the GaN epilayer grown on a sapphire substrate than that grown on a PSS. Therefore, 

the voids formed over the corn of PSS relieved the stress acting on the GaN epilayer. Though the 

stress working on the GaN epilayer is considered to propagate to the following InGaN epilayer, 

relieving the stress acting on the GaN epilayer with the voids formed on the PSS is also 

considered to relieve the stress acting on the InGaN epilayer. Therefore, the GaN epilayer was 



grown without any cracks on the PSS, and likewise, the InGaN epilayer grown on a GaN/PSS 

also had no cracks and a smooth surface.  

According to the RSM measurements around the 1�015�  diffraction shown in Figure 5, the 

estimated In composition of the InGaN epilayer grown on a GaN/PSS were 8.2%, and the 

estimated relaxation ratio was 81.6%. The InGaN epilayer was almost fully relaxed against the 

GaN intermediate layer. According to the XRC measurements shown in Figure 6, the FWHM of 

the InGaN epilayers around the 0004� symmetrical reflection grown on a sapphire substrate, a 

PSS, and a GaN/PSS was 4476, 2961, and 850 arcsec, respectively, and that around 101�2� skew-

symmetrical reflection was 6382, 3233, and 967 arcsec, respectively. Compared with the InGaN 

epilayers grown directly on a sapphire substrate and that on a PSS, the crystalline quality was 

improved by utilizing a PSS. This is explained by lateral growth. The InGaN epilayer over the 

cone on a PSS grew in the direction of the surface perpendicular and surface lateral, and in the 

lateral growth region, InGaN was grown free from the stress of the sapphire substrate, resulting 

in a lower dislocation density. This phenomenon is well known in the growth of GaN on a 

PSS.[16] Moreover, compared with the InGaN epilayer grown directly on a PSS, the crystalline 

quality of the InGaN epilayer grown on a GaN/PSS was drastically improved. This meant that 

the GaN intermediate layer played as a buffer layer and relieved the stress from sapphire. 

Therefore, the voids formed in the GaN intermediate layer also relieved the stress acting on the 

interface between the GaN intermediate layer and the InGaN epilayer. The InGaN epilayer grown 

directly on a GaN substrate was coherently grown having the same a-axis lattice constant as 

GaN.[14] However, the InGaN epilayer grown on the GaN/PSS had a lattice-relaxed state (shown 

in Figure 5).  

The optical characteristics were investigated by the PL measurements to confirm the In 

composition and In inhomogeneity. Figure 7 shows the PL spectra of the three InGaN epilayers 



grown directly on a sapphire substrate, a PSS, and grown on a GaN/PSS, and Gaussian fitting 

profiles of InGaN grown directly on a PSS. The PL peak energies of the three InGaN epilayers 

grown directly on a sapphire substrate, a PSS, and grown on a GaN/PSS were 3.01, 3.11, and 

3.02 eV, respectively, and the estimated In compositions were 9.6%, 7.2%, and 9.5%, 

respectively. The InGaN epilayer grown directly on a PSS had a slightly lower In composition 

than that grown directly on a sapphire substrate and grown on a GaN/PSS. This was considered 

to be due to the lateral growth over the cone on the PSS. It is known that the In incorporation is 

strongly affected by the growth direction.[29,30] In our case, the InGaN epilayer on the PSS 

grew in different directions depending on the regions, flat-surface region or cone-shaped region. 

In the flat-surface region, the InGaN epilayer was grown toward the surface perpendicular 

direction (−c direction), but in the cone-shape region, it was grown toward the surface lateral 

direction (a or m direction). Gaussian fitting profiles of the sample grown directly on the PSS 

show two peaks which have a low In composition (Fitting 1) and a high In composition (Fitting 

2). The peak of Fitting 1 (2.98 eV) was almost the same value as that grown directly on a sapphire 

substrate (3.01 eV) and grown on a GaN/PSS (3.02 eV), and the peak of Fitting 2 (3.13 eV) had 

a lower In composition, considered to be grown toward different directions by region on a PSS. 

Furthermore, the FWHM of the PL spectra of the InGaN epilayer grown on a PSS was 485 meV, 

indicating larger In inhomogeneity. On the other hand, the FWHM of the InGaN epilayer grown 

on a GaN/PSS was 199 meV, meaning that a more uniform and homogeneous InGaN was 

successfully obtained. Therefore, the In composition was different by region.  

 

 

 



 

 

Figure 5.3. SEM images of the two samples of (a) and (c) the GaN/PSS, (b) and (d) the InGaN 

layer grown on the GaN/PSS. (a) and (b) are bird’s-eye-view, and (c) and (d) are cross-sectional. 

The GaN epilayer grown on the PSS formed voids over the cone.  
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Figure 5.4. Raman shift around the E2 (High) peak of the two GaN epilayers grown on a sapphire 

substrate and a PSS. The dashed line shows the E2 (High) peak of the bulk GaN. The peak of the 

two GaN epilayers grown on a sapphire substrate and a PSS is 570.6 and 568.7 cm-1, and the 

peak of the bulk GaN is 567.8 cm-1.[26,27]  

 

 

 

Figure 5.5. RSM around the 1�015� diffraction of the InGaN epilayer grown on the GaN/PSS. 

The InGaN epilayer was grown with lattice-relaxed against the GaN intermediate layer.  

 



 

 

Figure 5.6. FWHMs of XRC measurements of the three InGaN epilayers around the 0004� 

symmetrical reflection and 101�2� skew-symmetrical reflection. The FWHM of each reflection 

of the InGaN layers grown on a sapphire substrate, a PSS, and a GaN/PSS was 4476, 2961, and 

850 arcsec, respectively, and 6382, 3233, and 967 arcsec, respectively.  
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Figure 5.7. PL spectra of the two samples of the InGaN epilayers grown on a sapphire substrate, 

a PSS, and a GaN/PSS. Dashed lines show the Gaussian fitting profiles of the sample grown 

directly on a PSS. The PL peak energies of each sample were 3.11 and 3.02 eV, and the FWHMs 

of the PL spectra of each sample were 485 and 199 meV. Peak shifting to the higher energy was 

observed in the sample of the InGaN epilayer grown directly on a PSS. The fitting profiles had 

two peaks, 3.13 (Fitting 1) and 2.98 eV (Fitting 2).  
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5.3.3. Thickness dependence of the GaN intermediate layer on the crystalline quality of 

InGaN grown on PSSs 

In order to confirm the relationship between the thickness of the GaN intermediate layer and the 

crystalline quality of the InGaN epilayer, further investigation was performed. Figure 8 shows 

the bird’s-eye-view SEM images of three samples of the InGaN layers grown on GaN/PSSs, 

adjusting the thickness of the GaN intermediate layer to approximately 1.3, 2.7, and 4.0 µm. 

Several microcracks were observed in the InGaN epilayer on the GaN intermediate layer with a 

thickness of 1.3 µm. Because of lateral growth of InGaN caused by not filling the voids in the 

GaN intermediate layer, the In inhomogeneity increased in the InGaN layer, resulting in the 

microscopic stress acting on the InGaN epilayer. Therefore, the growth of InGaN was similar to 

the case of the direct growth on a PSS (shown in Figure 2 (c)). On the other hand, the InGaN 

epilayers grown on the 2.7-µm-thick and 4.0-µm-thick GaN intermediate layers have no cracks. 

