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ABSTRACT 
 

Background: The spontaneous oscillatory activity of neuronal networks is considered to be 

the most prominent feature of the rapidly changing brain state measured by EEG. This brain 

state can be computed using the instantaneous phase and amplitude; however, assessing the 

brain state in a real-time closed-loop setup is a technically intricate problem because, in order 

to define the current state, the future signal prediction is necessary, for example, instantaneous 

phase and amplitude. Alpha oscillations are thought to represent inhibitory or idling of cortical 

activities that are not related to a particular task. Nonetheless, recent studies on the alpha 

oscillation phase scrutinize that they have a direct and dynamic role in working memory and 

attention. To study the role of these oscillations, accurate phase estimation is required. A 

conventional Yule-Walker (YW)-based autoregressive (AR) model has been employed to 

achieve this in real-time. However, an adaptive approach for both the time-series forward 

prediction and the brain state-dependent real-time implementation of a closed-loop system so 

far has not been investigated. 

Objectives: The primary objectives were; to evaluate the performance of an adaptive least 

mean square (LMS) based AR model and a conventional YW based AR model for time-series 

forward prediction in an offline study; to check the implementability of a time-series forward 

prediction employing an adaptive LMS-based AR model in a real-time closed-loop system. 

Method: For time-series forward prediction, EEG data from twenty-one healthy participants 

were recorded for three minutes in the eyes-closed resting state. For the real-time closed-loop 

system, state-dependent EEG-triggered visual stimulation synchronizes with the peaks and 

troughs of EEG alpha oscillations in a visual task and an eyes-open resting task from nine 

participants. Participants were asked to focus passively on the fixation cross presented at the 

screen's midpoint for an eyes-open resting task. Whereas for the visual task, participants were 

presented with a 7x7 checkerboard stimulus with a fixation cross at the center. They were 

trained to click the left mouse button promptly when the fixation cross turns red. 

Results:  Two diverse prediction lengths of 128 ms and 256 ms were tested for both methods 

in an offline study. For real-time closed-loop implementation, both methods tested the 

prediction length of 85 samples (170 ms). The results of the offline study show that for the 

prediction of shorter length (128 ms), the Yule-Walker-based AR model surpasses the LMS-



8 
 

based AR model, whereas for predicting the longer duration of 256 ms, the LMS-based AR 

model outperforms the conventional Yule-Walker based AR model.  

In the real-time closed-loop system, resting peak condition, both methods showed statistically 

significant results in 100% of participants (five out of five participants). While for the trough 

condition, LMS showed statistically significant results in 100%, and YW showed 80% of 

participants. In the visual task, all participants in both methods and both conditions showed 

significant results. 

Significance: The findings indicated that the LMS-based AR model with a low computational 

load was effectively applied in a real-time closed-loop system aiming at particular alpha 

oscillation phases and could be utilized as an adaptive substitute to the machine-learning and 

conventional methods. 

Keywords:  

Electroencephalography (EEG); Alpha oscillation; Autoregressive (AR) model; Yule-Walker 

(YW)-based AR model; Instantaneous phase; Least mean square (LMS); Time-series 

prediction; Brain state-dependent stimulation. 
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1 Introduction 
 

Neural oscillations changing rapidly are considered as vital characteristics of a nervous 

system. These neural oscillations in a single neuron might be viewed as periodic changes in 

one of two spiking behavior at the cellular level or potential at the subthreshold membrane. 

The synchronous activity produced by neurons extensive networks leads to periodic 

oscillations in the local field potential (LFP), reflecting neurons' excitability. The synchronous 

excitation [1] of neurons across a massive network facilitates brain communication. At specific 

frequencies, oscillations originate through particular tasks, which governs their power or 

amplitude [2].  

1.1 Alpha Oscillations 
Alpha oscillations usually have been a persistent feature of neural activity; but, their role 

has been confirmed by current studies in attention [3] and active inhibition [4, 5]. In older 

subjects, alpha frequencies are slow-going and apt towards frontal distribution [6]. The highest 

amplitude of alpha at the scalp is perceived over the brain's parietal and occipital cortices [7]. 

Furthermore, they are also visible as mu rhythms above motor areas [8]. Moreover, such studies 

mention that alpha oscillations with distinct functions in cognitive, perceptual, and motor 

processes play a particular part in brain information processing. Still, their role is yet to be 

discovered. Estimating an instantaneous phase and amplitude accurately and precisely are 

necessary to comprehend their role in motor, perceptual, and cognitive aspects. Because of 

time-frequency domain analysis, instantaneous phase relationships are categorized as post-hoc 

in majority of the investigations. The oscillatory phase's emphasis only does not infer that the 

amplitude of occurring oscillations does not affect. In reality, if the signal has sufficient 

amplitude, then the oscillatory phase of a signal can be computed reliably, both in the 

biophysical and mathematical sense. The instantaneous amplitude of electroencephalography 

(EEG) oscillations in several frequency bands endure substantial relations to attention and 

sensory perception [3, 7, 9, 10], while the instantaneous frequency has also been studied [11-

13].  

Until recent studies, the phase of ongoing oscillations has been mainly neglected, 

demonstrating the instantaneous phase's consequences on perceptual performance [14, 15]. 

Accurate and precise estimation of the instantaneous phase in real-time is vital to reveal their 

functional role. Assuming sufficiently narrow bandwidth, analog circuits were constructed in 

1988 by Pavlides [16] and 1997, Holscher [17] that elicited stimulation at the zero crossings,  

peak, and trough of the LFP of the hippocampus. In theta oscillation for peak detection, Hyman 
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[18] applied a dual-window discrimination technique. Manual calibration was required in a 

specific setting in the study mentioned above; consequently, the real-time set-up would not be 

possible. Previous benchmark studies [19-21] optimized parameters using a genetic algorithm 

before algorithm deployment. The optimization procedure required particular computational 

measures and could not, therefore, be applied in real-time. To avoid implementing an offline 

optimization procedure before online implementation, the algorithm proposed in the studies 

mentioned earlier may be enhanced by choosing an online approach [19]. One alternative for 

instantaneous phase estimation uses the robust method, i.e., wavelet ridge extraction [22]. 

However, this method is suitable for variable multiple oscillations presented concurrently, 

perhaps computationally expensive for implementing in real-time. Edge effects might also 

constrain a real-time implementation because of the data's availability only in the reverse 

direction. Another substitute for EEG phase estimation in real-time applications is machine 

learning applied by McIntosh and Sajda [23]. Their proposed technique can be used in offline 

study as a substitute for non-causal filtering for the assessment of the phase. Still, the major 

shortcomings comprise the possibility of unbiased phase estimation and preliminary data for 

training. Hence, an adaptive technique is required for phase estimation in real-time. 

Herein, we propose for time-series forward prediction, an adaptive technique least mean 

square (LMS)-based autoregressive (AR) model that was established based on the conventional 

Yule-Walker (YW)-based AR model [19, 20] with a continuation of an adaptive LMS-based 

AR model. To calculate AR coefficients, numerous algorithms might be used to construct the 

AR model, every one of them achieving diverse objectives. These approaches minimalize the 

error in prediction, either forward and backward direction or only forward prediction error. Our 

primary focus centers on the prediction error in the forward direction only and determines that 

the proposed adaptive method reduces the forward prediction error as it can adjust its 

coefficients dynamically and achieves better prediction results for longer lengths. As adaptive 

techniques can trace the coefficients dynamically and permit further precise predictions, the 

LMS-based AR model was chosen. Utilizing visual alpha oscillations, our primary interest was 

an estimation of the current instantaneous phase so that one can determine to provide the 

oscillatory phase-dependent stimulation or not. A novel brain-computer interface (BCI) 

technique can be perceived by implementing a closed-loop brain-state-dependent stimulation 

system. 

