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Abstract

Epilepsy is a chronic disease of the central nervous system characterized

by repeated and unpredictable seizure. Approximately, 1 million people

in Japan (Japan epilepsy society) and 50 million people all over the world

(WHO) are diagnosed as epilepsy.

A seizure is a sudden disturbance in the brain’s neural activity that pro-

duces disruptive physical prefix such as a lapse in attention and memory,

a sensory hallucination, or an entire-body convulsion. Roughly, 1 out of

every 3 individuals with epilepsy continues to experience with intractable

seizures which is also known as drug registant epilepsy. To control seizures

with intractable epilepsy, surgical treatment may, the best possible solution

for seizure freedom. Through surgical treatment, the epileptologist remove

that area of cortex from where the seizures are initiated, which known as

the seizure onset zone (SOZ). To localize the SOZ electrodes from a part of

the irritable and symptomatic zone, it is necessity for epileptologist’s to ob-

serve the long term multichannel iEEG data by visual inspection, which is

very time consuming and laborious process. Moreover, there is a shortage of

clinical experts for such diagnosis.

Therefore designing a machine learning based computer aided solution

for localizing the seizure onset zone (SOZ) in patients with focal epilepsy

from interictal and ictal iEEG has been expected to epileptologists. The aim

of this thesis is to detect the SOZ electrodes using high frequency compo-

nents (HFC) with machine learning approach. It is known that, the high

frequency components (>80 Hz) including ripple and fast ripple bands, of

interictal iEEG signal, are associated to the epileptic seizure. In this thesis,
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our proposed computer aided solution provides an intuition for epileptolo-

gist which assist them in two ways: (1) to observe the localization of SOZ

and non-SOZ segments over duration of the iEEG data, and (2) gives feasible

information about the active electrodes located close to the SOZ electrodes.

For localization of SOZ electrodes, in our first proposed design, we have

used entropy based feature extraction methods and radial basis function kernel-

based SVM classifier with 10-fold cross validation. In this solution, to se-

lect the prominent entropy features, we have used sparse linear discriminant

analysis (sLDA). Due to the imbalance of SOZ and non-SOZ electrodes in

iEEG data, the usage of machine learning techniques is always tricky. To

handle this problem, we have used an adaptive synthetic oversampling ap-

proach (ADASYN) in the training stage of SVM classifier. Eight patients were

examined to observe the efficiency of the proposed design.

However, in the above methodology, firstly, the performance of entropy

estimation strongly depends on the appropriate parameter selection. Be-

sides, some entropy features have higher computational cost. Secondly, the

detection of SOZ channels were determined based on the number of detected

segments on SOZ and non-SOZ channels and the detection decision was

made by SVM classifier based hard thresholding. Thirdly, epileptic activi-

ties related appropriate bands selection not reported in the previous studies

that may improve the performance of computer-aided solution. To address

these problems, in our second proposed framework, we have used statisti-

cal features with information theoretic entropy features for identifying SOZ

electrodes. We hypothesis that, these statistical features are effective to char-

acterize the epileptic activities in iEEG signal, since these features have al-

ready been used in other context of epilepsy studies. Mutual information

(MI) scores based data-driven grid-search method was developed to jointly

optimize the bands and features. A LightGBM classifier was used to score

each segment of a channels and final score of a channel was obtained by
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averaging the scores of all segments of that channel. The probable SOZ chan-

nels were localized based on the higher scores of the channels. To observe

the efficiency of method, we used eleven patients with medically intractable

epilepsy caused by focal cortical dysplasia (FCD) in a time series prediction

way. To detect the possible SOZ channels, the methodological framework of

the proposed design will be more practical use in clinical applications.

As mention that, in the proposed design, we have used only one hour of

interictal intracranial EEG data to identify the SOZ channel. In preprocessing

step, we have used data segmentation and band pass filtering approach.

The experimental result shows that, the proposed machine learning based

computer aided solution can identify the SOZ electrodes efficiently from short

period of interictal iEEG recording, that provides epileptologists a great as-

sistance and can increase the number of iEEG analysis for intractable epilepsy

patients.
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Chapter 1

Introduction

1.1 Epilepsy

Epilepsy is one of the most common neurological disorder of the nervous

system that creates severe effects to human brain [1], [2]. It is character-

ized as sudden and repeated seizure which may be caused by an excessive

and synchronous electrical discharge of neurons inside the brain [3], [4].

Pt1 Pt2

Pt3 Pt4 Pt5

Pt6 Pt7 Pt8

FIGURE 1.1: Brain image with
epilepsy and its originated area.
Red spot represent the SOZ area.

A seizure is a sudden and uncontrolled

electrical activity in the brain that produces

disruptive symptoms. When a seizure oc-

curs, epilepsy patients suffer from sudden

and unexpected illness, during which they

are unable to protect themselves and are

vulnerable to suffocation, death, or injury

due to fainting and traffic accidents [2], [5].

Seizures generally start in confined re-

gions of the brain and may remain re-

stricted to these areas or spread to other re-

gion of the brain. The area of brain from where seizures are initiated defined

as seizure onset zone (SOZ) and it is usually localized by either scalp or in-

vasive EEG [6]. The area of the cortex the (minimum amount of cortex) that

must be resected (or completely disconnected) surgically to produce seizure
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freedom is defined as epileptogenic zone (EZ). EZ is a dynamic concept that

changes continuously over time [7]. According to the study of [8], [9] the

most common epileptogenic region of the brain are the hippocampal forma-

tion and cerebral cortex. Fig. 1.1 shows the brain image with epilepsy seizure.

The hotspot indicates the SOZ area from where seizure are originated.

Epilepsy is not a single disease, but a family of symptoms that share the

feature of recurrent seizures. Epilepsy may be a result due to several fac-

tors, such as acquired structural brain lesions, inborn brain malformations,

alterations in neuronal signaling, and defects in maturation and plasticity

of neuronal networks [10]. Alternatively, it may also develop as a result of

brain trauma such as a severe blow to the head, a stroke, central nervous

system (CNS) infections, CNS malignancies, particularly cortically based tu-

mors, such as gliomas and metastatic lesions, Alzheimer’s disease etc.[11].

1.2 Social impact of epilepsy

The negative influence of uncontrolled (refractory seizure) seizures not only

limited to the individual but also affect to their family members, friends,

and the whole of society. The families and friends of people with refractory

epilepsy experience life long concern and to ensure the safety of their loved

one, they rearrange their lives. Several studies have revealed that, the major

factors of quality of life such as job, family bonding, socializing etc. are on

considerable risk in epilepsy patients [12], [13].

When seizure occurs, epilepsy patients suffer from sudden and unex-

pected illness. They become unable to protect themselves and vulnerable

to suffocation, death or injury due to fainting and traffic accidents [2], [5].
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Epilepsy can plays an vital rule in every year over other sudden illness re-

lated diseases. According to the study of [14]–[16], refractory epilepsy pa-

tients is associated with increased morbidity and mortality, serious psychoso-

cial consequences, cognitive problems, and reduced quality.

Among the negative impact of epilepsy, people are frequently faced with

adverse social difficulties. This type of difficulties are not only limited to

adult people, but also impact in infancy. It have been reported that, children

without epilepsy can show higher social competency compared to the pa-

tients with childhood epilepsy [17]. Because childhood epilepsy can impact

seriously on the development of brain. It causes mental development disor-

der, severe motor and intellectual disabilities and cognitive dysfunction. In

addition, the person who suffered with epilepsy in childhood, often faced

many social difficulties after reaching the adulthood, even though his intel-

lectual range is normal [18].

1.3 Diagnosis of epilepsy

For clinical diagnosis of epilepsy, epileptologist uses different techniques

such as magnetic resonance imaging (MRI), computed tomography (CT),

positron emission tomography (PET), magnetoencephalogram (MEG), or elec-

troencephalogram (EEG) [19]. Among them EEG signal plays an important

role for detection and localization of epilepsy, because it gives temporal and

spatial information about the brain as well as, measures differences in voltage

changes between electrodes along the subject’s scalp [4], [20], [21]. Accord-

ing to the information of Mayo clinic, the diagnosis process is define shortly

in the following way:

• Electroencephalogram (EEG): To diagnose the epilepsy through the

EEG test, electrodes are connected to brain by using the paste-like sub-

stance and cap. During this test, if someone have epilepsy then the
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regular pattern of EEG waves have changes, even he is not having a

seizure on that time.

• Computerized tomography (CT) scan: To get cross-sectional images of

brain CT scan are uses. It can reveal the abnormalities of the brain such

as tumors, bleeding and cysts etc. that might be causing of seizures.

• Magnetic resonance imaging (MRI): To create a detailed view of brain

through powerful magnets and radio waves doctor uses MRI images.

To detect the lesions or abnormalities of brain, doctor uses these MRI

images.

• Positron emission tomography (PET): To detect the abnormalities and

visualize the active areas of the brain PET scans use a small amount of

low-dose radioactive material. For PET scans, these radioactive mate-

rial are injected into a vein.

1.4 Epilepsy treatment

According to World Health Organization (WHO), it is the second most com-

mon neurological disorder behind stroke. Roughly 50 million people all over

the world have been diagnosed with epilepsy [1], [10]. As in studies [22],

approximately one in every one hundred individuals suffers from epilepsy.

Increased mortality is associated with epilepsy patients. Due to the un-

predictability of seizures, the primary burden of the disease is reduced qual-

ity of life and lost productivity. Deaths due to to epilepsy are blamed on

seizure-related accidents, status epilepticus (very long seizures that become

life threatening). and the syndrome known as ‘SUDEP’ (sudden unexpected

death in epilepsy) that can be associated with cardiorespiratory dysfunction

[23].
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There are a different categories of epilepsy treatment that are shortly de-

scribe in these section.

1.4.1 Medication

There are several options to treat the epilepsy patients, medication can be

effective in eliminating or significantly reducing seizures. According to the

information of Mayo clinic, by taking one anti-epileptic medication most peo-

ple can become seizure-free. But, for many patients after a few months, the

utility of AEDs (medication) gradually diminis. Sometimes utility of medi-

cation shows some side effects (fatigue, dizziness, weight gain, loss of bone

density, skin rashes, loss of coordination, speech problems, memory and

thinking problems etc (information based on Mayo clinic)).

According to the studies in [24] showed that, one-third of adults with

epilepsy have not adequate control of seizures with medication. Recently,

a study published in 2018 showed that despite availability of many new

antiepileptic drugs with varing mechanisms of function, but overall out-

comes in newly diagnosed epilepsy have not improved. [25]. The seminal

work of [26] reported that 43 out of 143 case studies (30%) achieved no con-

trol of their seizures despite the recent discovery of bromide as a promising

new AED. Therefore, the effectiveness of medication in reducing seizure rates

has remained unchanged for over one hundred years.

1.4.2 Surgery

When medication fails to control the epilepsy, physician chooses the surgical

treatment as a possible solution to recover from epilepsy [3], [4] . Surgical

resection of epileptic parts of the brain may be considered if the seizure focus

is able to be located and removed safely. Doctors takes decision for surgery

(based on information of Mayo clinic):
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• When seizure are originated from a small, well define area of brain.

• When brain does not response for some vital functions such as as speech,

language, motor function, vision or hearing.

However, for some patients with epilepsy are not suitable surgical candi-

dates (eg. in cases with generalised epilepsy or where the focus is in an in-

operable region of the brain), and surgery does not always provide complete

seizure freedom [27]. In another studies it has been showed that successful

surgery tends to relieve depression and anxiety[28] and 70% of people who

have surgery become sezure free.

1.5 Necessity of machine learning based epilepsy

detection framework

For surgical treatment of epilepsy, the localization of SOZ zone or epilep-

togenic zone is very important step. Usually, epileptologist localized these

zone by analyzing iEEG data. It has been said that, the specialist of epilepsy

(epileptologist) is the translator of iEEG signal. For correctly interpretation

of iEEG signal, the epileptologist need much training for many years. In ad-

dition, iEEG are recorded from 40∼148 electrodes positions for few weeks, at

least 2∼3 days. So, to localization of the SOZ zone manually, the epileptolo-

gist requires visual observation on long-term multichannel iEEG data.

Moreover, there is a lacking of clinical expert for such diagnosis. Accord-

ing to the information of Japan Epilepsy Society in 2019, there are only 689

specialist all over the Japan. In some prefacture in Japan, their are only one

specialist. So localization or detection of SOZ or epileptogenic zone by visual

observation of long time iEEG data is consuming and laborious process [4],

[29], [30] and it puts heavy burden on specialist of epilepsy and reduces their

efficiency. Therefore, a computer-aided solution with an effective algorithm
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Long term iEEG data

FIGURE 1.2: Process to interprete the iEEG data.

that uses the iEEG signal to localize the epileptic focus would be invaluable.

Fig. 1.2 shows conventional way for interpretation of long term iEEG data by

the epileptologist

1.6 Epilepsy seizure related existing studies

1.6.1 Epilepsy seizure detection studies

Considering the low frequency components (LFC)-related epilepsy seizure

detection framework, several studies have been proposed [31]–[33]. Nico-

laou et al. proposed the method to detect the epileptic vs non-epileptic (nor-

mal subjects) activities using Bonn dataset [34]. The datasets consists of five

subjects with single-channel surface EEG at a sampling rate of 173.61 Hz de-

noted as Set A (healthy awake and eyes open), Set B (healthy awake and eyes

closed), Set C (epileptic seizure-free interictal), Set D (epileptic seizure-free

interictal), and Set E (epileptic seizure activity). A two class problem was

formed by assigning the class labels to epileptic activity (Set E) against the

activity from other subjects (A, B, C, and D). Therefore, 4-different combina-

tions such as E vs A, E vs B, E vs C, E vs D, were performed to detect epilep-

tic vs non-epileptic activities. Guo et al. proposed MLPNN classifier with

multiwavelet entropy to detect normal vs ictal [35] with similar dataset, im-

proving the the accuracy of 99.06%. Hamad et al. proposed discrete wavelet
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transform (DWT) based features with radial basis function SVM for recogni-

tion of epilepsy [36]. Sharathappriyaa et al. used auto-encoders based au-

tomatic seizure detection system using harmonic wavelet packet transform

and fractal dimension based features and obtained 98.67% accuracy [37]. A

CNN based machine learning method was implemented in [4] for epilepsy

detection with significant classification accuracy. Ullah et al. established deep

learning based automated epilepsy detection system using Bonn dataset and

achieved the accuracy of 99.1% [38]. Recently, Li et al. combined three types

of faster feature-extraction with EMD decomposition for two datasets (Bonn

and Qilu Hospital) to measure the dynamics nature of EEG signals for epilep-

tic and non-epileptic patients [31]. The MLPNN-based classifier was used to

detect normal vs ictal patterns in EEG. The same feature-extraction methods

with DWT and FNN were proposed to improve the usability and perfor-

mance of the system in the epilepsy study by Hasan et al. [32]. However, the

main target of the above epilepsy studies using Bonn dataset was to detect

the epilepsy patients (normal vs epilepsy subject) rather than the identifying

of SOZ, which limits the clinical applications.

1.6.2 Low frequency component related focal seizure (or SOZ)

detection studies

For identification of epilepsy focal also referred to SOZ, several studies have

been proposed by considering the low frequency components (LFC) with in-

tracranial EEG signal [39]–[42]. Bhattacharyya et al. [43] have proposed a

machine learning based focal EEG identification system using least-squares

support vector machine (LS-SVM) classifier. They have used Bern-Barcelona

datasets which consists of 7500 pairs of focal and non-focal iEEG signal. For

50 pairs of focal and non-focal EEG signals, their achieved classification ac-

curacy of 90%, sensitivity and specificity of 88% and 92%, respectively. The
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same dataset were used by Arunkumar et al. for clssification of focal and

non-focal iEEG signals [41]. In their proposed design, they used entropy

based feature extraction methods with six different classifiers including naı̈ve

bayes (NBC), radial basis function (RBF), support vector machine (SVM),

KNN classifier, non-nested generalized exemplars classifier and best first de-

cision tree (BFDT) classifier. They achieved highest accuracy of 98%, sensi-

tivity of 100% and specificity of 96% with non-nested generalized exemplars

classifier (NNge). Sharma et al. [39] have introduced entropy based feature

extraction method with SVM classifier for automatic identification of focal

and non-focal pattern of signal. They have also used Bern-Bercelona dataset

with 87% of accuracy. However, the Bern–Barcelona dataset be formed of

nearly 20-s of iEEGs with a pair (two-channel iEEG) of focal and non-focal

channels and upper and lower cut off frequency is between 0.5 and 150 Hz.

The bi-variate focal and non-focal channels were recorded at the epileptic

and non-epileptic zone from the brain. Recently, EMD (emperical mode

decomposition) and bivariate EMD a time domain multiband decomposi-

tion method have been proposed in studies [40], [44] to detect the epilepsy

seizure. For feature extraction, they used different entropy based feature ex-

traction methods and improve the accuracy of the system. Although all of

the above studies achieved significant classification, but the limitations is

that, they have used low frequency bandwidth between (0.5 to 150 Hz) in-

terictal iEEG data, which limit the clinical use. Moreover, they have evaluate

their system with well balanced data which are contrary to most real world

problem.
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1.6.3 High frequency oscillations (HFOs) related detection

However, the use of a low frequency band that partially excludes higher

frequency components has some restrictions in real world applications. Re-

cently, several developed methods on epilepsy detection [45]–[47] have illus-

trated that, the high frequency oscillations (HFOs) including ripple (100–250

Hz) and fast ripple (250–600Hz) bands carries crucial biomarker to detect the

seizure onset zone (SOZ) as well as to guide epilepsy surgery. There was

more evident that, the fast ripple band contained more repetitive waveform

pattern compared to ripples band and it complicates the clinical use of HFOs

as valid biomarkers [48]–[50].

Most recently, Zuo et al. [51] have proposed the CNN-based method for

identifying ripple and fast-ripple band and compared their studies to other

four proposed HFOs detection methods in the RIPPLELAB toolbox [52]. Most

of the above HFOs related studies calculate the baseline from long term iEEG

data and detect automatically ripple and fast ripple separately. However, re-

cent finding of HFOs related studies limits the existing systems for clinical

use.