As the thickness of the GaN intermediate layer increases, the surface morphology was improved.  

The estimated In compositions from RSM measurements around the 1�015� diffraction of the 

InGaN epilayers grown on the 1.3-, 2.7-, and 4.0-µm-thick GaN intermediate layers were 8.1%, 

8.2%, and 8.3%, respectively, and the estimated relaxation ratio of each InGaN epilayer were 

86.3%, 81.0%, and 76.6%, respectively. The relaxation ratio was slightly decreased with 

increasing the thickness of the GaN intermediate layer. This decrease in relaxation ratio was 

considered to be caused by the state of the GaN intermediate layer approaching the bulk state 

gradually. According to the XRC measurements around the 0004� symmetrical reflection and 

101�2� skew-symmetrical reflection, the FWHM of the GaN intermediate layers grown on PSSs 

were 1132 and 1309 arcsec for 1.3 µm, 827 and 873 arcsec for 2.7 µm, and 681 and 735 arcsec 

for 4.0 µm, and that of the InGaN epilayers grown on each GaN/PSS were 1306 and 1519 arcsec 

for 1.3 µm, 850 and 967 arcsec for 2.7 µm, and 727 and 802 arcsec for 4.0 µm (shown in Figure 



9). The crystalline quality of the GaN intermediate layer was improved with the increase in the 

thickness of the GaN intermediate layer, and likewise, the crystalline quality of the InGaN 

epilayer was also improved with the increase in the thickness of the GaN intermediate layer. 

Therefore, it is seen that the crystalline quality of the InGaN epilayer was improved by improving 

the crystalline quality of the GaN intermediate layer, and moreover, the voids formed in the GaN 

intermediate layer relieved the stress acting on the interface between the GaN intermediate layer 

and the InGaN epilayer. On the other hand, as the thickness of the GaN intermediate layer 

increases, the relaxation ratio decreases gradually, and it was considered the influence of the 

voids on the InGaN epilayer decreases. Therefore, to grow a relaxed InGaN epilayer with a high 

crystalline quality, adjusting the GaN intermediate layer thickness and the crystalline quality is 

necessary. Moreover, other approaches such as varying the shape or size of the voids by changing 

the growth condition or the pattern of PSS may be needed. Furthermore, in this study, all the 

InGaN epilayers were grown with the same condition. To obtain the InGaN epilayer with a higher 

crystalline quality, the growth condition of InGaN needs to optimize.  

 

 

 

 

Figure 5.8. Bird’s-eye-view SEM images of the three samples of the InGaN layers grown on 

GaN/PSSs adjusting the thickness of the GaN intermediate layer to approximately (a) 1.3, (b) 2.7, 

and (c) 4.0 µm. The InGaN epilayer grown on the 1.3-µm-thick GaN intermediate layer has 



several microcracks. However, the InGaN epilayers grown on the 2.7- and 4.0-µm-thick GaN 

intermediate layer has no cracks and smooth surface morphology.  

 

 

 

Figure 5.9. Dependence of XRC FWHMs of the GaN and InGaN epilayers around the 0004� 

symmetrical reflection and 101�2�  skew-symmetrical reflection on the thickness of the GaN 

intermediate layer. XRC FWHMs decreased with an increase in the thickness of the GaN 

intermediate layer.  

 

 

5.4. Conclusion  

In this study, the growth of lattice-relaxed InGaN by THVPE was performed using sapphire 

substrates having a larger lattice mismatch than GaN substrates. By inserting the GaN 
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intermediate layer, the lattice-relaxed InGaN was successfully obtained on the PSS with the high 

crystalline quality compared with the direct growth on the sapphire substrate or the PSS; note 

that the InGaN epilayer was grown on the PSS still needs improvements for utilizing the InGaN 

quasi-substrate. Moreover, the dependence of the crystalline quality of the GaN intermediate 

layer on the InGaN epilayer was also investigated by changing the thickness of the GaN 

intermediate layer. It was found that the crystalline quality of the InGaN epilayer was affected 

by that of the GaN intermediate layer.  
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Chapter 6. Conclusion of Part I 

 

 

 

Previous studies on THVPE-InGaN growth revealed that the InGaN epilayer grown on a free-

standing N-polar GaN substrate is strongly strained and grown coherently. Therefore, in this 

study, to fabricate the InGaN quasi-substrate, the growth of InGaN with the lattice-relaxed state 

was performed by THVPE.  

One approach to solve the issue is inserting the intermediate InGaN layers between the GaN 

substrate and lattice-relaxed InGaN layer with changing the growth rate to proceed with the 

lattice-relaxation gradually. The influence of intermediate InGaN layers for relaxed InGaN 

growth using THVPE was investigated. It was found that the difference in growth rate influenced 

the relaxation ratio of the InGaN layer. We had succeeded to control the relaxation by changing 

the thickness of the intermediate layer grown with a low growth rate. Moreover, a smooth surface, 

fully relaxed and thick In0.05Ga0.95N layer was obtained by inserting partially relaxed double 

intermediate InGaN layers which are grown with low growth rate and high growth rate.  

The other approach is utilizing sapphire substrates having larger lattice mismatch than GaN 

substrates to occur the lattice-relaxation intentionally. However, it was found intentional lattice-

relaxation is accompanied by crack generation. Therefore, inserting the GaN intermediate layer 

was tried to suppress the crack generation. By inserting the GaN intermediate layer, the lattice-

relaxed InGaN was successfully obtained on the PSS with the high crystalline quality compared 



with the direct growth on the sapphire substrate or the PSS. Moreover, the dependence of the 

crystalline quality of the GaN intermediate layer on the InGaN epilayer was also investigated by 

changing the thickness of the GaN intermediate layer. It was found that the crystalline quality of 

the InGaN epilayer was strongly affected by that of the GaN intermediate layer.  

 

  



 

Part II 

 

  



 

Chapter 7. Introduction  

 

 

 

7.1. III-sesqui oxide semiconductors  

III sesqui oxides such as Al2O3, Ga2O3, and In2O3 have several crystal structures and wide 

bandgap energy. Al2O3 shows polymorphism having a lot of phases,[1-9] and α-phase, corundum 

structure, is the most stable known as sapphire. α-Al2O3 is almost the insulating material having 

approximately 9 eV of bandgap energy. Therefore, α-Al2O3 is used as the insulating layer of 

electronic devices such as field-effect transistor (FET).[10,11] Furthermore, α-Al2O3 is used as 

the initial substrate for the growth of various semiconductor materials, AlN, GaN, and those 

related materials, due to the chemical and thermal stability. Ga2O3 also shows polymorphism 

having α-, β-, γ-, δ-, ε-, and κ-phases,[12-17] where the β-phase, monoclinic structure called β-

Gallia, is the most stable among them. β-Ga2O3 is expected to be applied to next-generation 

electronic devices, low-loss, and high withstand voltage power devices,[18-22] due to its 

excellent physical properties such as a large bandgap of 4.5 eV and a high breakdown electric 

field [23-26]. There are also several reports that β-Ga2O3 shows promise as light-emitting devices 

or light-receiving devices, such as the substrate for blue LEDs or deep ultra-violet 

photodetectors.[27,28] In2O3 has two crystal structures, α- and β-phase, which is corundum and 

cubic (bixbyite) structure, respectively,[29,30] and cubic In2O3 is the most stable structure of the 

two. Tin doped In2O3 is utilized for transparent conductive films known as indium tin oxide 



(ITO)[31] due to its high transparency and low resistance.  