1.2 Closed-Loop System 
Closed-loop neuroscience is gaining more consideration with ongoing technical and 

innovative advances, thus enabling intricate feedback loops to be executed with a millisecond 
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resolution. Much has been studied about brain mechanics about “open-loop” stimulation via 

pre-determined stimuli, such as determining input-output properties and how they are possibly 

modified. In the non-invasive brain stimulation (NIBS) domain, this open-loop technique has 

been quite useful, facilitating significant developments in pharmacological understanding and 

knowing the functional basis of cortical dynamics [24, 25]. An experiment might be viewed as 

a “closed-loop” once the brain’s output becomes the brain’s future input. By constructing a 

causal link between the stimulus generator and the measured result, one can possibly “close 

the loop” [26] in the laboratory. In actuality, this can be accomplished when a presented 

stimulus depends on the instantaneous brain state estimated simultaneously. On that account, 

the brain's neuronal output affects the brain's input, thus closing the loop [26]. 

Combining EEG and transcranial magnetic stimulation (TMS) [27] presents closed-loop 

NIBS capability, accentuated by the recent accessibility of cost-effectiveness real-time 

processors. Although TMS has been at hand for numerous decades, it remains the most 

effective means to excite a particular cortical neuron network non-invasively. It can perform 

this at a resolution of millimeters for spatial and resolution of microseconds for temporal 

domain [25, 28]. Theoretically, the EEG signal can represent the brain state instantaneously at 

a lower-dimension. Usage of TMS can be perceived as a vector leading to a new trajectory by 

modifying a spontaneous brain state[29]. Remarkably, the new state attained by the TMS is 

reliant on the state of the brain at the respective time of stimulation. Therefore, it leads to the 

inspiration for developing paradigms of the closed-loop brain state-dependent stimulation. 

In the current study, the emphasis was on the most prominent feature of the brain's state, 

i.e., neuronal networks' spontaneous oscillatory activity [30]. On a spatial scale, the state of 

interest could be observed locally, e.g., a particular brain area’s activity [31] or a large scale, 

for example, a brain network’s ensemble activity [32]. On the other hand, temporally, brain 

states can be determined in a specific frequency band by spectral power variations (such as 

event-related desynchronization [ERD]), also observing the phase-state of an oscillating cycle. 

This prior method has been efficiently utilized in brain-machine interfaces for both alpha 

rhythms (8–12 Hz) [33] and beta rhythms (16–22 Hz) [34], allowing stroke patients to execute 

robot-assisted motor tasks. Practically, “closing the loop” is quite intricate for both the spectral 

power and the instantaneous phase because real-time signal processing requires milliseconds 

resolution; nonetheless, such a time resolution has become attainable over the past decade [34-

36]. Implementing a closed-loop system involves numerous technically demanding stages: 

signal processing, measuring output of the brain, and tuning/adjustment of the stimulus. With 

latest advancements in information technology, this combination of techniques has become 
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practicable thus permitting intricate calculations to be executed in real-time using cost effective 

equipment. 

Our offline analysis study [37] compared conventional YW-based and adaptive LMS-

based AR models and suggested the aforementioned adaptive methodology for time-series 

forward prediction. The offline study's main aims are an accurate and precise estimation of 

alpha oscillation’s instantaneous phase using the adaptive approach and comparing adaptive 

and conventional techniques. The second part of the current study is an extension of our offline 

work, i.e., real-time implementations of conventional YW-based AR and adaptive LMS-based 

AR models. We designed an EEG-triggered visual stimulus closed-loop setup for the real-time 

implementation that synchronized the visual stimulus with ongoing alpha oscillation’s 

particular phase from the occipital cortex. The prior benchmark study [19] implemented a YW-

based AR model for estimating the instantaneous phase of intracranial EEG theta oscillations 

in real-time on two patients only. In comparison, a recent study [20] utilized a similar technique 

combined with TMS for mu rhythm phase estimation. The vital purpose was to confirm the 

implentability of an adaptive LMS-based AR model in real-time, along with a conventional 

one or not. Because of some technicalities in the direct current (DC) mode of EEG amplifiers, 

data recorded in the alternating current (AC) mode were analyzed only for a real-time closed-

loop system, which led to a small number of participants. Therefore, the real-time closed-loop 

system did not confirm the adaptive method's advantage over the conventional one. 

1.3 Autoregressive (AR) Model 
AR modeling has been efficiently practiced in numerous applications of EEG analysis, 

like segmentation, forecasting [38, 39], and speech analysis [40]. Estimating the power 

spectrum of short duration EEG data, AR modeling displays excellent results because of its 

low exposure to false results [39]. Several algorithms can be utilized to calculate the 

coefficients of an AR model, comprising the Yule-Walker and Burg lattice algorithms. 

An AR model is a random process of order K defined as follows[19]: 

𝑥(𝑡 + 1) =  ∑ 𝛼𝑘 𝑥(𝑡 − 𝑘) + 𝜀𝑡,                                                  (1)

𝐾−1

𝑘=0

 

where 𝛼0, …, 𝛼𝐾−1 are coefficients of the AR model; K represents the model order; and 𝜀𝑡 

is white noise.  
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Several algorithms can be used to calculate coefficients and construct an AR model, like 

the Yule-Walker technique, to minimalize the prediction error in the forward direction. The 

Burg lattice method uses the mean of squared-prediction errors in both backward and forward 

directions to solve the lattice filter equations. For comparison purposes with prior studies [19, 

20], we utilized the Yule-Walker method. For this purpose, the order of the AR model was 

chosen by Akaike information criterion (AIC) [41]. 

1.4 Least Mean Square (LMS) 
The AR model's primary purpose is to obtain the optimum coefficients minimalizing the 

mean squared error (MSE) recursively [42] for a random signal. In 1960, Hoff and Widrow 

developed the LMS algorithm [43]. It applies an iterative method of stochastic gradient descent 

to resolve the least square issue. The particular technique is acquired by substituting the desired 

Hessian matrices and gradient vectors with further appropriate estimations from the steepest-

descent implementation. The adaptive LMS algorithm is established by the following equations 

[44]: 

𝑿(𝑡) =  [𝑥(𝑡), 𝑥(𝑡 − 1), 𝑥(𝑡 − 2), . . … 𝑥(𝑡 − 𝐾 + 1)]𝑇              (2) 

𝑨(𝑡) =  [𝑎0(𝑡), 𝑎1(𝑡), … … . 𝑎𝐾−1(𝑡)]𝑇 ,                                           (3) 

𝑦(𝑡) =  𝑨𝑇(𝑡)𝑿(𝑡),                                                                              (4) 

𝑒(𝑡) = 𝑥(𝑡 + 1) − 𝑦(𝑡),                                                                     (5) 

𝑨(𝑡 + 1) = 𝑨(𝑡) +  2𝜇 𝑒(𝑡)𝑿(𝑡),                                                     (6) 

where 𝑥(𝑡) represents an input signal at sample t, 𝑦(𝑡) depicts the output, 𝑒(𝑡) is representing 

an error, the filter weight is indicated by 𝑨(𝑡), 𝜇  denotes the step size, and 𝐾 shows the order 

of the filter. The bold variables represent vectors. 

In the offline study for forward prediction of time-series, conventional and adaptive 

methods were applied and compared. The conventional YW method calculates AR coefficients 

just one time, while the adaptive LMS method computes them instantly. The LMS algorithm 

without any prior information begins from an initial condition and, depending on the input data 

updating the filter weights. The filter size is similar to the YW-based AR model order. For ease, 

in the continuing text, we will use YW to denote the YW-based AR model and LMS to indicate 

the LMS-based AR model. 
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1.5 Instantaneous Frequency and Phase 
The analytic signal is constructed to estimate the instantaneous phase due to combining 

original data with the original data's Hilbert transform [45]. So, the complex signal zx(t) can be 

created as: 

            𝑧𝑥(𝑡) = 𝑥(𝑡) + 𝑖𝐻{𝑥(𝑡)}                                                        (7) 

where x (t) represents the real signal and 𝐻{𝑥(𝑡)} depicts the Hilbert transform of the real 

signal, which is defined as follows: 

H{x(𝑡)} =  
1

π 
 P. V. ∫

x(τ)

𝑡 − τ

∞

−∞

 dτ,                                          (8) 

where P. V.  specifies Cauchy’s principal value. The complex signal can now be utilized to find 

the instantaneous phase as follows: 

𝜃(𝑡) = arg 𝑧𝑥(𝑡) .                                                                     (9) 
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2 Materials and Methods 

2.1 Outline of Algorithm 
The algorithm's vital objective is to estimate the alpha oscillations’ instantaneous phase 

and frequency by applying the YW and LMS-based AR model. The sequential steps for 

preprocessing in the algorithm are: 

2.1.1 Preprocessing (YW and LMS): 

1. Raw data were re-referenced, followed by downsampling to 500 Hz. 

2. Frequency band optimization (8–13 Hz) centered on the highest frequency of 

every participant. The highest EEG power lying in the alpha range was related 

to the individual alpha frequency (IAF). The band-pass filter’s passband was 

selected after obtaining the IAF. IAF-1 was the low cutoff frequency in the 

band-pass filter, and IAF+1 was the high cutoff frequency. 

