博士学位論文

薬用植物のアレロパシー活性の検定と 高活性植物トウシキミの作用物質の同定

Screening of allelopathic activity from medicinal plant and identification of allelochemicals from Chinese star anise

東京農工大学大学院

連合農学研究科

生物生産科学専攻

学籍番号:15951020

康 高娃

目 次

第 :	1 章	章	序	論																			•		 		•	 . 3
	第	1 負	節	研	究	(D	(같	f	長及	をて	ド目	自自	勺.															 . 3
	第	2 負	前	研	究	(D	朗	見題	<u> </u>	: 棋	旡夛	Ę													 		•	 . 4
		1-2	-1	石	开多	究(の [†]	課	題																			 . 4
		1-2	-2	石	开多	究 (かり	概	要																			 . 5
	第	3 負	節	,	P	レ	口	パ	シ		に	関	与	す	る	物	質						•					 . 6
		1-3	- 1		ア	レ		ン	९٥	/ —	- O.) 定	至義		• •													 . 6
		1-3	-2		ア	レ		ン	९٥	/ —	- O.)意	京義		• •													 . 7
	第	4 負	疖	-	r	レ	口	パ	シ	_	の	本	質										•		 			 . 9
	第	5 負	疖	-	r	レ	口	パ	シ	_	の	作	用	経	路								•		 			 11
第 2	2 章	芦	サ	ン	ド	゙イ	ッ	,チ	- 挝	らに	<u>-</u>]	こる	5 フ	~ レ	/	レブ	९ シ	/ –	- 泪	5 性	ŧ 0) t	食	索	 			 12
第	1	節	V	よ	じ	め	に																			•		 12
第	2	節	4	ナ、	~	ド	イ	ツ	チ	法	に	用	い	た	薬	用	植	物	の	材	料							 13
第	3	節	Ą	ナ、	~	ド	イ	ツ	チ	法	に	ょ	る	薬	用	植	物	の	研	究	方	法						 15
第	4	節	矿	开多	完 [、]	で	使	用	し	た	薬	用	植	物														 19
第	5	節	4	ナ、	·/	ド	イ	ツ	チ	法	に	よ	る	薬	用	植	物	の	検	索	結	果	: .					 41

第	3	章		デ	イ	ツ	シ	ユ	パ	ツ	ク	法	に	ょ	る	ア	レ	口	パ	シ	_	活	性	0)	検	索	•	 	69
	第	1	節		は	じ	め	に																				 	69
	第	2	節		揮	発	性	他	感	物	質	検	定	手	法	(デ	イ	ツ	シ	ユ	パ	ツ	ク	法)		 	. 71
	第	3	節		研	究	で	使	用	し	た	薬	用	植	物													 	73
	第	4	節		デ	イ	ツ	シ	ユ	パ	ツ	ク	法	に	お	け	る	薬	用	植	物	の	実	験	結	果	: .	 	. 74
第	4	章		<u>۲</u>	ウ	シ	キ	131	に	含	ま	れ	る	揮	発	性	物	質	の	分	析						•	 	91
	第	1	節		^	ツ	ド	ス	~°	_	ス	法	に	ょ	る	揮	発	性	物	質	の	分	析	法				 	91
	第	2	節		1	ウ	シ	キ	3	に	含	ま	れ	る	揮	発	性	物	質	の	分	析	結	果				 	. 94
	第	3	節		綿	棒	法	に	ょ	る	阻	害	活	性	の	生	物	検	定	法							•	 	. 96
	第	4	節		١	ウ	シ	キ	37	に	含	ま	れ	る	揮	発	性	物	質	の	阻	害	活	性	率			 	. 98
第	5	章		ま	と	め																						 .]	114
謝	辞																											 .]	118
参	老	文	献		沓	料																						. 1	119

第1章 序論

第1節 研究の背景及び目的

近年、世界の農業は化学肥料や農薬を大量投与することで農業生態系や人体に及ぼす影響が問題となり、環境調和型農業への関心が高まっている。アレロパシーの農業への利用は、雑草・病害虫防除、収量増加などの効果を化学肥料や農薬に頼らずに期待できることで注目されている。

日本では、生物系特定産業技術研究支援センターのイノベーション 創出基礎的研究推進事業で、農環研を中心とするグループの「アレロケミカルの探索と新規生理活性物質の開発」が実施された。「アジアは植物資源が豊富であり、長い歴史に基づく伝統農法もある。」これらを背景とするアジア独特のアレロパシー研究が盛んになることが期待されている。

アレロパシーとは「植物が放出する化学物質が他の生物に阻害的 あるいは促進的な何らかの作用を及ぼす現象」であると定義される。 アレロパシーの現象について多くの植物学者や農学者が研究してい る。実際に植物から放出される化学物質が,作物に対する雑草害や植 生の変遷などを含む多くの植物間相互作用に関わっていることが推 察されている。

これらの研究を基に、本研究ではアレロパシーについて3つの研究を行った。1つは、サンドイッチ法による薬用植物のアレロパシー活性の検索である。2つは、ディッシュパック法による薬用植物のアレロパシー活性の検索である。3つは、これらの検索の結果から得られたアレロパシー活性の高い植物の化学成分を分析することである。検索の結果最も活性の高い薬用植物はトウシキミであったので、この植物に含まれる作用成分を、揮発性成分を中心に分析した。

