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SUMMARY 

 

In Japan, paddy pesticide applied to paddy field is more prone to runoff to the outsides of the fields, 

and therefore one of the major concerns for the pollution of aquatic environment. Although the 

pesticide safety in the environment has been rigorously screened under the standard scenarios in the 

registration, this approach cannot cover the regionally-variated actual field condition where the 

monitoring study is conducted as the exposure assessment in post-registration process. Therefore, this 

study aimed to develop a comprehensive modeling of paddy pesticide to assess the regional exposure 

characteristics of paddy pesticides. 

Four-year experiments were conducted to compare the dissipation patterns of a total of 20 

pesticides in various formulations applied by submerged application, nursery-box application and 

foliar application in flooded lysimeters (lysimeters) and paddy fields with two soil types. The 

similarities of the dissipation data between test plots were assessed by the simple kinetic modeling to 

derive DT50. For submerged application, although the lysimeters could simulate nearly half of the 

decreasing phase of dissipation with granular formulations in paddy fields, the accuracy of the 

detection level was low. This tendency was consistent for flowable formulation. For the case of 

nursery-box and foliar application cases, the detection levels were comparable between lysimeters 

and paddy fields. From these results, the submerged application scenario had the highest possibility to 

variate the pesticide dissipation patterns between lysimeters and paddy fields. 

For more detailed analysis, an inverse analysis procedure of paddy pesticide dissipation was 

developed using the mathematical model (PCPF-1R model) and open software R packages. The 

developed procedure was verified using the dissipation data of simetryn and molinate applied in the 

lysimeters and the paddy fields. The model calibration was performed by the global and local 

sensitivity analyses and Markov Chain Monte Carlo (MCMC) technique. From the calibrated 

simulations of simetryn and molinate showed that the current experimental deign of the lysimeters 

might underestimate the paddy fields mainly due to the faster daily percolation setting in the 

lysimeter. However, this problem was successfully improved by modifying experimental design of 

lysimeter through the case study. 

To clarify the pesticide behavior in soil and interface between paddy water and soil, a 

laboratory container tests for flooded soils applying four herbicides were conducted. The results were 

subjected to in-laboratory inverse analysis using PCPF-LR model. Then, the calibrated parameters 

were exported to analyze the outdoor experimental data with flowable and granular formulations by 
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in-field inverse analysis using PCPF-1Rv1.1 model. The PCPF-LR model accurately simulated the 

concentrations in water and soil as well as apparent sorption in the laboratory data. The calibrated 

simulations of the PCPF-1Rv1.1 model reasonably represented the outdoor experimental data. It was 

found that initial partitioning in outdoor experiment was highly affected by the physical effects rather 

than formulation types. Furthermore, persistence indicator (DegT50) was consistent regardless of 

formulation types although DT50 was significantly different. 

For the reginal-based pesticide exposure assessment, the improved basin scale model 

(PCPF-B/DRAFT 2.0 model) was proposed as the distributed hydrologic-hydraulic model by 

introducing a new hydrologic module. Then, a GIS processing to construct the hydrological 

cascading system representing the basin properties was developed. Finally, the model was tested to 

simulate the monitoring results of paddy herbicide (pretilachlor) in Oppe River Basin conducted as 

the Ministry of Environment’s monitoring study in 2017. For water flow simulation, flow condition 

in Oppe River was evaluated regarding both discharge and water level. The simulated pretilachlor 

concentrations at assessment point were greatly sensitive to the behavior of pretilachlor at 

neighboring tributaries because of low specific discharge in Oppe River. The result of case study 

showed that the pretilachlor exposure in this basin could be mitigated by rigorous implementation of 

7-day water holding practice after pretilachlor application. 

The developed modeling approach could be useful to access or extract the quantitative 

characteristics of paddy pesticide by manipulating the regional uncertainties and variabilities as well 

as the experimental constraints. Furthermore, all experiment applied in this study were designed 

based on the test guidelines for the pesticide registration in Japan, and thus this approach can be also 

applied to the regional-based exposure assessment by using the registrant submitted data. 
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Chapter 1   

Introduction 

 

1.1. Background 

1.1.1. Concept of risk assessment on chemical use 

According to the press release of the American Chemical Society (ACS) in 2015, the Chemical 

Abstract Serves (CAS) registry number exceeded 100 million and that will be expected to be over 

600 million in next 50 years. Indeed, our daily life is surrounded by numerous chemical species 

including natural origin and synthesized by human. Under such environment, the chemical use has 

been considerably contributed to the advancements of industry, agriculture and thereby resulting 

quality of our life. At the same time, the risk of chemical use, either intentionally or unintentionally 

caused, on human health, environmental pollution and adverse effect on other organisms has been 

of great concern in human society. In general, the risk of chemical use is formulated as follows: 

Risk = Hazard × Exposure (1.1)

where Hazard is the extent of toxicity and dangerousness of chemical species and Exposure is the 

intake of chemical. Since the Hazard is usually characterized as the unique threshold value, the 

reduction of the risk, termed as “risk management”, is to reduce the Exposure toward the acceptable 

level. In other words, the appropriateness of the risk assessment on the chemical use regarding 

above concerns is highly dependent on the quality of the exposure assessment assuming the 

identified hazard is correct.  

 

1.1.2. Environmental exposure assessment of pesticide 

Pesticides—one of the important chemical groups as the agricultural materials and most of them are 

synthesized compound—are intentionally applied to agricultural fields to control of pests, weeds, 

and diseases. These applied pesticides can be unintentionally released into outside systems such as 

atmosphere, river and groundwater via drift, volatilization, runoff and leaching. In the conventional 

regulatory framework, the exposure assessment of pesticide due to these off-target movements is 

implemented as estimation of the predicted environmental concentration (PEC). This process adopts 

the tier system: the evaluation is started from the conservative side and then becomes more realistic 

as the acceptable level becomes higher. The PEC is usually derived by screening or mathematical 

model depending on the tier under the standardized scenario. The inputs used for the simulation are 
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taken from the controllable experiments. The pesticides passed the exposure assessment against all 

required endpoints are only registered and are available for sales. For the exposure assessment in 

the real environment, monitoring study is only mean to extract the parts of the actual state. To 

extrapolate between the parts, screening model and standardized scenario are no more applicable so 

that use of the mathematical model is necessary. 

 

1.1.3. Is mathematical model useful tool? 

When we talk about the model, the definition of model is the imitation of the reality that stresses 

those aspects that are assumed to be important and omits all properties considered to be 

nonessential (Schwarzenbach et al., 2002). Among the models, a mathematical model is defined as 

the model described by mathematics. The mathematical model in physics has been used to simulate 

the experimental derived theory under both spatially and temporally dynamic conditions. The 

mathematical model in the environmental science, on the other hand, has been aimed to reduce the 

information from the data. This is because the real environmental system contains infinite 

information that cannot be fully manipulated by us. This is also true even for the data taken from 

precisely designed experiment. Therefore, we apply the model constructed based on above 

definition to the experimental data when we want to analyze the experimental data in detail. In 

general, there are two option of the model application in the environmental science: the statistical 

model and the mathematical model. The former approach is rather simple and intuitive as compared 

to the latter approach. However, as Soetaert and Herman (2008) criticized, the statistical modeling 

often results the black box model that is structurally complex due to interaction effect although the 

model output is acceptable. They concluded that the mathematical model was more preferable for 

environmental modeling because of its explicitly defined structure by the mathematical language. 

The applied model is then moved to the calibration and validation processes based on the 

experimental data. Once the model achieves successful calibration with reliable parameters and 

returns the acceptable accuracy in the validation, the model becomes highly informative. For 

example, the calibrated model can estimate the unobserved quantity that could not be measured 

technically or unfeasibly occurred during the experiment. iterative run of experiment and modeling 

can help the optimization of the experimental design such as sampling strategy (Holvoet et al., 

2007). Furthermore, the calibrated model can also be applied to the what-if analysis that determines 

the effectiveness of test scenario. 
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1.2. Problem statement 

In the environmental exposure assessment of pesticide, various mathematical models have been 

developed in US and EU since 1980s. These models have now been utilized as one of the decision 

making tool in the risk assessment of pesticide like registration process. Meanwhile, in Japan, 

studies on the mathematical modeling mainly focusing on paddy pesticide have also been paid 

attention in late1990s. Nevertheless, the use of mathematical model has been still limited to the 

research-oriented application by the developers and not yet been spread to the stakeholders working 

on the environmental sciences of pesticide. 

One reason for this is that there is no standard operating procedure for mathematical 

modeling for pesticide exposure assessment. Although there have been abundant literatures to deal 

with mathematical modeling of pesticide especially for paddy use in Japan, their description for the 

guidance of model parameterization, some requires experimental derivation and trial-and-error 

fashion, were consider not to be sufficient for user who were not familiar with mathematical 

modeling. Another reason is, as Luo et al. (2012) also pointed out, that model application is limited 

regarding both pesticide physicochemical properties and environmental configuration. This means, 

in other words, that there is few experimental datasets easy to apply for mathematical modeling. 

In general, the experimental design for assessing the environmental fate of pesticide can be 

classified as laboratory experiment (e.g., batch test), outdoor and indoor simulation experiments 

(e.g., lysimeter test and column leaching test), outdoor field experiment (e.g., field dissipation test 

and surface runoff test) and outdoor monitoring studies (e.g., river and groundwater monitoring 

tests). The first three are more controllable approach that can operate with known schedule and 

amount of pesticide application and rigorous hydrological condition than the last one, which usually 

includes high uncertainty and variability regarding above two factors. Therefore, mathematical 

models can be effectively applied to first three experiments for inferring the environmental fate 

parameters by inverse analysis. For the outdoor monitoring study, the mathematical model can be 

used to interpret the monitored data represents and to evaluate the effectiveness of the alternative 

scenarios towards the actual condition (e.g., reduction of pesticide use and increase of water holding 

period after pesticide application). In Japan, since the endpoint of the environmental risk assessment 

of pesticide has been evaluated in surface water of the public water area, various regional-based 

river monitoring efforts have been reported in last decades (see next chapter). Unfortunately, few of 

them have been analyzed by the mathematical model although there have been successful 

applications of the mathematical modeling to the controllable experiments. 
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The previous study found that the pesticide runoff properties from the paddy fields regionally 

varied due to the uncertainty associated with farmer’s water management and the metrological 

variability even when the water management practice recommended by the government was 

adopted (Kondo et al., 2012). This finding potentially implies that there are also the regional 

characteristics of the exposure concentration in the surface water due to edge-of-field runoff and 

needs for site-specific treatments. Yachi et al. (2017) pointed out that the regional variation of PEC 

associated with the region-specific parameters such as river flow, paddy rice cropped area and 

pesticide usage ratio. To take into account such regional variations, the necessary link between 

spatial information and mathematical model can best be achieved in the frame of a Geographic 

Information System (GIS) (Richter et al., 1996). 

By definition, while the variability refers the inherent heterogeneity or diversity of data in an 

assessment, the uncertainty refers to a lack of data or an incomplete understanding of the context of 

the risk assessment decision (U.S. EPA, 2011). Although the former cannot be reducible, the latter 

can be reduced by improving the knowledges about the data. In the context of the pesticide 

exposure assessment, the uncertainty associated with the lack of knowledge on the environmental 

fate of pesticide can be reduced by the parameter inference technique using the mathematical 

models and the experimental data under laboratory and field scales. The inferred parameters can be 

transferred to the modeling of the basin scale data to confront with the regional variabilities such as 

geographical characteristics and farmer’s agricultural practice. Thus, the interactive run of 

experiment and monitoring with the comprehensive modeling frameworks from laboratory to field, 

field to basin is essential to analyze the regional characteristics of pesticide exposure in detail. 

 

1.3. Objectives and structure of this dissertation 

The main objective of this study was to develop a new exposure assessment procedure of paddy 

pesticide based on the experimental and monitoring data from laboratory scale to watershed scale. 

The specific objectives were defined as: 

(1) Perform the laboratory, outdoor simulation and outdoor field experiments to evaluate the 

dissipation of various paddy pesticides under flooded condition. 

(2) Develop a modeling procedure to extract the reliable parameters regarding environmental 

fate of pesticide from the above three experiments using inverse analysis. 

(3) Diagnose the above three experimental designs for the purpose of relating the experimental 

outputs to the outdoor field monitoring data based on the developed modeling approach. 



 

5 

(4) Improve the existing mathematical modeling framework for more appropriate interpretation 

of the river monitoring data with the aid of GIS processing and the result of the developed 

inverse analysis. 

Based on above objectives, the findings of this study were summarized into following six 

chapters. In chapter 2, the trends of pesticide use and the relevant environmental issues, the current 

regulatory framework of pesticide registration in the U.S., EU, and Japan, and the remarkable works 

on the pesticide monitoring and modeling from laboratory to watershed scales are reviewed based 

on the literature survey. Chapter 3 reports the results of four-year comparative study on the 

dissipations of paddy pesticides in the flooded lysimeters and actual paddy fields and evaluated the 

experimental performance of the flooded lysimeters as the simulator of actual field condition. In 

Chapter 4, a novel inverse analysis procedure to calibrate of the mathematical model for predicting 

pesticide dissipation in paddy test system is proposed and verified using the datasets obtained in 

Chapter 3. Within this chapter, the case study for improvement of experimental design for the 

flooded lysimeters is also demonstrated. The aim of Chapter 5 is to evaluate the applicability of the 

improved container test for flooded soil as the convenient laboratory experiment to cover the 

drawbacks of the outdoor experiments found in previous chapters. Specifically, the parameter sets 

for environmental fate of pesticide are extracted from the results by the inverse analysis of the 

mathematical model structurally compatible to the one used in previous chapter and applied to 

predict the results of the outdoor experiments obtained in Chapter 3. Chapter 6 shows the 

mathematical modeling framework for assessing the river monitoring data to reduce the 

uncertainties of pesticide fate and transport, agricultural practice and hydrological processes in the 

paddy watershed through GIS processing and inverse analysis of the experimental results from 

laboratory to field scales. Finally, overall discussions on the utilization of the proposed 

methodologies and their future subjects are provided in Chapter 7. 
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Chapter 2   

Literature review 

 

2.1. Introduction 

It is no doubt that pesticides have played an important role in crop cultivation after World War II 

with respect to the efficient control of pests, weeds, and diseases, thereby resulting in stable 

cultivation yields and high-quality products. For example, use of chemical herbicide since an 

introduction of 2, 4-D drastically reduced the workload of weeding from 50 hour to less than 2 hour 

per 10a rice paddy (Ueji and Inao, 2001). However, it is also the fact that pesticides have brought 

about adverse effect on human health and biodiversity. During 1950s−1970s, organochlorine and 

organophosphorus pesticides (e.g., DDT, parathion and dieldrin) had been popularly used to control 

rice stem borers. Intensive use of these pesticides caused serious fatal accidents of farmers, which 

accounted more than 30 farmers annually until early 1970s (MAFF, 2012). Later on, these 

pesticides were also recognized as persistence organic pollutants (POPs) that has contaminated soil 

as pesticide waste because of their longer persistency in soil and the various remediation 

technologies of soil and water contaminated by POPs has been developed (Katayama, 2004). From 

these social backgrounds, the safety of pesticide on human health, food and environment has been 

continuously reviewed throughout the reinforcement of the legal regulation and development of 

new pesticides. Therefore it is no doubt that current pesticides became far more favorable to human 

health, food and environment as compared to those used in early period. Indeed, as Ebise and 

Kawamura (2006) pointed out, the environmental issue of pesticide have become less attention 

compared to past after the settlement of the issue on the herbicide runoff from golf links and 

endocrine disrupting substance in 1990s. Still, pesticide has been one of the major concerns for the 

source of environmental pollution. The main reason for this is the signature of the Convention on 

Biological Diversity in 1992 and subsequent issue of the environmental policy by Japanese 

government revised in 2000, which was included the statement that human activities should be 

practiced not to disturb the structure and function of ecosystem, and not to deteriorate its quality in 

the future (MOE, 2000). As the result of these social changes, the conservation of biodiversity has 

replaced as the main issue of the environmental problem of pesticide and the way of environmental 

risk assessment of pesticide has been reformed to the current style as shown in the section 1.1.1. In 

the development of the exposure assessment procedure, it is important to understand the current 

social background, the legal regulations and the scientific knowledges regarding the pesticides 
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because this kind of regulatory research should be conducted in the context of its role to bridge the 

scientific knowledge and regulatory actions. 

The aims of this chapter are to investigate 1) the current trends of pesticide use in the world 

and Japan, and the relevant environmental issues; 2) the state of the regulatory frameworks of 

pesticide registration in the U.S., EU and Japan; and 3) the state-of-the-art works on the pesticide 

monitoring and modeling from laboratory to watershed scales based on the literature survey. In the 

end of this chapter, the research gap regarding monitoring and modeling of paddy pesticide to the 

previous studies is clarified and the needs of further research were discussed. Finally, based on 

aforementioned discussions, the objective of this study declared in the previous chapter is justified. 

 

2.2. Trends of pesticide in market and use 

There are now 1593 active ingredients listed in the latest Pesticide Manual (Turner, 2018) and 831 

of them of them are currently used. The pesticides discussed in the environmental science have been 

frequently categorized into herbicide, insecticide, fungicide and others (e.g., plant growth regulator 

and biopesticide). Herbicide, insecticide and fungicide are applied to control or suppress the plant 

species, insects, nematodes and acari, and fungi, yeast, bacteria and viruses, respectively. Usually, 

these pesticides are distributed in the market as the formulation products, which are manufactured 

from one or more than two pesticides as active ingredients and diluting agents such as surfactants, 

dispersants and minerals to distribute the active ingredients to the target site effectively. The types 

of formulation products are classified as the solid formulation (e.g., dust, granule and wettable 

powder) and the liquid formulation (e.g., emulsion and flowable) (Ohkouchi et al., 2018). These 

formulation products for agricultural use are applied directory or with dilution by various 

application methods such as aerial application using aircrafts, spray application using sprayer and 

hand application. In Japan, pesticide treatment to the nursery-box of rice plants before transplanting 

is also a popular practice (Kurogochi, 2003). 

 

2.2.1. Pesticide market and R&D situation in Japan 

Figure 2.1, 2.2 and 2.3 show the world market shares of pesticide for agricultural use on regional 

basis, country basis and major chemical class basis in 2015, respectively, whose data are provided 

by Sakamoto et al. (2018b). These data clearly showed that the market shares in Latin America and 

Asia were remarkable mainly due to those in Brazil and China, respectively. It is also noteworthy 

that Japan is the fourth market share next to China. 
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Fig. 2.1 Percentage of world regional market shares of pesticide for agricultural use. Source: 
Sakamoto et al. (2018b). 

 

 

Fig. 2.2 World market shares of pesticide for agricultural use in major countries. Source: 
Sakamoto et al. (2018b). 

 
Among the chemical classes, the amino acid herbicides—most of them were glyphosate and 

glufosinate—shared the top, and Acetolactate synthesis (ALS) inhibitors such as sulfonyl urea 

herbicides were subsequent to them in herbicides. For insecticides, the major three chemical classes, 

neonicotinoids, pyrethroids and organophosphates, have been placed in the top shares. For 

fungicides, strobilurins such as azoxystrobin and Sterol Biosynthesis Inhibitors (SBIs) such as 

tebuconazole have been popularly used. Table 2.1 shows detail of Japanese market data from 2016 

to 2018 published by Japan Crop Protection Association (JCPA, 2019). In Japan, about 35% of total 

sales shared to the rice cultivation and 50% of them spent to herbicide. In addition, the sales of 
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insecticide-fungicide mixture for the rice cultivation were higher than those for other usage mainly 

due to the nursery-box treatment. Overall, the total sales of pesticide in Japan have been maintained 

the extent of 30 billion yen in last three years. 

 

 
ALS: Acetolactate synthesis, HPPD: 4-Hydroxyphenyloyruvate Dioxygenase, PPO: Protoporphyrinogen Oxidase, 
SBI: Sterol Biosynthesis Inhibitors, SDHI: Succinate Dehydrogenase Inhibitors 

Fig. 2.3 World market shares of pesticide for agricultural use based on major chemical classes. 
Source: Sakamoto et al. (2018b). 

 

Japan has been known as the major country of the discovery and development of pesticide. 

According to Sakamoto et al. (2018a), while the percentage of R&D investment to the total sales for 

six overseas major companies (Syngenta, Bayer, BASF, Dow, DuPont and Monsanto) in 2015 was 

in the range of 1.2%−8.8%, those for eight major companies in Japan (Sumitomo, Ishihara Sangyo 

Kaisha, Nihon Nohyaku, Nippon Soda, Nissan, Mitsui, Kumiai and Hokko) was 4.5−14.9%. 

Sakamoto et al. (2018a) also reported that ratio of new product introduced by Japan has been 31% 

(113 out of 362 active ingredients) since 1980s and 48% (19 out of 40 active ingredients) in recent 

years. However, since the regulatory requirements in pesticide registration process have been 

increasing especially in the fields of environmental persistence and toxicity on non-target organisms, 

Sparks and Lorsbach (2017) reported that the screening success rate of new pesticide (per total 

compounds needed to be screened) was decreased from 1/1,200 (1950s) to 1/159,574 (2010s). They 

also estimated the time and cost of new pesticide from discovery to first sale on market were, on 

average, reported to be 11 years and 286 million USD, which were equivalent to 2- and 100-folds of 

those in 1960s, respectively. 
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Table 2.1 Annual shipments of pesticides in Japan: Sales for usage and pesticide category 
basis recent three years. Source: JCPA (2019). 

Usage  Category 2016 2017 2018 
Paddy rice Insecticide 12,082 (4%) 12,115 (4%) 12,087 (4%) 

Fungicide 9,930 (3%) 9,608 (3%) 9,381 (3%) 
Insecticide-fungicide mixture 30,079 (9%) 30,299 (9%) 30,130 (9%) 
Herbicide 63,650 (19%) 64,719 (19%) 64,338 (19%)
Subtotal 115,741 (35%) 116,740 (35%) 115,936 (34%)

Fruits Insecticide 21,055 (6%) 20,615 (6%) 20,646 (6%) 
Fungicide 19,541 (6%) 19,148 (6%) 18,702 (6%) 
Insecticide-fungicide mixture 329 (0%) 336 (0%) 285 (0%) 
Herbicide 8,013 (2%) 8,374 (2%) 8,237 (2%) 
Subtotal 48,937 (15%) 48,472 (14%) 47,870 (14%)

Vegetable, Insecticide 56,054 (17%) 58,436 (17%) 57,197 (17%)
upland crops Fungicide 40,025 (12%) 41,012 (12%) 40,591 (12%)

Insecticide-fungicide mixture 2,931 (1%) 3,180 (1%) 2,983 (1%) 
Herbicide 21,097 (6%) 21,144 (6%) 21,215 (6%) 
Subtotal 120,106 (36%) 123,772 (37%) 121,987 (36%)

Others* Insecticide 6,802 (2%) 6,658 (2%) 6,374 (2%) 
Fungicide 5,573 (2%) 5,704 (2%) 5,756 (2%) 
Insecticide-fungicide mixture 1,601 (0%) 1,766 (1%) 1,587 (0%) 
Herbicide 23,478 (7%) 25,006 (7%) 28,913 (9%) 
Subtotal 37,454 (11%) 39,134 (12%) 42,631 (13%)

No category** Plant growth regulator 5,053 (2%) 5,053 (1%) 5,142 (2%) 
Rodenticide 42 (0%) 43 (0%) 42 (0%) 
Adjuvant 2,721 (1%) 2,952 (1%) 2,950 (1%) 
Others*** 964 (0%) 795 (0%) 763 (0%) 
Subtotal 8,780 (3%) 8,842 (3%) 8,896 (3%) 

Total 331,018 336,961 337,320 
Unit of sales: 1 million yen, value in parentheses: percentage to total sales 
* Non-agricultural purpose, forestry, grass, golf link and household 
**These pesticides are not categorized as usage purpose 
***Repellent, attractant, and etc. 

 

2.2.2. Pesticide use 

In this section, the agricultural uses of pesticide in the world and Japan are overviewed using 

statistical database “FAOSTAT” provided by Food and Agriculture Organization (FAO, 2019). 

First, the gross pesticide use for agriculture in major countries from 1990 to 2016 is projected in Fig. 

2.4. As can be seen in this figure, China has been the predominant user in the world. The increase of 

the pesticide use in China was continued until 2010 and then turned to decrease in recent years. The 

U.S. ranked as the world No.2 has kept constant usage levels since 1990. Meanwhile, pesticide use 

in Latin America region such as Brazil and Argentina has also been firmly increasing especially for 
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Brazil that has reached to the level of the U.S. in 2015. The rest of countries including Japan have 

kept constant usage levels or decreased. 

 

Fig. 2.4 Gross pesticide use for agriculture in major countries. Source: FAO (2019). 
 

 

Fig. 2.5 Pesticide use for agriculture per area of cropland in five major countries. Source: 
FAO (2019). 

 

Next, the data on gross pesticide use for agriculture in major countries from 1990 to 2016 was 

converted on the basis of the area of the individual cropland. The processed result is shown in Fig. 
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2.5. The data clearly showed that higher usage rates were found in the countries under Monsoon 

Asian climate condition such as China, Japan and South Korea, which has been suffered from the 

crop damage by pest and disease because of higher precipitation amount and humidity as compared 

to the arid region (JPPA, 2018). In Japan, the usage rate was increased until 2000 and this was 

caused by the increase of fungicide use to prevent blast disease of paddy rice (Parveen et al., 2004). 

After 2000, the usage rate was gradually decreased. This change was mainly due to emergence of 

new pesticides that drastically reduced the amount of application to one-thousandth of 1930s−1950s 

(Ueji, 2004). Furthermore, the advancement of formulation technology such as introduction of 1-kg 

granular formulation instead of 3-kg type and development of one-shot herbicide, flowable and 

jumbo formulation (Takeshita and Noritake, 2001). Another possible reason was that the 

government promotion of the environmental-conscious agriculture policy, which require the 50% 

reduction of the numbers of pesticide and fertilizer application (MAFF, 2019). 

 

2.3. Current state of regulatory framework of pesticide registration 

2.3.1. United States 

In the U.S., the registration and use of pesticide and the determination of the maximum residual 

limit (MRL) in food have been regulated by the Federal Insecticide, Fungicide and Rodenticide Act 

(FIFRA) and Federal Food, Drug and Cosmetic Act (FFDCA), respectively. The major difference 

from EU and Japan is that both regulations have been authorized by the U.S. Environmental 

protection Agency (EPA). The registration process is separated into the registration of active 

substance and the registration of pesticide product. Applicant first needs to obtain the approval of 

active substance and pesticide product from EPA and then, submit the registration form to the states 

where the product will be sold (Hattori, 2018). The requirement of the state level registration is 

different from state-by-state. Among the states, it has been said that the registration in the State of 

California is the most difficult because the California Department of Pesticide Regulation (CDPR) 

evaluates various contents based on own pesticide registration program. The registered pesticides 

are re-assessed every 15 years. Additional data requirements in the re-registration process are 

determined based on the existing data by EPA (Hattori, 2018). In the EPA registration process, 

applicant has to submit the dossier created based on the  study data regarding physicochemical 

properties, environmental fate, residue chemistry, spray drift, exposures to worker and residential 

area, and hazards on human, livestock and non-target organisms, which are conducted incompliance 

with the test guidelines issued by EPA under the good laboratory practice (GLP). All submitted data 
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are evaluated by EPA in the period of 15−21 month as stipulated by Pesticide Registration 

Improvement Act (PRIA) (Hattori, 2018; MAFF, 2016).  

During the evaluation period, Office of Pesticide Program (OPP), the division of Office of 

Chemical Safety and Pollution Prevention (OCSPP) in EPA, assesses the risks to environment and 

human health from pesticide. For the assessment of the risk to the environment, the process is 

consisted from three steps: Phase1; problem formulation, Phase 2; analysis and Phase 3; risk 

characterization. Based on this concept, OPP first constructs the plan for the risk assessment as 

Phase 1. Second, the OPP determines the drinking water exposure and the ecological exposure, and 

then establish the endpoint from the toxicity studies from the submitted data in the Phase 2. In the 

characterization of aquatic exposure estimates, OPP utilizes either conceptual/screening or 

mathematical simulation models parameterized from the submitted data regarding the 

environmental fate studies depending on the tier. In the Tier 1 approach, the GENeric Estimated 

Environmental Concentration (GENEEC2), FQPA Index Reservoir Screening Tool (FIRST), the 

Tier 1 Rice Model and the Screening Concentration in Groundwater (SCI-GROW) have been used 

for estimating aquatic exposure in surface water, exposure to drinking water in surface water, 

surface water exposure by the pesticide use in rice paddies and exposure to drinking water in 

ground water, respectively. When the risk assessment in tier I is failed, higher tier mathematical 

models, such as the Surface Water Concentration Calculator (SWCC) for surface water, Pesticides 

in Flooded Applications Model (PFAM) for rice paddies and the Pesticide Root Zone Model 

Groundwater (PRZM-GW) for ground water, are applied to estimate the exposures under more 

realistic condition as Tier 2. As the Phase 3, the risk characterization in the screening process is 

performed by calculating the risk quotient (RQ) defined as: 

RQ = 
Exposure 

(2.1)
Toxicity 

where Exposure is characterized as the peak concentration (mg/L) or 21-day average water 

concentration (mg/L) for acute and chronic exposure events, respectively, and Toxicity is selected as 

the most sensitive LC50 or EC50 (concentration of a pesticide where 50% of the organisms die or 

being affected, mg/L) and NOAEC (No Observed Adverse Effect Concentration, mg/L) for acute 

and chronic exposure events, respectively. In addition to aforementioned deterministic approach, 

EPA also adopts the probabilistic approach that accounts the natural variability and uncertainty 

(Ritter and Williams, 2008b). In this approach, the exposure event is characterized as the results of 

the 1-in-10 year exceedance probabilities estimated from the Tier 2 modeling. Finally, the decision 
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is made by OPP based on the results of the risk assessment on environment and human health and 

then, new active ingredient is registered if the pesticide risk is acceptable. 

 

2.3.2. EU 

The pesticide registration in EU is stipulated by the regulation 1107/2009 (European Commission, 

2009). The registrations for active ingredient and formulation product (plant protection product, 

PPP) are separately approved. For the registration of active ingredient, applicant prepare the 

dossiers regarding chemical identification, physicochemical properties, additional information, 

analytical method, toxicological and metabolism studies, residues in or on treated products, food 

and feed, fate and behaviour in the environment and ecotoxicological studies (European 

Commission, 2011), which are conducted under GLP (European Commission, 2013c). The 

submitted documents are evaluated by the Rapporteur Member State (RMS) where applicant applies 

and the Draft Assessment Report (DAR) is created. Next, European Food Safety Authority (EFSA), 

an independent scientific agency responsible for food safety in EU, reviews the DAR and finalizes 

the assessment results. Finally, Standing Committees in European Commission make a dicision on 

the approval of active ingredient. It takes about 30−42 month from application to approval. Note 

that the setting of the MRL is same flow as described. The renewal of active ingredient is conducted 

every 10 year. After registration of active ingreident, applicant have to apply the registration of the 

PPP to all countories where PPP are planed to be sold. There are two chracteristics in EU 

registration an the one is that EU adopts the zonal approach which the assessment is implemented 

based on three zone as shown in Figure 2.6 and the assessment result is used for the approval of 

PPP in another country within same zone. Another characteristic of the EU registration is the 

hazard-based cut-off criteria based on precautionary principle. If the active ingredients candidate for 

new pesticide or renewal satisfies the properties as summarized in Table 2.2, the registration of 

these compounds are failed. The introduction of the cut-off criteria drastically changed the 

agriculture and food production in EU. For example, in Italy, the 41% of registered pesticides were 

expired (Yokota, 2014). 
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Fig. 2.6 Zones regarding approval of plant protection products (PPPs) in EU registration. 
Source: Shirato et al. (2014) 

 

In the environmental risk assessment of pesticides, FOrum for the Co-ordination of pesticide 

fate models and their USe and was an initiative of the European Commission (FOCUS) provides 

harmonized the modeling tools and guidance regarding the calculation of PEC and degradation 

kinetics in the framework of the EU. For the surface water, the calculations of PECs in surface 

water and sediment are followed by the prescribed scenario (FOCUS, 2001) and separated into four 

steps based on the tiered approach. The Step 1 is a relatively simple calculation based on a maximal 

loading and a fixed worst case scenario. The Step 2 allowed multiple applications and regional 

variation across Europe. These two processes are executed by the STEPS_ONE_TWO simulation 

program. In the Step 3 and Step 4, PEC calculation is implemented by the mathematical models for 

estimating the pesticide drainage, run-off and fate in surface water body. The MACRO 

model—simulating water and solute transport in macroporous soil (Jarvis et al., 1994)—estimates 

the drainage as a sub-surface loading to surface waters. 

Northern zone
Central zone

Southern zone
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Table 2.2 Cut-off criteria in regulation 1107/2009 
Field Category Description 
Toxicology Carcinogenic (C) Category 1A or 1B 
 Mutagenic (M) 
 Reproduction (R) Category 1A, 1B or 2 
Environment Persistent Organic Pollutant 

(POP) 
 

 

 

Persistence: DT50, water > 2 month 
          DT50, soil > 6 month 
          DT50, sed > 6 month 
Bioaccumulation: BCF > 5000 
               logPOW > 5 
Potential long-range transport: 
    Monitoring or DT50, air > 2 day 

 Persistent and Bioaccumulation and 
Toxic substance (PBT) 

Persistence: DT50, marine water > 60 day 
          DT50, fresh water > 40 day 
          DT50,marine sed > 180 day 

DT50,freshwater sed > 120 day 
          DT50,soil > 120 day 
Bioaccumulation: BCF > 2000 
Toxicity: NOEC (aquatic) < 0.01mg/L 
        C, M; Category 1A or 1B 
        R; Category 1A, 1B or 2 
        Chronic toxicity;  

STOT RE 1 or STOT RE 2 
 Very Persistent and very 

Bioaccumulation substance (vPvB) 
Persistence: DT50, water > 180 day 
          DT50, sed > 180 day 
          DT50,soil > 180 day 
Bioaccumulation: BCF > 5000 

 Endocrine disruptor properties  
 Groundwater PECgw > 0.1ppb for parent 

PECgw > 0.75ppb for metbolite 
Category 1A, 1B and 2: Positive, possible positive and suspicious, respectively, 
DT: Half-life,  
BCF: Bioconcentration factor,  
NOEC: Non observed effect concentration, 
STOT RE1: Definitely toxic to humans or toxic effect was determined in animal experiments after 

repeated exposure. 
STOT RE2:  Includes substances presumed to be toxic following repeated exposure on the basis of 

evidence from studies in experimental animals. 
PEC: Predicted environmental concentration 
 

The Pesticide Root Zone Model (PRZM)—a one-dimensional non-deterministic compartmental 

model for the prediction of chemical movement in unsaturated soils by vertical chromatographic 

leaching (Carsel et al., 1985)—accounts for run-off as a superficial loading to surface water. The 

TOXic substances in Surface WAters (TOXSWA) model—a quasi-two-dimensional numerical 

model of pesticide behaviour in a small surface water and sediment system (Adriaanse, 
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1996)—returns the final concentration estimations used for the risk assessment by taking into 

account the dissipation processes in surface waters itself. Although each model requires multiple 

parameters for the calculation, the input variables have been fixed, leaving only the dossier data as 

main input data in the FOCUS models to minimize the influence of the user subjectivity. In addition, 

an integrated computerized shell, called SWASH, has been distributed to help the user through the 

higher tier exposure assessment. Using the estimated PECs, the risk assessment process is 

performed to calculate the Toxicity Exposure Ratios (TER) for aquatic organisms defined as: 

TER = 
L(E)C50 or NOEC 

.                         (2.2)
PEC 

The safeties are assured when the TERs are above 100 and 10 for acute and chronic toxicities, 

respectively. 

For the groundwater, the FOCUS developed the scenarios with a set of nine standard 

combinations of weather, soil and cropping data which collectively represent agriculture in the EU 

for the purposes of a Tier 1 EU-level assessment of leaching potential (FOCUS, 2009). Currently, 

the scenarios have been parameterized in four models: MACRO, PEARL, PELMO and PRZM. The 

PEARL model is an acronym of Pesticide Emission Assessment at Regional and Local scales, 

which consists of a one-dimensional, dynamic, multi-layer model including the non-equilibrium 

sorption of pesticide (Tiktak et al., 2000). The PEsticide Leaching MOdel (PELMO) is a one 

dimensional simulation model simulating the vertical movement of pesticides in soil by 

chromatographic leaching (Klein, 1994). The estimated PECs in groundwater are used for the 

hazard-based assessment (see Table 2.2). 

 

2.3.3. Japan 

In Japan, the registration and regulation of pesticide have been related to five authorities. Table 2.3 

summarizes the authorities, the relating law and the role of authorities in the Japanese 

administration of pesticides. In the Agricultural Chemical Regulation Law, the pesticide is defined 

as the pesticide formulation product. Therefore, the registration of the pesticide in Japan means the 

registration of the pesticide formulation product as well as the safety assessment of the technical 

grade active ingredient (TGAI). Applicant must prepare the dossiers of the study results on the 

composition of TGAI) and formulation, physicochemical properties, efficacy and phytotoxicity, 

toxicology on human, plant metabolism and residue in crop, metabolism and residue in livestock,  
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Table 2.3 Authorities, law and role in Japanese administration of pesticides 
Ministries Law Role 
Ministry of Agriculture, Fishery 
and Forestry (MAFF) 
Food and Agricultural Materials 
Inspection Center (FAMIC) 

Agricultural 
Chemical 
Regulation Law 

Registration 
Regulation of manufacture, 
distribution, sales and use 
 

   

Ministry of Health, Labour and 
Welfare (MHLW) 

Food Sanitation Act Setting of MRL 
Regulation and monitoring of 
residue in food 

 
Ministry of Environment (MOE) Basic 

Environmental Law 
Environmental risk assessment 

 
Food Safety Commission of Japan Food Safety Basic 

Act 
Settings of ADI and ARfD 

 
Consumer Affairs Agency (CAA) Food Sanitation Act Consultation for setting of MRL 

MRL: Maximum Residual Limit. 
ADI: Acceptable Daily Intake. 
ARfD: Acute Reference Dose. 
 

environmental fate and persistence in soil, ecotoxicology on living environmental animals, 

analytical method, and pesticide sample. Through the revision of the Agricultural Chemical 

Regulation Law in 2018, data requirements for worker’s exposure and ecotoxicology have been 

reinforced. Most of the required studies should be conducted under GLP. The submitted application 

documents are first assessed by the Food and Agricultural Materials Inspection Center (FAMIC). 

Ministry of Agriculture, Fishery and Forestry (MAFF) requests the settings of the Standards to 

withhold Registration on residue in crop, persistence in soil, ecotoxicology and water polluting 

property, and the MRL to Ministry of Environment (MOE) and Ministry of Health, Labour and 

Welfare (MHLW), respectively. MHLW offers the settings of Acceptable Daily Intake (ADI) and 

Acute Reference Dose (ARfD) to the Food Safety Commission of Japan and then, determines the 

MRL consulting with Consumer Affairs Agency (CAA). By considering the decisions made by 

FAMIC, MOE and MHLW, MAFF makes the final decision for the registration. As explained 

above, the characteristic of the pesticide registration in Japan is that multiple independent 

authorities participate in the assessment process. While no clear time period is declared in the 

assessment process, it takes about three years until the completion of assessment. The revision of 

the law also introduced the renewal system of TGAI instead of the renewal of the formulation 

product previously conducted every three year, which will be started for the TGAIs ranked high 



 

19 

priority from 2021. After the renewal of existing TGAIs, new TGAI will be reassessed every 15 

years. 

In the setting of the Standards to withhold Registration on ecotoxicology and water polluting 

property, a simple screening model to estimate PEC has been used. The model comprised of 

conceptual 100 km2 watershed including main stream, tributary, paddy fields (500 ha) and 

non-paddy agricultural fields (750 ha) (see Fig.2.7). The main stream shares 60% and its tributaries 

for 40% of the total river area. The main stream has discharges at the normal water level of 3.0 m3/s 

and at storm event of 11.0 m3/s, which induces surface runoff in non-paddy agricultural fields. The 

usage ratios, defined as the fraction the area where the target pesticide is applied over the total area, 

in paddy fields and non-paddy agricultural fields are fixed to be 10% and 5%, respectively. The 

evaluation points for long-term PEC (water polluting properties) and short-term PEC 

(ecotoxicology) are located in the tributary where pesticide runoffs from paddy fields and 

non-paddy agricultural fields merges and main stream, respectively. PEC calculation adopts tier 

system and comprises three stages. The general equations for long term PEC and short-term PEC 

are provided as: 

PECLong-term = 
Σ (Surface runoff + Seepage runoff* + Drift into river* + Drift into ditch*) 

, (2.3)
Annul flow volume 

 

PECShort-term = 

Maximum surface runoff + Maximum seepage runoff* + Drift into river  
+ Drift into ditch – Adsorption onto sediment* 

. (2.4)
Total flow volume at evaluation point during evaluation period 

The numerators in eqs. (2.3) and (2.4) are expressed as the mass basis and the terms containing 

superscript of “*” mean that these terms are not used for Tier 1 calculation. Note that the 

terms ”Seepage runoff” and “Drift into ditch” are not considered in non-paddy agricultural fields. At 

each tier, inputs for PEC calculation are taken by referring to the Table 2.4. More detained 

explanation can be found elsewhere (Watanabe et al., 2008). 

In the risk assessment phase, the long-term PEC is compared to the water quality standard 

calculated from ADI. For the short-term PEC, the lowest acute effect concentration (AEC) is used 

for the evaluation endpoint (see Fig.2.8). AEC is derived from the test results of toxicity tests on the 

aquatic organisms by multiplying the uncertainty factors (default 10, but depends on the data 

number for fish and crustaceans and 1 for algae). For the test species, fish (Cyprinus carpio), 
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daphnids (Daphnia magna) and algae (Pseudokirchneriella subcapitata) are mandatory, and 

Chironomus sp. and Lemna sp. are additionally required depending on the type of TGAI and mode 

of actions 

 

 

Fig. 2.7 Standard environmental scenario for PEC calculation in Japan 
 

 

Table 2.4 Data sources for PEC calculation in tiered approach 
Exposure pathway Treatment Tier 1 Tier 2 Tier 3 
Surface runoff Paddy Runoff table Lysimeter test Field test 

Non-paddy Runoff table Soil dissipation testa 
Surface runoff testb 

Surface runoff testa

−b 
Drift into river Paddy Drift table Drift table Drift test 

Non-paddyb Drift table Drift test − 
Areal application Drift table Drift table Drift table 

Drift into ditch Ground application Drift table Drift table Drift testa 
Drift tableb 

Areal application Drift table Drift table Drift table 
a For long-term PEC calculation 
b For short-term PEC calculation 
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Fig. 2.8 General scheme for short-term PEC evaluation 
 

2.4. Recent environmental concerns regarding pesticide use 

2.4.1. United States and EU 

This section briefly introduced the recent environmental concerns and the regulatory actions taken 

by the authorities in the world and Japan. In 2013, EU banned to use three neonicotinoid 

insecticides, thiamethoxam, clothianidin and imidacloprid, as seed treatments in pollinator attractive 

crops for three years from their concerns about the threat to the bees (European Commission, 

2013a). Note that phenylpyrazole insecticide of fipronil was also banned in the same year 

(European Commission, 2013b). In 2018, these neonicotinoid insecticides were completely banned 

for all outdoor use (EurActiv, 2018). U.S.EPA also released the document regarding the protection 

of pollinator from the use of the neonicotinoid insecticides (U.S. EPA, 2013). Although it has been 

said that the period of the decline of bee’s population was corresponded to that in the introduction 

and expansion of agricultural use of imdacloprid, there has been no clear scientific evidence relating 

the involvement of neonicotinoids and the bee’s decline (Blacquiere and van der Steen, 2017). 

The toxicity of neonicotinoids on the aquatic organisms has also been paid attention in recent 

years. Various studies reported the potential acute- and chronic risks of neonicotinoids to the 

aquatic invertebrates (Goulson and Kleijn, 2013; Morrissey et al., 2015; Sánchez-Bayo et al., 2016). 

Morrissey et al. (2015) proposed the ecological thresholds of the neonicotinoid insecticides in the 

surface water were below 0.2 μg/L for acute effect and 0.035 μg/L for chronic effect from their 

species sensitivity distribution (SSD) analysis. U.S.EPA has also published similar benchmark for 

Tier 1 PEC-Numerical 
estimation

Tier 2 PEC-Fate 
evaluation by lysimeter or 
surface runoff test

Tier 3 PEC-Plot scale fate 
evaluation and drift test 

Predicted Environmental 
Concentration (PEC)

Acute Effect 
Concentration (AEC)

- Chironomus sp. acute 
immobilization test

- Lemna sp. Growth 
Inhibition Test

PEC > AEC

NoYes

Registration

- Fish acute toxicity test
- Daphnia sp. acute 

Immobilization test
- Alga and Cyanobacteria 

growth inhabitation test
+

No registration

×Uncertainty Factor
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imidacroprid (0.385 μg/L for acute effect and 0.01 μg/L for chronic effect) for the referential values 

of pesticide renewal. As discussed above, the regulatory actions on the pesticide use have been 

becoming strict especially for the pesticide that the hazards for either human health or environment 

were identified. Another remark was that these pesticides were popularly used in the agricultural 

sector. 

 

2.4.2. Japan 

In Japan, the concerns for neonicotinoid pesticides and fipronil have been also arising especially for 

paddy environments. For bees, Japanese authorities stated that one of possible cause for reduction 

of the population of honeybee in recent was the bee’s direct exposure of insecticide for rice stink 

bug control applied in paddy fields (MAFF, 2016). However, Japanese authority has not yet taken 

any regulatory action such as banning and usage restriction although the test result on acute toxicity 

for honeybee has been mandatory in the registration process. For aquatic organisms, recent studies 

using micro-paddy lysimeter and experimental paddy showed that the nursery-box applied fipronil 

and imidacloprid negatively affected on dragonfly larvae and their emergence (Hayasaka et al., 

2013a; Jinguji et al., 2009). Similarly, the toxicities of these insecticides on aquatic organisms in 

paddy environment have been extensively studied (Hayasaka et al., 2013b; Motobayashi et al., 

2012; Tanaka et al., 2000). Furthermore, in the surface water, Iwafune et al. (2011) reported that the 

acute toxicities of the mixture (6 insecticides and 12 their metabolites) temporary exceeded the 

acceptable level (1 > RQ) on caddisflies although individual toxicities were acceptable during rice 

cultivation period. 

For herbicides, in Japan, amide (mefenacet, pretilachlor), carbamate (molinate, thibencarb), 

triazine (simetryn) and sulfonyl-urea (bensulfuron-methyl) herbicides have been popularly used in 

paddy fields and their growth inhabitation effects have been widely studied (Hatakeyama, 2006b; 

Hatakeyama et al., 1994; Kasai and Hatakeyama, 1993). Similar to as insecticides, the herbicide 

susceptibility was totally different depending on the species including diatom, green algae and 

blue-green algae and the changes in genetic composition (Hatakeyama, 2006a). For example, 

sulfonyl-urea herbicides, bensulfuron-methyl, has been reported that the EC50 of duckweeds was 

half to one-sixth of that of standard species (56 μg/L) (Aida et al., 2004). It has been reported that 

the amide herbicide, pretilachlor, which has lower ecological threshold (2.9 μg/L), exceeded the tier 

2 PEC (1.1 μg/L) at 19 out of 2176 monitoring points during 2000 to 2005 so that the authorities 

has specifically paid attention to this compound (MOE, 2011). 
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2.5. Pesticide application, fate and transport in paddy environment 

2.5.1. Rice cultivation schedule and pesticide use 

Figure 2.9 shows the conventional rice cultivation schedule in Japan published by MAFF. In the 

transplanting rice cultivation, the flooding condition is maintained after paddling to prevent poor 

rooting of rice seedlings due to soil hardening and flooded water is drained to adjust appropriate 

water level at transplanting (Sayama and Miura, 2015). During flooding, herbicide can be applied 

until 7 days before transplanting and emulsion and flowable formulations are frequently used. In the 

preparation of rice seedlings, rice seeds are first disinfected by mean of hot water or fungicide for 

seed treatment. At sowing, another fungicide is treated to prevent the damping-off due to fungi. At 

transplanting, the insecticide-fungicide mixture is treated to each nursery-box to prevent blast 

disease and sheath blight disease and to control plant hoppers and stem borers. After transplanting, 

the one-shot herbicide formulated as granule, flowable and jumbo (Takeshita and Noritake, 2001) is 

applied as the weeding within a week. When weeds are not sufficiently removed, mid-term 

herbicide is additionally applied. After midsummer drainage, the pest and disease controls to rice 

foliage are conducted from the end of tiller stage to the beginning of booting stage by the ground 

application using sprayer or the areal application using helicopter for the same purpose as above. 

Meantime, the latter-term herbicide can be optionally applied as the final weeding. Additional two 

the pest and disease controls are implemented during the reproductive phase to control black bugs 

as well as above-mentioned purpose. 

 

Fig. 2.9 Conventional rice cultivation schedule in Japan. Source: MAFF. 
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2.5.2. Fate and transport processes of pesticide in paddy field 

Fig.2.10 summarizes the fate and transport processes in pesticides in paddy field. This figure 

excludes the specific processes regarding the application scenarios, which are discussed in later 

section. The paddy field is structurally classified as paddy water, plow soil layer and hard pan layer. 

The paddy water is flooded water impounded to paddy field whose shape is shallow pond 

surrounded by levee. The plow soil layer is defined as surface soil plowed for cultivation with the 

depth of 15−20 cm. Under the flooding condition, the top 1 cm from soil surface is aerobic 

condition so that pesticide’s chemical processes undergo under oxidative condition. The soil layer 

below 1cm is thus, a reduction condition which all chemical processes occur in anaerobic condition 

(Takagi et al., 1998). The hard pan layer is less permeable layer formed by the consolidation due to 

plowing machine and sedimentation of fine soil particle. 

 

 

Fig. 2.10 Fate and transport processes in paddy field 
 

 

2.5.2.1. Water processes 

It is widely known that pesticides used in paddy fields are remarkably more prone to runoff to the 

open environment due to the flooding condition of the field (Watanabe et al., 2008). The surface 

runoff of pesticide is the greatest concern for source of exposure in the aquatic environment in 

Japan and mainly caused by the irrigation and meteorological events. Appropriate irrigation 

practice—adjusting the water level to deeper, shallower or dryness and the timing of irrigation 

either intermittent or continuous—is important operation for the cultivation of paddy rice. Although 

the continuous irrigation (or spill-over irrigation) scheme is important to prevent the high 
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temperature damage of paddy rice, it caused serious pesticide loss (ca. 10%−50% of applied mass) 

during the weeding after transplanting (Watanabe et al., 2006a; Watanabe et al., 2007). To prevent 

the pesticide runoff, application of appropriate Water Holding Period (WHP)—defined as a period 

during which paddy water is held inside the field in order not to discharge pesticides to the 

environment especially during the earlier period when the pesticide concentration in paddy water is 

high (Newhart, 2002)—is important and 7 days of WHP is necessary in Japan (MOE, 2009). The 

meteorological events such as precipitation and strong wind are another factors causing surface 

runoff of pesticide. Phong et al. (2008b) developed the excess water storage depth (EWSD) defined 

as the distance between paddy water level and top of the drainage gate to store the unexpected 

inputs of water and more than 3 cm of EWSD effectively prevented the surface runoff. Currently, in 

Japan, farmers have to take measures for the prevention of pesticide runoff including 

above-mentioned WHP and EWSD after pesticide application based on the Ministerial Ordinance 

for Pesticide User by MAFF and MOE. However, since meteorological conditions in Japan vary 

depending on the region, higher pesticide runoff possibility has been reported especially Kyusyu 

Island suffering severe rainfall events during the rice cultivation season even though appropriate 

water management practices are implemented (Kondo et al., 2012). 

The water movement in soil is another important factor affecting the pesticide fate and 

transport processes in paddy field. The percolation is vertical water movement in soil layer and 

governed by the hydraulic conductivity in hard pan layer and paddling practice (Tournebize et al., 

2006; Watanabe and Takagi, 2000a). The seepage is the lateral water movement through the levee. 

In the monitoring study, the rates of these two processes are often included and measured as the 

water requirement given as: 

Water Requirement = Evapotranspiration + Percolation + Seepage. (2.5)

The measurement of the water requirement can be done by using N-type water requirement rate 

measuring apparatus or the PVC ring method (Watanabe et al., 2008). Beside to the accurate 

estimation of the water requirement, the crop evapotranspiration (ETC) is also play an important role 

in the root uptake of pesticide (see next section). An accurate estimation method of ETC has been 

proposed by Vu et al. (2005), who calibrated the crop coefficients in FAO Penman–Monteith 

method depending on the rice growth stage for Japanese variety. The previous simulation studies 

showed that the residential time of tracer and pretilachlor in plow soil layer were both about 40 days 

and only a few amounts of them were reached blow the hard pan layer during the rice cultivation 

season (Tournebize et al., 2006; Watanabe et al., 2008). On the other hand, the seepage loss of 
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pesticide remarkably affected the surface water exposure: Sudo et al. (2018); (2012) reported that 

the considerable amounts of paddy herbicides were lost via lateral seepage during rice cultivation 

season. Furthermore, the simulation study of Inao et al. (2016) showed that the paddy herbicides 

loss by the lateral seepage remarkably contributed to the increases of concentrations in surface 

water in Japanese public water area. 