1.7 Our contributions

1.7.1 High frequency component related SOZ detection with

entropy based features

Through motivated by recent finding of HFOs related studies [45], [47], in

this study, we have proposed high frequency component (HFC) based SOZ

identification method. It is known that, the activity in high frequency com-

ponents, including ripple and fast ripple bands, of interictal iEEG, are asso-

ciated to the epileptic seizures. In our proposed methodological framework,
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we have used entropy based feature extraction methods with filter bank ap-

proach. Based on different epilepsy related studies [39]–[41], [44], we hypoth-

esized that, the combination of entropy features with filter-bank approach are

effective for identifying the epileptic event. To select the prominent entropy

features, we have used sparse linear discriminant analysis (sLDA). Eight pa-

tients with intractable epilepsy are used to evaluate the method. To evaluate

the proposed design, we have used 10-fold cross validation with SVM classi-

fier. As mentioned that, the dataset for all patients are highly imbalanced, the

number of non-SOZ electrodes are much higher compared to the SOZ elec-

trodes. To solve this imbalanced problem, we have used adaptive synthetic

oversampling approach (ADAYSN) in the training stage of SVM classifier.

The detail description of this study with result and graphical representation

shown in Chapter 4. Considering the noise-robust features and the reduction

of method complexity, the multi-band feature-extraction method has a great

potential as the basis for designing a computer-aided solution for localizing

SOZ electrodes.

1.7.2 High frequency component related SOZ identification

with efficiently work statistical features

Our previous study [53], which are discussed in Sec. 1.7.1, suggests that

entropy features in HFCs are still effective in identifying SOZ electrodes.

The study [53] proposed eight entropy-based feature extraction methods for

identification of SOZ electrodes. However, that framework has some short-

comings, among them the significant one, the parameters selection problem.

Basically, the performance of entropy estimation sharply depends on the pa-

rameters selection [54], [55]. Another shortcomings is the higher computa-

tional cost. To utilize the high-frequency with a range from 100 to 600 Hz in

each segment of multi-channel iEEG, the number of sample points in each
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segment are large enough, which lead to the higher computational cost [53].

Furthermore, the identification of SOZ channels are acquired based on the

number of identified segments on SOZ and non-SOZ channels, and the de-

tected decision is make based on an SVM classifier based hard thresholding.

To address the problems described in above, we have hypothesized that

simple statistical features are useful in SOZ identification due to these fea-

tures have already been applied in other context of epilepsy studies [31]–

[33], [56], [57]. Thus, the contributions of our second proposed design are the

following:

• We have proposed twelve feature extraction methods, including of nine

statistical and three information theoretic entropy features that are sig-

nificant to characterize the epileptic signals.

• A data-driven grid-search method using mutual information (MI) scores

has proposed to optimize prominent bands and features jointly that are

still not reported in previous SOZ detection studies.

• We have used standard state-of-the-art LightGBM classifiers to identify

the possible SOZ electrodes.

1.8 Organization of the thesis

As depicted in Fig. 1.3, this thesis is organized as follows: In Chapter 1, we

have discussed about the background of this work, its problem and possible

solutions. In Chapter 2, we have introduced the basics of epilepsy and its cat-

egorization. In Chapter 3, we have reviewed the recent filter bank techniques

with the other related methods. Multiband entropy based feature extraction

methods for identification of SOZ electrodes have discussed in Chapter 4. In
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Chapter 5, we have discussed about the statistical features based SOZ identi-

fication methodological framework with selection of prominent features and

band. In Chapter 6, we have concluded the thesis.
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1. Introduction

2. Overview of Epilepsy Seizure and Electroencephalography

5. Statistical Feature based
SOZ Localization in Ripple
and Fast Ripple Bands of

Interictal iEEG

3. Filter Bank Analysis for  
Machine Learning Approach

4. Entropy-based Feature-extraction
Method for Identification of SOZ

Electrodes based on High-frequency
Components in Interictal iEEG

6. Conclusion and 
Future Work

SOZ Detection

FIGURE 1.3: Diagram for the organization of the thesis.
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Chapter 2

Overview of Epilepsy Seizure and

Electroencephalography

In this chapter, we have discussed about the epilepsy seizure originated area

such as seizure onset zone (SOZ), epileptogenic zone (EGZ) in Sec. 2.1. Sec. 2.2

presented the epilepsy seizure categorization based on international league

against epilepsy (ILAE). In Sec. 2.3, discussed about the categorization of

EEG including scalp electroencephalogram (EEG) and intracranial electroen-

cephalogram (iEEG).

2.1 Different cortical area related to epilepsy seizure

2.1.1 The irritative zone

The irritative zone is defined as the area of cortex that creates interictal elec-

trographic spikes and it is generally called mini-seizures [58]. These zone

usually localized by scalp or intracranial electroencephalogram (EEG or iEEG),

magnetoencephalography (MEG) [59] or spike-triggered functional MRI (fMRI)

[60]. If irrititive zone are created in an eloquent area of cortex and these are of

enough ‘strength’, spikes can give raise to clinical symptoms. For example,

patients with mesial temporal lobe epilepsy, exhibit temporal epileptiform
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discharges. On the otherhand, isolated or independent spikes will not pro-

duce any clinical symptoms if they located in silent or eloquent cortical area.

Actual seizure 
onset zone

Potential seizure 
onset zone

Actual seizure 
onset zone

Potential seizure 
onset zone

FIGURE 2.1: The example of SOZ with surgical excision [61]

2.1.2 The seizure onset zone

The seizure onset zone represent the cortical area of brain from where clini-

cal seizures are originates [58]. The seizure onset zone is measured by EEG

(scalp or invasive) and location of these zone can be determinated with ic-

tal SPECT (single photon emission computed tomography). Usually, it is the

part of the irritative zone and it produce repetitive spikes that have sufficient

strength to generate clinical ictal symptoms when attacking eloquent cortex.

Invasive electrodes are more sensitive compared to scalp electrodes for de-

tecting the SOZ zone. Talairach et al. [62] reported to their studies that the

seizure-onset zone would be a reliable index of the location and extent of

the epileptogenic zone. In their study, they defined the seizure onset zone as

epileptogenic zone. Lüders et al. [61] enriched this notion by identifying five

cortical zone such as irritative zone (area of cortex which generates interic-

tal spikes), seizure onset zone (area of cortex that initiates clinical seizures),
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symptomatogenic zone, lesion, and functional deficit zone. Lüders et al. ob-

served that, for some cases the complete surgical removal of seizure onset

zone (SOZ) does not lead to seizure freedom, because there are some other

areas in the brain that were closest to the removed SOZ zone, are triggering

the epileptic seizures [61]. They arrived to the conclusion from their study

that SOZ and epileptogenic zone are not same concepts and they separated

the SOZ into actual and potential SOZ. They suggested that the complete re-

moval of both the actual SOZ and potential SOZ through surgery may result

in seizure free (see in Fig. 2.1)

2.1.3 The epileptogenic zone

The epileptogenic zone (EGZ) is the cortical area of the brain that is inevat-

able for the generation of epileptic seizures. It may comprise an actual epilep-

togenic zone and potential epileptogenic zone. The actual epileptogenic zone

is the area of cortex that generating seizures prior surgery, whereas potential

epileptogenic zone refers to the area of cortex that may produce seizures af-

ter the presurgical SOZ has been resected. To understand the seizure mech-

anisms and for complete abolition of seizures through surgical removal of

seizure focus, the localization of the boundary of EGZ is needed [61]–[63].

Since, there is no directly diagnostic modality currently available for mea-

suring the entire EGZ, we need to infer its location indirectly by defining

the other zones such as potential SOZ, actual SOZ or irrititave zone. There-

fore, epilepsy surgeon and epileptologists need to define the location and the

extension of EGZ by observing the SOZ before the epileptic focus resection

for patients with medically intractable epilepsy. At the end, to what extent

area in the brain should be considered as EGZ and resected for good surgical

outcome is still an open research.
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2.2 Epilepsy seizure and its categorization

Epilepsy is the disease related with spontaneously recurring seizures in which

activity of brain becomes abnormal. Any ages people both males and females

can be affected with epilepsy. (According to the definition of Miyo clinic)

In 2017, the international league against epilepsy (ILAE) published in two

articles an updated classification of seizures and the epilepsies, together with

an instructional manual on how to apply the seizure classification [64]–[67].

These seizure types are describe briefly in the following way:

• Focal onset seizures: Focal seizures can originate from one cerebral

hemisphere or either in a specific place in the brain [64]. It can be di-

vided into two groups: Focal onset aware seizures, focal onset impaired

awareness.

– Focal onset aware seizures: When a person is awake during the

seizure, then it’s called a focal aware seizure. In this type of seizure,

person don’t loss their consciousness and this type of seizure also

call simple partial seizures.

– Focal onset impaired awareness: When person loss their con-

sciousness or become confused then this type of focal seizure is

called focal impaired awareness seizure. Previously, it was called

complex partial seizure.

• Generalized onset seizures: In these type of seizure, a group of cells

on both side of the brain are affected at the same time. These type of

seizure included tonic-clonic, absence or atonic ete.

• Unknown onset seizures: Unknown onset seizures are such type of

seizure when its originating location is not known or when the physi-

cian has not yet congeal adequate clinical information to be certain

about the epilepsy classification [68].



2.2. Epilepsy seizure and its categorization 19

The above three onset types seizure are further classified as motor onset

seizure and non-motor onset seizure. Different types of seizures are respon-

sible for different types of motor or non-motor behaviour. For focal seizure, a

particular region of the brain are affected. The affected area of the brain may

be occipital lobe, temporal lobe, frontal lobe or parietal lobe and based on the

affected area of the brain, the behaviour of the seizure are changed. For ex-

ample, automatism changes may be occur due to the temporal lobe seizures

whereas frontal lobe seizures often lead to hyperkinetic seizures.

• Myoclonic seizures: A sudden, short contractions of muscles that last-

ing ≤ 0.5 s [69]. It is a twitch-like contraction and in most cases awar-

ness is not impaired. Myoclonic seizures typically includes limbs and

shoulders and can potentially occur in clusters.

• Tonic: An increase in one or multiple muscles contraction often result-

ing in a change of posture. This type of seizures lasting from a few

seconds to some minutes [64] and mostly awareness is not loss.

• Clonic: It is a series of myoclonic contractions where symmetrical or

asymmetrical jerking occur of the same group of muscles. In clonic

seizures, typically the whole body are affected involved and generally

awarness is impaired.

• Tonic-clonic: These type of seizures are the combination of a tonic and a

clonic seizure where muscles first stiffen (tonic phase), and then start to

jerk (clonic phase) [65]. In tonic-clonic seizures, patients typically lose

consciousness.

• Hyperkinetic: Seizures with agitated thrashing and repetitive move-

ments. These type of seizures also involves in leg pedaling movements.

• Automatisms: Automatisms seizures are frequently originating from

the temporal lobe of the brain and it impaired by performing one or
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more short unconscious behaviors. Smacking, swallowing, chewing

and rubbing fingers/hands etc. are the symptoms these type of seizures.

2.3 Categorization of electroencephalogram (EEG)

Basically two types of EEG are used in EEG based diagnosis system. 1). scalp

EEG (EEG) and ii). intranial EEG (iEEG).

2.3.1 Scalp electroencephalogram (EEG)

The non-invasive measure of electrical activity of the brain is represented by

scalp EEG. It is generally measured by those electrodes that are symmetri-

cally arrayed on the scalp. EEG measures voltage fluctuations resulting from

ionic current within the neurons of the brain [70]. Clinically, EEG refers to

the recording of the brain’s spontaneous electrical activity over a period of

time and recording is done from multiple electrodes placed on the scalp [70].

For scalp EEG signal, there are some limitations for both origin and char-

acteristics of neural activity. In particular, in scalp EEG signal, the activity of

neurons that are closest to scalp surface are more visible compared to the neu-

rons activity buried within deep brain structures. Besides, the cerebrospinal

fluid and skull surrounding the brain act as attenuators that comprehensively

reduce the amplitude of high frequency neural oscillations. As a result, some

types of epilepsy seizures that occur within the deep region of brain can not

be observed by scalp EEG.
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2.3.2 Intracranial electroencephalogram (iEEG)

In iEEG signal, electrodes are placed on the cortex of brain or deep within the

brain structure and like scalp EEG, it also gives a spatial and temporal infor-

mation about the electrical activity of neurons. It is less affected by physio-

logic and environmental artifacts compared to scalp EEG. Fig. 2.2 shows the

recording of iEEG data, where electrodes are directly placed the on the cortex

of brain.

FIGURE 2.2: Example of intracranial EEG data recording [Jun-
tendo University Hospital]

iEEG are highly invasive and since electrodes are placed in a limited re-

gion of brain sites at any given time, so it provides higher spatial resolution

and worse spatial coverage compared to scalp EEG.

In iEEG, the neuronal hypersynchrony associated with a seizure is noticed

in lower time (tens of seconds) than the scalp EEG [4]. Moreover, higher

spatial resolution of iEEG signal allows the recording of such abnormal, non-

seizure activity that are not visible within the scalp EEG [71], [72].
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Chapter 3

Filter Bank Analysis for Machine

Learning Approach

In this chapter, we have introduced filterbank analysis and some other re-

lated methods, which can be used to the real world signals.

3.1 Multi-band analysis

Filter-banks are used for spectral decomposition and composition of signals,

that are the arrangements of lowpass, bandpass, and highpass filters [73]. In

many mordern signal processing applications such as mobile communica-

tion, speech signal processing, neuroengineering, audio and image coding,

they plays a vital role.

Filter bank can be uniform and non-uniform. In case of uniform filter

banks, the bandwidth and sampling rate of all filters are same. From the

point of view of implementation, uniform filterbank are preferred frequently.

On the otherhand, octave-spaced or wavelet filter bank is one of the popular

example of non-uniform filter bank. In this thesis, to design a framework, we

have used Butterworth filter.
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3.2 Finite impulse response (FIR) filter

FIR filter is a primary type of digital filter whose impulse response remain in

finite duration and it used in signal processing. Suppose that, x[l] is the input

signal and y[l] is the output signal of FIR filter. Then the output sequence of

each value for FIR filter with order L is computed in the following way:

y[l] = w0x[l] + w1x[l − 1] + . . .+ wLNx[l − L] =
L∑
j=0

wj.x[l − j] (3.1)

where wj represents the coefficient of jth instant.

3.3 Infinite impulse response (IIR) filter

IIR filters are usually used when computational resources are at a premium

[74]. Since, the stable, causal IIR filters cannot have perfectly linear phase, so

IIR filters tend to be avoided when linearity of phase is a necessity [74]. These

filters have the feedback and are acquinted as recursive digital filters. For the

same IIR filters have much better frequency response compared to the FIR

filters due to the the recursive part of filter. For the IIR filter, let us consider,

x[l] and y[l] are a input signal and output signal. So the output signal of IIR

filter y[l] can be define as:

y[l] =
1

v0
(w0x[l]+w1x[l−1]+. . .+wRx[l−R]−v1y[l−1]−v2y[l−2]−. . .−vSy[l−S])

(3.2)

where R and S indicates the feedforword and feedback filter order. The wi

and vi are the feedforward and feedback filter coefficients.The eq. (3.2) can
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also be expressed as:

y[l] =
1

v0
(
R∑
j=0

wjx[l − j]−
S∑
k=1

vky[l − k]) (3.3)

where wj and vk are the feedforward and feedback filter coefficients. The

eq. (3.3) can also be compressed as:

S∑
k=0

vky[l − k] =
R∑
j=0

wjx[l − j] (3.4)

To find the transfer function of the filter, taking the Z-transform of each side

of eq. (3.4) and expressed as:

S∑
k=0

vkz
−kY (z) =

R∑
j=0

wjz
−jX(z) (3.5)

So, the transfer function can be define as:

H(z) =
Y (z)

X(z)
=

∑R
j=0wjz

−j∑S
k=0 vkz

−k
(3.6)

In most IIR filter designs, the coefficient v0 is consider as 1. So the more

traditional design of IIR filter transfer function are:

H(z) =
Y (z)

X(z)
=

∑R
j=0wjz

−j

1 +
∑S

k=1 vkz
−k

(3.7)

In this thesis, we have used IIR butterworth band pass filter to design the

framework.

3.4 Discrete wavelet transformation

Discrete wavelet transforms (DWT) are widely used in many epilepsy related

study [75]–[77]. The advantage of DWT over fourier transform is that, it have
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a good time-frequency localization, multirate filtering and scale space analy-

sis [76]. It has the similarity with Fourier transform, but the difference is that

transform decomposes the signal into sines and cosines function localized in

Fourier space. Moreover, there are the similarity between the wavelet trans-

form and Fourier transform, but the main difference is that Fourier transform

decomposes the signal into sines and cosines function localized in Fourier

space. On the other hand, the wavelet transform uses functions that are lo-

calized in both the real and Fourier space [78].

Since window size of WT are variarble, so it provides more flexible way

of time-frequency representation of a signal compared to STFT (short term

Fourier transform). In wavelet transform, long and short time windows are

used to get a low and high frequency information respectively. Thus, it gives

the important frequency and time information for low and high frequencies

and this charactristics makes the WT more appropriate for analysis irregular

data pattern [75].

The discrete wavelet transform (DWT) of a signal x [l] is written as:

Y (a, b) =
∑
l∈z

x [l] Ψa,b [l] (3.8)

Where a represent the dilation or scale, b indicates the translation and

Ψa,b =

(
1√
a

)
Ψ∗
(
l − b
a

)
(3.9)

DWT decomposes a signal into approximate and detail coefficient.

DWT uses high pass filter to analyze high frequency content and low pass

filter for low frequency contents. Signal resolution is changed by filtering

operation. And up sampling and down sampling operations are performed

on signal to change a scale.
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3.5 Empirical mode decomposition

In recent years, empirical mode decomposition (EMD) is gained popularity

in iEEG signal related epilepsy study [79]. EMD is a data dependent decom-

position method that decompose a signal into a set of subband signal and

each subband signal is called the intrinsic mode functions (IMFs). The IMFs

are amplitude and frequency modulated components [80]. EMD is suitable

for analysis of univariate nonstationary and nonlinear signal. [80]. But, for

bivariate or multivariate signal the frequency band of each IMF is not consis-

tant due to applying it independently of each channel of signal. To overcome

the problem, Rilling et al. proposed an extension of EMD to bivariate time

series, namely bivariate empirical mode decomposition (BEMD) that gener-

alizes the rationale underlying EMD to the bivariate framework [81]. BEMD

has been applied in many application such as image segmentation [82], im-

age fusion[83], image watermarking [84], turbine condition monitoring [85],

grinding chatter detection [86] etc. It also have been applied in epilepsy re-

lated study [40].