第2節 研究の課題と概要

1-2-1 研究の課題

植物のアレロパシーは、一般的には「植物から放出された化学物質が他の生物に対する阻害的或いは促進的な何らかの作用」を意味する (Rice、 1991)。この現象は古くから観察されていたが、1974 年にアメリカの科学者 Elroy L. Rice は、植物間で発生するアレロパシー現象は植物から放出される化学物質によって発生する現象であることを取り上げ、アレロパシー研究を促進させた(孔、 2016)。現在,

アレロパシーは植物の生存戦略の一種として注目されている。アレロパシー現象の原因となる化学物質はアレロケミカルと呼ばれる(藤井、2009)。現在までに発見された植物の二次代謝物質は 10 万種類に達し、さらに、毎年、新しい物質の発見が続けられており、二次代謝物質の一種であるアレロケミカルの数も増えつつある。アレロケミカルは周囲の植物や微生物などに影響を及ぼすだけではなく、植物自分自身にも影響を及ぼす場合もある。このような現象は自家中毒と言われる。

本研究では、薬用植物 324 種を用いてアレロパシー活性の検定を行い、高活性植物から作用物質を同定した。

1-2-2 研究の概要

第1章では、植物の生存戦略の中で二次代謝物質が重要な役割を果 していることや,その中で植物間の阻害的或いは促進的関係に関連し ているアレロパシー現象について概括した。

第2章では、植物の地上部分(葉、茎)や根に含まれるアレロパシー活性をサンドイッチ法(藤井、1994)によって、薬用植物 324 種を対象に検定し、高活性植物のスクリーニングを行った。

第3章では、植物から放出される揮発性物質のアレロパシー活性を

ディッシュパック法 (藤井、2009) によって 139 種の植物について検 定し、高活性植物のスクリーニングを行った。

第4章では、ディッシュパック法の検定結果から、最も高い活性を示したトウシキミに含まれる揮発性成分を分析し、検出された揮発性物質によるアレロパシー活性を綿棒法で検定し、その中でℓ-fenchoneと 1,8-cineoleの活性が最も高いことを明らかにした。

第5章では、検索結果から選抜された薬用植物と、同定されたアレロパシー候補物質に関する総合考察とまとめを行った。

第3節 アレロパシーに関与する物質

1-3-1 アレロパシーの定義

アレロパシー (Allelopathy) は、東北帝国大学植物生理学講座の初代教授H・モーリッシュが、オーストリアに帰国後「アレロパシー」 (1937) という本を出版してこの概念を発表した (Molisch, H. 1937)。 ギリシャ語の α λ λ η λ ω ν (お互いの) と π α θ o ζ (あるものの身にふりかかるもの) を合成して作られた。原義は「高等植物が放出する化学物質が他の植物、微生物に、阻害的あるいは促進的な何らかの作用を及ぼす現象」 (Molisch、1937) を意味するが、最近の研究

は、昆虫や線虫・小動物に対する作用にも広がり、最も広義には、「植物、微生物、動物などの生物が同一の個体外に放出する化学物質が、同種の生物を含む他の生物個体における、発生、生育、行動、栄養状態、健康状態、繁殖力、個体数、あるいはこれらの要因となる生理・生化学的機構に対して何らかの作用や変化を引き起こす現象」、すなわち化学物質による生物間相互作用を総称し、作用する物質を他感物質(allelochemical)と呼ぶ。農業における連作障害や忌地などの阻害、寄生植物の発芽や生育の促進なども含む概念である(藤井、2000)。

1-3-2 アレロパシーの意義

1. 生態的意義

二次代謝物質として知られる、植物に特異的に存在するアルカロイド、テルペノイド、サポニン、フラボノイドなどの物質は、従来「老廃物」もしくは「貯蔵物質」と考えられてきた。タンパク質、アミノ酸、核酸、脂質、糖などの多くの生物に共通で、生命維持に必要不可欠の物質を「一次代謝物質」と呼ばれていいるのに対して、特定の植物にのみ存在し、生命維持に直接関与しない物質を「二次代謝物質」と呼ばれている。二次代謝物質は植物にのみ存在し、すでに1万種類以上知られているが、植物界全体では30万種以上あると推定される

(上田、2005)。これらの物質のなかには、生薬、毒薬、麻薬などに利用されてきたものもあるが、植物自身にとっての存在意義は不明であった。近年、「二次代謝物質は植物の進化の過程で偶然に生成され、他の昆虫・微生物・植物等から身を守る、何らかの化学交信や情報伝達の手段として有利に働いた場合に、その植物が生き残ってきた」とするアレロパシー仮説が提唱されている(沼田、1977)。

2. 農業上の意義

アレロパシーは連作障害の原因、雑草のもつアレロパシーによる作物の生育阻害、果樹の植え替え時の忌地現象以外に、作物や牧草のアレロパシーを利用した雑草や病害虫の防除や、新たな生理活性物質の発見、アレロパシーに関わる遺伝子を導入した雑草や病害虫抵抗性作物の開発などの面で農業上役立つと考えられている。