 

2.5.2.2. Chemical processes 

Factors influencing pesticide distribution.   The chemical processes of pesticide in the paddy field 

are mainly distinguished between the distribution and degradation. The distribution of pesticide 

means that the applied pesticide is transferred from current compartment to another via sorption, 

diffusion, volatilization and uptake. The sorption is the process that the pesticide becomes 

associated with solid phase and thus, the solid phase of the paddy soil in paddy field. The 

adsorption and desorption phenomena as shown in Fig.2.10 are referred to the pesticide attachment 

into and detachment from two-dimensional soil solid surface. The main mechanisms of soil sorption 

are explained by i) hydrophobicity of neutral pesticide, ii) London dispersive and polar interaction 

and iii) electrostatic interaction of dissociable pesticide. The sorption phenomenon can be described 

either linear or non-linear model by using the linear distribution coefficient (Kd), the ratio of the 

concentrations in aqueous (C) and soil (S) phases. In the pesticide chemistry, the non-linear model, 

Freundlich isotherm, is frequently used and given as: 

S = KF CW 
n                                      (2.6)

where KF and n are the Freundlich adsorption coefficient and exponent, respectively. In the 

environmental fate modeling, the linear adsorption (n=1), the free energy of adsorption is 

independent on the pesticide concentration, is often assumed. It is also widely assumed that the Kd 

is positively correlated with the content of organic carbon (%oc) in soil and the coefficient 

normalized by %oc, KOC is an universal measure to evaluate the adsprptivity of pesticide onto soil 

organic matter. However, recent study has showed that the content of %oc does not solely 

determine the adsprptivity of pesticide but the content of black carbon and pesticide structure are 

more closely related to the adsprptivity (Motoki et al., 2014). Another criticism is that Kd 

underestimates the actual state of distribution between water and soil. Since Freundlich isotherm is 

derived from the laboratory shake-flask experiment with relatively short time scale (24−48 hour), 

the estimated may only represent the apparent equilibrium state achieved (Warren et al., 2003). In 

the real environment, the Kd value may increase over longer incubation time due to the slow 
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sorption kinetic process subsequent to the rapid sorption kinetic process (Pignatello and Xing, 

1996). Similarly, the desorption of pesticide is functioned as complex kinetic phenomena. Therefore, 

when the pesticide fate and transport processes are modeled in actual paddy environment, following 

characteristics on sorption of pesticide should be considered: i) no single rate constant applies over 

the entire sorption process, ii) sorption is often kinetically hysteric and iii) the amount of slow 

sorption is inversely proportional to the initial pesticide concentration (Pignatello and Xing, 1996). 

The diffusion is another phenomenon to describe the pesticide exchange between paddy water 

and paddy soil. The diffusion process undergoes between pesticide in paddy water and that in pore 

water equilibrated with the solid phase in the paddy soil. In the modeling of diffusion, two-film 

theory that describes the phenomenon by concentration gradient between two phases with pesticide 

diffusivity normalized by the boundary layer depth has been used (Kibe et al., 2000c; Williams et 

al., 2011).  

Volatilization is one of the main transport pathways by which pesticides move from paddy 

water into the atmosphere. To predict the volatility of pesticide, Henry’s law constant (H) has been 

used as a measure of the concentration of a chemical in air over its concentration in water. A 

pesticide with a high H will volatilize from water into air and be distributed over a large area. On 

contrary a pesticide with a low H tend to persist in water and may be adsorbed onto soil. There are 

two ways to express H as follows: 

or 

  H = 
Vapor pressure 

.                               (2.8)
Water solubility 

The former is dimensionless and latter has the unit of Pa L/mol. For modeling application, former 

measure is used. 

The plant uptake pathways of pesticide are divided into uptake from plant root and absorption 

from plant surface. For the root uptake, pesticide in plant is considered to be released via 

transpiration stream from leaves and uptaken the pesticide dissolved in the soil water from the roots. 

Briggs et al. (1982) proposed the transpiration stream concentration factor (TSCF) that defined as: 

     TSCF =
Concertation in transpiration stream in xylem .           (2.9)

Concertation in soil water in root zone 

H’= 
Concentration in gas phase 

 = 
16.04×Molecular weight× Vapor pressure 

(2.7)
Concentration in liquid phase Water solubility × Absolute temperature 
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The TSCF has been used for a descriptor of chemical uptake by plant roots. Inao et al. (2018a) 

incorporated the TSCF concept into pesticide fate and transport modeling and successfully 

simulated the concertation of nursery-box treatment pesticides in rice plant. 

 

Factors influencing pesticide degradation.   Pesticide degradation processes is classified as 

abiotic process and biotic process. For the abiotic degradation processes, hydrolysis, photolysis and 

redox reaction are considered (Katagi, 2006) and first two processes are discussed as the major 

processes in paddy field modeling. Hydrolysis is defined as a reaction in which a water molecule 

(or hydroxide ion) substitutes for another atom or group of atoms present in an organic molecule. 

The reactivity of pesticide is largely determined by the substituents that are bound to the pesticide. 

Substituents are atoms or groups of atoms bonded to the substrate (main body of pesticide). 

Although the actual hydrolysis reaction rate (kOBS) is governed by the pseudo-first-order rate 

constant expressed as the sum of all possible reaction rates, the half-life is simply calculated as: 

          Half-life =
0.693 

.                          (2.10)
kOBS 

In the higher temperature condition, the molecules in solution have more energy, causing them to 

move and react faster. This causes hydrolysis reactions to occur at a faster rate. In this case, the 

Arrhenius equation can be used as: 

        kOBS = A exp(-Ea/RT) (2.12)

where A is the frequency factor, Ea is the activation energy (kcal/mol), R is the universal gas 

constant (8.314 J/mol/K), and T is the temperature in Kelvin (K). the pH value is influential for 

hydrolysis reactions working better in slightly basic or acidic environments. Hydrolysis can be a 

significant degradation pathway for pesticide containing esterm, ether or amide functional group 

and for mono-substituted haloalkanes (Warren et al., 2003). 

According to the OECD (2008), the photochemical reaction is a general term on a chemical 

reaction caused by absorption of ultraviolet (UV), visible, or infrared radiation. While the 

photolysis is a bond cleavage induced by ultraviolet, visible, or infrared radiation, the 

photodegradation means the photochemical transformation of a chemical into fragments, usually in 

an oxidation process by UV-based processes. In paddy field, photodegradation of pesticide can 
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occur via direct and/or indirect photolysis. The direct photolysis of pesticide is a reaction breaking 

bonds of a pesticide molecule due to UV absorption at >290 nm. Indirect photolysis is 

transformation of pesticide by energy transfer from another excited species (e.g., components of 

natural organic matter), or by reaction with very reactive, short-lived species formed in the presence 

of light (e.g., hydroxyl radicals, singlet oxygen, ozone, peroxy radicals, etc.). Although the kinetic 

model of photolysis is experimentally described by the first-order kinetics (OECD, 2008), the 

reaction rate of photolysis (kPHOT) are the sum of direct (kDIRECT) and indirect  (kINDIRECT) 

photolysis can be theoretically modeled as follows (Jasper and Sedlak, 2013; Katagi, 2006): 

 

where Φ is the quantum yield defined as the number of defined events which occur per photon 

absorbed by the system, λ is the wavelength, S(λ) is the light-screening factor, which accounts for 

light absorption in a well-mixed body of water, is the daily-averaged solar (or artificial light) 

irradiance, ε(λ) is the molar absorption coefficient, kꞏOH, kCO3-, k1O2 and k3DOM* are the reaction rate 

constants of hydroxyl radicals, carbonate radical, singlet oxygen and dissolved organic carbon 

(DOC), respectively and [ꞏOH], [ CO3
-], [ 1O2] and [3DOM*] are the steady-state concentrations in 

water body. According to Warren et al. (2003), the direct photolysis is not generally a significant 

degradation pathway as compared to the indirect photolysis. Therefore, care must be taken when the 

reaction rate of photolysis in the real paddy environment is deduced from the photolysis half-lives 

derived from OECD method, which is conducted under pure water or sterilized aqueous buffer 

solutions excluding indirect photolysis.  

The biotic degradation or biodegradation is, in other words, microbial metabolism in which 

the pesticide serves as a growth substrate. Various microorganisms in soils such as bacteria and 

fungi play an important role on mineralization of pesticide changing a pesticide into the basic 

components of CO2, H2O, and mineral salts. There two types of soil bacteria preferable to aerobic 

condition and anaerobic condition. Therefore, it has been reported that the rates of biodegradation 

of pesticide are different between oxidative soil layer and the reductive soil layer (Fajardo et al., 

2000a; Fajardo et al., 2000b). Besides to the metabolism, co-metabolism, in which the pesticide is 

transformed by metabolic processes, but does not serve as an energy source, is also considered. The 

  kPHOT = kDIRECT + kINDIRECT (2.13)
 

 kDIRECT = 2.3 Φ × 
λ
Σ{S(λ) × Z(λ) × ε(λ)} (2.14)

kINDIRECT = kꞏOH[ꞏOH] + kCO3-[ CO3
-] + k1O2[ 

1O2] + k3DOM*[
3DOM*] (2.15)
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major reactions observed in microbial metabolism of pesticides consist of oxidation, reduction 

hydrolysis and conjugation, which undergo with the aids of enzymes (Katagi, 2016). Table 2.5 

summarizes the typical transformation reactions observed in the microbial metabolism provided by 

Katagi (2016). 

 

Table 2.5 Typical transformation reactions in microbial metabolism. Source: Katagi (2016) 

 
 

 

2.5.2.3. Modeling of pesticide application 

The conventional pesticide application scenarios modeled in paddy field are shown in Fig.2.11. For 

submerged application of granule formulation, the dissolution process of granule the release of 

pesticide from granule has been modeled using the simplified Noyes-Whitney equation assuming 

the time variation of surface area of dissolving solid is negligible (Inao and Kitamura, 1999; 

Watanabe and Takagi, 2000c). The nursery-box applied pesticide is mostly distributed in the root 

zone compartment that accounts 5%−15% of total area of paddy field with the transplanting depth 

of 2.5−5 cm (Boulange et al., 2016; Inao et al., 2018b). At the transplanting of the rice seedlings  
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Fig. 2.11 Conceptual presentation of pesticide application scenarios 
 

into the rice paddy field, a small portion (6%−14%) of the applied pesticide on the nursery-box can 

be directly deposited into the paddy water compartments (Boulange et al., 2016). Furthermore, the 

applied pesticides in root zone can be transferred to paddy water and inter-root zone of the paddy 

soil via resuspension and diffusion. The foliar application of pesticide has been modeled as follows: 

sprayed pesticide is adhered to the rice foliage but some are drifted to outside of the system and 

deposited to paddy water. The deposition amount of sprayed pesticide on paddy water is estimated 

as the mass excluding the drift mass and the mass intercepted by the rice crop (adhered mass). 

Although the drift ratio and crop interception factor has been well tabulated in FOCUS surface 

water scenario, the crop interception factor of rice has not been available (FOCUS, 2001). 

 

2.6. Monitoring and modeling of paddy pesticide 

2.6.1. Monitoring of pesticides in surface water of Japanese river 

This section briefly introduces six monitoring studies published after 2010 in Japan. Iwafune et al. 

(2010) investigated the concentrations of 39 paddy pesticides and 11 of their metabolites in surface 

water of Sakura River, Ibaraki Prefecture in 2007 and 2008. Phong et al. (2010) reported the 

detection patterns of 11 fungicides, 20 herbicides and 11 insecticides with 4 metabolites in Kose 

River, the branch River of Chikugo River located in Fukuoka Prefecture in 2009. Anasco et al. 

(2010) monitored 14 paddy pesticides in three rivers, Aomori River, Sudo River and Nagaida River, 
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located in Kagoshima Prefecture in 2005. Kawamura and Ebise (2014) analyzed 26 paddy 

pesticides in Yodo River and three major tributaries, Katsura River, Uji River and Kidu River, in 

Kinki region in 2011. Sato et al. (2016) focused on the 6 neonicotinoid and other 4 insecticides and 

surveyed in Sagami riverine system located in Kanagawa Prefecture in 2014. Narushima et al. 

(2014) reported the detection condition of 64 pesticides among 101 target chemicals for water 

quality standards in the Water Suppay Act of 2003 in river waters of Shinano River and Agano 

River in Niigata Prefecture in 2007. Figure 2.12 shows the locations of abovementioned monitoring 

sites. 

Tables 2.6, 2.7 and 2.8 summarize the maximum concentration and detection frequency of 

herbicides, insecticides and fungicides in river. For herbicides, bromobutide, daimuron, mefenacet 

and pretilachlor were detected at relatively higher concentrations. In addition, sulfonylurea 

herbicides, bensulfuron-methyl, imazosulfuron and pyrazosulfuron- ethyl were detected with higher 

concentrations regardless of small application rate. For insecticides, MEP and BPMC have been 

widely used and detected in multiple rivers. The neonicotinoid insecticides, the maximum 

concentrations of them were close or below the acute threshold proposed by Morrissey et al. (2015). 

Two fungicides, isoprothiolane and pyroquilon, were widely detected from the surface water with 

relatively high concentrations. 

 

 

Fig. 2.12 Monitored rivers on pesticide concentration in surface water in Japan 
  



 

33 

Table 2.6 Comparisons of maximum concentrations and detection frequency of herbicides in 
surface water of public water area in Japan 

 
Max.Conc. 

(μg/L) 
Detection
Freq. (%)

River(ine) name Reference 

Alachlor 0.03 3 Shinano River Narushima et al (2014) 
Benthiocarb 0.02 15 Kose River Phong et al (2010) 
 0.035 15 Shinano River Narushima et al (2014) 
Bensulfuron-methyl 0.813 95 Sakura River Iwafune et al (2010) 
Benzofenap 0.037 50 Sakura River Iwafune et al (2010) 
Bromobutide 1.32 90 Kose River Phong et al (2010) 
 6.2 38 Shinano River Narushima et al (2014) 
 11.1 100 Sakura River Iwafune et al (2010) 
 0.738 - Katsura River Kawamura and Ebise (2014) 
 0.434 - Uji River  Kawamura and Ebise (2014) 
 2.2 - Kidu River Kawamura and Ebise (2014) 
 0.592 - Yodo River Kawamura and Ebise (2014) 
Butachlor 0.715 75 Sakura River Iwafune et al (2010) 
Cafenstrole 0.25 80 Kose River Phong et al (2010) 
 0.586 100 Sakura River Iwafune et al (2010) 
 0.14 15 Shinano River Narushima et al (2014) 
Clomeprop 0.04 15 Kose River Phong et al (2010) 
 0.1 25 Sakura River Iwafune et al (2010) 
Cumyluron 0.839 100 Sakura River Iwafune et al (2010) 
Cyhalohop butyl 0.02 10 Kose River Phong et al (2010) 
Daimuron 6.32 100 Sakura River Iwafune et al (2010) 
Dichlobenil 0.0052 99 Shinano River Narushima et al (2014) 
Dimethameryn 0.42 85 Kose River Phong et al (2010) 
 0.0049 21 Shinano River Narushima et al (2014) 
 0.231 100 Sakura River Iwafune et al (2010) 
Esprocarb 0.37 50 Kose River Phong et al (2010) 
 0.10 13 Shinano River Narushima et al (2014) 
 1.07 100 Sakura River Iwafune et al (2010) 
Imazosulfuron 2.69 95 Sakura River Iwafune et al (2010) 
Mefenacet 5.31 90 Kose River Phong et al (2010) 
 0.58 93 Aomori River Anasco et al (2010) 
 5.64 93 Sudo River Anasco et al (2010) 
 2.77 25 Nagaida River Anasco et al (2010) 
 0.22 12 Shinano River Narushima et al (2014) 
 1.17 100 Sakura River Iwafune et al (2010) 
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Table 2.6 Comparisons of maximum concentrations and detection frequency of herbicides in 
surface water of public water area in Japan (continued) 

 
Max.Conc. 

(μg/L) 
Detection
Freq. (%)

River(ine) name Reference 

Molinate 0.01 6 Kose River Phong et al (2010) 
 0.45 25 Shinano River Narushima et al (2014) 
Oxadiazon 0.235 100 Sakura River Iwafune et al (2010) 
Oxaziclomefone 0.02 20 Kose River Phong et al (2010) 
 0.415 100 Sakura River Iwafune et al (2010) 
Pentoxazon 0.188 90 Sakura River Iwafune et al (2010) 
Pretilachlor 2.79 80 Kose River Phong et al (2010) 
 2.02 90 Sakura River Iwafune et al (2010) 
Pyrazolyunate 0.009 15 Sakura River Iwafune et al (2010) 
Pyrazosulfuron-ethyl 0.204 90 Sakura River Iwafune et al (2010) 
Pyributicarb 0.07 30 Kose River Phong et al (2010) 
 0.00075 2 Shinano River Narushima et al (2014) 
 0.086 60 Sakura River Iwafune et al (2010) 
Pyriftalid 0.02 18 Kose River Phong et al (2010) 
Pyrimnobac methyl 0.11 45 Kose River Phong et al (2010) 
 0.149 90 Sakura River Iwafune et al (2010) 
Pyroquilon 0.447 - Katsura River Kawamura and Ebise (2014) 
 0.293 - Uji River  Kawamura and Ebise (2014) 
 0.908 - Kidu River Kawamura and Ebise (2014) 
 0.401 - Yodo River Kawamura and Ebise (2014) 
Quinoclamine 0.067 40 Sakura River Iwafune et al (2010) 
Simazine 0.03 10 Kose River Phong et al (2010) 
Simetryn 0.21 25 Shinano River Narushima et al (2014) 
 0.353 - Katsura River Kawamura and Ebise (2014) 
 0.152 - Uji River  Kawamura and Ebise (2014) 
 0.199 - Kidu River Kawamura and Ebise (2014) 
 0.116 - Yodo River Kawamura and Ebise (2014) 
Thenylchlor 0.21 50 Kose River Phong et al (2010) 
 0.0017 9 Shinano River Narushima et al (2014) 
 0.169 55 Sakura River Iwafune et al (2010) 
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Table 2.7 Comparisons of maximum concentrations and detection frequency of insecticides in 
surface water of public water area in Japan. 

 
Max.Conc. 

(μg/L) 
Detection
Freq. (%)

River(ine) name Reference 

Acetamiprid 0.023 2 Sagami River Sato et al (2016) 
Bromacil 0.250 93 Sagami River Sato et al (2016) 
Clothianidin 0.085 53 Sagami River Sato et al (2016) 
Buprofedin 0.10 81 Kose River Phong et al (2010) 
Dichlorvos (DDVP) 0.15 55 Kose River Phong et al (2010) 
 0.11 28 Shinano River Narushima et al (2014) 
 0.012 1 Agano River Narushima et al (2014) 
Diazinon 0.03 25 Kose River Phong et al (2010) 
 0.013 100 Sakura River Iwafune et al (2010) 
 0.02 28.6 Aomori River Anasco et al (2010) 
 0.01 14.3 Sudo River Anasco et al (2010) 
 0.02 3.6 Nagaida River Anasco et al (2010) 
Dimethoate 0.066 2 Shinano River Narushima et al (2014) 
Dinotefuran 0.048 30 Sagami River Sato et al (2016) 
Etofenprox 0.04 29 Sudo River Anasco et al (2010) 
Fenitrothion (MEP) 0.10 40 Kose River Phong et al (2010) 
 0.387 85 Sakura River Iwafune et al (2010) 
 0.03 29 Sudo River Anasco et al (2010) 
 0.02 7 Nagaida River Anasco et al (2010) 
Fenthion 0.043 40 Sakura River Iwafune et al (2010) 
Fenobucarb (BPMC) 0.17 100 Aomori River Anasco et al (2010) 
 0.47 100 Sudo River Anasco et al (2010) 
 1.36 46 Nagaida River Anasco et al (2010) 
 0.043 30 Shinano River Narushima et al (2014) 
 0.015 9 Agano River Narushima et al (2014) 
Fipronil 0.003 35 Sakura River Iwafune et al (2010) 
Imidacroprid 0.010 45 Sakura River Iwafune et al (2010) 
 0.104 67 Sagami River Sato et al (2016) 
Isoprocarb 0.07 7 Sudo River Anasco et al (2010) 
 0.08 4 Nagaida River Anasco et al (2010) 
 0.0075 2 Shinano River Narushima et al (2014) 
Malathion 0.04 50 Sudo River Anasco et al (2010) 
 0.02 36 Nagaida River Anasco et al (2010) 
Tebuconazole 0.058 0.27 Sagami River Sato et al (2016) 
Tefuryltrione 0.467 55 Sagami River Sato et al (2016) 
Thiamethoxam 0.202 22 Sagami River Sato et al (2016) 
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Table 2.8 Comparisons of maximum concentrations and detection frequency of fungicides in 
surface water of public water area in Japan. 

 
Max.Conc. 

(μg/L) 
Detection
Freq. (%)

River(ine) name Reference 

Chlorothalonil 0.044 13 Shinano River Narushima et al (2014) 
 0.0073 2 Agano River Narushima et al (2014) 
Flutolanil 0.04 19 Kose River Phong et al (2010) 
 0.03 71 Aomori River Anasco et al (2010) 
 0.31 93 Sudo River Anasco et al (2010) 
 0.33 46 Nagaida River Anasco et al (2010) 
 0.041 22 Shinano River Narushima et al (2014) 
 0.003 1 Agano River Narushima et al (2014) 
Fthalide 0.062 21 Shinano River Narushima et al (2014) 
 0.016 11 Agano River Narushima et al (2014) 
Iprobenfos 0.835 100 Sakura River Iwafune et al (2010) 
 0.10 79 Aomori River Anasco et al (2010) 
 0.98 86 Sudo River Anasco et al (2010) 
 1.00 10.7 Nagaida River Anasco et al (2010) 
Isoprothiolane 0.19 85 Kose River Phong et al (2010) 
 0.724 90 Sakura River Iwafune et al (2010) 
 0.200 36 Shinano River Narushima et al (2014) 
 0.120 22 Agano River Narushima et al (2014) 
Phthalide 0.01 36 Aomori River Anasco et al (2010) 
 0.12 57 Sudo River Anasco et al (2010) 
 0.01 11 Nagaida River Anasco et al (2010) 
Pyroquilon 0.08 50 Kose River Phong et al (2010) 
 0.447 - Katsura River Kawamura and Ebise (2014) 
 0.293 - Uji River  Kawamura and Ebise (2014) 
 0.908 - Kidu River Kawamura and Ebise (2014) 
 0.401 - Yodo River Kawamura and Ebise (2014) 
 1.3 51 Shinano River Narushima et al (2014) 
 1.5 79 Agano River Narushima et al (2014) 
Mepronil 0.320 1 Shinano River Narushima et al (2014) 

 

 

2.6.2. Modeling of paddy pesticide in paddy field 

2.6.2.1. RICEWQ Model 

Rice Water Quality (RICEWQ) model was initially developed and used in U.S. to extrapolate the 

results of field monitoring studies conducted in Arkansas and Louisiana for rice fungicide in 1991 

(Williams et al., 2011). RICEWQ model is a mass based compartment model, which is comprised of 
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aquatic phase and sediment phase. Pesticide wash-off from foliage and generation of metabolites are 

also considered in this model. RICEWQ model has been validated mainly in U.S., EU and other 

regions as the tool for higher tier assessment of pesticide exposure coupling with the vadose zone 

models (Christen et al., 2006; Jin et al., 2016; Karpouzas and Miao, 2008; Ritter and Williams, 

2008a). The model coupled with RIVWQ model (Williams et al., 2004) and VADOFT model 

(Suárez, 2005) for simulating surface and subsurface water concentration of pesticides (Karpouzas 

and Capri, 2006; Karpouzas et al., 2005a; Karpouzas et al., 2005b). Furthermore, (Miao et al., 

2004)applied uncertainty analysis of the RICEWQ model to assess the parameter sensitivity on the 

model predictability. However, the utilization of all the features requires a rather large dataset of 

model input parameters which may not be readily available from the registrant-submitted data (Luo, 

2011). 

 

2.6.2.2. PADDY model 

Pesticide Paddy Field (PADDY) model was developed by Inao and Kitamura (1999). This model 

consists of the paddy water compartment and the paddy two soil compartments (0–2.5 cm and 2.5–

5 cm). The PADDY model has been improved to simulate herbicide fate and transport considering 

water balance in paddy field (Inao et al., 2001). Except for the dissolution rate constant, since the 

code of the PADDY model was written in Visual Basic for Applications software in Microsoft 

Excel and the input parameters required for execution are covered by the registrant-submitted data, 

other user can easily utilize this model (Yachi et al., 2017). Several model improvements have been 

made to simulate metabolic pathway and nursery-box application scenario with root uptake (Inao et 

al., 2018a; Inao et al., 2016).  

 

2.6.2.3. PCPF-1 model 

Pesticide Concentration in Paddy Field 1 (PCPF-1) model was developed to predict the herbicide fate 

and transport in Japanese rice paddy (Watanabe and Takagi, 2000b; Watanabe and Takagi, 2000c). 

The PCPF-1 model is comprised of the paddy water compartment and the 1-cm thick oxidative 

surface soil compartment. This model successfully evaluated the relationship between water 

management practices and the outflow of herbicides in both plot and block scales (Phong et al., 

2011; Watanabe and Takagi, 2000a). The PCPF-1 model simulates herbicide fate and transport 

process with lamped parameters derived from experiments and the improvement and calibration of 

model prediction based on the experiments have been reported (Watanabe et al., 2006b). Although 



 

38 

the model considers only the behavior of the oxidative soil layer, the coupled model (PCPF-SWMS) 

has successfully simulated the fate and transport of the tracer and rice herbicide from reductive soil 

layer to below hard pan layer (Tournebize et al., 2006; Watanabe et al., 2008). Similar to as the 

PADDY model, PCPF-1 model has been improved to simulate the nursery-box applied insecticides 

and their metabolites (Boulange et al., 2017a; Boulange et al., 2016). The advanced model 

applications incorporating the uncertainty analysis techniques have been reported to evaluate the 

site-specific uncertainty and variability and the parameter uncertainties associate with model 

prediction (Boulange et al., 2012; Kondo et al., 2012). In recent year, the parameter inference 

incorporating Markov Chain Monte Carlo method has also been reported (Boulange et al., 2017b). 

The use of the current PCPF-1 model is more suitable for the scientific purpose rather than 

generalized application like PADDY model because the required parameters cannot be covered by 

the registrant-submitted data and additional model calibration is necessary when the bi-phasic 

degradation and desorption are fully activated. 

 

2.6.2.4. PFAM model 

Pesticides in Flooded Agriculture Model (PFAM) model was developed by the U.S.EPA for a 

higher-tier rice pesticide model (Young, 2012). The model consists of two-compartments; water 

column and benthic region. The mode parameterization can be completed only by using the 

registrant submitted data. The main strength of this model is to have the capacity to simulate various 

management practices, including alternating between flood and unflooded conditions, continuous 

flow through systems, naturally or man-made variations in flood level, or any combination of these 

practices (Luo et al., 2011). The model can simulate up to two metabolites in series. 

 

2.6.2.5. Model comparison 

Finally, basic features of plot scale paddy pesticide models, RICEWQ, PADDY, PCPF-1 and 

PFAM are summarized in Table 2.9. 
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Table 2.9 Summary of model properties on RICEWQ, PADDY, PCPF-1 and PFAM 
Feature RICEWQ PADDY PCPF-1 PFAM 

Compartments 

Water (bulk water, 
SS); 

sediment (pore 
water, particle); rice 

canopy 

Water (bulk water);
Soil (pore water, 

particle) 

Water (bulk water); 
Soil (pore water, 

particle) 

Water (bulk water, 
SS, DOC, biomass);

sediment (pore 
water, particle, DOC, 

biomass) 

Crop growth, 
purpose 

Linear growth, for 
interception and 

washoff 

Non-linear growth, 
for root uptake 

Season-based crop 
coefficients, for ETc 

calculation 

Linear growth, for 
photolysis rate 

adjustment 

Water 
management 

Based on target 
water depth and 
maximum water 

flow rates 

Based on daily water 
flow rates 

Based on daily water 
flow rates 

Instantaneous change 
of water depths; 

continuous irrigation

Crop ET 
ET0, daily data or 
monthly averages 

from input file 

ET0 adjusted by crop
coefficients 

ET0 adjusted by crop 
coefficients 

ET0, daily data 
from input file 

Pesticide 
application 

Into water or soil 
Into water or soil 

(root zone) 
Into water or soil 

(root zone) 
Into water or soil 

Percolation Yes Yes Yes Yes 

Seepage Yes Yes Yes No 
Multiple 

application 
Yes No No Yes 

Slow release 
Yes, with a release 

rate 
Yes, with a 

dissolution rate 
Yes, with a 

dissolution rate 
No 

Volatilization 
rate 

User defined 
Calculated from 

chemical properties
Calculated from 

chemical properties 

Calculated from 
chemical properties 
and weather data 

Photolysis Biphasic process 

Adjusted by crop 
coverage and 

cumulative UV-B 
radiation 

Adjusted by crop 
coverage and 

cumulative UV-B 
radiation 

Adjusted by plant 
coverage, latitude, 

and light attenuation

Hydrolysis Biphasic process No No Yes 
Biodegradation 

in water 
Biphasic process First-order First-order 

First-order adjusted 
with temperature 

Biodegradation 
in soil 

Biphasic process Biphasic first-order First-order 
First-order adjusted 
with temperature 

Degradation on 
foliage 

Biphasic process No No No 

Water-sediment 
mass transfer 

Diffusion, settling, 
resuspension 

Percolation and 
kinetic sorption 

Percolation and 
bi-phasic desorption 

Lumped 
water-sediment 

transfer 
Metabolite Yes Yes Yes Yes 
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2.6.3. Modeling of paddy pesticide in river basin 

2.6.3.1. PCPF-1@SWAT 

Soil and Water Assessment Tool (SWAT) is a physically based hydrological model that designed to 

predict the effect of land management on water, sediment, and agricultural chemical such as 

fertilizer and pesticide in basin containing various soil types, land use, and management conditions 

(Arnold et al., 1998). Since SWAT is the open source program, users can easy to modify the code 

for users’ research aid. Today, SWAT been world widely used and piled abundant case studies 

which has accounted close to 1500 peer reviewed papers published so far (see SWAT home page: 

https://swat.tamu.edu/). 

PCPF-1@SWAT was developed as the extended module of SWAT version 2009 by Tokyo 

University of Agriculture and Technology and U.S. Department of Agriculture (Boulange et al., 

2014). PCPF-1 model was embedded to the pothole module of the original SWAT to simulate the 

fate and transport of pesticide applied to paddy fields in the large basin area. The model 

successfully calibrated and validated the river flow and the concentration of rice herbicide in 

Japanese river water during rice cultivation season. In recent years, Tu et al. (2018) proposed the 

improved version as PCPF-1@SWAT2012 to reflect the updated feature of SWAT version 2012. 

The improved model well captured the concentration of four paddy herbicides previously calibrated 

by PCPF- 1 model. 

 

2.6.3.2. PADDY-Large model 

PADDY-Large model is the continuous stirred-tank reactor basin scale model for simulating the 

paddy pesticide fate and transport processes developed by Inao et al. (2003). Although it was not 

initially versatile design because the watershed properties were only expressed as statistically 

averaged values, this disadvantage has been overcame by incorporating the GIS technique (Iwasaki 

et al., 2012). The model has been only the case that challenged to simulate the concentrations of the 

paddy pesticides applied as all pest, weed and disease controls during rice cultivation season in 

surface water of Japanese river (Inao et al., 2011). In addition PADDY-Large model was improved 

to simulate herbicide runoff from the levees of paddy fields and proved that the seepage loss of 

paddy herbicides was another major source of surface water exposure (Inao et al., 2016). 
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2.6.3.3. Diffuse pollution hydrologic model 

Diffuse pollution hydrologic model was developed as the GIS-based grid compartment model to 

simulate the hydrological process and pollutant concentration in river basin (Matsui et al., 2002; 

Matsui et al., 2006a). The model applied for predicting paddy pesticide has been verified and 

reported its capabilities under various simulation cases such effect of uncertainties of agricultural 

practice, screening analysis under limited dataset and prediction under precise dataset (Matsui et al., 

2005; Matsui et al., 2006b; Matsui et al., 2007). The model incorporated the probabilistic approach 

that simulated all possible inputs and the model output was expressed as the percentile based 

prediction ranges. The model was utilized to select the selection of monitoring pesticide threating 

the drinking water quality (Tani et al., 2012).  

 

2.6.3.4. PCPF-B/DRAFT model 

PCPF-B/DRAFT model was developed by author as another basin scale simulation model to predict 

the pesticide fate and transport processes (Kondo et al., 2017). DRAFT model is the acronym of 

Dynamic in-River Agrochemical Fate and Transport model and consist of a module of advective 

and dispersive chemical transport simulation under fully unsteady flow condition and that simulates 

rainfall-runoff processes in various land uses. The model has been to calibrated and validated using 

the river monitoring data conducted in the Kose River catchment a branch of Chikugo River located 

in Kyusyu Island.  

 

2.6.3.5. Model comparison 

Finally, basic features of basin scale paddy pesticide models, PCPF-1@SWAT, PADDY-Large, 

Diffuse pollution hydrologic model and PCPF-B /DRAFT are summarized in Table 2.10. 
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Table 2.10 Summary of model properties on PCPF-1@SWAT, PADDY-Large, Diffuse 
pollution hydrologic model and PCPF-B /DRAFT 

Features PCPF-1@SWAT PADDY-Large 
Diffuse pollution 
hydrologic model 

PCPF-B /DRAFT

Paddy 
Water 
Pesticide 

PCPF-1 model 
- Water balance 
- Mass balance 

PADDY model 
- Water balance 
- Mass balance 

 
- Water balance 
- Dilution & 
gradient model 

PCPF-B model 
- Water balance 
- Mass balance 

Non-paddy 
Runoff 

 
Curve number 

 
No information 

 
Flow rate equation 

 
Tank model 

Subsurface Yes Yes Yes No 

River 
Routing 

 
Manning and 

continuous equations 

 
Observed flow 
Water balance 

 
Manning and 

continuous equations 

 
St. Venant equations

Pesticide Mass balance 
- Surface water 
- Sediment 

Mass balance 
- Surface water 
- Sediment 

Mass balance 
- Surface water 
- Sediment 

Advection 
dispersion equation 
- Surface water 

GIS ArcSWAT QGIS 
Yes but no 
information 

ArcGIS 

Code FORTRAN EXCEL VBA FORTRAN EXCEL VBA 

 

2.7. Discussions 

As discussed in this section, the safety of pesticide has been continuously improved though the 

introduction of new pesticides and the strict regulatory framework. However, environmental 

concerns on the pesticide especially for the neonicotinoid insecticides have been continuously posed. 

There may be the case that the environmental risk of pesticide cannot be sufficiently reduced only 

by the pre-assessment such as screening approach at the pesticide registration. Recently, an adaptive 

management approach has been proposed (Kamo et al., 2009; Nagai, 2008), which reduces the 

uncertainty of chemical risk by updating the new information obtained from the post-assessment 

such as the monitoring study after pesticide registration. The conceptual illustration of the adaptive 

management is shown in Fig.2.13. Important point of adaptive management is the suggestion of 

alternative or improvement measures for the risk mitigation as soon as possible after the monitoring. 

Therefore, the use of the model simulation on the pesticide exposure assessment would be 

beneficial under the limited time and budget. However, the available data under such situation may 
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not be versatile for model analysis or calibration because experimental designs of such data were 

not designed for the modeling especially for the registrant submitted data. Although Luo et al. 

(2012) has mentioned these difficulties and proposed the solution, no study has been 

comprehensively covered the modeling strategy from laboratory experiment to basin scale 

monitoring so far. Therefore, in the following chapters, the applicability and limitations of the 

experimental data collected under the current standardized experimental designs were discussed in 

light of the modeling. Meantime, the efficient modeling strategies from laboratory scale to field 

scale as well as basin scale were proposed to maximize the utility of data as the information 

resource for pesticide exposure assessment. 

 

 

Fig. 2.13 Conceptual illustration of adaptive management. Source: Nagai (2008) 
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Chapter 3   

Experimental Performance Diagnosis of Paddy Pesticide 

Dissipation between Flooded Lysimeters and Actual Paddy Fields 

 

3.1. Introduction 

Lysimeter was initially developed in late 17th century of France for the study of water use and has 

been used as the tool to measure evapotranspiration (Howell et al., 1991). Meanwhile, lysimeter 

was also applied to assess the environmental fate of labeled pesticides in early 1970s (Führ et al., 

1998). The lysimeter experiment has many advantages, such as labor saving, a stable water balance 

condition without unintentional disturbance due to meteorological events, and applicability for 

multiple replications or different scenarios. Indeed, many studies on fate and transport processes of 

pesticides, either labeled or non-labeled, have been conducted using lysimeters (Führ et al., 1998). 

In Japan, lysimeters have been popularly used under flooded conditions to simulate the fate and 

transport of rice pesticides in paddy fields since 1970s. Nakamura et al. (1983) investigated the 

leaching characteristics of several herbicides with alluvial and volcanic ash soils using the small 

stainless lysimeters and the concrete lysimeters. Maru (1990) clarified that the water solubility of 

pesticides was associated with its potential for surface runoff and leaching by the experiments using 

the concrete lysimeters containing muck soils. Phong et al. (2009); (2008c) utilized the lysimeters 

for the evaluation of best management practice to prevent surface runoff of pesticide and 

investigating the behavior of sprayed pesticide in rice foliage and paddy water. Recently, Nhung et 

al. (2009) designed a micro paddy lysimeter (MPL) with disturbed soils, which can run multiple 

experiments per year to investigate pesticide dissipation under indoor experimental conditions. The 

applicability of the MPL method has been tested in various purposes such as for tracer experiment 

(Thuyet et al., 2010), spray application (Phong et al., 2008a), nursery-box application (Thuyet et al., 

2012), temperature effect (Ok et al., 2012) and rice husk gasification residue application (Ok et al., 

2015). 

For regulatory use of lysimeter, the experimental result with the undisturbed soil monolith is 

needed to derive PECGW for EU registration (European Commission, 2013c). For the pesticide 

registration in Japan, the results of the dissipation pesticide used for paddy field in lysimeters is 

used to compute the tier 2 short-term predicted environmental concentration (PEC) for the risk 

assessment of drinking water safety and its effect on aquatic organisms. Currently, submerged 
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application, nursery-box application and foliar application have been considered as the standard 

scenarios for aquatic environmental risk assessment in Japan. Indeed, most dissipations of 

registered pesticides have been evaluated by lysimeter experiments. However, it is still questioned 

that applicability of lysimeter as the simulator of the dissipation of paddy pesticides in actual paddy 

fields influenced by the various factors such as type of formulation and its application method, the 

physicochemical properties of active ingredient, water balance and type of soil. Furthermore, it is 

technically difficult to use transplanting machine and boom sprayer in the lysimeter with 

nursery-box application and foliar application cases. Although the Japanese test guideline allows 

using alternative application methods in the lysimeter experiment, technical details of such methods 

have not yet been well discussed and documented. In order to resolve above questions, a 

comprehensive monitoring study to compare the dissipation characteristics of pesticides between 

lysimeters and paddy fields under unified test conditions is necessary. 

In this chapter, the experimental performance of the lysimeter as a tool for simulating the 

pesticide dissipation under actual conditions is discussed. First, a four-year (2012−2015) monitoring 

of dissipations of various paddy pesticides in lysimeters and paddy fields was conducted. Second, 

the experimental results were reclassified as submerged applications for comparing decline (I-a), 

formulation type (I-b) and experimental design (I-c), nursery-box application (II) and foliar 

application (III) and then, analyzed kinetically and statistically. Finally, the experimental results 

between the lysimeters and paddy fields were quantitatively compared with respect to above data 

groups. 

 

3.2. Test facilities 

3.2.1. Outdoor lysimeter 

In the lysimeter experiments, the outdoor lysimeters at the experimental facilities of the Institute of 

Environmental Toxicology , Ibaraki, Japan (35° 58’ 48” N, 139° 57’ 4” E) were used (see Fig.3.1). 

Two sets of quintuplicate lysimeters, made of concrete with surface areas of 1 m2 (1 m × 1 m) and 

depth of 1 m, are placed in a row. For each set, gray lowland soils (alluvial soil) and wet andosols 

(volcanic ash soil) were packed in the top soil layer (0−50 cm) and lower layer were consisted of 

sand (50−70 cm) and gravel (70−100 cm), as shown in Fig. 3.2. The physicochemical properties of 

the soils are shown in Table 3.1. Lysimeters facility was covered with roof panel–penetrating UV 

radiation at a height of 3.0 (back)−3.5 m (front) from the ground to prevent the intrusion of rainwater. 

The penetration efficiency of UV radiation (wavelength: 310−400 nm) during the experiment, 
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measured by a UV radiometer (UVR-1, Topcon Technohouse Corporation, Tokyo, Japan), ranged 

from 71.5% to 75.4%. 

The basic experimental design was followed the guideline published by the Ministry of 

Agriculture, Forestry and Fisheries of Japan (2000). During the experiment, daily water requirement, 

daily percolation amount, irrigation amount, evapotranspiration amount, and paddy water depth in 

each lysimeter were recorded at around 9:00 a.m. to 9:30 a.m. Because of no hardpan layer, the 

flooding condition of the lysimeters was kept by controlling the daily percolation rate at 1.5 cm/day 

by collecting the percolating water from the closed underdrain using peristaltic pumps (SMP-21) and 

PharMed BPT tubing (φ3.15 mm), which were purchased from Tokyo Rikakikai Co., Ltd. (Tokyo, 

Japan). Evapotranspiration (ET) was calculated from the water requirement and percolation amount. 

Irrigation water pumped from the groundwater was supplied to keep the water depth at 5 cm. The 

maximum and minimum temperatures, relative humidity, and water temperature were also recorded. 

Additionally, the pH of the paddy water sampled was also measured using a model F-72 pH meter 

(Horiba Ltd., Kyoto, Japan). 

 

 

 

Fig. 3.1 Outdoor lysimeters of the Institute of Environmental Toxicology 
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Fig. 3.2 Structure of flooding lysimeter 
 

 
Table 3.1. Physicochemical properties of soils in experimental plots 

 Lysimeter Paddy field 

Soil type Alluvial Volcanic ash Alluvial Volcanic ash

Texture (ISSS)  SCL SiL   LiC  LiC 

Organic carbon content (%) 1.82 8.73 2.31 5.26 

Soil pH (H2O) 4.5 4.7 6.0 5.8 

Cation exchange capacity (cmolc/kg) 16.5 35.0 18.0 28.9 

Sand (%) 55.7 31.0 40.3 40.6 

Silt (%) 17.3 44.5 31.3 27.8 

Clay (%) 27.0 24.5 28.4 31.6 

These data were the analytical results of the soil samples homogeneously collected from the 
individual experimental plots. 
ISSS: International Society of Soil Science 
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3.2.2. Experimental paddy fields 

The paddy field experiments were conducted out in two well-managed experimental paddy fields of 

the Japan Association for Advancement of Phyto-Regulators (JAPR, Ibaraki, Japan). Both fields has 

800 m2 surface areas with alluvial and volcanic ash soils that were the same soil types of the 

lysimeters (see Table 3.1) and are located within 30 km of the IET lysimeter facilities (35° 53’ 39” N, 

140° 13’ 15” E for alluvial soil plot and 35° 59’ 30” N, 140° 8’ 52” E for volcanic ash soil plot). The 

pictures and layouts of two fields are shown in Figs. 3.3−3.6. Before the experiments, tillage and 

paddling were practiced every year in both fields. After transplantation the levees of both fields were 

covered with the polycarbonate borders (30 cm wide) with a depth of 10−15 cm around to prevent 

overflow and lateral seepage (Fig. 3.7). Similarly, the scaffolds were installed for daily observation 

and sampling (Fig. 3.8). In 2012 and 2013, six porous cups were installed near the scaffolds of both 

plots to collect the soil water at depths of 15 and 30 cm from the soil surface (Fig. 3.9). In addition, 

culverts made of polyvinyl chloride pipes were embedded 60−70 cm below the soil surface in the 

center and the irrigation pump side of the volcanic ash soil plot to collect sub-surface water in the 

culvert in 2014 (Fig. 3.10). 

During the experiments, the paddy water depth was checked at twelve points corresponding to 

the sampling points of paddy water (see Figs. 3.4 and 3.6), and their mean values were reported on 

sampling days and days when intensive rainfall events occurred. The water requirements were 

recorded as the cumulative decrease of water depth from previous observation. Irrigation water was 

appropriately supplied from irrigation canals. The meteorological data, such as temperature, humidity, 

and precipitation in both fields, were automatically recorded using a Vantage Pro2 (Davis 

Instruments, Ca, USA.). Additionally, water temperature and pH of sampled water were also 

measured. 

The daily ET was estimated using the FAO Penman-Monteith method (Allen et al., 1998) 

calibrated for rice crops (Vu et al., 2005; Watanabe et al., 2006b). The equations are shown below: 
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where ET0 is the reference crop evapotranspiration (mmday-1), Rn is the net radiation at the crop 

surface (MJm-2), G is the soil heat flux (MJm-2day-1), T is the average temperature (oC), U2 is the wind 

speed measured at 2 m height (ms-1), es is the saturation vapor pressure (kPa), ea is the actual vapor 
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pressure (kPa), the term (es - ea) is the saturation vapor pressure deficit (kPa), Δ is the slope of vapor 

pressure curve (kPaoC -1),  γ is the psychometric constant (kPaoC -1), and KC is the crop coefficient (-). 

The cumulative percolation was calculated from the monitored hydrological data and the estimated 

ET in the following water balance equation: 

dhPW = RAIN + IRR − DRAIN− PERC− ET (3.3)
dt 

where hpw is the depth of water in paddy field (cm), t is time (day), RAIN is the average rainfall during 

dt (cm day-1), IRR is the rate of irrigationwater supply (cm day-1), DRAIN is the surface drainage or 

overflow rate (cm day-1), and PERC is the rate of the vertical percolation (cm day-1). 

 

 

 

Fig. 3.3 Picture of alluvial soil paddy field (Picture taken on 12-June 2012) 
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Fig. 3.4 Layout of alluvial soil paddy field: (△) sampling point of paddy water; (○) install 
position of porous cup 

 

 

 

Fig. 3.5 Picture of volcanic ash soil paddy field (Date taken 12-June 2012) 
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Fig. 3.6 Layout of volcanic ash soil paddy field: (△); sampling point of paddy water, (○): 
install position of porous cup, (◇); sampling point of culvert water. 

 

 

 

Fig. 3.7 Picture of levee covered by polycarbonate borders (Date taken 4-June 2013) 
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Fig. 3.8 Picture of scaffold installation (Date taken 4-June 2013) 
 

 

 

Fig. 3.9 Picture of installed porous cups (Date taken 4-June 2013) 
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Fig. 3.10 Picture of embedding culvert in volcanic ash soil paddy field (Date taken 17-March 
2014) 

 

3.3. Experimental design 

During four-year continuous experiments on the dissipations of paddy pesticides in lysimeters and 

paddy fields, the alluvial soil lysimeter, the volcanic ash soil lysimeter, the alluvial soil paddy field 

and the volcanic ash soil paddy field were identified as the abbreviation codes of LA plot, LV plot, 

FA plot, and FV plot, respectively. For each year, multiple plots of the lysimeters were installed as 

either replicate or different test conditions depending on the project agenda as described in 

following sub-sections. Fourteen formulation products were applied to each test plot throughout the 

experiments in total. Layouts of the test plot designs of lysimeter from 2012 to 2015 are shown in 

Fig.3.11. Descriptions of the individual test plots and the list of formulation products are 

summarized in Tables 3.2 and 3.3, respectively. 

 

3.3.1. 2012 

The objective in 2012 was to investigate the behaviors of herbicides with different formulation 

products and physicochemical properties of active ingredients (ID=A−C in Table 3.3) in the 

lysimeters and paddy fields at tillering stage. In addition, to evaluate the reproducibility of 

dissipation data in the lysimeters, two lysimeter replicates with standard experimental design, 
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labeled as LA/LV-1,2, were considered. The experimental results were used for the analyses of 

submerged application for decline (I-a) and formulation type (I-b). 

 

3.3.2. 2013 

In 2013, to investigate the effect of formulation type on the behaviors of herbicides in the lysimeters 

and paddy fields (I-b), a flowable formulation product (ID=E in Table 3.3) which contained same 

active ingredients of that applied in 2012 (ID=C in Table 3.3) was selected. As the nursery-box 

application scenario, an insecticide-fungicide mixture (ID=D in Table 3.3) was also treated as the 

analysis of group II. 

 

3.3.3. 2014 

In 2014, two sets of lysimeters labeled as LA/LV-T,B—the former for the standard experimental 

design and the latter for the bare ground—were prepared. The bare ground plots were designed to 

compare the behaviors of the nursery-box applied insecticide and herbicide (ID=H in Table 3.3) with 

the application of submerged and transplanted pesticide. Two granule formulation products of 

herbicides (ID=F and G in Table 3.3) for transplanting stage were also applied to these test plots. 

The experimental results were used for the analyses of submerged application for comparing 

decline (I-a) and nursery-box application (II). 

 

3.3.4. 2015 

In 2015, the behaviors of pesticides applied in booting stage in the lysimeters and paddy fields were 

investigated. Three flowables formulation products (ID=I−K in Table 3.3) and three granule 

formulation products (ID=L−N in Table 3.3) were chosen as foliar application scenario and 

submerged application scenario, respectively. For the foliar application scenario in the lysimeter 

experiment, the two application methods were compared: the plots for spraying on the paddy water 

surface (LA/LV-S plots) and for spraying to the rice foliage (LA/LV-F plots). In addition, the effect 

of artificial percolation was investigated by comparing LA/LV-S plots which had the daily 

percolation rate of 1.5 cm/day to the zero-percolation plots (LA/LV-Z plots) that maintained no 

artificial percolation and thus the daily percolation rate of 0 cm/day. The experimental data for three 

flowables were used for the analysis of foliar application (III). The granule pesticides applied to 

LA/LV-Z plots were used as the analytical group of I-c and others were group of I-a. 
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 2012: June 11–July 2 
        

 

 

  

LV-S1 Plot 

Plant: Y 
Percolation: Y
Application: S

Pesticide: A,B,C

 LV-S2 Plot 

Plant: Y 
Percolation: Y
Application: S

Pesticide: A,B,C

  
   
   

   
        
        
 Lysimeter No.1  Lysimeter No.2 Lysimeter No.3 Lysimeter No.4  Lysimeter No.5
        
        

    LA-S1 Plot 

Plant: Y 
Percolation: Y
Application: S

Pesticide: A,B,C

 LA-S2 Plot 

Plant: Y 
Percolation: Y
Application: S

Pesticide: A,B,C

     
      
      

      

        

 

 2013: June 4–June 25 
        

   LV-S Plot 

Plant: Y 
Percolation: Y

Application: S,N
Pesticide: D,E

   
    

     
     
     

        
        
 Lysimeter No.1  Lysimeter No.2 Lysimeter No.3 Lysimeter No.4  Lysimeter No.5
        
        

   LA-S Plot 

Plant: Y 
Percolation: Y

Application: S,N
Pesticide: D,E 

   
    

     
     

     
        

where 
Plant: presence of rice plant (Y; transplanted, N; bare ground),  
Percolation: setting of daily percolation rate (Y; set to 1.5 cm/day, N; zero-percolation),  
Application: method of pesticide application (S: submerged application, N; nursery box 

application, F; foliar application) 
Pesticide: ID of formulation product shown in Table 3.2. 

 

Fig. 3.11 Layouts of test plot designs of lysimeters from 2012 to 2015 
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 2014: June 10–July 1 
        

LV-B Plot 

Plant: N 
Percolation: Y 

Application: S,N 
Pesticide: F,G,H 

 LV-S Plot 

Plant: Y 
Percolation: Y 

Application: S,N 
Pesticide: F,G,H 

    
   

    
    

    
        
        
 Lysimeter No.1  Lysimeter No.2 Lysimeter No.3 Lysimeter No.4  Lysimeter No.5
        
        

LA-B Plot 

Plant: N 
Percolation: Y 

Application: S,N 
Pesticide: F,G,H 

 LA-S Plot 

Plant: Y 
Percolation: Y 

Application: S,N 
Pesticide: F,G,H 

    
   

    
    

    

        

 

 2015: July 15–August 5 
        

   LV-S Plot 

Plant: Y 
Percolation: Y
Application: S 

Pesticide: 
I,J,K,L,M,N 

LV-Z Plot 

Plant: Y 
Percolation: N
Application: S 

Pesticide: 
I,J,K,L,M,N 

 LV-F Plot 

Plant: Y 
Percolation: Y
Application: F 
Pesticide: I,J,K

    
     
     

     

        
        
 Lysimeter No.1  Lysimeter No.2 Lysimeter No.3 Lysimeter No.4  Lysimeter No.5
        
        

   LA-S Plot 

Plant: Y 
Percolation: Y
Application: S 

Pesticide: 
I,J,K,L,M,N 

LA-Z Plot 

Plant: Y 
Percolation: N
Application: S 

Pesticide: 
I,J,K,L,M,N 

 LA-F Plot 

Plant: Y 
Percolation: Y
Application: F 
Pesticide: I,J,K

    
     
     

     

        

where 
Plant: presence of rice plant (Y; transplanted, N; bare ground),  
Percolation: setting of daily percolation rate (Y; set to 1.5 cm/day, N; zero-percolation),  
Application: method of pesticide application (S: submerged application, N; nursery box 

application, F; foliar application) 
Pesticide: ID of formulation product shown in Table 3.2. 
 