 

Table 7.1. Crystal structure of α-Al2O3, β-Ga2O3, and c-In2O3 for their most stable phase.[32,33]  

  α-Al2O3 β-Ga2O3 c-In2O3 
crystal structure corundum monoclinic bixbyite 

a 
4.758 Å 

12.21 Å 
10.12 Å b 3.03 Å 

c 12.99 Å 5.79 Å 
α 

120° 
90° 

90° β 103.8° 
γ 90° 90° 

 

 

7.2. Recent progress in β-Ga2O3  

Table1 6.2. shows the physical properties of several semiconductive materials related to the 

electric devices. β-Ga2O3 is also expected for application to next-generation electronic devices, 

especially power electronic devices due to its large bandgap energy and high breakdown voltage. 

Figure 6.1. shows the on-resistance at a given reverse breakdown voltage.[34] It is indicated that 

β-Ga2O3 has much superior characteristics for electric devices to conventional Si and even 

candidate materials such as SiC or GaN. However, β-Ga2O3, at first, was developed for applying 

LEDs or their substrates.[35] Since the possibility for power devices of β-Ga2O3 was revealed, 

many studies were performed rapidly in 2010s. β-Ga2O3 is the most stable phase and can be 

grown by the melt growth technique to obtain the bulk crystal. Therefore, the β-Ga2O3 substrate 

is relatively available and possible to be cost down. The study on β-Ga2O3 for power devices 

began in 2010s by M. Higashiwaki, National Institute of Information and Communications 



Technology (NICT), and A. Kuramata, Tamura Corporation at that time. They established Novel 

Crystal Technology, Inc. and A. Kuramata et al. succeeded in obtaining the bulk β-Ga2O3 crystal 

by edge-difined film-fed growth (EFG) method.[36] Furthermore, in 2014, Y. Kumagai, and H. 

Murakami et al., Tokyo University of Agriculture and Technology, achieved the homoepitaxial 

growth of β-Ga2O3 layer with high purity and high crystalline quality by HVPE first in the 

world[37] and demonstrated to fabricate vertical β-Ga2O3 Schottky barrier diodes (SBDs).[38] 

These achievements will be called the breakthrough of the power devices of β-Ga2O3 in the future. 

β-Ga2O3 based electronic devices are now developing, for example, n-Ga2O3 metal-

semiconductor field-effect transistors (MESFETs)[39] or metal-oxide-semiconductor FETs 

(MOSFETs)[40] on a single-crystal β-Ga2O3 (010) substrate, vertical β-Ga2O3 Schottky barrier 

diodes (SBDs) using a drift layer with a record breakdown voltage of 1076 V[21], β-Ga2O3 SBDs 

with a trench MOS structure (MOSSBD) which showed reasonable forward characteristics with 

small reverse leakage current[22], and so on.  

 

Table 7.2. Physical properties of several semiconductive materials related to the electric 
devices[41].  

Material parameter Si GaAs 4H-SiC GaN β-Ga2O3 
Bandgap (eV) 1.1 1.43 3.25 3.4 4.85 

Dielectric constant 11.8 12.9 9.7 9 10 
Breakdown field (MV/cm) 0.3 0.4 2.5 3.3 8 

Electron mobility  (cm2/V・s) 1480 8400 1000 1250 300 
Saturation velocity (107 cm/s) 1 1.2 2 2.5 1.8-2 

Thermal conductivity (W/cm・K) 1.5 0.5 4.9 2.3 0.1-0.3 
Baliga's figure of merit 1 14.7 317 846 3214 

 

 



 

 
Figure 7.1. Comparison of breakdown voltage and on-resistance in candidate materials for high 
power electronics.[34]  

 

 

7.3. The problem of β-Ga2O3 devices  

Thermodynamic analysis predicted high temperature and high-speed growth of Ga2O3 by HVPE 

[42], and H. Murakami et al. have succeeded in the homoepitaxial growth of high purity β-Ga2O3 

by HVPE using the GaCl-O2-N2 system at 1000℃ [37]. K. Goto et al. have also succeeded in the 

fabrication of vertical β-Ga2O3 SBDs with excellent Schottky characteristics using an HVPE-

grown drift layer [38] and linear control of the n-type carrier density in the range of 1015 to 1018 

cm−3 by changing the Si concentration [38]. However, generally, a critical nuclear radius depends 

on the driving force of crystal growth, and due to the large driving force of β-Ga2O3 growth by 

HVPE, it was found that GaCl and O2, precursors of Ga2O3 growth, reacted in the gas phase, 
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resulting in Ga2O3 particle formation. Furthermore, many particles were deposited on the 

substrate, which affects the growth mode change from two-dimensional to three-dimensional. On 

the other hand, β-Ga2O3-MBE growth is also studied widely.[43] However, the growth rate of 

MBE is much lower than that of HVPE, and to obtain the β-Ga2O3 layer having several 

micrometer thicknesses which are needed to fabricate power device structure is difficult. 

Therefore, a novel method to grow the β-Ga2O3 layer with several micrometer thicknesses and 

without any particle generation is required.  

 

 

7.4. Outline of Part II  

In this thesis, the first Ga2O3 growth by THVPE is demonstrated. This thesis consists of 4 

chapters and the contents are as follows:  

Chapter 7 describes the details of the experimental procedure and equipment. Selective 

generation of metal tri-chlorides inside the reactor is discussed by thermodynamic analysis. the 

author optimized the generation condition of metal tri-chlorides.  

Chapter 8 discussed the possibility of Ga2O3 growth by THVPE. The first β-Ga2O3 growth using 

gallium tri-chloride as a precursor of gallium source on the c-plane sapphire substrate was 

investigated and compared with β-Ga2O3 growth by HVPE.  

Finally, chapter 4 serves as the summarization and conclusion.  
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Chapter 8. Experimental procedure  

 

 

 

8.1. Growth technique of β-Ga2O3  

Bulk β-Ga2O3 crystals are generally grown using melt growth techniques, for example, the 

floating zone (FZ) method,[1,2] vertical Bridgeman (VB) method,[3] Czochralski (CZ) 

method,[4,5] and EFG method.[6] Today, almost all commercially provided β-Ga2O3 substrate 

crystals were fabricated by Novel Crystal Technology, Inc. using EFG method. Ga2O3 powder 

was used as the source material in EFG process. The source powder was placed in a crucible 

made of iridium (Ir) together with an Ir die. When the temperature reached the melting point of 

β-Ga2O3, the melt moved up through a slit in the Ir die by capillary action and reached the top 

surface of the die. The crystal growth was initiated by placing a β-Ga2O3 seed crystal in contact 

with the melt on the top surface of the die. In the EFG method, the shape of the grown crystal is 

usually determined by the shape of the top surface of the die. After contacting the seed, the crystal 

grew on the top surface of the die. The growth direction and the principal surface were determined 

by setting the seed direction The growth rate reached 15 mm/h.  