第4節 アレロパシーの実体

アレロパシーは、さまざまな条件に規定された個別の現象であり、常にアレロパシーを発現するような植物はない、つまり「A 植物の他感物質はSである」というように決めつけることはできない、その作用は特定の物質(単一のこともあれば複合のこともある)が、特定の条件の下で特定の作用経路(根からの滲出、葉からの揮散、葉や残からの溶脱など)を経て、特定の環境条件(土壌構成要素、微生物などの生物的要素、光や水分条件、気象条件などの環境条件)下で、特定の生理作用阻害あるいは促進などを行う現象であることに留意する必要がある。また、ある植物が常にアレロパシーを示すのではなく、特定の植物を強く阻害しても、全く作用しない植物もあることに留意する必要がある。これがアレロパシーの特徴である。

一般にアレロパシーは阻害現象と解釈されることが多い。しかし、 違う種類の植物植えておくと、互いに生育が促進されるような現象、 すなわち共栄関係にも、アレロケミカル関与していると考えられてい る。

このように、アレロパシーとは植物が放出する物質による阻害作用に限定されがちであるが、実は促進作用を含めた複雑な現象である。

また、セイタカアワダチソウはアレロパシーの強い植物であるという表現は間違いである。それは、この植物に含まれるアレロケミカル(他感物質)と作用経路を明らかにし、作用を与える植物を限定しないと、アレロパシーを正確に説明できないからである。

アレロパシーは、生物の生産する化学物質が他の生物の生育を阻害する現象の抗生物質とよく似た概念である。抗生物質は、1928年にイギリスのフレミング博士によって発見されたペニシリンに端を発し、アレロパシーとほぼ同時代に研究が開始された。

抗生物質は微生物が生産し、ほかの微生物など生体細胞の増殖や機能を阻害する物質の総称である。一般に「抗菌薬(英語:antibacterial drugs)」と同義であるが、広義には抗ウイルス剤や抗真菌剤、抗がん剤も含む人間の病気を直す画期的な特効薬であり、その後アメリカ農務省の研究者によって、第二次世界大戦の前後に、軍需用の要求もあって大量合成法が開発され、チャーチル首相の肺炎を直すなど、有用性が広く認識され、急速に研究が進展した。現在では、数多くの抗生物質がいろいろな微生物から同定され、多くの患者の命を救い、その有効性は広く認められている。

これに対し、アレロパシーの研究は、まだ完全に市民権を得ている とは言えない。それは、抗生物質が人間の病気に対する特効薬であり、 命にかかわる貴重な薬として役立つこと、現象が明確で物質の作用が容易に証明できるのに対し、アレロパシーの場合は、直接的に人間の生存に関係が深いと感じられないこと、また自然界において他の競合因子との認別が困難であり、特定の現象を特定の物質で完全に証明することが困難なためであると思われる(藤井、2000)。

第5節 アレロパシーの作用経路

アレロパシーの作用経路は、①葉など地上部から揮発性物質として放出される場合、②生葉あるいは植物体の残渣や落葉・落枝などから雨や霧滴などによって濾し出される場合、③根など地下部から惨出される場合、④ 落ち葉や植物体残漕から放出される物質が直接あるいは分解をへて作用する場合、の4つの経路がある。これらの作用経路毎に生物検定法が開発されている(藤井、2000)。

本論文では、これらの作用経路のうち、②と④の葉や残渣などから 放出される物質のアレロパシー活性をサンドイッチ法で、①の揮発性 物質のアレロパシー活性をディッシュパック法で検定した。 第2章 サンドイッチ法によるアレロパシー活性の検索

第 1 節 はじめに

植物の葉或いは植物体の残渣や落ち葉・落枝などから霧滴などによる溶脱(leaching)は、植物のアレロパシー現象をひき起こす重要な経路である(藤井、 2000)。この過程においては雨や霧滴などが外的条件となっており、植物の葉、枝、実などの器官表面に存在する水溶性の物質が溶脱され、周囲の土壌に蓄積されることで、植物の発芽や成長を抑制あるいは促進的(共生的)な作用を及ぼすことがある(孔ほか、2016)。薬用植物や牧草などでは、連作障害が栽培上の重要な問題となっている。また、これまでの検索で、薬用植物にはアレロパシー活性の高いものが多いことが報告されている。そこで、本研究では、薬用植物をサンプルとして検定し、高アレロパシー活性植物の選抜を行った。材料採取には、昭和薬科大学の薬用植物園のご協力を得て、園内に栽培されている薬用植物を採取させていただき試料とした。

第 2 節 サンドイッチ法に用いた薬用植物の材料

昭和薬科大学の薬用植物園は1990年に開園された。薬学部学生に、生きた教材を用いた実践的指導を行う場を提供するため、日本薬局方に収載されている薬用植物を中心に代表的な薬用植物が栽培されている。身近な薬用植物に関する正しい知識を普及し、自然に親しんでもらうことを目的として、地域の一般市民を対象とした薬草教室も定期的に実施されている。

図 2-1 昭和薬科大学植物園の地図

出所:昭和薬科大学のホームページ www. shoyaku.ac.jp から引用

薬用植物園には、多数の草本薬用植物や薬木が植えられ、湿性・水生植物を観察できる池も設けられている。熱帯・亜熱帯の薬用植物、薬木を観察できる温室では、室温がコンピュータ制御され、2階の研究室には生薬の標本類も多数、収蔵されている。本研究で用いた試料は昭和薬科大学の植物園から収集させて頂いた。収集した植物の総数は324種であり、重複を含めると372種をサンプリングした。