Fig. 3.11 (continued) Layouts of test plot designs of lysimeters from 2012 to 2015 
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Table 3.2 Abbreviation list of test plots in four-year experiment. 

Label Description Year

LA-S1 Lysimeter with alluvial soil under standard experimental design No.1 

2012

LV-S1 Lysimeter with volcanic ash soil under standard experimental design No.1 

LA-S2 Lysimeter with alluvial soil under standard experimental design No.2 

LV-S2 Lysimeter with volcanic ash soil under standard experimental design No.2 

FA Paddy field with alluvial soil 

FV Paddy field with volcanic ash soil 

LA-S Lysimeter with alluvial soil under standard experimental design 

2013
LV-S Lysimeter with volcanic ash soil under standard experimental design 

FA Paddy with field alluvial soil 

FV Paddy field with volcanic ash soil 

LA-S Lysimeter with alluvial soil under standard experimental design 

2014

LV-S Lysimeter with volcanic ash soil under standard experimental design 

LA-B Lysimeter with alluvial soil under bare ground design (without plant) 

LV-B Lysimeter with volcanic ash soil under bare ground design (without plant) 

FA Paddy field with alluvial soil 

FV Paddy field with volcanic ash soil 

LA-S Lysimeter with alluvial soil under standard experimental design 

2015

LV-S Lysimeter with volcanic ash soil under standard experimental design 

LA-Z Lysimeter with alluvial soil under zero percolation design 

LV-Z Lysimeter with volcanic ash soil under zero percolation design 

LA-F Lysimeter with alluvial soil under foliar application design 

LV-F Lysimeter with volcanic ash soil under foliar application design 

FA Paddy field with alluvial soil 

FV Paddy field with volcanic ash soil 
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Table 3.3 Complete list of formulation products applied in four-year experiment. 

Year ID 
Formulation product 

(Applicate rate) 
Type 

Application 
method 

Pesticide, content 
(Metabolite) 

Cmax
*  

(mg/L) 
Analysis
group**

2012 A MAMET SM ® 

(1 kg/10 a) 
Granule Submerged Simetryn, 4.5% 0.9 I-a 

    Molinate, 24% 4.8 
    MCPB-ethyl, 2.4% 

(MCPB) 
0.48 

 B SING ® 

(500 mL/10 a) 
Emulsion Submerged Pyributicarb, 12% 1.2 − 

    Pretilachlor, 8% 0.8 
 C INNOVA® DX  

(1 kg/10 a) 
Granule Submerged Daimuron, 4.5% 0.9 I-b 

    Fentrazamide, 2% 0.4 
    Bromobutide, 7.5% 

(Bromobutide-desbromo) 
1.5 

    Bensulfuron-methyl, 0.51% 0.102 
2013 D  DR.ORYZE® PRINCE®  

(1 kg/10 a) 
Granule Nursery-box, Fipronil, 0.6% 0.12 II 

    Probenazole, 24% 4.8 
 E INNOVA® DX UP L 

(500 mL/10 a) 
Flowable Submerged Daimuron, 8.2% 0.82 I-b 

    Fentrazamide, 5.5% 0.55 
    Bromobutide, 13.7 

(Bromobutide-desbromo) 
1.37 

    Bensulfuron-methyl, 0.9% 0.09 
2014 F BIGSURE ® ACE 

(1 kg/10 a) 
Granule Submerged Imazosulfuron, 0.9% 0.18 I-a 

    Daimuron, 4.5% 0.9 
    Fentrazamide, 3% 0.6 
    Bromobutide, 9% 

(Bromobutide-desbromo) 
1.8 

 G ST BARRAGE® 

(3 kg/10 a) 
Granule Submerged Dimethametryn, 0.1% 0.06 I-a 

    Pretilachlor, 2% 1.2 
 H ARASHI® DANTOTSU® 

(1 kg/10 a) 
Granule Nursery-box, Clothianidin, 1.5% 0.3 II 

   Submerged Orysastrobin, 7% 
((5Z)-orysastrobin) 

1.4 

2015 I DANTOTSU®  
(5000 fold, 150 L/10 a) 

Flowable  Foliar, 
 Submerged

Clothianidin, 20% 0.12 III 

 J AMISTAR® EIGHT 
(1000 fold, 150 L/10 a) 

Flowable  Foliar, 
 Submerged

Azoxystrobin, 8% 0.24 III 

 K APPLAUD® 

(1000 fold, 150 L/10 a) 
Flowable  Foliar, 

 Submerged
Buprofezin, 20% 0.6 III 

 L ARASHI STARKLE® 

(3 kg/10 a) 
Granule Submerged Dinotefuran, 1.67% 1.002 I-a 

I-c     Orysastrobin, 2.2% 
((5Z)-orysastrobin) 

1.32 

 M WIDEATTACK™ 
(1 kg/10 a) 

Granule Submerged Daimuron, 10% 2 I-a 
I-c     Penoxsulam, 0.6% 0.12 

 N LONGKICK® 

(1 kg/10 a) 
Granule Submerged Clomeprop, 4.5% 

(Clomeprop metabolite B) 
0.9 I-a 

I-c 
    Fentrazamide, 3.9% 0.6 
    Bensulfuron-methyl, 0.51% 0.102 

*  Theoretical maximum concentration defined as applied pesticide is dissolved in paddy water with 
5 cm ponding depth. 

** I-a, b, c: submerged applications for comparing decline, formulation type and experimental 
design, II: nursery-box application, III: foliar application 
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3.4. Pesticide application and sampling 

3.4.1. Submerged application 

The granular formulation products were homogeneously applied by hand to the lysimeters and paddy 

fields at the recommended rate. For flowable and emulsion formulation products applied without 

dilution, aliquots of the liquid concentrations were appropriately taken by pipettes and applied 

homogeneously to the lysimeters and paddy fields. 

 

3.4.2. Nursery-box application 

Rice seedlings were grown in a nursery box (30 cm × 60 cm) packed with ca. 3 cm of soil and by 

watering appropriately until pesticide application. For the lysimeter experiment, a plot section of rice 

seedlings in soil (30 cm × 7.5 cm) was divided and rearranged as two portions (5 cm × 7.5 cm) for the 

alluvial and the volcanic ash soil plots by cutting both ends of the long side (Fig.3.12(a)). Each 

portion was subdivided into 25 parts (ca. 1 cm × 1.5 cm each) including two or three rice seedlings 

per part by knives (Fig.3.12(b)) and transferred to containers made of aluminum foil (Fig.3.12(c)). A 

portion of the granule formulation product was applied to the soil surface (Fig.3.12(d)), and the 

pieces of the rice seedlings were hand-transplanted under a flooded condition at a transplanting depth 

of 3-4 cm (Fig.3.12(e)). The granules that remained in the container were assumed to be the runoff 

from the nursery-box and were applied as a submerged application by washing the container with 

paddy water (Fig.3.12(f)). 

For the field experiment, the nursery-boxes with rice seedlings were grown at a ratio of 20 

boxes for 10 a of a paddy field. The formulation products with recommended application rates were 

applied to the nursery box prior to transplantation (Fig.3.13(a)). No addition of water was practiced 

after pesticide application. The rice seedlings were transplanted using a rice transplanting machine at 

a planting density of 18.1 plants/m2 with  spacing of 16 cm × 30 cm (between plants × between rows) 

under flooded conditions (Fig.3.13(b)). Because of the aforementioned transplanting condition, a 

deeper transplanting depth of 5–6 cm was set for both years. 
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Fig. 3.12 Procedures of nursery-box application in lysimeters 
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Fig. 3.13 Procedures of nursery-box application in paddy fields 

(a) 

(b) 
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3.4.3. Foliar application 

In this experiment, foliar application was conducted as mixture application. For the lysimeter 

experiment, three flowable formulations were diluted accordingly (see Table 3.3) with purified water 

obtained from a PURELAB Flex System (Veolia Water Solutions & Technologies, Saint-Maurice, 

France) to give a mixture solution. On the day of application, a simple spray chamber made of a 

polyvinyl chloride pipe covered with plastic sheets shown in Fig. 3.14 (width × depth × height = 

100 cm × 100 cm × 80 cm) was prepared for the LA/LV-F plots to prevent spray drift to the other test 

plots. The aliquots (150 mL/plot) of the mixture solution were transferred to an electric gardening 

sprayer (BH-565B, National, Osaka, Japan) and sprayed on the surface of paddy water at the 

LA/LV-S and LA/LV-Z plots and on the rice foliage from the upper side of the spray chambers at the 

LA/LV-F plots. The remaining solution in the sprayer was sprayed by diluting with purified water. 

The mixture solution remaining in the plastic sheets of the spray chambers post-application was 

regarded as the spray drift and was not washed into the test plots. 

For foliar applications in the test fields, the mixture solution of the three flowable 

formulations was prepared by diluting them with tap water. The aliquot of the mixture (120 L/plot) 

was transferred to a tank powered by a gasoline engine at each field. A two-wing boom sprayer with 

20 nozzle heads (Yamaho Industry Co., Ltd., Wakayama, Japan) was connected to the tank, and the 

mixture solution was sprayed by traversing the center of the field for a certain period of time. 

 

3.4.4. Sampling procedure 

For both experiments, sampling of paddy water was conducted on 0 (before application; 9:00 am to 

9:30 am of the application day), 0.125 (three hours), 1, 2, 3, 5, 7, 8, 10, 14, and 21 days after treatment 

(DAT). Note that sampling at 0.125 DAT was from 1:00 pm to 1:30 pm of application day. For the 

lysimeter experiments, paddy water was sampled from the water depth of 2−3cm using a 50 or 100 

mL glass syringe at 9 points in each test plot from 10:00 am to 10:30 am of each sampling day. 

Similarly, the appropriate volume of the percolating water taken from the closed underdrain to the 

collected tanks was sampled on 0, 7, 14, and 21 DAT. These water samples were immediately 

subjected to chemical analysis after the sampling. For the paddy field experiments, paddy water 

samples were taken from the sampling points shown in Figs. 3.4 and 3.6 using glass syringes and 

transferred into glass bottles separately. The soil waters were collected in Erlenmeyer flasks by 

vacuum pumps and transferred to glass bottles on each sampling day. All sampled glass bottles were 

tightly capped and transported to the IET analytical facility in cool and light-proof conditions. 
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Fig. 3.14 Procedures of foliar application in lysimeter 
 

3.5. Pesticide analysis 

3.5.1. Analytical target compounds 

A total of 20 pesticides including 4 metabolites in water samples were analyzed throughout the study. 

Table 3.4 shows the list of analytical target compounds and their physicochemical properties. The 

analytical target compounds were grouped as all active ingredients of applied formulation products 

from 2012 to 2015 and their simultaneous analytical methods were optimized by each experimental 

year basis. The following section provides the details of analytical procedures. 

 

3.5.2. Analytical standard and reagents 

All of the analytical standards had chemical purity of 98.9%–100% and were purchased from 

FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan) and Hayashi Pure Chemical Industries, 

Ltd. (Osaka, Japan). For the solvents used for pesticide analyses, acetonitrile for pesticide analysis 

and LC/MS, ammonium acetate for analytical-grade and formic acid for analytical-grade were 

purchased from FUJIFILM Wako Pure Chemical Corporation. Tetrahydrofuran for HPLC was 

purchased from Kanto Chemical Industries (Tokyo, Japan). Water used for the experiments was 

purified by a PURELAB Flex System (Veolia Water Solutions & Technologies, Saint-Maurice, 

France). 
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Table 3.4 Physicochemical properties of target pesticides and metabolites 
Pesticide 

[Metabolite] 
Year 

Water Solubility
(mg/L) 

logPOW KOC Source*

Pyributicarb 2012 0.15 4.7 1430－8530 C 

Pretilachlor 2012,2014 74 3.9 400－3400 C 

Simetryn 2012 482 2.14 642–205000 C 
Molinate 2012 990 2.88 101–362 A 

MCPB-ethyl 2012 3.64 4.17 – C 

[MCPB] 2012 4400 (pH7) 
444000 (pH9) 

1.32 527–2070 B,C 

Fipronil 2013 3.78 4.00 550–7800 C 

Probenazole 2013 36.6 1.76 100–310 C 

Imazosulfuron 2014 6.75 (pH5.1)
67 (pH6.1) 

308 (pH7.0) 

0.049 － B 

Daimuron 2012,2013, 
2014,2015 

0.79 2.7 732－1213 A 

Fentrazamide 2012,2013, 
2014,2015 

2.5 3.60 500－3344 A 

Bromobutide 2012,2013, 
2014 

3.54 3.46 163－306 A 

[Bromobutide-desbromo] 2012,2013 
2014 

－ － － － 

Dimethametryn 2014 20.2 3.2 641－8040 C 

Clothianidin 2014,2015 327 0.7 90－250 A 

Orysastrobin 2014,2015 80.6 2.36 17.9－146 A 

[5Z-orysastrobin] 2014,2015 － － － － 

Buprofezin 2015 0.387 4.80 2230 A 

Azoxystrobin 2015 6  2.5 270–4500 A 

Dinotefuran 2015 40000 -0.549 23.3–33.6 A 

Penoxsulam 2015 5.66 (pH5) 
408 (pH7) 

1460 (pH9) 

1.137 (pH5) 
-0.602 (pH7) 
-1.418 (pH9) 

48.8–992.9 A 

Clomeprop 2015 0.035 4.80 – A 

[Clomeprop metabolite B] 2015 108 3.00 37.1–430 A 

Bensulfuron-methyl 2012,2013, 
2015 

2.1 (pH5) 
67 (pH7) 

3100 (pH9) 

2.1761 (pH5)
0.7889 (pH7)

-0.9914 (pH9)

1075–4826 A 

* A: FAMIC (http://www.acis.famic.go.jp/syouroku/) 
 B: C. Tomlin and C. British Crop Protection: “The e-pesticide manual: a world compendium,” 

BCPC, Alton, 2006.  
 C: Ministry of Environment (http://www.env.go.jp/water/sui-kaitei/kijun.html or 

http://www.env.go.jp/water/dojo/noyaku/odaku_kijun/index.html) 
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3.5.3. Cleanup procedure 

For the field experiment, water samples were transferred to the IET analytical facility one day after 

each sampling day under cool and light-proof conditions. Equal volume of the water sample obtained 

from each sampling point as shown in Fig.3.4 and 3.6 were mixed to give the water sample 

subjected to chemical analysis. All water samples were analyzed in duplicate. 

In 2012, a 100 mL water sample was acidified by adding 2.5 mL of formic acid and passed 

through a styrene-divinylbenzene cartridge (InertSep PLS-2 500 mg/6 mL; GL Sciences, Tokyo, 

Japan), which was preconditioned with each of 5 mL of acetonitrile and water in advance. The 

cartridge was washed with 10 mL of acetonitrile:water (20:80, v/v) and the eluate was discarded. 

Analytes were eluted with 10 mL of acetonitrile and 5 mL of tetrahydrofuran. All eluates were 

collected in a 20 mL volumetric flask and made up to acetonitrile: tetrahydrofuran: water (50:25:25, 

v/v/v) as the final test solution injected into LC-MS and LC-MS/MS. In 2013, 2014 and 2015, a 20 

mL water sample was acidified with 0.5 mL of formic acid and passed through the 

styrene-divinylbenzene cartridge. The cartridges loaded water samples in 2013 were washed by the 

same manner in 2012 and those in 2014 and 2015 were washed by 5 mL of 2.5% formic acid aq. The 

analytes were all eluted with 10 or 20 mL of acetonitrile. These eluates were collected to a 

round-bottom flask and evaporated to dryness using a rotary evaporator and nitrogen stream. The 

remained residue was dissolved in 2 mL of water:acetonitrile:formic acid (60:40:0.1, v/v/v) to 

prepare the final test solution. Note that an aliquot (1 mL) of the final test solution in 2015 was 

further diluted with the same mixture solvent to give the final test solution for dinotefuran and 

clomeprop metabolite B. 

 

3.5.4. LC-MS and LC-MS/MS analysis 

A liquid chromatograph with mass spectrometry (LC/MS) system (1100 series, Agilent Technologies, 

Santa Clara, CA, USA) equipped with an electrospray ionization (ESI) interface and their tandem 

(LC-MS/MS) system (ACQUITY UPLC and Quattro Premier XE, Waters. Corporation, Milford, 

MA, USA) were used to determine the amount of analytes for water samples in 2012–2013 and those 

in 2014–2015, respectively. As the analytical columns, Inertsil ODS-3 (2.1 × 150 mm, 5 μm particle 

size, GL Sciences) and AQUITY UPLC BEH C18 (2.1 × 100 mm, 1.7 μm particle size, Waters 

Corporation) were used for LC-MS and LC-MS/MS determinations, respectively. Acetonitrile and 5 

mmol/L ammonium acetate were chosen as the mobile phase. The flow rate of the LC pump was 0.2 

mL/min and the gradient elution program was constructed. The detailed conditions for LC-MS and 



 

66 

LC-MS/MS analyses are listed in Appendix 3.1. The amount of each analyte was determined by the 

external standard method. The standard solutions were prepared as mixtures of analytes by diluting 

each standard stock solution (200 mg/L), which were prepared from purity-corrected analytical 

standards using acetonitrile. To obtain the calibration curve, the standard solutions were prepared in 

a range of 0.001–0.1 mg/L by dilution with acetonitrile:tetrahydrofuran:water (50:25:25, v/v/v) in 

2012 and those in 2013 were in the range of 0.005–0.4 mg/L diluted with water : acetonitrile : formic 

acid (60:40:0.1, v/v/v). The standard solutions in 2014 and 2015 were prepared in range of 0.005–

0.2 mg/L and 0.001 (0.005)–0.1 (0.2) mg/L (the values in parentheses were for dinotefuran and 

clomeprop metabolite B, respectively), respectively, diluted with water:acetonitrile:formic acid 

(60:40:0.1, v/v/v). The limit of quantification (LOQ) and the limit of detection (LOD) for the 

pesticides used in submerged application and foliar application were set at 0.001 mg/L and 0.0005 

mg/L, respectively throughout this study. The LOQs and LODs for nursery-box-applied pesticides 

were set at 0.0001 mg/L and 0.00005 mg/L, respectively for 2013 and at 0.0005 mg/L and 0.00025 

mg/L, respectively for 2014. 

 

3.5.5. Method validation 

To employ the analytical method for each year, precision and accuracy were evaluated by the 

recovery test of each pesticide spiked with water samples taken from the lysimeters before 

application. The recovery tests were conducted with three dose levels in triplicate: LOQ, 50 × LOQ, 

and the theoretically estimated or exceeded maximum concentration in paddy water. The recoveries 

of analytes at individual dose levels are summarized in Appendix 3.2. It was confirmed that all mean 

recoveries of analytes at three dose levels were within a range of 74%–119%, and their relative 

standard deviations (RSDs) ≤ 15%. Additionally, there was no interference peak observed around the 

retention time of each analyte on chromatogram of the blank samples. 

 

3.6. Data analysis 

3.6.1. Measures to evaluate analytical data 

The mean value and difference between analytical values (range) of measured values in each paddy 

water sample for each analyte were calculated. The repeatability relative standard deviation (RSDr) 

with duplicate run given as: 

RSDr = Range × 100 × 0.89 (3.4)
Mean value 
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was calculated to confirm that the range in duplicate analysis for every determination of  paddy 

water sample was within the acceptable criteria (10%) described in the test guideline (Agricultural 

Production Bureau Ministry of Agriculture Forestry and Fisheries, 2000). Finally, the mean value 

was used as the analytical concentration for the analysis. For analyses including metabolite 

compounds, such as MCPB-ethyl, bromobutide, orysastrobin, and clomeprop, the total concentration 

as a sum of the mean concentrations of the parent compound and its metabolite converted using the 

mass of the parent compound was used (expressed by placing “Total” before the compound name). 

From the analytical concentrations, the dissipation ratio that quantifies the decrease achieved in 

the concentration in paddy water was calculated as 

1001
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where C21-DAT is the analytical concentration at 21 DAT and Cobs-max is the maximum analytical 

concentration. Similarly, the relative maximum analytical concentration (Crmax-obs), defined as 

100
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max
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 C

C
C obs

obsr , (3.6) 

was calculated. The denominator, Cmax, in Eq.(3.6) stands the theoretical maximum concentration of 

the active ingredient, which was estimated under the assumption that all applied pesticides are 

dissolved in paddy water with a 5 cm ponding depth (see Table 3.3). 

 

3.6.2. Kinetic analysis 

To estimate the time required for 50% dissipation (DT50), the set of analytical concentrations for each 

pesticide at each test plot was directly fitted to the appropriate kinetic model by nonlinear fitting 

routines. For the submerged application of the granular pesticides, the dissipation of each pesticide 

includes the simultaneous release phase from granules and decrease phase. Therefore, the single first 

order (SFO) model was coupled with another kinetic phase expressing the release from the granule 

and denoted as the SFOR model (Richter et al., 1996). The governing equation of the SFOR model 

is given as 

 tk
dissrrer

reCkvckv
dt

dC    with   (3.7) 

where C is the simulated pesticide concentration in the paddy water at time t , vr is the release term, 

Cdiss is the dissolved pesticide concentration (mg/L), kr is the release rate from the granule (1/day), 
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and ke is the decrease rate of the pesticide concentration in the paddy water (1/day). The integral form 

of Eq. (3.7) is obtained as 

  tktk

er

rdiss
t

re ee
kk

kC
C  


  (3.8) 

where Ct is the pesticide concentration in the paddy water at time t. For the nursery-box application 

case, assuming the applied pesticides were released to paddy water from the transplanting holes 

(Thuyet et al., 2011a; Thuyet et al., 2012), the analytical concentrations for these pesticides were also 

fitted to the SFOR model. For the pesticides in the analysis group of I-a, the fitted results between 

test plots with the same soil type were applied to grouping analyses to compare entire groups for 

assessing the differences between test plots and comparing specific parameters (Cdiss, kr and ke) in the 

SFOR model (Ritz and Streibig, 2008). The former analysis was done by comparing the differences 

between the lysimeters and the latter was used to compare the lysimeter and the paddy field. In the 

analysis, compared data sets were fitted to all different parameter (individual) model and entire or 

partial common parameter (grouped) model. Then, two models were compared by one-way analysis 

of variance (ANOVA). If there was no significant difference (5%), the grouped model was adopted 

that meant the success of the grouping, otherwise the individual model was used. 

The pesticides in flowable formulation used in the foliar application were expected to show 

their maximum immediately after application, and therefore, the analytical concentrations for these 

pesticides were fitted to the SFO model or the hockey-stick (HS) model, recommended in 

water-sediment studies (FOCUS, 2006a), depending on the dissipation pattern. The integrated form 

of the SFO model is 

 kt
t eCC  0  (3.9) 

where, C0 is the initial concentration and k is the decrease rate in paddy water. Similarly, the HS 

model is given as 
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where, k1 is the decrease rate in paddy water until t =tb, k2 is the decrease rate in paddy water from t =tb 

and tb, is the breakpoint at which the rate constant changes. 

The goodness of fit for the fitted model was evaluated visually and statistically. As a statistical 

measure, the χ2 test was used to evaluate the agreement between the calculated and observed values 

(FOCUS, 2006a) and is given as 
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error

tab
  (3.11) 

where χtab
2 is the tabulated χ2 value with m degree of freedom at the 5% significance level, S is the 

simulated value, O is the observed value and O
−

 is the mean of all observed values. Finally, the DT50 

of each model was estimated from following equation 

 
ek

DT
2ln

50  . (3.12) 

The criterion for model selection was based on our testing of the SFO model. It was chosen as the 

final model when the χ2 error was below 15% and the fitted result was visually acceptable. When the 

fitted result based on the SFO model was unacceptable, the HS model was selected. Finally, the 

relative maximum modeled concentration (Crmax-mod) was calculated as 

100
or  

max

0diss
modmaxr  C

CC
C . (3.13) 

All of the analyses were performed using statistical software R (ver.3.4.2, R Foundation for 

Statistical Computing) and a list of R functions used in this study is summarized in Table 3.5. The 

handling of the data including a value below the LOQ was based on the FOCUS (FOrum for 

Co-ordination of pesticide fate models and their USe) recommendation (FOCUS, 2006a). All 

datasets were directly fitted to the kinetic models using the nonlinear fitting routines as described 

above rather than by applying the logarithmic transformation, as it makes the data weighted when the 

concentration levels decrease, leading to underestimation of the initial concentration (FOCUS, 

2006a). 
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Table 3.5 List of R function used in this study 
Name Package Description/use Source 
nlsLM minpack.lm  Optimize parameter for the data with 

non-grouping structure 
 Estimate initial guess parameter set for the use of 

gnls  to the data with grouping structure when 
gnls is not converged due to misspecification of 
initial guess 

Timur V. Elzhov, Katharine M. Mullen, Andrej-Nikolai 
Spiess and   Ben Bolker (2016). minpack.lm: R 
Interface to the Levenberg-Marquardt Nonlinear 
Least-Squares Algorithm Found in MINPACK, Plus 
Support for Bounds. R package version 1.2-1, 
<URL:https://CRAN.R-project.org/package=minpack. 
lm>. 

gnls nlme  Optimize parameter for the data with grouping 
structure 

 Argument param controls if the model 
parameter optimize based on individual or 
grouped 

 Add argument 
“control=gnlsControl(nlsTol =***)” 
if  optimization routine is not converged 

Pinheiro J, Bates D, DebRoy S, Sarkar D and R Core 
Team (2017). nlme: Linear and Nonlinear Mixed 
Effects Models_. R package version 3.1-131, <URL: 
https://CRAN.R-project.org/package=nlme>. 

anova nlme  Apply F-test to compare two models regarding 
whole structure or specific parameter basis 

 When null hypothesis is rejected at the 
significance level below 0.05, two models are 
statistically different with respect to whole 
structure or specific parameter 

 



 

 71 

3.7. Results and discussion 

3.7.1. Hydrological conditions 

The monitored and calculated hydrological inputs/outputs and other components at 

individual experimental plots from 2012 to 2015 are shown in Tables 3.6 and 3.7. Figures 

3.15 to 3.18 show the daily changes in precipitation, irrigation, runoff/drainage, and paddy 

water depth for the FA and FV plots from 2012 to 2015. The daily water depths in lysimeters 

were constantly maintained at 5 cm throughout the experiments using daily irrigation. 

However, in paddy fields, although average water depths were close to 5 cm, their variation 

ranges were wide because of rainfall events and intermittent irrigation. Table 3.8 shows the 

variations in water level in the FA and FV plots throughout the experimental period. Daily 

percolation rates in the lysimeters were within the range of 1–2 cm/day stipulated by the test 

guidelines (Agricultural Production Bureau Ministry of Agriculture Forestry and Fisheries, 

2000). In contrast, the daily percolation rates in paddy fields showed a relatively lower 

tendency, especially in the FA plot. Additionally, the inter-annual variations of daily 

percolation rates were remarkable in the FA plot. These differences could be attributed to the 

mechanical mixing of paddy soil, such as the puddling. Adachi (1988) reported that puddling 

is sensitive to reductions in the daily percolation rate of alluvial soils and less sensitive to 

that in volcanic soils. Two unintentional drainage events were observed at 9 and 11 DAT in 

both paddy fields due to intensive rainfalls in 2012. The amounts of drained water at 9 and 

11 DAT were estimated as 4.8 and 1.7 cm in the FA plot and 4.0 and 2.0 cm in the FV plot, 

respectively. Other than 2012, there was no outflow was observed during any of the test 

years. 
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Table 3.6 Summary of water balance data in experimental plots 
Lysimeter Paddy field 

  Alluvial Volcanic ash Alluvial Volcanic ash
 Input (cm) 

Irrigation 
2012 33.8 (1.6) a) 35.0 (1.7) a) 5.8 (0.3) 9.0 (0.4)

37.5 (1.8) a) 32.6 (1.6) a)

2013 37.2 (1.8) a) 36.9 (1.8) a) 5.2 (0.2) 11.2 (0.5)
2014 40.5 (1.9) b) 38.8 (1.8) b) 0.8 (0.04) 4.6 (0.2)

38.4 (1.8) a) 38.5 (1.8) a)

2015 49.9 (2.4) a) 48.2 (2.3) a) 21.9 (1.0) 13.6 (0.6)
20.8 (1.0) c) 15.0 (0.7) c)

55.0 (2.6) d) 49.2 (2.3) d)

Precipitation 
2012 0.0 0.0 14.8 17.8 
2013 0.0 0.0 7.8 8.2 
2014 0.0 0.0 7.2 10.0 
2015 0.0 0.0 2.8 8.6 

 Output (cm) 
Evaporation / Evapotranspiration

2012 3.7 (0.14) a) 4.7 (0.18) a) 6.9 (0.33) 7.1 (0.31)
6.5 (0.25) a) 5.2 (0.19) a)

2013 6.4 (0.29) a) 5.2 (0.24) a) 6.8 (0.32) 6.7 (0.34)
2014 8.6 (0.41) b) 7.6 (0.36) b 6.1 (0.20) 5.7 (0.20)

6.6 (0.31) a) 7.3 (0.35) a)

2015 18.5 (0.88) a) 16.5 (0.78) a) 11.4 (0.40) 11.4 (0.40)
20.8 (0.99) c) 15.0 (0.71) c)

24.0 (1.14) d) 18.1 (0.86) d)

Percolation 
2012 31.2 (1.49) a) 31.1 (1.50) a) 9.0 (0.43) 14.6 (0.54)

31.0 (1.48) a) 30.4 (1.49) a) 
2013 31.2 (1.46) a) 31.8 (1.51) a) 2.9 (0.14) 12.2 (0.67)

2014 31.9 (1.52) b) 31.2 (1.50) b) 1.3 (0.09) 7.1 (0.41)

31.9 (1.52) a) 31.2 (1.50) a) 
2015 31.4 (1.50) a) 31.7 (1.51) a) 12.1 (0.58) 11.3 (0.54)

0.0 c) 0.0 c) 
31.0 (1.48) d) 31.2 (1.48) d) 

Outflow 
2012 0.0 0.0 6.5 6.0 
2013 0.0 0.0 0.0 0.0 
2014 0.0 0.0 0.0 0.0 
2015 0.0 0.0 0.0 0.0 

The values outside and inside of parentheses are the total and daily mean of observed data, 
respectively. 
a) Measured values taken from the conventional plots (labeled as LA/LV-S1,S2, LA/LV-S). 
b) Measured values taken from the bare plots (labeled as LA/LV-B). 
c) Measured values taken from the zero-percolation plots (labeled as LA/LV-Z). 
d) Measured values taken from the foliage application plots (labeled as LA/LV-F). 
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Table 3.6 Summary of water balance data in experimental plots (continued) 
Lysimeter Paddy field 

  Alluvial Volcanic ash Alluvial Volcanic ash
 Cumulative input (cm) 

2012 33.8 a) 35.0 a) 20.6 26.8 
37.5 a) 32.6 a)

2013 37.2 a) 36.9 a) 13.0 20.0 
2014 40.5 b) 38.8 b) 8.0 14.6 

38.4 a) 38.5 a)

2015 49.9 a) 48.2 a) 23.7 22.2 
20.8 c) 15.0 c)

55.0 d) 49.2 d)

 Cumulative output (cm) 
2012 34.9 a) 35.8 a) 22.4 27.7 

37.5 a) 35.6 a)

2013 37.6 a) 37.0 a) 9.7 18.9 
2014 40.5 b) 38.9 b 7.4 12.8 

38.5 a) 38.5 a)

2015 49.9 a) 48.2 a) 23.5 22.7 
20.8 c) 15.0 c)

55.0 d) 49.3 d)

a) Measured values taken from the conventional plots (labeled as LA/LV-S1, S2, LA/LV-S). 
b) Measured values taken from the bare plots (labeled as LA/LV-B). 
c) Measured values taken from the zero-percolation plots (labeled as LA/LV-Z). 
d) Measured values taken from the foliage application plots (labeled as LA/LV-F). 
 
Table 3.7 Summary of monitored data other than water balance components 

Lysimeter Field 
  Alluvial Volcanic ash Alluvial Volcanic ash 
  Water temperature, °C 
2012 22.7 (18.6–26.0) a) 22.8 (18.1–27.0) a) 26.0 (18.3–31.6) 27.6 (19.4–32.0) 

 23.0 (18.1–27.0) a) 22.4 (17.9–26.5) a)   
2013 23.6 (21.0–27.0) a) 24.2 (21.4–28.0) a) 30.6 (23.1–36.3) 30.3 (24.5–33.3) 
2014 24.6 (21.9–26.4) b) 24.4 (21.3–27.1) b) 27.1 (23.3–32.5) 30.4 (23.5–36.7) 

 24.3 (21.1–26.2) a) 25.4 (21.9–29.0) a)   
2015 28.6 (26.5–30.0) a) 30.0 (27.2–32.0) a) 29.2 (27.3–32.4) 30.6 (28.2–33.8) 

 28.5 (26.0–30.0) c) 29.1 (27.0–31.0) c)   
 28.7 (26.0–30.5) d) 27.6 (25.5–29.5) d)   

Water pH 
2012 7.8 (6.9–8.4) a) 7.9 (7.3–8.4) a) 7.2 (6.8–7.7) 7.2 (6.8–7.8) 

 7.9 (6.9–8.7) a) 7.9 (7.5–8.6) a)   
2013 8.2 (7.5–8.8) a) 8.5 (7.9–9.2) a) 7.8 (7.1–8.1) 7.7 (6.9–8.1) 
2014 8.4 (7.7–9.1) b) 8.3 (7.7–8.8) b) 7.2 (6.8–7.8) 7.0 (6.7–7.4) 

 8.2 (7.7–8.7) a) 8.3 (7.8–8.6) a)   
2015 8.2 (7.9–8.5) a) 8.4 (8.0–8.6) a) 8.0 (7.0–8.8) 8.1 (7.2–8.5) 

 8.2 (7.8–9.1) c) 8.9 (8.0–9.3) c)   
 8.7 (8.0–9.4) d) 8.8 (7.9–9.2) d)   

The values outside and inside of Parentheses are the mean value and the minimum-maximum 
values of observed data, respectively. 
a) Measured values taken from the conventional plots (labeled as LA/LV-S1,S2, LA/LV-S). 
b) Measured values taken from the bare plots (labeled as LA/LV-B). 
c) Measured values taken from the zero-percolation plots (labeled as LA/LV-Z). 
d) Measured values taken from the foliage application plots (labeled as LA/LV-F). 
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(a) FA Plot in 2012 

 

(b) FV Plot in 2012 

 

Fig. 3.15 Observed and calculated daily water balances of paddy fields in 2012: the 
error bar of observed water level indicates the minimum−maximum range of twelve 

observed points. 

0

2

4

6

8

10

12

14

16

18

200

1

2

3

4

5

6

7

8

9

10

0 3 6 9 12 15 18 21

P
recip

itatio
n

 (cm
)W

at
er

 d
ep

th
 (

cm
)

Day after treatment

IRRIGATION DRAIN RAIN

Water depth (calculated) Water requirement Water depth (observed)

0

2

4

6

8

10

12

14

16

18

200

1

2

3

4

5

6

7

8

9

10

0 3 6 9 12 15 18 21

P
re

cip
itatio

n
 (cm

)W
at

e
r 

d
e

p
th

 (
c

m
)

Day after treatment

IRRIGATION DRAIN RAIN

Water depth (calculated) Water requirement Water depth (observed)



 

75 

(a) FA Plot in 2013 

 

(b) FV Plot in 2013 

 

Fig. 3.16 Observed and calculated daily water balances of paddy fields in 2013: the 
error bar of observed water level indicates the minimum−maximum range of twelve 

observed points. 
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(a) FA Plot in 2014 

 

Water depth at 0.125-DAT could not be observed because of high turbidity. 

(b) FV Plot in 2014 

 

Fig. 3.17 Observed and calculated daily water balances of paddy fields in 2014: the 
error bar of observed water level indicates the minimum−maximum range of twelve 

observed points. 
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(a) FA Plot in 2015 

 

(b) FV Plot in 2015 

 

Fig. 3.18 Observed and calculated daily water balances of paddy fields in 2015: the 
error bar of observed water level indicates the minimum−maximum 

range of twelve observed points.
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Table 3.8 Variations of water levels at paddy fields during the experiments 
 

 

 

 
 

* Coefficient of variation.

 

2012 2013 2014 2015 

FA Plot FV Plot FA Plot FV Plot FA Plot FV Plot FA Plot FV Plot 

Average (cm) 4.4 5.4 6.4 5.5 6.3 5.0 4.0 5.9 

CV*(%) 27 31 25 16 38 16 30 19 
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3.7.2. Application conditions of pesticides 

Table 3.9 summarizes the application conditions of pesticides in the individual test plots 

from 2012 to 2015. While the pesticide application conditions in the lysimeter experiments 

were reproducible except for the wind condition, those in the field experiments varied 

especially for the water depth at pesticide application between plots and between years. In 

the nursery-box pesticide application with lysimeters in 2013 and 2014, small amounts of 

applied granules runoff via hand transplanting were observed on the soil surfaces around the 

transplanting hole. Furthermore, the transplanting holes were not sufficiently buried due to 

little disturbance from hand transplanting. In 2013, the levels of paddy water in both paddy 

fields were reduced beforehand and were later increased to the appropriate levels after 

transplanting. However, in 2014, it rained on the day before transplanting, which 

precipitation totals of 4.4 and 1.5 cm in the FA and FV plots, respectively. Thus, 

transplanting in 2014 was done in deeper water, particularly for the FV plot. Since the paddy 

water in both paddy fields was muddy after transplanting, the granules and the transplanting 

holes were invisible. 

The foliar applications of pesticides were conducted 47 days after transplanting. The 

crop heights in the lysimeters were higher than those in the paddy fields. On the day of the 

application in 2015, windy conditions prevailed both near the lysimeters and in the paddy 

fields. In addition, a small rainfall event up to 0.3 cm was occurred during the application in 

the FA plot. Foliar applications in the FA and FV plots were done twice using 40 and 80 L of 

the formulation and at 0 and 3 h to account for treatment errors. For this reason, additional 

water sampling at the FA and FV plots was conducted at 6 h after the first application (0.25 

DAT). 
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Table 3.9 Conditions of lysimeters and paddy fields at application 

 Lysimeters Paddy fields

2012: Submerged application  

Crop height at application (cm) 23–25 21–22 

Crop age at application (days-old)a) 32 16 

Days from transplanting to application (day) 20 12 

Time of application (11-June of) 10:00-10:30 10:30b), 13:30c)

Average wind velocity at application (m/sec) 0.1 4.0b), 2.0c)

Water depth at application (cm) 5.0 5.6±0.46b), 7.2±1.34c)

2013: Submerged application, nursery-box application  

Crop height at application (cm) 10–13 

Crop age at application (days-old)a) 18 15 

Days from transplanting to application (day) 0 0 

Time of application (4-June of) 10:00-10:30 10:30b), 12:00c)

Average wind velocity at application (m/sec) 0.8 <1.0b), <1.0c)

Water depth at application (cm) 5.0 5.1±0.34b), 4.2±1.09c)

2014: Submerged application, nursery-box application  

Crop height at application (cm) 10–13 

Crop age at application (days-old)a) 19 19 

Days from transplanting to application (day) 0 0 

Time of application (10-June of) 10:00-10:30 10:30b), 14:00c)

Average wind velocity at application (m/sec) 1.2 <1.0b), <1.0c)

Water depth at application (cm) 5.0 −b), 4.0±1.12c)

2015: Submerged application, foliar application  

Crop height at application (cm) 65–70 52–54 

Crop age at application (days-old)a) 23 23 

Days from transplanting to application (day) 47 47 

Time of application (15-July of) 10:00-10:30 11:00, 14:00b), 
12:00, 15:00c).

Average wind velocity at application (m/s) 2.6 4.5c), 3.3d)

Water depth at application (cm) 5.0 2.4±0.52c), 6.6±0.94d)

a) Days after sowing to transplanting. 
b) FA plot 
c) FV plot 
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3.7.3. Analytical results 

3.7.3.1. 2012 

The dissipation ratio, Crmax-obs, and the day Cobs-max detected are summarized in Appendix 

3.3. All analytes at all test plots except for bromobutide in the FA and FV plots and 

daimuron indicated that Cobs-max occurred within 3 DAT. Bromobutide-desbromo, major 

metabolite of bromobutide, was detected in paddy water from 2 to 21 DAT at the LA-S1 and 

S2 plots and not detected at the LV-S1 and S2 plots throughout the experimental period. On 

the other hand, Bromobutide-desbromo was detected in both the FA and the FV plots from 1 

to 14 DAT with higher detection level of the lysimeters. MCPB-ethyl concentrations 

rapidly decreased within one or two days and MCPB concentrations subsequently increased 

until 3 DAT. While the Cobs-max values of bromobutide in the FA and FV plots were 

detected at 5 DAT, those of daimuron were 5 to 10 DAT at individual test plots. The 

calculated Crmax-obs values were in the range of 5%–68% for the lysimeters and 13%–75% 

for the paddy fields, respectively. For the differences between the lysimeters and paddy 

fields, the relative maximum concentrations in the paddy fields were 0.9–3.0 and 0.3–3.3 

times of those in the lysimeters for alluvial and volcanic ash soils, respectively. Between the 

formulation types, although the Crmax-obs values of granule formulation in the paddy fields 

were higher than those applied to the lysimeters, the Crmax-obs values of emulsion 

formulation in paddy fields were tended to same extent or lower as compared to those in 

the lysimeters. During the experimental period, dissipation ratios of all pesticides were 

49%–100%. The concentrations of analytes except for simetryn, molinate, bromobutide and 

daimuron were decreased below the LOQ levels at 7 to 21 DAT. 

From the percolating water in the lysimeters, molinate was only detected at 21 DAT 

of the LA-S2 plot. Meanwhile, for the soil water in the paddy fields, molinate was begun to 

be detected at 2 DAT from 15 cm depth and 3 DAT from 30 cm depth. Except for the soil 

water from 15 cm depth of the FV plot, Molinate became below LOQ level until 21 DAT. 

From the soil water from 15 cm depth of the FV plot, bromobutide was detected from 7 

DAT to 21 DAT. There were similar tendencies regarding detected analytes and their 

concentration levels between the percolating water in the lysimeters and soil water in the 

paddy fields. 
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3.7.3.2. 2013 

The dissipation ratio, Crmax-obs, and the day Cobs-max detected for flowable herbicides are 

summarized in Appendix 3.4. In the paddy water samples, all analytes in the flowable 

formulation at all test plots reached maximum level at 0.125 DAT. The Crmax-obs values of 

the analytes in the flowable formulation were in the range of 26%–76% for the lysimeters 

and 69%–153% for the paddy fields. For the differences between the lysimeters and paddy 

fields, the relative maximum concentrations in the paddy fields were 1.4–2.6 and 2.2–2.8 

times of those in the lysimeters for alluvial and volcanic ash soils, respectively. In both plots 

of the lysimeters, bromobutide-desbromo was not detected in paddy water throughout the 

experimental period. Whereas, bromobutide-desbromo was detected in both the FA and the 

FV plots from 0.125 to 21 DAT. The concentration of nursery-box applied fipronil in all test 

plots was at the maximum at 0.125 DAT. The Crmax-obs values were 17%–18% for the 

lysimeters and 6%–7% for the paddy fields. For probenazole, no clear dissipation curve 

could be obtained in any test plot. The concentration of nursery-box applied probenazole 

was intermittently obtained at the levels of LOQ–30 × LOQ (0.06% as Crmax-obs). All 

analytes other than probenazole in both formulation products were rapidly dissipated and 

the dissipation ratios were 93%–100% at 21 DAT. 

In 2013, none of the analytes was detected in the percolating water of the lysimeters. 

On the other hand, for the soil water samples in 2013, all analytes in the flowable 

formulation were detected in both the FA and the FV plots at 15cm depth from 0.125 DAT. 

All detected analytes except for daimuron in FV indicated the concentration peaks at 1 DAT 

and then decreased. For the soil water sample at 30cm depth, bromobutide and fentrazamide 

were only detected in the FA plot. On the other hand, nursery-box applied fipronil and 

probenazole were only detected from the soil water at 15 cm depth until 3 DAT. 

 

3.7.3.3. 2014 

The dissipation ratio, Crmax-obs, and the day Cobs-max detected for granular herbicides with 

submerged application are summarized in Appendix 3.5. In 2014, the Cobs-max values of six 

analytes in two granule formulations at individual test plots were detected within 5 DAT. 

The Crmax-obs values for the analytes in two granule formulations were in the range of 4%–

63% for the lysimeters and 13%–114% for the paddy fields.  Comparing the lysimeters 

and paddy fields, Cobs-max in the paddy fields were 0.93–5.2 times greater those of the 
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lysimeters. The dissipation ratios of target herbicides became 38%–100% for the lysimeters 

and 96%–100% for the paddy fields at 21 DAT. Although dissipations for imazosulfuron, 

pretilachlor, and dimethametryn in the alluvial soil plots in the lysimeters were found faster, 

those for total bromobutide and daimuron were slower than those of the paddy fields. In the 

lysimeters, bromobutide-desbromo was detected only at the LA-S plot at LOQ levels at 5 

DAT. However, the bromobutide-desbromo concentrations at the FA and FV plots increased 

from 0.125 and 3 DAT and were below the LOQ levels at 14 and 10 DAT, respectively. 

For the nursery-box applied pesticides, the Cobs-max values of clothianidin were found 

at 0.125 to 1 DAT. The Crmax-obs values of clothianidin were 54% and 38% in the LA-B and 

LV-B plots, both at 10% in the LA-S and LV-S plots, and 14% and 11% in the FA and the 

FV plots, respectively. The dissipation ratios of clothianidin were 98%-100%. While the 

Cobs-max values of total orysastrobin in the lysimeters were obtained at 2 to 3 DAT, those in 

the paddy fields were obtained at 10 to 14 DAT. The Crmax-obs values of total orysastrobin 

were 21% and 23% in the LA-B and LV-B plots, 6% and 4% in the LA-S and LV-S plots, 

and 11% and 6% in the FA and FV plots, respectively. (5Z)-orysastrobin, a major metabolite 

of orysastrobin, was detected at 0.125 DAT in all test plots and the concentrations tended to 

be higher in the paddy fields, which were comparable with those in the LA-B and LV-B 

plots. At 21 DAT, dissipation ratios of total orysastrobin in the lysimeters and paddy fields 

were 5%-12% and 48%-52%, respectively. 

 

3.7.3.4. 2015 

The dissipation ratio, Crmax-obs, and the day Cobs-max detected for granular pesticides with 

submerged application are summarized in Appendix 3.5. The concentrations of dinotefuran 

and total orysastrobin in the granule formulation for insecticide-fungicide mixture reached 

Cobs-max values within 1 DAT. The Crmax-obs values of dinotefuran and total orysastrobin were 

39%–94% for the lysimeter and 56%–102% for the paddy fields. The dissipation ratios 

were 87%–100% at 21 DAT. (5Z)-orysastrobin was detected in all of the test plots from 

0.125 DAT and at maximum concentrations of 3%–17% of those of the parent compound at 

2 to 5 DAT. Meanwhile, the Cobs-max values of the granule formulation for herbicide were 

observed at 0.125 to 5 DAT. The dissipation ratios were 44%–100% at 21 DAT. The 

Crmax-obs values of five analytes were in range of 3%–97% for the lysimeter and 5%–112% 

for the paddy fields. Similar to MCPB-ethyl, clomeprop rapidly decreased to below the 
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LOQ level within a week at all test plots. At the same time, clomeprop metabolite B, as the 

major metabolite of clomeprop, was detected from 0.125 DAT and moderately fluctuated 

throughout the experimental periods. Although the maximum difference of Crmax-obs between 

the lysimeters and paddy fields in 2015 was about 2 times, the extent of these differences 

was relatively smaller than that in previous years. The dissipation patterns of daimuron in the 

lysimeters in 2015 were similar to those of the paddy fields rater than those of the lysimeters 

in previous years. Comparing the LA/LV-S and LA/LV-Z plots, the Crmax-obs values for 

LA/LV-Z plots seemed to be lower without many exceptions and the detection time of the 

Cobs-max values of several pesticides was delayed especially for total clomeprop and 

fentrazamide. Overall, the order of decrease of the concentrations in the test plots was 

LA/LV-S, FA/FV, and LA/LV-Z plots. 

The Cobs-max values of three analytes in flowable applied by foliar application were 

detected at 0.125 DAT for the lysimeters and at 0.25 DAT for the paddy fields, except for 

clothianidin in the FA plot, which was detected at 1 DAT. The Crmax-obs values of three 

analytes were in the range of 26%–127% for the lysimeter and 21%–73% for the paddy 

fields. Comparing the lysimeters and the paddy fields, the Cobs-max values in the paddy fields 

were 0.9-5.2 times the values obtained from the lysimeters. The dissipation ratios of the 

three analytes in the LA/LV-S, LA/LV-F plots and the paddy fields reached 99-100%. On 

the other hand dissipation ratios in the LA/LV-Z plots were 90%-100% at 21 DAT. 

 

3.7.4. Dissipation of granular pesticides under submerged application 

3.7.4.1. Results of kinetic modeling and grouping analysis 

As the analysis group of I-a, a total of 96 datasets were analyzed using the SFOR model. 

The grouping analyses between the lysimeters with the same soil type were conducted on the 

datasets of LA/LV-S1 vs. LA/LV-S2 in 2012 and LA/LV-B vs. LA/LV-S in 2014. The 

results showed that three and seven of nine pesticides (10 of 18 in total) showed no 

differences regarding parameters of Cdiss, kr and ke (entire grouping: two dataset were 

described as same model) in the alluvial soil and volcanic ash soil, respectively. For the 

datasets that failed in the entire grouping, significant differences (p < 0.05%) were mostly 

observed with respect to Cdiss. Among them, only two datasets showed a significant 

difference with respect to ke. 
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The updated SFOR models for the lysimeter datasets were subsequently compared to 

the datasets of the FA/FV plots with respect to the individual parameters; these results are 

summarized in Fig. 3.19 and Appendix 3.7. Among the 25 comparisons total, while 60% of 

the datasets between the lysimeters and the paddy fields for the alluvial soil plots succeeded 

the grouping of ke, those for volcanic ash soil plots were < 40% (see Appendix 3.8). For kr 

and Cdiss characterizing increased concentration and the maximum simulated concentration 

(Csim-max), the groupings of Cdiss mostly failed. The number of grouped kr was approximately 

30% of the total comparisons. There was no clear difference regarding soil types was 

observed in the groupings of Cdiss and kr. Finally, the total grouped parameters of Cdiss, kr, and 

ke between the lysimeters and the paddy fields for both soil plots were 10%, 34% and 48% of 

the total comparison (n=25), respectively (see Appendix 3.9). 

The final SFOR models of post-grouping analyses were subjected to evaluation of the 

model performance and the dissipation characteristics of target pesticides. The concentration 

curve predicted by the final model for each analyte at each test plots in 2012, 2014, and 2015 

are shown in Figs. 3.20, 3.21, and 3.22, respectively. Table 3.10 shows a statistical summary 

of the χ2 error value of the final SFOR model. The 60 of 96 datasets had χ2 error values below 

15%. Although the remaining 36 analyses showed a χ2 error value > 15%, the mean and 

median χ2 error values were both ≤ 15%. From these results, the SFOR model has the 

capability of simulating the dissipation of granule pesticides in paddy water under 

submerged application. The estimated DT50 varied annually; the estimated DT50 in 2012, 

2014 and 2015 ranged from 1.0–3.8 days, 1.1–51.9 days and 0.9–25.6 days, respectively. 

While, no apparent difference of DT50 was observed regarding the experimental facilities or 

soil types in 2013, those in 2014 and 2015 were highly fluctuated. 
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Fig. 3.19 Grouped data for pesticides between lysimeters and paddy fields on 
parameters based of the SFOR model; Cdiss is the dissolved concentration of pesticide, 
kr is the release rate from the granule, and ke is the decrease rate in the paddy water. 
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Fig. 3.20 Analytical and simulated concentrations of pesticide in paddy water for 
lysimeters and paddy fields in 2012: (○) and (□); analytical concentration of the 
parent and the metabolite (the closed symbol means “< LOQ”), respectively, (‒); 

simulated concentrations by the kinetic model. 
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Fig. 3.21 Analytical and simulated concentrations of pesticide in paddy water for 
lysimeters and paddy fields in 2014: (○) and (□); analytical concentration of the 

parent and the metabolite (the closed symbol means “< LOQ”), respectively; (‒); 
simulated concentrations by the kinetic model. 
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Fig. 3.22 Analytical and simulated concentrations of pesticide in paddy water for 
lysimeters and paddy fields in 2015: (○) and (□); analytical concentration of the 
parent and the metabolite (the closed symbol means “< LOQ”), respectivel, (‒); 

simulated concentrations by the kinetic model. 
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Table 3.10 Summary of calculated χ2 error 

Measure Value 

Mean 14.1% 

Median 12.8% 

Maximum 37.4% 

Minimum 3.2% 

Number below 15% 60 

Total number of analyzed data is 96. 