3. A two-pass finite impulse response (FIR) band-pass filter with an order of 128 

and the passband selected in the 2nd step was implemented [46]. 

4. Data was divided into 500 milliseconds (ms) epochs. 

2.1.2 YW-based AR model (reproducing Zrenner’s approach) [20]: 

1. Optimum AR model order was computed through AIC.m 

2. Coefficients of the AR model were computed utilizing the Yule-Walker 

equations. 

3. For predicting a length of 128 ms, the instantaneous phase was estimated at the 

edge of the sliding window in the AR equation [19, 20] Figure 1. 
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Figure 1  Time-series forward prediction based on the Autoregressive (AR) model. (A) The original data 

segment's length is 500 ms; (B) A 64ms data was cropped from both ends; (C) The residual data of 372 

ms was utilized to compute AR coefficients for the prediction of 128 and 256 ms data. 

2.1.3 LMS-based AR model: 

1. The adaptation size or the learning rate was chosen for LMS. 

2. Chose the number of filter taps (similar to the YW-based AR model order). 

3. Coefficients were computed by LMS and then used those coefficients to predict 

the next sample until the AR equation's prediction length. 

4. Time-series forward prediction using the LMS-based AR model was calculated 

to predict 256ms (twice the length of 128 ms) (Figure 1, part C). 

2.1.4 Performance Assessment of YW and LMS: 

1. Means of the original and predicted data were computed and then subtracted 

their respective means from the original and predicted data. 

2. The analytic signal was calculated using a Hilbert transform to calculate the 

instantaneous frequency and phase of the original and predicted data. 

3. Then the phase difference was computed between the original and predicted 

data. 

4. The phase locking value (PLV) was calculated between the original and 

predicted data segment in the final step. 

The four steps of performance assessment are to be carried out for both YW and LMS methods. 

Figure 2 displays a flow chart depicting the whole algorithm. 
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Figure 2 Overview of the Algorithm for Offline study. The flow chart represents sequential steps. The first four 

preprocessing steps and the last four assessment steps are identical for both the Yule-Walker (YW)-based AR 

model, and the least mean square (LMS)-based AR model. 

2.2 Participants 
Twenty-one healthy participants (10 males and 11 females; mean age + standard 

deviation (SD), 26.2 + 7.1) volunteered and provided informed consent for this study's EEG 

analysis. Participants were given instructions for an eyes-closed resting state for EEG data 

recording, whereas the recording duration of EEG signals was three minutes. The study was 

directed as per the Declaration of Helsinki and was approved by the RIKEN’s ethics committee 

(Wako3 26-24). The EEG used in this study was also used in our earlier studies [47-49]. 

2.3 EEG Recording and Preprocessing 
To record EEG signals at a 1000 Hz sampling rate, a 63-channel EEG cap (“Easycap, 

EASYCAP GmbH, Herrsching, Germany”) and an EEG amplifier (“BrainAmp MR+, Brain 

Products GmbH, Gilching, Germany”) were used. EEG amplifier’s online low and high cutoff 

frequencies were fixed to 0.016 and 250 Hz. The 10/10 system was used for electrode 

positioning; the left earlobe was used to place the reference electrode, and AFz acted as the 

ground electrode. Re-referencing the EEG signals was done by averaging the left and right 

earlobes, followed by offline downsampling to 500 Hz. All analysis for the offline study was 

done in MATLAB (“Math-Works Inc., Natick, MA, USA”) through EEGLAB [50] and 

customized scripts. 
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2.4 Statistical Analysis 
MATLAB and the Statistics and Machine Learning Toolbox were utilized to carry out all 

statistical analyses.  For this, p<0.05 was set as the level of statistical significance.  

3 Results 
The offline study's main goal was to assess the performance of an adaptive LMS model 

and a conventional YW model for time series forward prediction. We divided the results into 

three subsections: Time-series forward prediction for shorter length, Time-series forward 

prediction for twice length and for single channel O1 sampling points crossing the significant 

line. 

3.1 Phase Locking Value 
 “Given two signals, for example, c and d with a frequency f, the technique calculates a 

measure of phase-locking amongst the elements of c and d for each latency at frequency f (this 

measure is known as a phase locking value or PLV)” [51]. Also, the PLV often categorizes 

phase synchronization between two signals. 

In an offline study, both methods' performance at different time points was determined by 

the PLV [51]. The difference between the original and the predicted data segments' 

instantaneous phases was calculated, as displayed in Figure 3. This measure results in a 

numerical value between 0 and 1: zero indicating the large variation in phase, while one 

indicating trials having a similar phase.  
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Figure 3 Phase-locking value (PLV) calculation method [51] between original and predicted data. For the same 

electrode, variations of phase differences between the predicted and original data within trials were evaluated. 

PLV was determined at three time points 0, 128, 256 ms, and three electrodes, O1, O2, and Oz. 

3.2 Shorter Prediction Length 
Comparing both methods at time points, 64 ms and 128 ms for three channels, O1, O2, 

and Oz were done using a paired t-test. And the mean Rayleigh’s Z value (PLVrz) of all the 

participants are shown in Figure 4. The YW method's PLVrz values are shown in part A while 

part B reveals the LMS method’s values. The values of PLVrz decreases gradually, signifying 

the decay of prediction performance with time. A significant difference was shown at 128 ms 

between the two methods indicating YW performs well compared to the LMS-based AR model. 

Around 700 trials, PLVrz > 2.9957 is deliberated statistically significant for the p < 0.05 

significance level among twenty-one participants. 
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Figure 4 Rayleigh’s PLV for the YW and the LMS-based AR model. ns denotes not significant p-value, whereas 

Asterisk (*) specifies a significant p-value. Part (A) shows the mean of Rayleigh’s Z value (PLVrz) at the current 

time point (64 ms); Part (B) shows the mean PLVrz at 128 ms. Error bars indicate the standard deviation of the 

mean. YW is shown in blue color, and red color shows the LMS-based AR model. 
 

3.3 Twice Prediction Length 
The prediction length was doubled (from 128ms to 256ms (128 samples)) to examine how 

both methods perform competently. The prediction performance generally declines over time 

[52]. The LMS method indicated superior prediction performance with an increased length, as 

displayed in Figure 5. 

 

Figure 5 Representative prediction data of the YW-based AR model and the LMS-based AR model for twice 

the prediction length (256 ms). The red signal shows an original data segment, while the blue color indicates 

the predicted signal. Part (A) shows the instantaneous phase and amplitude of the YW-based AR model; Part 

(B) shows the LMS-based AR model and its corresponding instantaneous phase and amplitude. Asterisk (*) 

indicates the prediction starting point. 
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Representative values of PLVrz as a function of predicted time points for three different 

channels, O1, O2, and Oz, are shown in Figure 6. Both parts A and B of the figure show a 

decline for an increase in prediction length and crossing the significance line shown in red 

color. For this specific participant, the YW shows the 378 ms for crossing the significant line, 

while the LMS illustrates the 416 ms for crossing the significant line. 

 

Figure 6 Rayleigh’s Z value (PLVrz) for twice the prediction length (256 ms). (A) shows the AR model; (B) 

shows the LMS-based AR model. The red line indicates the significance level with a value of 2.9957. The box 

shows the time point (X-axis) at which the significant line is crossed with its respective PLVrz value (Y-axis). 