図 2-2 昭和薬科大学薬用植物園

出所:昭和薬科大学のホームページ www.shoyaku.ac.jpから引用

本研究の材料は昭和薬科大学植物園で、4月から10月にかけて、それぞれの植物の最盛期に、葉を中心に採取した。

第3節 サンドイッチ法による薬用植物の研究方法

サンドイッチ法は、植物体地上部の各部位(茎、葉、実)や残留物か ら放出される物質によるアレロパシー活性を検定する方法である。特に 樹木落葉や植物残渣に由来する活性物質を検定するために開発された。 落葉の量は、広葉樹の場合は、樹種によらずほぼ一定で、1 ha 当たり、 年間 3 トンといわれている。針葉樹はその 2 倍程度であるが、多くの 作物残渣も年間約3トンとされているので、今回の実験では、先行研究 の計算に従い3トンを基準として使用した。具体的には6次の組織培 養用マルチディッシュ(Multidish 6 Wells, Nunclon Delfa Si, Thermo Fisher Scientific, China) に採集したサンプル (生葉あるいは実を採 集して 60℃の乾燥器で 24 時間乾燥した物) 10mg と 50mgの二種類の量 (1ha あたり 1 トンと 5 トンに相当する) に分けて、マルチディッシュ の 3 穴に 10mg、残りの 3 穴に 50mg を入れ、寒天培地にサンドイッチ状 に包埋し、上にレタス(品種:Great Lakes 366)の種子を一穴あたり 5 粒 (3 穴×5=15 粒)置床した。22℃の恒温装置 (三菱電機エンジニ アリング株式会社、CN-25C、日本)に入れ、3 日後に発芽したレタスの 幼根長(Radicle)と下胚軸長(Hypocotyl)を測定することで、供試植 物の活性を検定した。レタスを検定植物とする理由は、感受性が高いこ

と、再現性がよいこと、双子葉類の植物を代表することからである(藤井、 1994)。植物の生成する化学物質の中で、物質の違いによって 阻害活性を起こす部位に違いがある。例えば、ある物質が受容植物体の幼芽根を抑制する場合もあり、下胚軸の成長を抑制する場合もある。阻害活性を把握するには、両方を検定した方が確実なため、幼根長と下胚軸長を測定した。

図2-3 サンドイッチ法の対照区(左)と薬用植物(右)の比較

サンドイッチ方法を実施しているときの例を図 2-3 に示す。

以下に実験の手順を記述する。

1 、 寒天溶解法:

① 耐圧ねじ口瓶に、蒸留水 1000m L に対して 7.5g の低温ゲル化寒

天 (0.75% w/v) を入れる。この量はマルチディッシュ = 16 個分に相当する。この溶液をオートクレーブに入れる。115%で 15分とし、100%以下の温度になったらオートクレーブから取り出す。

- ② オートクレーブから取り出した寒天培地は、固まらないように 40℃のウォーターバスの中に置く。
- 2、 器材とサンプル処理
 - ① サンプル数+対照区(コントロール)のマルチディッシュ、ラベルを用意する。
 - ② ラベルに植物名と採取日を記入し、ディッシュのフタに貼ることである。
 - ③ 植物をハサミで適当な大きさに(穴に入るように)切り、ディッシュに入れる。上段 3 つは 10 mg、下段 3 つは 50 mgである。

3、 寒天培地の注入

- ① 各 5 m L を分注器(ピペットマン 5 m L 用)で注入、この際、ラベルに注入した時間を記入しておく。
- ② 寒天がある程度固まってから、植物体がセルの中で均一に分散しているように、ピンセットで調整する。
- ③ 再び 5 m L の寒天を添加する。

- ④ 注入し終わったマルチディッシュには、空中落下菌を防ぐため、 紙を乗せて蓋をしておく。
- 4、 レタスの置床。
 - ① レタス(Great Lakes 366)の種子をシャーレに小出しして、ピンセットで寒天の上に置いていく。各穴 5 粒ずつとする。ラベルに種子を置床した時間を記入する。
 - ② 置床し終えたのち、ディッシュにフタをして、周囲をセロハンテープで密封する。
 - ③ インキュベータ内で、20℃恒温で発芽・生育させる。レタスの発 芽、生育には 20℃が適温であるが、20~25℃の範囲では、対照区 に対する比で表わした活性には差がないことを確認している。

5、 測定方法

3日後、インキュベーターから出したものを測定する。測定が すぐできない時は 10℃の冷蔵庫に保存しておく。レタスの伸長が 10℃以下で止まるので、数日以内に測定すれば問題はない。測定 は方眼紙上で行い、測定用紙に結果を記入する。

各穴、5本のうち長さの揃った3本を選んで測定する。(地下部 (根 Radicle、R と略す) と地上部 (Hypocotyl、H と略す) の長さを測定する。(藤井、 1994)

第4節 研究で使用した薬用植物

被検定植物 (対象植物)

採取した植物は 372 種類であり、これに SPU-1 から 372 の番号をつけた。 SPU は Shouwa Pharmacheutical University の略である。その学名、和名と使用部位を以下に記す。重複して採取した植物があるので、重複したものをまとめると薬用植物の種数としては 324 種であった。

表 2-1 採取した全植物のリスト (学名、和名と使用部位)