 

3.7.4.2. Dissipation characteristics 

From the visual assessments of the observed and simulated results shown in Figs. 3.20–3.22, 

the dissipations of granular pesticides could be followed by the first-order law for both the 

release and decreasing phases. Among them, the rates of the decreasing phase for several 

pesticides (molinate, imazosulfuron and daimuron in 2015 and total clomeprop) at both in 

the lysimeters and the paddy fields regardless of soil type became slower at around 5 to 10 

DAT (observed data placed above simulated lines). Ishii et al. (2004) explained that these 

were caused by the fast and slow dissipation processes occurred simultaneously and was 

attributed to desorption from the paddy soil. Meanwhile, the sudden concentration decreases 

were observed for total bromobutide and daimuron at the FA/FV plots in 2014. A similar 

result was reported by Morohashi et al. (2012) who concluded that the cause of this 

phenomenon was the drainage of paddy water. In the present study, however, no drainage 

event was observed in 2014. Therefore, other processes such as the facilitation of adsorption 

into the soil or degradation followed by a relatively slow release phase after application, as 

discussed in next section, might be considered. 

As reported in 3.7.3., the times of Cobs-max values found varied, even for pesticides in 

the same formulation product or the same pesticide in different formulation products. In the 

SFOR model, this is because the maximum concentration levels for the granular pesticides 

in paddy water are dependent on the parameter of kr, which lead to larger differences 

between Cdiss and Csim-max (or Cobs-max) as kr became smaller (Richter et al., 1996). In this data, 

the ratio of Csim-max was in a range of 36%–100% for Cdiss values and that of the Cobs-max was 

37%–138%. Although 59 of 96 datasets of the calculated ratios were close to Cdiss (≥ 90%), 

considerable differences (< 50%) were observed in seven datasets, of which Cobs-max was 
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detected after 1 DAT. Care must be taken when estimating the in-field partitioning 

ratio—Kd-field, a measure for assessing the state of equilibrium in the field by comparing the 

laboratory Kd (Morohashi et al., 2012; Sudo et al., 2018)—between paddy water and soil 

from the observed concentration of such datasets, which could lead to overestimating the 

Kd-field. 

 

3.7.4.3. Effect of hydrological variabilities on experimental performance 

From the grouping analysis of the SFOR model, although the current lysimeter experiment 

could simulate nearly half of the decrease phases of pesticide concentrations in the actual 

paddy fields, the simulated concentration level in the lysimeters underestimated those of 

the paddy fields. Nhung et al. (2009) reported that the maximum concentrations of simetryn 

and thiobencarb in an experimental paddy field were higher than those simulated by micro 

paddy lysimeters by factors of 2.1 and 2.9 at the maximum, respectively, although they 

excellently mimicked the daily water management. One possible cause was that the 

uniformities of the initial paddy water depth in actual paddy fields. As shown in Table 3.11, 

it is technically difficult to set the paddy water depth to exactly 5 cm because of the larger 

area. Furthermore, the Cobs-max values of imazosulfuron at the FA and FV plots in 2014 and 

dinotefuran and penoxsulam at the FA plots in 2015 exceeded the Cmax values. These 

pesticides were water soluble with relatively low soil adsorptivity so that they might be 

susceptible to fluctuations of the paddy water depth. Therefore, it was clear evident that the 

water depths in the fields were spatially less uniform and total volumes of paddy water 

where the formulation could be dissolved might be < 5 cm ponding depth. 

Another possible cause was meteorological covariates. For the temperature effect on 

the release phase, Inao and Kitamura (1999) reported that the dissolution rate of molinate in 

granular formulation became faster in higher water temperature condition. For the decrease 

phase, Ok et al. (2012) found that the DT50 values of butachlor and pyrazosulfuron-ethyl in 

paddy water in the summer crop season were faster than those in the spring crop season. For 

the initial partition, Hanayama et al. (2009) experimentally prove that the strong wind 

would facilitate the physical mixing of paddy water and thermal convection. In the 

experimental data summarized in Tables 3.7 and 3.9, the average water temperatures in 

paddy fields were 2.5–6.0°C higher than those in the lysimeters in 2012 and 2014, and the 

those in both the lysimeters and paddy fields were similar in 2015. Furthermore, both of the 
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paddy fields were affected by strong winds in 2012 and 2015 although the lysimeters were 

affected in 2015. From abovementioned annual differences, it can be deduced that the 

dissipation of the granular pesticide in paddy water became faster release and decrease with 

higher concentration levels as the water temperature became higher. The differences in 

detection patterns for daimuron and total bromobutide in 2014, and those for daimuron and 

fentrazamide in 2014 and 2015 could be explained by the two aforementioned factors. 

 

3.7.5. Effect of formulation type on herbicide dissipation 

3.7.5.1. Results of kinetic analysis 

For the group of I-b, the analytical concentrations of fentrazamide, total bromobutide, 

daimuron and bensulfuron-methyl in paddy waters at individual test plots in 2012 and 2013 

were fitted to the appropriate kinetic models among SFO, HS or SFOR model. The model 

appropriateness was assessed based on the χ2 error value and the visual evaluation of a plot 

of observed/fitted concentrations vs. time.  

The concentration curves simulated by the selected kinetic model for the granule and 

the flowable applications are superposed onto the analytical concentration shown in 

Figs.3.23 and 3.24, respectively. For the granule application in 2012, BSM was only fitted to 

the HS model because the increase of concentration via dissolution after application was not 

observed and the decrease of concentration was apparently became slow by the visual check. 

Other analytes were fitted to the SFOR model and their dissipation process were adequately 

described. For the flowable case in 2013, while all of the target herbicides in the lysimeters 

were successfully described by the HS model, total bromobutide and daimuron at the FA 

plot were only simulated by the SFO model. The number of the test plots that has the χ2 error 

value less than equal to 15% was 23 out of 40 analyses (see Appendix 3.10). Although rest 

of the analyses exceeding the χ2 error value above 15%, no apparent systematic error was 

observed in their residual plots and therefore, the selected kinetic models were considered to 

be appropriate. Fig.3.25 shows the mean plots with error bar of standard deviations for DT50 

values, DT90 values and Crmax-mod values of four herbicides at individual test plots in 2012 

and 2013. Note that Crmax-mod was defined as the percentage partitioned to paddy water 

expressed as the ratio of Cdiss in the SFOR model or C0 in the SFO and HS models, and Cmax 

values. The sets of DT50, DT90 and Crmax-mod between test plots were statistically compared by 

multiple comparison using R package “multcomp” (Hothorn et al., 2008). In 2012, there 
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was no significant difference (p <0.05) with respect to DT50, DT90 and Crmax-mod between the 

replicates of lysimeters in both soil plots. As comparing to the lysimeters and paddy fields, 

although the differences for DT50 values and DT90 values in the both soil plots were not 

significant, significant differences for Crmax-mod values were observed in both soil plots. 

Similarly, in 2013, the differences for DT50 values and DT90 values in the both soil plots 

were not statistically significant, while those for Crmax-mod values were significant. 

 

 

Fig. 3.23 Analytical and simulated concentrations in paddy water for target herbicides 
in individual test plots under granule application in 2012. △ and □: analytical 

concentration of parent and metabolite (the symbol filled black mean “< LOQ”),  ‒ 
and ---: simulated concentrations by kinetic models (the latter is replicate of the 

lysimeter labeled as “-2”). 
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Fig. 3.24 Analytical and simulated concentrations in paddy water for target herbicides 
in individual test plots under flowable application in 2013. △ and □: analytical 

concentration of parent and metabolite (the symbol filled black mean “< LOQ”),  ‒ : 
simulated concentrations by kinetic models. 
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Fig. 3.25 Mean plots of DT50, DT90 and Crmax-mod. Dot and bar represent the mean and 
standard deviation of four herbicides, respectively. 

 

3.7.5.2. Dissipation characteristics of granule and flowable formulation 

There was no contradiction between the present results and previous study (Morinaka et al., 

1993) on the changes of the concentrations in paddy waters under granule and flowable 

applications: that is, the maximum concentration of each active ingredient in flowable 

formulation was much higher than those in granule formulation. It has been widely known 

phenomena that the active ingredient in granule formulation indicates the increase of the 

concentration until several days after application via dissolution and then decreases the 

concentration. Meanwhile, rapid increase of the concentration of active ingredient in 
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flowable application right after application was found due to its highly water-dispersive 

characteristic since the main carrier of this formulation is water (Takeshita and Noritake, 

2001). The Crmax-obs and Crmax-mod values for flowable application in 2013 were 1.1–9.2 and 

1.0–5.6 times higher than those for granule application in 2012, respectively. The values for 

fentrazamide in both soil plots, total bromobutide and daimuron in volcanic soil plot, 

indicating relatively higher soil adsorptive characteristics, were remarkably higher. 

Moreover, DT50s of fentrazamide, total bromobutide and daimuron for flowable application 

obtained from the faster phase of the HS model tend to be shorter than those of granule 

application. These results support the hypothesis of Morinaka et al. (1993); the 

concentration of active ingredients in flowable became maximum right after application 

were rapidly decreased due to the adsorption onto the surface soil. Therefore, the initial mass 

partitioning and adsorption/desorption phenomena of active ingredient in formulation 

product into paddy water and soil could be explained not only by soil adsorption coefficient 

of active ingredient but also its formulation. 

  

3.7.6. Effect of experimental design on pesticide dissipation 

Same as the section 3.7.4.1, the grouping analyses between the lysimeters with the same soil 

type on the datasets of LA/LV-S vs. LA/LV-Z in 2015 were conducted to group I-c data sets 

and no pesticide was entirely grouped mainly because of a significant difference of ke. The 

final SFOR models for the LA/LV-Z plots are also shown in Fig. 3.22. 

As the whole, the DT50 values for the lysimeters were similar to or shorter than those 

in the paddy fields regardless of soil types in 2012, 2013 and 2014. These might be 

associated with the vertical movement of the pesticides due to higher daily percolation rates 

in the lysimeters. Meanwhile, in 2015, the decrease rates at the LA/LV-Z plots were slower 

than those of the FA/FV plots. To visualize this, the mean plots of DT50 at LA/LV-S, 

LA/LV-Z, and FA/FV plots in 2015 are shown in Fig. 3.26, which clearly shows that the 

DT50 became longer as a function of the daily percolation rate. This result indicates that the 

setting of the daily percolation rate in the lysimeter was the most important rate-limiting 

factor of dissipation. Sudo et al. (2012) also found that the herbicide loss via percolation was 

proportional to the daily percolation rate. Comparing to the soil types, the variations of DT50 

for volcanic ash soils became higher than those of alluvial soils as the daily percolation rate 

decreased. This was possibly caused by adsorption-desorption phenomena between paddy 
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water and soil usually masked by percolation. Considering the larger number of grouped ke 

in the alluvial soil plots (see Fig.3.19), the degree of reversibility caused by 

adsorption-desorption phenomena might affect the behavior of the dissipation curve. The 

hysteresis— the ratio of the Freundlich constants for adsorption and desorption (Alister et al., 

2011; Kawakami et al., 2007)—may become a measure to quantify the degree of 

reversibility regarding adsorption-desorption phenomena. Unfortunately, since there were 

few hysteresis data of analytes available in the literatures, it was difficult to clarify the 

relationship between hysteresis and dissipation in this study. 

The disadvantage of the lysimeter experiment is that the concentration in soil cannot 

be monitored simultaneously during the experimental period because continuous sampling 

of soil significantly disturbs the tests system. To overcome this, a laboratory batch 

experiment could help better understanding of the interaction of pesticide between soil and 

water instantly. The applications and feedback of the experiment regarding the 

environmental fate of pesticides between laboratory and field scales are important for 

improve the lack of knowledge and optimization of the experimental design. 

 

 

Fig. 3.26 Mean plot of times required for 50% dissipation (DT50 values) for all 
pesticides tested in 2015 

 

3.7.7. Behavior of nursery-box applied pesticides in lysimeters and paddy fields 

The predicted concentrations simulated by the final SFOR models for the 

nursey-box-applied pesticides (group II) are shown in Figs. 3.27 and 3.28. The estimated χ2 
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errors and DT50 values from the final model are summarized in Table 3.11. Note that the 

kinetic analyses of probenazole were not conducted, since no clear dissipation curve was 

observed in any of the test plots. The groupings of the parameters were confirmed for the kr 

of fipronil for all test plots, ke of clothianidin between the LV-S and FV plots, and ke of total 

orysastrobin between all test plots for the alluvial soils and the LV-S and FV plots. The 

number the χ2 error below 15% threshold value was 11 out of 18 analyses. Shorter DT50 

values for the nursery-box-applied fipronil and clothianidin observed than those under bare 

application. However, contrasting result was obtained for total orysastrobin at the volcanic 

ash soil plot. 

Figure 3.29 shows the relative maximum concentrations (Crmax-mod values) of the 

nursery-box-applied pesticides calculated as the ratios of the Cdiss values of the final SFOR 

model and the Cmax values. The Crmax-mod values for nursery-box-applied fipronil, 

clothianidin, and total orysastrobin were in the range of 4%–23%. Comparable results were 

reported by Thuyet et al. (2011a); (2012) who found 14.5% and 4.3% of nursery-box 

applied imidacloprid under the before-transplanting scenario in the micro paddy lysimeter 

and the paddy field, respectively. When comparing the different applications in 2014, the 

detection levels of the nursery-box-applied clothianidin and total orysastrobin excluding that 

in the FA plot were 10-30% of those of the LA/LV-B plots. As compared with the 

nursery-box application and submerged application at different application timings, these 

results were comparable with the cases of imidacloprid (approx. 30%) and probenazole 

(approx. 10%) reported by Ueji (2004) and were higher than the case of isoprothiolane 

(0.8%-2.3%) reported by Inao et al. (2018b). The Crmax-mod of total orysastrobin in the FA 

plot was uniquely high and was 77% of that of the LA-B plot. From the visual assessment in 

Fig. 3.28, the release speed of total orysastrobin from the transplanting hole was slower than 

that seen with clothianidin co-formulated with the same granular product. The dissolved 

mass of orysastrobin was partitioned to the paddy water because of the low percolation rate 

in the FA plot (0.06 cm/day) and low soil adsorption of orysastrobin (KOC  = 18−150) 

(FAMIC, 2009). From aforementioned results, the detection patterns of nursery-box-applied 

pesticides became complex by the factors of the formulation types, the field conditions and 

the physicochemical property of the active ingredient. 

Biphasic dissipation of nursery-box applied fipronil was observed in all of the test 

plots in 2013. While the observed concentrations of fipronil were initially well described by 
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rapid first-order dissipation curves obtained from the SFOR models, those after 5 DAT were 

gradually placed above the simulated curves of the final models. Thuyet et al. (2011b) 

reported that the photodegradation half-life of fipronil was 36.7 hours in the paddy water at 

ambient temperature. Therefore, photodegradation of fipronil might be main component of 

the initial fast dissipation phase. According to Gunasekara et al. (2007), fipronil is relatively 

mobile in soils but more than 70% of applied fipronil in soil was reported to be remained at 

the top 0-1 cm layer of flooded soil (Doran et al., 2009). Thus, the slower fipronil dissipation 

with increasing elapsed time might be attributed to the desorption from the surface soil. As 

reported above, no apparent dissipation curve of probenazole was observed in any of the 

plots. Similar result was reported by Yi and Lu (2006), who also reported that probenazole 

applied to flooded soil was mostly distributed in the topsoil and rice straw, and that in paddy 

water was slowly released from the soil but quickly dissipated within a day due to rapid 

degradation associated with hydrolysis and photodegradation. Similar to fipronil, the rapid 

dissipations of clothianidin were observed in 2014. Since the photodegradation half-lives of 

clothianidin (14.7-19.4 days) were lower than those of fipronil (Mulligan et al., 2016a), the 

rapid dissipation of clothianidin might be caused by biodegradation because it is highly 

degradable under flooded conditions and due to microbial activity (Mulligan et al., 2016b).  

The slower decrease phase of clothianidin was observed only in the volcanic ash soil plots. 

In general, the soil adsorptivities of neonicotinoid pesticides are reported to be relatively 

low (KOC < 1000, with few exceptions) (Zhang et al., 2018). However the soil adsorptivity of 

clothianidin was reported to be proportional to the organic carbon content in soil (Motoki et 

al., 2014). Therefore, it can be deduced that clothianidin was uniquely adsorbed by the 

volcanic ash soil and was subsequently released to paddy water via desorption. The 

dissipation speed of total orysastrobin in all test plots was relatively moderate when 

compared with that of other nursery-box-applied pesticides. Orysastrobin in the paddy field 

condition simulated in the laboratory experiments has known to be stable by hydrolysis 

(half-life > 1 year) but be rapidly converted to its photoisomer (5Z)-orysastrobin and 

degraded via the two-step photodegradation (half-life ≈ 2 days) (FAMIC, 2009). The 

changes in the analytical concentrations of orysastrobin and (5Z)-orysastrobin indicated 

similar trends, probably attributing that the driving factor of environmental fate of 

orysastrobin was photodegradation. 
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Fig. 3.27 Analytical and simulated concentrations of nursery-box-applied pesticides at 
individual test plots in paddy water in 2013: 

(○); analytical concentration (the closed symbol means “< LOQ”), (‒); simulated 
concentrations obtained by the kinetic model. 

 

 

 

Fig. 3.28 Analytical and simulated concentrations of nursery-box-applied pesticides at 
individual test plots in paddy water in 2014: 

(○); analytical concentration (the closed symbol means “< LOQ”),  (‒); simulated 
concentrations obtained by the kinetic model. 
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Table 3.11 Summary of kinetic analyses for nursery-box applied pesticides 

Pesticide LA-S Plot LA-B Plot FA Plot LV-S Plot LV-B Plot FV Plot 

Fipronil DT50 (d) 1.1 − 0.8 1.0 − 0.6 

χ2 err (%) 14.0 − 17.0 12.3 − 25.0 

Clothianidin DT50 (d) 1.5 2.9 1.8 1.3* 1.8 1.3* 

 χ2 err (%) 8.6 6.5 13.5 7.0 7.4 5.9 

Total DT50 (d) 6.4* 6.4* 6.4* 10.4* 4.4 10.4* 
Orysastrobin χ2 err (%) 12.3 6.6 24.1 17.7 11.4 16.9 

Probenazole was not subjected to the kinetic analysis because no apparent decrease of 
concentration was observed during the experiment. 
*Estimated DT50 was derived from grouped parameter of ke. 
 

 

Fig. 3.29 Relative maximum concentrations of nursery-box application of pesticides 
calculated from dissolved concentration of pesticide (Cdiss) of the SFOR model. 

 

3.7.8. Behavior of foliar-applied pesticides in lysimeters and paddy fields 

The predicted concentrations of foliar-applied clothianidin, azoxystrobin, and buprofezin 

(groupIII) simulated by the final models are presented in Fig. 3.30. The estimated χ2 errors 

and DT50s from the final model are summarized in Table 3.12. Note that all of the 

breakpoints (tb values) except for clothianidin at the LV-Z plot were fixed at 1.0 due to 

parameter convergence in the fitting process of the HS model. Among the 24 analyses, 10 

were fitted by the SFO model, and the rest were the HS model. In total, 20 out of 24 analyses 

of the χ2 errors were below 15%. While the DT50 values estimated by the SFO model ranged 

between 0.9 and 2.7 days, those estimated by the HS model were within 1.1 days. 
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Fig. 3.30 Analytical and simulated concentrations of foliar-applied pesticide  at 
individual test plots in paddy water in 2015: 

(○); analytical concentration at LA/LV-S, LA/LV-F and FA/FV plots (the closed 
symbol means “<LOQ”), (△); analytical concentration at LA/LV-Z plots, (‒); 

simulated concentrations obtained by the kinetic model at LA/LV-S, LA/LV-F and 
FA/FV plots, (---); simulated concentrations by the kinetic model at LA/LV-Z plots. 
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Table 3.12 Summary of kinetic analyses for pesticides under foliar application case 

Pesticide LA-S Plot LA-Z Plot LA-F Plot FA Plot LV-S Plot LV-Z Plot LV-F Plot FV Plot 

Clothianidin Model SFO SFO HS* SFO HS* HS HS* SFO 

 DT50 (day) 0.9 2.7 0.6 1.9 0.4 1.1 0.5 1.9 

χ2 err (%) 14.2 5.5 20.1 26.6 2.5 3.7 3.7 14.4 

Azoxystrobin Model HS* HS* HS* SFO HS HS* HS* SFO 

 DT50 (day) 0.6 1.5 0.7 1.6 0.5 1.0 0.5 2.5 

 χ2 err (%) 2.4 4.4 20.0 14.5 2.9 6.3 4.1 9.0 

Buprofezin Model HS* SFO HS* SFO HS* SFO HS* SFO 

 DT50 (day) 0.5 2.3 0.6 1.7 0.6 1.7 0.6 2.0 

 χ2 err (%) 2.5 10.8 15.7 13.7 4.9 5.2 9.2 16.2 

SFO: single first order model 
HS: hockey-stick model 
* Fitted with fixed breakpoint tb equal to 1.0 day
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Figure 3.31 shows the Crmax-mod values of foliar-applied clothianidin, azoxystrobin, 

and buprofezin. Compared with the submerged application of granular pesticides, the 

foliar-applied pesticide were mostly detected at 0.125 DAT and ranged from 50% to 150% 

in the paddy water even for those pesticides with low water solubility, such as buprofezin  

(0.387 mg/L) (FAMIC, 2018a) because of the flowable formulation characteristics 

(Takeshita and Noritake, 2001). The Crmax-mod values of clothianidin, azoxystrobin and 

buprofezin in LA/LV-F and FA/FV plots were equivalent to 54%–79%, 42%–63% and 

42%–60% of the LA/LV-S plots, respectively. If these values were regarded as the 

deposition ratios in the paddy water caused by the spray drift and crop interception, 56% and 

54% of the applied pesticides, on average, would be deposited in the paddy water in the 

lysimeters and in the paddy fields, respectively. According to Phong et al. (2009), the leaf 

coverages of rice plants for the ‘Nihonbare’ two months after transplanting ranged from 70% 

to 80% of the test plots. In our case, it was applied 1.5 months after transplanting so that 

coverage conditions at both lysimeter and paddy field could be comparable. In the surface 

water scenario in EU published by FOCUS (2001), the crop interception efficiencies with 

intermediate to full canopy coverage for cereal crops range from 0.5 to 0.7. Above results are 

comparable with these parameters. It is noteworthy that the average wind velocity at both 

lysimeter and paddy field on the application day was close to or exceeded the maximum 

acceptable average wind velocity (3 m/sec) for the drift test published by the Ministry of 

Environment (MOE, 2004). Therefore, the deposition ratios in both the lysimeter and paddy 

fields were regarded as values under the worst-case conditions. 

 

 

Fig. 3.31 Relative maximum concentrations of foliar-applied pesticides calculated 
from initial concentration (C0) of the SFO or HS model. 
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From Fig. 3.30, while the dissipation curves of foliar-applied clothianidin, 

azoxystrobin, and buprofezin in the lysimeters were more appropriately described by the HS 

model with the breakpoint to 1, those in the paddy fields were all simulated by the SFO 

model. In addition, it is remarkable that the DT50 values of three pesticides in the LA/LV-S 

and LA/LV-F plots were estimated to be below the breakpoint of 1. This may be caused by 

the high vertical movement facilitated by high percolation and the water-dispersive 

characteristics of flowable pesticides (Takeshita and Noritake, 2001). In the LA/LV-Z plots, 

although the dissipation curves of clothianidin and azoxystrobin were described using the 

HS model, those of buprofezin were approximated by the SFO model. Clothianidin showed 

relatively higher adsorptivity in the volcanic ash soil (KOC = 1260) and a higher soil 

adsorption of azoxystrobin (KOC = 486–1022) was reported in various soils (van Beinum et 

al., 2006; Villaverde et al., 2009) especially for the volcanic ash soil (KOC = 4500) (FAMIC, 

2015). Therefore, the biphasic dissipation curves of clothianidin and azoxystrobin in the 

LA/LV-Z plots were associated with the kinetic sorption onto soils that included the fast and 

slow phases (Kibe et al., 2000b). However, this assumption was not valid for buprofezin 

despite its high soil adsorptivity (KOC = 2230) (FAMIC, 2018a; Uchida et al., 1982). As can 

be seen in Fig. 3.31, the Crmax-mod values of buprofezin in the LA/LV-S and LA/LV-Z plots 

were nearly half of those of the other two pesticides. This suggests that a bulk of buprofezin 

was instantaneously partitioned into the soil after application rather than being subjected to 

kinetic adsorption. The decrease rates of the three pesticides described by the SFO model in 

the paddy fields were similar to those from the SFO model and those for the second phase of 

the HS model in the lysimeters. Excluding the hydrological factor, such as percolation, 

clothianidin, azoxystrobin and buprofezin in both lysimeters and paddy fields might be 

affected by photodegradation or microbial degradation (Boudina et al., 2007; FAMIC, 

2018a). 

 

3.7.9. Further consideration 

The four-year experiment offers insight not only into the dissipation characteristics of paddy 

pesticides but also into how the detection levels of paddy pesticides vary between the 

lysimeters and paddy fields, mostly depending on the application methods, such as 

submerged application, nursery-box application and foliar application. In the lysimeter 

experiment, simultaneous installation of the test plots such as replication, submerged 
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application to bare ground and for spray application to the water surface could help in 

understanding the fate and transport of paddy pesticides by excluding indirect variables such 

as environmental covariates, transplanting depth and crop interception effects in the paddy 

fields. Furthermore, the simple kinetic analysis incorporated in this study could help in 

understanding the dissipation patterns. In addition to traditional kinetic models like SFO 

and HS models, incorporating the SFOR model enables us to obtain the DT50 values without 

compromising the concentrations for the initial increase under the submerged application of 

granule pesticides. In the kinetic modeling approach, the fate and transport processes were 

simplified to a single or biphasic reaction so that the dissipation phenomena can be 

simplified by judging whether the data was on, above or below the simulated line. For this 

point, the appropriateness of the model selection and the evaluation procedure are crucial, 

rather than sticking a perfect fit. However, since DT50 values obtained by above kinetic 

models included several dissipation processes (e.g., degradation, volatilization, or leaching), 

as well as hydrological variabilities, quantitative analysis of the dissipation (e.g., the effect 

of drainage events in 2012) is difficult. 

Application of the mathematical model is the next step in analyzing the data. 

Mathematical models for paddy pesticides, as represented by PADDY model (Inao et al., 

2001; Inao and Kitamura, 1999) and PCPF-1 model (Watanabe and Takagi, 2000b; 

Watanabe and Takagi, 2000c; Watanabe et al., 2006b), are useful for the quantitative 

analysis of dissipation data because they are explicitly describe the fate and transport 

process of pesticide. In recent years, the modeling of fate and transport of pesticides under 

nursery-box application and foliar application in paddy fields has also been proposed 

(Boulange et al., 2017a; Boulange et al., 2016; La et al., 2014). Iterative runs of the 

experiment and mathematical modeling can efficiently optimize the experimental design 

(Holvoet et al., 2007). However, comparing to the kinetic modeling as adopted in this 

chapter, mathematical modeling requires various parameters reflecting site-specific 

information, which were previously determined based on expert judgment. To overcome the 

over-parameterization issue of the mathematical modeling, development of an efficient 

calibration protocol in the mathematical modeling deriving from experimental data is 

necessary. 
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3.8. Summary and conclusion 

Four-year comprehensive experiments were conducted to compare the dissipation patterns 

of a total of 20 pesticides, including 4 metabolites, in various formulations applied by 

submerged application, nursery-box application and foliar application in lysimeters and 

paddy fields with two soil types. Analytical concentrations of the analytes in paddy water 

were analyzed using the simple kinetic models. The experimental results were reclassified 

as submerged applications for comparing decline (I-a), formulation type (I-b) and 

experimental design (I-c), nursery-box application (II) and foliar application (III) and then, 

following main conclusions were obtained: 

1.  Based on the grouping analysis of dissipation data of active ingredients in granule 

formulations, 56% of the entire processes and about 90% of the decrease phases in the 

dissipation of paddy pesticides were grouped between the lysimeter replicates with soil 

types tested in 2012 and 2014. Secondly, the dissipation of paddy pesticides in actual 

paddy fields could be simulated by the flooded lysimeters representing the dissipation 

curves of the release (34%) and decrease rates (48%), with an exception for dissolved 

concentrations (10%). 

2.  From the comparison of the dissipation of four active ingredient in granule and 

flowable formulations under submerged application, while the concentrations of the 

active ingredients in granule showed various increase and decrease phases depending on 

their physicochemical properties, those of flowable were immediately reached their 

maximum values and then rapidly decreased regardless of their physicochemical 

properties. Significantly higher concentrations were initially observed in the paddy 

fields as compared to the lysimeters although the rates of dissipations were comparable. 

These discrepancies might be associated with the hydrological variabilities in the paddy 

fields. 

3.  By installing zero percolation test plots in the lysimeter experiment, it was found that 

the setting of the daily percolation rate was the key parameter for reducing the 

variability of DT50 especially for the volcanic ash soil plots. These results suggest that 

the degree of reversibility regarding the adsorption-desorption phenomena was another 

key parameter for simulating the decrease phase of dissipation in the actual paddy field 

by lysimeter. 
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4.  The maximum simulated concentration of nursery-box-applied pesticides ranged 

between 4% and 23% of theoretical maximum concentration, which were equivalent of 

10%–77% of the maximum simulated concentrations for the submerged application 

cases in the lysimeters. Although detection levels of nursery-box-applied pesticides 

became complex, depending on the formulation types, the transplanting conditions and 

the physicochemical property of the active ingredient, the concentration of these 

pesticides were rapidly declined without few exceptions. 

5.  The detection pattern of foliar-applied pesticides showed similar tendency as flowable 

application in 2013. The deposition ratios in the paddy water as the results of the spray 

drift and crop interception were estimated as 42%–79% in both lysimeters and paddy 

fields from the comparison with the test plots spraying to paddy water surface in the 

lysimeter experiment. The decrease phases of these pesticides varied depending on the 

soil adsorptivities and the hydrological condition such as daily percolation. 

In addition to abovementioned findings, experimental data comparing pesticide dissipations 

in lysimeters and paddy fields would be beneficial as fundamental datasets for more precise 

analysis of the environmental fate of pesticides by advanced application like mathematical 

modeling. 
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Chapter 4   

A Novel Automatic Calibration Procedure of Mathematical 

Model to Predict Pesticide Dissipation in Paddy Test System 

 

4.1. Introduction 

Pesticide is the major concern for the source of surface water contamination especially in the 

areas where rice is cultivated under flooded condition such as Monsoon Asian countries. In 

Japan, the predicted environmental concentration (PEC) calculated as the potential exposure 

of pesticide released into public water area and its effect on the aquatic organisms have been 

assessed at the registration process based on the standard scenario and tiered approach 

(MAFF, 2007). In recent years several researches have been pointed out the regional 

variability of PEC due to unique pesticide usage, water management and hydrological 

conditions by the regional based screening (Nagai et al., 2008; Yachi et al., 2017). Indeed, 

various monitoring studies in Japan reported that the detection patterns of rice pesticides in 

river water were affected by the site specific conditions (Iwafune et al., 2010; Phong et al., 

2012; Phong et al., 2010; Sudo et al., 2002; Tanabe et al., 2001). However, current PEC 

calculation model including extended applications (Nagai et al., 2008; Yachi et al., 2017) 

does not consider the variation of the pesticide concentration in paddy field associated with 

physicochemical properties of pesticide and field conditions such as soil properties and 

water management, which is substituted as the experimental data in flooded lysimeter or 

actual paddy field conducted under the limited conditions. When the regional variation is 

taken into account in the exposure assessment, the standard scenario is no more applicable 

and the higher-tier rice pesticide models should be used because these models can 

incorporate the effects of actual environmental conditions and water management practices, 

especially their temporal variations, on pesticide fate and behavior in a rice paddy (Luo et al., 

2011). 

The higher-tier pesticide models, such as PRZM (Carsel et al., 1985), PELMO (Klein 

et al., 1997), MACRO (Larsbo and Jarvis, 2003) and PEARL (Leistra et al., 2001), have 

been continuously developed for predicting fate and transport of pesticide in upland 

condition in last three decade. Since these models were not designed for simulating the 

paddy field condition, several higher-tier mathematical models specific to rice pesticides 
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have been proposed. In the U.S., the RICEWQ model (Williams et al., 2011) and the PFAM 

model (Young, 2012) have been developed as the potential tools for the use of higher tier 

regulatory setting. The RICEWQ model has been widely applied to assess the rice pesticide 

exposures in surface water (Karpouzas and Capri, 2006; Miao et al., 2003b; Ritter and 

Williams, 2008b) and in groundwater (Karpouzas et al., 2005a; Karpouzas et al., 2005b; 

Miao et al., 2003a). Whereas, in Japan, the PCPF-1 model (Boulange et al., 2016; Watanabe 

and Takagi, 2000c; Watanabe et al., 2006b) and the PADDY model (Inao and Kitamura, 

1999; Inao et al., 2009) have been acknowledged as the tools for simulating pesticide 

behavior in paddy field under various application conditions. The PCPF-1 model was 

extended to simulate the deeper soil layer by coupling with SWMS-2D (Tournebize et al., 

2006) and block scale simulation (Phong et al., 2011). Above-mentioned four models have 

been extensively reviewed in light of structures, applications and practical recommendations 

for the use of regulatory setting (Inao et al., 2008; Karpouzas et al., 2006; Luo, 2011; Luo et 

al., 2011). Nevertheless, applications of rice pesticide modeling in Japan have been mostly 

limited for research purposes and have not yet been officially facilitated in the regulatory 

situation. 

One reason of this problem may be the fact that user-defined or empirical parameters 

are intensively used in rice pesticide modeling, indicating that models should be carefully 

calibrated and validated with site-specific conditions (Luo et al., 2011). While the research 

purpose modeling aims to proof the validity of input data to the site-specific conditions 

though the model calibration and validation, the regulatory modeling has to calibrate the 

model under limited data and the model outcomes should be generic and conservative (Luo 

et al., 2012). Furthermore, although the model matches the data by manual calibration 

(trial-and-error fashion or expert judgement), adequacy of selected input parameters 

depends on user subjectivity, which suffers from the lack of exactness, reproducibility and 

objectivity (Janssen and Heuberger, 1995). Moreover, Abbaspour et al. (2004); (2007) 

reported that manual calibration is no more applicable for the hydrological models to 

calibrate more than two parameters that form a complex response surface of the objective 

function with numerous local minima. Therefore, in order to overcome above shortcomings 

in the regulatory modeling, the automatic calibration incorporating inverse analysis 

techniques is the practical solution instead of the manual calibration. 
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The concept of the automatic calibration using inverse modeling is straightforward; 

minimizing the single or multiple objective function(s) between simulated and observed 

value—i.e., leachate and pesticide concentration in lysimeter (Mertens et al., 2009)—based 

on the mathematical search algorithm so that the calibrated result ensure the reproducibility 

and objectivity. In addition, the quality of the result can be significantly refined by coupling 

with sensitivity and uncertainty analysis (Daggupati P et al., 2015). Therefore, automatic 

calibration is expected not only to save time and labor but also provide quality-assured 

calibrated model once a systematic automatic calibration protocol is developed. In recent 

year, the universal inverse modeling packages such as PEST (Doherty, 2016) that can link 

with any type of model where input and output files are written in ASCII format have been 

released free of charge and the user can easily implement the inverse analysis based on the 

local optimization algorithm without coding algorithm. Indeed, there has been worldwide 

interest in application of inverse modelling to various higher tier mathematical models such 

as the PESTRAS model (Dubus et al., 2004), the MACRO model (Nolan et al., 2009), the 

PEARL model (Kahl et al., 2015; Mertens et al., 2009), the RICEWQ model (La et al., 2014) 

and the TOXSWA model (Adriaanse et al., 2013). However, the potential problem of the 

local optimization algorithm is that the minimized objective function may not be the global 

minimum but the local minimum, which is significantly affected by the starting value 

(Dubus et al., 2004). In recent year, application of global optimization algorithm 

incorporating Markov Chain Monte Carlo (MCMC) techniques has been paid attention to 

avoid this problem (Boulange et al., 2017b; Kahl et al., 2015). However, the number of 

application has been still limited because few universal application tools have been available. 

Recently an open source statistical software R has been providing the comprehensive 

inverse modeling package “FME” that includes sensitivity analysis, both local and global 

optimization and uncertainty analysis (Soetaert and Petzoldt, 2010a). Applicability of 

R-based inverse modeling has been proven in several models with different scales (Wu and 

Liu, 2012; Wu et al., 2014), however, not yet been tested in higher tier rice pesticide models. 

Since the PCPF-1 model has been explicitly verified regarding the mathematical structure 

(Luo, 2011), parameter uncertainty (Boulange et al., 2012) and applicability of MCMC 

technique (Boulange et al., 2017b), this model can be appropriate as the first choice for 

subjecting R-based inverse modeling approach. 
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This chapter aims to present a new R-based inverse modeling procedure for 

simulating pesticide behavior in flooded applications. The applicability of developed 

procedure was verified by the experimental data regarding the dissipation of rice pesticides 

in flooded lysimeters and actual paddy fields presented in previous chapter. As the first 

application, the major rice herbicides with granular formulation were selected as the target 

pesticides. Then, the calibrated model was verified if the outputs reasonably simulated the 

dissipations reflecting the experimental conditions such as water balance. Similarly current 

experimental design of in flooded lysimeter was diagnosed as the simulator of actual paddy 

field. Finally, the case study was conducted to discuss improvement of the current 

experimental design for more realistic simulation of actual condition. 

 

4.2. Experimental data 

The results in 2012 of four-year comprehensive experiments in the lysimeter and the paddy 

fields were used as the dataset for the verification of inverse analysis. In brief, the IET 

outdoor lysimeters with surface area of 1 m2 and the JAPR experimental paddy fields 

experimental paddy fields were used. Each test facility has two types of paddy soils 

(alluvial and volcanic ash soils). For both experiment, the test guideline designed for 

pesticide registration purpose in Japan was referred as the basic experimental design 

(Agricultural Production Bureau Ministry of Agriculture Forestry and Fisheries, 2000). 

Water samples were collected just before; 3 h after; and 1, 2, 3, 5, 7, 8, 10, 14, and 21 days 

after the treatment (DAT). 

In 2012, an emulsion product (SING®; Mitsui Chemical Agro Inc.) and two 1 kg 

granule products (MAMET SM®; Kyoyu Agri Co., Ltd. and INNOVA® DX; Bayer 

CropScience K.K.) were appropriately applied to each test plot according to the registered 

labels. Totally, 11 analytes (10 herbicides and a metabolite) in water samples were analyzed. 

Among them, simetryn and molinate in MAMET SM® were selected as the target 

compounds since they have been widely used for both monitoring and modeling studies in 

Japan (Inao et al., 2001; Inao and Kitamura, 1999; Watanabe et al., 2007; Watanabe et al., 

1984) but have not been applied to the PCPF-1 modeling. Finally, the datasets of simetryn 

and molinate in one of the replicates for the lysimeters (LA and LV plots labeled as LA-S1 

and LV-S1 plots in previous chapter) and the paddy fields with alluvial and volcanic ash 

soils (FA and FV plots) were subjected to the inverse analysis. 
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4.3. Model description 

The basic assumption and algorithm of the model describing the fate and transport of 

pesticide in paddy field were adopted from the PCPF-1 model (Watanabe and Takagi, 

2000c; Watanabe et al., 2006b). The PCPF-1 model is a lumped parameter model that 

simulates the fate and transport of pesticides in the paddy water and 1cm thick paddy surface 

soil layer (PSL). Until now, this model has been validated with several herbicides with 

submerged  application with granular formulation (Takagi et al., 2012; Watanabe and 

Takagi, 2000b; Watanabe et al., 2006b), an insecticide with nursery-box applications 

(Boulange et al., 2016) and metabolite prediction (Boulange et al., 2017a). However, the 

required parameters of the PCPF-1 model have been mostly derived from the laboratory 

experiments designed for the model validations. Therefore, user may face serious workloads 

to calibrate the model appropriately in case for the simulation of new compound. For this 

reason, the processes of the PCPF-1 model were firstly simplified by integrating the 

photochemical and biochemical degradations into a ‘bulk’ degradation process. Similarly, 

all biphasic processes regarding desorption and biochemical degradation were unified to the 

single phase processes. The original PCPF-1 model considers only desorption process from 

PSL to the paddy water independent from the concentration of paddy water. This assumption 

implies that pesticide mass distribution can be governed only by initial direct partitioning via 

dissolution process and no mutual interaction dependent on the concentrations between the 

paddy water and the PSL after completion of dissolution (Luo, 2011). Therefore, the 

governing equations of desorption process was first alternated into the linear driving force 

model representing slow sorption process (Pignatello, 1999), which works either adsorption 

or desorption between the paddy water and the PSL controlled by the concentration gradient 

between them. Secondly, kinetic diffusion between the paddy water and the pore water of 

PSL was also considered as the mass transfer process. The initial direct partitioning via 

dissolution process was regarded as the rapid sorption process. In such condition, the 

measured Kd value only represent the apparent equilibrium state (Warren et al., 2003). 

Therefore, Kd value controlling the initial direct partitioning was assumed to be different 

from that used in slow sorption process and an apparent Kd was defined by multiplying the 

fraction f in the dissolution term. Finally, the model structure of the modified PCPF-1 model 

(hereafter denote as PCPF-1R model) is shown in Fig. 4.1 and the set of ordinary differential 

equations in the whole system is given as: 
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where A is the area of paddy field [m2], hPW is the depth of water in paddy field [cm], CPW is 

the pesticide concentration in PW [mg/L], t is the time [day], kDISS is the first-order 

dissolution rate constant [1/day], CSLB is the water solubility of the pesticide [mg/L], dPSL is 

the depth of PSL [cm], b-PSL is the bulk density of PSL [g/cm3], kDIFF is the diffusion rate 

constant [m/day], kSORP is the first-order sorption rate constant [1/day], CS-PSL is the pesticide 

concentration in PSL [mg/kg], Kd is the linear distribution coefficient [L/kg], IRR is the rate 

of irrigation [cm/day], CW-IRR is the pesticide concentration in irrigating water (=0) [mg/L], 

DRAIN is the surface drainage or overflow rate [cm/day], PERC is the rate of vertical 

percolation [cm/day], kL-A is the mass transfer coefficient from the PW to atmosphere 

[m/day], kDEG-PW is the first-order bulk degradation rate constant in PW [1/day], Sat-PSL is the 

saturated water content of PSL [cm3/cm3], and kDEG-PSL is the first-order bulk degradation 

rate constant in PSL [1/day]. 

The equations (4.1) and (4.2) were numerically solved by fourth-order Runge Kutta 

method with an hourly time step. The code of the PCPF-1R model was written in R language 

and the calculation was executed in R (version 3.3.2). 
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Fig. 4.1 Model structure of PCPF-1R model: Solid and dashed arrows represent the 
chemical and water processes, respectively. 

 

 

Fig. 4.2 Flowchart of inverse analysis procedure: The square brackets contain the 
name of functions in R packages of “FME,” “sensitivity,” and “hydroGoF.” 
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4.4. Inverse analysis procedure 

The inverse modelling of PCPF-1R was implemented by wrapping it with R package tool 

“FME”. FME, abbreviation of “Flexible Modelling Environment”, is a comprehensive 

modelling assist tool designed for inverse modelling, sensitivity and Monte Carlo analysis 

(Soetaert and Petzoldt, 2010a). It enable user to perform local/global sensitivity analysis, to 

estimate parameter identifiability based on the local sensitivity analysis, to calibrate the 

model by minimizing the user defined objective function with various optimization 

algorithms and run MCMC for finding the global minimum as well as quantifying the 

parameter uncertainty. The developed procedures for inverse analysis of PCPF-1R model is 

presented in Fig. 4.2. The detail of each procedure is explained in following sections. 

 

4.4.1. Parameterization 

The physicochemical properties of simetryn and molinate such as molecular weight (Mw), 

water solubility (CSLB), and vapour pressure (Vp) were taken from the registration data 

published by FAMIC (2018b). The Freundlich adsorption coefficients (KF) of simetryn and 

molinate derived from the batch experiments on the basis of the OECD 106 (OECD, 2000) 

were collected from the registration data and the literatures on conditions that the all 

information regarding individual tested soils were explicitly provided. Since the PCPF-1R 

assumes linear adsorption and the Freundlich exponents (1/n) of simetryn and molinate were 

varied (0.65–0.85 and 0.77–1.46, respectively), following conversion was conducted for the 

simulation use (Alister et al., 2011): 

 
 11

maxFd


 nCKK  (4.3) 

where Cmax is the theoretical maximum concentration when all applied herbicide is 

completely dissolved in the paddy water with 5 cm ponding depth. The degradabilities of 

target herbicides in the paddy water were derived from the sum of the half-lives of the 

hydrolytic and photolytic fate studies, and those of PSL were obtained from the studies of fate 

in flooded aerobic soil or the soil residue studies under paddy field condition, available in the 

registration data and the literatures. Then kDEG-PW and kDEG-PSL were calculated based on the 

first-order kinetics. The values of kSORP were estimated as an overall water-sediment mass 

transfer coefficient (Luo, 2011): 

   400,86dPSLbPSLsatxferSORP   Kkk   (4.4) 
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where kxfer is the empirical coefficient of overall water-sediment mass transfer and set as 

1×10-8 (m/s) based on the previous studies. The values of kDIFF were estimated from the 

empirically derived formula of Chapra (1997): 

 32
DIFF 365

35.69  MWk   (4.5) 

where ϕ is the porosity of PSL and MW is the molecular weight of pesticide. The values of 

kL-A were estimated from the method developed by Mackay and Leinonen (Mackay and 

Leinonen, 1975) and its practical application for the PCPF-1 modeling was based on 

Watanabe and Takagi (2000c). Since there is no estimation method of kDISS, literature data 

(Inao and Kitamura, 1999) were used in this study. It is noteworthy that user can specify 

kDISS as any empirical value having orders of 10-3 to 10-1 because the calibration of kDISS 

specific to the experimental data would be necessary to capture the accurate concentration 

peak of pesticide (Boulange et al., 2012; Luo, 2011). Table 4.1 summarizes the initial sets of 

parameters and their ranges.



 

 

 
118 

Table 4.1 Summary of physicochemical input parameters for PCPF-1R model 

Parameter Unit 

Simetryn  Molinate 

Initial value 
(Prior range) 

LA plot LV plot FA Plot FV Plot 
 Initial value 

(Prior range) 
LA plot LV plot FA Plot FV Plot 

Fixed parameter             

A m2 – 1 1 800 800  – 1 1 800 800 

b-PSL g/cm3 – 1.04 0.68 1.00 0.73  – 1.04 0.68 1.00 0.73 

Sat-PSL cm3/cm3 – 0.62 0.74 0.63 0.72  – 0.62 0.74 0.63 0.72 

AppR g m-2 – 0.045 0.045 0.045 0.045  – 0.24  0.24  0.24  0.24  

CSLB mg L-1 – 482 a 482 a 482 a 482 a  – 961 a 961 a 961 a 961 a 

Varying parameter             
kDISS  day-1 0.010b 

(0.001 – 0.050) 
0.004j 0.003j 0.004j 0.005j  0.031b 

(0.001–0.050) 
0.014j 0.009j 0.010j 0.014j 

kL-A m day-1 1.9×10-6c 

(9.5×10-7–3.8×10-6)
– – – –  0.012c 

(0.006–0.024) 
0.011j 0.011j 0.017j 0.018j 

kDEG-PW day-1 0.001b 

(0.001–0.010) 
– – – –  0.001b 

(0.001–0.010) 
– – – – 

f 
– 

1.00 
(0.01–1.00) 

0.87j 0.87j 0.29j 0.04j  1.00 
(0.01–1.00) 

1.00j 0.95j 0.68j 0.11j 

kDEG-PSL day-1 0.013d 

(0.011–0.039) 
– – – –  0.010e 

(0.004–0.017) 
– – – – 

Kd L kg-1 32f 
(13–433) 

14j 29j 27j 160j  2.5g 
(1.9–11) 

9.3j 10.2j 2.8j 2.3j 

kDIFF m day-1 – 
(0.001–0.1) 

0.003h 0.004h 0.003h 0.004h  – 
(0.001–0.1) 

0.003h 0.004h 0.003h 0.004h 

kSORP day-1 – 
(0.001–0.1) 

0.029i

0.012j
0.019i

0.013j
0.028i

0.023j
0.021i 
0.014j 

 – 
(0.001–0.1) 

0.003i 0.002i 0.003i 0.002i 

a FAMIC (2018b), b Inao and Kitamura (1999), c Calculated from equation of Mackay and Leinonen (1975), d Derived from median value reported by Izawa et al. (1981) and Ishikawa 
(1980), e Derived from median value reported by FAMIC (2018b), f Median value reported by Kibe et al. (2000a), Inao and Kitamura (1999) and Kawakami et al. (2007), g Median value 
reported by FAMIC (2018b), Inao and Kitamura (1999) and Alister et al. (2011), h Calculated from equation (4.5)., i Calculated from equation (4.4)., j Calibrated value given as the 
highest probability within MCMC chain (bestpar).
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Among the all inputs required in PCPF-1R model listed in Table 4.1, physicochemical 

properties of soils, water balance data, and water solubility and application rate of target 

herbicides were redefined as the fixed parameters because these data were specific to the 

individual experimental plots or assumed environmentally-invariant. Other parameters, 

categorized as the varying parameter, were subjected to the inverse analysis of PCPF-1R 

model in the subsequent sections. 

 

4.4.2. Cold simulation and definition of model cost 

Before subjecting the model calibration via inverse analysis, the cold simulation that runs 

the simulation without calibration (Neitsch et al., 2002) was performed by using the initial 

set of parameters shown in Table 4.1. This attempt enables user to check if the model 

behavior is within the expected range or follows expected trend by visual assessment, and 

decide the necessity of model calibration based on the statistical indices. 

When the model calibration was needed, the model cost was defined between model 

output and observed data using the “modCost” function in FME. The model cost stands for 

the mismatch of model to data and is expressed as a weighted sum of squared residuals 

(Soetaert and Herman, 2008): 
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yxf
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where i is a data point, f(x, θ)i is the model output where x and θ are the known variables such 

as water balance data, and fixed and varying parameters fixed and varying parameters as 

listed in Table 4.1, respectively, yOBSi is the observed data, and errori is the weighting factor 

corresponding to the data accuracy. In this study, f(x, θ)i and yOBSi corresponded to the CPW 

and analytical concentration in paddy water at ith day after treatment (DAT), respectively, 

and no weighting was considered (errori = 1). 

 
4.4.3. Global sensitivity 

The uncertainties of the varied parameters to the observed data were accounted by the Monte 

Carlo run by using the “sensRange” and “modCRL” functions in the FME. The upper and 

lower boundaries of the varying parameters were set as follows: maximum–minimum values 

of corrected or calculated data; M/2–2×M, where M is the initial value of the varying 

parameter (Dubus and Janssen, 2003). The sample size generated from the uniform 
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distribution of the parameter range by the Latin Hypercube sampling method (McKay et al., 

1979) was set to 250, which was proven to be sufficient for the PCPF-1 model (Boulange et 

al., 2012). The visual assessment was again conducted to check if the sensitivity range of 

CPW generated from the sensRange function included or traced the observed data with both 

linear and logarithmic scales (see Fig. 4.3).  

 

  

Fig. 4.3 Example of visual assessment on global sensitivity (Left: linear scale, right: 
logarithmic scale). The black solid line and red open circle stand the median line of 

simulated range and observed data, respectively. 
 

Secondly, the effect of the parameter variations to the model cost was assessed by the 

modCRL function and quantified by the standardized rank regression coefficients (SRRC). 

The SRRC is the robust sensitivity measure estimated from the rank transformed regression 

model, which is effective for reducing non-linearly/non-monotonicity in highly non-linear 

system (Hamby, 1994; Iman and Conover, 1979). In the uncertainty analysis of the PCPF 

modeling, the SRRC has been effectively quantified the magnitude of parameter sensitivity 

(Boulange et al., 2012; Boulange et al., 2016; Kondo et al., 2012). To estimate the SRRCs, 

the multiple linear regression model was derived from the output of the modCRL function 

and expressed as: 

 
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,N, ,p     j,     iεXbbY
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where Xi is the rank-transformed independent variable, Yj is the rank-transformed dependent 

variable, b0 is the intercept, bi is the regression coefficient, εi is the residual error, p is the 
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number of the independent variable and N is the number of data points. From above model, 

the SRRCs were calculated by following equation: 

 
i

i

Y

X
ii σ

σ
bSRRC    (4.8) 

where σXi and σYj is the standard deviation of Xi and Yj. In the inverse analysis procedure, the 

SRRCs of the varying parameters were calculated using “src” function in the R package 

“sensitivity” (Gilles Pujol et al., 2017). 