3.5.1 Bivariate empirical mode decomposition (BEMD)

The BEMD decomposes a multiple signal into a set of band limited intrinsic

mode function (IMFs). For each IMFs, the following two conditions must

satisfies [86]:

* The number of extrema and the number of zero crossings must be equal,

or differ at most by one.

* The mean value of the envelope at any point defined by the local maxima

and the local minima must be zero.
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In addition, BEMD technique need to project a multiple signal on a set of

directions and then requires to apply shifting process to the projected com-

ponents. For a given bivariate signal, s(l) = x(l) + iy(l), the BEMD process

can be describe as follows [86] :

1. A set of projection directions ψu:

ψu = 2uπ/L, 1 ≤ u ≤ L (3.10)

2. Project the complex signal s(l) on directions ψu:

pψu(l) = Re[e−iψus(l)], (3.11)

3. obtain all partial maxima of pψu(l) : (luj , p
u
j ), where j indicates the num-

ber of individual partial maximum points.

4. By cubic spline interpolation, interpolate the set of points (luj , e
−iψupuj )

to obtain the partial envelope curve e−iψu(l) in direction ψu.

5. Steps 2-4 repeat until the envelop curves in all L projections are at-

tained.

6. For all envelops curves, calculate the average:

ū(l) =
1

L

L∑
r=1

er(l) (3.12)

7. To obtain f(l), subtract the mean ū(l) from s(l):

f(l) = s(l)− ū(l) (3.13)
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8. Test whether the f(l) is an IMF or not. If f(l) is not IMF, then replace

s(l) with f(l) and repeat the Step from 2 to 7 until f(l) is an IMF. When

f(l) satisfies the IMF condition then:

c1(l) = f(l) (3.14)

and residual signal r1(l) as:

r1(l) = s(l)− c1(l). (3.15)

9. To find the second IMF c2(l), consider r1(l) as the original signal and re-

peat the above procedure until it satisfies IMF condition. After getting

the second IMF, the residual component r2(l) = r1(l)− c2(l).

10. Repeat all the previous steps until all IMFs are obtained.

For a signal s(l), the BEMD can be expressed by the procedure:

s(l) =
n∑
k=1

hk(l) + rn(l) (3.16)

where hk(l)denotes the kth IMF and rn(l) denotes a non-zero mean low-

degree polynomial residue.

3.6 Limitation of methods to design ML based multi-

band analysis

The wavelet and EMD based multivariate approach are appropriate for non-

linear and non stationary EEG signal, because they are fully data adaptive

and extract more useful information across space, time and frequency. But,

all of these methods have some limitations for machine learning approach:
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1. For both train and test set, these methods do not insure the same bands

of the components.

2. The computational cost is high compared to the filter bank approach.

3. These methods increase the system complexity.

4. For real time implementation, multiband filter bank approach are more

appropriate compared to other methods.

Considering the advantage of filter bank approach over wavelet, EMD, BEMD

and MEMD, this thesis has proposed the filter-bank approach to detect the

SOZ electrodes through the machine learning methods.

3.6.1 Linear discriminant analysis

Linear discriminant analysis (LDA) [87]–[89] is a supervised subspace learn-

ing method used for dimensionality reduction and classification. The aim

of this methods is to maximize the between-class scatter matrix and within-

class scatter matrix. It find the linear transformation υ ∈ Rd×l and maps yj in

the d-dimensional space to a l-dimensional space. Mathematically, it can be

expressed as [90]:

arg max
w

tr
((
υTSwυ

)−1 (
υTSbυ

))
(3.17)

where Sb represent the between-class scatter matrix and Sw indicates the

and within-class scatter matrix. The Sw and Sb can be defined as:

Sb =
c∑

k=1

nk (µk − µ) ((µk − µ)T , (3.18)

Sw =
c∑

k=1

∑
j∈Ck

(yj − µk) ((yj − µk)T , (3.19)
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whereCk is the k-th class index, µk is the mean vector and nk represent the

size of k-th class. in the input data space, Y. By using eq. (3.18) and eq. (3.19)

we get:

arg max
w

tr
((
υTStυ

)−1 (
υTSbυ

))
(3.20)

where St represent the total scatter matrix which is define as:

St =
n∑
j=1

(yj − µ) (yj − µ)T (3.21)

Note that, St = Sw + Sb.
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Chapter 4

Entropy-based Feature-extraction

Method for Identification of SOZ

Electrodes based on High-

frequency Components in

Interictal iEEG

In this chapter, we have discussed about the detection of seizure onset zone

(SOZ) using multi-band entropy-based features with machine learning in

high frequency components of interictal clinical iEEG. Considering the noise-

robust features and the diminishing of design complexity, the multi-band

feature extraction method has a great possibility as the basis for designing a

computer aided method for identifying SOZ electrodes. In this chapter, we

have discussed about the proposed design architecture in Sec. 4.1. It includes

the dataset, focal cortical dysplasia (FCD), multiband analysis and entropy

based feature extraction methods. We have discussed about the the feature

selection and imbalanced learning problem in Sec. 4.2 and 4.3 respectively.

Evaluation part is introduced in Sec. 4.4. Finally experimental result and dis-

cussion are presented in Sec. 4.5 and Sec. 4.6.
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4.1 Proposed design architecture

In this section, we have discussed about the architecture of our proposed de-

sign shown in Fig. 4.1. The multi-channel interictal iEEG data are recorded

for at least three days until an adequate number of habitual seizures were ob-

tained for analyzing. Among them, to design the SOZ detection framework,

we have used only 30-minutes of interictal iEEG signal. As a preprocess-

ing step, we have splitted the 30-mins interictal iEEG signal into 20-s seg-

ments resulting in total 90 segments. Then a third-order Butterworth band-

pass fitter are applied to extract the high-frequency components (100–600 Hz)

from each interictal iEEG segment. Considering the design performance as

well as the reduction of the complexity, we have divided the high-frequency

bands, including ripple (100–250 Hz) and fast ripple (250–600 Hz), into 10

subbands, each of which has a band width of 50 Hz. The subbands are la-

beled as S1, S2, . . . , SL, where L is the total number of subbands (L = 10).

After that, we have used the eight entropy based feature extraction meth-

ods to extract features from each subbands. After extracting features from

each subbands, feature selection method such as sparse linear discriminant

analysis is applied to select the prominent features. Finally, we have concate-

nated the subbands and selected features for classifying SOZ and non-SOZ

channels using SVM classifier based hard thresholding.

4.1.1 Dataset

In this study, eight patients data are collected from Juntendo University Hos-

pital in Tokyo, Japan that was approved by the ethics committee of Juntendo

University Hospital as well as the Tokyo University of Agriculture and Tech-

nology, Tokyo Japan. All process are accomplished in accordance with rele-

vant guidelines and act. All the patients are signed the informed consent for

a research protocol. During the pre-surgical evaluation, several non-invasive
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FIGURE 4.1: The different components of the proposed design
for SOZ electrodes identification.

pathology protocols, for example seizure semiological evaluation, interictal

scalp EEG, MRI, molecular imaging, and psychomotor-development testing,

are done to obtain the electrode locations (SOZ) for each patient. Video-EEG

monitoring was also reported for drug-resistant epilepsy patients as a pre-

surgical evaluation.

The subdural electrodes (4-mm diameter and 10-mm distance) (UNIQUE

MEDICAL Co, Tokyo, Japan) were put in and covered almost the whole sur-

face on the FCD and the adjacent cortex. In patients with the bottom of sulcus

(BOS) type of dysplasia, the surgeon dissected the cortical sulcus and im-

planted small electrodes on the vertical sulcus. The Neuro Fax digital video

EEG system (NIHON-KODEN, Tokyo, Japan) were used to obtained the in-

terictal iEEG data where the sampling rate of each patients was 2 kHz. The

number of electrodes were determined for each patient based on an epileptol-

ogist's review during data recording where a positive label was assigned to

a channel judged to a seizure onset electrode (SOZ) and a negative label was

given to the rest of the channels (non-SOZ). Table 4.1 shows the summary of

the interictal iEEG dataset from the eight patients.
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TABLE 4.1: The summary of eight patient datasets of interic-
tal iEEG with focal cortical dysplasia (FCD). M and F represent

respectively the male and female.

Patients
ID

Age and
sex Lesion site Location Pathology Sampling

frequency
No. of

electrodes

No. of
SOZ

electrodes
Follow up Engel

Pt1 5/F Lt dorsal
superior temporal gyrus

Cortical
surface Type 2B 2 KHz 60 3 3 years IA

Pt2 39/F Lt dorsal
superior frontal gyrus

Bottom of
sulcus Type 2B 2 KHz 50 10 3 years IA

Pt3 5/M Lt cingulate gyrus Bottom of
sulcus Type 2B 2 KHz 42 6 3.5 years IA

Pt4 6/M Rt dorsal
middle frontal gyrus

Cortical
surface Type 2B 2 KHz 36 3 3.5 years IA

Pt5 20/M Rt middle frontal gyrus Cortical
surface Type 2A 2 KHz 60 6 4.5 years IIIA

Pt6 15/M Lt superior
parietal lobule

Cortical
surface Type 2B 2 KHz 70 7 5 years IA

Pt7 32/M Lt superior
parietal lobule

Bottom of
sulcus Type 2B 2 KHz 70 10 5 years IA

Pt8 25/M Lt angular gyrus Bottom of
sulcus Type 2A 2 KHz 76 16 5 years IA

4.1.2 Focal cortical dysplasia (FCD)

In this analysis, we have used the focal cortical dysplasia (FCD) type data.

FCD refers to the localized area of abnormal cerebral cortex that are most

often associate to patients with epilepsy in both children and adults. For di-

agnosis of FCD, a wide spectrum of histopathology are used [91]. In FCD, the

sites of interictal epileptiform discharges (IED) including spikes, polyspikes,

sharp waves etc. appearance and seizure initiation are centered on imaging

sites. Moreover, different studies are reported that, there are a high seizure

suppression rate in FCD type 2 by excising the abnormal imaging sites.

4.1.3 Multiband analysis

In practice, the EEG time series exhibits nonstationary behavior with a vari-

ety of neurological events which may hold artifact that can reduce the system

performance in a single-band approach. Therefore, a filter bank was applied

to decompose an EEG signal into a set of multiple subband signals. [73],

[92]. For more accurate detection of brain activities connected to the particu-

lar mental tasks, several EEG based studies [93]–[95] proposed the filter-bank
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method that splitted the wide frequency ranges in narrow subbands. More

specific, Higashi et al. showed a filter-bank approach in their MI-BCI studies

to improve the performance of the system. They divided the 4–40 Hz fre-

quency ranges into 6 subbands each of which has a bandwidth of 6 Hz [96].

Ang et al. decomposed the similar frequency ranges (4–40 Hz) into small sub-

bands each of which has a bandwidth of 4 Hz [93]. In signal processing study,

the choice of subbands should be as narrow as possible to achieve more ac-

curate detection similar to these EEG-BCI [93]–[96]. Therefore, the choice of

dividing the wide ranging frequency bands into narrow subbands actually

relates to the system performance, real-time applications and reduction of

system complexity [40], [94], [97].

4.1.4 Entropy based feature extraction methods

To extract features characterizing the complexities of a time-series from in-

terictal iEEG signals, different entropy-based methods are available. Several

epilepsy related studies has been reported [39], [79] that the combination of

various entropy based feature extraction methods can improve the classifi-

cation performance. Therefore, the eight entropy based feature extraction

methods with a multi-band approach was chosen to extract features in this

study. The details of the eight entropy measures used in this study are sum-

marized in the following sections.

4.1.4.1. Approximate entropy

Pincus et al. first introduced the approximate entropy (APE) for measure-

ment of regularity in the time-series [98]. It is broadly used in many fields

of biomedical signal processing, such as EEG [99] and ECG signal analysis

[100]. To calculate the APE from each segment, let us define a time series as
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x(i) of the n-th subbands Sn of each channel. The time series x(i) can be de-

fined N −d+ 1 vectors as X(1), X(2), . . . , X(N −d+ 1), where N is the signal

length (in our case N = 40000 for each channel of a segment). Each vector

X(i), can be represented as:

X(i) = [x(i), x(i+ 1), . . . , x(i+ d− 1)] ∈ IRd, (4.1)

where d is the embedding dimension and for each i, 1 ≤ i ≤ N − d + 1. APE

is defined as:

APE(d, r,N) =
1

N − d+ 1

N−d+1∑
i−1

ln(Cd
i (r))− 1

N − d

N−d∑
i−1

ln(Cd+1
i (r)), (4.2)

whereCd
i (r) is a correlation integral representing the probability of the vector

X(i), which remains similar to X(j) within tolerance limit r. The Cd
i (r) is

defined as [101], [102]:

Cd
i (r) =

1

(N − d+ 1)

N−d+1∑
j=1

I (dist(X(i)−X(j)) ≤ r) , (4.3)

where I(·) is the indicator function and the dist(·) indicates the distance be-

tween two vectors X(i) and X(j). In our study, the value of the r parameter

is set as the 0.2 times the standard deviation of the signal, and d = 2 [98].

4.1.4.2. Sample entropy

Sample entropy (Sp) is a modified version of approximate entropy (APE)

and it is introduced to resolve the problem of APE [103]. The main disad-

vantage of APE is a biased estimate because of self-matches of templates.

Sample entropy diminish the bias caused by the usege of the self matches in



4.1. Proposed design architecture 39

the count of APE [103]. For a given time series x(i), Sp is defined as:

Sp(d, r,N) = − ln

(
Ad(r)

Bd(r)

)
, (4.4)

where

Bd (r) =
1

(N − d)

N−d∑
i=1

Cd
i (r) , (4.5)

Ad (r) =
1

(N − d)

N−d∑
i=1

Cd+1
i (r) . (4.6)

The Cd
i (r) is defined as [101], [102]:

Cd
i (r) =

1

(N − d)

N−d∑
j=1

I (dist(X(i)−X(j)) ≤ r) , (4.7)

where X(i) is a vector induced from eq. (4.1) and I(·) is the indication func-

tion to count the true condition number excluding the self-matches

I (dist(X(i)−X(i)) = 0 ≤ r) [98]. In this study, the parameters r and d were

set to the similar to the approximate entropy.

4.1.4.3. Permutation entropy

Permutation entropy (PE) is a simple and robust method for estimating the

complexity of a time series used for automated seizure prediction [104]. For

a given time series x(i), each vector X(i) = [x(i), x(i+ τ), . . . , x(i+ (d− 1)τ)],

where the d and τ are the embedding dimension and time lag, respectively.

Let us define a permutation of [1, 2, . . . , d] by Π = [j1, j2, . . . , jd] in such a way

that x(i+ (j1 − 1)τ) ≤ x(i+ (j2 − 1)τ) ≤ . . . ≤ x(i+ (jd − 1)τ). Then, we can

define X̃(i) = [x(i + (j1 − 1)τ), x(i + (j2 − 1)τ), . . . , x(i + (jd − 1)τ)]. For the

set of vectors {X(i)}N−(d−1)τi=0 , the probability of each possible permutation Πk

(k = 1, 2, . . . , d!) can be introduced as p(Πk) = C(Πk)/(N − (d − 1)τ), where

N is the length of time series x(i) and C(Πk) is the number of occurrences of
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the order pattern Πk. The PE can be defined as:

PE = −
d!∑
k=1

p(Πk) log2 p(Πk), (4.8)

In this study, the parameters d and τ were set to 3 and 1, respectively.

4.1.4.4. Spectral entropy

Spectral entropies quantify the complexity of a time series based on the power

spectrum [105]. Several studies have proposed the use of spectral entropy, in-

cluding Shannon (Sh) and Reny’s entropy (Ren), to characterize the seizure

activities [105]–[107]. To obtain the power level for each frequency, the Fourier

transform of the time series x(i) is used. The normalization of the power pf

was estimated as:

pf =
Pf∑
Pf
, (4.9)

where Pf is the power level of the frequency component. The entropies de-

fined as Sh and Ren are estimated in follows [105]:

Sh = −
∑
f

pf ln(pf ), (4.10)

Ren (α) =
1

1− α
∑
f

ln p2f , (4.11)

where α is the order of Reny’s entropy (α = 2).

4.1.4.5. Phase entropy

Phase entropies are defined through a bispectrum known as higher order

spectra [108]. The bispectrum of a time series x(i) can be defined as:

B(f1, f2) = E[F (f1)F (f2)F
∗ (f1 + f2)], (4.12)
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where E represents the expectation operator of a random variable. The F is

the Fourier transform of the time series x(i) and F ∗ is its conjugate. The two

types of phase entropy, S1 and S2, can be defined as:

S1 = −
∑
k

pk ln (pk) (4.13)

S2 = −
∑
r

qr ln (qr) (4.14)

where pk = |B(f1,f2)|∑
Ω∈f1,f2

|B(f1,f2)| and qr = |B(f1,f2)|2∑
Ω∈f1,f2

|B(f1,f2)|2
.

4.1.4.6. Tsallis entropy

Tsallis entropy is the generalized version of Shannon entropy and controls

the trade off between the contributions from the tails and the main mass of

the distribution [109]. Tsallis entropy is defined as [109]:

Ts =
1−

∑
f p

q
f

q − 1
, (4.15)

where pf is the normalization of power computed from the eq. (4.9) and q

is a real number, frequently called the entropic-index, that characterizes the

degree of non-extensivity of the framework [109], [110]. In this study, we set

q = 2.

4.2 Features selection

In machine learning approach, one of the challenging issues is the selection

of prominent features from all the available feature space [95], [111]–[113].