	学名	和名	
SPU-1	Coffea arabica L.	コーヒーノキ	葉
SPU-2	Calophylum inophyllum L.	テリハホ゛ク	葉
SPU-3	Ervatamia pandacaqui (Poir.) Pichon	ハ゜ンタ゛カキ	葉
SPU-5	Pongamia pinnata Merr.	クロヨナ	葉
SPU-6	Rhoeo discolor Hance	ムラサキオモト	葉
SPU-8	Litchi chinensis	レイシ	葉
SPU-9	Theobroma cacao L.	カカオノキ	葉
SPU-10	Myrciaria cauliflora Berg.	シャホチカハ゛	葉
SPU-11	Hedychium coronarium Koen.	ハナシュクシャ	葉

SPU-12	Cananga odorata Hook.f. & Thomson var. fruticosa	チャホ゛イランイラン	葉
	(Craib) Corner.		
SPU-13	Lippia dulcis Trevir.	スイートハーフ゛メキシカン	葉
SPU-14	Bixa orellana L.	マルハ゛ニッケイ	葉
SPU-15	Melia azedarach L.var. toosendan Makino	クレンピ	葉
SPU-16	Theobroma cacao L.	カカオノキ	葉
SPU-17	Sterculia balanghus L.	+ 7	葉
SPU-18	Terminalia chebula Rez.	ミロハ゛ランノキ	葉
SPU-20	Cinnamomum zeylanicum Nees	セイロンニッケイ	葉
SPU-21	Clivia nobilis Lindl.	クンシラン	葉
SPU-22	Illicium verum Hook.f.	トウシキミ	葉
SPU-23	Piper nigrum L.	コショウ	葉
SPU-24	Bauhinia racemosa Lam.	ハ゛ウヒニア・	葉
SPU-25	Pyrrosia adnascens (Sw.) Ching	ヒトツハ゛マメツ゛タ	葉
SPU-26	Tapeinochilos ananassae K.Schum.	マツカサシ゛ンシ゛ャー	葉
SPU-28	Tectona grandis L.f.	チーク	葉
SPU-29	Nicotiana glauca Graham	キタ゛チタハ゛コ、 カラシタ゛ネ	葉
SPU-30	Dichroa febrifuga Lour.	シ゛ョウサ゛ンアシ゛サイ	葉

SPU-31	Euodia hupehensis Dode	コホクコ゛シュユ	葉
SPU-32	Acacia catechu Willd.	アセンヤクノ	葉
SPU-33	Inga edulis Mart.	インカ゛	葉
SPU-34	Richardella dulcifica Baehni	ミラクルフルーツ	葉
SPU-35	Sapindus mukorossi Gaertn.	ムクロシ゛	葉
SPU-36	Asimina triloba Dunal	ホ°ホ°ー(アシミナ)	葉
SPU-38	Strophanthus gratus Franch.	ニオイストロファンツス	葉
SPU-39	Cinnamomum burmanni B1.	シ゛ャワニッケイ	葉
SPU-40	Tamarindus indica L.	タマリント゛ノキ	葉
SPU-41	Hibiscus rosa-sinensis L.	フ゛ッソウケ゛	葉
SPU-42	Tabebuia chrysotricha (Mart.) Standley	۱۸°	葉
SPU-43	Ceiba pentandra Gaertn.	カホ゜ック	葉
SPU-44	Tinospora tuberculata Beumee	イホツツラフシ゛	葉
SPU-45	Santalum album L.	ヒ゛ャクタ゛ン	葉
SPU-46	Croton sublyratus Kurz	フラウノイ	葉
SPU-47	Ficus religiosa L.	イント゛ホ゛タ゛イシ゛ュ	葉
SPU-48	Piper longum L.	イントナカコショウ	葉
SPU-49	Cinnamomum daphnoides Sieb.et Zucc.	マルハ゛ニッケイ	葉

SPU-50	Caesalpinia pulcherrima (L.) Sw.	オオコ゛チョ	葉
SPU-51	Morinda citrifolia L.	ヤエヤマァオキノニ	葉
SPU-52	Ceratonia siliqua L.	/†="\\\\\	葉
SPU-53	Pimenta racemosa J.W.Moore	ヘーラム	葉
SPU-54	Derris elliptica Benth.	ハイトハ゛	葉
SPU-55	Derris malaccensis Prain	タチトハ゛	葉
SPU-56	Malpighia glabra L.	アセロラの	葉
SPU-57	Richardella dulcifica Baehni	ミラクルフルー	葉
SPU-58	Eugenia uniflora L.	タチハ゛ナアテ゛ク	葉
SPU-59	Cinnamomum cassia Blume	ケイ(カンナンニッケイ)	葉
SPU-60	Ceiba sp.	ハ゜ンヤノキ	葉
SPU-61	Crinum asiaticum L.var. japonicum Baker	ハマオモト、 ハマユウ	葉
SPU-62	Lawsonia inermis L.	シコウカ	葉
SPU-63	Aquilaria sinensis Ailg.	シナシ゛ンコウ	葉
SPU-64	Alpinia katsumadai Hayata	ソウス゛ク	葉
SPU-65	Cocculs trilobus A.P.De Candole.	アオツツ゛ラフシ゛	葉
SPU-66	Saraca indica L.	ムユウシ゛ュ	葉
SPU-68	Rivina humilis L.	シ゛ュス゛サンコ゛	葉