 

4.4.4. Local sensitivity 

Performing the efficient model calibration requires the fine-tuning of the least parameter set 

under given observed data. However, in this task, user must confronts the dilemma of 

determining how many parameters subjected to tuning at maximum and their identifiability 

especially when the mathematical model used is large and complex and thus be 

overparameterized. For this reason, the parameter identifiability of PCPF-1R model to the 

given observed data was diagnosed based on the local sensitivity functions. The sensFun 

function in FME calculates normalized, dimensionless sensitivities of model output to 

parameters as a sensitivity matrix S and (i, j)th element Si,j is given as: 
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where θj is an varied parameter, ωθj 
and ωyj 

are scalings with respect to θj and yOBSi, 

respectively and usually given as the value themselves. The individual values of Si,j were 

summarized as the absolute mean (L1) and squared mean (L2) norms, minimum, maximum 

and mean values. Parameter identifiability of the model can be examined by the degree of 

near linear dependence among the Si,j (i.e., collinearity). Brun et al. (2001) developed the 

collinearity index γ to assess the degree of near linear dependence given as: 
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1
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where λ is the eigenvalues of ŜTŜ and the normalized matrix Ŝ contains the (i, j)th element Ŝi,j 

as follows: 
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The collin function in FME returns the values of γ in all possible combinations of varying 

parameters in PCPF-1R model. The set of varying parameters to be calibrated was 

determined based on previous studies (Brun et al., 2001; Soetaert and Petzoldt, 2010a), 

reporting that the value of γ should not exceed 20 and the parameter set γ is in the range of 

10−15 is poorly identifiable. 

 

4.4.5. Model fitting 

To improve the parameter identifiability and estimate the inputs of the uncertainty analysis, 

the model fitting was conducted as the next step. Although the Gauss-Marquardt-Levenberg 

method is widely accepted as a robust mathematical approach, this method often gets 

trapped in local minima depending on the starting values. In this inverse analysis, the 

pseudorandom search algorithm (PseudoOptim) was chosen, which is a not gradient-based 

(i.e., calculating Hessian matrix) but random-based minimization routine, and thus 

applicable to non-differentiable function and not dependent on the initial guess (Price, 

1977). This algorithm initially estimates the worst model cost from the population of 

parameter vector randomly generated from the upper and lower bound. At each calibration 

step three vectors of parameter set is randomly generated and their mean vector is estimated 

as a centroid. Another vector of parameter set is randomly generated as a mirror and new 

candidate of parameter vector is generated at the position of 2×(centroid)–(mirror) in the 

population. Updating the model cost using new parameter vector proceeds independently 

until a requested number of runs have been performed or a model cost has been minimized 

below a certain convergence criterion. The implementation of this algorithm in the R 

environment is available elsewhere (Soetaert and Herman, 2008). 

In the inverse analysis of PCPF-1R, the set of varying parameters assessed as 

identifiable and their adjusted range were logarithmically transformed, and then the 

PseudoOptim was executed by using the modFit function in FME with 1% change of model 

cost as a convergence criterion and 1000 iterations as the maximum number of iterations. 

 

4.4.6. Uncertainty analysis 

At the final step of the inverse analysis, the parameter uncertainties associated with the 

experimental data were investigated using the MCMC. MCMC is a general method based on 

drawing values of parameter from approximate distributions and then correcting those draws 



 

123 

to better approximate the target posterior distribution (Gelman et al., 2013). The 

modMCMC function in the FME provides four algorithm choices, the Metropolis Hastings 

(MH) algorithm, the Adaptive Metropolis (AM) algorithm, the Delayed Rejection (DR) 

algorithm and Adaptive Metropolis with Delayed Rejection (DRAM) algorithm (Haario et 

al., 2006), for better convergence and controlling an acceptance ratio. In brief, while the AM 

algorithm improves the acceptance/rejection efficiency of the MH algorithm by tuning the 

covariance of the jumping (proposal) distribution based on the history of the chain at certain 

frequency, the DR algorithm delays the rejection of the parameter candidate until user 

specified stage instead of advancing time and retaining the same position so that the 

efficiency can be improved. Finally, the DRAM algorithm operates the AM and DR 

algorithms simultaneously. 

In the inverse analysis, the AM algorithm was only used for the uncertainty analysis. 

In modMCMC function, following definition was applied to the observed data and model: 

    2
OBS ,0~   ,,  Nxfy   (4.12) 

where is ε the additive independent Gaussian error having unknown variance σ2. Based on 

this assumption, the likelihood function is given as: 
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where SS(θ) is the sum of squared function that corresponds to the numerator of equation 

(4.6). Then the posterior for the parameters is estimated as: 
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where SSpri(θ) is the sum of squared function with respect to the prior distribution for θ. We 

imposed non-informative prior for θ and thus SSpri(θ) = 0. Since σ2 is treated as the nuisance 

parameter in the AM procedure, updating σ2 at each step is done by the Gibbs sampling by 

imposing the Gamma distribution for 1/σ2 as the conjugate prior: 
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Then the sampling of 1/σ2 becomes also gamma distribution: 
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where n0 = wvar0 × N in which wvar0 is the weight for the initial model variance and S0 is 

the initial model variance. In our application, wvar0 was set equal to 1 that means the equal 

weight given to the prior and the updating value and S0 was chosen to be the mean of the 

unweighted squared residuals obtained from model fitting. Similarly the appropriately 

scaled covariance obtained from model fitting was used for the proposal covariance matrix 

of jump distribution, which corresponded to a multidimensional normal distribution 

generating the new parameter candidate. Total number of trial was set to 15000 and initial 

5000 trial was discarded as burn-in. The covariance was updated every 50 trial during 

burn-in period. 

 

4.5. Model performance measures 

In order to assess the calibrated model performance satisfying the objectiveness and 

relativeness, statistical performance measure was used as well as conventional graphical 

assessment. Unfortunately, because none of above measures comprehensively covered 

model performance, the coefficient of determination (R2), the Nash-Sutcliffe efficiency 

(NSE), the percent bias (PBIAS) and normalized root mean squared error (RMSE) referred to 

as RSR (RMSE-observations standard deviation) among the performance measures 

summarized by Moriasi et al. (2015) were adopted and these measures were complementally 

used to express the model performance. NSE is a normalized statistic that determines the 

relative magnitude of the residual variance as noise compared to the measured data variance 

as information (Nash and Sutcliffe, 1970). NSE is given by: 
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where Yi
obs is the ith observed data for the constituent being evaluated, Yi

sim is the ith 

simulated data for the constituent being evaluated, Yave is the mean value of observed data 

for the constituent being evaluated, and N is the number of observed data. NSE ranges 

between -∞ to 1 being a perfect fit. PBIAS evaluates the average tendency of the simulated 

data to be overestimated or underestimated to their observed counterparts (Gupta et al., 

1999) and is calculated as: 
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While the ideal value of PBIAS is zero, positive and negative PBIASs mean the model 

underestimation and overestimation, respectively. Because of normalization, RSR is more 

convenient measure than RMSE for comparing the datasets with different scales. RSR is 

given by the following equation: 
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The optimal value of RSR varies zero, which indicates perfect fitting of model simulation, to 

larger positive value. Despite wide applications of R2 and NSE, these measures are 

over-sensitive to the high extreme values. Therefore, R2 corrected by the slope and intercept 

of the corresponding regression line (br2) and NSE calculated as the relative form (rNSE) 

were additionally adopted (Krause et al., 2005). The equations for calculating br2 and rNSE 

are given as: 

 br2 = |b|× R2 if |b| ≤ 1; br2 =R2 /|b| if b >1,  (4.20) 
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Since none of single statistical index fairly evaluates the performance of environmental 

model (Bennett et al., 2013), multiple statistical indices were simultaneously estimated for 

the quantitative evaluation. All performance measures were calculated by R package tool 

“hydroGOF” (Zambrano-Bigiarini, 2014). 

To diagnose the validity of the current experimental design of the lysimeters as the 

tool for simulating the pesticide dissipation in the actual paddy fields, additional case study 

was conducted using the calibrated models. As the measure of comparison, the time 

weighted average concentration (TWAC) in paddy water was utilized. Unlike the temporal 

variation of the concentrations, the TWAC is an integrated concentration measure that 

covers both concentration level and the rate of dissipation over the specified time period. 
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Therefore, this measure is useful for the indicator of parameter sensitivity of the model 

(Boulange et al., 2012) as well as the exposure assessment (FOCUS, 2006b). The TWAC is 

calculated as: 
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where subscript i is the unit which one sample is taken. The TWACs of simetryn and 

molinate at each test plot were iteratively calculated using the 100 parameter set sampled 

from the posterior distributions over the periods of 48, 72 and 96 hours. In addition, the 

TWACs of simetryn and molinate in the lysimeters adjusting the daily percolation rates to 

those of daily average in the paddy fields having same soil types were calculated. 

 

4.6. Results and discussion 

The results of the cold- and the calibrated simulations, the 5% and 95% quantiles (q5–q95) 

predicted ranges estimated from prior- and posterior parameter uncertainty analyses for 

simetryn and molinate are shown in Fig.4.4. The panels for the FA- and the FV plot also 

include the surface runoff events occurred at 9 and 11 DAT. The model performances of the 

cold and the calibrated simulation at each test plot are summarized in Table 4.2. 
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Fig. 4.4 Observed data, cold and calibrated simulations, and their 5%–95% quantile ranges of concentrations in paddy water for (a) 
simetryn and (b) molinate at each test plot. 
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Table 4.2 Model performances at cold and calibrated simulations 

 
LA plot LV plot FA Plot FV Plot 

Cold Calibrated Cold Calibrated Cold Calibrated Cold Calibrated 

Simetryn 

R2 0.80 0.99 0.81 1.00  0.70 0.99 0.81 1.00 
br2 0.76 0.96 0.51 1.00  0.66 0.98 0.66 1.00 

NSE 0.73 0.99 -0.55 1.00  0.66 0.99 0.50 1.00 

rNSE -0.04 0.98 0.31 0.93  0.22 0.59 -1.92 0.94 

PBIAS -5.70% -3.50% -56.3% 0.10% 0.40%  -1.00% -50.1% 0.00% 
RSR 0.50 0.10 1.18 0.05 0.55 0.11 0.67 0.03 

Molinate 

R2 0.71 1.00 0.76 0.91  0.94 1.00 0.84 1.00 
br2 0.66 0.98 0.65 0.90  0.89 0.99 0.72 0.99 

NSE 0.66 1.00 0.42 0.88  0.94 1.00 0.83 1.00 
rNSE 0.83 0.95 0.72 0.80  0.90 0.84 0.70 0.78 
PBIAS 2.60% -1.30% -9.70% 5.40%  3.70%  1.60% 8.50% 2.30% 
RSR 0.55 0.06 0.72 0.33  0.23 0.06 0.39 0.03 

R2: coefficient of determination. 
br2: coefficient of determination multiplied by slope (b) of corresponding regression line as following conditions; 
   br2 = |b|× R2 if |b| ≤ 1; br2 =R2 /|b| if b >1. 
NSE: Nash-Sutcliffe efficiency. 
rNSE: relative Nash-Sutcliffe efficiency. 
PBIAS: percent bias. 
RSR: root mean squared error (RMSE) – observation standard deviation ratio. 
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4.6.1. Results of inverse analysis 

In the cold simulations for simetryn, as compared to the LA- and the FA plots, serious 

overestimations were found at the LV- and the FV plots according to large and negative 

PBIASs. Consequently, the discrepancies between R2 and br2 were remarkable and NSE or 

rNSE became negative. On the other hand, the cold simulations for molinate showed that all 

statistical indices were acceptable levels. However, all of datasets were subjected to the 

subsequent analyses although several datasets were enough accurate to use for the analysis 

of experimental data. 

The global sensitivity analysis was conducted for the parameters associated with the 

model cost of simetryn and molinate at each test plot. The estimated SRRCs of the varying 

parameters at individual test plots are summarized in Table 4.3. The SRRCs among the 

varying parameters, relatively higher sensitivities were observed in kDISS, Kd, kSORP, and f for 

simetryn and in kDISS, Kd, f, and kL-A for molinate. Although the magnitudes and orders of 

SRRCs for both compounds were inconsistent between the test plots, the target parameters 

to be optimized for simetryn and molinate were determined as kDISS, Kd, kSORP, f and kDISS, Kd, 

f, kL-A, respectively. The collinearity indices γ for simetryn and molinate with initial 

parameter sets were within the ranges of 14–241 and 2.9–13, respectively. The poor 

identifiability found in the initial parameter sets for simetryn was drastically improved 

through the PseudoOptim routine to the range of 2.4–5.1, and that for molinate was 2.9–3.6. 

In the uncertainty analysis, the MCMC chains with respect to the convergence status, 

acceptance ratio and validity of the posterior distribution were first assessed. At all 

simulation cases, the decrease of the autocorrelation with increase of the number of lag and 

no apparent drift of sample paths were visually confirmed (see Fig.4.5) and Geweke’s 

Z-scores were |Z| < 1.96. The posterior distributions of all chains became specific parameter 

range. The acceptance ratios of all chains satisfied the requirement (21.3–28.8%). From 

abovementioned results, it was confirmed that all of the chain was appropriately converged. 
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Table 4.3 Standardized rank regression coefficient (SRRC) of model parameters for 
simetryn and molinate. 

LA plot LV plot FA Plot FV Plot 

Simetryn 

kDISS 0.50 0.36 0.33 -0.04 

Kd -0.24 -0.17 0.31 0.20 

kSORP 0.20 0.28 0.54 0.36 

f -0.51 -0.50 -0.17 -0.07 

kL-A 0.02 0.09 -0.01 0.00 

kDIFF -0.01 0.03 -0.03 0.01 

kDEG-PW 0.01 0.02 0.00 0.02 

kDEG-PSL 0.03 0.09 0.01 0.00 

Molinate 

kDISS 0.83 0.89 -0.19 0.20 

Kd -0.12 -0.13 0.08 0.13 

kSORP 0.01 0.00 0.01 0.08 

f -0.11 -0.16 0.10 -0.10 

kL-A -0.03 -0.11 0.59 0.47 

kDIFF -0.02 -0.01 -0.04 0.02 

kDEG-PW 0.02 -0.01 0.04 0.02 

kDEG-PSL -0.03 -0.02 0.09 -0.04 
 

 

  

Fig. 4.5 Example of visual assessment on convergence of MCMC chain (Left: 
autocorrelation plot, right: sample path plot) 
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From the visual inspection, the q5–q95 predicted ranges estimated from the posterior 

distributions of the chains and the calibrated simulations using the parameter sets that give 

the highest probability within the chain (bestpar) overlaid in Fig. 4.4 adequately represented 

the dissipation patterns of the observed data at each test plot. Similarly, the parameter 

uncertainties associated with the posterior distributions were sufficiently reduced as 

compared to those of the prior distributions. The model performances of the calibrated 

simulation at each test plot using the bestpar parameter set were drastically improved as 

compared to the cold simulation (see Table 4.2). The close estimations of R2and br2suggest 

the gradient of regression line is close to 1 and those of NSE and rNSE indicate the simulated 

values are unbiased though the concentration range. Therefore, the performances of the 

calibrated simulations were close to ideal case (i.e. 1:1 prediction). The simulated peak 

concentrations of both herbicides were predicted between the sampling points of 3 hour to 1 

day after applications and their levels at the paddy fields were about 1.5 times higher than 

those of the lysimeters. 

Figure 4.6 shows the density and the box plots of the posterior distributions at each 

test plot and the best par parameter set at each test plot is summarized in Table 4.1. The 

posterior distributions showing clear peak top with low variance mean a strong influence on 

the prediction of pesticide concentration, whereas those having unclear peak due to high 

variance mean less influential parameter. As a whole, the posterior distributions of kDISS for 

both herbicides became symmetric and narrow band width, suggesting high priority on the 

model calibration. The posterior distributions of Kd for simetryn except for the FV plot were 

closely converged to the range of 16–34 as the q25–q75 basis (size of the box) and that of the 

FV plot was 149–180. The bestpar of Kd in the FV plot was 5.5–11 times higher than other 

plots and such difference has also observed in the batch experiment using Japanese paddy 

soils (Kibe et al., 2000a). This difference resulted in the unique convergence of f at the FV 

plot. However, it was clearly observed that while the pseudo equilibrium partition via 

dissolution process expressed by f was less influential at the lysimeters, that effect was 

uniquely observed at the paddy fields. The estimated values of apparent Kd (fꞏKd) in the FA- 

and the FV plots were 7.8 and 6.3, respectively and these values were increased to 3.5 and 25 

times higher Kd values due to the slow sorption process. Pignatello and Xing (1996) reported 

that extents of these increases were ranged between 1.3 and 100-fold. Although the variance 

of the posterior distribution of kSORP at the FA plot was high, there was no distinctive 
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difference of the bestpar value of kSORP between the test plots. Note that the bestpar values of 

kSORP were 1.4–2.4 times lower than those of initial estimated values. There was a clear 

difference between the lysimeters and the paddy fields regarding the posterior distributions 

of Kd and f for molinate. The tendency of lower Kd and f in the paddy fields lead the high 

concentration peak in paddy water. Furthermore, the remarkable volatilization effect (kL-A) 

was observed in the paddy fields and the bestpar value at each test plot was close to that of 

initially estimated value. The possible reason of the posterior distributions of kL-A in the 

paddy fields having higher means and narrower band widths was that the paddy water 

motion due to faster wind speed facilitated the volatilization in the paddy fields (Kogan et al., 

2012). 

 

 

 

Fig. 4.6 Density and box plots of the calibrated parameters for (a) simetryn and (b) 
molinate at each test plot: kvol in (b) corresponds kL-A. 
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4.6.2. Mass balance analysis 

Based on the calibrated simulations, the masses of simetryn and molinate presenting at 

paddy water and PSL, disappearing via degradation, percolation and surface runoff in the 

individual test plots were calculated. Figure 4.7 displays theirs results as stacked barplots. It 

is noteworthy that the volatilization is included in the degradation. The estimated 

completion times of dissolution for simetryn and molinate at individual test plot were ranged 

from 4 to 9 hour after application. In general, more than half of the masses of simetryn and 

molinate were partitioned to the PSL within few days and mostly disappeared via 

percolation (66–77% of applied mass) regardless of the soil type. On the other hand, the 

mass balances in the paddy fields during the test period were clearly different between 

simetryn and molinate. While simetryn exhibiting higher adsorptivity to PSL was 

moderately increase the mass in the PSL for a week and half of that was remained in the PSL 

until the end of experiment, molinate was rapidly dissipated via percolation and degradation 

due to low adsorptivity to the PSL. The runoff amounts of simetryn and molinate due to two 

unexpected drainage events occurred at the FA- and the FV plots were quantified as 10.7% 

and 2.8% of applied mass for simetryn and 1.1% and 0.9% of applied mass for molinate, 

respectively. 

A clear difference regarding mass distribution in PSL was observed between the 

lysimeters and paddy fields. While the mass of simetryn in the lysimeters reached the 

maximum levels within few days and rapidly decreased, those in the paddy fields took a 

week to be the maximum and moderately decreased. The former was due to the setting of 

faster percolation rate and the latter was affected by the slow sorption process. Although 

adsorption/desorption hysteresis of simetryn has been reported as relatively higher 

(Kawakami et al., 2007), effect of desorption from PSL apparently decelerate the rate of 

dissipation in the FA plot obtained the highest kSORP value and thus lead to higher amount of 

runoff due to drainage events. In addition to aforementioned discussions, since simetryn is 

low volatile and stable to hydrolysis and photolysis, the main factors affecting simetryn 

dissipation in paddy water were daily percolation and the adsorption/desorption process. 

As compared to simetryn, effect of degradation was higher for case of molinate. The 

main reason of this difference was high volatilization rate of molinate and similar results 

have been reported in the previous studies (Inao et al., 2001; Inao and Kitamura, 1999; 

Soderquist et al., 1977). Because of low adsorption coefficient of molinate, the amounts of 
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mass distribution in PSL were directly corresponded to the effect of percolation rate in the 

lysimeters and the paddy fields. The mass transfer processes such as diffusion and 

adsorption/desorption between paddy water and PSL seemed to be minor on the dissipation 

of molinate from the results of sensitivity analysis (see Table 4.3). Therefore, dissipation of 

molinate was affected by daily percolation rather than mass transfer processes. 

 

 

 

Fig. 4.7 Mass balances calculated from calibrated simulations for (a) simetryn and (b) 
molinate at each test plot 
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Fig. 4.7 Mass balances calculated from calibrated simulations for (a) simetryn and (b) 
molinate at each test plot (continued) 

 

4.6.3. Evaluation of experimental design 

Figure 4.8 shows the calculated results of TWACs for all cases as specified in the section 

4.5. As the whole, the TWACs at 48 hour were became the highest level and the values were 

moderately decreased as the longer periods. The parameter uncertainty on estimating the 

TWAC in the LV plot was the highest among the test plots (see error bar in Fig 4.8). In the 

comparison of the experimental performance, the TWACs in the paddy fields were 1.4–2.6 

times higher than those in the lysimeters. However, the adjustment of daily percolation rate 

in the lysimeter effectively increased the TWACs to the level of those in the paddy fields 

except for simetryn at the volcanic ash soil plot exhibiting the highest adsorptivity on the 

PSL.  
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Fig. 4.8 Time-weighted average concentrations (TWACs) for (a) simetryn and (b) 
molinate at paddy fields, lysimeters, and modified lysimeters adjusting daily 

percolation rate to paddy fields 
 

The results of the TWAC calculation clearly showed that the current experimental 

design for the lysimeters underestimated the herbicides dissipations in the actual paddy 

fields. From the case study using the calibrated models, adjustment of the daily percolation 

rate to the level of actual paddy field would overcome these underestimations. This result 

suggests the setting of daily percolation rate in the lysimeter closer to the actual field 

condition is the key component to mimic the dissipation of the actual field in the lysimeter 

study. The spatial and temporal variabilities of daily percolation rate have been confirmed in 

the experimental paddy plots due to puddling condition and existence of the preferential 

flow pathway (Sudo et al., 2012; Watanabe et al., 2007). It is noteworthy that such inter-year 

variation of daily percolation rate was also observed in the FA plot during the four-year 

experiment (see Table 3.6 in Chapter 3). From above literatures as well as this experimental 

result, the variation range of the daily percolation rates are about 0.5–3.0 cm/day so that the 

original setting of the daily percolation rate for the lysimeters is reasonable to represent the 

actual condition. Therefore, when the experimental result obtained from the lysimeter 
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experiment cannot account for the actual conditions, the complementary simulation would 

be helpful by modifying the experimental design like this study or fully heterogenizing the 

variable factors using Monte Carlo techniques (Kondo et al., 2012). 

 

4.6.4. Further consideration 

The estimated DT50 for both simetryn and molinate were comparable to those in the previous 

studies (Kogan et al., 2012; Phong et al., 2008b; Watanabe et al., 2007). However, although 

the DT50 has been widely used as the indicator of pesticide dissipation in flooded experiment 

design, this indicator is not suitable to assess the actual persistence between the test systems 

since it lumps together with phase transfer (e.g., kinetic sorption and diffusion) and 

degradation process (Honti and Fenner, 2015). By the inverse analysis of the PCPF-1R 

model incorporating physicochemical properties of the herbicides and test plot data such as 

soil properties and water balance, the DT50 was able to be split into degradation and other 

transport processes accurately as reported in previous sections. In the future application, 

the batch processing of this inverse analysis and its reporting operated by the R 

environment might be more efficient and data-reproducible not only for the diagnosis of 

the experimental performance but also for the improvement of the experimental design. 

However, the potential limitation of proposed inverse modeling is that the difficulty to 

calibrate the parameters that are insensitive to the model cost such as kDIFF and kDEG-PSL since 

the pesticide concentration in soil is out of scope in the experimental design like this study. 

The validity of the calibrated parameters in this approach is totally dependent on the 

appropriateness of the selection of non-calibrated parameters as well as the daily water 

balance. To conduct the experiment in smaller test system such as batch study using glass 

container at the laboratory scale and extract the non-calibrated parameters by inverse 

modeling of the data are the alternative approach to improve above drawback in the outdoor 

experiment. Honti and Fenner (2015) obtained the degradation measures in water and soil 

for 23 pesticides from the experimental data conducted based on the OECD 308 guideline by 

incorporating the MCMC techniques. Finally, bridging the laboratory scale data to field 

scale data using appropriate modeling tool and its inverse analysis routine will ensure more 

realistic exposure assessment even when available data is limited. 
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4.7. Summary and conclusion 

In this chapter, a comprehensive inverse analysis procedure of pesticide dissipation in 

flooded condition was developed using the PCPF-1R model and R packages (FME, 

sensitivity and hydroGoF). The developed procedure was tested to analyze the experimental 

data on the dissipation of rice herbicides, simetryn and molinate applied in the flooded 

lysimeters and the actual paddy fields containing two soil types each. During the model 

calibration, the calibrated parameters were selected based on the standardized 

rank-transformed regression coefficients (SRRCs) of the model parameters to the model 

cost function. The initial values of the calibrated parameters were estimated by pseudo 

random search algorithm (PseudoOptim) in order to reduce the parameter identifiability 

index. The uncertainty analysis incorporating Marcov Chain Monte Carlo (MCMC) 

technique was implemented to estimate parameter uncertainty to the experimental data. The 

goodness of fitting of the calibrated simulation was rigorously evaluated by both visual and 

multiple statistical indices assessments. 

The validity of the calibrated simulation at each test plot was proved by confirming all 

statistical indices ranged from acceptable to ideal values. The posterior distributions of the 

calibrated parameters for two herbicides were specifically characterized by the parameter 

uncertainty associated with the test plots. The dissipation pathways of two herbicides were 

visualized by mass balance basis estimated from the calibrated simulation and effects of 

unexpected surface runoff during test period were quantified. Finally, the case study 

calculating the time weighted average concentration (TWAC) was conducted and found that 

the adjustment of daily percolation rate in the lysimeters was the important factor for the 

lysimeter test simulating the actual condition more accurately. In addition to the above 

mentioned findings, the developed inverse analysis code is expected to be utilized as the 

fitting routine for deriving the evaluation measures such as degradation half-lives (DegT50) 

of pesticide in water and soil in future study. 
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Chapter 5   

Experiment and Modeling of Container Test for Flooded 

Soil to Derive Environmental Fate Parameters 

 

5.1. Introduction 

Understanding the fate and transport processes of pesticide in applied field is important as 

the fundamental knowledge to prevent the pesticide exposure in surface water or 

groundwater resources. In practice, such information has been characterized as the predicted 

(estimated) environmental concentration (PEC or EEC) derived from the mathematical 

models in the pesticide registration process of United States, Europe and Japan (FOCUS, 

2001; FOCUS, 2009; U.S. EPA, 1992; Watanabe et al., 2008). When the above exposure 

estimates are calculated from the mathematical models (Adriaanse, 1996; Burns et al., 2000), 

the degradation half-lives in water (DegT50,W) and soil (DegT50,S) are required as the input 

parameters and usually extracted from results of laboratory fate studies or outdoor 

dissipation studies. Unlike the dissipation half-lives in water (DT50,W) and soil (DT50,S) 

estimated by the simple kinetic models, these indicators should be determined by the 

mechanistic models with inverse analysis because none of above experiments uniquely 

measure the degradation processes especially for water-sediment test system (Honti and 

Fenner, 2015). In recent years, several researchers have demonstrated to derive DegT50,W 

and DegT50,S values from the laboratory water-sediment studies like OECD 308 (OECD, 

2002b) using mechanistic models with inverse analysis techniques (Honti and Fenner, 2015; 

Ter Horst and Koelmans, 2016). Similarly, Adriaanse et al. (2013) applied the TOXSWA 

model—a process-oriented deterministic model used for the registration at EU level 

(Adriaanse, 1996; FOCUS, 2001; FOCUS, 2006a)—to the outdoor stagnant water-sediment 

system to inversely estimate DegT50,W. However, above approaches are not suitable for the 

study on paddy soil condition, which is mandatory for the registration of paddy pesticide in 

Japan where paddy rice cultivation has been popularly practiced. 

The experimental design of the laboratory fate study under paddy soil condition, 

available in OECD 307 (OECD, 2002a), is different from that for the water-sediment study 

mainly in terms of thicker soil depth (5 cm) with flexible water depth (1−5 cm) and mixing 

of whole test system after pesticide application. On the other hand, in Japan, the outdoor 
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dissipation study of paddy field for the regulatory setting has been conducted only for the 

paddy water phase mainly using a flooded lysimeter. Although DegT50,W and DegT50,S are 

currently not required in the estimation of aquatic PEC, these measures as well as the 

interfacial parameters between paddy water and soil derived from above studies would be 

helpful to increase the number of pesticide assessed in larger scale modeling (Iwasaki et al., 

2012; Tu et al., 2018). The previously developed inverse analysis procedure of the outdoor 

dissipation studies under paddy test system found that the potential over-calibration of the 

parameters for the paddy water was dependent on the reliability of the non-calibrated 

parameters related to the paddy soil. The one of main conclusion in previous chapter to 

overcome this shortcoming was that the parameterization by the laboratory study and its 

inverse modeling using field soils was the practical solution. However, implementation of 

the laboratory experiment of paddy soil based on OECD 307 is too costly for preliminary 

application. 

The objective of this chapter was to explore the way to bridge across the laboratory 

and field data using appropriate model and inverse analysis for robust parameterization of 

fate and transport processes of pesticides in paddy test system. First, the experimental design 

of the container test of paddy soil—a simplified laboratory experiment of OECD 307 that 

had been applied as the soil dissipation study in the previous version of Japanese test 

guideline (Agricultural Production Bureau Ministry of Agriculture Forestry and Fisheries, 

2000)—was modified and tested four rice herbicides. The results were subjected to the 

inverse analysis of the mathematical model that has a structural compatibility to the tested 

experimental design to derive in-laboratory parameter sets associated with degradation (e.g., 

hydrolysis and biodegradation), partitioning and phase transfer. Second, the 

laboratory-derived parameter sets were used for predicting the outdoor dissipation data of 

four rice herbicides with granule and flowable formulations conducted in the flooded 

lysimeters and paddy fields using the updated PCPF-1R model. In this process, another 

inverse analysis was attempted to calibrate in-field parameters such as initial partitioning 

regarding formulation types and photolysis. 
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5.2. Experiment 

5.2.1. Laboratory experiment 

In the laboratory phase, four paddy herbicides, daimuron, fentrazamide, bromobutide and 

bensulfuron-methyl listed in Table 1 as well as two pesticides (fipronil and probenazole) out 

of scope in this study were tested. All analytical standards (chemical purity: 98.9%–100%) 

were purchased from FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan) and 

Hayashi Pure Chemical Industries, Ltd. (Osaka, Japan). An aliquot of each purity-corrected 

analytical standard was dissolved in acetonitrile to derive standard stock solution (20000 

mg/L). Equal volumes of these standard stock solutions were mixed and made up with 

acetonitrile to give 2000 mg/L application solution. 

 

Table 5.1 Physicochemical properties of target compounds a 

Pesticides 
(Abbreviation) 

KF 

(KFoc)
 b 

Water 
solubility 
(mg/L) 

logP
OW

 
Stability (half-life, day) 

Hydrolysis Photolysis c 

Daimuron 12.9–32.1 
(732–1213) 

0.79 2.70 216 (pH4) 
Stable (pH7, 9) 

3.3 

Fentrazamide 12.2–40.8 
(500–3344) 

2.5 3.60 319 (pH4) 
501 (pH7) 
69 (pH9) 

46-75 

Bromobutide 1.6–4.7 
(163–306) 

3.54 3.46 Stable (pH4, 7, 9) 35 

Bensulfron-methyl 17.6–95.8 
(1100–4900) 

2.1(pH5) 
67 (pH7) 

3100 (pH9) 

2.18 (pH5)
0.789 (pH7)

-0.991 
(pH9) 

11 (pH4) 
>159 (pH7) 

95-294 (pH9) 

3.2 

a All data were provided by FAMIC (FAMIC, 2018b). 
b Freundlich adsorption coefficient and organic-carbon-normalized Freundlich adsorption coefficient. 
c Test results of non-sterilized or filter- sterilized natural water taken from river or paddy field. 
 

Two types of paddy soils, alluvial and volcanic ash soils, were taken from 

experimental facilities of the IET (labeled as LA and LV soils) and experimental paddy 

fields of the JAPR (labeled as FA and FV soils), where four-year comparative experiment 

was conducted as reported chapter 3. The soils were air-dried, passed through 2 mm sieve 

and measured soil moisture. 

The test soils equivalent to 20.0 g of dry weight were transferred to the glass 

containers (diameter: 5cm, height: 10cm). Sixty milliliter (excluding soil moisture) of 
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ultrapure water prepared by a PURELAB Flex System (Veolia Water Solutions & 

Technologies, Saint-Maurice, France) was added to each container to adjust soil/solution 

ratio to 1/3. The containers were covered with aluminum foil and pre-incubated in the 

incubator (LTI1200, EYELA, Japan) with constant temperature (25°C) and dark conditions. 

After two week preincubation, aliquots (60 μL, equivalent to 120 μg for each pesticide) of 

the application solution was added to the containers by microsyringe and stirred the 

containers homogeneously using grass rods. All treated containers were stored under the 

same condition as described above until analyses at 0.125 (3 hours), 1, 3, 7,14, 21 and 28 

days after the treatment (DAT). Note that duplicate samples were prepared for each analysis. 

At the analysis, the containers were again stirred using grass rods for the phase 

separation. The slurry of each container was transferred to a metal centrifuge tube with 

Teflon coated inner wall and centrifuged at 3100×g for 20 min (7930 or 7780II, KUBOTA, 

Japan). After separation, the supernatant was subjected to the pesticide analysis as the 

water phase sample and measurement of pH value. Eighty milliliter of acetonitrile was 

added to the remaining soil sample; the tube was horizontally shaken for 20 min and 

centrifuged at 3100×g for 10 min. After decantation, above extraction process was repeated 

again. Finally, the collected extract was made up to 280 mL with acetonitrile as the soil 

phase sample. 

As the pretreatment of clean up procedure, while 5 mL of the water phase sample was 

acidified with 0.125 mL of formic acid, 7 mL (0.5 g of dry soil) of the soil phase sample was 

concentrated using a rotary evaporator and then 5 mL of 2.5% formic acid aq. was added. 

These pretreated sample solutions were purified with a styrene-divinylbenzene cartridge 

(500 mg/6 mL, InertSep PLS-2; GL Sciences, Tokyo, Japan). The cleaned samples were 

analyzed by a liquid chromatograph with mass spectrometry (LC-MS) system equipped with 

an electrospray ionization (ESI) interface (1100 series, Agilent Technologies, Santa Clara, 

CA, USA). The limits of quantification (LOQs) for the water phase and the soil phase were 

0.001 mg/L and 0.08 mg/kg, respectively. To check the validity of analytical method, the 

recovery tests for the water and soil phases without preincubation with two dose levels 

(LOQs and 120 μg as applied amount) were conducted. The mean recoveries from each 

three replicates for both phases were in the range of 82%–120% and the relative standard 

deviations were below 23%. More detailed procedures regarding the laboratory experiment 

can be found in the Appendix 5.1 and 5.2. 
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5.2.2. Outdoor experiments 

For the modeling of outdoor experiments, experimental data submerged applications for 

formulation type (I-b) as discussed in the chapter 3 were used. Since the experimental 

designs and analytical methods throughout the experiment have been well documented 

previously, a brief explanation about the data used for the modeling is given in this section. 

To investigate the effect of formulation type on the behaviors of herbicides, INNOVA® DX 

1kg granule and INNOVA® DX UP L flowable (Bayer CropScience K.K., Tokyo Japan), 

containing four paddy herbicide tested in previous section as active ingredients, were 

appropriately applied to the lysimeters and paddy fields on the same days in 2012 and 2013, 

respectively. The water balance components during the test period were monitored and 

estimated on daily basis. Water samples for both test sites were collected and analyzed at just 

before; 3 h after (0.125); and 1, 2, 3, 5, 7, 8, 10, 14, and 21 days after the treatment (DAT). 

Note that the experiments of data at lysimeters used in 2012 were the same test plots as the 

ones that simetryn and molinate were verified in chapter 4. 

 

5.3. Modeling 

5.3.1. Modeling of laboratory experiment 

For the modeling of the laboratory data, a simple two compartment mathematical model 

structurally compatible to the improved PCPF-1R model—previously used for the inverse 

analysis of the outdoor experiments and detail of the improvements was explained in the 

section 5.3.2—was constructed. The main processes of pesticide in the container were 

defined as the bulk degradation including hydrolysis and biodegradation in the aqueous 

phase and the soil phase, the overall mass transfer between two phases and the physical 

mixing (see Fig 5.1). These processes were described based on the first-order kinetic law and 

the governing equations in the aqueous phase and the soil phase are given as: 
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  (5.1) 

where C is the concentration in aqueous phase (mg/L), S is the concentration in soil phase 

(mg/kg), VW and VPW are the volumes of water in aqueous phase and soil pore water in soil 

phase, respectively (mL), mS is dry soil mass in soil phase (g), SA is the surface area of the 
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container (cm2), kW and kS are the first-order bulk degradation rate constant in aqueous and 

soil phases, respectively (1/day), ω is the first-order overall mass transfer rate constant 

(cm/day),  is the first-order mixing rate constant (1/day), Kd is the linear distribution 

coefficient (L/kg) and  fLAB is the fraction associated with the initial partition between 

aqueous and soil phases (-). Note that  becomes zero when initial partitioning is completed 

(S ≥ fLAB×Kd×C). In addition, the model also calculated the apparent sorption coefficient 

(Kd, app, L/kg) and given as: 

 
C

S
K app d,

.  (5.2) 

The Eq. (1) of the model (hereafter PCPF-LR model) was coded in R environment (version 

3.4.2) and solved by “ode” function in R package “desolve” (Soetaert et al., 2010) with the 

time step of 0.005 day. 

 
 

Fig. 5.1 Test system of container test (laboratory experiment) and processes accounted 
for modeling: The stirring is only conducted after application and before separation of 

the phases. 
 

5.3.2. Modeling of outdoor experiment 

The PCPF-1R model was the renewal model of the original model (Watanabe and Takagi, 

2000b; Watanabe and Takagi, 2000c; Watanabe et al., 2006b) to simulates the fate and 

transport of pesticides in paddy water (PW) and 1-cm-thick paddy surface soil (PSL) in open 

software R. For the improved version (PCPF-1Rv1.1 model), three improvements were made 

to model structure. First, to simulate the case of flowable formulation, the initial mixing term 
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adopted in Eq. (5.1) was introduced instead of dissolution term. Second, the first-order bulk 

degradation rate constant in PW (kDEG-PW, 1/day) was separated into kW and first-order 

photolysis rate constant (kPHOT, 1/day) based on the assumption that kW included only 

hydrolysis and biodegradation, which was derived from the laboratory experiment under 

dark condition. Note that the first-order photolysis rate constant (kPHOT) used in this study 

was derived from in-field photolysis half-life and different from that used in the original 

model defined as the function of UV-B radiation (Watanabe and Takagi, 2000b; Watanabe 

and Takagi, 2000c; Watanabe et al., 2006b). Third, the diffusion term between PW and pore 

water of PSL and the sorption between PW and solid of PSL were integrated as the 

first-order overall mass transfer constant (ω) as used in the PFAM model (Young, 2012). 

This is because it was difficult to separately calibrate the diffusion rate constant and the 

first-order sorption rate constant in the previous study and the same result was obtained from 

the preliminary run of the inverse analysis of the PCPF-LR model even when the 

experimental data in soil was used. 

Finally, the governing equations of the PCPF-1Rv1.1 model are described as 
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where A is the area of paddy field [m2], hPW is the depth of water in paddy field [cm], CPW is 

the pesticide concentration in PW [mg/L], t is the time [hour], kDISS is the first-order 

dissolution rate constant [1/hour], CSLB is the water solubility of the pesticide [mg/L], dPSL is 

the depth of PSL [cm], b-PSL is the bulk density of PSL [kg/L], CS-PSL is the pesticide 

concentration in PSL [mg/kg], IRR is the rate of irrigation [cm/hour], CW-IRR is the pesticide 

concentration in irrigating water (=0) [mg/L], DRAIN is the surface drainage or overflow 

rate [cm/hour], PERC is the rate of vertical percolation [cm/hour], kL-A is the mass transfer 

coefficient from the PW to atmosphere [cm/hour], kDEG-PSL is the first-order bulk degradation 

rate constant in PSL [1/hour], Sat-PSL is the saturated water content of PSL [cm3/cm3] and 

fFLD is the fraction associated with the initial partition between PW and PSL (-). The detail of 

the model execution procedure was same as previous chapter.  

 

5.4. Data analysis procedures 

5.4.1. Data processing of analytical concentration 

The observed distribution coefficient (Kd (ti)) and the mass balance (MB) of each pesticide 

was calculated from the concentrations of each pesticide in the aqueous phase and the soil 

phase using following equations. 

 Kd (ti) = Sobs-ti / Cobs-ti (5.4) 

 MB = [Vrec × Cobs-ti + Sobs-ti × mS] / (V0 × C0) × 100 (5.5) 

where Cobs-ti and Sobs-ti are the measured concentration of pesticide in aqueous and soil 

phases at time point ti (unit: mg/L for Cobs-ti and mg/kg for Sobs-ti), Vrec is the volume of the 

supernatant recovered after separation (mL), C0 is the initial concentration of the test 

substance in the aqueous phase (= 2 mg/L), V0 is the initial volume of the aqueous phase (= 

60 mL). 

 

5.4.2. Simple kinetic modeling 

As the comparative measures of DegT50 and DT50 values in aqueous phase (DT50-LAB,W) and 

whole test system (DegT50, SYSTEM) for laboratory experiment, and in paddy water (DT50-PW) 

for outdoor experiments were estimated by the simple kinetic modeling approach. The single 

first order (SFO) model and the hockey-stick (HS) model were employed for the analysis 

models for monotonic and bi-phasic dissipations, respectively. Note that DegT50, SYSTEM was 
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derived from the total pesticide mass calculated from Eq. (5.4). The detailed fitting and 

evaluation procedures are described in Chapter 3.  

 

5.4.3. Procedure for parameter transfer from laboratory to outdoor experiments 

For the parameter transfer on environmental fate of pesticide from laboratory to outdoor 

experiments, two step inverse analyses using the PCPF-LR and the PCPF-1Rv1.1 model were 

performed with aid of the wrapper functions provided by the R package “FME”. The R 

package “FME” contains a comprehensive modeling assist tool covering nonlinear 

minimization routines, sensitivity analysis, Monte Carlo (MC) sampling and Markov Chain 

Monte Carlo (MCMC) analysis (Soetaert and Petzoldt, 2010b). The flowchart of the overall 

analysis procedure is presented in Fig. 5.2. 

 

Fig. 5.2 Flowchart of analysis procedure: The square brackets contain the name of 
functions in R packages of “FME” and “hydroGoF.” 
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As the first step of the calibration of laboratory data, the analytical concentrations in 

aqueous phase and soil phases were normalized by following weight factors proposed by 

Adriaanse et al. (2013): 

 

NS
W

NC
W

maxobs

S

maxobs

W

1

1








  (5.6) 

where W is the weight factor, N is the numbers of measurements, and Cobs-max and Sobs-max is 

the maximum measured concentration in aqueous and soil phases, respectively. Note that 

subscripts “W” and “S” stand aqueous and soil phases throughout this paragraph. Then the 

model cost expressed as a weighted sum of squared residuals was defined as objective 

function:  

         
i

i
i

iLAB SxfWCxfWModelCost 2
i-obsSS

2
i-obsWW ,,   (5.7) 

where i is a data point, f(x, θ)i is a model output in which x and θ are fixed and varying 

parameters of the PCPF-LR model, respectively. In this process, selection of x and θ for all 

pesticides were uniformly fixed without sensitivity analysis and parameter identifiability 

check as used in previous study: VW, VPW, mS, A and ɑ were chosen as x and others were set to 

θ. Note that first four in x could be fixed as the experimental condition (see Table 5.2) and 

the last one was determined to be 50.0 based on the preliminary runs. To give the initial 

guess of subsequent MCMC run, logarithmically transformed ModelCostLAB and θ were 

processed by the pseudorandom search algorithm (PseudoOptim) (Price, 1977) with 1% 

change in ModelCostLAB as a convergence criterion and the maximum iteration of 1000.  

As the final process of the first step, the credible parameter sets of θ were generated as 

the posterior samples of the MCMC run. Three MCMC chains were generated by the 

Adaptive Metropolis Algorithm (Gelman et al., 2013) with different stating values sweeping 

±10% of the initial guess. The total number of trials was set to 51000, and initial 1000 trials 

were discarded as burn-in. The covariance matrix of the jump distribution was updated 

every 100 trials during the burn-in period. In this study, the output chains were not thinned 

according to the discussion of Link and Eaton (Link and Eaton, 2012). The convergence of 

the chains was confirmed by the visual trace of chains and the Gelman-Rubin convergence 

statistic if the value was sufficiently close to 1 (Brooks and Gelman, 1998; Plummer et al., 

2006). In addition, we confirmed that the acceptance ratio of each chain satisfied the 
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requirement (15%–40%) (Gelman et al., 1995). The calibrated simulation of the PCPF-LR 

model was produced by the MC sampling drawn 100 samples from the posterior 

distributions of θ. The simulated results using the parameter sets that give the highest 

probability within the chain (bestpar) were used for the evaluation of the model performance. 

The coefficient of determination corrected by the slope and intercept (br2), the relative 

Nash–Sutcliffe efficiency (rNSE), the percent bias (PBIAS), and the normalized root mean 

squared error (RSR) were calculated using the R package tool “hydroGOF” 

(Zambrano-Bigiarini, 2017). 

 

Table 5.2 Fixed model parameters for PCPF-LR model 

 Lysimeter Paddy field 

 Alluvial Volcanic ash Alluvial Volcanic ash

A (cm2) 20 20 20 20 

VW (mL)* 46 33 43 35 

VPW (mL)** 14 27 17 25 

mS (g) 20 20 20 20 

ɑ (1/day) 50 50 50 50 
*  These values were taken from the means value of Vrec in the laboratory experiment 
** These values were given as V0 - Vrec, where V0 is the initial volume of the aqueous phase 

(= 60 mL). 
 

For the second step of the inverse analysis, the calibration of the outdoor experimental 

data was conducted using the PCPF-1Rv1.1 model incorporating the calibrated output of the 

PCPF-LR model. The fixed parameters including pesticide, soil, and water balance data are 

summarized in Table 5.3 and 5.4. First, ModelCostFLD of the PCPF-1Rv1.1 model was 

defined as the sum of the squared residual:  

                       
i

iFLD CxfModelCost 2
i-obs-PWPW , .                 (9) 

Second, the calibrations of the in-field specific parameters such as fFLD-F, kPHOT-F,  for 

flowable case and fFLD-F, kPHOT-F, kDISS for granule case were conducted. PseudoOptim 

algorithm was again used to optimize the in-field specific parameters to each of 100 

parameter set of kW, kS, ω and Kd taken from the posterior distributions in the modeling of 

laboratory data. Finally, a MC run with 100 parameter sets made of both in-laboratory and 

in-field calibrated parameters to give the final calibrated simulation of the outdoor 
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experimental data. The results were evaluated by the same procedure as described in the 

modeling of laboratory data. 

 

Table 5.3 Field conditions in individual experimental plots in 2012 and 2013 
Parameter LA Plot LV Plot FA Plot FV Plot 

  A (m2) 1 1 800 800 

Physicochemical properties of soils * 

oc (%) 1.8 8.7 2.3 5.3 

b-PSL (g/cm3) 1.04 0.68 1.00 0.73 

Sat-PSL (cm3/cm3) 0.62 0.74 0.63 0.72 

Input of water balance ** 

IRR (cm) 2012 33.8 (1.6) 35.0 (1.7) 5.8 (0.3) 9.0 (0.4) 

 2013 37.2 (1.8) 36.9 (1.8) 5.2 (0.2) 11.2 (0.5) 

RAIN (cm) 2012 0.0 0.0 14.8 17.8 

 2013 0.0 0.0 7.8 8.2 

Output of water balance ** 

DRAIN (cm) 2012 0.0 0.0 6.5 6.0 

 2013 0.0 0.0 0.0 0.0 

PERC (cm) 2012 31.2 (1.49) 31.1 (1.50) 9.0 (0.43) 14.6 (0.54) 

 2013 31.2 (1.49) 31.8 (1.51) 2.9 (0.14) 12.2 (0.67) 

ET (cm) 2012 3.7 (0.14) 4.7 (0.18) 6.9 (0.33) 7.1 (0.31) 

 2013 6.4 (0.29) 5.2 (0.24) 6.8 (0.32) 6.7 (0.34) 
*  Measured values. 
**  Outside and inside of parentheses are cumulative and daily mean values of measured data. 
 

Table 5.4 Fixed parameters specific to herbicides in PCPF-1Rv1.1 model 

Parameter Daimuron Fentrazamide Bromobutide Bensulfuron-methyl

AppR (g/m2) Granule 0.045 0.020 0.075 0.0051 

 Flowable 0.041 0.028 0.069 0.0045 

CSLB (mg/L) 0.79 2.5 3.54 67 

kL-A (m/day) 1.2×10-5 9.2×10-7 3.6×10-4 4.5×10-7 
*  FAMIC (FAMIC, 2018b). 
**  Calculated from equation of Mackay and Leinonen (Mackay and Leinonen, 1975). 
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5.5. Results and discussion 

In this section, the results of the laboratory experiment and inverse analyses for the 

laboratory and outdoor experiments were explained. Detail explanations on the results of the 

outdoor experiments are given in the sections 3.7.5 of Chapter 3. 

 

5.5.1. Analytical results of aqueous and soil phases in laboratory experiment 

The analytical results in the aqueous and soil phases for individual herbicides are shown in 

Fig.5.4 (see section 5.5.4). For the aqueous phase, the maximum concentrations for the 

target pesticides were detected at 3 hour after treatment except for bensulfuron-mehyl for 

the lysimeter alluvial soil sample. The detected ranges of the maximum concentrations in 

the aqueous phase for the lysimeter alluvial soil, the lysimeter volcanic ash soil, the paddy 

field alluvial soil and the paddy field volcanic ash soil were in the range of 

0.538−1.56 mg/L, 0.453−1.42 mg/L, 0.404−1.36 mg/L and 0.356−1.22 mg/L, respectively. 

The ratios of these values to the initial concentration in the aqueous phase (C0 = 2 mg/L) 

were corresponded to the range of 26.9%−78.0%, 22.7%−70.8%, 20.2%−68.0% and 

17.8%−61.0%. Meanwhile, for the soil phase, the maximum concentrations were detected 

from 3 hour after treatment to 14 DAT. The detected ranges of the maximum 

concentrations in the aqueous phase for the lysimeter alluvial soil, the lysimeter volcanic 

ash soil, the paddy field alluvial soil and the paddy field volcanic ash soil were in the range 

of 3.41−5.56 mg/kg, 3.96−5.58 mg/kg, 2.90−4.48 mg/kg and 3.98−5.26 mg/kg, 

respectively. 

 

5.5.2. Mass balance and distribution coefficient 

Table 5.3 summarizes the measured data of volumes of the supernatant recovered after 

separation (Vrec) and pH values during the experiment. Note that mean values of Vrec was 

used as the fixed input of VW in PCPF-LR model (see Table 5.2). The time series of the 

distribution coefficient (Kd) and the mass balance for each pesticide are shown in Fig.5.5. 

The calculated ranges of Kd at 3 hour after treatment in the LA soil, LV, FA and FV soils 

were in the range of 1.46−8.36 L/kg, 0.858−11.2 L/kg, 1.09−9.12 L/kg and 

1.49−12.4 mg/L, respectively. These results indicated that higher soil adsorption tendency 

was found in the volcanic ash soils for both lysimeter and paddy field. The values of Kd 

were increased with time and theirs extents were about 3−9 times for daimuron, 4−9 times 
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for fentrazamide, 2−7 times for bromobutide and 4−9 times for bensulfuron-methyl. The 

pesticide showed the lowest soil adsorption characteristics were bromobutide and that of 

the highest was fentrazamide. The mass balance for each pesticide at 3 hour after treatment 

was in the range of 78%−113%. The dissipation ratios calculated as the ratio of the mass at 

28 DAT to that of the maximum were about 19%−45% for daimuron, 35%−66% for 

fentrazamide, 21%−82% for bromobutide and 57%−67% for bensulfuron-methyl. All 

herbicides showed faster dissipation for the paddy field soils than those for the lysimeter 

soils and their differences were about 1.2−3.1 times. 