The selection of entropy features could provide a more accurate classification

with respect to the entire set of features. Sparse LDA (sLDA) is a recently

advanced feature selection technique [114], [115], that disclose discriminant

directions of a few variables instead of all the variables used in the standard
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LDA [116], [117]. In our study, we have used sLDA to select the prominent

entropy features. After extracting entropy features from an interictal iEEG

segment, the entropies of n-th subband for a channel can be expressed as:

vn = [u(1)n , u(2)n , . . . , u(D)
n ] ∈ IRD (4.16)

where vn denotes the combination of entropies (D = 8) extracted from the

n-th subband of a channel using the above feature-extraction methods. We

can calculate the entropies for all channels with each segment and finally

stacked all of the segments to form the training features Mn ∈ IRH×D, where

H = ch×s such that ch and s are the total number of channels and segments,

respectively. The sparse LDA criterion from the set of the training features

Mn and class Cn for n-th subband is defined sequentially as [118]:

{
θ̂n, β̂n

}
= arg min

θn,βn
‖Cnθn −Mnβn‖22 + δ ‖βn‖22 + δ1 ‖βn‖1

subject to
1

H
θnC

T
nCnθn = 1 (4.17)

where θn = (1, 1)T is the initialization vector. The δ and δ1 are tuning param-

eters used to achieve non-zero elements in each discriminative direction. By

solving eq. (4.17), we will achieve the β̂n = [β̂
(1)
n , β̂

(2)
n , . . . , β̂

(D)
n ]T . The parame-

ters δ and δ1 were tuned such that β̂n has G non-zero elements. Let us define

the index of the β̂n as In =
{
i, 1 ≤ i ≤ D|β̂(i)

n 6= 0
}

. The features ṽn for n-th

subband with a channel can be defined as:

ṽn = [uIn(1)n , uIn(2)n , . . . , uIn(G)
n ] ∈ IRG (4.18)

Finally, feature V∗ is defined by concatenating features ṽn of L subbands for

a channel as:

V∗ = [ṽ1, ṽ2, . . . , ṽL] ∈ IRLG (4.19)
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After applying sLDA, the selected training features for L subbands can be

written as:

ν =
{
v
∗(iin)
F ,v

∗(jin)
NF : iin = 1, . . . , Iin; jin = 1, . . . , Jin

}
(4.20)

The feature vector of the iin-th sample of SOZ channel is denoted by v
∗(iin)
F

and the feature vector of the jin-th sample of non-SOZ channel is denoted by

v
∗(jin)
NF . Note that the dataset is generally imbalanced say Iin << Jin.

4.3 Imbalanced learning problem

In case of seizure onset zone detection, the number of non-SOZ channels il-

lustrating the majority class is much higher than the SOZ channels (minority

class). This imbalance class distribution can create several difficulties in stan-

dard machine learning approachs [119]–[121]. Therefore, imbalanced learn-

ing applications requires the modification of an imbalanced data set with

some mechanisms in sequence to provide a balanced distribution. Several

recent studies [119]–[122] have shown that a balanced data set with various

base classifiers provides for improved classification performance in contrast

to an imbalanced data set. In this section, we generate surrogate data using

the adaptive synthetic (ADASYN) approach, which is one of the solutions

used to solve the imbalanced learning problem. The balance set ν̃ can be

defined from the training feature set ν induced from eq. (20) as:

ν̃ =
{
v
∗(iin)
F ,v

∗(jin)
NF ,v

∗(̃iin)
F : iin = 1, . . . , Iin; jin = 1, . . . , Jin; ĩin = 1, . . . , Ĩin

}
,

(4.21)

where, Iin + Ĩin = Jin. The following algorithm, proposed by He et al. [119],

[120], is employed here to generate surrogate samples v∗(̃iin)F .
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Step 1 Calculate the number of synthetic data examples that need to be gen-

erated for the entire focal class by:

Ĩin = (Jin − Iin)× β (4.22)

The β represents an arbitrary number in the range of 0 to 1 to specify the

desired balance level after the synthetic data generation process. We set

the β in eq. (4.22) to 1, which corresponds to fully balanced data [119].

Step 2 For each example v
∗(iin)
F in the focal class, find the K-nearest neigh-

bors according to the Euclidean distance and calculate the ratio Γiin as

follows:

Γiin =
Θjin/K

Z
, iin = 1, 2, . . . , Iin, (4.23)

where Θjin is the number of samples in theK-nearest neighbor of v∗(jin)N F

that belong to the non-focal class and Z is a normalization factor such

that Γiin is a distribution function (
∑

iin
Γiin = 1).

Step 3 Determine the number of synthetic samples to be generated for each

v
∗(iin)
F in the focal class as:

giin = Γiin × Ĩin (4.24)

Step 4 Generate giin synthetic data samples for each sample of focal class

using SMOTE algorithm [123] as:

v
∗(̃iin)
F = v

∗(iin)
F + (ṽ

∗(iin)
F − v

∗(iin)
F )× δ (4.25)

where ṽ
∗(iin)
F is a randomly chosen focal data example from the K-nearest

neighbors (K = 5) for v∗(iin)F and δ denotes the random number belonging to
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TABLE 4.2: Confusion matrix for a two-class problem.

Predicted positive Predicted negative
Actual positive TP: True Positive FN: False Negative
Actual negative FP: False Positive TN: True Negative

[0,1]. The other parameters for ADASYN were used as default setting [119].

4.4 Methodological framework evaluation

4.4.1 Cross-validation design

To evaluate the proposed design, we have divided the data into training and

test sets, which is the critical step due to an imbalanced number of SOZ and

non-SOZ channels. To optimally divide the data into training and test sets,

this study proposes k-fold cross-validation technique (k = 10) by dividing

90 segments into k subsets of equal size. Among the k subsets, one subset

is used for testing and the remaining (k − 1) subsets are used for training.

As mentioned that, ADASYN was applied to balance the data in the training

strage. The cross-validation process is then repeated k times and the result of

a system is taken by averaging all the runs.

4.4.2 Performance measurement for segments

To measure the pergformance of our proposed design, a set of assessment

metrics related to receiver operating characteristics (ROC) [124] graphs were

used. Under the imbalanced learning case, the classification accuracy is not

adequate as a standard performance measurement. [124]–[127]. Therefore,

the representation of classification performance can be derived from the con-

fusion matrix, as illustrated in Table 4.2. Based on this table, the evaluation

metrics can be expressed as:
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• Sensitivity (SEN) or recall:

SEN =
TP

TP + FN
× 100%, (4.26)

where TP is the number of correctly detected segments from the total

number of SOZ segments in the SOZ channels and FN indicates the

number of correctly detected segments from the total number of non-

SOZ segments in the non-SOZ channels.

• Specificity (SPE):

SPE =
TN

TN + FP
× 100%, (4.27)

where TN is the number of correctly detected segments from the total

number of non-SOZ segments in the non-SOZ channels and FP repre-

sents the number of incorrectly detected segments from the total num-

ber of non-SOZ segments in the non-SOZ channels.

• Precision or positive predictive value (PPV):

Precision =
TP

TP + FP
× 100% (4.28)

• Fall-out or false positive rate (FPR):

FPR =
FP

TN + FP
× 100% (4.29)

• F1 score is the harmonic mean of preision and sensitivity defined as:

F1 score = 2 · Recall × precision
Recall + precision

(4.30)
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4.4.3 Performance measurement for channels

. For each-fold cross validation, the sensitivity (SEN) and false positive rate

(FPR) of the channels were calculated do with each threshold values (in our

case, zero to maximum number of identified SOZ segments for each fold).

After acquiring SEN and FPR of all channels we calculated the AUC by us-

ing trapezoid rule [128] and average of all the folds to attain the final results.

4.5 Experimental result

To measure the performance of the system, firstly the AUC of three different

methods such as filter-bank approach (FbA), FbA with ADASYN (FbA/ADA),

and FbA with feature selection and ADASYN (FbA/FS/ADA) were com-

pared with 10-fold cross validation. Secondly, based on the performances of

AUC, the optimum one was selected and used to simulate the result of eight

epilepsy patients. The three different proposed algorithms were shortly brief

as follows:

Algorithm 1- (FbA): In this algorithm, L (L=10) bandpass filters were im-

plemented using a third-order Butterworth bandpass filter to subband

the high-frequency components (100–600 Hz) in interictal iEEG signal.

Then eight entropy based feature extraction methods were applied to

extract features from each subbands. After that, the extracted features

were input to SVM classifier with a 10-fold cross-validation for classi-

fying the SOZ and non-SOZ segments.

Algorithm 2-(FbA/ADA): In this case, subbanding and feature extraction pro-

cedure were performed in the same way as in Algorithm 1. ADASYN

method was applied in the training stage of the SVM classifier for each

cross-validation to deal with the the imbalanced learning problem.
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Algorithm 3-(FbA/FS/ADA): The N bandpass filters and feature extraction

were accomplished in the same way as in Algorithm 1. In this algo-

rithm, sparse LDA was used to select the prominent entropy features

among all eight entropy features. Finally, the selected entropy features

were used for classifying SOZ segments with SVM classifier. As men-

tion that, the ADASYN method was also used the same purpose de-

scribed in Algorithm 2.

4.5.1 Effect of feature selection.

In this studies, we used eight entropy based feature extraction methods to ex-

tract features from each subband defined in eq. (4.16). Among eight entropy

features, we select the prominent entropy features by using sLDA weights

from the training set showed in eq. (4.17) based on non-zero weights from

each subband. In our study, we set the sparsity parameters δ = 3 and δ1

(Pt1: δ1 = −5; Pt2: δ1 = −5; Pt3: δ1 = −3; Pt4: δ1 = −5; Pt5: δ1 = −3; Pt6:

δ1 = −4; Pt7: δ1 = −6; Pt8: δ1 = −3) based on the training set to improve

the results, where the absolute value of δ1 corresponds to the desired number

of variables. Fig. 4.2 shows the colormap of sLDA weights of each entropy

features for all eight patients where vertical-axis represents the sLDA weight

for each subband and horizontal-axis represent the weights of each entopy

features. The figure indicates that the features with non-zero weights are

more significant. To justify this hypothesis, AUC area under the ROC curve

was derived with 10-fold cross-validation from individual entropy features,

as well as the average weights across N subbands, were estimated, as illus-

trated in Fig. 4.3. This figure shows the relationship between the weights of

entropies and the AUC of individual entropies suggesting that the entropies

with non-zero weights may improve the design performance. For perfor-

mance evaluation, entropy features corresponding to non-zero weights were
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selected for the purpose of SOZ and non-SOZ classification.

4.5.2 Performance analysis with different cases.

To evaluate the performance in three algorithms

(FbA, FbA/ADA, and FbA/FS/ADA), the AUC was performed for eight pa-

tients shown in Fig. 4.4. In case of imbalanced learning , the AUC is equiva-

lent to the possibility of ranking a randomly selected positive instance higher

than a randomly chosen negative instance [124].

In this study, we set all parameter for ADASYN following the study [119]

to balance the training features. The AUC for the algorithm FbA/ADA with

feature selection exhibits superior results for all eight patients. The reason for

lower performance using the FbA method is that the high degree of imbal-

ance distribution between the minority (focal segments) and majority (non-

focal segments) class may provide biased decision boundary used in SVM

training. In the test of the statistical significance of the methods, the re-

sult of Friedman’s ANOVA showed a significant main effect on AUC (p <

0.05). Performing a tukey-kramer-based post-hoc test, the method using

FbA/FS/ADA achieved significantly higher AUC across all eight patients

than the other methods (FbA vs FbA/ADA: p < 0.001; FbA/ADA vs FbA/FS/ADA:

p < 0.001).

4.5.3 Results with SOZ segments-spotting.

Automatic identification of individual SOZ segments of eight epilepsy pa-

tients based on the optimal algorithm (FbA/FS/ADA) is provided in this

section. The result showed that the selection of useful entropy features with

combination of oversampling methods can significantly improve the perfor-

mance of proposed SOZ detection design. However, we are the first time to

used high frequency components (100–600 Hz) to detect SOZ segments from
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TABLE 4.3: Experimental results for segment detection using
our proposed optimal method (FbA/FS/ADA).

Patient
ID

SEN
[%]

SPE
[%]

Precision
[%]

Fall-out
[%]

F-
score

Pt1 52.96 97.13 49.31 2.87 0.51
Pt2 27.33 92.83 47.88 7.17 0.34
Pt3 51.67 76.98 27.22 23.03 0.36
Pt4 62.96 86.19 29.31 13.80 0.40
Pt5 61.11 95.62 60.77 4.39 0.61
Pt6 96.82 91.83 56.85 8.16 0.72
Pt7 65.33 94.93 68.21 5.07 0.67
Pt8 86.31 99.33 97.18 0.67 0.91

Mean 63.03 91.85 54.59 8.15 0.57

interictal iEEG signal. Like other different HFOs- and low frequency-based

related studies [4], [30], [51], [129]–[133] the performances were measured in

terms of sensitivity, specificity, precision, fall-out, F-score shown in Table 4.3.

From this table it has been observed that, the proposed method achieved

the highest performance for localizing individual segments for the adult pa-

tients Pt5 (SEN: 61.11%; Fall-out: 4.39%), Pt6 (SEN: 96.82%; Fall-out: 8.16%),

and Pt8 (SEN: 86.31%; Fall-out: 0.67%). According to the different studies

[134]–[136], we also consider the positive likelihood ratios (PLRs) to evaluate

the performance of our proposed design framework. The acquired PLRs for

the adult patients (Pt5, Pt6, and Pt8) are 13.92, 11.16, and 78.46, respectively.

For the deep sheeted patients (Pt2 and Pt7), the surgeon implanted the small

electrodes vertically on the sulcus. The sensitivity and Fall-out of Pt2 (SEN:

27.33%; Fall-out: 7.17%) and Pt7 (SEN: 65.33%; fall-out: 5.07%) and the PLRs

are 3.81 and 12.88 for patients Pt2 and Pt7, respectively. In case of pediatric

patients, the sensitivity and fall-out are Pt1 (SEN: 52.96%; Fall-out: 2.87%),

Pt3 (SEN: 51.67%; Fall-out: 23.03%), and Pt4 (SEN: 62.96%; Fall-out: 13.80%).

For Pt1, Pt3, and Pt4, the positive likelihood ratios (PLRs) are 18.45, 2.24, and

4.56 respectively.
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4.5.4 Results with channel identification.

Fig. 4.5 shows the graphical representation with the detection of the SOZ

and non-SOZ segments, which assist the specialist of epilepsy in two ways:

(1) to visualize the detection of the SOZ and non-SOZ segments over du-

ration of the interictal iEEG, and (2) the number of detected SOZ segments

corresponding to the SOZ and non-SOZ electrodes. This provides effective

information about the active electrodes, that are closely located to the SOZ.

From this figure, the y axis in the color map (left) illustrates the electrodes

and the x-axis indicates the segment index. Each yellow spot in the color map

indicates the detected SOZ segments. For each patient, the right side of the

color map represent the number of detected SOZ segments (horizontal-axis)

in each channel (vertical-axis) in which a group of bars (yellow) indicate the

SOZ channels and black bars without color represent the non-SOZ channels.

It is observed from the Fig. 4.5 that, a sharp yellow spotted areas are clearly

visible for each SOZ electrode for the patients Pt1, Pt5, Pt6, Pt7 and Pt8. The

detected SOZ segments (yellow spot) for the patients of Pt2, Pt3 and Pt4 are

distributed through the non-SOZ electrodes. Fig. 4.6) shows the receiver op-

erating characteristic (ROC) curve with the AUC value for each patient that

are measured across all possible thresholds based on localized SOZ segments

in the SOZ and non-SOZ channels (see in Fig. 4.5)

4.5.5 Computational time

The average computational time for each entropy with 10 subbands are mea-

sured using Python on iMac Pro (with Intel Xeon W processor and 128 GB

RAM). Note that the average results are estimated with 100 runs at the testing

phase to detect a single segment. Table. 4.4 shows the mean computational

time (in seconds) at each entropy with 10 subbands. It is observed that, the

phase entropy requires the highest computational time. The entropy with
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TABLE 4.4: The mean computational time (s) for each entropy
with 10 subbands.

Methods APE PE Sh Sp Ts Phase
(S1 and S2) Ren Total

Time (s)
time (s) 12.40 0.032 0.010 12.40 0.008 31.66 0.008 56.51

Ts, Ren, Sh, and PE requires shorter time compared to others. For a single

segment test, the average computational time with eight entropies and 10

subbands are 56.51 s.

4.6 Discussion

According to the clinical guidelines involved to epilepsy surgery, the epilepsy

surgeon need to consider implanting the intracranial electrodes to observe

the seizure onset zone (SOZ), irritative zone, and symptomatic zone before

the epileptic focus resection. The removed area of the brain through the

epilepsy surgery includes epileptic zone (SOZ, a part of irritable zone and

symptomatic zone). To determine the epileptic SOZ electrodes, the epilepsy

specialist need to analyze and label 3 to 7 days iEEG data that depend on

the patients conditions. In our proposed patient-dependent design, to detect

the SOZ electrodes, we have used only label 30-minutes labeled interictal

iEEG data to localize the epileptic SOZ electrodes. Such type of detection or

estimation of SOZ from short period of interictal recording provide epilep-

tologists a great assistance and can increase the number of iEEG analysis for

patients with intractable epilepsy.

There are several epilepsy related studies that has been reported in [30],

[132]. Most of these studies have used Bern-Barcelona and Bonn EEG datasets

for classifying epilepsy seizure or epileptic focus. For example, Mursalin

et al. presented an automated epileptic seizure detection approach with im-

proved correlation-based feature selection and random forest classifier (RFC)

[137]. They used Bonn datasets and the average accuracy of their study was
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of 98.44%. About the the Bonn datasets, it consists of five EEG datasets rep-

resented as Set A (normal: healthy awake and eyes open), Set B (normal:

healthy awake and eyes closed), Set C (epileptic: interictal), Set D (epileptic:

interictal), and Set E (epileptic: ictal) with 100 single-channels and the time

duration of each channel was 23.6 s.

In another study [138], wavelet packet entropy and hierarchical EEG clas-

sification were introduced for classifying normal vs ictal EEG and the aver-

age accuracy was 99.44%. A method based on discrete wavelet transforms

(DWT) using entropy features was proposed, leading to a classification ac-

curacy of 84% using k-nearest neighbor (kNN), probabilistic neural network

(PNN), fuzzy classifier, and least squares support vector machine (LS-SVM)

[139]. There are also other EEG and iEEG datasets such as Friburg [133],

CHB-MIT [4], Children’s Hospital Boston datasets [140] etc. were used to de-

tect the epileptic events based on different machine learning approaches.

