学位 (博士) 論文要旨

(Doctoral thesis abstract)	
	工学府博士後期課程 Department of electronics and
論文提出者	Information Engineering 専攻
(Ph.D. candidate)	(major)
	年度入学(Admission year) 2018
	学籍番号 18834201 氏名 AQSA SHAKEEL
	(Student ID No.) (Name)
主指導教員氏名	Toshihisa Tanaka
(Name of supervisor)	
論文題目	Real-time EEG Oscillatory Phase Prediction and
(Title)	Phase-Informed Visual Stimulation Using a Least Mean
	Square-based AR Model

論文要旨(2000字程度)

(Abstract(400 words))

※欧文・和文どちらでもよい。但し、和文の場合は英訳を付すこと。

(in English or in Japanese)

Neural oscillations are vital features for the functioning of a central nervous system. The rapidly changing brain state measured by EEG can be computed using the instantaneous phase and amplitude; however, estimation of the brain state in a real-time setup is technically challenging because the prediction of future signals is required to define the current state. Alpha oscillations are thought to depict idling or inhibition of task-irrelevant cortical activities. However, recent studies on the phase of alpha oscillation hypothesize that they have a direct and active role in the mechanisms of working memory and attention. To understand the role of alpha oscillations, accurate phase estimation is required. An adaptive approach for time-series forward prediction and using it in the brain state-dependent real-time implementation of a closed-loop system has not yet been explored. The primary objectives were; to evaluate the performance of an adaptive least mean square (LMS) based AR model and a conventional YW based AR model for time-series forward prediction in an offline study; to check the implementability of a time-series forward prediction employing an adaptive LMS-based AR model in a real-time closed-loop system. For the offline time-series forward prediction, EEG data from 21 healthy participants was recorded for 3 minutes in an eyes-closed resting state. While for the real-time closed-loop system, State-dependent EEG-triggered visual stimulation synchronized with the EEG peaks and troughs of alpha oscillations in both visual task and open eyes resting state from 9 participants. Two different prediction lengths of 128 ms and 256 ms were tested for both methods in the offline study. For the real-time closed-loop implementation prediction length of 170 ms was tested. The results of the offline study show that for a shorter prediction length (128 ms), YW surpasses the LMS, whereas, for longer prediction lengths of 256 ms, the LMS outperforms the YW. In the real-time closed-loop system, resting peak condition, both methods showed statistically significant results in 100% of participants (five out of five participants). While for the trough condition, LMS showed statistically significant results in 100%, and YW showed 80% of participants. In the visual task, all participants in both methods and both conditions showed significant results. The findings indicated that the LMS-based AR model with a low computational load was effectively applied in a real-time closed-loop system aiming at particular alpha oscillation phases and could be utilized as an adaptive substitute to the machine-learning and conventional methods.

(英訳) ※和文要旨の場合(400 words)