 

Table 5.5 Summary of volumes of the supernatant and pH values during experiment 
 Lysimeter Paddy field 

 Alluvial Volcanic ash Alluvial Volcanic ash

Vrec
* Mean 45.8 32.8 43.2 35.3

 Standard deviation 1.36 1.73 3.16 2.64

pH Mean 6.5 6.0 7.1 6.9

 Standard deviation 1.01 0.80 0.46 0.49
* Volume of the supernatant recovered after separation 
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(a) Daimuron 

  

  
 

Fig. 5.3 Mass balance and distribution coefficient during experiment 
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(b) Fentrazamide 

  

  
 

Fig. 5.3 Mass balance and distribution coefficient during experiment (continued) 
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(c) Bromobutide 

  

  
 

Fig. 5.3 Mass balance and distribution coefficient during experiment (continued) 
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(d) Bensulfuron-mehtyl 

  

 
 

Fig. 5.3 Mass balance and distribution coefficient during experiment (continued) 
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5.5.3. Estimation of DT50, W and DegT50, SYSTEM 

The analytical concentrations in aqueous phase and masses of the whole test system of 

target pesticides at individual test soils were fitted to the appropriate kinetic models among 

single first order (SFO) or Hockey-Stick (HS) model. Table 5.6 summarizes the result of 

the simple kinetic modeling for laboratory experimental data. Six out of twenty-four 

dataset was only described by the SFO model for the estimation of DT50, W and those was 

mostly the alluvial soil data. On the other hand, for the estimation of DegT50, SYSTEM, 23 

datasets were described by the SFO model. The number the χ2 error above 15% threshold 

value—failing the χ2 test at 5% of significance level—was only 1 dataset in the estimation 

of DT50, W. 

 
Table 5.6 Estimated results of DT50, W and DegT50, SYSTEM 

Pesticide* 

 Alluvial Soil  Volcanic ash Soil 

Lysimeter Paddy field Lysimeter   Paddy field 

DT50, W DegT50, SYSTEM DT50, W DegT50, SYSTEM  DT50, W DegT50, SYSTEM DT50, W DegT50, SYSTEM

FIP Value (Day) 15.3 42.5 2.7 5.3 10.4 51.1 1.5 5.1 

 χ2 err (%) 6.2 6.6  4.9 8.4 2.4 2.2  9.9 1.4 

 Model SFO SFO  HS SFO HS SFO  HS SFO 

PBZ Value (Day) 0.8 1.1 0.4 0.7 0.4 1.9 0.3 0.9 

 χ2 err (%) 7.7 8.2  0.3 14.1 3.0 12.3  0.3 7.8 

 Model SFO SFO  HS SFO HS HS  HS SFO 

DAI Value (Day) 14.5 122  4.6 32.7 1.4 59.8  0.6 44.5 

 χ2 err (%) 1.9 3.3  4.2 5.6 2.7 2.9  4.4 6.6 

 Model HS SFO  HS SFO HS SFO  HS SFO 

FTZ Value (Day) 4.0 62.4 0.8 23.6 1.0 47.1 0.4 21.7 

 χ2 err (%) 3.7 4.8  7.3 11.9 3.8 5.7  4.3 8.9 

 Model HS SFO  HS SFO HS SFO  HS SFO 

BRB Value (Day) 31.8 46.9 11.8 16.4 33.8 127 1.5 13.0 

 χ2 err (%) 5.0 7.1  6.9 9.4 5.2 3.6  9.9 8.9 

 Model SFO SFO  SFO SFO SFO SFO  HS SFO 

BSM Value (Day) 23.2 26.5   1.5 24.7  3.8 20.9   0.6 13.9 

 χ2 err (%) 3.1 5.5  7.3 9.3 28.0 5.1  4.6 11.0 

 Model SFO SFO  HS SFO HS SFO  HS SFO 
* FIP: Fipronil, PBZ: Probenazole, DAI: Daimuron, FTZ: Fentrazamide, BRB: Bromobutide, BSM: Bensulfuron-methyl 
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5.5.4. The Calibrated results of modeling 

Figure 5.4 (a), (b), (c) and (d) show the modeling results and the calibrated parameter 

variations of the laboratory experiment and outdoor experiments for daimuron, fentrazamide, 

bromobutide and bensulfuron-methyl, respectively (see also Appendix 5.4−5.12). From the 

visual assessment, the calibrated simulations of the PCPF-LR model reasonably captured 

the measured concertation changes in both aqueous and soil phases. On the MCMC 

diagnostics, the multivariate potential scale reduction factor (mpsr) (Plummer et al., 2006) 

and the acceptance ratio were in the range of 1.00−1.07 and 14.5%−43.3%, respectively. The 

model performance measures shown in Table 5.7 were all acceptable or close to ideal values 

suggesting the accuracy of model prediction was guaranteed. The posterior parameter 

distributions were fluctuated between soil types: kW for daimuron, fentrazamide and 

bensulfuron-methyl, ω for bromobutide and bensulfuron-methyl, kS, Kd and fLAB for 

bromobutide (see Appendix 5.4−5.7). Figure 5.5 shows the time course of Kd, app calculated 

from the measured and simulated concentrations in aqueous and soil phases. It was clearly 

observed that most of Kd, app were increased from the initial state as incubation time 

increased and then became plateau. The 50% quantile values of simulated Kd, app at 28 DAT 

at the LA, LV FA and FV soils were 1.0−3.1 times, 1.8−4.5 times, 1.6−3.3 times and 3.4−8.1 

times of those at 0.125 DAT, respectively. Exceptional behaviors were found in 

bensulfuron-methyl of the LA soil and bromobutide of the LA and LV soils, where the 

former showed the decrease of Kd, app and the latter did not reach the plateau. The 

adsorption-desorption experiment of bromobutide based on OECD 106 (OECD, 2000) 

showed that bromobutide did not reach the adsorption equilibrium so that the batch 

experiment to derive the Freundlich isotherm was conducted with 48 hour that was the 

maximum incubation time allowed by the guideline. The simulation of Kd, app potentially 

showed that such experimental constraint might underestimate the actual soil adsorptivity 

of pesticide. 

For the flowable formulation, both measured and simulated concentration in paddy 

water mostly showed the peak concentration at right after application and then rapidly 

dissipated. On the other hand, those for granule formulation were gradually or rapidly 

increased after application and reached the maximum from 0.125 DAT to 10 DAT. Although 

the misspecifications of the peak concentration by 50% quantile predictions were found in 

DAI at the LV plot and bromobutide at the FV plot, 5%−95% quantile prediction ranges 
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successfully covered the observed peak concentrations. The dissipations of granule 

herbicides at the FA and FV plots were facilitated by the two runoff events at 9 DAT and 11 

DAT. The 50% quantile values of the cumulative runoff amount at 21 DAT at the FA and FV 

plots were 12.9% and 2.0% for daimuron, 2.3% and 0.6% for fentrazamide, 17.2% and 7.2% 

for bromobutide, and 7.0% and 1.7% for bensulfuron-methyl. Although the simulated 

concentrations in paddy water were visually acceptable, the model performance measures 

were poorly estimated as compared to the modeling of the laboratory experiment. Overall, 

the simulated results of the calibrated PCPF-1Rv1.1 model underestimated the measured data 

from the positive PBIAS. Eight out of sixteen analyses for granule formulation case returned 

negative rNSE (see Appendix 5.12). This mainly attributed by the difficulty of accurate 

prediction of dissolution phenomena in the granule formulation. Regarding the calibrated 

field specific parameters of the PCPF-1Rv1.1 model, the rate constants related to pesticide 

release to the test system, ɑ for flowable and kDISS for granule, were appropriately calibrated 

with small variations. The fractions associated with initial partitioning, fFLD-F and fFLD-G, 

were also distinctively characterized. Figure 5.6 show the diagrams of fLAB and fFLD. This 

figures showed the tendencies that higher densities for the lysimeter and paddy field 

experiments were concentrated on the upper boundary (= 1.00) and the lower boundary (= 

0.01) of fFLD, respectively. The calibrations of kPHOT-F and kPHOT-G were heterogeneously 

achieved between the test plots and the formulations. Therefore, no characteristic such as 

data reproducibility and remarkable difference was found out. The several datasets induced 

the strong parameter correlation between fFLD and kPHOT so that unrealistic parameter sets 

were returned and resulted in the inconsistencies between the test plots and the formulations 

(see Appendix 5.8−5.11). 
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Fig. 5.4 Plots of measured data versus calibrated simulations, and variations of 
calibrated parameters in laboratory and outdoor experiments at each test plot: Closed 

symbols in measured data stand “<LOQ”. 
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Fig. 5.4 Plots of measured data versus calibrated simulations, and variations of 
calibrated parameters in laboratory and outdoor experiments at each test plot: Closed 

symbols in measured data stand “<LOQ” (continued). 
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Table 5.7 Summary of statistical indices in modeling of laboratory and outdoor data 

Parameter br2 rNSE 
PBIAS 

(%) 
RSR 

Modeling of laboratory experiment a 

 Median 0.94 0.94 -0.4 0.16 

 Minimum 0.75 0.36 -14.3 0.05 

 Maximum 1.00 0.99 8.0 0.42 

Modeling of outdoor experiment: Flowable 

 Median 0.93 0.68 6.9 0.21 

 Minimum 0.56 -63.5 -4.1 0.04 

 Maximum 1.00 0.96 47.4 0.49 

Modeling of outdoor experiment: Granule 

 Median 0.72 -0.07 12.6 0.57 

 Minimum 0.20 -1983 -22.9 0.14 

 Maximum 0.99 0.82 48.6 1.16 
a The values were summarized from each of three chains for four herbicides. 
b The values were summarized from the results of q50 simulation of four herbicides. 
 

 

Fig.5.5 Measured and simulated time-dependent changes in apparent sorption 
coefficient (Kd, app) 
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Fig. 5.6 Contour diagrams of fractions associated with initial partitioning for 
in-laboratory calibration (fLAB) versus in-field calibration (fFLD-F and fFLD-G) 

 

5.5.5. Initial partitioning and time dependent sorption 

The improved container test for the flooded soils successfully monitored the dissipations of 

the applied pesticides in both aqueous and soil phases during the test period and the 

developed PCPF-LR model could accurately simulate these results. The initial partitions of 

the applied pesticides after stirring of the test system (0.125 DAT) were appropriately 

described by the introduction of the mixing term using the initial apparent Kd (fLAB×Kd). As 

various literatures pointed out (Kookana et al., 1992; Pignatello and Xing, 1996; Richter et 

al., 1996; Warren et al., 2003), the increase of Kd, app was observed and its extent for each 

pesticide at each test plot was comparable to previous study (Pignatello and Xing, 1996). In 

addition, as Motoki et al. (2016) discussed, the rate of increase in Kd, app with time was high 

at the test plot had higher initial state of Kd, app, and thus the volcanic ash soil plot. The values 

of Kd, app at 28 DAT were within or higher than the ranges of Kd derived from the batch 

method except for the daimuron and bensulfuron-methyl at the alluvial soil plots. These 

results supported the assumption that the measured Kd represented only apparent equilibrium 

state and use of measured Kd may lead to the underestimation of the real extent of the 

partitioning (Warren et al., 2003). Moreover, the time courses of Kd, app and the calibrated Kd 

values for bromobutide at the LA and LV soils potentially suggested that measured Kd 

ranges derived from the batch method underestimated the actual condition. Possible reason 

was that the adsorption equilibrium of bromobutide was not achieved so that the maximum 

equilibrium time of 48 hour was used to derive the adsorption isotherm as stipulated by 

OECD 106 (FAMIC, 2018b; OECD, 2000) and therefore, bromobutide might exhibit higher 

Kd value over longer contact times. 

From abovementioned discussion, the calibrated fraction, fLAB associated with the 

artificial partition could be used as the good measure to compare to the states of the initial 
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partition in the outdoor experimental fields. As shown in Fig. 5.6, while no time dependent 

increase of Kd, app was expected for the lysimeters (fFLD×Kd >> fLAB×Kd), more remarkable 

increase of Kd, app would be observed in the outdoor experiments (fFLD×Kd << fLAB×Kd) 

regardless of the formulation types. It is noteworthy that these tendencies were also seen in 

the chapter that inversely analyzed the dissipations of the herbicides, simetyn and molinate 

with granule formulation using the paddy water data in 2012. These might be caused by the 

difference of the plot conditions: while the lysimeter experiments in both years set higher 

percolation rate (c.a., 1.5 cm/day) so that the vertical convection of paddy water was 

facilitated, the paddy fields with relatively windy conditions (see 3.7.4.3 in Chapter 3) and 

lower percolation rate (0.1−0.7 cm/day) resulted in horizontal mixing. Therefore, it was 

suggested that the initial partition of applied herbicides and subsequent time dependent 

increase of Kd, app could be affected by the physical behavior of paddy water. 

 

5.5.6. Analyzing herbicide persistency in paddy test system 

To compare the persistence indicators derived by the simple kinetic modeling, the PCPF-LR 

modeling and the PCPF-1Rv1.1 modeling, the 1:1 relationships between DT50, W and 

DegT50, W DegT50, SYSTEM and DegT50, S, DT50, PW-F and DegT50, PW-F, and DT50, PW-G and 

DegT50, PW-G are plotted in Fig. 5.7. Note that the estimation equations of DegT50, W, DegT50, S, 

DegT50, PW-F and DegT50, PW-G are also included in Figure 5.7. For the DT50, W and DegT50, W, 

longer DegT50, W values than DT50, W were estimated from all datasets. Similar result was 

reported by Honti and Fenner (2015), who estimated DegT50, W values from the OECD 308 

test results and concluded that the difference between DT50, W and DegT50, W was due to the 

inclusion of the phase transfer process such as diffusion in DT50, W. For the comparison of 

DegT50, SYSTEM and DegT50, S, the values were closely distributed as compared to those in the 

aqueous phase. This difference indicated that DegT50, SYSTEM values were, in general, shorter 

than DegT50, S values because of the inclusion of the faster dissipations in the aqueous phase. 

However, theirs contribution to the degradation of the total test system was relatively low 

since the most of applied herbicides were partitioned to the soil phase (see Fig. 5.3) so that 

degradation in the soil phase would be the dominant factor in DegT50, SYSTEM except for 

bromobutide having lower Kd values. In the laboratory experiment, shorter DT50, W and 

DT50, S values were found in the FA and FV soils. These differences might be attributed by 

the difference of the microbial activity between the lysimeter soils and the paddy field soils: 
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the pesticides containing amide or urea bond—daimuron, fentrazamide, bromobutide and 

bensulfuron-methyl—have been reported to undergo enzymatic hydrolysis with the aid of 

the microbial hydrolytic enzymes (Katagi, 2006). 

 

Fig. 5.7 1:1 comparison of time required for 50% dissipation (DT50) and degradation 
half-lives (DegT50) in aqueous (subscript “, W”) and soil phases (subscript “, S”) for 
laboratory experiment and in paddy water under flowable application (subscript “, 

PW-F”) and under granule application (subscript “, PW-G”) for outdoor experiments 
 

For the outdoor experimental data, similar relationships between DT50, PW and 

DegT50, PW were observed as the ‘bulk’ degradation processes for both flowable and granule 
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cases. In addition, it was consistent that DegT50, PW values in the paddy fields were shorter 

than those of the lysimeters. Regarding the formulation types, no significant difference was 

found between DegT50, PW-F and DegT50, PW-G (p = 0.1) while the difference between 

DT50, PW-F and DT50, PW-G was significant (p = 0.004). This result suggested that the 

persistency of the target herbicides in paddy water was not affected by the formulation types 

although the overall dissipation patterns of them were significantly different. Unfortunately, 

it was difficult to extract the characteristics of herbicide persistency separated into 

in-laboratory processes (hydrolysis + biodegradation) and in-field process (photolysis) due 

to overestimation of kW. Possible reason was the under estimation of ω during the calibration 

of laboratory data since several dataset indicated negatively skewed posterior variations of ω. 

This indicated that the actual dissipations in the aqueous phase were mainly progressed via 

the mass transfer to the soil phase with higher rate of ω. Nevertheless, because of the 

misspecification of the upper limit of ω based on the expert judgement—the source of 

uncertainty due to the arbitrary subset selection of the parameters (Zhu et al., 2015)—, kW 

values were inappropriately calibrated to unrealistically high values in the simulation. 

 

5.5.7. Further consideration 

As demonstrated in this study, the parameters extracted from the laboratory experiment were 

successfully transferred to the modeling of the outdoor experiments. The advantage found in 

this approach was that once robust parameter set for in-laboratory process was obtained, 

these could be used as the universal parameter set to predict the multiple outdoor 

experimental data under paddy test conditions combining to the in-field calibration. 

Moreover, monitoring of Kd, app in this approach would be beneficial not only to evaluate the 

predictability of Kd values derived from the batch method but also to predict in-field 

partitioning under different formulation types, as well as the physical effects. Although the 

phase separation after incubation has been optional in current OECD 307 (OECD, 2002a), 

the separate analyses of the pesticide amount would be useful in terms of the secondary use 

of the experimental data especially for the modeling. 

As previous studies pointed out (Honti and Fenner, 2015; Ter Horst and Koelmans, 

2016), the persistence indicators such as DegT50, W and DegT50, S were robust measures for 

the exposure modeling but highly uncertain depending on the pesticides and soils. At this 

time, the only way to show the validity and reliability of these indicators was the assurance 
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of the modeling quality: high accuracy of simulation result, the reduced uncertainty range of 

simulation associated with parameter uncertainty and narrower posteriors of the parameters. 

Although the first one was fairly achieved by visual and statistical assessments, the latter two 

would be the substantial issue on our approach. In the MCMC application, the parameter 

uncertainty and measurement error were separately dealt (Soetaert and Petzoldt, 2010b) but 

there was still possibility that the casual measuring errors might propagate the parameter 

uncertainty. Therefore, to avoid the casual measuring errors in the analytical phase, the use 

of the dataset for labeled pesticide or for non-labeled pesticide that assures the mass 

recovery of 90%−110% for laboratory experiment is desirable. Since current our analytical 

approach was not satisfied above requirement (mass recovery was 78%−113%), additional 

considerations such as use of the surrogate (Radke and Maier, 2014) and the matrix-matched 

calibration curve (Lazartigues et al., 2011) were needed in future research. In the modeling 

phase, as can be seen our results, the uncertainty of DegT50, W was increased when the phase 

transfer process was dominant in the test system (Ter Horst and Koelmans, 2016). To cope 

with this problem, inclusion of the metabolic pathway as well as generations of 

non-extractable residue (NER) and CO2 in the modeling process (Görlitz et al., 2011; Honti 

and Fenner, 2015; Loos et al., 2012) will expected to restrict the degree of freedom of kW. 

Finally, from the application of the parameters extracted from the laboratory 

experiment to the modeling of the actual field data, the robust and less uncertain persistence 

indicators might be conservative. Although Honti et al. (2018) criticized the large 

discrepancy of persistence indicator between in-field and in-laboratory, this gap would be, 

on contrary, the uncertainty associated with the lack-of-knowledge (i.e., photolytic process, 

temperature and pH dependencies), which could not be covered by the laboratory 

experiment by in-field calibration and can be reducible by in-field calibration. 

 
5.6. Summary and conclusion 

Extraction of environmental fate parameters of pesticide from laboratory experiment by 

inverse modeling has been becoming common practice in higher tier modeling. In this 

Chapter, the case of the flooded paddy soil test condition was attempted. First, a simple 

container tests for four flooded soils applying four herbicides were conducted. Then, the 

results were bridged to predict the outdoor experimental data under two formulation types 

(flowable and granule) via inverse analyses of two structurally compatible mathematical 
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models: the PCPF-LR model for laboratory and the PCPF-1Rv1.1 model for outdoor 

experiments. 

During the laboratory experimental phase, the PCPF-LR model accurately simulated 

the concentrations in both aqueous and soil phases with the aid of the MCMC technique. The 

model also appropriately captured the time-dependent sorption (Kd, app). The extracted 

persistence indicators (DegT50) were longer than those for dissipation (DT50) due to 

exclusion of phase transfer process. The post calibrated simulation of the PCPF-1Rv1.1 model 

with the parameters derived from the laboratory data in the outdoor experimental phase 

reasonably represented the measured data. In comparison with initial partitioning in 

laboratory, those in outdoor experiment were affected by the physical effects such as 

percolation and wind rather than formulation types. Furthermore, DegT50 as ‘bulk’ 

degradation was consistent regardless of formulation types although DT50 was significantly 

different. 

Although splitting ‘bulk’ DegT50 values into in-laboratory and in-field processes was 

remained as future subject, the applied experiment and modeling approach first showed the 

possibility to bridge across the laboratory and outdoor experimental data in the context of 

more realistic exposure modeling. This approach will be also expected to apply to analyze 

the OECD 308 data in future. 
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Chapter 6   

Modeling Approach for Paddy Pesticides Monitoring in 

River Using Distributed Hydrological-Hydraulic Model 

 

6.1. Introduction 

The occurrences of paddy pesticides in the surface water of public water area have been 

the major concerns for both human health and adverse effect of aquatic organism in Japan. 

This is because paddy rice cultivation is the main production component in the agricultural 

sector in Japan, with a cultivated area of approximately 54.4% (MAFF, 2018). Therefore, 

the monitoring of rice pesticides in public water area has been continuously conducted by 

the government- and public-sectors (see Section 2.6.1). Meantime, several basin scale 

modeling approaches have also been reported (see Section 2.6.3). 

So far it has been known that the occurrences of paddy pesticide in surface water 

were found in response to the application timings of nursery-box applied insecticides and 

fungicides, herbicides and insecticides and fungicides for foliar application during rice 

cultivation season (Iwafune et al., 2010). The concentrations of such paddy pesticides in 

surface water may be regionally varied depending mainly on the river flow, paddy rice 

cropped area and usage ratio of pesticide (Yachi et al., 2017). In addition, higher pesticide 

runoff potential form paddy fields has been anticipated in south-western region of Japan 

where suffering severer rainfall events during the rice cultivation season even though 

appropriate water management practices were implemented (Kondo et al., 2012). In the 

author’s previous simulation study conducted in the branch of Chikugo River located in 

Kyusyu Island using PCPF-B/DRAFT model, the occurrence patterns of paddy herbicide 

applied after transplanting were classified as two types: water management dependent 

pattern and rainfall dependent type (Kondo et al., 2017). Through the case study by 

applying the appropriate WHP after herbicide application, while the former type was 

reducible by such effort, the latter type was inevitable but diminished by the 

self-purification function of river. As can be seen this example, the occurrences of the 

paddy herbicides were highly dynamic phenomena affected by the hydrological 

components. Therefore, the modeling approach is beneficial to analyze the occurrence 

mechanisms of the paddy pesticide in surface water. In particular, PCPF-B/DRAFT model 
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has higher advantage on such problem than other existing models because this model 

adopted the advective and dispersive transport equation under unsteady flow regime 

described by the hydraulic model. However, the evidence for the occurrence mechanisms 

of the paddy pesticide is weak and further case studies are necessary. 

Important subject of the basin scale modeling is the efficient modeling of the 

hydrological processes in the target basin based on the geographical characteristics and 

land use conditions. Fortunately, these features which were previously regarded as 

complex information in the monitoring study have been easily incorporated by the GIS 

technology (Inao et al., 2014). PADDY-Large model constricted the segmented 

hydrological pathway using river vector and water and pesticide runoffs from paddy fields 

were flown into adjacent river segment based on the sub-basin basis (Iwasaki et al., 2012). 

PCPF@SWAT extracted the simulated rivers from the digital elevation map (DEM) and 

the generated runoffs at each hydrological response unit (HRU) were transferred to the 

river with lag time (Boulange et al., 2014; Tu et al., 2018). The diffuse hydrological 

pollution model adopted the grid-based structure and the runoffs were moved to the 

adjacent grid-cells having the steepest slope (Matsui et al., 2006a). While the first approach 

has disadvantage of the underestimation of travel time within the sub-basin, the latter two 

approaches may result an unrealistic flow path when the basin contains the large low flat 

area where the paddy fields are mainly distributed. The previous application of 

PCPF-B/DRAFT model simulated under the approximated river network of the target 

watershed constructed from the results of GIS analysis. The same disadvantage as 

PADDT-Large model might be found and this might cause the shift of the peaks and over- 

or underestimation between simulation and observation for both discharge and pesticide 

concentration. However, the full application of the original PCPF-B/DRAFT model to the 

sub-basin may be unrealistic solution because the physical effects considered in the 

hydraulic model such as channel geometry change and backwater effect are less effective 

considering the additional computational effort (e.g., zero flow condition) in the drainage 

canal or small branch network especially for hilly area. In such case, the hydrological 

models solving the continuity and storage−release equations are preferable since these 

models well simulate the streamflow under few physical constraints. In recent years, the 

coupled hydrologic−hydraulic (H−H) model has been proposed by several researchers 

(Choi et al., 2015; Paiva et al., 2011). The H−H model first estimates hydrological inputs 
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for the hydraulic model—either upper boundary or inflow—using the DEM based 

hydrological model, and then hydrological processes in the main streams are simulated by 

the hydraulic model. The advantage of this concept is that the complex hydrological 

processes within sub-basin are relatively easy to be simulated with inputs extracted from 

DEM and the model outputs including the lag time due to the travel time are converted to 

the stage hydrograph used for the boundary conditions of the hydraulic model. Therefore, 

the installation of the H−H modeling concept to the original PCPF-B/DRAFT model may 

be possible to resolve the above-mentioned disadvantage. 

Another subject of the basin scale modeling needed to be addressed is that the 

dataset available for modeling is limited. There have been only a few monitoring studies 

that included the modeling purpose in the experimental designs in advance (Inao et al., 

2003; Inao et al., 2016; Iwasaki et al., 2012). Therefore, the modelers have to consider and 

explore the monitoring data as the secondary use for the purpose of the model calibration, 

validation and application. For the monitoring of paddy pesticides in river, the least 

requirements for the modeling are the river flow data at the sampling points, the analyzed 

concentrations of the pesticides and the traceability of pesticide regarding the usage ratio 

and application schedule. However, the quality of monitoring data regarding the observed 

contents, the method of choice and the accuracy and precision of the results is highly 

subjective to the investigators. To avoid biased data acquisition, the selection of data used 

for modeling is desirable to be the one collected under the unified rules such as the test 

guideline. The pesticide monitoring study in public water area initiated by MOE has been 

continuously conducted in various regions under the unified data requirements and the 

results have been published in the MOE’s web site (MOE, 2018). Therefore, these data 

would be good resources for the secondary use of the data in the basin scale modeling. 

The main objectives of this chapter are I) to update PCPF-B/DRAFT model to the 

distributed H−H model for the realistic simulation of the hydrological processes based on 

the GIS processing by introducing the new hydrologic module; II) to propose a new GIS 

processing procedure hybridizing the vector and raster data formats for simple and efficient 

representation of the watershed with the large low flat area including the paddy fields; and 

III) to apply the developed approach to analyze the monitoring of rice herbicide 

concentration in river conducted as the MOE’s pesticide monitoring study in 2017. 
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6.2. Model description 

The original PCPF-B/DRAFT model consisted of three sections: the paddy section, the 

non-paddy section and the river section. In the paddy section, the PCPF-B model (Phong et 

al., 2011) was embedded as a sub-model to simulate pesticide concentrations in both paddy 

fields and drainage canal covering from a few hectares to a few tens of hectares of paddy 

blocks. Rainfall-runoff process in the non-paddy section where included three subdivisions: 

forest, agricultural field, and urban area was simulated using the land use based tank model 

(Nakagiri et al., 2000). In the river section, flow conditions (flow depth and discharge) and 

pesticide fate and transport processes were simulated by the one-dimensional advective and 

dispersive transport model under unsteady flow regime described by the hydraulic model.  

The improvement was made to update the original PCPF-B/DRAFT model into the 

distributed H−H model and denoted the update model as PCPF-B/DRAFT 2.0 model. The 

conceptual model structure of PCPF-B/DRAFT 2.0 model is shown in Fig. 6.1. The paddy 

and non-paddy sections were re-defined as paddy cell and non-paddy cell that were the 

smallest units of hydrological processes, and were assigned into each grid cell of target 

basin depending on the land use type. The generated runoffs of water and pesticide from 

the paddy and non-paddy cells were transferred to the hydrologic model and the model 

computed the water flow and mass transport processes on the ordered grids of the target 

basin other than main stream. In the main stream of target basin, the simulations of flow 

condition and pesticide transport process were simulated by the hydraulic model that 

characterized by the external and internal boundaries derived from the hydrologic model. 

The geographical characteristics and land use conditions in the target basin were 

characterized by the GIS processing. All procedures required to execute PCPF-B/DRAFT 

2.0 model were implemented using Microsoft Excel®, QGIS 2.18.14, GRASS GIS 7.4.2, 

and R 3.4.2, which were the conventional program or software available for free of charge. 

Detailed explanation of PCPF-B/DRAFT 2.0 model are given following sections 
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Fig. 6.1 conceptual model structure of PCPF-B/DRAFT 2.0 model. 
 

6.2.1. Paddy cell: PCPF-B model 

The hydrological processes and the fate and transport processes of paddy pesticides in the 

grid cell categorized as paddy field were simulated by PCPF-B model.  The previous 

version of PCPF-B sub-model converted the paddy land use within the sub-watershed into 

an imaginary paddy block consist of number of paddy plots in which the water balance and 

pesticide application schedule are differently practiced. In PCPF-B/DRAFT 2.0 model, the 

paddy block size of PCPF-B model was adjusted to the grid cell resolution and the number 

of paddy plots was set depending on the number of application dates. The previous version 

of PCPF-B/DRAFT model as well as other basin scale model adopted the continuous 

probability distribution such as normal distribution for expressing the application dates 

(Boulange et al., 2014; Iwasaki et al., 2012; Kondo et al., 2017; Tu et al., 2018). On 

contrary, the improved model used the discrete distribution allocating user specified 

fraction to five different dates at maximum because Phong et al. (2010) reported the 

applications of paddy herbicides were intensively practiced within four days in the 

monitored block. The schematic view of improved PCPF-B model is shown in Fig. 6.2. 
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Fig. 6.2 Schematic view of improved PCPF-B model 

 

In the paddy fields, the water balance in each paddy plot is solved based on the water 

balance simulation scheme developed by (Kondo et al., 2017; Kondo et al., 2012). Three 

parameters, the minimum water depth (Hmin) defined as lower threshold to initiate irrigation, 

the ponding water depth (Hpond) a water depth where irrigation is ceased and height of 

drainage gate (Hmax) which equals to the maximum ponding water depth are used to control 

the irrigation, intentional drainage drainage triggered by irrigation and unintentional 

drainage due to rainfall events during the rice cultivation. The daily percolation rate is 

determined as user specified value and the daily evapotranspiration (ET) estimated from the 

FAO Penman-Monteith method (Allen et al., 1998) calibrated for rice crop (Vu et al., 2005; 

Watanabe et al., 2006b). At first, all untreated paddy fields in the paddy block kept constant 

flooding condition without intentional drainage. When the pesticide was applied to i-th 

paddy plot, WHP with user specified duration was operated. During this period, the 

irrigation is not applied even when Hpond was below Hmin and the irrigation supply the 

amount of daily water requirement if Hpond was less than 0.1cm. After WHP, a constant 

intentional drainage was operated at the user specified rate except for the day the 

unintentional drainage higher than the specified intentional drainage rate occurred. After 30 

day after application, midsummer drainage was practiced for 7day. After midsummer 

drainage, the paddy plot maintained the constant flooding condition with no intentional 

drainage and no pesticide loss was assumed. The volumes of both intentional and 

unintentional drainage (QDRAIN, L3T-1) water were calculated according to the rectangular 

weir formula (Rao and Muralidhar, 1963): 
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23
LWDRAIN hB5495.1Q   (6.1) 

where Bw is the width of drainage gate (L) and hL is the depth of spill-over water given as 

Hpond -
 Hmax, if Hpond > Hmax (L). Figure 6.3 shows overall water management schedule 

during the simulation. 

 

 

Fig. 6.3 overall water management schedule during the simulation 
 

The concentration of applied pesticide in paddy water at each paddy plot was 

calculated from PCPF-1Rv1.1 model with inputs for the chemical processes and the water 

balance as described in previous paragraph. The inputs for the chemical processes could be 

derived from the inverse analysis as explained in Chapters 4 and 5. Finally, the runoff 

volume of water (VDRAIN) and amount of pesticide (MDRAIN) in the paddy block were 

calculated by following equations: 
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where Area is the total area of paddy plot within the paddy block (L), fi is the area fraction 

associated with i-th application day, Draini is the rate of drained water from paddy plot at 
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i-th application day (L/T), and CPW,i is the concentration of pesticide in paddy water of 

paddy plot at i-th application day (L3/T). 

 

6.2.2. Non-paddy cell: Land use based tank model 

The non-paddy cells categorized as the land use types of forest, agricultural field, and urban 

area for in the basin grids were described by the respective tank models as shown in Fig.6.4. 

The tank model initially developed by Sugawara (1961) has been widely used for the runoff 

analysis because its structure is simple, which rainfall-runoff process is described using 

position and size of pore and meteorological data such as rainfall amount and ET. In the 

land use based tank model, the forest tank model was comprised of four serial tanks; top 

tank for surface runoff, second and third tank for subsurface runoff and bottom tank for base 

flow, respectively. Two serial tank models were assigned to the land use of agricultural field 

and urban area. Note that no modification was made to this module through the model 

improvement. Each tank calculates the unit runoff as the sum of the water runoff from 

horizontal outlets. Water movement and runoff within the tank were controlled by the height 

and size of vertical and horizontal outlet as well as the initial condition. Inflow of the water 

into each tank is confined when rainfall applied to the top tank, otherwise the loss of the 

water due to ET from the top tank was simulated. The amount of ET in non-paddy cell was 

determined by the Thornthwaite method (Thornthwaite, 1948). The general equations of the 

top and subsequent series of tanks are described as: 

       ETRAINHpzHa
dt

dH

k
kk 







  11

1
11,1,1     (6.4) 
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idH
kiki

k
kiki           (6.5) 

where H is the storage depth (mm), a is the coefficient of runoff pore, z is the height of runoff 

pore, p is the coefficient of infiltration, RAIN is the rainfall depth (mm), ET is the 

evapotranspiration rate, i is the number of tank (i = 2 ~ 4), and k is the number of coefficient. 

The actual discharge of water (Qrunoff, mm/hour) at simulated time was calculated from the 

unit discharge given as: 

    









i k
kikirunoff ziHaQ ,,                       (6.6) 

and the area of the grid cell. 
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Fig. 6.4 Structure of land use based tank model for forest, city and agricultural field 
 

6.2.3. Hydrologic model: STORE-DHM 

In PCPF-B/DRAFT 2.0 model, a GIS based distributed hydrologic model was newly 

introduced as the intermediate module between the paddy and non-paddy cells and the 

hydraulic model. Storage Released based Distributed Hydrologic Model (STORE DHM) 

was developed by Kang and Merwade (2011) as a grid based hydrologic model using an 

object oriented framework within GIS. The original conceptual framework of the storage 

release concept in STORE DHM consisted of excess rainfall estimation by the Soil 

Conservation Service (SCS) curve number technique, and volumetric flow rate and travel 

time to the basin outlet computation by combining steady state uniform flow 

approximation with Manning’s equation. The conceptual illustration of the storage release 

concept is shown in Fig. 6.5. 
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Fig. 6.5 Storage release concept presented by Kang and Merwade (2011) 
 

On the application in PCPF-B/DRAFT 2.0 model, the estimation of excess rainfall 

was substituted by the runoff generation in paddy and non-paddy cells. After the runoff 

was computed, water and pesticide within target basin other than main stream computed by 

the hydraulic model were assumed to flow through a series of buckets. At the given time 

step, the buckets stored the accumulated water and pesticide released from upstream 

buckets, and then released the stored water and pesticide to downstream buckets when the 

time step was advanced to next. The water and pesticide mass balance equations in the 

bucket are given as: 

    tRtRStQS tutitititi ,,1,,,   (6.7) 

    tRCtRCMtQCM tutRutitRititititi ,,,,1,,,,   (6.8) 

where Q is the flow corresponding to the runoff generated at paddy and non-paddy cells 

(L3/T), Δt is the time step (T), S is the storage of water (L3), R is the release flow(L3/T), M 

is the stored mass of pesticide and C is the concentration of pesticide at paddy cells that is 

calculated as: 

 
DRAIN

DRAIN
ti V

M
C ,  (6.9) 

and CR is the released concentration of pesticide. The subscript i and t represent the grid ID 

and the time step ID, respectively, and u means the surrounding upstream cells that are 
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draining to cell i. The release term was determined based on the travel time (T) within the 

bucket and given as: 
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Note that the all release terms were set to be zero and all flow terms were stored at the first 

time step. Although the previous studies computed the travel time by distinguishing 

overland flow from the channel flow (Kang and Merwade, 2011; Melesse and Graham, 

2004; Muzik, 1996), this study assumed all water and pesticide flowed in the imaginary 

drainage canal in the target basin other than main stream. For the channel flow case, flow 

velocity (V) was computed by solving Manning’s equation and the continuity equation as 

below: 
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where B is the channel width (L), y is the depth of water, Sf is the friction slope, R is the 

hydraulic radius (L) and n is the Manning’s roughness coefficient. To exclude the 

computational complexity, wide rectangular channel geometry, and therefore it can be 

assumed to be R = y, and Sf = S, where S0 is the slope of channel and Eqs. (6.12) and (6.13) 

yield: 
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Finally, the travel time at i-th cell is estimated from the channel flow velocity and the flow 

distance that equals to the cell size for vertical or horizontal flow and 1.414 times of the 

cell size for diagonal flow: 
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,
,  . (6.15) 

The overall computational flowchart of STORE DHM is shown in Fig.6.6. 
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Fig. 6.6 Flowchart of STORE DHM 
 

6.2.4. Hydraulic model: DRAFT model 

6.2.4.1. Water flow 

In the hydraulic model of DRAFT model, water flow in the main stream was simulated by 

the one dimensional dynamic wave model which describes unsteady gradually varied flow. 

The governing equations of dynamic wave model are referred to as the St. Venant equations 

and expressed as (Cunge et al., 1980): 
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where A is the cross-sectional area [L2], Q is the volumetric flow rate [L3/T], t is the time [T], 

x is the distance along the flow direction [L], β is the correction factor (= 1 in this study) [-], 

g is the gravitational acceleration [L/T2], h is the flow depth [L]. The friction slope was 

approximated by the Manning formula: 

 342
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f RA

QQn
S  . (6.18) 

Since Eqs. (6.16) and (6.17) are impossible to be solved analytically in the engineering 

approach, numerical methods have been used to obtain the approximated solutions. Method 
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of characteristics (Abbott, 1979) was applied in the beginning, after that implicit finite 

difference method (Cunge et al., 1980) and finite element method (Cooley and Moin, 1976) 

have been widely adopted. In recent years, an explicit finite difference method which was 

strongly affected by computation time has also been utilized because of the advancement  

of computer (Unggoon et al., 2009). Among them, the four-point implicit finite difference 

scheme, so called the Preissmann-type box scheme, is one of the most popular and robust 

application in river routing modeling using the St. Venant equations. The advantages of this 

scheme are that I) it works on non-staggered grid so that both unknowns in the St. Venant 

equations can be calculated in the same node; II)  it’s computational plain is box-type 

which is comprised of two neighboring nodes only, and therefore selection of space step 

can be chosen without affecting the accuracy of approximation; III) it ensures 

approximation of 1st order or 2nd order of accuracy and IV) since it is implicit scheme and 

unconditionally stable so it does not require limiting of the value of time step (Szymkiewicz, 

2010). Consider an approximated function f (x, t) in space and time shown in Fig. 6.7 and 

discrete forms of f (x, t) and its derivatives with respect to time and space at point P are 

expressed as: 

 

Fig. 6.7 Grid point for the Preissmann scheme and interior boundary condition 
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where θ is the weighting parameter ranging from 0 to 1 and set to be 0.55 in this study, j is 

the index of cross-section and n is the index of time level. Let us apply above approximation 

to Eqs.(6.16) and (6.17) and the governing equations become: 
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Eqs. (6.22) and (6.23) are rearranged with respect to the unknowns of Q
n+1
  j  and Q

n+1
j+1  for the 

continuity equation, and  h
n+1
  j

 and h
 

n+1
j+1  for the momentum equation. 

At the upstream boundary conditions (x = 0), the observed or calculated hydrograph, 

Q(0, t) = QU(t); where subscript U represents upstream, were imposed. At the downstream 

boundary (x = L; where L is the length of river), a loop rating curve that estimates boundary 

discharge using Manning formula and modified momentum equation (Fread, 1993) was 

applied and expressed as: 
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In addition to the abovementioned external boundary conditions, several hydraulic 

structures such as junction and weir were considered as the internal boundary conditions 

(see Fig. 6.8). At a river junction where two or more flows merge and at the inflow directly 

released from other land use, the continuity and energy equations were required to be 

satisfied as the junction internal boundary. The continuity equation is expressed as: 

 



m

i
id QQ

1

 (6.28) 

where subscript d represents the lower-junction node and m is the number of the 

upper-junction node. In Eq. (6.28), the effect of storage is negligible. The energy equation 

can be simplified by assuming that the head loss and the other local energy loss are 

negligible (Akan and Yen, 1981): 

 mihh di ,,2,1   . (6.29) 

 

Fig. 6.8 Internal boundary conditions for unsteady flow computation 
 

Note that the proposed river routing approach is applicable only for branched river network 

and not able to simulate looped river networks. For weir, two types of flow condition (Fig. 

6.8 (b)) are considered and described coupling with a continuity equation as followed:  

 DU QQ   (6.30) 

Critical flow (1.5HD < HU) 
235495.1 UWU HBQ   (6.31) 

Submerged flow (1.5 HD ≥ HU)     DUDWU HHHBQ  0258.4  (6.32) 
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where BW is the width of weir, QU and QD, are the discharges at upstream and downstream of 

the weir, and HU and HD are the water depths above datum at upstream and downstream of 

the weir given as hU - DU or hD - DD in Fig.6.8 (b). 

By integrating discrete forms of St. Venant equations, external- and internal 

boundary conditions, a set of non-linear algebraic equations is obtained as: 
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The resulted set of non-linear equations was linearized by Newton-Raphson method and 

become: 

           IIII I xFJxx  11     (6.34) 

where x is the vector of unknowns, α is the adjustment coefficient, J is the Jacobian matrix 

and superscript I corresponds the number of iterative processes. The algebraic equations in 

Eq. (6.34) was solved by double sweep algorithm (Nguyen and Kawano, 1995). It is 

frequently observed that the solution of the set of Eq. (6.34) including internal boundary 

conditions such as weir does not converge within a tolerance. To prevent the numerical 

oscillation of the solution during the iteration process, the set of Eq. (6.34) was solved using 

six iteration (Imax = 6) with adjustment coefficient set at [α(1) = 1.0, α(2) = 0.4, α(3) = 0.5, 

α(4) = 0.5, α(5) = 1.0, α(6) = 1.0] (Kubo et al., 1993). 

 

6.2.4.2. Additional numerical considerations in flow simulation 

The disadvantage of Preissmann scheme is that the numerical stability not valid for 

simulating the transition of the flow condition from subcritical flow to transcritical- and 

supercritical flow mainly caused at the steep slope channel. The possible solutions were to 

solve St. Venant equations by explicit solution scheme such as two-step Lax-Wendroff 

scheme (Unggoon et al., 2009), and coupling St. Venant equations with the kinematic wave 

model (Jha et al., 2000) or the diffusion wave model (Hassan et al., 2009) imposing to hilly 

area, which could simulate the transcritical flow. On the other hand, imposing the weir as 

the hydraulic structure in the channel is also the effective for the prevention of transcritical 
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flow (Kubo et al., 1993). In original DRAFT model, the channel bed with steep slope was 

altered step shape with small weir whose height was 0.1 m (Fig. 6.8 (c)) so that unsteady 

flow computation can be continued without occurrence of the transcritical- and supercritical 

flow (Kubo and Nakase, 1992; Yoshida et al., 2000). 

Through the model improvement, DRFAT model was able to simulate the flow 

condition under the natural channel geometries that had irregular longitudinal and 

transversal shapes. The channel cross-sections were defined numerically by sets of 

coordinate pairs (Yi, Zi)—where Yi, and Zi are the surveyed station and the elevation above 

the datum—related to the local coordinate system as shown in Fig.6.9. To tabulate the 

cross-sectional parameters such as flow depth, area, channel width and wetted perimeter, 

the sets of coordinate pairs for the cross-section were analyzed by the Cross-Section 

Hydraulic Analyzer (xsecAnalyzer), which was the Excel Spreadsheets based program 

providing the cross-sectional properties under uniform flow condition (NRCS, 2011). 

 

 

Fig. 6.9 Example of natural channel geometry expressed by sets of coordinate pairs 
 

Numerical solution of the St. Venant equations by Preissmann scheme requires derivatives 

of the cross sectional area (A) and the wetted perimeter (P) as the functions of the flow 

depth (h) in the estimation of Jacobian matrix for Newton-Raphson method. To obtain the 

smooth interpolation of cross-sectional parameters and derivatives between the tabulated 
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data, the cubic spline function was used to obtain the relationship of A:h, P:h and B:h. 

Although the cubic spline functions have, by definition, the first-order smooth derivative, 

the cubic splines derived from the full tabulated data results in non-monotonic behavior of 

the derivative with various local maxima and minima as shown in the solid lines of 

Fig.6.10, which can lead to solution divergence or oscillation (Liu and Hodges, 2014). 

Therefore, the sets of the tabulated data were reduced to use the cubic spline fitting. As can 

be seen in Fig.6.10, the first-order derivative became close the monotonic behavior as 

compared the full data fitting although the accuracy of interpolation was need to be 

compromised. 

  

 

Fig. 6.10 Example of cubic spline fittings for (a) area− flow depth and derivative, (b) 
wetted perimeter−flow depth and derivative, and (c) channel width− flow depth 
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6.2.4.3. Pesticide mass transport equation 

Pesticide mass transport in main stream was governed by the one-dimensional advection 

dispersion equation: 
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 (6.35) 

where C is the pesticide concentration in the surface water [M/L3], D is the longitudinal 

dispersion coefficient [L2/T] and kdecay is the first-order bulk degradation rate constant of 

pesticide in surface water [1/T]. Eq. (6.35) was solved by modified finite element method 

based on the Galerkin finite element method (Szymkiewicz, 2010). Let us consider the 

vector of approximate function f = (f1, f2, … , fM)T and numerical grid shown in Fig.6.11. 

 

Fig. 6.11 Numerical grid for modified finite element method 
 

The same as Galerkin finite element method, individual approximated functions were given 

as: 

     Nf 


tfNtxf
M

j
jja

1

,  (6.36) 

where f(x,t) is the approximate function and N = (N1, N2, … , NM)T is the vector of basis or 

shape function. For the modified finite element method, linear basis function is used. From 

the assumption that the sum of residual of Eq. (6.36) becomes zero along the entire system, 

individual integrals in the elements are: 
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The concept of the modification is that the integral in Eqs. (6.37) and (6.38) can be expressed 

as products of certain weighted average values of the function in the elements, fc and are 

expressed as: 

 For (6.37):        tf1tftf 1jjc    (6.37) 

 For (6.38):        tftf1tf 1jjc    (6.38) 

where ω is the weighting parameter ranging from 0 to 1. Note that if ω = 2/3, the standard 

Galerkin finite element method is obtained. Applying this scheme to Eq. (6.35), the products 

of integral are obtained as following: 
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and  
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where U is the average flow velocity calculated as U = Q/A. Finally, the global system of 

ordinary differential equations is given as: 
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- for j = 2, 3, …, M-1 
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- for j = M 
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It should be noted that the system at upstream and downstream nodes contain the diffusive 

flux terms and D • dC/dt and these terms take place when Neumann-type boundary condition 

is imposed. Consequently, the global system of Eqs. (6.42) – (6.44) can be expressed as the 

vector of ordinary differential equations: 

   0
dt

d
 fDCB

f
A  (6.45) 

where A is the constant three-diagonals matrix given by the time variable term, B is the 

variable three-diagonals matrix given by the advection term, C is the variable 

three-diagonals matrix given by the dispersion term and D is the constant three-diagonals 

matrix given by the first-order decay term. Note that all matrices are of dimension of (2M) × 

(2M). Finally, given initial value problem of the system of ordinary differential equation can 

be solved by the implicit scheme discretized as following: 

         nnn1n1n1n 1tt fDCBAfDCBA     (6.46) 

where θ is the weighting parameter ranging from 0 to 1. Discretized form of Eq. (6.46) was 

also solved by double sweep algorithm. 
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Longitudinal dispersion coefficient in the surface water was estimated at each node 

based on the local hydraulic parameters using the solutions in Eqs. (6.16) and (6.17). The 

adopted equation for estimation of longitudinal dispersion coefficient developed by Fischer 

et al. (1979) is: 
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
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where U* is the bed shear velocity [L/T].  

The external boundary conditions at the upstream and downstream are specified as 

fixed concentration and flux, respectively. At the internal boundary of junction and the 

inflow from the paddy section and the non-paddy section, pesticide concentration at the 

lower-junction node, Cd is calculated as: 
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Since the segment size of internal boundary of the weir was set to be small enough as 

compared to the neighboring internal nodes, the concentration of pesticide between 

upstream and downstream of the weir was assumed to be continuous. 

 

6.3. GIS processing 

To feed the spatial properties of target basin into PCPF-B/DRAFT 2.0 model, a new GIS 

data processing procedure for PCPF-B/DRAFT 2.0 modeling was developed using the 

vector and raster data formats. The procedure consisted of hybridized raster–vector 

analyses to give the computational network for the main stream, the computational 

sequence of grid cells in target basin other than the main stream and the cross-sectional 

geometries for the main stream. The flowchart of the hybrid method is shown in Fig.6.12. 
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Fig. 6.12 Flowchart of GIS processing method 
 

6.3.1. Data acquisition 

Table 6.1 shows the all data properties and sources for GIS analysis. All the data are 

obtained as the Japan Profile for Geographic Information Standards (JPGIS) format 

encoded by Geography Markup Language (GML) or eXtensible Markup Language (XML). 

The river line data is 1:25,000 level river data interpreted from original data (River 

Infrastructure maps, digital maps, River management section maps, etc.) created from 2006 

to 2009. The river basin boundary data corresponds to the basin and non-water catchment 

areas that derived connecting the nodes of riverine system and expressed by the polygon 

created in 2010. The land use data is created based on the compilation in tertiary mesh 

(100 m resolution) of land use status indicated with 12 types of items status of land 

utilization as indicated by satellite image in 2014. The DEM data is the results of airborne 

laser scanning with 5 m resolution. In the GIS processing, the obtained DEM data having 

JPGIS (GML) formats were merged and converted to the GeoTIFF file format—a public 

domain metadata standard which allows georeferencing information to be embedded 

within a Tagged Image File Format (TIFF) file—using the convertor tool provided by 

Ecoris Inc., Japan (https://www.ecoris.co.jp/). The soil data is provided as 1:50,000 level 

soil series group, soil group, texture and physicochemical properties. In the subsequent 

GIS processing, to express the Spatial Reference System (SRS), the Japan Geodetic Datum 
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2000 (JGD2000) and the plane rectangular coordinate system (Japan Plane Rectangular CS 

I− XIX) were selected as the geodetic system and the projection method, respectively. 

 

Table 6.1 Data properties and sources for GIS data 
Data category Data name Data type and class Data source 
River line Rivers v3.1 Vector (line) MILT (2009)
River basin boundary Basin and Non-Water 

Catchment Areas Version 
1.1 

Vector (Mesh) MILT (2010)

Land use Land Use Fragmented Mesh 
Data (raster data) Ver. 2.5 

Raster  
(100 m resolution) 

MILT (2014)

DEM Digital Elevation Model Raster  
(5 m resolution) 

GSI (2019) 

Soil Digital cultivated soil maps Vector (Mesh) NARO (2017)
 

6.3.2. Vector data processing 

The vector data projected in QGIS were exported to GRASS GIS. Note that the river basin 

boundaries not related to the target basin were removed using QGIS editing tools before 

export. The river lines were extracted on main stream or tributary basis. The extracted river 

line were divided into 100-m-long segments and assigned the IDs. After addition of the 

attribution table containing the segment lengths and IDs, all river lines were merged to 

give the processed river line. The processed river line, river basin boundary and soil data 

were converted to the raster maps, and then exported to csv data format with x-y 

coordinates including no data value. Figure 6.13 shows the overall procedures of the river 

line data processing and Appendix 6.1 shows the code of GRASS GIS for this processing. 

 

 

Fig. 6.13 Overall procedures of river line data processing 
 

6.3.3. Raster data processing I: Preparation of inputs for grid cell ordering 

DEM and land use raster maps were first clipped to the target basin using river basin 
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were adjusted to the land use data. The original land use map classified eleven types of land 

uses which were re-classified 5 land types: 

- Class 1 (Forest): forest, wasteland and golf link areas, 

- Class 2 (Paddy field): paddy fields, 

- Class 3 (Agricultural field): agricultural land other than rice fields, 

- Class 4 (City): building lot, traffic road and other land, 

- Class 5 (Water area): pond and river. 

The flow direction and flow accumulation maps were generated from DEM by means of 

r.watershed command in GRASS GIS, which could calculate a set of hydrological maps 

indicating the location of streams and the basin boundaries as well as aforementioned two 

maps by AT least cost path method (Metz et al., 2011). Note that the flow direction map 

stands the direction of water flow into adjacent cells using slope from neighboring cells in 

a raster grid cell and the flow accumulation shows a cumulative count of the number of 

cells that naturally drain into outlets. In this process, the single flow with eight directions 

(D8), the use of positive flow accumulation and beauty flat area option were applied. 