Recently, Ullah et al. have used the Bonn datasets to detect the epilepsy

seizure based on deep learning approach and the classification accuracy of

their proposed study was 99.1% accuracy [38]. A similar dataset was used

to design a deep convolutional neural network (CNN) with 13-layer for cat-

egorizing the normal, preictal, and seizure class and acquired an average ac-

curacy of 88.7%, a specificity of 90% and a sensitivity of 95% [141]. Basically,

the deep-learning based systems have improved the performance compared

to simpler classier (k-NN, SVM etc.), but to showed the remarkable perfor-

mance of these deep learning based system needs a large amount of training

data. On contrary to the deep learning, the simple classifier method (SVM) is

easy to understand and provides consistent performances. In another stud-

ies, Itakura et al. [40] used Bern-Barcelona dataset for identifying epileptic

focus with average accuracy was 86.89%. However, the limitation all of the

above studied was that, they used only lower frequency bands (0.5–150 Hz)

for limited pairs of electrodes with well balanced problems.
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For detecting epileptogenic zone or seizure onset zone, several studies

[46], [142]–[144] have shown that, HFO may occur during ictal, preictal, and

interictal states and the rate of HFOs tends to be higher in those zones [48],

[144]. To identify the HFOs, several studies have proposed different methods

such as artifact rejection, estimating the energy of the signal using root mean

square (RMS) amplitude, short-time line-length or others [145]–[148]. For au-

tomatic detection of HFOs, Jrad et al. [149] have proposed multi-class SVM

in depth-EEG signals. For performance evaluation, they used sensitivity and

false discovery rate (FDR) and their acquired average result with five drug-

resistant epilepsy for ripple (sensitivity: 81.1% and FDR: 30.2%) and fast rip-

ple (sensitivity: 74.6% and FDR: 6.3%). Johansen et al. have proposed CNN

methods for detecting spikes as well as HFOs and an average AUC with five

epilepsy patients was 0.94. Zuo et al. [51] introduced the convolution neural

network based method for detecting the HFOs in ripple and fast ripple sep-

arately and attained average results with sensitivity (77.04% and 83.23% for

ripples) and specificity (72.27% and 79.36% for fast ripples) compared their

study to four traditional automated methods proposed in the RIPPLELAB

toolbox [52]. Recently another study [150] proposed HFOs identifying sys-

tem with the combination of short-time energy (STE) and CNN classifier. For

system performance measurement, they used sensitivity and FDR evalua-

tion matrix and compared their proposed method with three related existing

studies [52], [134], [149]. They used five adult patients and their acquired av-

erage accuracy for ripple (sensitivity: 81.1% and FDR: 30.2%) and fast ripple

(sensitivity: 74.6% and FDR: 6.3%).

However, all of the above HFOs related epilepsy studies have mainly

concentrated on the detection of HFOs in ripple and fast ripple iEEG data

and the performance evaluation metrics of their proposed studies were usu-

ally used based on their balanced or imbalanced problems. In addition, for

HFOs-related studies to identify the feasible seizure onset electrodes require
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the long-time iEEG data to compute the baseline. Compared to the above

HFOs-related studies, we used only 30-minutes of interictal iEEG data and

combined the ripple and fast ripple bands together with the multi-band fash-

ion to detect the channels related to SOZ . The average sensitivity, specificity,

and fall-out of our proposed design for individual segment detection with

eight patients was 52.70%, 90.75%, and 9.24%, respectively. The average AUC

for identifying SOZ channels for all eight patients (Pt1: 0.90 , Pt2: 0.79 , Pt3:

0.71, Pt4: 0.79, Pt5: 0.96 , Pt6: 0.94 , Pt7: 0.81 , Pt8: 99 ) was 0.86.

In order to accomplish a more effective methodological framework for

real-life applications, we have considered further improvements in the fol-

lowing directions. First, we used 30-mins of interictal iEEG signal for de-

tecting SOZ electrodes using entropy based feature extraction methods with

10-fold cross validation. The computational time for some prominent en-

tropy features are high. So, we can extend our work by considering the

computational time as well as real world time series forecasting way with

the improvement of design performance. Secondly, Islam et al. [95] reported

that the selection of prominent operational subbands can significantly im-

prove the framework performance. Therefore, the possible extension of this

study is to detect the most significant subbands in the high-frequency com-

ponents, which may further improve our design performance in the future.

Finally, patient-independent design could be one of the best solutions for

future study. Patient-independent design is more practical and real life im-

plementation, because in this design no need any label data. However, the

problem is very challenging due to very different locations of electrodes and

subjects-specific nature of epilepsy events. Thus, there are several avenues

for further research to model the design framework with feature-extraction

and classification.
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FIGURE 4.2: The color map representing the sLDA weights of
the entropies with each subband for eight patients.
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eight patients



4.6. Discussion 59

20 40 60 80

10

20

30

40

50

60

0 50

10

20

30

40

50

60

20 40 60 80

5

10

15

20

25

30

35

40

45

50

0 10 20

5

10

15

20

25

30

35

40

45

50

20 40 60 80

5

10

15

20

25

30

35

40

0 50

5

10

15

20

25

30

35

40

20 40 60 80

5

10

15

20

25

30

35

0 50

5

10

15

20

25

30

35

20 40 60 80

10

20

30

40

50

60

0 50

10

20

30

40

50

60

20 40 60 80

10

20

30

40

50

60

70

0 50 100

10

20

30

40

50

60

70

20 40 60 80

10

20

30

40

50

60

70

0 50

10

20

30

40

50

60

70

20 40 60 80

10

20

30

40

50

60

70

0 50 100

10

20

30

40

50

60

70

El
ec

tr
od

es
El

ec
tr

od
es

El
ec

tr
od

es
El

ec
tr

od
es

El
ec

tr
od

es
El

ec
tr

od
es

El
ec

tr
od

es
El

ec
tr

od
es

Pt1 Pt2

Pt3 Pt4

Pt5 Pt6

Pt7 Pt8

Segment Index Segment Index

Segment Index Segment Index

Segment Index Segment Index

Segment Index Segment Index

FIGURE 4.5: Color map representing the detection of SOZ seg-
ments (yellow spots) with respect to channels for the eight pa-
tients. The bar with each color map indicates the detected SOZ
(yellow) and non-SOZ (black) electrodes with number of de-

tected SOZ segments.



60 Chapter 4. Entropy-based Feature-extraction Method for Identification of
SOZ Electrodes based on High- frequency Components in Interictal iEEG

Pt1 Pt2

Pt4Pt3

Pt5 Pt6

Pt7 Pt8

FIGURE 4.6: Average AUC with 10-fold cross-validation for
identifying SOZ electrodes.
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Chapter 5

Statistical Feature based SOZ

Localization in Ripple and Fast

Ripple Bands of Interictal iEEG

In Chapter 4, we have discussed about the high frequency component (HFC)

based SOZ detection framework with entropy features. These entropy based

study has suggested that, the entropy features can efficiently identify the

SOZ electrodes in high frequency components. However, to design a com-

puter aided solution, the entropy features has some shortcomings. Firstly, the

performance of entropy estimation strongly depends on appropriate parame-

ter selection [54]. For entropy measures, some of them use three or more than

three parameters and the parameter choice of these entropy features depends

on the length of test data. So, to design the method, there are many proba-

ble combination of parameter based on the data [54], [55]. Secondly, due

to large sample point, some high performance entropy measure has higher

computational cost. Thirdly, the detection of SOZ and non-SOZ segments

was performed on hard thresholding based SVM classifier.

To address these problems, we hypothesized that simple statistical fea-

tures are effective in identification of SOZ electrodes, since the statistical fea-

tures used before in other context of epilepsy related study [31]–[33], [56],
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[57]. Gotman [57] introduced the first extensively used method of seizure

identification by simple calculations of amplitude from EEG signals. For au-

tomatic identification of epileptic seizure Khan et al. proposed a wavelet-

based method from intracerebral electroencephalogram [33]. In their pro-

posed system, they have used several feature extraction method such as en-

ergy, relative amplitude (RA), coefficient of variation (CV ) to detect the seizure

and non-seizure characteristics. Recently, Li et al. [31] has proposed coeffi-

cient of variation (CV ) and fluctuation index (FI) based feature extraction

method for automatic detection of epileptic seizure from ictal EEG signal.

To enhance the performance of the system, Hassan et al. used ellipse area

of second-order difference plot (SODP), CV , and FI as a feature-extraction

method for seizure detection [32]. The above discussed studies collectively

used the statistical features and they only focused to identify if an EEG seg-

ment was a seizure or non-seizure.

In this study our contributions are as follow: firstly, we have proposed

twelve feature extraction methods including nine statistical features and three

information theoretic entropy based methods to identify the SOZ electrodes.

To the best of our knowledge, we have first time used the combination of

these feature-extraction methods in HFCs (ripple and fast ripple bands) for

detection of the SOZ electrodes. Secondly, mutual information (MI) based

data-driven grid-search method has developed to select the prominent bands

and features jointly. The selection of appropriate bands and features jointly

in epilepsy related activities may improve the performance of the methods

and still not reported in prior SOZ detection studies. To identify the pos-

sible SOZ electrodes, we have compared different methods with LightGBM

and SVM classifies and select the optimal one. The identification was accom-

plished based on the scoring for every segment of channels calculated with

the LightGBM algorithm.
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5.1 Proposed design architecture

The block diagram of our proposed design shown in Fig. 5.1. According to

this figure, the proposed design can be explain in the following way:

• Data acquisition: It includes description of datasets and its collection

process. In this study, we have used eleven patients data collected

from Juntendo University Hospital. The detailed description about this

dataset in shown in Sec. 5.1.1.

• Data preprocessing: Data segmentation and filter bank analysis are in-

cluded in this step. The discussion about data segmentation and filter

bank analysis in Sec. 5.1.2.

• Feature extraction: In this step, we have used twelve statistical feature

extraction methods to extract features from each subbands. The de-

tail description about the feature extraction methods are introduced in

Sec. 5.1.3.

• Band and feature selection: After extracted features from each sub-

band, we have jointly select the prominent subbands and features us-

ing mutual information (MI) based grid search methods. The band

and features selection part are broadly discussed in Sec. 5.1.5.

• Data balancing: Since our analyzed data are highly imbalanced that

can create several difficulties in standard machine learning approach.

To solve this problem, in this step we have used adaptive synthetic

oversampling approach (ADAYSN) that were introduced in Chapter 4.

• Classification: Finally in this step, we have used two classifier such as

SVM and LightGBM classifier to classify a channel whether a channel

is SOZ or non-SOZ. This part is discussed in Sec. 5.1.6.
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Data acquisition

iEEG  signal

Data Preprocessing

Segmentation

Data Filtering 
Using N 

bandpass filter

Feature  
Extraction

Features and Band 
selection

Data  Balancing 
Using 

ADAYSN

Classification

FIGURE 5.1: Block diagram of proposed design.

5.1.1 Dataset

In this study, we have used eleven patients data such as Pt1, Pt2, Pt3, Pt4, Pt5,

Pt6, Pt7,Pt8, Pt9, Pt10 and Pt11 that are collected from Juntendo University

Hospital, Tokyo, Japan. The dataset jointly approved by ethics committee of

Juntendo University Hospital and Tokyo University of Agriculture and Tech-

nology. For data recording, the epilepsy surgeon implanted platinum sub-

dural grids (UNIQUE MEDICAL Co., Tokyo, Japan) with 4-mm diameters

and 10-mm distances for the cortical surface and platinum strip electrodes

(UNIQUE MEDICAL Co., Tokyo, Japan) with 3-mm diameters and 5-mm

distances for the vertical direction and the bottom of the cortex. All patients

are long term interictal intracranial iEEG data with temporal lobe epilepsy

caused by focal cortical dysplasia (FCD). The datasets includes six pediatric

patients and five adult patients of ages between 5 to 39 years. Among eleven

patients, the sampling frequencies of eight patients are 2 kHz and three pa-

tients are 1 kHz. Table 5.1 shows the summary of eleven patients data that

were recorded by using the neuro fax digital video EEG system (NIHON-

KODEN, Tokyo, Japan) with length several days. The datasets have several
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TABLE 5.1: The summary of interictal iEEG data for eleven pa-
tients with focal cortical dysplasia [151]. The male and female

are indicated as M and F.

Patients
ID

Age and
sex Lesion site Location Pathology Sampling

frequency
No. of

electrodes

No. of
SOZ

electrodes
Follow up Engel

Pt1 5/F Lt dorsal
superior temporal gyrus

Cortical
surface Type 2B 2 KHz 60 3 3 years IA

Pt2 39/F Lt dorsal
superior frontal gyrus

Bottom of
sulcus Type 2B 2 KHz 50 10 3 years IA

Pt3 5/M Lt cingulate gyrus Bottom of
sulcus Type 2B 2 KHz 42 6 3.5 years IA

Pt4 6/M Rt dorsal
middle frontal gyrus

Cortical
surface Type 2B 2 KHz 36 3 3.5 years IA

Pt5 20/M Rt middle frontal gyrus Cortical
surface Type 2A 2 KHz 60 6 4.5 years IIIA

Pt6 15/M Lt superior
parietal lobule

Cortical
surface Type 2B 2 KHz 70 7 5 years IA

Pt7 32/M Lt superior
parietal lobule

Bottom of
sulcus Type 2B 2 KHz 70 10 5 years IA

Pt8 25/M Lt angular gyrus Bottom of
sulcus Type 2A 2 KHz 76 16 5 years IA

Pt9 38/F Rt supramarginal gyrus Surface and
vertical cortex Type 2B 1 KHz 56 5 5.5 years IIA

Pt10 14/F Rt inferior
frontal gyrus

Cortical
surface Type 2B 1 KHz 60 10 5.5 years IC

Pt11 13/M Lt angular gyrus Surface and
vertical cortex Type 2B 1 KHz 68 2 5 years IA

characteristics including patient ID, age and sex, lesion site, pathology, lo-

cation, sampling frequency, number of electrodes, number of seizure onset

zone (SOZ) electrodes, follow up, and Engel epilepsy surgery outcome scale.

For analysis, epileptologists chosen the sleep stage iEEG without motion ar-

tifact. After selecting the data, they assigned label for each patients. The

positive labels were given to the SOZ electrodes and negative labels were as-

signed to the rest of electrodes. After that, these label’s data were used to

design our machine learning based AI solution. From Table 5.1, IA Engel’s

class means the seizure free outcome. Mean follow up for all patients period

was (4.9 ± 1.0) years. Seizure outcomes were evaluated using Engel’s classi-

fication at the last visit to the outpatient center. All the patients are informed

and they have signed the consent paper before recording of iEEG data.
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5.1.2 Segmentation and filter bank analysis

To design the framework, we have used 1h (one hour) long interictal iEEG

data, which were labeled by epieptilogist. As a poreprocessing step, we have

divided this one hour multichannel iEEG data into 20-seconds segments and

hypothesized that all of the segments of SOZ channels are SOZ segments

whereas in the non-SOZ channels all of segments are non-SOZ. After split-

ting the data into segments, in each segment we have applied a third-order

Butterworth bandpass filter to extract the high-frequency components from

interictal iEEG.

Suppose that, Sn is the extracted subband components of iEEG signal us-

ing third-order Butterworth bandpass filter, where n = 1, 2, . . . , L. In our

case, the total number of subbands L was 10 for eight patients with sample

frequency of 2 kHz and 7 for three patients with a sample frequency of 1

kHz. In other words, the cut-off frequencies were from 100–450 Hz for pa-

tients with 1 kHz sample frequency and the cut-off frequencies for patients

with 2 kHz were from 100–600 Hz, which cover ripple and fast ripple bands

in HFOs.

5.1.3 Feature extraction methods

To design a computer aided solution, feature-extraction is the important step.

In this analysis, we have used twelve feature extraction methods including

nine statistical features and three information-theoretic features to extract

features from each subband. In different bio-signal processing reserach in-

cluding iEEG, EMG, EEG etc., the following feature-extraction methods were

proposed in different times. To extract the features from each epoch of in-

tracranial EEG signals, let us define each channel of n-th subband as x, which

can be represented as x = [x1, x2, . . . , xN ], where N is the length of x. We
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have used the combination of following features extraction methods that as

introduced in the what follows.

5.1.3.1. Coefficient of variation

The coefficient of variation (CV ) was used to analyze the characteristics of

iEEG signal in different epilepsy studies [31]–[33], [56] that measure the dis-

persion of data. The CV indicates the ratio of standard deviation to the mean

and it provides the information about the variation in any signal amplitude.

For x, the coefficient of variation can be defined as [31], [32]:

CV =
σ

µ
, (5.1)

where µ and σ represent the mean and standard deviation of the x computed

as:

µ =
1

N

N∑
i=1

xi, (5.2)

σ =

√√√√ 1

N

N∑
i=1

(xi − µ)2, (5.3)

5.1.3.2. Fluctuation index

In different epilepsy studies [31], [32], [152], the fluctuation index (FI) is

used for measuring the intensity of signal amplitude changes. For x, it can

be defined as [31], [32], [56], [152]:

FI =
1

N − 1

N−1∑
i=1

|xi+1 − xi| , (5.4)
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5.1.3.3. Variance

The variance (V ar) of a signal refers to measuring how distant the amplitudes

of the signal are expanding from their mean value. According to the different

studies, it is also used to categories the seizure and non-seizure of a signal

by using the Bonn dataset [56], [153]–[155]. The variance of the x can be

expressed as:

V ar =
1

N − 1

N∑
i=1

(xi − µ)2, (5.5)

5.1.3.4. Root mean square

The root mean square (RMS) is one of the popular feature extraction method

that is used to identify the HFOs in ripple and fast ripple bands of interictal

intracranial EEG signals [52], [56], [156], [157]. In mathematics, RMS can be

represented as:

RMS =

√√√√ 1

N

N∑
i=1

xi2, (5.6)

5.1.3.5. Difference absolute standard deviation

In different biomedical signal processing studies, the difference absolute stan-

dard deviation (DASD) is used as a popular statistical feature extraction

methods [56], [158], [159]. DASD the resemble to root mean square feature

and can be represent as:

DASD =

√√√√ 1

N − 1

N−1∑
i=1

(xi+1 − xi)2, (5.7)
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5.1.3.6. Mean absolute value

The mean absolute value (MAV ) of a signal is the mean of the summation of

absolute value and it is used in the characterization of bio-signal [160]. For

x, it can be defined as:

MAV =
1

N

N∑
i=1

|xi| , (5.8)

5.1.3.7. Modified mean absolute value

The modified mean absolute value (MMAV ) is an extension of the MAV

method. In MMAV , the signal is weighted by the window and a window is

defined by two discrete values. For x, it can be defined as [161]–[163]:

MMAV =
1

N

N∑
i=1

wi |xi| , wi =


1, if 0.25N 6 i 6 0.75N

0.5, otherwise
(5.9)

where wi is the weighting window.