On the other hand, thin films of β-Ga2O3 were grown by VPE such as MBE,[7,8] MOVPE,[9] 

pulsed laser deposition (PLD),[10] and HVPE. [11-15] Thermodynamic analysis predicted high 

temperature and high-speed growth of Ga2O3 by HVPE,[14] and the homoepitaxial growth of 

high purity β-Ga2O3 by HVPE using the GaCl-O2-N2 system at 1000℃ were reported.[10] 



However, generally, a critical nuclear radius depends on the driving force of crystal growth, and 

due to the large driving force of β-Ga2O3 HVPE growth, it was found that GaCl and O2 reacted 

in the gas phase as precursors of Ga2O3 growth, resulting in Ga2O3 particle formation. 

Furthermore, many particles were deposited on the substrate, which affects the growth mode 

change from two-dimensional to three-dimensional.  

On the other hand, THVPE has a relatively small driving force on Ga2O3 growth compared with 

HVPE,[14] and it is expected that β-Ga2O3 is grown with suppressing the gas-phase reaction. For 

β-Ga2O3 growth, it is expected that the thickness control or surface morphology are improved by 

THVPE due to the unique adsorption behavior of GaCl3, known as N-polar GaN growth.[16,17]  

 

 

8.2. Investigation of Ga2O3 growth by HVPE and THVPE  

GaCl-O2 and GaCl3-O2 systems are considered as HVPE- and THVPE-Ga2O3 growth systems, 

respectively. For the thermodynamic calculations, the following chemical species were selected; 

Ga, GaCl, GaCl2, GaCl3, (GaCl3)2, GaO, Ga2O, Ga2O3, Cl2, O2, and the inert gas (IG) of N2. The 

reactions of each specie in the growth zone were described as follows;  

 

Ga +  1
2

Cl2  ⇄  GaCl      (8-1) 

GaCl +  1
2

Cl2  ⇄  GaCl2      (8-2) 

GaCl2 +  1
2

Cl2  ⇄  GaCl3      (8-3) 

2GaCl3  ⇄  (GaCl3)2      (8-4) 

Ga +  1
2

O2  ⇄  GaO      (8-5) 



2Ga +  1
2

O2  ⇄  Ga2O      (8-6) 

2GaCl +  3
2

O2  ⇄  Ga2O3 + Cl2     (8-7-1) 

2GaCl3 +  3
2

O2  ⇄  Ga2O3 + 3Cl2     (8-7-2) 

 

and the equilibrium constant K of these reaction is shown as follows;  

 

𝐾𝐾7−1  =  𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

𝑃𝑃𝐺𝐺𝐺𝐺𝑃𝑃𝐺𝐺𝐺𝐺2
1
2
       (8-8) 

𝐾𝐾7−2  =  𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺2

𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑃𝑃𝐺𝐺𝐺𝐺2
1
2
      (8-9) 

𝐾𝐾7−3  =  𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺3

𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺2𝑃𝑃𝐺𝐺𝐺𝐺2
1
2
      (8-10) 

𝐾𝐾7−4  =  𝑃𝑃(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺3)2

𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺32
       (8-11) 

𝐾𝐾7−5  =  𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺

𝑃𝑃𝐺𝐺𝐺𝐺𝑃𝑃𝐺𝐺2
1
2
       (8-12) 

𝐾𝐾7−6  =  𝑃𝑃𝐺𝐺𝐺𝐺2𝐺𝐺

𝑃𝑃𝐺𝐺𝐺𝐺2𝑃𝑃𝐺𝐺2
1
2
      (8-13) 

𝐾𝐾7−7−1  =  𝑎𝑎𝐺𝐺𝐺𝐺2𝐺𝐺3𝑃𝑃𝐺𝐺𝐺𝐺2
𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑃𝑃𝐺𝐺2

3
2

      (8-14-1) 

𝐾𝐾7−7−2  =  𝑎𝑎𝐺𝐺𝐺𝐺2𝐺𝐺3𝑃𝑃𝐺𝐺𝐺𝐺2
3

𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺3𝑃𝑃𝐺𝐺2
3
2

      (8-14-2) 

 

where P is the partial pressure of each gaseous species and a is the activity of Ga2O3. In this 

calculation, the activity of solid phase species is defined as 1. The total pressure in this system is 

consisted of each partial pressure and described as follows;  

 

𝑃𝑃𝑇𝑇𝑐𝑐𝑇𝑇  =  𝑃𝑃𝐺𝐺𝑎𝑎 +  𝑃𝑃𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺 +  𝑃𝑃𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺2 +  𝑃𝑃𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺3 +  𝑃𝑃(𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺3)2 +  𝑃𝑃𝐺𝐺𝐺𝐺2 +  𝑃𝑃𝐺𝐺𝑎𝑎𝐺𝐺 + 𝑃𝑃𝐺𝐺𝑎𝑎2𝐺𝐺 +  𝑃𝑃𝐺𝐺2 +  𝑃𝑃𝐼𝐼𝐺𝐺



         (8-15) 

 

and, in this system, there is a constant amount of chlorine atom supplied for the generation of 

GaCl or GaCl3 which is the source material of HVPE and THVPE, respectively. The relationship 

is described as follows;  

 

 𝑥𝑥𝑃𝑃𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺𝐺𝐺0 =  𝑃𝑃𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺 +  2𝑃𝑃𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺2 +  3𝑃𝑃𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺3 +  6𝑃𝑃(𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺3)2 +  2𝑃𝑃𝐺𝐺𝐺𝐺2  (8-16) 

where P0 is the input partial pressure of source materials, and x is 1 or 3 by HVPE and THVPE, 

respectively. Moreover, the relationship of stoichiometry of HVPE and THVPE is shown as 

follows:  

 

1
2
�𝑃𝑃𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺𝐺𝐺0 −  �𝑃𝑃𝐺𝐺𝑎𝑎 +  𝑃𝑃𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺 +  𝑃𝑃𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺2 +  𝑃𝑃𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺3 +  2𝑃𝑃(𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺3)2 +  𝑃𝑃𝐺𝐺𝑎𝑎𝐺𝐺 +  2𝑃𝑃𝐺𝐺𝑎𝑎2𝐺𝐺�� 

 = 2
3
�𝑃𝑃𝐺𝐺20 −  (𝑃𝑃𝐺𝐺2 +  1

2
𝑃𝑃𝐺𝐺𝑎𝑎𝐺𝐺 +  1

2
𝑃𝑃𝐺𝐺𝑎𝑎2𝐺𝐺)�    (8-17) 

 

This equation (7-17) shows the ratio of gallium and oxygen incorporated from gas phase to solid 

phase according to equations (7-7-1) and (7-7-2). Solving equation from (7-8) to (7-17), the 

partial pressure of each specie was obtained at equilibrium state. Furthermore, the driving force 

of HVPE and THVPE was described as follows:  

 

∆𝑃𝑃 = 𝑃𝑃𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺𝐺𝐺0 −  �𝑃𝑃𝐺𝐺𝑎𝑎 +  𝑃𝑃𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺 +  𝑃𝑃𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺2 +  𝑃𝑃𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺3 +  2𝑃𝑃(𝐺𝐺𝑎𝑎𝐺𝐺𝐺𝐺3)2 + 𝑃𝑃𝐺𝐺𝑎𝑎𝐺𝐺 +  2𝑃𝑃𝐺𝐺𝑎𝑎2𝐺𝐺� 

         (8-18) 

 

Then, the partial pressure and the driving force were drawn as a function of temperature, the ratio 



of input partial pressure of group-VI and group-III (VI/III ratio), and the ratio of the supply partial 

pressure of the 2nd chlorine against that of the 1st at the generation of GaCl3 (R2nd) described as 

follows, respectively;  

 

𝑉𝑉𝑉𝑉/𝑉𝑉𝑉𝑉𝑉𝑉 = 2𝑃𝑃𝐺𝐺2
0

𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑙𝑙
0        (8-19) 

𝑅𝑅2𝑛𝑛𝑛𝑛 = 𝑃𝑃2𝑠𝑠𝑠𝑠 𝐺𝐺𝐺𝐺2
0

𝑃𝑃1𝑠𝑠𝑠𝑠 𝐺𝐺𝐺𝐺2
0 = 𝐺𝐺−𝐺𝐺1𝑠𝑠𝑠𝑠

𝐺𝐺1𝑠𝑠𝑠𝑠
      (8-20) 

 

where x is a continuous value between 1 and 3, and x1st is 1.  