Comparison between both methods was made using a paired t-test for all the three 

channels O1, O2, and Oz. For both prediction points, 128 ms and 256 ms, the LMS-based AR 

model showed greater PLVrz than the YW-based AR model. Even though both methods' 

performance dropped with an increase in the prediction length, the LMS-based AR model 

excelled the YW when the length was increased twice, as depicted by their mean PLVrz values 

in Figure 7. 
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Figure 7 Statistical Comparison for the twice prediction length (256ms) between the YW-based AR model and 

the LMS-based AR model. Asterisk (*) shows a significant p-value. (A) Mean PLVrz at 128 ms; (B) Mean PLVrz 

at 256 ms. Error bars indicate the standard deviation of the mean. YW is shown in blue color, whereas the red 

color depicts the LMS-based AR model. 

3.4 Sampling Points of Channel O1 Crossing the Significant Rayleigh’s Z 

Value 
 

In this part, we examined each participant's sampling points in the 800 ms interval and 

crossed the significant Rayleigh’s Z value (>2.9957). With the increase in prediction length to 

800 ms, both methods' performance decayed, as shown in Table 1. Among the 21 participants, 

15 showed higher crossing values with the adaptive LMS-based AR model compared with the 

conventional YW-based AR model. For time points < 400, a significant difference was seen 

between the two methods, as depicted in Table 2. 

 At 64 ms (32 samples), the YW excelled the LMS, whereas, for the 128 ms, 256 ms, and 

340 ms, the LMS-based AR model surpassed the conventional YW. For samples greater than 

200 (400 ms), both methods' performance declined, and there was no significant difference 

among the two methods. 
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Table 1 Time points crossing the significant Rayleigh’s PLV for channel O1 for both the Yule-Walker (YW)-based 

autoregressive (AR) model and the least mean square (LMS)-based AR model. Asterisk (*) indicates that out of 

800 ms, the particular participant did not cross the significant value (>2.9957). 

Participants 

Channel O1, for 800 ms prediction 

YW  LMS 

Time Points Time Points 

1. 424 446 

2. 368 392 

3. 536 550 

4. 492 484 

5. 382 416 

6. 420 578 

7. 452 456 

8. 678 752 

9. 392 370 

10. 694 * 

11. 630 678 

12. 506 556 

13. 702 618 

14. 524 522 

15. 796 * 

16. 644 598 

17. 528 578 

18. * 778 

19. 566 598 

20. 660 714 

21. 452 406 
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Table 2 Statistical comparison of Rayleigh’s Z value for 800 ms prediction of channel O1. 

Prediction Time Point 

 (ms) 
p-value 

YW LMS 

Rayleigh’s Z Value (PLVrz) 

Mean Values 

64 p < 0.001 582 568 

128 p < 0.001 384 403 

256 p < 0.001 113 131 

340 p = 0.010 50.5 61.18 

400 p = 0.070 29 35 
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4 Discussion 
Phase estimation of EEG rhythms is quite intricate because of the dynamic nature and low 

signal-to-noise ratio (SNR). The offline study proposed an adaptive approach for the estimation 

of the alpha oscillations phase. Our goal comprises facilitating EEG applications in real-time, 

relying on phase estimation. The offline study's main aim was to implement a time-series 

forward prediction using an adaptive LMS-based AR model and YW-based AR model. 

In the offline study, the suggested adaptive method evaluates the instantaneous phase and 

instantaneous frequency of EEG data (alpha oscillations only, channels: O1, O2, and Oz) 

followed by signal prediction utilizing the abovementioned models. The performance 

assessment was done using PLV for two different prediction lengths (128 ms and twice of first 

length (256 ms)) of the EEG data. Earlier, Zrenner [20] implemented the YW-based AR model 

[19]. We implemented the AR model with the identical FIR bandpass filtering, AR model order, 

forward prediction length, and EEG data segment’s original length for consistency as well as 

comparison. Moreover, we evaluated how the performance of both methods affected the future 

prediction window. In order to obtain the phase and frequency information from the EEG 

signals, complex wavelet transform [53], and the Hilbert–Huang transform [54, 55] was 

employed by earlier studies. Still, there is a limitation in applying these methods due to 

predicting non-stationary data's future. Though the conventional YW-based AR model can 

solve the EEG time-series' prediction, it presumes signals' stationarity over a certain period. 

Therefore, it is less suitable for closed-loop real-time applications for non-stationary time-

series data, for instance, EEG. Conversely, to cope with the non-stationarity of EEG signals, 

our proposed adaptive method relies on recurrent updates, so predicting the signal in the future 

whereas adapting to changes dynamically.  

Applying neurostimulation in a closed-loop scenario has increased considerably in the 

past decade, including the precise and accurate phase estimation of an ongoing neural 

oscillation. A previous study [56] used Hilbert transform- and Fast Fourier-based procedures 

for phase-synchronized stimulation in diverse EEG rhythms. This study suggested a short 

prediction algorithm with diverse windows for phase prediction and extraction based on 

intermittent protocol. Like our study, performance evaluation was done utilizing PLV as a 

performance metric, which exceeded a value of 0.6 for detecting the alpha band. Likewise, they 

also showed a decline in performance with the increase in prediction length in both approaches. 

The substantial shortcomings were negligence to demonstrate the closed-loop system's working 

entirely and small sample size. Another study described three techniques for predicting the 

phase (zero crossing, AR model-based, and Hilbert-based method) [52]. The performance was 
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evaluated utilizing different metrics like entropy-based phase synchrony, PLV, and degree 

deviation. This study also established that PLV declines when the time-window is increased 

and at lengthier intervals, as shown by the increase in alpha fluctuations. This research's 

limitations include failure to determine the optimal method among Hilbert-based and AR, a 

relatively small sample size of eight subjects and using only one channel Oz. 

Standard signal processing techniques are used in most studies to estimate the phase. An 

interesting research showed machine-learning techniques for estimating the instantaneous 

phase of only one EEG signal (POz) [23]. Analogous to our offline study, they also carried out 

individual alpha frequency based frequency band optimization. The algorithm was divided into 

two parts to construct an analytic signal: on the former path, data was only epoched for 

generating an input signal, while on the latter part, a band-pass filter (FIR) was carried out on 

the data segment to create an output signal. The Hilbert transform and epoching accompanied 

the latter pathway as the final step before assessing the model. An optimized filter trained the 

data; Hilbert transform recovered the instantaneous phase and minimized MSE non-causal 

filtering. The main drawback of this process is the requirement for initial data preceding the 

main experiment for training. The offline analysis goal in our work was to evaluate the phase 

of an EEG data segment via an adaptive method. Supported by former studies, our findings 

demonstrate that the LMS-based AR model surpasses the YW-based AR model to predict long 

intervals. Also, for the O1 channel only, the LMS-based AR model specifies more samples 

above the significant line. 

5 Conclusions 
Our EEG phase estimation technique depends on instantaneous alpha oscillations utilizing 

the conventional YW and the adaptive LMS method. An adaptive LMS-based AR model's two 

primary purposes include: First, the adaptive method does not depend on familiarity with the 

exact stochastic signal, which is hardly accessible in reality. Second, it tracks the deviation in 

the EEG signal by dynamically adjusting its coefficients. Our study indicated that the adaptive 

method outperforms the conventional one in offline analysis for longer prediction lengths by 

comparing YW and LMS. This novel implementation may lead to EEG instantaneous phase 

prediction with low computational cost and produce versatile applications in basic and clinical 

neurosciences, like EEG phase estimation assists in BCIs.  
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6 Methodology 

6.1 Implementation of a Closed-Loop System 
We propose an experimental setup that prolongs current approaches by closing the loop 

between EEG signals (representing the instantaneous brain state) and visual stimulation. The 

visual stimulation timing is coupled to the online-detected instantaneous phase of the EEG 

alpha-band signal (peak and trough phases). Figure 8 presents an implementation of a real-time 

closed-loop system. EEG signals are acquired using an ActiCap Slim (“BrainProducts GmbH, 

Gilching, Germany”) electrode system. A 24-bit 32-channel Tesla EEG amplifier (“NeurOne; 