5.1.3.8. Modified mean absolute value 2

The modified mean absolute Value 2 (MMAV 2) is another extension of mean

absolute value. InMMAV 2, the signal is weighted by window function prior

calculating the MAV [159]. MMAV 2 is expressed using x as:

MMAV 2 =
1

N

N∑
i=1

wi |xi| , wi =


1, if 0.25N 6 i 6 0.75N

4i/N, if i < 0.25N

4(i−N)/N, otherwise

(5.10)

where, wi is the weighting window function.
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5.1.3.9. Log detector

The log detector (LD) is another feature extraction method which was also

used to extract feature in biomedical signal processing [164]. Based on the

logarithm and log detector (LD) feature, the nonlinear detector can be char-

acterized a log (|xi|). For x, it can be expressed as [164]:

LD = exp

(
1

N

N∑
i=1

log (|xi|)

)
, (5.11)

5.1.3.10. Permutation entropy

The permutation entropy (PE) is a simple and robust method. Through es-

timating the complexity of time series, it was used to identify the epileptic

seizure [104], [165]. For a given time series x, each vector with d-th subse-

quent values is identified as:

i 7→
(
xi, xi+1, . . . , xi+(d−1)

)
(5.12)

where d is the embedding dimension. An ordinal pattern linked with this

vector identified as permutation π = (k0k1 . . . kd−1) of (01 . . . d− 1), which

satisfies xi+k0 ≤ xi+k1 ≤ · · · ≤ xi+kd−1
.

By considering a time lag τ eq. (5.12) can be further extended as:

i 7→
(
xi, xi+τ , . . . , xi+(d−1)τ

)
(5.13)

For each time series, there is a probability distribution π, whose elements
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Πj (j = 1, 2, . . . , d!) are the frequencies associated with the j possible permu-

tation patterns. The PE can be defined as:

PE = −
d!∑
j=1

Πj log2 Πj, (5.14)

In this study, the embedding dimension d and time lag τ were set to 3 and

1 respectively.

5.1.3.11. Spectral entropy

The spectral entropies are used to measure the complexity of a time series

based on the power spectrum [105]. Several epilepsy seizure related studies

[105]–[107] have proposed the use of spectral entropy such as Shannon (ShE)

and Reny’s entropy (RE). For a time series x, ShE and RE can be defined

[105] as:

ShE = −
∑
f

pf ln(pf ), (5.15)

RE (α) =
1

1− α
∑
f

ln p2f , (5.16)

where α is the order of RE’s entropy (α = 2).

In eq. 5.15 and eq. 5.16, the normalization power pf was calculated using

Fourier transform of the time series x and it can be defined as :

pf =
Pf∑
Pf
, (5.17)

where Pf is the power level of the frequency component.
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5.1.4 Feature concatenation

For x, we calculate each feature using the above feature-extraction method

from each segment and concatenate them sequentially expressed as a vector

form. Therefore, the feature vector vn of n-th subband for a channel can be

defined as:

vn = [u(1)n , u(2)n , . . . , u(D)
n ] ∈ IRD, (5.18)

where D indicates the number of total features (in our case D =12).

5.1.5 Subband and feature selection method

To select the relevant features and subbands, mutual information (MI) was

used to estimate scores from the training set. Let us denote training features

with the Mn ∈ IRH×D, where H = ch × s such that ch and s are the total

number of channels and segments, respectively. The training features Mn ∈

IRH×D were estimated for all channels with each segment and finally stacked

all of the segments. The mutual Information (MI) from the set of the training

features Mn and class Cn for n-th subband is defined sequentially as [166]:

MI(Mn;C) =
∑

m
(i)
n ∈Mn

∑
c∈C

p(m(i)
n , c) log

(
p(m

(i)
n , c)

p(m
(i)
n )p(c)

)
, (5.19)

where m(i)
n is the i-th feature and n-th subband. p(m(i)

n , c) is the joint proba-

bility of m(i)
n and c. The p(m(i)

n ) and p(c) is the marginal probability density

function ofm(i)
n and c, respectively. We used bin-method [166] to estimateMI

score between the features m(i)
n and label c from each feature of the training

set Mn. The MI scores sn from the training set Mn of n-th subband can be

defined as:

sn = [s(1)n , s(2)n , . . . , s(D)
n ] ∈ IRD, (5.20)
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Subbands scoring

From the eq. (14), we can calculate the MI scores of n-th subband as:

s̄n =
1

D

D∑
j=1

s(j)n , (5.21)

The set of mutual information, s̄n for all subbands was rearranged in de-

scending order such that s̄λ(1) ≥ . . . ≥ s̄λ(n) ≥ . . . ≥ s̄λ(L), where λ(n) is the

sorted index of n subbands. The set of sorted MI scoring for all subbands

can be defined as:

Sscores = [s̄λ(1), s̄λ(2), . . . , s̄λ(L)] ∈ IRL, (5.22)

Features scoring

The scores of d-th feature can be defined as:

s̄(d) =
1

L

L∑
i=1

s
(d)
i (5.23)

The set of average mutual information, s̄d for all features was rearranged in

descending order such that s̄I(1) ≥ . . . ≥ s̄I(d) ≥ . . . ≥ s̄I(D), where I(d) is the

sorted index of d feature. The set of sorted average MI feature scoring for D

features can be defined as:

Fscores = [s̄I(1), s̄I(2), . . . , s̄I(D)] ∈ IRD. (5.24)

Finally, we apply a grid-search method between the subbands and fea-

tures with the higher values of scores (Sscores and Fscores) and F-score was

estimated. To select the significant features and subbands the value with
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maximum F-score value.

V∗ = [ṽλ(1), . . . , ṽλ(n), . . . , ṽλ(G)] ∈ IRG×H , (5.25)

where ṽλ(n) = [u
I(1)
n , u

I(2)
n , . . . , u

I(H)
n ] for the n-th subbands.

5.1.6 Classifiers

Support vector machine

The SVM uses an optimal hyperplane to separate data from two classes [167].

To operate nonlinear relationship between dependent and independent vari-

ables, the RBF kernel maps data into a higher-dimensional space in nonlinear

way. Based on the training set, the parameter of an SVM was set. In this chap-

ter, we used an SVM with a radial basis function kernel (RBF). It searches all

the current leaves each time to find the leaf with the largest splitting gain.

LightGBM

LightGBM uses the gradient boosting decision tree algorithm for classifica-

tion used in machine learning for epilepsy seizure-detection [168]. Tradi-

tional boosting method uses the level-wise decision tree growth strategy that

splits all leaves every time whereas LightGBM uses the leaf-wise strategy

with depth limitation. For splitting, each time it searches all the current

leaves that has largest splitting gain. So, LightGBM can effectively reduce

the calculation time, reduce the error as well as improve the classification ac-

curacy compared to traditional boosting methods. The detailed derivation

and additional information are available in [169]. In study, we used 5-min

iEEGs data were used to optimize the parameters of iteration trees.
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5.1.7 Evaluation

5.1.8 Division of iEEG time-series for training and testing

Segments  
with 5-mins 
Evaluation

Segments  
with 20-mins Testing

Segments  
with 5-mins 

Unused

Segments  
with 30-mins Training

All interictal iEEG Segments 

Total 1 hour (60 mins)

FIGURE 5.2: The splitting the iEEG data used for training and
testing in the proposed method.

To design a mathodological framework for detecting the SOZ and non-

SOZ channels, we have divided the data into training, validation, and test-

ing set. By considering the nature of the time series, we have used time se-

ries cross-validation techniques [170]–[172], one of the suitable solutions for

model evaluation. In this study, we used 1 hour interictal iEEG data and di-

vided them into 20-s segments. Among 180 segments, 90 segment (30-min

iEEG data) used for training, 15 segments (5 mins) used for tuning the pa-

rameters. Other remaining 75 segments (25 min iEEG data), 15 segments (5

mins) was unused and 60 segments (20 mins) used for testing. Fig. 5.2 shows

the splitting process of 1 hour interictal iEEG data of our proposed design.

Due to the imbalanced of SOZ and non-SOZ channels in iEEG data, the num-

ber of non-focal segments in non-SOZ channels are much higher than the

number of focal segments in SOZ channels. Several studies have observed

the problems of using machine learning methods for the imbalanced distri-

bution in minority and majority classes [119]–[121]. Our previous study for

epileptic focus detection has provided an evidence that the imbalanced learn-

ing problem can deteriorate the performance of the design [53]. To solve the

imbalanced learning problem, the adaptive synthetic (ADASYN) approach
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[120] was used. Let us defined the training features ν =
{
v
∗(iin)
F ,v

∗(jin)
NF

}
af-

ter selecting subbands and features indeced from eq. (22), where v
∗(iin)
F and

v
∗(jin)
NF denote the feature vector of the iin-the sample of focal segement and

the feature vector of the jin-th sample of non-focal segment, respectively and

Iin�Jin due to imbalanced dataset. The balance training set ν̃ was defined in

[120] from the training set ν as:

ν̃ =
{
v
∗(iin)
F ,v

∗(jin)
NF ,v

∗(̃iin)
F

}
, (5.26)

where, Iin+ Ĩin = Jin. In this study, the parameters to balance the training set

were set to the similar to our previous study [53]. The balance training set ν̃

was the input of SVM method for training the model.

Segment wise performance measurement

In this study, the performance evaluation metrics include sensitivity (SEN),

specificity, false discovery rate (FDR), and F-score (F1 score) to measure the

performance of segment-wise detection in SOZ and non-SOZ channels. The

underlying idea behind showing statistics of segment-wise detection was

that we provided measures for comparison studies similar to HFO-related

works [51], [149] and low frequency-based studies used in Bern-Barcelona or

other datasets. These evaluation metrics also used in the recent HFC-related

based research [53]. The calculations of evaluation metrics are as follows:

Sensitivity =
TP

TP + FN
× 100%, (5.27)
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Specificity =
TN

TN + FP
× 100%, (5.28)

FDR =
FP

TN + FP
× 100% (5.29)

F1 score =
TP

TP + 0.5(FP + FN)
(5.30)

where true positive (TP ) denotes the number of correctly detected SOZ seg-

ments in the SOZ channels; false negative (FN ) refers to the number of incor-

rectly detected non-SOZ segments in the SOZ channels. true negative (TN )

indicates the number of correctly detected non-SOZ segments in non-SOZ

channels; false positive (FP ) means the number of incorrectly detected SOZ

segments in the non-SOZ channels. A post-hoc test with the Bonferroni pro-

cedure was used to assess the statistical significance of the methods with a

significance level of α(= 0.05)

Channel wise performance measurement

In this study, the main target was to design the automatic system to identify

the possible electrodes related to SOZ. To identify the electrodes with SOZ

and non-SOZ, the final decision will come after observing the scores of mul-

tiple segments. Therefore, the performance of each patient was observed by

AUC-ROC [128] by computing the sensitivity and FPR of the channels with

each threshold values. In our case, we estimated scores from each segment of

test set and averaged togather to achieve the final score of the channels. After

achieving SEN and FPR of the channels, we estimated the AUC by using the

trapezoid rule [128].
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5.2 Experimental results

In this study, we have developed our framework based on a different cases.

For each of these cases, we have investigated the improvement of the de-

sign performance with statistical evidence. First, we have discussed the cases

for both SVM and LightGBM classifier. Then we discussed the optimal fea-

tures and subbands selection in Sec. 5.2.1. After selecting the optimal features

and subband, we have provided an intuition with statistical measurements

based on optimal method in Sec. 5.2.2. In Sec. 5.2.3, we give the localization

result of SOZ and non-SOZ channels. To evaluate the possibility of patient-

independent design (PID), we compared the proposed design with PID on

data from eleven patients shown in Sec. 5.2.4. Finally shows the analysis of

computational cost in Sec. 5.2.5. The cases that are considered in the pro-

posed detection design for both classifier (SVM and LightGBM) are summa-

rized below:

Filter-bank feature extraction method (FbFM): The multichannel interictal

iEEG signals are splitted into 20-s segments. The N bandpass filters

were implemented using a third-order Butterworth filter to decompose

each segment of the high-frequency components (ripple and fast ripple)

in iEEG. The different types of statistical feature extraction methods are

applied onto each subband to extract features. The SVM and LightGBM

with ADASYN method are used to score each electrode for identifying

possible SOZ channels.

FbFM with subband and feature selection (FBFM/Sb/FS): In this case, sub-

banding and feature extraction were performed in the same way as

the above (FbFM) method. A data-driven grid-search method using

MI scores are proposed to select both prominent bands and features.

The ADASYN approach, SVM and LightGBM classifier are also used to

score of channels.
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FIGURE 5.3: Grid search method for selecting prominent fea-
tures and subbands. The F-score was acquired as linked com-
bination of subbands (X-axis) and features (Y-axis) with highest

MI scores.

5.2.1 Selection of optimal features and subbands

Different high frequency oscillation (HFOs) related studies [48]–[50] suggested

that to identify the SOZ area only need to observe ripple and fast ripple

bands. But, to find the SOZ through the observation of wider bands in the

high-frequency is difficult task for the epileptologist. Recently, EEG based

BCI study [173] have shown that, the selection of appropriate operational
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bands from wider band can significantly improve the performance of the

system. However, selection of optimal band with prominent features jointly

are a difficult task. But considering this problems, in this study we have

developed a data-driven grid-search method based on mutual information

scores to select the prominent features and epileptic subbands with joint con-

tributions, improving the performance of design framework. The proposed

method computes MI scores for the each of the features and subbands. The

subbands and features are rearranged according to their maximum values of

mutual information scores. A grid search method was applied to select opti-

mal features H and subbands G by aggregating the top ranked MI scores of

subbands and features.

Fig. 5.3 shows the selection of optimum features and subbands with re-

spect to F-score for all eleven patients. This figure shows the relationship

between the F-score and the number of incorporated subbands and features

with the higher value of MI scores (Sscores and Fscores induced from eq. 5.22

and eq. 5.24., that may lead to improving the performance of our proposed

design.

5.2.2 Results for detected segments

In this study, we proposed the methods such as FbFM, and FbFM/Sb/FS

with respect to two classifier (SVM and state-of-the-art LightGBM) to de-

tect the SOZ and non-SOZ channels of eleven patients. The performance

of different methods in term of sensitivity, specificity, FDR, and F1 score is a

widely-used metric to evaluate the system for imbalanced dataset. Table 5.2

shows the experimental results for individual segment detection for SVM

classifier. From this table it has been observed that method FbFM/Sb/FS

provide improve performance compared to FbFM methods. Similarly, the



5.2. Experimental results 81

segment detection result for LGBM classifier shown in Table 5.3. The sen-

sitivity represents the detection of correctly predicted focal segments from

the SOZ channels (Pt1: 82.78%; Pt2: 99.83%; Pt3: 67.77%; Pt4: 81.11%; Pt5:

90.83%; Pt6: 90.24%; Pt7: 83.83.00%; P8: 99.69%; P9: 89.33%; P10: 76.83%;

and P11: 80.33% ). In contrast, the FDR is a evaluation metric used to char-

acterize the rate of incorrectly prediction focal segments from the non-SOZ

channels (Pt1: 0.56%; Pt2: 1.08%; Pt3: 9.91%; Pt4: 6.52 %; Pt5: 1.79%; Pt6:

0.23%; Pt7: 1.22%; P8: 0.31%; P9: 1.79%; P10: 3.67%; and P11: 0.33% ). To

test the statistical significance of the methods (FbFM vs FbFM/bS/FS), the

result of the post-hoc tests with F1 score were performed to observe the sig-

nificancy of the methods performance. From the results of post-hoc tests, the

FbFM/bS/FS method with LightGBM significantly outperformed the FbFM

method (FbFM/Sb/FS vs FbFM with SVM: p < 0.05; FbFM/bS/FS vs FbFM

with LightGBM: p < 0.05; FbFM/Sb/FS with LightGBM vs FbFM/Sb/FS

with SVM: p < 0.05). A similar scenario is observed for the other evaluation

metrics. Consistently, the proposed FbFM/Sb/FS approach with LightGBM

achieves the highest performance for all patients. Considering the overall

results, the method FbFM/Sb/FS with LightGBM are used as an optimal

method for futher analysis in this study.

5.2.3 Results for localization of SOZ channels

The previous section such as Sec. 5.2.2 already confirmed that the joint con-

tribution of selected bands and features can significantly improve the per-

formance of proposed method. The performances of the optimal method

FbFM/Sb/FS with LightGBM for identifying SOZ were observed in terms of

AUC shown in Table 5.4.