Figure 7.1. shows the dependence of the equilibrium constant of HVPE- and THVPE-Ga2O3 

growth on the temperature. The equilibrium constant of Ga2O3 growth by HVPE is much larger 

than that by THVPE at any temperature. Furthermore, figure 7.2. shows the equilibrium partial 

pressure of gaseous species of HVPE and THVPE on the surface of the substrate. The change of 

partial pressure with increasing of the VI/III ratio is greatly different between HVPE and THVPE. 

In the case of HVPE, partial pressure changes drastically near the VI/III value of 1. On the other 

hand, in the case of THVPE, partial pressure changes gradually with increasing of the VI/III ratio. 

Then, the change of the driving force of HVPE and THVPE as a function of VI/III ratio also 

shows the different tendency (shown in figure 7.3.). According to these thermodynamic analysis, 

it seems that Ga2O3 growth by HVPE is superior to THVPE in terms of the driving force. 

However, a too large driving force of growth causes the gas-phase reaction before the raw 

molecules reach the substrate crystal. Generally, a critical nuclear radius depends on the driving 

force of crystal growth. This relationship is described as follows;  

 

∆𝐺𝐺 = −4
3
𝜋𝜋𝑟𝑟3∆𝑃𝑃 + 4𝜋𝜋𝑟𝑟2𝜎𝜎     (8-21) 



 

where ΔG is the free energy of nucleation, ΔP is the driving force of growth, and σ is the surface 

energy. According to this equation, ΔG is a function of r and has a maximum value. Then, r*, the 

critical radius of nucleation, which is the value of radius when ΔG has the maximum is defined 

as follows:  

 

𝑟𝑟∗ = 2𝜎𝜎
∆𝑃𝑃

        (8-22) 

 

According to this, r* gets smaller with increasing |∆𝑃𝑃|, namely, nucleation proceeds more likely 

in the gas phase. Therefore, due to the large driving force of β-Ga2O3 HVPE growth, it was found 

that GaCl and O2 reacted in the gas phase as precursors of Ga2O3 growth, resulting in Ga2O3 

particle formation. In order to suppress the Ga2O3 particle, it is thought THVPE having a 

relatively smaller and controllable driving force is suitable for Ga2O3 growth.  

 

 



 
Figure 8.1. The dependence of equilibrium constant of HVPE- and THVPE-Ga2O3 growth on 
the temperature.[14]  
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Figure 8.2. The dependence of equilibrium partial pressure of gaseous species on VI/III ratio 
compared with (a) HVPE[14] and (b) THVPE in the growth zone.  
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Figure 8.3. The driving force of growth by HVPE and THVPE vs. (a) growth temperature and 
(b) VI/III ratio.  
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Figure 8.4. The driving force of growth by HVPE and THVPE vs. R2nd. 

 

 
Figure 8.5. The critical nuclear radius estimated by the relationship between ΔG and r.  
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8.3. Consideration by thermodynamics for generation of the sources of THVPE  

Figure 7.5. shows the schematics of the generation of Ga precursors by a one-step reaction, and 

figure 7.6. shows the thermodynamics analysis of the temperature dependence of the partial 

pressure of possible gaseous species in the source zone. In the case of the one-step reaction, it is 

clearly found that the main product is the gallium mono-chlorides almost the entire temperature. 

A certain amount of gaseous gallium is produced from the surface of the liquid metals as followed 

by the vapor pressure of them. Therefore, input Cl2 reacted with gaseous Ga priority, and gallium 

mono-chloride is generated without generation of gallium tri-chlorides from the reaction between 

gallium mono-chloride and Cl2. Therefore, by the one-step reaction, it is impossible that gallium 

trichlorides are obtained. On the other hand, figure 7.7. shows the schematics of the generation 

of Ga precursors by a two-step reaction using two separated chambers, one contains metallic 

gallium and is supplied 1st chlorine and the other is only supplied 2nd chlorine. Figure 7.8. 

shows the thermodynamic analysis of the reaction for gallium tri-chlorides generation compared 

with a one-step reaction and a two-step reaction in the source zone. However, in the case of a 

two-step reaction, it is found that the main products are the gallium tri-chlorides at the 

temperature between 400℃ and 900℃. In the 1st chamber, gallium mono-chloride is generated 

via reaction of Ga and Cl2, and only gallium mono-chloride is introduced into the 2nd chamber. 

Next, in the 2nd chamber, gallium tri-chloride is generated by the reaction of gallium mono-

chlorides and 2nd Cl2. The reactions occurring in the source zone are as follows:  

 

Ga +  1
2

Cl2 → GaCl      (8-23) 



GaCl + Cl2 → GaCl3      (8-24) 

 

In addition, thermodynamic analysis shows GaCl3 is prior to GaCl the entire temperature till 

1200℃. Therefore, the author adopted the temperature of 860℃ at the source zone in InGaN 

growth .  

 

 

Figure 8.5. The schematics of one-step reaction of the generation of gallium precursor.  

 

 
Figure 8.6. The temperature dependence of partial pressure of each gaseous species by one-step 

reaction of the generation of gallium precursor.  
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Figure 8.7. The schematics of two-step reaction of the generation of gallium precursor.  

 

 
Figure 8.8. The temperature dependence of partial pressure of each gaseous species by two-step 
reaction of the generation of gallium precursor.  
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Chapter 9. Homo- and hetero-epitaxial growth of β-Gallium 

Oxide via GaCl3-O2-N2 system  

 

 

9.1. Introduction  

Gallium oxide (Ga2O3) shows polymorphism having α-, β-, γ-, δ-, ε-, and κ-phases [1-4], where 

the β-phase is the most stable among them. β-Ga2O3 is expected to be applied to next-generation 

electronic devices, low-loss and high withstand voltage power devices [5-9], due to its excellent 

physical properties such as a large bandgap of 4.5 eV and a high breakdown electric field [10-

13]. The growth technique of the β-Ga2O3 substrate crystal has already been established [14-19], 

and there are several reports that β-Ga2O3 shows promise as light-emitting devices or light-

receiving devices, such as the substrate for blue light-emitting diodes (LEDs) or deep ultra-violet 

photodetectors [20,21].  