Bittium Biosignals Ltd., Kuopio, Finland”) is used for the EEG recordings, with data recorded 

in AC mode at a 20 kHz sample rate for succeeding analysis. The amplifier's analog output 

device is organized to reconstruct a filtered and an amplified analog signal from a set of 16 

amplifier channels covering the occipital cortex selected by the user. Of the channel subset, Oz 

is analyzed utilizing a real-time system. A MATLAB experimental control scripts PC is 

attached to the “Performance real-time target machine” (“Speedgoat GmbH, Liebefeld, 

Switzerland”), which receives input signals from a 24-bit analog input module (IO109) and 

sends transistor-transistor logic (TTL) signal output to a digital output module (IO203 with 64 

TTL channels). The digital output module further sends the TTL trigger signal from the 

“Performance real-time target machine” to the NeurOne Model Black High (Bittium Biosignals 

Ltd., Kuopio, Finland) referred to here as Trigger A. An additional 8-bit trigger is 

simultaneously sent from the “Performance real-time target machine” to the visual stimulus 

generating PC via serial port (RS232), which further sends it to the NeurOne Model Black High 

for subsequent data analysis. A real-time data acquisition system (Figure 8, part b) utilizing a 

Performance real-time target machine runs in parallel on a dedicated Target PC (SN4200, 

IO10; Speedgoat), digitally processing and logging the raw EEG data through the 

implementation of a Simulink real-time model (MathWorks Inc., Natick, MA, USA, 2018a) 

for each scenario (YW peak and trough, LMS peak and trough). The time lag due to the 

Performance real-time target machine is approximately 10 ms, while the time lag due to the 

NeurOne is about 4 ms. 
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6.2 Algorithm 
The ultimate goals of this study were the real-time phase estimation of alpha rhythms and 

phase-dependent triggering. The instantaneous phase prediction algorithm can be divided into 

four parts: YW peak prediction, YW trough prediction, LMS peak prediction, and LMS trough 

prediction. Each part was further divided into the following sequential steps, except for step 4, 

which differs between the YW-based and LMS-based AR models. A distinct Simulink real-

time model was designed for each of the four methods and implemented in the Performance 

real-time target machine. 

 

Figure 8 A schematic diagram of the real-time closed-loop system. (a) shows an implementation of a closed-loop 

brain state-dependent visual stimulation setup comprising electroencephalography (EEG), real-time signal 

processing, and triggered visual stimulation setup comprising electroencephalography (EEG), real-time signal 

processing, and triggered visual stimulation. The visual stimulation is locked to the instantaneous phase of the 

recorded EEG signal in the alpha band either at the peak or the trough. (b) shows sequential steps for time-series 

forward prediction implemented through MATLAB experimental control scripts PC via four distinct Simulink real-

time models (Yule–Walker (YW) peak, YW trough, least mean square (LMS) peak, LMS trough). Raw EEG data 

were downsampled first, followed by finite impulse response (FIR) bandpass filtering. Coefficients of the 

autoregressive (AR) models were calculated, and the EEG signal was forward predicted. After time-series forward 

prediction based on YW/LMS methods, the instantaneous phase (at time-zero”) was estimated using Hilbert 

transform. The visual stimulation was then triggered when a pre-set phase (peak or trough) condition was met. 
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1. In each Simulink model, the raw EEG data are received as analog input via IO109 with 

a sample rate of 2 kHz and are downsampled to 500 Hz. 

2. The data are then delayed by 500 samples, and the mean of the data is calculated and 

subtracted from the original data. The data are then sent to the next step for filtering. 

3. The third step implements bandpass filtering. A two-pass FIR bandpass filter (filter 

order 128,  8–13 Hz) is applied to the data, after which the edges are removed.  

4. The fourth step is forward prediction. After trimming 85 samples from both sides, the 

remaining 330 samples are then used for forward prediction (85 samples). The YW 

forward prediction algorithm predicts the future. It computes coefficients using Yule-

Walker equations, whereas the LMS forward prediction algorithm uses an adaptive 

method to compute coefficients and then uses them in the AR equation. This step results 

in a predicted signal as an output. The model order for both methods is 30. 

5. The Hilbert transform is performed on resulting forward-predicted EEG data to 

determine the instantaneous phase at “time-zero”.  

6. The zero-phase crossing (a predetermined phase is crossed, with 0 and pi rad portraying 

positive and negative peaks, respectively) is monitored online, and a TTL signal is sent 

from the Performance real-time target machine via digital output module (IO203) and 

serial port (RS232). The Performance real-time target machine sends the TTL signal to 

the EEG recording PC via IO203, while the TTL signal is sent via RS232 to the visual 

stimulus generating PC simultaneously.  

6.3 Participants 

A total of nine volunteers (three males and six females; mean age 32.1 years ± 6.6 (SD)) 

with normal or corrected-to-normal vision were recruited to this study and provided informed 

consent for the EEG experiments. The ethics committee of RIKEN permitted the study. Data 

from the first three participants were recorded using the Tesla amplifier's DC mode, while data 

from the rest of the participants were recorded using the AC mode. The participant data 

recorded using the DC mode was noisier than that recorded using the AC mode, which resulted 

in relatively low amplitude output signals. The AC mode has a greater SNR than the DC mode 

and uses a 0.16 Hz low pass filter, leading to higher amplification of data for subsequent 

analysis. The SNR highly affected the prediction accuracy, and therefore only the participant 

data collected using the AC mode were used for further analyses. A spectral analysis was done 

on the remaining six participants to estimate the power in the alpha rhythm range (8–12 Hz).  
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6.4 Experiment 

The experiment incorporated visual stimulation blocks and eyes-open resting blocks. 

Participants were requested to prevent eye blinks, eye movements, and jaw clenching. The 

whole experiment was divided into two sessions, each with ten blocks presented in random 

order, with these ten blocks consisting of five resting and five visual blocks. In both sessions, 

the ten blocks were linked with conditions, namely Resting, Visual Random, Resting YW 

(peak, trough), Resting LMS (peak, trough), Visual YW (peak, trough), and Visual LMS (peak, 

trough), as shown in Figure 9 (part a). Results were analyzed from blocks 2-5 and blocks 7-10. 

The total experiment took 1 hour and 10 minutes, including small breaks between blocks. For 

the resting condition, there were 90 trials for each block, while for the visual stimulation 

condition, there were 108 trials, as shown in part c of Figure 9. The visual experiment consisted 

of normal trials and response trials. The visual stimuli were shown on an liquid crytal display 

(LCD) monitor (“BenQ XL2420; BenQ Corporation, Taipei, Taiwan; refresh rate: 144 Hz; 

resolution: 1920 × 1080”), with a chin rest placed 100 cm from the monitor being used to 

maintain head position. The checkerboard stimuli (visual angle of 8.8°) consisted of 49 black-

and-white squares (7 by 7) along with a fixation cross at the midpoint. The grids' color was 

temporally modified between black and white (luminance of black: 9.18 cd/m2; white: 152.2 

cd/m2). The fixation cross was colored gray in regular trials and red in response trials. 

Participants were trained to click the left mouse button the moment a red fixation cross appears. 

The visual and resting tasks were implemented using NBS Presentation Version 20.0 

(“Neurobehavioral Systems Inc., Albany, CA, USA”). Additionally, EEG signals were also 

measured for the resting scenario. At the same time, participants rested with their eyes open, 

seeing passively at the fixation cross presented at the midpoint of the screen part b Figure 9. 
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Figure 9 Overview of the experimental sessions and trials. Part (a) shows a session divided into resting (green) 

and visual (blue) parts, each with five blocks. “Peak” means a positive peak or 0 rad, while “trough” depicts a 

negative peak or pi rad. Part (b) shows an eye-open resting condition. Part (c) shows trials of the visual stimulus 

condition. Response trials are conducted with a red fixation cross at the center. Each trial took an average of 1.05 

s. 