The Fig. 5.4 and Fig. 5.5 illustrated the visualization of channels with MRI
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FIGURE 5.4: The simulated results using the FbFM/Sb/FS
method with MRI image for Pt1 to Pt6. For each patient, the ”X”
with lime color indicates the SOZ electrodes labeled by clini-
cal expertise and the circles with color represents the average

scores of the channels estimated by our proposed method.

scan images in xy-plane. The ”X” with lime color indicates the SOZ elec-

trodes labeled by clinical expertise and the circles with color represents the

scores of the electrodes estimated by our proposed method. For each chan-

nel, the estimated score values were plotted onto the area of cortical surface

which provides a graphical view to the epileptologist about the detected SOZ

and non-SOZ electrodes. The scores of each channel are achieved by averag-

ing the scores across all of the segments. From Fig. 5.4 and Fig. 5.5, it is

observed that, our have proposed computer aided design provides higher
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FIGURE 5.5: The simulated results using the FbFM/Sb/FS
method with MRI image for Pt7 to Pt11.6. For each patient,
the ”X” with lime color indicates the SOZ electrodes labeled by
clinical expertise and the circles with color represents the aver-
age scores of the channels estimated by our proposed method.

scores to that electrodes labeled by clinical experts (red color with circle in

the Fig. 5.4 and Fig. 5.5) and also suggests some active electrodes that are

close to the SOZ and may have linked to seizure event.
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5.2.4 Comparison between patient-dependent and -independent

designs

In fact, for the real world application patient-independent design (PID) is

more preferable compared to patient-dependent design (PDD). Therefore, it

is desirable to compare the proposed PDD in order to assess the possibility

of designing PID. Thus, in this study, we compared the proposed PDD and

PID with AUC for localizing SOZ-channels using optimal classifier Light-

GBM. Then, the resulting model was tested using given data of test subject

for testing the model. To balance the class features, the ADASYN with de-

fault setting [53], [120] is also applied to highly imbalanced feature sets in the

training stage. The obtained results are displayed in Table 5.4 for both PDD

and PID. As mention that, for patients with 1 kHz sample frequency (see in

Table 5.1) was between 100 Hz to 450 Hz. Hence, to design the PID frame-

work, we have used only the bands between 100 Hz to 450 Hz for patients

with 2 kHz sampling frequency. To develop patient independent method

for patients with 2 kHz sampling frequency, we have eradicated the patients

from the stacked training data with 1 kHz sampling frequency.

5.2.5 Computational time analysis

The mean computational time for each feature extraction method (12 meth-

ods) using 10 subbands was measured by Python on iMac Pro (with Intel

Xeon W processor and 128 GB RAM). Of note, to detect a single segment

at the testing phase, the mean results are estimated with 100 runs. Fig. 5.6

shows the bar diagram (left) of the average computational time (in seconds)

with each feature extraction methods for ten subbands. From this figure, it

is observed that, the computational time of some methods (MAV, RMS, and

ShE, RE ) are less than 0.02-s. So, for a single segment test, the average com-

putational time with the combination of twelve feature-extraction methods
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FIGURE 5.6: Mean computational time with twelve statistical
features including information theoretic features for ten sub-
bands (left). Average computational time with number of sub-

bands for twelve feature-extraction methods (right).

with ten sub-bands are 0.75-s. Fig. 5.6 also shows the mean computational

time (in seconds) with increase number of sub-bands for twelve feature ex-

traction methods (right). It is observed that the computational time is in-

creased linear fashion with increasing number of subbands. Since the total

computational time for a single segment test is 0.75-s, it is very convenient

for clinical application and epileptologists can take quick medical decision

from long term iEEG data.

5.3 Discussion

Apart from biomarker, in this study, we have used high-frequency compo-

nents (>80 Hz) such as ripple and fast ripple bands for detecting the SOZ

electrodes. To identify the SOZ electrodes, in a conventional clinical sys-

tem, the epileptologists visually inspect more than 3 days long iEEG data

(depends on patient’s condition) to observe the extent of interictal epileptic

discharges (IEDs) and seizure discharges. The epileptologists decide (or di-

agnose) SOZ channels in order to carry out epilepsy surgery via an epileptic

focal resection. In this study, we proposed a method for identifying SOZ
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electrodes in HFCs (>80 Hz) of iEEGs with selection of prominent bands

and features. In our methodology, firstly, we detected the individual seg-

ments by using SVM and LightGBM with different conditions (FbFM and

proposed FBFM/Sb/FS). We attained compatible performances with only 35

mins of interictal iEEG signal that make the proposed FbFM/Sb/FS method

with LightGBM classifier more interesting to design SOZ detection. Then,

we have simulated the results to determine the possible SOZ electrodes, that

may assist epileptologists to hypothesize about the SOZ and non-SOZ elec-

trodes. In our analyzed dataset described in Table 5.1, among eleven patients

three patients (Pt5, Pt9, and Pt10) are not seizure free (”residual”). Although

for ”residual” patients, the SOZ electrodes labeled by clinical experts were

removed by surgery. However, for residual patients, our proposed method-

ology gave suggestions for some active electrodes, which were very close to

the SOZ area. This localization resutt allows clinical expert to make a more

confident decision with their expertise.

Besides, for possibility assessment of the patient dependent design (PID),

we have calculated the AUC and compared with the patient-dependent de-

sign (PDD). We observed that, compared to our proposed PDD method, the

result of PID is very poor. One of the possible reason may be the subject-

dependent nature of EEG signals and very different locations of electrodes.

However, the major advantage of the patient independent design is that,

to detect SOZ electrodes for new patients do not need any labeled data.

Varatharajah et al. [42] proposed an artificial intelligence based framework

for identifying the SOZ electrodes using SVM classifier. In their study, they

used electrophysiological biomarkers including HFO, IED, and phase-amplitude

coupling (PAC), between low-frequency bands (0.1–30 Hz) and high-frequency

bands (65–115 Hz). To evaluate the system, they used 82 patients with med-

ically intractable epilepsy. For mixed data framework, they mixed the SOZ

and NSOZ (non SOZ) electrodes of all subjects to form a dataset and their
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acquired average AUC was of 0.79. In patient independent design, they used

leave-one-patient-out cross validation with average AUC of 0.73. The ma-

jor shortcoming of their proposed framework was that, they only consid-

ered the partial ripple bands. In our PID framework, we have considered

both ripple and fast ripple bands and our obtained average AUC of 0.68.

Although, we have used only eleven patients which is much smaller com-

pared to Varatharajah et al. study, but our PID result was very closest to

their proposed work. However, in conventional clinical studies, HFO, IED,

and PAC are deliberated as important biomarkers, which were not consid-

ered in our proposed study. In fact, from the machine learning viewpoint,

the statistical features are significant to characterize the epileptic event. So,

instead of biomarkers including HFO, IED, and PAC, our statistical features

are very good candidates for identification of SOZ electrodes. Besides, there

is still room for improvements of PID in terms of AUC. To improve the per-

formance of the PID, future study could be more advanced signal processing

method with increased number of patients. A more hopeful direction could

be the usage of domain transfer to adapt the different data distributions [174]

For a direct comparison of other epilepsy-related studies to design an au-

tomatic system, we have summarized the low frequency related studied [39]–

[42], [175] in Table 5.5. Similarly high frequency components (HFC) and high

frequency oscillation (HFO‘s) related studies are summarized in Table 5.6. To

identify the focal epilepsy, Sharma et al. [39] proposed a system using Bern-

Bercelona dataset with 87% of accuracy. To enhance the performance of the

system, the similar problem also introduced by different studies [40], [41],

[43], [139]. In their proposed system, they have used different decomposi-

tion techniques such as wavelet, EMD etc. with variant of classifiers includ-

ing Naı̈ve Bayes (NBC), radial basis function (RBF), SVM, k-NN, non-nested

generalized exemplars (NNge), and best first decision tree (BFDT). For iden-

tifying focal epilepsy, all of the above LFC related epilepsy studies (shown
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in Table 1) used the Bern-Barcelona dataset that consisted of approximately

20 s of intracranial EEG. The dataset has a pair of focal and non-focal chan-

nels (3750 focal and 3750 non-focal) with frequency band was between 0.5

and 150 Hz. However, the limitations of all above discussed low frequency

related studies was that, they have used low frequency components (0.5–150

Hz) with well balanced problem.

Several HFO-related epilepsy studies [51], [149], [150] have proposed the

automatic HFOs detector that are shown in Table 5.6. In their proposed sys-

tem, they hypothesized that the rate of HFOs tends to be higher in seizure

onset zone. However, to calculate the baseline, most of the those HFO stud-

ies used the long-term intracranial EEG data and for ripple and fast ripple

bands, they designed the automatic system individually. Recently, our pub-

lished study used eight types of information theoretic entropy based features

extraction methods for identifying the SOZ electrodes [53]. For methodolog-

ical evaluation, we have used 10-fold cross validation with SVM classifier.

For segment detection, an average sensitivity of 63.03%, and specificity of

91.85%. For identification of the channels, an average AUC of 0.88. How-

ever, our proposed entropy based studied has some limitations that already

discussed in introduction section. To address those problems, in this study,

we have proposed a methodological framework with considering 1) the di-

vision of the data into training, validation, and testing set with the way of

time series forecasting; 2) the use of statistical feature-extraction methods to

reduce the parameter selection problems as well as computational time; 3)

the selection of most significant subbands, so that the neurologists may focus

to the specific narrow bands to spot the epileptic symptoms. Our proposed

PDD method achieved an average sensitivity of 85.73% and an average speci-

ficity of 97.50% for segment detection. For detection of the channels an aver-

age AUC of 0.99. Note that, the proposed method used the combination of

60 segments in the test phase to identify the channels.
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Note that the proposed method used the combination of 60 segments in

the test phase to identify the channels. The the average computational time

with 12 feature-extraction methods to identify a segment was 0.75 s. Sheuli

et al. reported that the average computational time of the methodological

framework with eight entropies and 10 subbands was 56.51 s to test a single

segment with 60 channels [53]. However, assuming that the testing data with

60 segments, the computation cost of the framework would be close to 60

min to identify SOZ and non-SOZ channels. The proposed method could fa-

cilitate this procedure (0.2-min) without compromising performance, which

could improve the usability of the framework.
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TABLE 5.2: Experiment results for individual segment-
detection with eleven patients using FbFM and proposed

FbFM/Sb/FS with SVM.

Patient
ID

Evaluation
matrics (FbFM with SVM)

Sensitivity Specificity
False discovery

rate (FDR)
F-score

Pt1 62.77 99.32 0.67 0.71
Pt2 84.00 94.87 5.12 0.82
Pt3 58.61 87.92 12.08 0.50
Pt4 34.44 93.78 6.21 0.33
Pt5 67.50 97.62 2.37 0.71
Pt6 90.48 94.47 5.52 0.75
Pt7 75.50 97.88 2.11 0.80
Pt8 92.60 99.53 0.47 0.95
Pt9 70.66 91.53 8.46 0.55

Pt10 47.66 91.80 8.20 0.51
Pt11 86.66 97.14 2.85 0.62

Average 70.08 95.08 4.92 0.67

Patient
ID

Evaluation
matrics (FbFM/Sb/FS with SVM)

Sensitivity Specificity
False discovery

rate (FDR)
F-score

Pt1 73.33 99.39 0.61 0.79
Pt2 99.39 96.42 3.58 0.93
Pt3 81.94 87.59 12.41 0.63
Pt4 77.78 93.08 6.91 0.61
Pt5 69.44 97.78 2.22 0.73
Pt6 90.95 96.24 3.75 0.80
Pt7 81.83 97.41 2.58 0.82
Pt8 97.81 99.72 0.27 0.98
Pt9 69.33 95.98 4.02 0.66

Pt10 53.16 95.43 4.57 0.60
Pt11 89.16 98.36 1.64 0.73

Average 80.42 96.13 3.88 0.76
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TABLE 5.3: Experiment results for individual segment-
detection with eleven patients using FbFM and proposed

FbFM/Sb/FS with LightGBM.

Patient
ID

Evaluation
matrics (FbFM with LightGBM)

Sensitivity Specificity
False discovery

rate (FDR)
F-score

Pt1 78.33 98.62 1.37 0.76
Pt2 99.33 97.16 2.83 0.94
Pt3 67.50 85.60 14.39 0.53
Pt4 76.67 91.11 8.88 0.55
Pt5 86.11 97.59 2.41 0.82
Pt6 90.00 99.80 0.20 0.94
Pt7 83.33 97.16 2.83 0.83
Pt8 92.70 99.52 0.47 0.95
Pt9 88.66 93.36 6.63 0.69
Pt10 74.50 95.80 4.20 0.76
Pt11 83.33 99.06 0.93 0.77

Average 83.68 95.89 4.17 0.78

Patient
ID

Evaluation
matrics (FbFM/Sb/FS with LightGBM)

Sensitivity Specificity
False discovery

rate (FDR)
F-score

Pt1 82.78 99.44 0.56 0.86
Pt2 99.83 98.92 1.08 0.98
Pt3 67.77 90.09 9.91 0.60
Pt4 81.11 93.48 6.52 0.64
Pt5 90.83 98.20 1.79 0.88
Pt6 90.24 99.77 0.23 0.95
Pt7 83.83 98.78 1.22 0.88
Pt8 99.69 99.69 0.31 0.99
Pt9 89.33 98.20 1.79 0.86
Pt10 76.83 96.33 3.67 0.79
Pt11 80.33 99.67 0.33 0.84

Average 85.73 97.50 2.49 0.84
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TABLE 5.4: The results of AUC to detect the SOZ channels for
both patient-dependent and -independent design.

Patient ID AUC
Dependent Independent

Pt1 1.00 0.77
Pt2 1.00 0.72
Pt3 0.97 0.64
Pt4 0.98 0.55
Pt5 1.00 0.66
Pt6 1.00 0.63
Pt7 0.99 0.77
Pt8 1.00 0.65
Pt9 1.00 0.58
Pt10 0.99 0.55
Pt11 1.00 0.98

Mean 0.99 0.68
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TABLE 5.5: Low frequency component related comparative
studies

Low frequency components
related studies

Reference. Sharma
et al. [39]

Itakura
et al. [40]

Arunkumar N
et al. [41]

Varatharajah
et al. [42]

Yang Y.
et al. [175]

Dataset Bern-
Barcelona

Bern-
Barcelona

Bern-
Barcelona

Mayo
Clinic

Bern-
Barcelona

Methods

-EMD
6-entropy

based
feature
-SVM

-BEMD
-6-entropy

based feature
-LS-SVM

-3-entropy
based features
-NBC, SVM,
k-NN, RBF

NNge, BFDT

-PAC, HFOs,
IEDs
-SVM

-FAWT
-2-entropy

based feature
-GRNN, SVM,
LS-SVM, k-NN

fKNN

Bands
Lower
bands

(0.5–150 Hz)

Lower
bands

(0.5–150 Hz)

Lower
bands

(0.5–150 Hz)

Lower bands
(0.1–30 Hz)

Partial ripple
bands

(65–115 Hz)

Lower
bands

(0.5–150 Hz)

Goal
Epileptic

focus
detection

Epileptic
focus

detection

Epileptic
focus

detection

SOZ
detection

Epileptic
focus

detection

Performance ACC: 87% ACC: 86.89%
ACC: 98.0%;
Sen: 100%;
Spe: 96.0%

For cross-
validation

of mixed data
AUC: 0.79

and
For leave

one patient
out cross-
validation
AUC: 0.73

ACC: 94.80%
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TABLE 5.6: High frequency oscillation (HFOs) and High fre-
quency component (HFC) related comparative studies

High frequency oscillation (HFOs)
related studies

Reference Jrad
et al. [149]

Zuo
et al. [51]

Lai
et al. [150]

Dataset
Rennes

University
Hospital

Xuanwu
Hospital

West China
Hospital

Methods

-Gabor
transformation

-Energy-based feature
-SVM

-Deep CNN
-Time-frequency map -CNN method

Bands Ripple (120–250 Hz)
Fast ripple (250–600 Hz)

R (80–250 Hz)
FR (250–500 Hz)

R (80–250 Hz)
FR (250–500 Hz)

Goal HFOs detection HFOs detection HFOs detection

Performance

Ripple-HFOs
(Sen: 81.1%

and FDR: 30.2%) and
FR-HFOs (Sen: 74.6%

and FDR: 6.3%)

R-HFOs (Sen: 77.0%
and SPE: 72.3%)

and FR-HFOs
(Sen: 83.2% and

Spe: 79.3%)

R-HFOs (Sen: 82.2%
and FDR: 12.6%)

and FR-HFOs
(Sen: 93.4%

and FDR: 8.0%)
High Frequency Components (HFC)

related studies

Reference Akter
et al. [53] Proposed

Dataset Juntendo Hospital Juntendo Hospital

Methods

-Multiband
-Eight type of entropy

-Feature selection
-SVM

– Multiband
–12 type of features

-Joint bands
-Feature selection and

-LightGBM

Bands R and FR bands (100–600 Hz)
8-patients 2 kHz

R and FR bands (100–600 Hz) and
(100–450 Hz)
11-patients

2 kHz and 1 kHz
Goal SOZ detection SOZ detection

Performance

Segment detection
(Sen: 63.03%; Spe: 91.85%) and

SOZ detection (AUC=0.88)
Com. time: 56.51 s

Segment detection
(Sen: 85.73%; Spe: 97.50%) and

SOZ detection (AUC=0.99)
Com. time: 0.75s
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Chapter 6

Conclusion and Future Work

6.1 Conclusions

In this chapter, we have concluded the study. In our research, we have devel-

oped an artificial intelligence based computer aided solution for identifica-

tion of seizure onset zone (SOZ) electrodes from high-frequency components

including ripple and fast ripple of interictal intracranial EEG data. The con-

tributions of our proposed method are as follows:

6.1.1 Graphical representation for visualization

20 40 60 80

10

20

30

40

50

60

0 50

10

20

30

40

50

60

20 40 60 80

5

10

15

20

25

30

35

40

45

50

0 10 20

5

10

15

20

25

30

35

40

45

50

20 40 60 80

5

10

15

20

25

30

35

40

0 50

5

10

15

20

25

30

35

40

20 40 60 80

5

10

15

20

25

30

35

0 50

5

10

15

20

25

30

35

20 40 60 80

10

20

30

40

50

60

0 50

10

20

30

40

50

60

20 40 60 80

10

20

30

40

50

60

70

0 50 100

10

20

30

40

50

60

70

20 40 60 80

10

20

30

40

50

60

70

0 50

10

20

30

40

50

60

70

20 40 60 80

10

20

30

40

50

60

70

0 50 100

10

20

30

40

50

60

70

El
ec

tr
od

es
El

ec
tr

od
es

El
ec

tr
od

es
El

ec
tr

od
es

El
ec

tr
od

es
El

ec
tr

od
es

El
ec

tr
od

es
El

ec
tr

od
es

Pt1 Pt2

Pt3 Pt4

Pt5 Pt6

Pt7 Pt8

Segment Index Segment Index

Segment Index Segment Index

Segment Index Segment Index

Segment Index Segment Index

FIGURE 6.1: Graphical represen-
tation with segment wise detec-

tion for visualization

We have first time introduced a graphical

representation of our proposed SOZ detec-

tion result, that shown in Chapter 4. This

simulated results (see in Fig. 6.1), repre-

sent the localization of SOZ and non-SOZ

channel which help the epileptologists in

two ways: (1) to observe the localization of

SOZ and non-SOZ segments over duration

of the iEEG data, and (2) the number of de-

tected segments corresponding to the SOZ

and non-SOZ channels.
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6.1.2 Provides suggestion about the active electrodes closest

to the seizure onset zone
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X: SOZ labelsFIGURE 6.2: Visualization of electrodes with MRI
scan image.