Bulk β-Ga2O3 crystals are generally grown using melt growth techniques, for example, the 

floating zone method [14,15], vertical Bridgeman method [16], Czochralski method [17,18], and 

edge-defined film-fed growth (EFG) method [19]. On the other hand, a thin film of β-Ga2O3 was 

grown by molecular beam epitaxy [5,22], metal-organic vapor phase epitaxy [23], pulsed laser 

deposition [24], and halide vapor phase epitaxy (HVPE) [25-29]. Thermodynamic analysis 

predicted high temperature and high-speed growth of Ga2O3 by HVPE [30,31], and we have 

succeeded in the homoepitaxial growth of high purity β-Ga2O3 by HVPE using the GaCl-O2-N2 

system at 1000℃ [25]. We have also succeeded in the fabrication of vertical β-Ga2O3 Schottky 



barrier diodes with excellent Schottky characteristics using an HVPE-grown drift layer [5] and 

linear control of the n-type carrier density in the range of 1015 to 1018 cm−3 by changing the Si 

concentration [26]. However, generally, a critical nuclear radius depends on the driving force of 

crystal growth, and due to the large driving force of β-Ga2O3 HVPE growth, it was found that 

GaCl and O2 reacted in the gas phase as precursors of Ga2O3 growth, resulting in Ga2O3 particle 

formation. Furthermore, many particles were deposited on the substrate, which affects the growth 

mode change from two-dimensional to three-dimensional. On the other hand, tri-halide vapor 

phase epitaxy (THVPE), another halide vapor phase epitaxy using GaCl3 as a source of group III, 

has a relatively small driving force compared to HVPE [30], and it is expected that β-Ga2O3 is 

grown with suppressing the gas-phase reaction. For β-Ga2O3 growth, it is expected that the 

thickness control or surface morphology are improved by THVPE due to the unique adsorption 

behavior of GaCl3, known as N-polar GaN growth [32,33]. However, β-Ga2O3 growth has not 

been carried out by THVPE in the high-temperature region, which is optimal for β-phase growth.  

In this study, β-Ga2O3 growth on sapphire substrates was performed, and its dependence on the 

ratio of O2 input partial pressure against GaCl3 (VI/III) in β-Ga2O3 growth by THVPE was 

investigated. Furthermore, homoepitaxial growth of β-Ga2O3 by THVPE was also carried out.  

 

 

9.2. Experimental  

Ga2O3 was grown in a hot-wall type quartz reactor by THVPE using GaCl3 and O2 as group III 

and group VI sources, respectively. In the source zone, GaCl3 was selectively generated by a two-

step reaction between metallic Ga and Cl2 with two chambers [34] at a fixed temperature of 

860℃. In the first chamber, GaCl was generated via the reaction of metallic Ga and Cl2. Next, in 



the second chamber, GaCl3 was generated by the reaction of GaCl and second Cl2. The schematic 

was shown in Figure 8.1. The reactions occurring in the source zone are as follows:  

Ga +  1
2

Cl2 → GaCl      (9-1) 

GaCl + Cl2 →  GaCl3      (9-2) 

According to the stoichiometric coefficient of these equations, the supply partial pressure of the 

second chlorine is theoretically two times more than that of the first chlorine. In the growth zone, 

GaCl3 was reacted with O2 on the substrate crystals. The reactions occurring in the growth zone 

are as follows:  

2GaCl3 + 3
2

O2 →  Ga2O3 +  3Cl2     (9-3) 

β-Ga2O3 was grown on the c-plane sapphire substrate at a fixed growth temperature of 1000℃ 

or the same duration time, and the input group VI/III ratio was changed to 15, 30, and 60 under 

the fixed P0
GaCl3 of 1.3 × 10−3 atm. Furthermore, to investigate the driving force of THVPE β-

Ga2O3 growth compared with that of HVPE, the ratio of the supply partial pressure of the second 

chlorine against that of the first on the growth of β-Ga2O3 (R2nd) was changed between 1.75 and 

2.05 under the fixed condition of P0
GaCl3 of 1.3 × 10−3 atm and VI/III = 60. Homoepitaxial growth 

was performed on a tin-doped β-Ga2O3 (001) substrate (10 × 10 mm) prepared by an EFG method 

[19] under the condition of VI/III = 60 and R2nd = 2.00, which are optimized conditions for growth 

on sapphire substrates.  

The surface morphologies of β-Ga2O3 epilayers were observed by Nomarski differential 

interference contrast (NDIC) microscopy. Crystalline quality was characterized by X-ray 

diffraction (XRD), and secondary ion mass spectrometry (SIMS) was carried out to evaluate 

impurity concentration levels in the β-Ga2O3 epilayer grown by THVPE.  

 



 
Figure 9.1. Schematic of THVPE β-Ga2O3 reactor. In the 1st chamber, GaCl was generated via 

reaction of metallic Ga and 1st Cl2. Next, in the 2nd chamber, GaCl3 was selectively generated 

by the reaction of GaCl and 2nd Cl2. The temperature of both chambers was fixed at 860℃.  

 

 

 

9.3. Results and discussion  

9.3.1. Dependence of the VI/III ratio and R2nd on the growth of β-Ga2O3 by THVPE  

Ga2O3 was grown on c-plane sapphire substrates by THVPE by changing the VI/III ratio between 

15 and 60 at a fixed R2nd = 2.00. Figure 8.2. shows the XRD 2θ-ω profile of each sample. Peaks 

appearing around 18.9, 38.4, 59.1, and 82.3 degrees were assigned to β-Ga2O3 2�01, 4�02, 6�03, 

and 8�04 , respectively, and it was found that the single phase of β-Ga2O3 was successfully 

obtained in each sample by THVPE. The growth rate of each sample is shown in Figure 8.3. As 

the VI/III ratio increased, it was found that the growth rate also increased linearly, which is almost 

the same result as predicted by thermodynamic analysis [30]. Besides, it was also confirmed by 

X-ray rocking curve (XRC) measurement that the crystalline quality of the β-Ga2O3 epilayer was 

improved with increasing the VI/III ratio, which indicated that a higher VI/III ratio was preferred 

for β-Ga2O3 growth by THVPE, note that it was also considered that the crystalline quality was 



improved with increasing the thickness of the β-Ga2O3 epilayer.  

Furthermore, the dependence of the supply partial pressure of the second chlorine against that of 

the first (R2nd) on the growth of β-Ga2O3 by THVPE was investigated. β-Ga2O3 was grown on c-

plane sapphire substrates by THVPE with varying R2nd values between 1.75 and 2.05 at a fixed 

VI/III ratio of 60. Under conditions of R2nd < 2.00, GaCl and GaCl3 were contained in the reaction 

system due to the lack of second chlorine, while at R2nd = 2.00, it was considered that only GaCl3 

was contained in the reactor, and under conditions of R2nd > 2.00, excess Cl2 existed based on the 

stoichiometric coefficients of equations (1) and (2). Figure 8.4. shows the growth rate change of 

β-Ga2O3 linearly decreasing with increasing R2nd between 1.75 and 2.05. In the region containing 

GaCl as a precursor of gallium, the growth rate of β-Ga2O3 was large, and as the ratio of GaCl in 

the gallium source increased, the growth rate also increased. Experimentally, it was indicated that 

the driving force of the THVPE β-Ga2O3 growth was smaller than that of HVPE, which was 

almost the same as the result predicted by thermodynamic analysis [30]. Moreover, under 

conditions of R2nd = 2.05, which is an excess Cl2 state, the growth rate decreased more. The 

equilibrium constant of the Ga2O3 generation by THVPE at 1000℃ was relatively small 

compared with that by HVPE [30], and under conditions of a small equilibrium constant, excess 

Cl2 greatly affects Ga2O3 generation, as shown by equation (3). Therefore, it is an important 

factor for Ga2O3 growth by THVPE to prevent GaCl contamination without decreasing the 

growth rate by controlling R2nd values. For the results above, β-Ga2O3 homoepitaxial growth was 

performed under conditions of VI/III ratio of 60 and R2nd = 2.00.  