Finally, all raster maps were converted to the csv data format with x-y coordinates 

including no data value. Figure 6.14 visually explain abovementioned procedures and 

Appendix 6.2 show the code of GRASS GIS for this processing. 

 

 

Fig. 6.14 Visual representation of raster data processing 
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6.3.4. Raster data processing II: Survey of cross-section geometries in main stream 

DEM data was also used to extract the cross-section geometries as the inputs for the 

hydraulic model in main stream. Using QGIS, DEM was converted to the shaded relief 

map to recognize the three-dimensional characteristics of the target basin. Then the 

transversal profiles of main stream were obtained by using qProf tool, a QGIS plugin to 

create a topographic profile drawn the digitized line on the source data. In the cross-section 

survey, user appropriately specifies the ends of the river banks on the shaded relief map as 

shown in Fig.6.15. When this process is technically difficult, another option to overly the 

Google Earth view to QGIS view using GEarthView plugin and draw the path of the ends 

of the river banks. This path can be exported as KMZ file format and projected in QGIS 

view. The obtained the transversal profiles of main stream were exported as csv files 

containing sets of coordinate pairs (Yi, Zi) and analyzed by xsecAnalyzer to give the series 

of cross-section geometries and the bottom elevations that determined the bed slopes in 

subsequent process. 

 

 

Fig. 6.15 Example of cross-section survey using QGIS 
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6.3.5. Soulis ordering 

In the spatially distributed hydrological models like STORE DHM used in this study, the 

target basin is expressed by a numbers of the discretized grid cells, each of which 

represents a hydrological response depending on the cell property. The computations of 

these models should proceed in correct hydrological sequence where the hydrological 

response in grid cell is propagated from one cell to another neighboring cell until it reaches 

the specific outlet. To achieve this efficiently, a grid cell ordering method developed by 

Soulis (2013) was applied to STORE DHM. The original Soulis ordering method utilizes 

flow direction and flow accumulation to order the cells of the target basin so as to form a 

hydrological cascading system. In this GIS processing, the processed and rasterized flow 

line data was additionally used to search the linking points between hydrologic model and 

hydraulic model. The detailed procedures are following paragraph.  

At first step, the total counts of each unique flow accumulation value were 

accommodated to one dimensional (1D) cell counter array by ascending order. Then each 

unique flow accumulation value was sorted to the x and y coordinates arrays by screening 

raster cell. Meantime, by utilizing the x-y coordinates, the conversion of two-dimensional 

(2D) array to 1D array rearranged by the flow accumulation values was enabled. As the 

second step, downstream pointer arrays were explored using the flow direction map 

characterized as D8 single flow. If the downstream pointer array could not be found, the 

cell was recognized as the end-cell or sink-cell and excluded from the final output. In 

addition, when the downstream pointer array overlaid with the segment in the processed 

and rasterized flow line data, the cell was recognized as the linking node to the hydraulic 

model. Except for aforementioned cases, exploring the downstream pointer array was 

continued until the flow accumulation value became the maximum and the construction of 

hydrological cascading system was completed. Once the hydrological cascading system is 

constructed, other rasterized grid cell properties such as land use type, DEM value and soil 

types are easy to be incorporated to the hydrological cascading system by referring the 1D 

and 2D arrays. The segments of tributaries in the processed and rasterized flow line data 

were also included to the hydrological cascading system. These segments were assumed to 

have higher computation order than the grid cells characterized by the flow accumulation 

values and the computation order of them were determined based on the order of segment 
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IDs. Figure 6.16 shows the visual example of the hydrological cascading system by Soulis 

ordering method. 

 

Fig. 6.16 Visual example of hydrological cascading system by Soulis ordering method 
 

6.3.6. Construction of computational network for main stream 

As the last processing, the computational network for main stream was constructed using 

the processed river line data obtained from the vector data processing, the bed slope data 

obtained from the cross-section survey and the hydrological cascading system containing 

the linking nodes between the hydrologic model and the hydraulic model from the results 

of Soulis ordering. 

 

6.4. Model application 

PCPF-B/DRAFT 2.0 model and the hybridized raster–vector GIS analysis were applied to 

analyze the monitoring of rice herbicide concentration in river conducted as the MOE’s 

pesticide monitoring study in 2017. In 2017, the river monitoring study was conducted at 

four public water areas where located in Hokkaido Prefecture, Saitama Prefecture, Osaka 

Prefecture and Nara Prefecture. Totally ten pesticides—seven for paddy herbicides and 

three for insecticides used in paddy rice or non-paddy agricultural crops—were 

investigated. Among them, the monitoring data of paddy herbicide, pretilachlor in Oppe 

River Basin located in Saitama Prefecture was selected for analysis. 
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6.4.1. Description of river monitoring study method 

The purpose of the MOE’s pesticide monitoring study in river is to investigate the actual 

detection state of the pesticides whose PEC values are close to the AECs in river water. 

The target pesticides are selected based on the condition that the usage of pesticides can be 

traceable and their ratio is relatively high (>10% for paddy use and >5% for non-paddy 

use). The monitored basin should be selected the public water area where the agricultural 

fields (paddy or non-paddy) the target pesticide applied were intensively distributed. It is 

desirable that more than three sampling points including the assessment point, the behavior 

observation point and the upstream observation point are selected. The assessment point is 

regularly monitored point in public water areas that are located near the downstream site of 

the relevant area (water environment standard points or supplementary environmental 

reference points). The behavior observation point is defined as the main drainage canals 

where behavior of pesticide runoff from the relevant agricultural fields can be monitored 

adequately. The upstream observation point is upper point than the confluence where the 

drainage water from the relevant agricultural fields flows into the main stream. 

The river water samplings are started just before the target pesticide applied and 

sampling frequency should be increased during the peak application period. Afterwards, 

the sampling should be continued every one or two week until the concentration of target 

pesticide is sufficiently declined. The time of sampling, pH, temperature and turbidity of 

sampled water are also recorded. For the chemical analysis, the LOQ should be set 

1/5−1/10 of PEC values or below. 

 

6.4.2. Descriptions of monitoring site and detail 

Oppe River is a Class A river as the branch of Iruma River in Arakawa riverine system 

located in western region of Saitama Prefecture (see Figure 6.17 and 6.18). The channel 

extension is 34.3 km and the basin area is 420 km2. Totally eleven branch rivers are flow 

into Oppe River until the confluence of Iruma River. Among them, Koma River and Toki 

River have the longest channel extension (40.2 km) and largest basin area (161 km2), 

respectively.  
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Fig.6.17 Location of Oppe River Basin 

  

Fig. 6.18 Oppe River Basin and monitoring points 
 

The monitoring study was performed by the Saitama Agricultural Technology 

Research Center. Three pesticides, clothianidin and thiamethoxam for paddy insecticides, 

and pretilachlor for paddy herbicide, were selected analytes. During the monitoring, the 

river water was sampled from four sampling points as indicated in Fig.6.18. The water 

sampling was started from April 18 and continued until July 18. Totally 17 water samples 
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were collected and analyzed. For pretilachlor, the target herbicide in the model application, 

the LOQ value was 0.03μg/L and the estimated usage ratio was 20%. The other pesticides, 

clothianidin and thiamethoxam, were analyzed with the LOQ values of 0.005μg/L and the 

usage ratios of them were 6.6% and 0.7%, respectively. 

 

6.4.3. Model setup, execution and evaluation 

Table 6.2 summarizes the data list other than GIS data required to execute 

PCPF-B/DRAFT model. To simulate the water flow condition in Oppe River basin 

appropriately, the observed water discharge and water level were used to compare to the 

simulation results. As shown in Fig.6.18, the data were obtained from total six 

observatories, one place for Koma River and Toki River and the rests were for Oppe River. 

The precipitation data used for the calculation for the paddy and non-paddy cells were 

taken from the nearest observatories (see Fig.6.18). Other meteorological data used to 

estimate ET in the paddy cell were taken from Japan Meteorological Agency. To simulate 

the pretilachlor dissipation in paddy fields, the inverse analysis of PCPF-1R model was 

performed using the experimental data of pretilachlor in the flooded lysimeter investigated 

in 2014 (see Chapter 3). The physicochemical properties of pretilachlor used for 

parameterization in PCPF-1R modeling were referred to the registrant submitted data. 

 

Table 6.2 Data properties and sources for hydrological and pesticide data 

 

In PCPF-B/DRAFT 2.0 model simulation, target basin was divided into four regions 

as shown in Fig.6.19: region 1; the upstream of Oppe River (upper than upstream behavior 

point), region2; Koma River, region 3: Toki River, and region 4; monitored area of Oppe 

River, which included at least one observatory for discharge or water level monitoring. 

Category Data Data source 

Hydrological data 

Discharge and water level Water Information System (MILT, 
2009) Observed data of hourly precipitation

Temperature, wind speed, humidity, 
solar radiation 

Japan Meteorological Agency (2009)

Pesticide data 

Dissipation data in paddy field Experimental data in Chapter 3 

Physicochemical properties FAMIC 

Concentration in river water Report of  MOE’s pesticide 
monitoring study Usage ratio, application schedule 
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Five pesticide application periods were determined from April 21 to May 24 where 

Saturday and Sunday had higher fractions in five days. For the water management in paddy 

fields, Hmax and Hpond were set to 5.0 cm so that continuous irrigation scheme was assumed 

after WHP. The daily percolation rate and drainage rate were set to 0.5 cm/day and 

seepage loss was not considered. No model validations were performed for both water flow 

and pesticide simulations and all observed data were used for calibration according to the 

recommendation of Arsenault et al. (2018). The time step of the hydraulic model was 

adjusted within the range of 600 to 1800 second depending on the convergence of the 

unsteady flow computation and other modules were set to 1 hour. The initial steady flow of 

the hydraulic model was obtained by the pseudo time-marching approach, which solved 

the unsteady flow equations with time-invariant boundary condition until flow condition 

became steady flow (Yu et al., 2017). Model calibrations were made by tuning the 

Manning roughness coefficient and the parameters of the tank model for water flow 

simulation, and WHP for pesticide simulation. 

 

 

Fig. 6.19 Computational regions of Oppe River Basin for PCPF-B/DRAFT 2.0 model 
 

The simulated results of flow simulation were visually and statistically evaluated by 

the same approach as previous study and those for herbicide behavior were performed only 

by visual assessment. The definitions and equations of statistical indices used for statistical 

analysis are found in the section 4.5 of Chapter 4. 
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6.5. Results and discussions 

6.5.1. Results of GIS processing 

Figures 6.20 (a), (b) and (c) shows DEM, land uses and soil groups in Oppe River basin. 

For the land use of Oppe River Basin, paddy field, non-paddy agricultural field, forest, 

urban area and water area shared 5.9%, 9.6%, 60.9%, 20.1% and 3.5% of the total area, 

respectively. The soil groups in the Oppe River Basin was categorized into andosol, 

lowland soils, brown forest soils, immature soils and no category (city or water area) and 

the distribution ratios of them were 51.1%, 31.5%, 0.2%, 14.1% and 3.1%, respectively. 

For paddy fields, the distribution ratios of andosol, lowland soils, brown forest soils and 

i m m a t u r e  s o i l s  w e r e  2 0 . 1 % ,  7 5 . 6 % ,  0 . 2 %  a n d  2 . 1 % ,  r e s p e c t i v e l y . 

  

 

  

 

 

Fig. 6.20 DEM, land uses and soil groups in Oppe River basin 
 

From the GIS processing, it was found that while the paddy fields in Oppe River Basin 

located along the streams had lowland soils, those in mountainous area were andosols. 

(a) (b)

(c) 
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Figure 6.21 shows the recoveries of the grid cells for land use from the raw data to 

the hydrological cascading system through Soulis ordering. The recoveries of the grid cells 

decreased as the region became flat. The reason for this result was that the flow 

accumulation map and the flow direction map were less accurate because the extraction of 

the difference of the elevation between the grid cells in DEM, the driving force of DEM 

analysis, became difficult. Therefore, considerable amounts of the grid cells might be 

abandoned during Soulis ordering.  

 

 

 

Fig. 6.21 Recoveries of grid cells for land use basis through Soulis ordering 
 

6.5.2. Results of water flow simulation 

Table 6.3 shows the calibrated parameters of the land used based tank model at each 

computational region. In the calibration process, the base flow condition of the hydraulic 

model at each region was adjusted by tuning the initial condition and the coefficient of 

runoff pore at the bottom tank of the forest tank. The extent and shape of peak discharge of 

the hydraulic model were characterized by the rest parameters of the forest, agricultural 

field and urban area tanks. For the hydrologic model, each grid cell had lengths of 92 m 

and 116 m for vertical or horizontal directions, respectively. In the channel flow simulation 
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to estimate the travel time, the Manning’s roughness coefficient was globally set as 0.040 

and the channel width was fixed to be 1 m according to the results of the sensitivity 

analysis performed by Melesse and Graham (2004). To parameterize the channel 

geometries for the inputs of the hydraulic model, the surveys of cross sections in Oppe 

River, Koma River and Toki River were conducted every 100 m and the tabulated flow 

depth, area, width and wetted perimeter, and the longitudinal bottom slope were obtained. 

Among them, the data sets having smooth cubic spline and its first-order derivate of A:h, 

P:h and B:h were only used for the inputs of the hydraulic model. Finally, the calibration of 

the hydraulic model was conducted by changing the Manning’s roughness coefficient. 

Consequently, the Manning’s roughness coefficients at the computational region 1, 2, 3 

and 4 were determined as 0.035, 0.035, 0.015 and 0.045, respectively. These values were 

agreed with the data presented by Chow (1959). 

Figure 6.22 shows the observed and simulated discharge or water level at each 

observatory in Oppe River Basin. At St.6, discharge data was not obtained so that the water 

level data was used. While the observed hourly water levels was obtained by adding the 

changes of water surface to Arakawa Peil (A.P. = 9.996 m), those for simulated was 

calculated as the sum of flow depth and bottom elevation (8.8 m) obtained from DEM. At 

the St. 1 and 2, the simulated results by the PCPF-B/DRAFT 2.0 model returned visually 

acceptable caption of the base flow condition. However, the PCPF-B/DRAFT 2.0 model 

underestimated the peak flow after precipitation. In addition to this underestimation 

tendency, the PCPF-B/DRAFT 2.0 model accurately could not simulate the decrease of 

base flow condition at St. 3, 4, and 5. The simulated result of the water level at St.6 

showed the underestimation during late April to middle of May, but acceptable 

performance in the later period. Table 6.4 shows the Statistical indices comparing observed 

and simulated data for flow simulation. Moriasi et al. (2007); (2015) provided acceptable 

prediction of stream flow rating was guaranteed when statistical indices were R2 > 0.60, NSE 

> 0.50, RSR ≤ 0.70 and PBIAS < ± 25%. Unfortunately, none of the simulated result fully 

satisfied this recommendation although several indices were partially satisfied. The 

possible reason of the underestimation of the peak flow was that the misspecification of 

tank parameters especially for the forest tank. As shown in Table 6.3, the manually 

calibrated tank parameters were different between the computational regions, and ones 

provided by Sugawara (1961). The current calibration approach, manually tuning 
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Table 6.3 Summary of calibrated tank parameters at computational regions 
 Region 1 Region 2 Region 3 Region 4 

Forest tank a12 0.3 0.25 0.1 0.5 
a11 0.08 0 0.1 0.1 
a2 0 0 0 0 
a3 0 0 0 0 
a4 0.0001 0.0001 0.00001 0.000002
p1 0.3 0.3 0.3 0.01 
p2 0.001 0.01 0.01 0.01 
p3 0.001 0.001 0.01 0.001 
z12 30 30 100 5 
z11 8 20 15 1 
z2 15 15 100 15 
z3 0 0 0 0 
z4 0 (300) 0 (140) 0 (50) 0 (200) 

Agricultural field tank a1 0.7 0.7 0.7 0.7 
a22 1 1 0 1 
a21 0.05 0.05 0.05 0.05 
p1 0.4 0.4 0.4 0.4 
p2 0.001 0.001 0.001 0.001 
z1 30 30 200 1 
z22 90 90 90 90 
z21 60 (40) 60 (60) 100 (0) 60 (60) 

Urban area tank a11 0.6 0.6 0.1 0.6 
a12 0.05 0.1 0.2 0.1 
a2 0.01 0.01 0.01 0.1 
p1 0.2 0.5 0.2 0.1 
p2 0.001 0.001 0.001 0.001 
z11 10 20 100 5 
z12 2 2 2 1 
z2 50 (25) 50 (50) 100 (0) 50 (50) 

The values in parentheses indicate the initial condition. 
 

the parameter by checking the discharge response of the main channel at downstream end, 

required enormous computational effort, and thus inefficient. Alternative approach such as 

parameter calibration using local hydrograph (Yoshida et al., 2000) would be necessary. 

However, acquisition of local hydrograph from open database is critical subject in further 

application. The decreases of the base flow at St. 3, 4, and 5 might be due to the intake to 

the irrigation canal because the decrease was observed from late April which started the 

rice cultivation in the Oppe River Basin. The proposed PCPF-B/DRAFT 2.0 model did not 

consider the internal boundary for intake such as headworks, and therefore further 

improvement will be necessary to obtain the accurate flow condition during rice cultivation 
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season. Similarly, GIS processing to obtain the point of water intake will be another 

subject for the modeling of the low flat area where rice cultivation is practiced. 

 

 

 

 

Fig. 6.22 Observed and simulation discharge and water level in Oppe River Basin 

0

5

10

15

20

25

30

35

40

45

500

2

4

6

8

10

12

14

16

18

20

4/15 4/25 5/5 5/15 5/25 6/4 6/14 6/24 7/4
R

ian
fa

ll (m
m

/h
r)D

is
c

h
ar

g
e 

(m
3 /

s)

Region 1, St.1

Observed Simulated

0

5

10

15

20

25

30

35

40

45

500

2

4

6

8

10

12

14

16

18

20

4/15 4/25 5/5 5/15 5/25 6/4 6/14 6/24 7/4

R
ian

fa
ll (m

m
/h

r)

D
is

ch
ar

g
e

 (
m

3 /
s)

Region 2, St.2

Observed Simulated

0

5

10

15

20

25

30

35

40

45

500

2

4

6

8

10

12

14

16

18

20

4/15 4/25 5/5 5/15 5/25 6/4 6/14 6/24 7/4

R
ian

fall (m
m

/h
r)

D
is

ch
a

rg
e 

(m
3 /

s)

Region 3, St.3

Observed Simulated

0

5

10

15

20

25

30

35

40

45

500

2

4

6

8

10

12

14

16

18

20

4/15 4/25 5/5 5/15 5/25 6/4 6/14 6/24 7/4

R
ia

n
fall (m

m
/h

r)

D
is

ch
a

rg
e 

(m
3 /

s)

Region 4, St.4

Observed Simulated

0

5

10

15

20

25

30

35

40

45

500

2

4

6

8

10

12

14

16

18

20

4/15 4/25 5/5 5/15 5/25 6/4 6/14 6/24 7/4

R
ian

fall (m
m

/h
r)D

is
ch

ar
g

e
 (

m
3 /

s
)

Region 4, St.5

Observed Simulated

0

5

10

15

20

25

30

35

40

45

509

9.5

10

10.5

11

11.5

12

4/15 4/25 5/5 5/15 5/25 6/4 6/14 6/24 7/4

R
ia

n
fall (m

m
/h

r)

W
at

er
 le

ve
l (

m
)

Region 4, St.6

Observed Simulated



 

  

 
206 

Table 6.4 Statistical indices comparing observed and simulated data for flow simulation 
  Region 1, St. 1 Region 2, St. 2 Region 3, St. 3 Region 4, St. 4 Region 4, St. 5 Region 4, St. 6 

Meanobs ± STDEVobs 0.5 ± 0.59 m3/s 0.3 ± 0.23 m3/s 0.7 ± 0.53 m3/s 1.1 ± 0.95 m3/s 0.9 ± 1.42 m3/s 9.7 ± 0.05 m 

Meansim ± STDEVsim 0.5 ± 0.24 m3/s 0.3 ± 0.24 m3/s 0.4 ± 0.29 m3/s 0.8 ± 0.53 m3/s 1.2 ± 0.75 m3/s 9.7 ± 0.07 m 

NSE 0.49 0.01 -0.32 0.42 0.84 -0.31 

RMSE 0.47 m3/s 0.23 m3/s 0.61 m3/s 0.73 m3/s 1.2 m3/s 0.1 m 

RSR 0.71 0.99 1.15 0.76 0.40 1.15 

PBIAS -0.1% -16.8% 45.2% 26.4% -33.4% 0.3% 

R2 0.50 
(Slope 0.92, 
Intercept 0.04) 

0.29 
(Slope 0.51, 
Intercept 0.12) 

0.12 
(Slope 0.62, 
Intercept 0.48) 

0.54 
(Slope 1.31, 
Intercept 0.04) 

0.28 
(Slope 1.00, 
Intercept -0.29) 

0.40 
(Slope 0.50, 
Intercept 4.86) 

br2 0.46 0.15 0.07 0.41 0.28 0.20 

STDEV: standard deviation; NSE: Nash-Sutcliffe efficiency; RMSE: root mean squared error; RSR: normalized root mean squared error; 
PBIAS: percent bias; R2: coefficient of determination; br2: R2 corrected by the slope and intercept of the corresponding regression line. 
Data at St. 1 to 5 were discharge and data at St.6 was water level. 
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Table 6.5 Statistical summary of specific discharges for observed and simulated data of Oppe River Basin, and literature data 
Region 1 Region 2 Region 3  Region 4 a) 350 river 

flow data b) Observed Simulated Observed Simulated Observed Simulated Simulated 

Mean (m3/s/100km2) 0.41 0.41 0.27 0.30 0.43 0.22 0.37 2.82 

Minimum (m3/s/100km2) 0.20 0.22 0.11 0.11 0.00 0.06 0.13 0.20 

Maximum (m3/s/100km2) 8.39 3.75 2.30 1.66 2.26 1.16 2.17 30.0 

Coefficient of variation (%) 1.19 0.91 0.81 0.77 0.76 0.79 0.77 0.85 

5th percentile (m3/s/100km2) 0.20 0.22 0.14 0.12 0.17 0.08 0.14 0.90 

25th percentile (m3/s/100km2) 0.24 0.30 0.16 0.21 0.22 0.14 0.21 1.66 

50th percentile (m3/s/100km2) 0.33 0.33 0.19 0.24 0.28 0.16 0.27 2.32 

75th percentile (m3/s/100km2) 0.38 0.35 0.33 0.30 0.61 0.22 0.42 3.44 

95th percentile (m3/s/100km2) 0.96 0.86 0.66 0.57 1.00 0.59 0.94 5.36 
a) Simulated data at St.6 were only used because observed discharge data were not available at St.6. 
b) Specific discharges were estimated from 185-day discharges of 350 rivers in Japan by Yachi et al. (2017). 
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To compare the flow condition of Oppe River Basin to other rivers and standard 

scenario, the observed and simulated discharge at the outlet of each computational region 

(St.1, 2, 3 and 6) were converted to the specific discharge on 100 km2 by dividing the area 

of each region (St.6 was whole area of Oppe River Basin). The statistical summary of 

specific discharges for observed and simulated data of Oppe River is given in Table 6.5. 

As the comparison, the specific discharges of 350 rivers in Japan calculated from the 

185-day discharge by Yachi et al. (2017) were also included. As compared to the mean and 

median values of 350 rivers data, those for Oppe River Basin at all outlets were about 

1/10−1/5 of them and less than 5th percentile value. Considering MOE’s monitoring 

guideline recommendation that the target basin to be monitored should have the specific 

discharge of 3.0 m3/s/100 km2, it can be said that the specific discharge of Oppe River 

Basin was quite low. 

 

6.5.3. Simulation results of pretilachlor behavior 

To parameterize the inputs for PCPF-B model for lowland soil and andosol cases, the 

inverse analysis of PCPF-1R model was performed using pretilachlor dissipation data 

applied as granular formulation in flooded lysimeters for alluvial and volcanic ash soil 

plots (LA-S and LV-S plots) in 2014. The procedure of the inverse analysis was same as 

section 4.4 of Chapter 4. The results of calibrated simulations with parameter uncertainties 

at LA-S and LV-S plots are shown in Fig.6.23 and the inputs for PCPF-B model are 

summarized in Table 6.6. Note that the calibrated parameters in Table 6.6 were ones that 

give the highest probability within the chain (bestpar). Pretilachlor in the granular 

formulation was reached the maximum concentration within a day and rapidly dissipated 

thereafter (DT50 in paddy water of LA-S and LV-S plots were 1.4 and 1.2 day, 

respectively). As the results of the inverse analysis, relatively high Kd values were obtained 

at both soils, and therefore the main dissipation pathway of pretilachlor was the adsorption 

to the paddy soil. In the PCPF-B modeling in Oppe River Basin, all applied pretilachlor 

was assumed to be granular formulation. 

 



 

 209 

  

Fig. 6.23 Observed and simulated dissipations of pretilachlor in lysimeters in 2014 
 

Table 6.6 Input parameters of pretilachlor for PCPF-B model calibrated by inverse 
analysis of PCPF-1R model using experimental data in 2014 

Parameter Symbol Unit LA-S plot LV-S plot 

Bulk density of PSL b-PSL g/cm3 1.04 0.68 

Saturated water content of PSL Sat-PSL cm3/cm3 0.62 0.74 

Application rate AppR g m-2 0.105 0.105 

Water solubility CSLB mg L-1 74.0  74.0 

First-order dissolution rate constant kDISS day-1 0.030 0.045 

Mass transfer coefficient from PW to atmosphere kL-A m day-1 1.9×10-4 1.9×10-4 

First-order bulk degradation rate constant in PW kDEG-PW day-1 0.038 0.037 

Fraction associated with the initial partitioning f – 0.14 0.60 

First-order bulk degradation rate constant in PSL kDEG-PSL day-1 0.037 0.037 

Linear distribution coefficient Kd L kg-1 61.5 92.7 

First-order diffusion rate constant kDIFF m day-1 0.003 0.004 

First-order sorption rate constant kSORP day-1 0.002 0.013 

Parameters with gray shaded rows were calibrated by inverse analysis of PCPF-1R model 
using pretilachlor dissipation in flooded lysimeters for alluvial and volcanic ash soils 
conducted in 2014. 
 

Figure 6.24 shows the simulated concentration of pretilachlor at each sampling point. 

While 3 days of WHP was uniformly fixed to the regions 1 to 3 where no observed 

concentration of pesticide was available, 1, 3, and 7 days of WHP were separately applied 

to the region 4. In the upstream observation point where the pesticide concentration was 
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affected by the simulated results of region 1 to 3, the simulated results of 7 days of WHP 

applied to the region 4 was close to the observed concentrations.  

 

  

  

  

Fig. 6.24 Observed and simulated concentration of pretilachlor at each sampling 
point of Oppe River: the observed data with closed form mean “<LOQ (0.03μg/L)”, 

and WHP in the bracket of simulated results was applied only to region 4. 
 

In the assessment point and the behavior observation points, the simulated results with 

1day of WHP well captured the peak concentrations. Comparing between two behavior 

observation points, the detection timings of the maximum concentration of pretilachlor 

were different with the span of two or three weeks. This indicated that the application 
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schedules of the paddy fields were totally different between the behavior observation point 

1 and 2. This difference was improved by assigning the two different schedules to the 

paddy cells based on the watershed boundary within the computational region 4 using 

Soulis ordering. The concentration of pretilachlor at the assessment point was largely 

influenced by that in the behavior observation point 2. The cumulative runoff of 

pretilachlor in Oppe River Basin was estimated to be 13% of applied mass (8.9%, 2.7%, 

7.7% and 27% for Region 1, Region 2, Region 3 and Region 4, respectively). Nakano et al. 

(2004) reported that cumulative pretilachlor loss was simulated to be 12% in Kozakura 

River with 15 km2 basin area. Although the estimated results were comparable, the high 

concentrations close to the AEC value (2.9 μg/L) observed at the assessment point were 

mainly due to low specific discharge of main stream and considerable runoff of 

pretilachlor from the paddy fields near the assessment point in Region 4. 

To evaluate the effect of water management practice, simulated results of 3 and 7 

days of WHP in the region 4 were also discussed. The concentrations of pretilachlor were 

effectively reduced as increase of WHP. The cumulative losses of pretilachlor for 3 and 7 

days of WHP were reduced to be 19% and 3.2% of the applied mass, respectively. These 

results suggested that the detections of pretilachlor in Oppe River Basin mostly due to the 

intentional drainage after pretilachlor application. During the simulation period, there was 

only one rainfall event larger than 2 cm as depth that considered as the trigger value to 

cause unintentional drainage (Kondo et al., 2012) and that day was after the detection of 

highest concentrations at the behavior observation and assessment points. Therefore, it was 

concluded that pretilachlor exposure level could be sufficiently reduced to be unconcerned 

level by the rigorous implementation of water management practice recommended by 

MOE (2009). 

 

6.5.4. Further consideration 

The original PCPF-B/DRAFT model was updated to the distributed H−H model, 

PCPF-B/DRAFT 2.0 to simulate water flow and pesticide behavior at small drainage 

canals or tributaries as well as the main stream. The main novelty of this improvement was 

that retardation effect of the water flow and pesticide transport until the confluence of the 

main stream could be realistically simulated by introducing the travel time concept in the 

hydrologic module, STORE-DHM. In addition, the hydrological cascading system 
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constructed by Soulis ordering method efficiently searched the link node between the 

hydrologic model and the hydraulic model. However, current approach was not robust for 

the case of the low-flat area where paddy fields mainly distributed due to inaccuracy of the 

flow accumulation map and considerable grid cell loss was found. To overcome this 

problem, the additional input of the rasterized river line vector data representing fine 

drainage canals to Soulis ordering method would increase more chance that the grid cells 

reached the link nodes before becoming the end-cell or sink-cell. The water flow and 

pesticide transport process in drainage canal are expected to be simulated by the 

hydrologic model. The availability of the vector data and minor model improvement are 

remained as future subject. 

For the simulation of pesticide behavior, although developed approach could get the 

reasonable prediction of pesticide concentration in river, a single simulated line was too 

less informative to assess the uncertainties associated with agricultural working such as 

pesticide application schedule and water management practice. Incorporation of a Monte 

Carlo framework is considered to be a practical solution. However, multiple run of current 

PCPF-B/DRAFT 2.0 model is impractical because of the enormous computational efforts. 

In recent year, an unique approach for predicting biomarker loss during transport in sewers 

has been proposed by McCall et al. (2017): they first fixed the hydrodynamic flow 

condition with single run of the unsteady flow computation, and then estimated the 

biomarker loss by solving simple kinetic model instead of the advection-dispersion 

equation under the Monte Carlo framework. Similar approach can be undertaken in 

PCPF-B/DRAFT 2.0 modeling as the extended usage in case to run the model with 

multiple scenarios in the future application. 

 

6.6. Summary and conclusion 

Through this chapter, the original PCPF-B/DRAFT model was improved to be the 

distributed H−H model, PCPF-B/DRAFT 2.0 model by coupling with a new hydrologic 

module STORE-DHM. Second, a procedure to construct the hydrological cascading 

system representing the river basin properties was developed using an open source GIS 

software and open data. Finally, PCPF-B/DRAFT 2.0 model was tested to simulate the 

monitoring of paddy herbicide (pretilachlor) concentration in Oppe River Basin conducted 

as the MOE’s monitoring study in 2017. For water flow simulation, although the accuracy 
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of simulation was needed to be improved, flow characteristics in Oppe River Basin was 

effectively analyzed regarding both discharge and water level. These hydrodynamic effects 

are important for predicting the pesticide transport processes by considering advective and 

dispersive transport based on the flow condition. The simulated pretilachlor concentrations 

at assessment point were greatly sensitive to the behavior of pretilachlor at neighboring 

drainage canal. Although the cumulative pretilachlor loss in whole target basin was 

relatively small, the level of the concentration of pretilachlor at assessment point was 

relatively high because of low specific discharge of main stream and considerable runoff of 

pretilachlor from the paddy fields near the assessment point. Since most of the pretilachlor 

detections were caused by the intentional drainage from paddy fields, the pretilachlor 

exposure could be mitigated by rigorous implementation of WHP after pretilachlor 

application. 
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Chapter 7   

Overall Discussions, General Conclusions and Future 

Perspectives 

 

7.1. Overall discussions 

To assess the regional exposure characteristics of paddy pesticides, this study aimed to 

develop a comprehensive modeling of paddy pesticide to bridge across the experimental 

and monitoring data in laboratory, field and basin scales. As discussed in Chapter 2, in the 

framework of the adaptive management, the post assessment process was mainly 

implemented by the monitoring of actual environment. Therefore, the stakeholders need to 

find the alternative or improvement measures from the site-specific monitoring data that 

contains the regional uncertainties (i.e., farmer’s agricultural practice and pesticide usage 

condition) and variabilities (i.e., climate condition and river flow condition). The 

developed modeling approach could be useful to access or extract the information what the 

stakeholders want to know by excluding the noises such as abovementioned uncertainties 

and variabilities as well as the constraints originated from the experimental design. 

Furthermore, the all experiment applied in this study were designed based on the test 

guidelines for the pesticide registration in Japan, and thus the developed modeling 

approach can be applied by using the registrant submitted data. Considering 

abovementioned two points, the findings and the future subjects in this study are discussed 

in following paragraphs. 

In Chapter 3, dissipations of a total of 20 pesticides, including 4 metabolites, in 

various formulation products were investigated under three application scenarios 

(submerged application, nursery-box application and foliar application) between flooded 

lysimeters and actual paddy fields. The similarities of the dissipation data between flooded 

lysimeters and actual paddy fields were assessed by the simple kinetic modeling to derive 

DT50. Although the flooded lysimeters could simulate nearly half of the decreasing phase 

of pesticide dissipation under submerged application of granular formulations in actual 

paddy fields, the accuracy of the detection level (dissolved concentration) was low. This 

tendency was consistent for the case of the submerged application of the flowable 

formulation. On the other hand, for the case of nursery-box application and foliar 
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application, the detection levels of two application scenarios were comparable between 

flooded lysimeters and actual paddy fields. From these results, it was found that the 

submerged application scenario was the highest possibility to variate the pesticide 

dissipation patterns between flooded lysimeters and actual paddy fields.  

To declare the cause of the variation between flooded lysimeters and actual paddy 

fields, the inverse analysis procedures of the mathematical model for predicting the 

environmental fate of paddy pesticides, PCPF-1R (v1.1) and PCPF-LR models were 

developed in Chapters 4 and 5. In Chapter 4, the results of the inverse analyses on the 

dissipations of the paddy herbicides with relatively higher water solubility, showed that the 

current experimental deign of the flooded lysimeters might underestimate the actual paddy 

fields mainly due to the faster daily percolation setting in the lysimeter experiment. This 

disadvantage was successfully improved by modifying the setting of the daily percolation 

rate to the levels of the actual paddy fields in the simulation of PCPF-1R model. Next, in 

the Chapter 5, the inverse modeling of the container test for flooded soil as the laboratory 

data was attempted to fill the lack of knowledge on the pesticide behavior in soil and 

interface between paddy water and soil, which were difficult to assess by the outdoor 

experiments such as lysimeter and paddy field. The container test for flooded soil was 

designed based on the original one previously used for the soil dissipation test and applied 

to four paddy herbicides that have wide range of physicochemical properties. The results of 

the laboratory scale modeling though the inverse analysis were highly informative in the 

viewpoints of assessing the initial partitioning and time-dependent sorption phenomena 

under static condition. Moreover, exporting the environmental fate parameters of the paddy 

herbicides regarding initial partitioning, interfacial transport and degradation in water and 

soil efficiently reduced calibrated parameters to field-specific ones in the inverse modeling 

of the outdoor experimental data. From these modeling, while the targeted herbicides 

applied in the actual paddy fields had tendency to be partitioned mostly to paddy water, 

those for the flooded lysimeters were mostly to soil regardless of the formulation types. 

These differences were mainly attributed by the physical mixing in the test system to 

horizontal direction for the former cases due to meteorological covariates such as wind and 

to vertical direction for the latter cases due to daily percolation setting. Therefore, it is 

important to compare the abovementioned environmental conditions in the actual fields to 

be assessed to the experimental deign of the lysimeter experiment when the dissipation 
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data in the flooded lysimeter is used for the exposure assessment. If there is no sufficient 

information on the environmental conditions, a Monte Carlo run of the calibrated model 

with multiple water management scenarios under various meteorological conditions 

(Kondo et al., 2012). Another key finding though the inverse modeling was that the effects 

of parameter uncertainties associated with the physicochemical properties of paddy 

pesticide could be reducible to negligible level by the developed inverse analysis although 

they were initially considerably high as anticipated by Boulange et al. (2012). 

In Chapter 6, as the largest scale in the regional pesticide exposure study, the 

simulation of the river monitoring study on paddy herbicide was conducted by 

PCPF-B/DRAFT 2.0 model in the modeled river basin using GIS software. For the 

hydrological process, although further improvements should be made to both model and 

GIS processing procedure, the developed approach ensures more realistic simulation of the 

water flow in whole target river basin depending on the topological features. The 

hydrodynamic effects such as advection and dispersion included in PCPF-B/DRAFT 2.0 

model may greatly affect to the herbicide occurrence in river, especially where are very 

steep with a short distance from the source to the sea, resulting in rapid flow like Japan 

(MILT, 2007). However, in the modeling, the usage ratios of herbicide and application 

schedule were the most dominant and uncertain factor affecting the accuracy of the 

prediction of the herbicide concentration in river. In addition, although the simulation of 

PCPF-B/DRAFT 2.0 model assumed that all target herbicide was applied as granule 

formulation, the type of formulation would also characterize the behavior of herbicide. As 

discussed in Chapter 3, the initial peak concentrations of paddy herbicides in flowable 

were significantly higher than those in granule. Similarly, as discussed in Chapter 5, DT50 

values of paddy herbicides were significantly different between granule and flowable 

although DegT50 values of them were insignificant. These differences meant that the 

dissipation pattern of paddy herbicide was mostly determined by the formulation type 

rather than the physicochemical properties. As a result, while sharp and high concentration 

peak would be detected in river or drainage canal when the flowable formulation are 

popularly used, relatively broad concentration peak may be expected for the case of the 

granule formulations. Therefore, it is important to investigate the formulation types of 

pesticide popularly used or recommended in target basin as well as the usage ratio and 

application schedule in both monitoring and modeling. 
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7.2. General conclusions 

Finally, a comprehensive modeling strategy of paddy pesticide from the laboratory scale to 

field scale and from field scale to basin scales could be generalized as shown in Fig.7.1. In 

the regional exposure assessment phase of paddy pesticide, the available data resource is 

not always sufficient (rather limited). To maximize the information volume extracted from 

the experimental or monitoring data, the application and feedback of the data between 

different scales are necessary. In this point, the developed structurally compatible 

modeling tools, PCPF-1R (v1.1), PCPF-LR and PCPF-B/DRAFT 2.0 models, and their 

analysis procedures could be helpful to quantify the environmental fate and transport 

characteristics of pesticide as the parameters and export these to other scale modeling. The 

interactive runs of monitoring and modeling as demonstrated in this study are the one of 

the possible solution to find the alternative or improvement measures to mitigate the 

pesticide exposure in the regional level. 

 

7.3. Future perspectives 

In the laboratory and field scale modeling, the automation of the model calibration using 

experimental data was achieved using the open software R. However, the metabolite 

predictions for both scales and the simulation under other application scenarios such as 

nursery-box application and foliar application have not yet been completed. In addition to 

these technical subjects, the openness of the source code of PCPF-1R (v1.1) and PCPF-LR 

models to the public another future task for the purpose of public interest. 

For the basin scale modeling, automations of the calibration of PCPF-B/DRAFT 2.0 

model and GIS processing were not discussed in this study. Considering the reproducibility 

of modeling process, additional development of automation method for this scale is 

necessary. As discussed in 7.1, probabilistic approach incorporating the Monte Carlo 

framework to the simulation of pesticide behavior is another important subject. This 

improvement enable user to justify the factors influencing the occurrence of pesticide in 

river. Same as PCPF-1R (v1.1) and PCPF-LR models, the openness of the source code of the 

basin scale modeling is also need to be considered. 

 

Finally, author wishes this study will contribute to establish the society where negative 

reputations never defeat the scientific knowledge in decision making about pesticide.
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Fig. 7.1 Schematic view of comprehensive modeling for exposure assessment of paddy 
pesticide: bold vertical arrows mean parameter transfers and feedback between 

models. 
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APPENDIX 

 

Appendix 3.1. Operating condition of LC-MS and LC-MS/MS 

LC-MS: 1100 Series (Agilent Technologies, Inc.) 

High performance liquid chromatograph (HPLC) 

 
Column: Inertsil ODS-3 (GL Sciences) 

150 mm × 2.1 mm, 5 μm particle size 

 Column temperature: 40 C 

 Injection volume: 20 μL 

 Mobile phase: A; 5 mmol/L ammonium acetate 

  B; Acetonitrile 

  Time 
(min) 

B 
(%) 

Flow rate 
(mL/min) 

  0.0 40 0.2 

  20.0 60 0.2 

  30.0 60 0.2 

  30.1 40 0.3 

Mass spectrometer (MS) 

 Ionization method: Electrospray ionization (ESI) 

 Ion detection method: Selected ion monitoring (SIM) 

 Nebulizer pressure: 50 psig 

 Drying gas flow rate: 12.0 L/min (N2) 

 Drying gas temperature: 350C 

 Capillary voltage: 3000 V 
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Appendix 3.1. Operating condition of LC-MS and LC-MS/MS (continued)  

Quantitative parameters of mass spectrometer for pesticides determined by LC-MS 

a) 2012 

Pesticides 
RT 

(min) 
Polarity 

Fragmentor voltage 
(V) 

Monitoring ion 
(m/z) 

MCPB 5.9 Negative 75 227.0 

Bensulfuron-methyl 6.7 Negative 125 409.1 

Simetryn 9.2 Positive 125 214.2 

Bromobutide-desbromo 14.6 Positive 100 234.2 

Molinate 14.8 Positive 125 188.2 

Daimuron 15.0 Positive 125 269.2 

Bromobutide 18.0 Positive 100 313.1 

Fentrazamide 19.6 Positive 100 350.1 

Pretilachlor 21.1 Positive 125 312.2 

MCPB ethyl 21.5 Positive 75 257.1 

Pyributicarb 24.0 Positive 150 331.2 

 
b) 2013 

Pesticides 
RT 

(min) 
Polarity 

Fragmentor voltage 
(V) 

Monitoring ion 
(m/z) 

Bensulfuron-methyl 6.7 Negative 75 409.1 

Probenazole 9.8 Positive 125 214.0 

Bromobutide-desbromo 14.6 Positive 100 234.2 

Daimuron 15.0 Positive 125 269.2 

Bromobutide 18.0 Positive 100 313.1 

Fipronil 18.2 Negative 75 434.9 

Fentrazamide 19.6 Positive 100 350.1 
RT: retention time 
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Appendix 3.1. Operating condition of LC-MS and LC-MS/MS (continued) 
LC-MS/MS: ACQUITY (UPLC) / Quattro premier XE (Waters Corporation, MA, USA)

High performance liquid chromatograph (HPLC) 

 Column: ACQUITY UPLC BEH C18 (Waters Corporation)
100 mm × 2.1 mm, 1.7 μm particle size 

 Column temperature: 40 C 

 Injection volume: 2 μL 

 Mobile phase (2014): A; 5 mmol/L ammonium acetate 

  B; Acetonitrile 

  Time
(min) 

B
(%) 

Flow rate
(mL/min) 

  0.0 10 0.2 

  3.0 10 0.2 

  3.0 50 0.2 

  6.5 50 0.2 

  11.5 90 0.2 

  11.5 10 0.2 

  14.5 10 0.2 

 Mobile phase (2015): A; 0.01% acetic acid 
  B; Acetonitrile

  Time
(min) 

B
(%) 

Flow rate
(mL/min) 

  0.0 10 0.3 

  3.0 60 0.3 

  7.5 60 0.3 

  12.5 90 0.3 

  14.5 90 0.3 

  14.5 10 0.3 

Mass spectrometer (MS) 

 Ionization method: Electrospray ionization (ESI) 

 Ion detection method: Multiple reaction monitoring (MRM) 

 Cone gas flow rate: 2014: 50 L/h (N2) 

  2015: positive; 60 L/h, negative; 40 L/h (N2) 

 Desolvation gas flow rate: 800 L/h (N2) 

 Desolvation temperature: 350C 

 Source block temperature: 120C 

 Capillary voltage: Positive; 3.5 kV, negative; 3.0 kV 
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Appendix 3.1. Operating condition of LC-MS and LC-MS/MS (continued)  

Quantitative parameters of mass spectrometer for pesticides determined by LC-MS/MS 
a) 2014 

Pesticides RT 
(min) Polarity 

Cone 
voltage 

(V) 

Collision 
voltage 

(V) 

Precursor 
 ion  
(m/z) 

Product 
ion 

(m/z) 

Imazosulfuron  3.1 Positive 20 10 413.2 152.8 

Clothianidin  3.4 Positive 20 10 250.0 168.9 

Bromobutide-desbromo  7.3 Positive 20 10 234.2 115.8 

Orysastrobin  7.5 Positive 20 15 392.5 205.0 

Daimuron  7.5 Positive 20 15 269.2 150.9 

(5Z)-orysastrobin  8.4 Positive 30 15 392.3 205.0 

Dimethametryn  9.0 Positive 20 10 256.2 186.0 

Bromobutide  9.6 Positive 20 10 314.2 195.9 

Fentrazamide 10.4 Positive 20  5 350.2 197.0 

Pretilachlor 11.2 Positive 20 15 312.3 252.1 

 
b) 2015 

Pesticides RT 
(min) Polarity 

Cone 
voltage 

(V) 

Collision 
voltage 

(V) 

Precursor 
 ion  
(m/z) 

Product 
ion 

(m/z) 

Dinotefuran  2.8 Positive 20 15 203.0 128.8 

Clothianidin  3.8 Positive 20 10 250.0 168.8 

Penoxsulam  5.1 Positive 40 25 484.3 195.0 

Bensulfuron-methyl  6.7 Positive 30 25 411.3 148.9 

Azoxystrobin  7.1 Positive 20 15 404.4 372.2 

Clomeprop metabolite B  7.7 Negative 20 10 247.2 174.9 

Orysastrobin  8.7 Positive 20 15 392.4 205.0 

Daimuron  8.8 Positive 20 15 269.2 150.9 

(5Z)-orysastrobin  9.8 Positive 20 15 392.3 205.0 

Fentrazamide 11.5 Positive 10 10 350.3 197.0 

Clomeprop 13.2 Positive 20 20 324.2 119.8 

Buprofezin 13.3 Positive 20 10 306.4 201.0 
RT: retention time 
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Appendix 3.2. Recoveries of analytes 
a) 2012 

Pesticides Spike level 
(mg/L) Test plot Replication Mean recovery 

(%) 
RSD
(%)

Pyributicarb 1 Alluvial 3 86 4
  Volcanic ash 3 84 2 

0.05 Alluvial 3 84 3 
  Volcanic ash 3 85 3 

0.001 Alluvial 3 77 2 
  Volcanic ash 3 77 2 
Pretilachlor 1 Alluvial 3 96 2 
  Volcanic ash 3 93 3 

0.05 Alluvial 3 95 2 
  Volcanic ash 3 96 2 
 0.001 Alluvial 3 93 1 
  Volcanic ash 3 92 1 
Daimuron 0.45 Alluvial 3 102 2 
  Volcanic ash 3 103 3 

0.05 Alluvial 3 96 2 
  Volcanic ash 3 98 2 
 0.001 Alluvial 3 92 1 
  Volcanic ash 3 93 1 
Fentrazamide 0.45 Alluvial 3 103 3 
  Volcanic ash 3 102 2 
 0.05 Alluvial 3 94 4 
  Volcanic ash 3 96 4 
 0.001 Alluvial 3 85 2 
  Volcanic ash 3 85 0 
Bromobutide 1 Alluvial 3 96 2 
  Volcanic ash 3 93 2 
 0.05 Alluvial 3 96 3 
  Volcanic ash 3 97 2 
 0.001 Alluvial 3 95 1 
  Volcanic ash 3 94 0 
Bromobutide- 0.45 Alluvial 3 99 2 
desbromo  Volcanic ash 3 101 3 
 0.05 Alluvial 3 95 2 
  Volcanic ash 3 96 1 
 0.001 Alluvial 3 95 1 
  Volcanic ash 3 94 2 

RSD: relative standard deviation 
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Appendix 3.2. Recoveries of analytes (continued) 
a) 2012 (continued) 

Pesticides Spike level 
(mg/L) Test plot Replication Mean recovery 

(%) 
RSD
(%)

Bensulfuron- 0.45 Alluvial 3 114 1
methyl  Volcanic ash 3 91 5 

0.05 Alluvial 3 93 3 
  Volcanic ash 3 94 2 

0.001 Alluvial 3 82 3 
  Volcanic ash 3 79 8 
Molinate 4 Alluvial 3 93 2 
  Volcanic ash 3 89 7 

0.05 Alluvial 3 91 2 
  Volcanic ash 3 93 2 
 0.001 Alluvial 3 91 2 
  Volcanic ash 3 93 1 
Simetryn 1 Alluvial 3 89 2 
  Volcanic ash 3 94 8 

0.05 Alluvial 3 89 3 
  Volcanic ash 3 89 1 
 0.001 Alluvial 3 90 1 
  Volcanic ash 3 90 1 
MCPB-ethyl 0.45 Alluvial 3 85 2 
  Volcanic ash 3 91 5 

0.05 Alluvial 3 85 2 
  Volcanic ash 3 85 3 
 0.001 Alluvial 3 107 2 
  Volcanic ash 3 106 4 
MCPB 0.45 Alluvial 3 99 2 
  Volcanic ash 3 101 3 
 0.05 Alluvial 3 93 4 
  Volcanic ash 3 94 2 
 0.001 Alluvial 3 109 4 
  Volcanic ash 3 91 1 

RSD: relative standard deviation 
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Appendix 3.2. Recoveries of analytes (continued) 
b) 2013 

Pesticides Spike level 
(mg/L) Test plot Replication Mean recovery 

(%) 
RSD
(%)

Fipronil 0.2 Alluvial 3 98 1
  Volcanic ash 3  98 1 

0.005 Alluvial 3 100 3 
  Volcanic ash 3  96 1 

0.0001 Alluvial 3 113 2 
  Volcanic ash 3 111 1 
Probenazole 0.2 Alluvial 3 100 1 
  Volcanic ash 3 102 2 

0.005 Alluvial 3  98 2 
  Volcanic ash 3  92 1 
 0.0001 Alluvial 3  91 5 
  Volcanic ash 3  91 3 
Daimuron 2 Alluvial 3 108 2 
  Volcanic ash 3 110 1 

0.05 Alluvial 3 109 1 
  Volcanic ash 3 107 1 
 0.001 Alluvial 3 106 2 
  Volcanic ash 3 107 1 
Fentrazamide 2 Alluvial 3 106 4 
  Volcanic ash 3 119 1 
 0.05 Alluvial 3 105 3 
  Volcanic ash 3 101 1 
 0.001 Alluvial 3 98 7 
  Volcanic ash 3 103 4 
Bromobutide 2 Alluvial 3 104 2 
  Volcanic ash 3 105 2 
 0.05 Alluvial 3 104 2 
  Volcanic ash 3  90 4 
 0.001 Alluvial 3 103 2 
  Volcanic ash 3  97 2 
Bromobutide- 2 Alluvial 3 105 2 
desbromo  Volcanic ash 3 102 2 
 0.05 Alluvial 3 105 2 
  Volcanic ash 3 93 5 
 0.001 Alluvial 3 87 2 
  Volcanic ash 3 84 4 
Bensulfuron- 2 Alluvial 3 98 2 
methyl  Volcanic ash 3 99 2 
 0.05 Alluvial 3 99 1 
  Volcanic ash 3 98 3 
 0.001 Alluvial 3 99 11 
  Volcanic ash 3 104 3 

RSD: relative standard deviation 
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Appendix 3.2. Recoveries of analytes (continued) 
c) 2014 

Pesticides Spike level 
(mg/L) Test plot Replication Mean recovery 

(%) 
RSD
(%)

Imazosulfuron 2 Alluvial 3 116 2
  Volcanic ash 3 108 4 

0.05 Alluvial 3 102 4 
  Volcanic ash 3 114 4 

0.001 Alluvial 3 109 13 
  Volcanic ash 3 116 11 
Daimuron 2 Alluvial 3 97 3 
  Volcanic ash 3 99 2 

0.05 Alluvial 3 99 1 
  Volcanic ash 3 100 1 
 0.001 Alluvial 3 101 2 
  Volcanic ash 3 88 9 
Fentrazamide 2 Alluvial 3 97 0 
  Volcanic ash 3 95 1 

0.05 Alluvial 3 96 1 
  Volcanic ash 3 95 1 
 0.001 Alluvial 3 105 4 
  Volcanic ash 3 90 8 
Bromobutide 2 Alluvial 3 97 2 
  Volcanic ash 3 99 3 
 0.05 Alluvial 3 98 0 
  Volcanic ash 3 98 1 
 0.001 Alluvial 3 97 6 
  Volcanic ash 3 80 7 
Bromobutide- 2 Alluvial 3 99 1 
desbromo  Volcanic ash 3 98 3 
 0.05 Alluvial 3 99 1 
  Volcanic ash 3 101 1 
 0.001 Alluvial 3 110 3 
  Volcanic ash 3 95 5 
Dimethametryn 2 Alluvial 3 99 2 
  Volcanic ash 3 102 1 
 0.05 Alluvial 3 103 1 
  Volcanic ash 3 99 1 
 0.001 Alluvial 3 95 4 
  Volcanic ash 3 85 10 
Pretilachlor 2 Alluvial 3 97 1 
  Volcanic ash 3 98 1 
 0.05 Alluvial 3 97 2 
  Volcanic ash 3 96 1 
 0.001 Alluvial 3 93 7 
  Volcanic ash 3 83 8 

RSD: relative standard deviation 
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Appendix 3.2. Recoveries of analytes (continued) 
c) 2014 (continued) 

Pesticides 
Spike level 

(mg/L) 
Test plot Replication

Mean recovery 
(%) 

RSD 
(%) 

Clothianidin 2 Alluvial 3 95 10
  Volcanic ash 3 102 6 

0.025 Alluvial 3 104 2 
  Volcanic ash 3 103 4 

0.0005 Alluvial 3 75 13 
  Volcanic ash 3 74 3 
Orysastrobin 2 Alluvial 3 92 9 
  Volcanic ash 3 96 1 

0.025 Alluvial 3 99 1 
  Volcanic ash 3 100 2 
 0.0005 Alluvial 3 113 3 
  Volcanic ash 3 104 6 
(5Z)-orysastrobin 2 Alluvial 3 97 5 
  Volcanic ash 3 105 5 
 0.025 Alluvial 3 104 2 
  Volcanic ash 3 101 1 
 0.0005 Alluvial 3 111 4 
  Volcanic ash 3 107 7 

RSD: relative standard deviation 
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Appendix 3.2. Recoveries of analytes (continued) 
d) 2015 

Pesticides Spike level 
(mg/L) Test plot Replication Mean recovery 

(%) 
RSD
(%)

Clothianidin 2 Alluvial 3 111 6
  Volcanic ash 3 110 5 

0.05 Alluvial 3 96 1 
  Volcanic ash 3 102 4 

0.001 Alluvial 3 84 9 
  Volcanic ash 3 104 10 
Buprofezin 2 Alluvial 3 98 1 
  Volcanic ash 3 100 3 

0.05 Alluvial 3 103 5 
  Volcanic ash 3 103 1 
 0.001 Alluvial 3 104 8 
  Volcanic ash 3 110 3 
Azoxystrobin 2 Alluvial 3 101 1 
  Volcanic ash 3 101 2 

0.05 Alluvial 3 104 4 
  Volcanic ash 3 106 2 
 0.001 Alluvial 3 107 3 
  Volcanic ash 3 111 4 
Dinotefuran 2 Alluvial 3 93 4 
  Volcanic ash 3 88 8 
 0.05 Alluvial 3 89 6 
  Volcanic ash 3 88 2 
 0.001 Alluvial 3 74 8 
  Volcanic ash 3 82 7 
Orysastrobin 2 Alluvial 3 104 3 
  Volcanic ash 3 104 1 
 0.05 Alluvial 3 106 4 
  Volcanic ash 3 105 2 
 0.001 Alluvial 3 88 8 
  Volcanic ash 3 91 3 
(5Z)-orysastrobin 2 Alluvial 3 104 1 
  Volcanic ash 3 102 3 
 0.05 Alluvial 3 104 5 
  Volcanic ash 3 102 2 
 0.001 Alluvial 3 87 4 
  Volcanic ash 3 94 3 
Daimuron 2 Alluvial 3 100 1 
  Volcanic ash 3 102 2 
 0.05 Alluvial 3 100 6 
  Volcanic ash 3 101 3 
 0.001 Alluvial 3 89 7 
  Volcanic ash 3 95 5 

RSD: relative standard deviation 
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Appendix 3.2. Recoveries of analytes (continued) 
d) 2015 (continued) 

Pesticides Spike level 
(mg/L) Test plot Replication Mean recovery 

(%) 
RSD
(%)

Penoxsulam 2 Alluvial 3 103 2
  Volcanic ash 3 105 1 

0.05 Alluvial 3 110 3 
  Volcanic ash 3 105 1 

0.001 Alluvial 3 107 5 
  Volcanic ash 3 106 7 
Clomeprop  2 Alluvial 3 87 4 
  Volcanic ash 3 86 4 

0.05 Alluvial 3 79 4 
  Volcanic ash 3 81 6 
 0.001 Alluvial 3 86 13 
  Volcanic ash 3 80 10 
Clomeprop 2 Alluvial 3 91 2 
metabolite B  Volcanic ash 3 91 4 

0.05 Alluvial 3 86 5 
  Volcanic ash 3 82 7 
 0.001 Alluvial 3 82 9 
  Volcanic ash 3 91 12 
Fentrazamide 2 Alluvial 3 102 2 
  Volcanic ash 3 103 3 
 0.05 Alluvial 3 102 7 
  Volcanic ash 3 106 1 
 0.001 Alluvial 3 85 7 
  Volcanic ash 3 89 3 
Bensulfuron- 2 Alluvial 3 100 2 
methyl  Volcanic ash 3 98 3 
 0.05 Alluvial 3 102 4 
  Volcanic ash 3 100 2 
 0.001 Alluvial 3 86 15 
  Volcanic ash 3 104 11 

RSD: relative standard deviation 
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Appendix 3.3. Summary of analytical results for granular formulation in 2012. 