In this thesis, we have pro-

vided the simulated result

with MRI scan image like

Fig. 6.2. This intuition can

gives some useful sugges-

tions about the active elec-

trodes, which are very clos-

est to the SOZ electrodes.

Moreover, it can provides

the illustration to hypothe-

size the the possible SOZ channels much easier and more reliable way. Be-

sides, it can assists the epileptologist to take quick medical decision based on

scores of the channels mapped into the cortical surface using MRI images.

6.1.3 Used high frequency components (HFCs) for localiza-

tion of SOZ electrodes

It is known that the activity in the high frequency components, including

ripple and fast ripple bands, of interictal iEEG, are associated to the epileptic

seizure. For identifying the SOZ electrodes, instead of using high frequency

oscillations which need a long term interictal iEEG signal to calculate the

baseline, we have used high frequency components such as ripple and fast

ripple bands. In this thesis, we have used only 30 minutes (Chapter 4) and

one hour (Chapter 5) of interictal iEEG signal with high frequency compo-

nents for detecting the SOZ electrodes.
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6.1.4 Introduced efficiently work statistical features for SOZ

localization

In this study, we have proposed twelve statistical feature extraction meth-

ods including information theoretic features, which are important to char-

acterized the epileptic events. Although, in epilepsy related studies some

biomarkers such as HFO, IED, and PAC are considered very important in

conventional clinical studies. But, our proposed study does not use biomark-

ers such as HFO, IED, and PAC. In fact, from the machine learning point of

view, the statistical features are very significant to characterized the epileptic

events. In this thesis, we have achieved very promising result for all patients

by using these statistical features with LightGBM classifier shown in Chapter

5. Hence our statistical features are very good candidate instead of different

biomarkers.

6.1.5 Jointly selection of features and subbands

In this thesis, a data-driven grid-search method using mutual information

scores is developed to optimize subbands and features jointly. The joint selec-

tion of appropriate bands and features that are related to epileptic activities

improved the performance of our proposed computer-aided solution and it

is our first proposed method for SOZ detection related epilepsy studies. The

jointly selection of optimal features and subbands shown in Chapter 5. Such

joint selection can assist the epileptologist during data analysis and may re-

duce the workload of them.

6.1.6 Used real world clinical data

In this work, we have evaluated the proposed method for eight epilepsy pa-

tients (Chapter 4) and eleven patients (Chapter 5) considering different ages

(adult and pediatric) and pathological types. We have used real world long
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term interictal iEEG data collected from Juntendo University Hospital, which

was approved by the ethics committee of Juntendo University Hospital as

well as the Tokyo University of Agriculture and Technology, Japan.

6.1.7 Used focal cortical dysplasia (FCD)

In this work, we have used FCD because, it is the most common reason of

medically intractable epilepsy in both pediatric and adult patients. Since, the

objective of this study was to develop a machine learning methodology for

identification of the seizure onset zone (SOZ), the type of epilepsy for all pa-

tients is preferred to be identical for evaluation of the methodological frame-

work. Moreover in FCD, it is relatively easy to localize the SOZ electrodes

because its labels reliability is high in machine learning algorithms.

6.2 Future work

6.2.1 To implement a patient-independent design

In this thesis, we have proposed a methodology for patient-dependent de-

sign (PID) for SOZ identification. We have used only 30-mins of signal of

interictal phase in the proposed priori-based system and the epileptologists

need to label the electrodes with only 30-minutes of the interictal iEEG for

new patient to identify the possible SOZ electrodes. In addition, to reduce

the workload of epileptologist, in this thesis we have also considered the pa-

tient independent case. The advantage of patient-independent design (PID)

is that, we do not need any labeled data for the patients to detect the SOZ

area. However, in PID case, the result is very poor compared to the patient-

dependent design (PDD). One of the possible region of this result will be the

subject-specific nature of iEEG signals. In machine-learning research, several

studies proposed the use of domain transfer learning to adapt the different
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distributions of features extracted from different subjects [174], [176]. To en-

hance the performance of the PID case, future works could study more ad-

vanced signal processing methods. A more hopeful direction could be the

practice of domain transfer to adjust the different distributions [174].

6.2.2 To use other pathology in future

In this study, we have used only FCD pathology type data. But for identifi-

cation of SOZ through analysis of HFO, other pathology types are also used

including dense gliosis (DG), hippocampal sclerosis (HS), low grade glioma

(LGG) etc. As a future work, we will try to use another pathology diagnosis

for identification of SOZ electrodes.
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Gotman, “High frequency oscillations (80–500 hz) in the preictal pe-

riod in patients with focal seizures”, Epilepsia, vol. 50, no. 7, pp. 1780–

1792, 2009.

[145] R. J. Staba, C. L. Wilson, A. Bragin, I. Fried, and J. Engel Jr, “Quanti-

tative analysis of high-frequency oscillations (80–500 hz) recorded in

human epileptic hippocampus and entorhinal cortex”, Journal of neu-

rophysiology, vol. 88, no. 4, pp. 1743–1752, 2002.

[146] A. B. Gardner, G. A. Worrell, E. Marsh, D. Dlugos, and B. Litt, “Human

and automated detection of high-frequency oscillations in clinical in-

tracranial eeg recordings”, Clinical neurophysiology, vol. 118, no. 5, pp. 1134–

1143, 2007.



122 Bibliography

[147] C. Jiang, X. Li, J. Yan, T. Yu, X. Wang, Z. Ren, D. Li, C. Liu, W. Du, X.

Zhou, et al., “Determining the quantitative threshold of high-frequency

oscillation distribution to delineate the epileptogenic zone by auto-

mated detection”, Frontiers in neurology, vol. 9, p. 889, 2018.

[148] S. Liu, C. Gurses, Z. Sha, M. M. Quach, A. Sencer, N. Bebek, D. J.

Curry, S. Prabhu, S. Tummala, T. R. Henry, et al., “Stereotyped high-

frequency oscillations discriminate seizure onset zones and critical

functional cortex in focal epilepsy”, Brain, vol. 141, no. 3, pp. 713–730,

2018.

[149] N. Jrad, A. Kachenoura, I. Merlet, F. Bartolomei, A. Nica, A. Biraben,

and F. Wendling, “Automatic detection and classification of high-frequency

oscillations in depth-eeg signals”, IEEE Transactions on Biomedical En-

gineering, vol. 64, no. 9, pp. 2230–2240, 2017.

[150] D. Lai, X. Zhang, K. Ma, Z. Chen, W. Chen, H. Zhang, H. Yuan, and

L. Ding, “Automated detection of high frequency oscillations in in-

tracranial eeg using the combination of short-time energy and convo-

lutional neural networks”, IEEE Access, vol. 7, pp. 82 501–82 511, 2019.

[151] I Blu, M Thom, E Aronica, et al., “The clinico-pathological spectrum of

focal cortical dysplasias: A consensus classification proposed by an ad

hoc task force of the ilae diagnostic methods commission”, Epilepsia,

vol. 52, pp. 158–74, 2011.

[152] Y. Liu, W. Zhou, Q. Yuan, and S. Chen, “Automatic seizure detection

using wavelet transform and svm in long-term intracranial eeg”, IEEE

Transactions on Neural Systems and Rehabilitation Engineering, vol. 20,

no. 6, pp. 749–755, 2012.



Bibliography 123

[153] J. Yoo, L. Yan, D. El-Damak, M. A. B. Altaf, A. H. Shoeb, and A. P.

Chandrakasan, “An 8-channel scalable eeg acquisition soc with patient-

specific seizure classification and recording processor”, IEEE Journal of

Solid-State Circuits, vol. 48, no. 1, pp. 214–228, 2013.

[154] S. M. S. Alam and M. I. H. Bhuiyan, “Detection of epileptic seizures

using chaotic and statistical features in the emd domain”, in 2011 An-

nual IEEE India Conference, 2011, pp. 1–4.

[155] L. Wang, W. Xue, Y. Li, M. Luo, J. Huang, W. Cui, and C. Huang, “Au-

tomatic epileptic seizure detection in eeg signals using multi-domain

feature extraction and nonlinear analysis”, Entropy, vol. 6, no. 19, p. 222,

2017.

[156] R. J. Staba, C. L. Wilson, A. Bragin, I. Fried, and J. Engel, “Quantitative

analysis of high-frequency oscillations (80–500 hz) recorded in human

epileptic hippocampus and entorhinal cortex”, Journal of Neurophysi-

ology, vol. 88, no. 4, pp. 1743–1752, 2002.

[157] S. Chaibi, Z. Sakka, T. Lajnef, M. Samet, and A. Kachouri, “Automated

detection and classification of high frequency oscillations (hfos) in

human intracereberal eeg”, Biomedical Signal Processing and Control,

vol. 8, no. 6, pp. 927 –934, 2013, ISSN: 1746-8094.

[158] K. S. Kim, H. H. Choi, C. S. Moon, and C. W. Mun, “Comparison

of k-nearest neighbor, quadratic discriminant and linear discriminant

analysis in classification of electromyogram signals based on the wrist-

motion directions”, Current Applied Physics, vol. 11, no. 3, pp. 740 –745,

2011, ISSN: 1567-1739.

[159] J. Too, A. R. Abdullah, and N. M. Saad, “Classification of hand move-

ments based on discrete wavelet transform and enhanced feature ex-

traction”, International Journal of Advanced Computer Science and Appli-

cations, vol. 10, no. 6, 2019.



124 Bibliography

[160] T. Das, A. Ghosh, S. Guha, and P. Basak, “Classification of eeg signals

for prediction of seizure using multi-feature extraction”, in 2017 1st

International Conference on Electronics, Materials Engineering and Nano-

Technology (IEMENTech), 2017, pp. 1–4.

[161] M. K. Hasan, M. A. Ahamed, M. Ahmad, and M. A. Rashid, “Predic-

tion of epileptic seizure by analysing time series eeg signal using k-nn

classifier”, applied bionics and biomechanics, vol. 2017, p. 12, 2017.

[162] W.-T. Shi, Z.-J. Lyu, S.-T. Tang, T.-L. Chia, and C.-Y. Yang, “A bionic

hand controlled by hand gesture recognition based on surface emg

signals: A preliminary study”, Biocybernetics and Biomedical Engineer-

ing, vol. 38, no. 1, pp. 126–135, 2018.

[163] M. Ariyanto, W. Caesarendra, K. A. Mustaqim, M. Irfan, J. A. Pak-

pahan, J. D. Setiawan, and A. R. Winoto, “Finger movement pattern

recognition method using artificial neural network based on electromyo-

graphy (emg) sensor”, in 2015 International Conference on Automation,

Cognitive Science, Optics, Micro Electro-Mechanical System, and Informa-

tion Technology (ICACOMIT), 2015, pp. 12–17.

[164] D. Tkach, H. Huang, and T. A. Kuiken, “Study of stability of time-

domain features for electromyographic pattern recognition”, Journal

of neuroengineering and rehabilitation, vol. 7, no. 1, p. 21, 2010.

[165] M. Zanin, L. Zunino, O. A. Rosso, and D. Papo, “Permutation entropy

and its main biomedical and econophysics applications: A review”,

Entropy, vol. 14, no. 8, pp. 1553–1577, 2012.

[166] J. Pohjalainen, O. Räsänen, and S. Kadioglu, “Feature selection meth-

ods and their combinations in high-dimensional classification of speaker

likability, intelligibility and personality traits”, Computer Speech and

Language, vol. 29, no. 1, pp. 145 –171, 2015, ISSN: 0885-2308.



Bibliography 125

[167] C. Yang, R. Duraiswami, and L. S. Davis, “Efficient kernel machines

using the improved fast gauss transform”, in Advances in neural infor-

mation processing systems, 2005, pp. 1561–1568.

[168] J. Wu, T. Zhou, and T. Li, “Detecting epileptic seizures in eeg signals

with complementary ensemble empirical mode decomposition and

extreme gradient boosting”, Entropy, vol. 22, no. 2, p. 140, 2020.

[169] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y.

Liu, “Lightgbm: A highly efficient gradient boosting decision tree”, in

Advances in neural information processing systems, 2017, pp. 3146–3154.

[170] C. Tonini, E. Beghi, A. T. Berg, G. Bogliun, L. Giordano, R. W. Newton,

A. Tetto, E. Vitelli, D Vitezic, and S. Wiebe, “Predictors of epilepsy

surgery outcome: A meta-analysis”, Epilepsy research, vol. 62, no. 1,

pp. 75–87, 2004.

[171] C. Bergmeir and J. M. Benı́tez, “On the use of cross-validation for time

series predictor evaluation”, Information Sciences, vol. 191, pp. 192–

213, 2012.

[172] L. J. Tashman, “Out-of-sample tests of forecasting accuracy: An analy-

sis and review”, International journal of forecasting, vol. 16, no. 4, pp. 437–

450, 2000.

[173] M. R. Islam, T. Tanaka, and M. K. I. Molla, “Multiband tangent space

mapping and feature selection for classification of EEG during motor

imagery”, Journal of Neural Engineering, vol. 15, no. 4, p. 046 021, 2018.

[174] S. J. Pan and Q. Yang, “A survey on transfer learning”, IEEE Transac-

tions on knowledge and data engineering, vol. 22, no. 10, pp. 1345–1359,

2009.

[175] Y. You, W. Chen, M. Li, T. Zhang, Y. Jiang, and X. Zheng, “Automatic

focal and non-focal EEG detection using entropy-based features from



126 Bibliography

flexible analytic wavelet transform”, Biomedical Signal Processing and

Control, vol. 57, p. 101 761, 2020.

[176] F. Lotte and C. Guan, “Learning from other subjects helps reducing

brain-computer interface calibration time”, in 2010 IEEE International

conference on acoustics, speech and signal processing, IEEE, 2010, pp. 614–

617.


	Declaration of Authorship
	Acknowledgements
	Introduction
	Epilepsy
	 Social impact of epilepsy
	Diagnosis of epilepsy
	Epilepsy treatment
	Medication 
	Surgery 

	Necessity of machine learning based epilepsy detection framework
	Epilepsy seizure related existing studies
	Epilepsy seizure detection studies
	Low frequency component related focal seizure (or SOZ) detection studies
	High frequency oscillations (HFOs) related detection

	Our contributions
	High frequency component related SOZ detection with entropy based features
	High frequency component related SOZ identification with efficiently work statistical features 

	Organization of the thesis

	Overview of Epilepsy Seizure and Electroencephalography 
	Different cortical area related to epilepsy seizure
	The irritative zone
	The seizure onset zone
	The epileptogenic zone

	Epilepsy seizure and its categorization
	Categorization of electroencephalogram (EEG)
	Scalp electroencephalogram (EEG)
	Intracranial electroencephalogram (iEEG)


	Filter Bank Analysis for Machine Learning Approach 
	Multi-band analysis
	Finite impulse response (FIR) filter
	Infinite impulse response (IIR) filter
	Discrete wavelet transformation
	Empirical mode decomposition
	Bivariate empirical mode decomposition (BEMD)

	Limitation of methods to design ML based multiband analysis
	Linear discriminant analysis


	Entropy-based Feature-extraction Method for Identification of SOZ Electrodes based on High- frequency Components in Interictal iEEG
	Proposed design architecture
	Dataset
	Focal cortical dysplasia (FCD)
	Multiband analysis
	Entropy based feature extraction methods
	4.1.4.1. Approximate entropy
	4.1.4.2. Sample entropy
	4.1.4.3. Permutation entropy
	4.1.4.4. Spectral entropy
	4.1.4.5. Phase entropy
	4.1.4.6. Tsallis entropy


	Features selection
	Imbalanced learning problem
	Methodological framework evaluation
	Cross-validation design
	Performance measurement for segments
	Performance measurement for channels

	Experimental result
	Effect of feature selection.
	Performance analysis with different cases.
	Results with SOZ segments-spotting.
	Results with channel identification.
	Computational time

	Discussion

	Statistical Feature based SOZ Localization in Ripple and Fast Ripple Bands of Interictal iEEG
	Proposed design architecture
	Dataset
	Segmentation and filter bank analysis
	Feature extraction methods
	5.1.3.1. Coefficient of variation
	5.1.3.2. Fluctuation index
	5.1.3.3. Variance
	5.1.3.4. Root mean square
	5.1.3.5. Difference absolute standard deviation
	5.1.3.6. Mean absolute value
	5.1.3.7. Modified mean absolute value
	5.1.3.8. Modified mean absolute value 2
	5.1.3.9. Log detector
	5.1.3.10. Permutation entropy
	5.1.3.11. Spectral entropy

	Feature concatenation
	Subband and feature selection method
	Subbands scoring
	Features scoring

	Classifiers
	Support vector machine
	LightGBM

	Evaluation
	Division of iEEG time-series for training and testing
	Segment wise performance measurement
	Channel wise performance measurement


	Experimental results
	Selection of optimal features and subbands
	Results for detected segments
	Results for localization of SOZ channels
	Comparison between patient-dependent and -independent designs
	Computational time analysis

	Discussion

	Conclusion and Future Work
	Conclusions
	Graphical representation for visualization
	Provides suggestion about the active electrodes closest to the seizure onset zone
	Used high frequency components (HFCs) for localization of SOZ electrodes
	Introduced efficiently work statistical features for SOZ localization
	Jointly selection of features and subbands
	Used real world clinical data
	Used focal cortical dysplasia (FCD)

	Future work
	To implement a patient-independent design
	To use other pathology in future


	List of Publications
	Bibliography