 



 

Figure 9.2. XRD 2θ-ω profiles of three samples of Ga2O3 grown on c-plane sapphire substrates 

for 1 hour by THVPE by changing the VI/III ratio from 15 to 60. Peaks appearing around 18.9, 

38.4, 59.1, and 82.3 degrees were assigned to β-Ga2O3 2�01, 4�02, 6�03, and 8�04, respectively.  

 

 
Figure 9.3. Growth rate as a function of VI/III ratio of β-Ga2O3 grown on sapphire substrates for 

1 hour by THVPE. The growth rate linearly increased with increasing VI/III ratio.  
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Figure 9.4. Dependence of the growth rate of β-Ga2O3 for 1 hour by THVPE on the R2nd at a 

fixed VI/III ratio of 60. The β-Ga2O3 growth rate linearly decreased with increasing R2nd.  

 

 

9.3.2. Homoepitaxial growth of β-Ga2O3 by THVPE  

β-Ga2O3 homoepitaxial growth by THVPE was performed under conditions of VI/III = 60 and 

R2nd = 2.00 at 1000℃ on a tin-doped β-Ga2O3 (001) substrate (10 × 10 mm) prepared by the EFG 

method. Figure 8.5. shows overviews of the β-Ga2O3 grown by HVPE and THVPE under the 

same growth conditions except for the R2nd value. There are many particles on the surface of the 

crystal grown by HVPE, but no particles were observed in the sample grown by THVPE. The 

NDIC microscopic images of β-Ga2O3 homoepitaxial layers by HVPE and THVPE are shown in 

Figure 8.6. The samples shown in Fig. 6 (a) and (b) were grown under the same condition except 

for the R2nd value, which was the same sample shown in Fig. 5. Due to the large driving force of 

β-Ga2O3 growth by HVPE compared to that by THVPE [30], the reaction of GaCl and O2 was 

immediately carried out in the gas phase in the case of HVPE. In contrast, for THVPE, the 

reaction of GaCl3 and O2 was dominantly carried out on the surface of the β-Ga2O3 substrate. 
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The samples shown in Fig. 6 (c) and (d) were grown with the same growth rate of approximately 

6 µm/h by changing input partial pressure (both of GaCl3 and O2) at a fixed VI/III ratio of 100, 

which was higher VI/III ratio than the other two (Fig. 6 (a) and (b)). Under a high VI/III condition, 

it was indicated the particle generation was effectively suppressed by THVPE. The surface of 

each β-Ga2O3 layer grown by HVPE and THVPE shows striations that are parallel to the [010] 

direction. However, the number of striations observed in THVPE was less than that in HVPE, 

indicating the surface morphology also improved via THVPE.  

Figure 8.7. shows the XRC profiles around the 002 symmetrical reflection and 400 skew-

symmetrical reflection of the β-Ga2O3 epilayers grown under the condition of VI/III = 60 and 

R2nd = 2.00 and the seed substrate. The FWHM values of XRC for the epilayer and substrate were 

28.7 and 26.9 arcsec around 002, respectively, and 27.4 and 25.6 arcsec around 400, respectively. 

It was found that the epilayer formed by THVPE had almost the same crystalline quality as the 

seed substrate, the pits observed in the surface of the epilayer originated from the substrate, and 

the epilayer was grown without any newly generated dislocations [35]. Therefore, the β-Ga2O3 

epilayer grown by THVPE had almost the same crystalline quality as that of the β-Ga2O3 seed 

substrate.  

The impurity concentrations measured by SIMS in the β-Ga2O3 layer homoepitaxially grown by 

THVPE are shown in Table I. The chlorine concentrations were approximately one order of 

magnitude more than the background levels (1 × 1015 cm−3). The origin of chlorine impurity is 

attributed to GaCl3 as a source of gallium. This result was slightly larger than that by HVPE (1 × 

1016 cm−3) with a growth rate of approximately 5 µm/h [25], and it was considered the increment 

of chlorine concentration was caused by the stoichiometric increase of chlorine atoms in the 

group III precursor. It was reported that Cl substituted on the O site acts as a donor [36]. However, 

it might be possible that chlorine concentration decreased by optimizing growth conditions, such 



as the growth temperature. On the other hand, the carbon, nitrogen, and silicon concentrations 

were under background levels, and the tin concentrations were under the detection limit. 

Therefore, the concentration of high purity homoepitaxial β-Ga2O3 layer grown by THVPE was 

equivalent to that as obtained by HVPE [25].  

 

 

Figure 9.5. Overview of β-Ga2O3 homoepitaxial growth by HVPE and THVPE under the same 

conditions. Many particles were observed on the epilayer surface by HVPE, but no particles were 

observed by THVPE.  

 

  

Figure 9.6. NDIC image of the β-Ga2O3 homoepitaxial layers grown under the same conditions 



by (a) HVPE and (b) THVPE, and with the same growth rate of approximately 6 µm/h grown by 

(c) HVPE and (d) THVPE. Many particles were observed in (a), and a few particles were also 

observed in (c). However, there were no particles in (b) and (d). Striations parallel to the [010] 

direction were observed on the surface of each epilayer.  

 

 

Figure 9.7. XRC profiles around (a) 002 symmetric reflection and (b) 400 asymmetric reflection 

of homoepitaxial β-Ga2O3 with the thickness of 3.1 µm by THVPE. The FWHM values of each 

measurement were 28.7 and 27.4 arcsec, respectively, which are similar to the 26.9 and 25.6 

arcsec values of the β-Ga2O3 substrate, respectively.  

 

 

 

 

 

 

 

 



Table 9.1. Impurity concentrations measured by SIMS in the homoepitaxial layer of β-Ga2O3 

grown by THVPE.  

Elements 
Impurity concentration  

(cm−3) 

Background levels  

(cm−3) 

C < 6×1016 6×1016 

N < 1×1016 1×1016 

Si < 2×1016 2×1016 

Cl 3×1016 1×1015 

Sn < 3×1015 3×1015 

 

 

 

9.4. Conclusion  

β-Ga2O3 growth on sapphire substrates was carried out, and the dependence of the VI/III ratios 

on β-Ga2O3 growth by THVPE was investigated. It was found that a single phase of β-Ga2O3 was 

successfully obtained in each sample by THVPE. By changing R2nd values during GaCl3 

generation, it was experimentally indicated that the driving force of THVPE β-Ga2O3 growth was 

smaller than that of HVPE. Furthermore, homoepitaxial growth of β-Ga2O3 by THVPE was 

performed. No particles were observed in the sample grown by THVPE with a growth rate of 

approximately 3 µm/h by adjusting the value of R2nd, and the β-Ga2O3 epilayer had almost the 

same crystalline quality as that of the β-Ga2O3 seed substrate.  
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Chapter 10. Conclusion of Part II 

 

 

 

In this study, the capability of THVPE-β-Ga2O3 growth was investigated. Thermodynamic 

analysis revealed the difference in the tendency of the driving force vs. growth temperature, 

VI/III ratio, and R2nd of Ga2O3 growth between by HVPE and by THVPE. The diving force of 

THVPE-β-Ga2O3 growth is lower than that of HVPE at any conditions, and gradually increases 

with increasing VI/III ratio. Moreover, the driving force of HVPE and THVPE was described by 

R2nd, and linearly decreases with increasing R2nd. Furthermore, experimentally, it was confirmed 

the driving force of THVPE was relatively smaller than that of HVPE by changing the R2nd value 

for the β-Ga2O3 growth on the sapphire substrate. Moreover, high crystalline quality and high 

purity of β-Ga2O3 epilayer was obtained by homoepitaxial growth by THVPE. Therefore, 

THVPE-β-Ga2O3 growth was one of the desirable method.  