SPU-69	Lippia dulcis Trevir.	スイートハーフ゛メキシカン	葉
SPU-70	Clitoria ternatea L.	チョウマメ	葉
SPU-71	Trewia nudiflora L.		葉
SPU-72	Strophanthus gratus Franch.	ニオイストロファンツス	葉
SPU-73	Amomum subulatum Roxb.	カルタ゛モン	葉
SPU-74	Terminalia bellirica (Gaertn.) Roxb.	へ゛リリカミロハ゛ラン	葉
SPU-75	Lucuma nervosa A.DC.	カニステル	葉
SPU-76	Myrciaria cauliflora Berg.	シャホ゛チカハ゛	葉
SPU-77	Cestrum nocturnum L.	ヤコウホ゛ク	葉
SPU-79	Shorea robusta C.F.Gaertn.	サラノキ	葉
SPU-80	Dianella ensifolia (L.) DC.	キキョウラン	葉
SPU-83	Barringtonia racemosa BI.	サカ゛リ ハ゛ナ	葉
SPU-84	Abrus precatorius L.	トウアス゛キ	葉
SPU-85	Sauropus androgynus Merr.	アマメシハ゛	葉
SPU-86	Manihot utilissima Pohl.	スイートキャッサハ゛	葉
SPU-87	Syzygium samarangens Merr. et Perry	オオフトモモ	葉
SPU-88	Tamarindus indica L.	タマリント゛	葉
SPU-89	Pongamia pinnata Merr.	クロヨナ	葉

SPU-90	Carapa guianensis Aubl.	クラフ゛ウット゛	葉
SPU-91	Cinnamomum burmanni B1.	シ゛ャワニッケイ	葉
SPU-92	Alpinia officinarum Hance	リョウキョウ	葉
SPU-93	Croton sublyratus Kurz	クロトン	葉
SPU-94	Curcuma longa L.	ウ - コン	葉
SPU-95	Plumeria rubra L.	イント゛ソケイ	葉
SPU-96	Hymenaea courbarii L.	オオイナコマメ	葉
SPU-97	Cyperus rotundus L.	ハマスケ゛	葉
SPU-98	Theobroma grandiflorum (G.Don) K.Schum.	クフ [°] アスー	葉
SPU-99	Terminalia chebula Rez.	ミロハ゛ランノキ	葉
SPU-100	Achras sapota L. Manikara achras Fosberg	サホ゜シ゛ラ	葉
SPU-101	Annona muricata L.	トケハンレイシ	葉
SPU-102	Citrus hystrix DC.	コフ゛ミカン	葉
SPU-103	Calophylum inophyllum L.	テリハリホ゛ク	葉
SPU-104	Ardisia elliptica Bedd.	セイロンマンリョウ	葉
SPU-105	Adiantum trapeziforme L.	ヒシカ゛タホウライシタ゛	葉
SPU-106	Eulophia macrobulbon Hook.f.	タイミンセッコク	葉
SPU-107	Sizygium cumini Skeels	シャンホ゛ラン	葉