6.5 EEG Recording and Preprocessing 
The 63-channel EEG signals were recorded at 20 kHz of sampling rate using a Tesla 

amplifier and ActiCap slim EEG cap. Online low and high cutoff frequencies for the EEG 

amplifier were selected to 0.16 Hz and 3500 Hz, respectively. Electrodes were positioned 

according to the 10/10 system, with electrode AFz as the ground electrode and the left earlobe 

as the reference electrode. EEG signals were re-referenced to the right and left earlobe's average 

and downsampled to 500 Hz for offline analysis. Only the downsampled signal was used to 

calculate the phase-triggered response (PTR). In contrast, for the PLF and instantaneous phase 

calculation, a two-pass FIR bandpass filter (8–13 Hz) with a filter order of 128 was applied to 

the EEG signals. All analysis was done in MATLAB R2018a using EEGLAB [50] and a 

personalized script. 

6.6 Statistical Analysis 
All statistical analyses were done using MATLAB and the Statistics and Machine Learning 

Toolbox, with p<0.05 being set as the level of statistical significance.  
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7 Results 

7.1 Phase Locking Factor 
“The phase locking factor (PLF) assesses whether the difference between the oscillators' 

phases is strongly or weakly clustered around some angle in the complex unitary circle” [57]. 

The PLF was defined as follows: 

𝑃𝐿𝐹 =  
1

𝑁
| ∑ ej𝜃𝑛

𝑁

𝑛=1

| ,                     (10) 

where 𝜃𝑛 is the instantaneous phase at “time-zero” for the nth trial, and N represents the total 

number of trials. A PLF closer to zero indicates high phase variability over trials, while a PLF 

closer to 1 depicts all trials as owning a similar phase. It should be noted that the phase variance 

is 1-PLF [57].  

The Rayleigh test can verify the statistical significance of the PLF to calculate ZPLF [14, 

57], which is Rayleigh’s Z value computed using PLF as follows: 

𝑍𝑃𝐿𝐹 = 𝑁(𝑃𝐿𝐹)2.                             (11) 

To measure the statistical significance of the participant-averaged ZPLF values, the value 

was corrected to 𝑍𝑃𝐿𝐹𝑎𝑙𝑙: 

𝑍𝑃𝐿𝐹𝑎𝑙𝑙 =
1

√𝑃
∑ 𝑍𝑃𝐿𝐹𝑚

𝑃

𝑝=1

,                              (12) 

where P depicts the number of participants [58].  

Towards the evaluation of the difference between YW and LMS within each participant, 

we also examined Watson’s U2 test for each of the two conditions (resting and visual), 

according to the method proposed by Persson [59]. If the calculated U2 is larger than the critical 

value, the two sample circular distributions differ significantly from each other. For the current 

study, the critical value U2 (∞, ∞; p<0.05) = 0.187. As this test contrasts both the phase variance 

and the average of the phase angular data, the effects of the difference in average phase angles 

were removed by shifting the phase according to the following [60]: 

𝜽𝒏𝒆𝒘 = 𝜽 − 𝜑,                                         (13) 
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𝑆 =
1
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∑ sin 𝜃𝑛

𝑁

𝑛=1

,                                      (15) 

where 𝜽 is the vector of instantaneous phases at zero ms, [𝜃1, ⋯ , 𝜃𝑁],  𝜑 = 𝑡𝑎𝑛−1(S/C), and 

𝜽𝒏𝒆𝒘 are used in the calculation of Watson’s U2 test.  

Using this transformation, we can compare the differences in phase variance between the 

two circular distributions. 

7.2 Phase-triggered response (PTR) 
PTR is defined as the grand-average of triggered EEG signals from distinct trials within 

each participant. 

𝑃𝑇𝑅(𝑠) =
1

𝑁
∑ 𝑆𝑛

𝑁

𝑛=1

(𝑠),                                      (16) 

where 𝑆𝑛 represents the downsampled EEG signal for the nth trial as a function of the sample 

point s within each trial extracted based on the trigger at “time zero” generated by the phase 

prediction methods. s ranges between 0 to 1000 centered around “time-zero”, 𝑁 is the total 

trials for each participant. 

    PTR is calculated in a similar manner to event-related potentials (ERP). Still, it doesn’t 

depend on the external stimulus (namely visual or auditory stimuli) and uses a generated trigger 

based on the EEG phase. It is a measure for checking the prediction performance.  

To check both YW and LMS methods' performance, the PLF at “time-zero” was assessed 

in both resting and visual tasks. 

7.3 Resting Condition 
The results of ZPLF and PTR for the resting condition are shown in Figure 10. ZPLF and 

PTR are shown individually for the five participants. The bold black lines in Figure 10 a–d 

indicate ZPLFall. For a number of trials > 60, a ZPLF > 2.995 (which is called the critical value) 

is considered statistically significant. ZPLFall is also statistically significant if it exceeds the 

critical value. The small square box on the ZPLFall line represents “time-zero.” In parts a–d, 

ZPLFall crosses the critical value indicated as a dotted red line. We found that ZPLF and ZPLFall 

were statistically significant for all participants except for the YW trough condition in 

participant P01. Our findings accord with former studies showing a ZPLF decrease when time 

increases [37, 52]. Figure 10 e–h shows the PTR for individual participants. In the PTR plots, 
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the squares for “time-zero” are observed at the peak for the peak condition and the trough for 

the trough condition. The black bold lines show the mean PTR.  

Rose plots for each participant are shown in Figure 11. For the peak condition, these rose 

plots show an accumulation of values toward 0 rad, while for the trough condition, the rose 

plots show an accumulation toward pi rad. The summarized results of PLF and ZPLF and their 

mean ± SD are shown in Table 3. The bold values indicate significantly higher ZPLF compared 

to a critical value of 2.995. Besides, the ZPLFs of all participants crossed the critical value at 

“time-zero”, except for the YW trough condition of participant P01, as shown in Figure 10c. 

Table 4 presents the mean angle in radians and Watson’s U2 test results. 

The bold values indicate where the calculated U2 values are greater than the critical value, 

and the differences in the two-phase variances are statistically significant. For participants P01 

and P02, the LMS trough performed better than the YW trough. For participant P03, the LMS 

peak performed better than the YW peak condition. For participant P04, the YW trough 

surpassed the LMS trough. No significant difference was shown in participant P05 indicating 

both YW and LMS methods performed equally at “time-zero”.  
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Figure 10 ZPLF and phase-triggered response (PTR) for the resting task for each individual participant. The 

bold lines depict ZPLFall or mean PTR. (a) ZPLF results for the YW method peak condition for the individual 

participants. (b) ZPLF results for the LMS method peak condition. (c) ZPLF results for the YW trough 

condition. (d) ZPLF for the LMS trough condition. (e) PTR for the YW peak condition. (f) PTR for the LMS 

peak condition. (g) and (h) PTR for the YW and LMS trough conditions, respectively. The black lines in e–h 

indicate the mean PTR across participants. 
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Figure 11 Rose plots for the resting conditions for each participant. The upper row (a–e) shows the rose plots 

for each participant's peak condition, while the lower row (f–j) depicts the rose plot for the trough condition for 

each participant. The peach color indicates the YW method, while purple indicates the LMS method. The violet 

color depicts the overlapping region. 

 
 

Table 3 Overview of the results of the resting condition. The number of trials, PLF, and ZPLF at “time-zero” are shown. 

Resting 

 

ID 

Number of Trials PLF ZPLF 

YW 

Peak 

LMS 

Peak 

YW 

Trough 

LMS 

Trough 

YW 

Peak 

LMS 

Peak 

YW 

Trough 

LMS 

Trough 

YW 

Peak 

LMS 

Peak 

YW 

Trough 

LMS 

Trough 

P01 3598 3156 3710 3276 0.057 0.059 0.019 0.047 11.872 11.102 1.432 7.378 

P02 3491 3093 3433 3075 0.104 0.103 0.075 0.126 37.831 32.895 19.778 51.678 

P03 3192 3038 3099 2993 0.090 0.171 0.155 0.149 26.283 89.706 74.474 66.55 

P04 3230 3089 3268 3053 0.101 0.125 0.146 0.107 33.569 48.528 70.241 35.50 

P05 3326 3159 3340 3139 0.146 0.122 0.155 0.133 71.307 47.381 80.566 55.752 

Mean 3367.4 3107 3370 3107.2 0.100 0.116 0.110 0.113 36.172 45.922 49.298 43.371 

SD 173.068 50.955 226.005 107.843 0.031 0.040 0.060 0.039 21.978 28.758 36.099 23.005 
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Table 4 Mean angle and Watson U2 test results at “time-zero” for the resting condition. 