 

 

 

  



 

Chapter 11. Discussion throughout Part I and Part II  
 

 

11.1. Reactivity of raw materials  

In chapter 9, the dependence of the VI/III ratio on the growth of β-Ga2O3 by THVPE was 

described, and it was confirmed not only theoretically but also experimentally that the driving 

force of β-Ga2O3 growth by THVPE increased with increasing the VI/III ratio. On the other hand, 

Hirasaki et al. reported the influence of NH3 input partial pressure on N-polarity InGaN growth 

by THVPE.[1] According to this, the growth rate of InGaN by THVPE rarely changed as the 

V/III ratio increased from 20 to 160. The reactivity of raw materials explains this difference in 

the tendency on V/III or VI/III. In the InGaN growth by THVPE, the V/III ratio of several decades 

was enough for raw materials to react. However, in β-Ga2O3 growth by THVPE, the VI/III ratio 

of 60 may not be enough for raw materials to react, and a higher VI/III ratio may be superior to 

grow β-Ga2O3 by THVPE because the growth rate still increases at the VI/III ratio of 60; note 

that too high VI/III ratio causes the particle generation like HVPE. In the case of applying 

THVPE for the growth of other compound semiconductors, the reactivity of raw materials must 

be concerned.  

 

 

11.2. Adsorption behavior of metal trichloride  

Previous studies reported that the bulkiness of metal trichloride, especially gallium trichloride, 

affects adsorption on the substrate.[2] THVPE-GaN growth has plane selectivity due to the 



bulkiness of gallium trichloride, and GaN hardly grows on the Ga-polar substrate but grows on 

the N-polar substrate.[3] Figure 11.1. shows the crystal structure of GaN having wurtzite. In the 

case of the GaN growth by THVPE on the Ga-polar substrate, N atoms on the surface of the 

substrate have three dangling bonds in the c direction. According to Hirasaki et al., when one 

GaCl3 molecule adsorps on the N atom and fills one dangling bond, the other two are hardly 

adsorped other GaCl3 molecules due to the bulkiness of the GaCl3. On the other hand, in the 

growth of GaN by THVPE on the N-polar substrate, N atoms on the surface of the substrate have 

one dangling bond and are free from steric hindrance, resulting in GaN growing only N-polar by 

THVPE. A similar phenomenon may occur in the case of β-Ga2O3 growth by THVPE. β-Ga2O3 

grows oriented to (2�01)  direction on a sapphire substrate. Under the O-rich condition, the 

surface of the crystal is covered with O atoms. Ga sites above the surface of the crystal covered 

with O atoms have two kinds of states; one is the tetrahedral Ga site, and the other is the 

octahedral Ga site. Moreover, the tetrahedral site has two polarities, tetrahedral-1 and tetrahedral-

2 in figure 11.2. (a), like Ga-polar and N-polar of the N site in GaN having a wurtzite structure. 

If the adatoms of THVPE-β-Ga2O3 growth are incorporated in the surface as the same mechanism 

as THVPE-GaN growth, it is considered that adatoms are hardly incorporated in tetrahedral-1 

but easily incorporated in tetrahedral-2 due to the bulkiness of gallium trichloride. On the other 

hand, it is considered that adatoms are also hardly incorporated in the octahedral site, which is 

similar to the Ga-polar N site of the wurtzite structure. Therefore, it was thought this structural 

characteristic, in addition to the driving force, causing the growth rate oriented to (2�01)  of 

THVPE-β-Ga2O3 on the sapphire substrate to be lower than that of HVPE.  

 

 



 

 

Figure 11.1. Crystal structure of (a) Ga-polar and (b) N-polar GaN. Green and blue ball shows 

gallium and nitrogen, respectively. The nitrogen atoms have three bond in c direction but one 

bonds in -c direction.  

 



 

 

Figure 11.2. Crystal structure of β-Ga2O3. Green and red ball shows gallium and oxygen, 

respectively. Blue plane shows (2�01) of β-Ga2O3. (2�01) plane having O atoms on the surface 

next to the octahedral Ga site is shown in (a), and that next to the tetrahedral Ga site is shown in 

(b).  
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Chapter 12. Conclusion entire this thesis  

 

 

 

In this thesis, the possibility of THVPE-InGaN and -Ga2O3 growth was investigated.  

In Part I, the growth of the lattice relaxed thick InGaN was investigated. Our previous studies 

revealed the possibility of InGaN growth by THVPE using metal trichlorides, and high-speed 

InGaN growth was achieved. However, the InGaN epilayer was coherently grown on the N-polar 

GaN substrate. In this study, to obtain lattice relaxed thick InGaN layer, two approaches were 

carried out. One is the partially relaxed double intermediate InGaN layer to control lattice 

relaxation for the growth of fully relaxed In0.05Ga0.95N, and by controlling the thickness of the 

1st InGaN layer, the lattice relaxation of the 2nd InGaN layer can be controlled. The other is the 

use of the PSS having a larger lattice mismatch than the GaN substrate to occur lattice relaxation 

easily, and by inserting the GaN intermediate layer between the InGaN epilayer and the PSS, 

lattice relaxed thick In0.08Ga0.92N layer with high crystalline quality was obtained.  

In Part II, the growth of Ga2O3 by THVPE was investigated to suppress the gas-phase reaction 

using gallium trichloride and O2 as precursors having low driving force than HVPE. Compared 

with HVPE, it was revealed that THVPE-Ga2O3 growth could decrease particle generation by 

suppressing the gas-phase reaction at the condition of a higher VI/III ratio.  

Throughout Part I and Part II, It was revealed that the THVPE method using metal trichloride 

had excellent potential to be applied to other compound semiconductors which are hardly grown 

by HVPE. The scheme of generation of metal trichloride for InGaN growth was able to be also 



used for Ga2O3 growth. However, the reactivity of raw materials is different even if the same 

precursor of Group-III is utilized, and the tendency on the V/III or VI/III ratio of THVPE is also 

distinct for each compound semiconductor. Moreover, the bulkiness of metal trichlorides affects 

the adsorption of adatoms, especially in the case of being many dangling bonds on the surface of 

the crystal, and it seems the same tendency between THVPE-InGaN and -β-Ga2O3 growth. In 

order to utilize the THVPE method for more compound semiconductors, it is necessary to 

consider these reactivity and adsorption behavior which are unique in the THVPE growth.  
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