SPU-108 Litchi chinensis Sonn. レイシ 葉 SPU-109 Tamarindus indica L. タマラント・ 葉 SPU-110 Elaeocarpus decipens Hems. 歩わりき 葉 SPU-111 Psidium guajava L. ハーンシャ での 葉 SPU-112 Hernandia sonora L. ハスノハきり 葉 SPU-113 Sterculia nobilis Sm. と ツボンノウき 葉 SPU-114 Coptis japonica (Thunb.) Makino var.major (Miq.) セラハ・オラレン 葉 Satake SPU-115 Alocasia odora (Lodd.) Spach. タワスーイモ 葉 SPU-116 Macadamia integrifolia Maiden et Bete he タインスラントナット 葉 SPU-117 Aloe africana Miller アコニ・アフラカーナ 葉 SPU-118 Curcuma zedoaria Rose. カシュフ 葉 SPU-119 Averrhoa carambola L. コーンシン 葉 SPU-120 Euphorbia millii Des Moul. フトハナキリン 葉 SPU-121 Piper nigrum L. ギ SPU-122 Bixa orell ana L. ギ SPU-123 Tacca chantrieri Andre タフカ シャントリュ 葉 SPU-124 Carapa guianensis Aubl. フンジュロート・ 葉				
SPU-110 Elaeocarpusdecipens Hems.	SPU-108	Litchi chinensis Sonn.	レイシ	葉
SPU-111 Psidium guajava L. パンソン・ロウ 業 SPU-112 Hernandia sonora L. パスノハキリ 業 SPU-113 Sterculia nobilis Sm. ピーンボーンノキ 業 SPU-114 Coptis japonica (Thunb.) Makino var.major (Miq.) サリハ・オウレン 業 Satake SPU-115 Alocasia odora (Lodd.) Spach. クワス・イモ 業 SPU-116 Macadamia integrifolia Maiden et Betc he クインスラントナット 業 SPU-117 Aloe africana Miller アロエ・アフリカーナ 業 SPU-118 Curcuma zedoaria Rosc. カシュア 業 SPU-119 Averrhoa carambola L. コーレンシ 業 SPU-120 Euphorbia millii Des Moul. フトハナキリン 業 SPU-121 Piper nigrum L. コンコウ 業 SPU-122 Bixa orell ana L. ポートフトリエ 業 SPU-123 Tacca chantrieri Andre	SPU-109	Tamarindus indica L.	タマリント゛	葉
SPU-112 Hernandia sonora L.	SPU-110	Elaeocarpusdecipens Hems.	ホルトノキ	葉
SPU-113 Sterculia nobilis Sm. た **ンポーンノキ 楽 SPU-114 Coptis japonica (Thunb.) Makino var.major (Miq.) せりハ・オウレン 楽 Satake SPU-115 Alocasia odora (Lodd.) Spach. クワス・イモ 薬 SPU-116 Macadamia integrifolia Maiden et Betc he クインスラントナット 薬 SPU-117 Aloe africana Miller アロエ・アフリカーナ 薬 SPU-118 Curcuma zedoaria Rosc. カシュツ 薬 SPU-119 Averrhoa carambola L. ゴーレンシ 薬 SPU-120 Euphorbia millii Des Moul. フトハナキリン 薬 SPU-121 Piper nigrum L. ジョウ ※ SPU-122 Bixa orell ana L. ※ SPU-123 Tacca chantrieri Andre ※ SPU-123 Tacca chantrieri Andre	SPU-111	Psidium guajava L.	ハ゛ンシ゛ロウ	葉
SPU-114 Coptis japonica (Thunb.) Makino var.major (Miq.) セリハ*オウレン 業 Satake SPU-115 Alocasia odora (Lodd.) Spach. クワス*イモ 業 SPU-116 Macadamia integrifolia Maiden et Betc he クインスラントナット 業 SPU-117 Aloe africana Miller アロエ・アフリカーナ 業 SPU-118 Curcuma zedoaria Rosc. カシュツ 業 SPU-119 Averrhoa carambola L. コ*レンシ 業 SPU-120 Euphorbia millii Des Moul. フトハナキリン 業 SPU-121 Piper nigrum L. コショウ 業 SPU-122 Bixa orell ana L. ペ*ニノキ 業	SPU-112	Hernandia sonora L.	ハスノハキリ	葉
Satake SPU-115 Alocasia odora (Lodd.) Spach. SPU-116 Macadamia integrifolia Maiden et Betc he SPU-117 Aloe africana Miller SPU-118 Curcuma zedoaria Rosc. SPU-119 Averrhoa carambola L. SPU-120 Euphorbia millii Des Moul. SPU-121 Piper nigrum L. SPU-122 Bixa orell ana L. SPU-123 Tacca chantrieri Andre	SPU-113	Sterculia nobilis Sm.	ピンポンノキ	葉
SPU-115 Alocasia odora (Lodd.) Spach. クリス* イモ 葉 SPU-116 Macadamia integrifolia Maiden et Betc he クインスラントナット 葉 SPU-117 Aloe africana Miller アロエ・アフリカーナ 葉 SPU-118 Curcuma zedoaria Rose. カシュツ 葉 SPU-119 Averrhoa carambola L. コ*レンシ 葉 SPU-120 Euphorbia millii Des Moul. フトハナキリン 葉 SPU-121 Piper nigrum L. コショウ 葉 SPU-122 Bixa orell ana L. 本*ニノキ 葉 SPU-123 Tacca chantrieri Andre タッカ シャントリエ 葉	SPU-114	Coptis japonica (Thunb.) Makino var.major (Miq.)	セリハ゛オウレン	葉
SPU-116 Macadamia integrifolia Maiden et Betc he カインスラントナット 葉 SPU-117 Aloe africana Miller アロエ・アフリカーナ 葉 SPU-118 Curcuma zedoaria Rosc. カシュツ 葉 SPU-119 Averrhoa carambola L. コャレンシ 葉 SPU-120 Euphorbia millii Des Moul. フトハナキリン 葉 SPU-121 Piper nigrum L. コショウ 葉 SPU-122 Bixa orell ana L. ペ*ニノキ 葉 SPU-123 Tacca chantrieri Andre カッカ シャントリエ 葉		Satake		
SPU-117 Aloe africana Miller フロエ・アフリカーナ 葉 SPU-118 Curcuma zedoaria Rosc. カシュツ 葉 SPU-119 Averrhoa carambola L. コ*レンシ 葉 SPU-120 Euphorbia millii Des Moul. フトハナキリン 葉 SPU-121 Piper nigrum L. コショウ 葉 SPU-122 Bixa orell ana L. ペ*ニノキ 葉 SPU-123 Tacca chantrieri Andre カッカ シャントリエ 葉	SPU-115	Alocasia odora (Lodd.) Spach.	クワス゛イモ	葉
SPU-118 Curcuma zedoaria Rosc. カシュツ 葉 SPU-119 Averrhoa carambola L. コ゚レンシ 葉 SPU-120 Euphorbia millii Des Moul. フトハナキリン 葉 SPU-121 Piper nigrum L. コショウ 葉 SPU-122 Bixa orell ana L. ペ゚ニノキ 葉 SPU-123 Tacca chantrieri Andre タッカ シャントリエ 葉	SPU-116	Macadamia integrifolia Maiden et Betc he	クインスラントナット	葉
SPU-119 Averrhoa carambola L. コ゛レンシ 葉 SPU-120 Euphorbia millii Des Moul. フトハナキリン 葉 SPU-121 Piper nigrum L. コショウ 葉 SPU-122 Bixa orell ana L. ペ゛ニノキ 葉 SPU-123 Tacca chantrieri Andre タッカ シャントリエ 葉	SPU-117	Aloe africana Miller	アロエ・アフリカーナ	葉
SPU-120 Euphorbia millii Des Moul. フトハナキリン 葉 SPU-121 Piper nigrum L. コショウ 葉 SPU-122 Bixa orell ana L. ヘ゛ニノキ 葉 SPU-123 Tacca chantrieri Andre タッカ シャントリエ 葉	SPU-118	Curcuma zedoaria Rosc.	カシュツ	葉
SPU-121 Piper nigrum L. コショウ 葉 SPU-122 Bixa orell ana L. ペーニノキ 葉 SPU-123 Tacca chantrieri Andre タッカ シャントリエ 葉	SPU-119	Averrhoa carambola L.	コ゛レンシ	葉
SPU-122 Bixa orell ana L. ペーニノキ 葉 SPU-123 Tacca chantrieri Andre タッカ シャントリエ 葉	SPU-120	Euphorbia millii Des Moul.	フトハナキリン	葉
SPU-123 Tacca chantrieri Andre タッカ シャントリエ 葉	SPU-121	Piper nigrum L.	コショウ	葉
	SPU-122	Bixa orell ana L.	^*=/キ	葉
SPU-124 Carapa guianensis Aubl. アンジ゛ローハ゛ 葉	SPU-123	Tacca chantrieri Andre	タッカ シャントリエ	葉
	SPU-124	Carapa guianensis Aubl.	アンシ゛ローハ゛	葉