Pesticide 

Dissipation ratio* 

(%) 
 

Crmax-obs
 **  

(%) 
 

Day of maximum concentration 

(Cobs-max) detected 

 (DAT) 

LA*** FA LV*** FV LA*** FA LV*** FV LA c) FA LV c) FV 

Daimuron 
87 

99 
56 

99 
10 

16 
5 

13 
7 

5 
5 

5 
91 86 11 10  7 10 

Fentrazamide 
97 

98 
96 

99 
10 

20 
6 

16 
0.125 

1 
1 

3 
97 97  9 8  0.125 2 

Bromobutide 
97 

99 
85 

100 
15 

44 
10 

33 
2 

3 
3 

5 
97 92 15 12 3 1 

Bensulfuron- 

methyl 
99 99 97 97 67 75 31 77 0.125 0.125 0.125 0.125 

Simetryn 
98 

97 
96 

98 
26 

62 
28 

51 
1 

1 
1 

1 
98 97 36 26  1 2 

Molinate 
100 

100 
100 

99 
32 

64 
25 

56 
0.125 

1 
1 

1 
100 100  39 30  1 2 

Total 

MCPB-ethyl 

99 
99 

99 
99 

17 
33 

19 
22 

2 
3 

3 
2 

>99 98 19 21  3 3 

*   [1 - (concentration at 21-DAT) / (maximum concentration)] × 100 
**   Ratio of the maximum concentration (Cobs-max) to theoretical concentration (Cmax) defined that the all applied pesticide is dissolved in 

paddy water with 5 cm ponding depth 
***  Upper and lower data correspond to the LA-S1/LV-S1 plots and the LA-S2/LV-S2 plots, respectively. 

 
 
 
Appendix 3.4. Summary of analytical results for flowable formulation applied in 2013. 

Pesticide 

Dissipation ratio* 

(%) 
 

Crmax-obs
 **  

(%) 
 

Day of maximum concentration 

(Cobs-max) detected 

 (DAT) 
LA FA LV  FV  LA FA LV FV  LA FA LV FV 

Daimuron 93 100 98 100 33 69 46 102 0.125 0.125 0.125 0.125 

Fentrazamide 99 99 100 99 26 72 36 102 0.125 0.125 0.125 0.125 

Bromobutide 94 99 97 99 36 94 51 132 0.125 0.125 0.125 0.125 

Bensulfuron- 

methyl 
99 96 98 99 76 109 67 153 0.125 0.125 0.125 0.125 

*   [1 - (concentration at 21-DAT) / (maximum concentration)] × 100 
**   Ratio of the maximum concentration (Cobs-max) to theoretical concentration (Cmax) defined that the all applied pesticide is dissolved in 

paddy water with 5 cm ponding depth 
***  Upper and lower data correspond to the LA-S1/LV-S1 plots and the LA-S2/LV-S2 plots, respectively. 
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Appendix 3.5. Summary of analytical results for flowable formulation applied in 2014 

Pesticide 

Dissipation ratio a) 

 (%) 
 

Relative maximum concentration b) 

(Crmax-obs, %) 
 

Day of maximum concentration 

(Cobs-max) detected 

 (DAT) 

LA c) FA LV c) FV  LA c) FA LV c) FV  LA c) FA LV c) FV 

Imazosulfuron 99 
98 

99 
99 

63
114

52
112

0.125 
0.125 

0.125 
0.125

99 99 62 55  0.125 0.125 

Daimuron 61 
100 

56 
98 

7
31

4
13

5 
0.125 

3 
2 

38 50  6 4  3 3 

Fentrazamide 94 
98 

91 
97 

11
21

6
17

3 
0.125 

0.125 
1 

88 92 10 6  3 1 

Total 

bromobutide 

75 
100 

75 
99 

13
49

9
26

3 
1 

3 
0.125

59 62 11 7  3 1 

Dimethametryn 96 
96 

93 
96 

43
40

23
43

1 
1 

0.125 
1 

96 93  40 23  1 0.125 

Pretilachlor 100 
100 

100 
100 

41
40

33
51

1 
1 

0.125 
1 

100 100 30 34  1 0.125 

a) [1 - (concentration at 21-DAT) / (maximum concentration)] × 100 
b) Ratio of the maximum concentration (Cobs-max) to theoretical concentration (Cmax) defined that the all applied pesticide is dissolved in 

paddy water with 5 cm ponding depth 
c) Upper and lower data correspond to the LA-B/LV-B plots and the LA-S/LV-S plots, respectively. 

 

Appendix 3.6. Summary of analytical results for flowable formulation applied in 2015 

Pesticide 

Dissipation ratio a) 

 (%) 
 

Relative maximum concentration b) 

(Crmax-obs, %) 
 

Day of maximum concentration 

(Cobs-max) detected 

 (DAT) 

LA c) FA LV c) FV  LA c) FA LV c) FV  LA c) FA LV c) FV 

Dinotefuran 100 
100 

100 
100 

80 
102 

92 
77 

0.125 
0.250 

0.125 
0.250 

98 96 72 66  0.125 0.125 

Total 

orysastrobin 

 

100 

100 

100 

98 

40 

82 

41 

58 

0.125 

0.250 

1 

0.250 
90 87  53 49  1 1 

Daimuron 

 

98 
99 

98 
100 

23 
18 

21 
16 

0.125 
0.250 

0.125 
0.250 

92 86 19 7  0.125 0.125 

Penoxsulam 98 
99 

98 
100 

70 
112 

97 
82 

0.125 
0.125 

0.125 
0.125 

92 86 70 62  0.125 1 

Total 

clomeprop 

94 
92 

93 
61 

14 
14 

10 
11 

0.125 
2 

0.125 
5 

70 44  9 7  5 5 

Fentrazamide 98 
99 

98 
97 

10 
13 

10 
12 

0.125 
2 

0.125 
2 

91 98 12 7  2 1 

Bensulfuron- 

methyl 

98 
99 

98 
98 

54 
73 

51 
64 

0.125 
0.250 

0.125 
0.250 

92 96 52 44  1 1 

a) [1 - (concentration at 21-DAT) / (maximum concentration)] × 100 
b) Ratio of the maximum concentration (Cobs-max) to theoretical concentration (Cmax) defined that the all applied pesticide is dissolved in 

paddy water with 5 cm ponding depth 
c) Upper and lower data correspond to the LA-S/LV-S plots and the LA-Z/LV-Z plots, respectively. 

 



 

 257 

Appendix 3.7. Summary of parameters for SFOR models fitted to analytical 

concentration data for analysis group (I-a) 

Pesticide Parameters LA-S1 LA-S2 FA LV-S1 LV-S2 FV 

Simetryn 

Cdiss 0.38 0.38 0.57 0.30 0.30 0.63 

kr 7.03 7.03 7.03 7.30 7.30 3.73 

ke 0.30 0.30 0.30 0.24 0.24 0.18 

χ2 err (%) 7.48 16.4 6.09 6.94 15.0 8.67 

DT50 (day) 2.3 2.3 2.3 2.9 2.9 3.8 

Molinate 

Cdiss 2.26 3.21 4.30 1.95 1.95 3.42 

kr 9.49 4.47 2.82 5.63 5.63 5.63 

ke 0.46 0.72 0.46 0.35 0.35 0.35 

χ2 err (%) 6.11 6.22 7.30 16.0 30.2 7.77 

DT50 (day) 1.6 1.2 1.9 2.2 2.2 2.2 

Total 

MCPB-ethyl  

Cdiss 0.21 0.21 0.38 0.23 0.23 0.23 

kr 0.49 0.49 0.49 0.45 0.45 0.83 

ke 0.49 0.49 0.49 0.47 0.47 0.47 

χ2 err (%) 26.8 30.5 26.9 15.4 22.6 23.9 

DT50 (day) 1.4 1.4 1.4 1.5 1.5 1.5 
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Appendix 3.7. (continued). 

Pesticide Parameters LA-S LA-B FA LV-S LV-B FV 

Imazosulfuron 

Cdiss 0.12 0.10 0.17 0.10 0.21 0.21 

kr 173 173 173 194 0.49 194 

ke 0.31 0.31 0.31 0.37 0.49 0.62 

χ2 err (%) 6.86 13.3 31.4 8.20 26.8 17.5 

DT50 (day) 2.2 2.2 2.2 1.9 1.4 1.1 

Daimuron 

(2014) 

Cdiss 0.05 0.05 0.31 0.03 0.03 0.31 

kr 2.9 2.9 18.7 16.7 16.7 0.63 

ke 0.01 0.01 0.24 0.03 0.03 0.51 

χ2 err (%) 16.8 18.3 18.1 19.2 22.8 18.1 

DT50 (day) 51.9 51.9 2.9 23.7 23.7 1.4 

Fentrazamide 

(2014) 

Cdiss 0.07 0.10 0.14 0.04 0.04 0.12 

kr 1.07 1.08 19.8 15.5 15.5 8.77 

ke 0.17 0.17 0.17 0.17 0.17 0.17 

χ2 err (%) 23.8 16.0 9.00 14.4 14.4 11.2 

DT50 (day) 4.1 4.1 4.1 4.1 4.1 4.1 

Total 

bromobutide 

Cdiss 0.28 0.33 0.96 0.16 0.20 0.49 

kr 0.59 0.69 11.4 8.5 6.3 24.9 

ke 0.10 0.10 0.10 0.12 0.12 0.12 

χ2 err (%) 14.9 13.0 21.1 29.0 23.9 30.3 

DT50 (day) 7.0 7.0 7.0 6.0 6.0 6.0 

Dimethametryn 

Cdiss 0.03 0.04 0.02 0.02 0.02 0.03 

kr 6.19 6.19 6.19 23.5 23.5 7.36 

ke 0.37 0.37 0.15 0.27 0.27 0.42 

χ2 err (%) 8.37 3.22 12.8 10.6 8.01 16.2 

DT50 (day) 1.9 1.9 4.7 2.5 2.5 1.7 

Pretilachlor 

Cdiss 0.54 0.73 0.56 0.44 0.44 0.89 

kr 5.25 5.25 9.74 433 433 4.73 

ke 0.50 0.50 0.23 0.59 0.59 0.52 

χ2 err (%) 7.22 4.64 9.33 6.60 10.2 13.2 

DT50 (day) 1.4 1.4 3.0 1.2 1.2 1.3 
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Appendix 3.7. (continued). 

Pesticide Parameters LA-S LA-Z FA LV-S LV-Z FV 

Dinotefuran 

Cdiss 0.86 0.72 1.16 0.99 0.70 0.84 

kr 177 279 10.4 181 26.0 20.0 

ke 0.71 0.19 0.50 0.74 0.18 0.37 

χ2 err (%) 9.83 8.56 12.8 13.8 7.50 4.6 

DT50 (day) 1.0 3.6 1.4 0.9 3.8 1.9 

Total 
orysastrobin 

Cdiss 0.66 0.78 1.44 0.81 0.81 0.81 

kr 13.7 5.07 6.29 8.24 5.29 9.27 

ke 0.40 0.10 0.40 0.39 0.13 0.21 

χ2 err (%) 4.26 9.54 15.9 11.3 13.1 8.73 

DT50 (day) 1.7 6.8 1.7 1.8 5.3 3.3 

Daimuron 
(2015) 

Cdiss 0.46 0.39 0.39 0.43 0.14 0.30 

kr 277 183 14.1 271 213 213 

ke 0.55 0.13 0.30 0.66 0.16 0.16 

χ2 err (%) 20.9 10.9 7.62 24.5 12.0 10.4 

DT50 (day) 1.3 5.3 2.3 1.1 4.4 4.4 

Penoxsulam 

Cdiss 0.09 0.09 0.14 0.12 0.08 0.10 

kr 108 20.2 108 76.6 76.6 76.6 

ke 0.56 0.16 0.56 0.72 0.13 0.31 

χ2 err (%) 10.2 5.37 11.9 8.40 5.67 7.11 

DT50 (day) 1.2 4.3 1.2 1.0 5.5 2.3 

Total 
clomeprop 

Cdiss 0.12 0.07 0.12 0.08 0.05 0.08 

kr 534 9.08 5.25 191 9.77 191 

ke 0.43 0.03 0.17 0.24 0.01 0.03 

χ2 err (%) 37.4 15.1 24.6 19.6 12.1 14.4 

DT50 (day) 1.6 22.1 4.0 2.9 89.4 25.6 

Fentrazamide 
(2015) 

Cdiss 0.06 0.11 0.09 0.05 0.06 0.09 

kr 192 0.81 8.30 184 9.01 9.01 

ke 0.29 0.17 0.29 0.34 0.22 0.22 

χ2 err (%) 12.8 15.4 18.6 22.5 12.9 15.0 

DT50 (day) 2.4 4.2 2.4 2.1 3.2 3.2 

Bensulfuron- 
methyl 

Cdiss 0.06 0.06 0.08 0.05 0.05 0.07 

kr 167 8.75 14.6 73.8 73.8 73.8 

ke 0.45 0.14 0.45 0.51 0.15 0.28 

χ2 err (%) 4.09 7.51 12.2 8.20 11.8 7.34 

DT50 (day) 1.6 4.8 1.6 1.4 4.7 2.5 
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Appendix 3.8. Summary of grouping analyses regarding parameter of SFOR model 
between lysimeters 
 
a) 2012 

Pesticide 

Grouping analysis regarding parameters of 
SFOR model between lysimeters 

LA-S1 vs.  LA-S2 LV-S1 vs.  LV-S2
Cdiss kr ke Cdiss kr ke 

Molinate × × × ○ ○ ○ 
Simetryn ○ ○ ○ ○ ○ ○ 
Total MCPB ○ ○ ○ ○ ○ ○ 

 

b) 2014 

Pesticide 

Grouping analysis regarding parameters of 
SFOR model between lysimeters 

LA-B vs.  LA-S LV-B vs.  LV-S 
Cdiss kr ke Cdiss kr ke 

Imazosulfuron × ○ ○ × × × 
Daimuron ○ ○ ○ ○ ○ ○ 
Fentrazamide × × ○ ○ ○ ○ 
Total bromobutide × × ○ × × ○ 
Dimethametryn × ○ ○ ○ ○ ○ 
Pretilachlor × ○ ○ ○ ○ ○ 

 

c) 2015 

Pesticide 

Grouping analysis regarding parameters of 
SFOR model between lysimeters 

LA-S vs.  LA-Z LV-S vs.  LV-Z 
Cdiss kr ke Cdiss kr ke 

Dinotefuran × × × × × × 
Total orysastrobin × × × ○ × × 
Daimuron × × × × × × 
Penoxislam ○ × × × ○ × 
Total clomeprop × × × × × × 
Fentrazamide × × × × × × 
Bensulfuron-methyl ○ × × ○ ○ × 

○: The compared two parameters are grouped since null hypothesis is accepted with a p-value of 
≥0.05 from the result of one-way analysis of variance. 

×: The compared two parameters are not grouped since null hypothesis is rejected with a p-value 
of <0.05 from the result of one-way analysis of variance. 

The gray-shaded pairs of the lysimeter test plots mean that these datasets were grouped as whole data 
by the grouping analysis. 
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Appendix 3.9. Summary of grouping analyses regarding parameter of SFOR model in 
lysimeter and paddy field 

Year Pesticide 
Test plot of lysimeter

(Label name) 

Grouping analysis regarding parameters of 
SFOR model in lysimeter and paddy field 

Alluvial  
(LA plot vs. FA plot)

Volcanic ash 
(LV plot vs. FV plot)

Cdiss kr ke Cdiss kr ke 
2012 Molinate Standard No.1(-S1) × × ○ × ○ ○ 

Standard No.2(-S2) × × × × ○ ○ 
Simetryn Standard No.1(-S1) × ○ ○ × × × 

Standard No.2(-S2) × ○ ○ × × × 
Total MCPB Standard No.1(-S1) × ○ ○ ○ × ○ 

Standard No.2(-S2) × ○ ○ ○ × ○ 
2014 Imazosulfuron Bare ground (-B) × ○ ○ × ○ × 

Standard (-S) × ○ ○ × ○ × 
Total bromobutide Bare ground (-B) × × ○ × × ○ 

Standard (-S) × × ○ × × ○ 
Daimuron Bare ground (-B) × × × × × × 

Standard (-S) × × × × × × 
Dimethametryn Bare ground (-B) × ○ × × × × 

Standard (-S) × ○ × × × × 
Fentrazamide Bare ground (-B) × × ○ × × ○ 

Standard (-S) × × ○ × × ○ 
Pretilachlor Bare ground (-B) × × × × × × 

Standard (-S) ○ × × × × × 
2015 Dinotefuran Standard (-S) × × × × × × 

Total orysastrobin Standard (-S) × × ○ × ○ ○ 
Daimuron Standard (-S) × × × × × × 
Penoxislam Standard (-S) × ○ ○ × ○ × 
Total clomeprop Standard (-S) ○ × × ○ ○ × 
Fentrazamide Standard (-S) × × ○ × × × 
Bensulfuron-methyl Standard (-S) × × ○ × ○ × 

○: The compared two parameters are grouped since null hypothesis is accepted with a p-value of 
≥0.05 from the result of one-way analysis of variance. 

×: The compared two parameters are not grouped since null hypothesis is rejected with a p-value 
of <0.05 from the result of one-way analysis of variance. 
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Appendix 3.10. Estimated results of DT50, PW for analysis group (I-b) 
(a) Granular formulation in 2012 

Pesticide* 
 Alluvial Soil  Volcanic ash Soil 

Lysimeter**** Paddy field Lysimeter****   Paddy field 

DAI Value (Day) 4.0 4.5  3.8 9.0 6.9  2.5 

 χ2 err (%)** 26.4 27.0  21.7 14.0 34.0  26.9 

 Model*** SFOR SFOR  SFOR SFOR SFOR  SFOR 

FTZ Value (Day) 4.2 3.0 4.3 4.3 5.4 2.9 

 χ2 err (%)** 11.2 26.5  16.7 11.9 26.4  11.2 

 Model*** SFOR SFOR  SFOR SFOR SFOR  SFOR 

BRB Value (Day) 5.6 5.5  3.6 7.3 9.1  2.5 

 χ2 err (%)** 29.4 38.5  20.0 15.5 20.5  25.7 

 Model*** SFOR SFOR  SFOR SFOR SFOR  SFOR 

BSM Value (Day) 3.0 1.3  2.2  2.6 2.1  1.6 

 χ2 err (%)** 22.9 24.7  18.0 8.8 20.6  23.8 

 Model*** SFOR SFOR  SFOR SFOR SFOR  SFOR 

 
(b) Flowable formulation in 2013 

Pesticide* 
 Alluvial Soil  Volcanic ash Soil 

Lysimeter Paddy field Lysimeter Paddy field 

DAI Value (Day) 1.7 2.2 1.2 1.3 

 χ2 err (%)** 10.3 6.2 8.2 15.6 

 Model*** HS SFO HS HS 

FTZ Value (Day) 1.3 1.6 0.7 1.0 

 χ2 err (%)** 6.5 8.8 3.7 14.6 

 Model*** HS HS HS HS 

BRB Value (Day) 2.2 5.0 1.2 2.9 

 χ2 err (%)** 8.7 12.5 8.2 11.6 

 Model*** HS SFO HS SFO 

BSM Value (Day) 2.0 1.7 0.5 1.1 

 χ2 err (%)** 23.1 26.4 7.3 9.7 

 Model*** HS HS HS HS 
* DAI: Daimuron, FTZ: Fentrazamide, BRB: Bromobutide, BSM: Bensulfuron-methyl 
** Error level based on the χ2 test and given as: 
   


2

2

2

2 1
100

O

OS
error

tab


 

 where χtab
2 is the tabulated χ2 value with m degree of freedom at the 5% significance level, S is the simulated value, O is the observed 

value and O
−

 is the mean of all observed values. 
*** SFO:  kteCC  0

 where Ct is the concentration in water at time t, C0 is the initial concentration and k is the decrease rate in water. 

 HS;    tkeCC 1
0

  for t ≤ tb 

          bb ttktk eeCC  21
0

 for t > tb 

 where k1 is the decrease rate in water until t =tb, k2 is the dissipation rate in water from t =tb and tb, is the breakpoint at which the rate 

constant changes. 
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Appendix 5.1. Scheme of experimental procedures of container test 
 
Preparation of test sample−separation 
 

Sampling 
 Weigh 20 g of test soil to glass container 
 Add 60 mL of water excluding moisture in soil 
 Cover container with aluminum foil 
 

Preincubation 
 Transfer container to incubator 
 Two-week preincubation 
   

Incubation 
 Adjust water volume to be 80 g as total weight 
 Add pesticide mixture and stir container with glass rod 
 Cover container with aluminum foil and transfer to incubator 
 Incubate until chemical analysis 
 

Separation of aqueous and soil phases 
 Adjust water volume to be 80 g as total weight 
 Stir container with glass rod and transfer slurry a metal centrifuge tube 
 Centrifuge at 3100×g for 20 min 
 Collect supernatant as aqueous phase and measure pH of aqueous phase 
 
Analytical procedure of aqueous phase 
 

Sampling 
 Take 5 mL of aqueous phase and add 0.125 mL of formic acid 
 

Clean-up by styrene-divinylbenzene cartridge 
 Pre-condition cartridge with 5 mL of acetonitrile and 2.5% formic acid aq. 
 Load sample solution onto cartridge 
 Wash cartridge with 10 mL acetonitrile /water (20:80, v/v) and 1 min suction 
 Elute with 10 mL of acetonitrile 
           Concentrate under reduced pressure and evaporate to dryness by nitrogen 
 

LC-MS determination 
   Dissolve in 5 mL of acetonitrile/water/formic acid (60:40:0.1, v/v/v) 
  Inject 20 μL into LC-MS system 
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Appendix 5.1. (continued) 
 
Analytical procedure of soil phase 
 

Extraction 
 Wash container with 80 mL of acetonitrile and transfer to metal centrifuge tube 
 Shake horizontally for 20 min 
 Centrifuge at 3100×g for 20 min 
 Decant supernatant with No.2 filter paper 
 Repeat this procedure twice 
 Combine all supernatant together and made up with 280 mL 
 

Sampling 
 Take 7 mL of extraction solution (equivalent to 0.5 g soil) 
 Concentrate under reduced pressure and evaporate to dryness by nitrogen 
 Dissolve in 5 mL of 2.5% formic acid aq. with aid of ultrasonication 
 

Clean-up by styrene-divinylbenzene cartridge 
 Pre-condition cartridge with 5 mL of acetonitrile and 2.5% formic acid aq. 
 Load the sample solution onto cartridge 
 Wash sample vessel with 5 mL of 2.5% formic acid aq. and load onto cartridge 
 Wash cartridge with 10 mL acetonitrile /water (20:80, v/v) and 1 min suction 
 Elute with 10 mL of acetonitrile 
           Concentrate under reduced pressure and evaporate to dryness by nitrogen 
 

LC-MS determination 
   Dissolve in 50 mL of acetonitrile/water/formic acid (60:40:0.1, v/v/v) 
  Inject 20 μL into LC-MS system (see Appendix 3.1) 
  



 

 265 

Appendix 5.2. Recoveries of all target pesticides for aqueous phase 

Pesticides Spike level 
(mg/L) Test soil Mean recovery* 

(%) 
RSD**

(%)
Fipronil 2 Lysimeter alluvial 111 3
  Lysimeter volcanic ash 100 1

Paddy field alluvial 97 7
  Paddy field volcanic ash 104 1

0.001 Lysimeter alluvial 104 5
  Lysimeter volcanic ash 104 2
Probenazole 2 Lysimeter alluvial 119 3
  Lysimeter volcanic ash 107 1

Paddy field alluvial 108 6
  Paddy field volcanic ash 114 1
 0.001 Lysimeter alluvial 127 1
  Lysimeter volcanic ash 125 4
Daimuron 2 Lysimeter alluvial 112 3
  Lysimeter volcanic ash 102 1

Paddy field alluvial 99 7
  Paddy field volcanic ash 107 1
 0.001 Lysimeter alluvial 94 4
  Lysimeter volcanic ash 93 2
Fentrazamide 2 Lysimeter alluvial 108 2
  Lysimeter volcanic ash 100 2
  Paddy field alluvial 99 6
  Paddy field volcanic ash 105 1
 0.001 Lysimeter alluvial 82 8
  Lysimeter volcanic ash 88 8
Bromobutide 2 Lysimeter alluvial 106 1
  Lysimeter volcanic ash 93 4
  Paddy field alluvial 89 6
  Paddy field volcanic ash 99 1
 0.001 Lysimeter alluvial 88 8
  Lysimeter volcanic ash 92 23
Bromobutide- 2 Lysimeter alluvial 104 2
desbromo  Lysimeter volcanic ash 89 7
  Paddy field alluvial 89 5
  Paddy field volcanic ash 97 3
 0.001 Lysimeter alluvial 78 3
  Lysimeter volcanic ash 74 11
Bensulfuron- 2 Lysimeter alluvial 101 2
methyl  Lysimeter volcanic ash 99 1
  Paddy field alluvial 100 2
  Paddy field volcanic ash 100 1
 0.001 Lysimeter alluvial 90 5
  Lysimeter volcanic ash 98 3

The Operating condition of LC-MS was same as the condition in 2013 in Appendix 3.1. 
*  Mean value of triplicate recoveries  
** RSD: relative standard deviation 
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Appendix 5.3. Recoveries of all target pesticides for soil phase 

Pesticides Spike level 
(mg/kg) Test soil Mean recovery* 

(%) 
RSD**

(%)
Fipronil 6 Lysimeter alluvial 99 2
  Lysimeter volcanic ash 99 2

Paddy field alluvial 100 1
  Paddy field volcanic ash 98 1

0.08 Lysimeter alluvial 99 2
  Lysimeter volcanic ash 95 1
Probenazole 6 Lysimeter alluvial 109 3
  Lysimeter volcanic ash 112 1

Paddy field alluvial 108 1
  Paddy field volcanic ash 106 1
 0.08 Lysimeter alluvial 83 2
  Lysimeter volcanic ash 85 1
Daimuron 6 Lysimeter alluvial 105 1
  Lysimeter volcanic ash 102 2

Paddy field alluvial 100 0
  Paddy field volcanic ash 98 1
 0.08 Lysimeter alluvial 106 10
  Lysimeter volcanic ash 95 15
Fentrazamide 6 Lysimeter alluvial 98 6
  Lysimeter volcanic ash 99 1
  Paddy field alluvial 97 3
  Paddy field volcanic ash 96 3
 0.08 Lysimeter alluvial 101 10
  Lysimeter volcanic ash 101 9
Bromobutide 6 Lysimeter alluvial 99 2
  Lysimeter volcanic ash 99 2
  Paddy field alluvial 99 0
  Paddy field volcanic ash 95 1
 0.08 Lysimeter alluvial 118 15
  Lysimeter volcanic ash 110 12
Bromobutide- 6 Lysimeter alluvial 100 3
desbromo  Lysimeter volcanic ash 98 2
  Paddy field alluvial 97 2
  Paddy field volcanic ash 93 1
 0.08 Lysimeter alluvial 92 1
  Lysimeter volcanic ash 90 1
Bensulfuron- 6 Lysimeter alluvial 99 2
methyl  Lysimeter volcanic ash 98 1
  Paddy field alluvial 99 1
  Paddy field volcanic ash 98 2
 0.08 Lysimeter alluvial 113 5
  Lysimeter volcanic ash 107 3

The Operating condition of LC-MS was same as the condition in 2013 in Appendix 3.1. 
*  Mean value of triplicate recoveries  
** RSD: relative standard deviation 
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Appendix 5.4. Summary of MCMC run for daimuron 
 Lysimeter Paddy field 

 Alluvial Volcanic ash Alluvial Volcanic ash 

 Chain 1 Chain 2 Chain 3 Chain 1 Chain 2 Chain 3 Chain 1 Chain 2 Chain 3 Chain 1 Chain 2 Chain 3

Statistical measures      

mpsrf * 1.01 1.02 1.01 1.07 

AR (%)** 27.5 27.7 29.7 21.1 30.3 34.6 30.0 14.5 35.0 34.1 43.3 26.2 

br2 0.93 0.90 0.95 0.98 0.99 1.00 0.90 0.92 0.91 0.97 0.95 0.97 

rNSE 0.99 0.98 0.99 0.96 0.97 0.97 0.97 0.97 0.97 0.89 0.97 0.81 

PBIAS (%) 5.4 8.0 3.8 1.6 0.6 -0.3 -8.4 1.2 0.9 -1.5 3.0 -1.4 

RSR 0.14 0.17 0.12 0.06 0.05 0.05 0.23 0.23 0.24 0.14 0.13 0.13 

Parameters***      

kW (1/day) 0.006 0.003 0.004 0.004 0.010 0.013 0.018 0.100 0.081 0.336 0.327 0.195

kS (1/day) 0.002 0.004 0.001 0.014 0.013 0.012 0.017 0.006 0.012 0.002 0.001 0.012

ω (cm/day) 0.253 0.534 0.359 0.800 0.769 0.642 0.897 0.591 1.081 0.525 0.979 0.272

Kd (L/kg) 10.1 8.1 10.0 20.2 22.2 23.0 11.2 7.6 8.5 32.1 21.2 62.5 

fLAB (-) 0.33 0.35 0.32 0.24 0.22 0.22 0.39 0.59 0.54 0.19 0.30 0.12

* Multivariate potential scale reduction factor (Brooks and Gelman, 1998; Plummer et al., 2006) 
** Acceptance ratio 
*** The values give the highest probability within each MCMC chain (bestpar). 
 

Appendix 5.5. Summary of MCMC run for fentrazamide 
 Lysimeter Paddy field 

 Alluvial Volcanic ash Alluvial Volcanic ash

 Chain 1 Chain 2 Chain 3 Chain 1 Chain 2 Chain 3 Chain 1 Chain 2 Chain 3 Chain 1 Chain 2 Chain 3

Statistical measures      

mpsrf * 1.01 1.01 1.03 1.02 

AR (%)** 24.5 18.7 21.0 18.8 18.5 20.7 24.4 28.4 27.8 19.6 23.3 16.9 

br2 0.98 0.98 0.98 0.99 0.96 0.99 0.84 0.89 0.89 0.97 0.95 0.97

rNSE 0.97 0.98 0.97 0.96 0.95 0.94 0.94 0.93 0.94 0.89 0.97 0.81

PBIAS (%) 1.0 0.9 -1.7 -1.0 -3.3 -0.4 -14.3 -9.5 3.2 -1.5 3.0 -1.4

RSR 0.09 0.09 0.10 0.09 0.12 0.11 0.30 0.25 0.31 0.14 0.13 0.13

Parameters***      

kW (1/day) 0.062 0.106 0.008 0.057 0.196 0.390 0.532 0.581 0.878 0.880 1.10 1.07

kS (1/day) 0.008 0.002 0.010 0.014 0.007 0.001 0.007 0.003 0.001 0.011 0.005 0.010

ω (cm/day) 0.450 0.813 1.009 0.684 0.893 1.090 0.816 0.341 1.000 1.059 0.649 0.574

Kd (L/kg) 28.3 20.3 23.2 49.5 39.8 31.4 17.9 9.4 12.1 35.8 23.0 18.9 

fLAB (-) 0.33 0.43 0.36 0.21 0.24 0.28 0.63 1.02 0.83 0.36 0.58 0.67

* Multivariate potential scale reduction factor (Brooks and Gelman, 1998; Plummer et al., 2006) 
** Acceptance ratio 
*** The values give the highest probability within each MCMC chain (bestpar). 
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Appendix 5.6. Summary of MCMC run for bromobutide 
 Lysimeter Paddy field 

 Alluvial Volcanic ash Alluvial Volcanic ash 

 Chain 1 Chain 2 Chain 3 Chain 1 Chain 2 Chain 3 Chain 1 Chain 2 Chain 3 Chain 1 Chain 2 Chain 3

Statistical measures      

mpsrf * 1.00 1.02 1.01 1.04 

AR (%)** 39.0 29.7 29.0 21.7 21.4 24.5 20.2 18.5 19.1 18.8 28.3 25.3 

br2 0.84 0.84 0.83 0.96 0.96 0.97 0.87 0.90 0.90 0.92 0.96 0.96 

rNSE 0.94 0.94 0.95 0.98 0.98 0.98 0.90 0.88 0.77 0.92 0.91 0.95 

PBIAS (%) 3.9 5.4 7.0 -0.5 -1.4 -0.8 0.1 -3.5 -4.3 -1.5 3.0 -1.4 

RSR 0.33 0.32 0.33 0.17 0.16 0.16 0.33 0.29 0.32 0.14 0.13 0.13 

Parameters***      

kW (1/day) 0.020 0.015 0.013 0.002 0.006 0.021 0.002 0.002 0.020 0.013 0.028 0.008

kS (1/day) 0.002 0.006 0.015 0.013 0.008 0.001 0.084 0.077 0.058 0.070 0.057 0.068

ω (cm/day) 0.004 0.003 0.034 0.034 0.023 0.001 0.234 0.223 0.119 0.445 0.180 0.689

Kd (L/kg) 23.3 15.4 11.9 56.1 27.1 27.3 6.3 8.7 6.2 10.8 21.6 12.6 

fLAB (-) 0.09 0.14 0.17 0.05 0.11 0.10 0.39 0.25 0.38 0.30 0.17 0.25
* Multivariate potential scale reduction factor (Brooks and Gelman, 1998; Plummer et al., 2006) 
** Acceptance ratio 
*** The values give the highest probability within each MCMC chain (bestpar). 
 

Appendix 5.7. Summary of MCMC run for bensulfuron-methyl 
 Lysimeter Paddy field 

 Alluvial Volcanic ash Alluvial Volcanic ash 

 Chain 1 Chain 2 Chain 3 Chain 1 Chain 2 Chain 3 Chain 1 Chain 2 Chain 3 Chain 1 Chain 2 Chain 3

Statistical measures      

mpsrf * 1.00 1.01 1.02 1.01 

AR (%)** 30.1 28.9 32.4 23.4 18.3 22.0 26.4 30.9 21.9 18.0 18.5 21.7 

br2 0.78 0.84 0.75 0.99 0.96 0.99 0.89 0.92 0.89 0.85 0.87 0.88 

rNSE 0.80 0.85 0.82 0.81 0.36 0.90 0.94 0.93 0.94 0.88 0.96 0.96 

PBIAS (%) -3.4 1.5 -1.3 -0.3 0.2 -0.9 2.0 -2.9 -4.2 0.3 4.8 -4.5 

RSR 0.42 0.33 0.42 0.11 0.12 0.11 0.26 0.27 0.29 0.30 0.25 0.23 

Parameters***      

kW (1/day) 0.013 0.001 0.006 0.002 0.002 0.025 0.109 0.071 0.114 0.508 0.492 0.515

kS (1/day) 0.008 0.021 0.009 0.033 0.030 0.030 0.004 0.021 0.005 0.004 0.002 0.002

ω (cm/day) 0.002 0.024 0.004 0.087 0.039 0.077 0.289 0.411 0.641 0.468 0.969 0.839

Kd (L/kg) 50.5 18.9 10.8 76.0 21.1 59.3 4.0 4.8 5.0 14.0 12.0 11.2 

fLAB (-) 0.11 0.40 0.53 0.32 0.82 0.35 0.45 0.43 0.42 0.20 0.24 0.31

* Multivariate potential scale reduction factor (Brooks and Gelman, 1998; Plummer et al., 2006) 
** Acceptance ratio 
*** The values give the highest probability within each MCMC chain (bestpar). 
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Appendix 5.8. Calibrated results of varying parameters for daimuron  
 Lysimeter Paddy field 

 Alluvial Volcanic ash Alluvial Volcanic ash 

 q25 q50 q75 q25 q50 q75 q25 q50 q75 q25 q50 q75 

Laboratory calibrated parameters          

kW (1/day) 0.002 0.003 0.005 0.003 0.012 0.043 0.018 0.060 0.098 0.118 0.227 0.322

kS (1/day) 0.001 0.002 0.003 0.009 0.011 0.013 0.004 0.012 0.021 0.003 0.006 0.011

ω (cm/day) 0.186 0.275 0.343 0.576 0.674 0.851 0.780 0.931 1.05 0.519 0.793 0.992

Kd (L/kg) 9.4 10.5 13.0 19.3 21.8 24.9 8.5 9.5 10.9 22.2 26.9 34.2 

fLAB (-) 0.27 0.31 0.34 0.20 0.23 0.26 0.40 0.46 0.52 0.18 0.24 0.31 

Field specific parameters for flowable          

ɑ (1/day) 79.8 87.4 91.2 75.5 79.7 83.3 100 100 100 50 55.6 98.4 

fFLD-F (-) 0.94 0.97 0.99 0.93 0.99 1.00 1.00 1.00 1.00 0.02 0.04 0.07 

kPHOT (1/day) 0.053 0.074 0.093 0.274 0.293 0.312 0.237 0.262 0.283 0.001 0.001 0.068

Field specific parameters for granule          

kDISS (1/day) 0.057 0.058 0.061 0.054 0.056 0.057 0.149 0.150 0.151 0.180 0.192 0.233

fFLD-G (-) 0.90 0.90 0.90 0.01 0.01 0.04 0.01 0.01 0.01 0.03 0.10 0.92 

kPHOT (1/day) 0.098 0.147 0.190 0.667 0.743 0.764 0.422 0.450 0.474 0.049 0.295 0.511

Gray shaded columns shows the calibrated parameters were significantly correlated each other. 



 

 270 

Appendix 5.9. Calibrated results of varying parameters for fentrazamide  
 Lysimeter Paddy field 

 Alluvial Volcanic ash Alluvial Volcanic ash 

 q25 q50 q75 q25 q50 q75 q25 q50 q75 q25 q50 q75 

Laboratory calibrated parameters          

kW (1/day) 0.005 0.018 0.070 0.094 0.224 0.301 0.454 0.614 0.738 0.917 1.01 1.06 

kS (1/day) 0.005 0.009 0.013 0.003 0.007 0.013 0.003 0.006 0.016 0.008 0.014 0.020

ω (cm/day) 0.374 0.586 0.846 0.579 0.744 0.952 0.507 0.683 0.947 0.623 0.835 0.975

Kd (L/kg) 21.4 24.7 29.2 25.2 30.0 43.2 12.0 13.7 17.9 22.2 27.3 36.2 

fLAB (-) 0.31 0.37 0.44 0.22 0.29 0.35 0.66 0.80 0.94 0.36 0.46 0.59 

Field specific parameters for flowable          

ɑ (1/day) 59.5 63.2 67.9 63.2 72.1 78.2 91.2 97.5 100.0 50.0 50.0 51.3 

fFLD-F (-) 0.82 0.90 0.97 0.91 0.97 1.00 0.98 1.00 1.00 0.01 0.01 0.01 

kPHOT (1/day) 0.137 0.180 0.224 0.509 0.585 0.662 0.001 0.001 0.004 0.001 0.001 0.001

Field specific parameters for granule          

kDISS (1/day) 0.101 0.105 0.112 0.016 0.017 0.018 0.031 0.033 0.036 0.038 0.039 0.042

fFLD-G (-) 1.00 1.00 1.00 0.25 0.28 0.85 0.04 0.11 0.19 0.06 0.09 0.12 

kPHOT (1/day) 0.217 0.370 0.497 0.360 1.00 1.00 0.001 0.001 0.001 0.004 0.015 0.145

Gray shaded columns shows the calibrated parameters were significantly correlated each other. 
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Appendix 5.10. Calibrated results of varying parameters for bromobutide 
 Lysimeter Paddy field 

 Alluvial Volcanic ash Alluvial Volcanic ash 

 q25 q50 q75 q25 q50 q75 q25 q50 q75 q25 q50 q75 

Laboratory calibrated parameters          

kW (1/day) 0.012 0.015 0.019 0.005 0.008 0.016 0.004 0.011 0.047 0.003 0.021 0.075

kS (1/day) 0.002 0.006 0.011 0.002 0.003 0.005 0.049 0.070 0.083 0.053 0.067 0.072

ω (cm/day) 0.002 0.006 0.014 0.012 0.025 0.039 0.018 0.124 0.203 0.325 0.503 0.827

Kd (L/kg) 16.3 31.3 64.2 10.5 15.8 26.7 4.1 7.0 17.9 10.2 14.0 27.7 

fLAB (-) 0.03 0.06 0.12 0.10 0.17 0.24 0.15 0.35 0.52 0.66 0.80 0.94 

Field specific parameters for flowable          

ɑ (1/day) 58.5 66.2 77.7 80.6 94.2 100.0 78.0 94.7 100.0 50.0 50.0 50.0 

fFLD-F (-) 0.29 0.69 0.98 0.84 0.95 1.00 0.68 0.96 1.00 0.001 0.001 0.001

kPHOT (1/day) 0.001 0.001 0.001 0.047 0.059 0.185 0.009 0.027 0.039 0.01 0.01 0.01 

Field specific parameters for granule          

kDISS (1/day) 0.380 0.417 0.421 0.044 0.046 0.046 0.087 0.090 0.092 0.156 0.439 0.535

fFLD-G (-) 0.28 0.55 0.86 0.01 0.01 0.01 0.01 0.01 0.02 0.51 0.87 1.00 

kPHOT (1/day) 0.001 0.001 0.001 0.684 0.735 0.749 0.111 0.126 0.137 0.015 0.047 0.076

Gray shaded columns shows the calibrated parameters were significantly correlated each other. 
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Appendix 5.11. Calibrated results of varying parameters for bensulfuron-methyl 
 Lysimeter Paddy field 

 Alluvial Volcanic ash Alluvial Volcanic ash 

 q25 q50 q75 q25 q50 q75 q25 q50 q75 q25 q50 q75 

Laboratory calibrated parameters          

kW (1/day) 0.003 0.005 0.010 0.004 0.031 0.076 0.089 0.112 0.126 0.361 0.463 0.557

kS (1/day) 0.010 0.017 0.024 0.027 0.032 0.035 0.002 0.005 0.014 0.003 0.009 0.021

ω (cm/day) 0.003 0.006 0.020 0.006 0.051 0.348 0.198 0.431 0.695 0.647 0.842 0.990

Kd (L/kg) 10.5 21.1 45.4 28.2 41.1 74.1 4.0 4.5 5.1 10.7 12.8 16.7 

fLAB (-) 0.11 0.25 0.54 0.29 0.45 0.67 0.38 0.45 0.56 0.18 0.24 0.30 

Field specific parameters for flowable          

ɑ (1/day) 61.2 75.4 88.9 53.4 60.5 70.9 50.0 50.0 51.6 50.0 50.0 51.5 

fFLD-F (-) 0.08 0.16 0.41 0.38 0.64 0.97 0.01 0.01 0.02 0.001 0.001 0.001

kPHOT (1/day) 0.036 0.041 0.043 0.101 0.154 0.192 0.060 0.077 0.106 0.01 0.01 0.01 

Field specific parameters for granule          

kDISS (1/day) 0.009 0.023 0.149 0.004 0.004 0.004 0.009 0.009 0.009 1.00 1.00 1.00 

fFLD-G (-) 0.54 0.78 0.99 0.77 1.00 1.00 0.85 1.00 1.00 0.01 0.01 0.01 

kPHOT (1/day) 0.26 0.26 0.27 0.001 0.001 0.069 0.064 0.083 0.115 0.001 0.001 0.003
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Appendix 5.12. Summary of statistical measures in outdoor modeling 
Pesticide Parameter LA Plot LV Plot FA Plot FV Plot 

Daimuron br2 Granule 0.63 0.38 0.20 0.78 

  Flowable 0.94 0.99 0.90 0.98 

 NSE Granule 0.41 0.14 -0.49 0.81 

  Flowable 0.95 1.00 0.96 0.99 

 rNSE Granule 0.24 -0.61 -1983 -1.13 

  Flowable 0.77 0.96 -8.71 -4.19 

 PBIAS (%) Granule 15.2 6.1 -22.9 9.9 

  Flowable 6.9 2.6 -4.1 0.6 

 RSR Granule 0.73 0.88 1.16 0.42 

  Flowable 0.21 0.06 0.20 0.08 

Fentrazamide br2 Granule 0.67 0.76 0.47 0.36 

  Flowable 0.97 1.00 0.93 0.75 

 NSE Granule 0.65 0.77 0.35 0.35 

  Flowable 0.98 1.00 0.95 0.85 

 rNSE Granule 0.13 0.79 -1.71 0.70 

  Flowable -0.45 0.96 0.86 0.69 

 PBIAS (%) Granule 9.7 14.7 42.5 47.9 

  Flowable 4.3 3.3 15.0 39.1 

 RSR Granule 0.56 0.46 0.76 0.77 

  Flowable 0.14 0.04 0.22 0.37 

Bromobutide br2 Granule 0.56 0.78 0.87 0.84 

  Flowable 0.91 0.95 0.96 0.77 

 NSE Granule 0.20 0.63 0.86 0.88 

  Flowable 0.84 0.96 0.96 0.88 

 rNSE Granule -0.26 -0.34 -34.4 -4.03 

  Flowable 0.35 0.74 -63.5 -7.84 

 PBIAS (%) Granule 25.5 13.7 9.0 -2.5 

  Flowable 17.7 6.8 -0.9 24.3 

 RSR Granule 0.85 0.58 0.35 0.33 

  Flowable 0.38 0.19 0.18 0.33 

Bensulfuron-methyl br2 Granule 0.94 0.99 0.83 0.43 

  Flowable 0.92 0.89 0.77 0.59 

 NSE Granule 0.95 0.98 0.87 0.49 

  Flowable 0.95 0.91 0.87 0.73 

 rNSE Granule 0.68 0.82 0.56 0.80 

  Flowable 0.85 0.63 0.85 0.67 

 PBIAS (%) Granule 11.5 6.7 22.4 48.6 

  Flowable 0.9 15.4 9.4 47.4 

 RSR Granule 0.21 0.14 0.34 0.67 

  Flowable 0.21 0.29 0.34 0.49 
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Appendix 6.1. Procedures of vector data processing in GRASS GIS 
 
 
1. Extract the river lines on main stream and tributaries basis 

v.extract -t input=< required > where=ID=## output=< required > new=1 

 

2. Merge all features 
v.edit map=< required > tool=merge cats=1 

 

3. Split the river line into 100 m segments 
v.split -f input=< required > output=< required > length=100 

 

4. Assign the segment ID 
v.category input=< required > output=< required > option=del step=-1 

v.category input=< required > output=< required > option=add cat=## 

 

5. Create attribute table with column for segment length 
v.db.addtable map=< required > columns="length double precision" 

 

6. Assign all features to the attribute table 
v.to.db map=< required > option=length columns=length units=meters 

 

7. Repeat 1−6 for all river lines 
 

8. Merge all river lines into one vector file 
v.patch -e input=< required > output=< required > 

 

9. Set the resolution to land use data 
g.region rast=< required > 

 

10. Convert vector to raster 
v.to.rast input=< required > output=< required > use=attr attribute_column=cat 

 

11. Export raster as CSV file format 
r.out.xyz -i input=< required > output=< required > separator=comma 
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Appendix 6.2. Procedures of raster data processing in GRASS GIS 
 
1. Set the resolution to land use data 

g.region rast=< required > 

 
2. Resample DEM file to the resolution of land use data 

r.resamp.interp input=< required > output=< required > 

 
3. Create flow direction and flow accumulation maps 

r.watershed -s -a -b elevation=< required > accumulation=< required >      drainage=< 

required > 

 
4. Export DEM, land use, soil flow direction and flow accumulation raster as CSV file 

format 
r.out.xyz -i input=< required > output=< required > separator=comma 
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