Resting 

 
ID 

Mean Angle (rad) WatsonU2 
 

YW Peak LMS Peak YW 
Trough 

LMS 
Trough 

YW vs. LMS 
Peak 

YW vs. LMS 
Trough 

P01 −0.475 −0.154 −3.009 2.580 0.059 1.125 

P02 −0.228 −0.108 2.821 2.761 0.054 0.273 

P03 −0.350 −0.369 2.923 2.956 0.570 0.099 

P04 −0.271 −0.337 2.920 2.613 0.078 0.207 

P05 −0.216 −0.333 2.872 2.827 0.887 0.064 

Mean −0.297 −0.260 2.961 2.747  

 
 

Taken together, the results suggest that we succeeded in outputting triggers targeting 

specific phases of alpha oscillations in a real-time implementation under resting conditions, 

doing this with both YW-based and LMS-based AR models. 

7.4 Visual Condition 
The results of ZPLF and PTR for the visual condition are shown in Figure 12. We observed 

two peaks in ZPLF for the visual condition, with the second peak corresponding to the visual 

response around 100 ms. The small black square in Figure 12 shows “time-zero”. Rose plots 

for the visual condition are presented in Figure 13. For the peak condition, the rose plots are 

somewhat inclined toward the right side (0 degrees), but there is not an apparent inclination 

toward the left side for the trough condition. The YW and LMS troughs did not pass the critical 

line for participant P01, and the rose plots, therefore, do not show any leaning toward the left 

side. The summarized PLF, ZPLF, mean angle, and Watson’s U2 test results for the visual task 

are shown in Table 5 and Table 6. All participants showed significant ZPLF values for each 

method and each condition. There was no significant difference statistically for any of the 

condition in participants P04 and P05. For participants P01 and P03, the LMS trough surpassed 

the YW trough, but for participant P02, the YW trough was better than the LMS trough, as 

shown by the bold Watson U2 test values. 

The results suggest that we succeeded in giving visual stimulation targeting specific phases 

of alpha oscillations in a real-time implementation, doing this with both YW-based and LMS-

based AR models. We observed the stimulation-induced brain responses. 
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Figure 12 ZPLF and PTR for the visual task. Parts a–d show ZPLF results for both YW and LMS methods with 

peak and trough conditions, while Parts e–h show the phase-triggered response (PTR) for YW and LMS 

methods for the peak and trough conditions. ZPLF shows a second peak of around 100 ms for the visual task. 

The small black square shows “time-zero”. The black bold signals in e–h show the mean PTR. 
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Figure 13 Rose plots for the visual condition. The participant's peak conditions are shown in the first row (a–e), 

while the trough conditions are depicted in the second row (f–j). 

 
Table 5 Summary of the results of the visual condition. The number of trials, PLF, and ZPLF at “time-zero” are shown. 

Visual 

 

ID 

Number of Trials PLF ZPLF 

YW 

Peak 

LMS 

Peak 

YW 

Trough 

LMS 

Trough 

YW 

Peak 

LMS 

Peak 

YW 

Trough 

LMS 

Trough 

YW 

Peak 

LMS 

Peak 

YW 

Trough 

LMS 

Trough 

P01 3780 3671 3788 3646 0.204 0.26 0.062 0.302 158.5 255.8 14.760 333.35 

P02 3772 3553 3776 3575 0.166 0.20 0.078 0.047 105.1 153.4 23.016 8.146 

P03 3630 3420 3760 3385 0.176 0.10 0.037 0.071 112.7 39.50 5.326 17.461 

P04 3745 3762 3472 3461 0.194 0.15 0.141 0.193 142.0 85.39 69.912 128.92 

P05 3774 3549 3776 3588 0.224 0.16 0.035 0.170 190.2 93.69 4.871 103.98 

Mean 3740.2 3591 3714.4 3531 0.193 0.17 0.071 0.157 141.7 125.5 23.577 118.38 

SD 63.057 130.4 135.870 105.624 0.022 0.059 0.043 0.102 34.72 83.34 26.962 131.21 

 

 Table 6 Visual condition results. The mean angle and Watson U2 test results for the visual condition at 

“time-zero” are shown. 

 

Visual 

 

ID 

Mean Angle (rad) WatsonU2 

YW Peak LMS Peak YW Trough LMS Trough YW vs. LMS 

Peak 

YW vs. LMS 

Trough 

P01 0.478 0.158 0.708 0.449 0.054 0.338 

P02 −0.481 −0.407 −2.030 −1.090 0.031 0.951 

P03 −0.169 −0.117 2.643 −2.112 0.046 0.554 

P04 −0.655 −0.603 −2.810 −3.067 0.064 0.069 

P05 −0.883 −0.657 −2.673 −2.167 0.093 0.151 

Mean −0.355 −0.327 −2.918 −1.882  
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The summarized results of both resting and visual tasks regarding percentage and the 

total participants showing significant ZPLF are presented in Table 7. ZPLF value > 2.995 is 

considered to be significant. Significant ZPLF means that we achieved the desired result of 

outputting the triggers targeting a specific alpha oscillation phase. For the resting task, peak 

condition, all participants indicated significant ZPLF values for both methods. And for the 

trough condition, all participants showed the significant ZPLF for LMS, and only one 

participant did not show the significant ZPLF value for the YW method. The results indicate 

that all participants in both methods and all conditions crossed significant ZPLF values in the 

visual task. Overall, all the results specify that we succeeded in outputting the triggers targeting 

specific phases of alpha oscillations in a real-time implementation, doing this with both YW-

based and LMS-based AR models except for one participant in one condition. 

Table 7 Overview of resting and visual task results. Percentage and the total number of participants showing a significant 

ZPLF value for each condition. 

8 Discussion 
Utilizing EEG signals from channel Oz (occipital cortex), our research performed, for the 

first time, real-time EEG phase-dependent triggers for visual stimulation. These triggers were 

centered on a conventional YW-based AR model as well as a novel adaptive LMS-based AR 

model. The primary purpose was to consider and confirm the possibility of implementing a 

real-time closed-loop system based on the adaptive LMS-based technique, which we formerly 

suggested and established by studying offline data [37]. The online (proof-of-concept) study 

results provide empirical evidence that the adaptive technique is implementable in real-time. 

Individual differences were found in the closed-loop systems' performance, and results are 

presented at “time-zero” individually. In an eyes-open resting state, all participants indicated 

significant ZPLF for both techniques (peak and trough conditions), except for participant P01’s 

trough condition in the YW-based method. In the visual task, all participants presented 

significant ZPLF for each condition in both conventional and adaptive approaches. Both 

methods did equally, and the difference concerning any of the conditions was not statistically 

significant, as shown in the results of Participant P05. While there are individual differences in 

the EEG phases prediction, the proposed technique successfully outputted the stimulation 

triggers suggested by the results for most participants. 

Total 

Participants = 5 

Resting Visual 

YW Peak LMS Peak 
YW 

Trough 

LMS 

Trough 
YW Peak LMS Peak 

YW 

Trough 

LMS 

Trough 

Participants 5/5 5/5 4/5 5/5 5/5 5/5 5/5 5/5 

Percentage 100% 100% 80% 100% 100% 100% 100% 100% 
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In our offline analysis [37], we indicated the advantage of our adaptive LMS-based method 

over the conventional YW-based method in phase prediction of alpha-band EEG. But, we could 

not show the dominance of the adaptive LMS-based method at “time-zero” because of the small 

number of participants, making it difficult to make a clear comparison. Although our primary 

focus was on implementing the adaptive method in real-time, one limitation of the online study 

arose from the EEG amplifier's DC mode's technical issues. Only five participants' data 

utilizing the AC mode were analyzed for the real-time closed-loop system. Hence, additional 

studies will need to elucidate the proposed adaptive method's superiority over the conventional 

non-adaptive method in a real-time implementation. Our results indicate that we achieved the 

desired results in measuring brain responses for triggered visual stimulation with a low 

computational cost. Even though our study involved visual stimulation only, other NIBS 

techniques such as TMS can be triggered using our adaptive method.  

For estimating the phase, some former studies relied on machine learning techniques, and 

a variety of methods, mainly deep learning, were employed in BCI systems. To detect 

schizophrenia, a convolutional neural network (CNN) model with eleven layers has been 

utilized [61], leading to a classification accuracy of 98% for non-participants and 81% for the 

healthy and schizophrenic participants based testing. Regardless of great classification 

accuracy, the main shortcomings comprise a small data size; also, CNN's computation is 

expensive in comparison with conventional machine learning techniques. A system to detect 

parkinson’s disease (PD) automatically also employed CNN with an accuracy of 88.25% [62]. 

For p300 EEG signals, a different study implemented principal component analysis (PCA)-

based on CNN [63]. PCA was utilized for the signal’s dimensionality reduction and decreasing 

the computational cost by keeping the original signal features. To improve EEG motor imagery 

signals' recognition rate, an amalgamation of the simplified CNN (SCNN) and continuous 

wavelet transform was applied [64]. Although the SCNN reduces the parameter and shortens 

the training time compared with CNN; but, the classification accuracy needs to be enhanced. 

The major drawback of such techniques is the requirement for initial data for training before 

the main experiment. In real-time phase estimation, the trained filters depend on signal quality 

and signal properties due to the absence of future information. Due to this, the technique fails 

to achieve unbiased phase estimation. Being highly proficient, deep learning still needs 

plentiful data for training and enormous processing power and are thus costly to implement. 

Conversely, our proposed adaptive method does not necessitate comprehensive training and 

computational cost.  
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We propose that our method be applied to fundamental neuroscience (such as neural 

oscillations’ functional role) and clinical fields. In the past decade, considerable advancement 

has been done in invasive brain stimulation, dynamically responding to the existence of 

deviating neural activity [65, 66]. For instance, deep brain stimulation within a small PD 

patients group caused 30% clinical improvements approximately than a standard open-loop 

system [67]. When necessary, a device for closed-loop stimulation might send stimulation 

skillfully due to carrying out stimulation merely once brain function shows abnormal neural 

activity or damaged [68]. It also synchronizes every stimulus with the instantaneous brain state 

of the patient. Brain state-dependent stimulation has a therapeutic capability for brain disorders, 

for instance, schizophrenia, epilepsy, stroke, and PD. Future studies will include the 

implementation of the adaptive method in a real-time TMS-EEG system and the exploration of 

new scenarios for alpha and other oscillations. 

9 Conclusions 
In a real-time closed-loop system, we succeeded in implementing an adaptive as well as 

the conventional method. The real-time closed-loop system involves a time-series forward 

prediction and phase-locked visual stimulation. EEG triggered visual stimulation depending on 

brain-state was synchronized with the EEG peaks and troughs of alpha oscillations in both a 

resting state (open eyes) and a visual task. Our results showed that we succeeded in outputting 

triggers targeting specific phases of alpha oscillations in a real-time implementation, doing this 

with both YW-based and LMS-based AR models. Although our main focus was on alpha 

oscillations only, this real-time closed-loop system can also analyze other frequency bands. 

This novel implementation may lead to EEG instantaneous phase prediction with low 

computational cost and produce versatile applications in basic and clinical neurosciences, like 

EEG phase estimation assists in BCIs.  
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10 Conclusions 
In EEG, the instantaneous phase of neural oscillations is a brain state measure modulating 

evoked responses and linking neuronal processing. Nevertheless, phase estimation with standard 

signal processing techniques in the real-time closed-loop setup is difficult due to technical issues 

(such as SNR, fluctuations in EEG signal, complexity in computations, latency, jitter, artifacts, 

etc.) at the time of the stimulus. To calculate the signal’s instantaneous phase, these techniques 

require data before and after the time of interest. Estimating phase in real-time or in the post-hoc 

scenario at the time of a stimulus, like a TMS pulse and potentials evoked by sensory stimulation 

in EEG, data availability is only before the time of interest. EEG signals are non-stationary, and 

for time-series forward prediction, conventional methods like YW compute coefficients of interest 

only once. Therefore, an adaptive method is required. The current study suggested an adaptive 

approach to estimate the instantaneous phase of alpha oscillations. The main objective was to 

implement a time-series forward prediction using the LMS-based AR model and YW-based AR 

model in a closed-loop system. To test and verify our proposed method and before source 

allocation, we divided the study into two parts, first instantaneous phase estimation of alpha 

oscillations offline and second, its implementation in a real-time closed-loop system. 

 The offline study's suggested adaptive method evaluates the instantaneous phase and 

instantaneous frequency of EEG data (alpha oscillations only, channels: O1, O2, and Oz) 

followed by signal prediction utilizing the YW and LMS-based AR models. The performance 

assessment was done using PLV for two prediction lengths (128 ms and twice of first length 

(256 ms)) of the EEG data. Moreover, how the performance of both methods affected the future 

prediction window was also assessed. To cope with the non-stationarity of EEG signals, our 

proposed adaptive method relies on recurrent updates, so predicting the signal in the future 

whereas adapting to changes dynamically. Our findings demonstrate that the LMS-based AR 

model surpasses the YW-based AR model to predict long intervals. Also, for the O1 channel 

only, the LMS-based AR model specifies more samples above the significant line. 

 

 The accuracy with which phase can be estimated differs more strongly within-subjects than 

between subjects; selection of the exact instant to stimulate may be essential than the selection 

of the right participant [21]. Oscillatory power being task-dependent, targetting a phase 

throughout a task can amplify the concerned oscillation. Utilizing EEG signals (channel Oz), 
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our research performed, for the first time, real-time EEG phase-dependent triggers for visual 

stimulation. These triggers were based on a conventional YW-based AR model as well as a 

novel adaptive LMS-based AR model. The main purpose was to check and confirm the 

possibility of implementing a real-time closed-loop system based on the adaptive LMS-based 

technique, which we formerly suggested and established by studying offline data [37]. The 

online (proof-of-concept) study results provide empirical evidence that the adaptive technique 

is implementable in real-time. Individual differences were found in the closed-loop systems' 

performance, and results are presented at “time-zero” individually. For the resting task, peak 

condition, all participants indicated significant ZPLF values for both methods. And for the 

trough condition, all participants showed the significant ZPLF for LMS, and only one 

participant did not show the significant ZPLF value for the YW method. The results indicate 

that all participants in both methods and all conditions crossed significant ZPLF values in the 

visual task. Overall, all the results specify that we succeeded in outputting the triggers targeting 

specific phases of alpha oscillations in a real-time implementation, doing this with both YW-

based and LMS-based AR models except for one participant in one condition.  

 Our results indicate that we achieved the desired results in measuring brain responses for 

triggered visual stimulation with a low computational cost and can be used as an alternative to 

the conventional approach.  

11 Future Directions 
 

Advancements in the modern closed-loops systems with small latency and small jitter are 

necessary to suit the multiple time-scales of the environment. This approach seems promising in 

developing a comprehensive closed-loop system in treating psychiatric and neurological disorders. 

There is substantial therapeutic as well as experimental potential in applying brain-state-dependent 

stimulation when the patient or participant simultaneously carries out a task. Therefore, future 

studies will include but not limited to: 

 Instantaneous amplitude: in real-time, accuracy in the estimation of phase can be 

enhanced by comprising an instantaneous amplitude; therefore, assessing PTRs at high 

amplitude versus low amplitude responses can be tested. 



57 
 

 Advantage of an adaptive method in real-time: our offline study showed the 

adaptive method's advantage over the conventional one; additional studies will be 

required to reveal the adaptive method's superiority in a real-time closed-loop system. 

 Other neural oscillations: Although our main focus was on alpha oscillations only, 

the offline and real-time closed-loop system can also analyze other frequency bands. 

 TMS-EEG setup: implement the adaptive method in a real-time TMS-EEG system 

and explore new scenarios for alpha and other oscillations.  

 BCIs: applications in basic and clinical neurosciences, like EEG phase estimation, 

assists in BCIs.  

 Deep learning: checking the efficacy of the proposed method utilizing machine 

learning, specifically deep learning techniques. 
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