SPU-125	Annona muricata L.	トケハンレイシ	葉
SPU-126	Zingiber officinale Rosc.	ショウカ゛	葉
SPU-127	Dendrobium sp.	テ゛ント゛ロヒ゛ウム	葉
SPU-128	Cinnamomum cassia Blume	カンナンニッケイ	葉
SPU-129	Artabotrys uncinatus (Lam.) Merr.	アルタホ゛トリス	葉
SPU-130	Piper kadzura Ohwi (P.futokazura Sieb.	フウトウカス゛ラ	葉
SPU-131	Adiantum trapeziforme L.	ヒシカ゛タホウライシタ゛	葉
SPU-132	gerardiana Wall.	マオウ	葉
SPU-133	Murraya paniculata Jack	ケ゛ッキツ	葉
SPU-134	Atractylodes chinensis Koidz.	シナオケラ	葉
SPU-135	Cephaelis ipecacuanha A.Richard	トコン	葉
SPU-136	Artabotrys uncinatus (Lam.) Merr.	アルタホ゛トリス	葉
SPU-137	Strobilanthes flaccidifolius Nees	リュウキュウアイ	葉
SPU-138	Crataeva religiosa G.Forst.	キ゛ョホ゛ ク	葉
SPU-139	Croton sublyratus Kurz		葉
SPU-140	Tapeinochilos ananassae K.Schum.	マツカサシ゛ンシ゛ャー	葉
SPU-141	Thymus quinquecostat us Celak.	イフ゛キシ゛ャコウソウ	葉
SPU-142	Psidium cattleianum Sabine var. lucidum Hort.	キミノハ゛ンシ゛ロウ	葉

SPU-143	Eucommia ulmoides Oliv.	トチュウ	葉
SPU-144	Cinnamomum cassia Blume	ケイ(カンナンニッケイ)	葉
SPU-145	Astragalus membranaceus (Fisch.) Bunge.	キハ゛ナオウキ゛	葉
SPU-146	Angelica acutiloba Kitagawa	トウキ	葉
SPU-147	Celosia argentea L.	ノケ゛イトウ	葉
SPU-148	Tinbulns terreslris L.	ハマヒ゛シ	葉
SPU-149	Valeriana fauriei Briq.	カノコソウ	葉
SPU-150	Atractylodes japonica Koidzumi	オケラ	葉
SPU-151	Datura metel L.	チョウセンアサカ゛オ	葉
SPU-152	Datura stramonium L. var. inermis Jacq.	トケ゛ナショウシュチョウセンア	葉
		# 	
SPU-153	Valeriana fauriei Briq.	カノコソウ	葉
SPU-154	Digitalis lanata Fhrh.	ケジキタリス	葉
SPU-155	Datura stramonium L.	シロハ゛ナヨウシュチョウセンア	葉
		#カ * オ	
SPU-156	Styphnolobium japonicum L.	エンジュ	葉
SPU-157	Aristolochia debilis Sieb. et Zucc.	ウマノスス゛クサ	葉
SPU-158	Pleuropterus multiflorum Turcz.	ツルト゛クタ゛ミ	葉

SPU-159	Trichosanthes bracteata Voigt	オオカラスウリ	葉
SPU-160	Eucommia ulmoides Oliv.	トチュウ	葉
SPU-161	Actinidia deliciosa C.F.Liang & A.R.Ferguson.	キゥイフルーツ	葉
SPU-162	Perilla frutescens (L.) Britton var. crispa (Thunb.)	シリ	葉
	H.Deane		
SPU-163	Hibiscus manihot L.	トロロアオイ	葉
SPU-164	Astragalus membranaceus (Fisch.) Bunge.	キハ゛ナオウキ゛	葉
SPU-165	Epimedium sagittatum Maxim.	ホサ゛キイカリソウ	葉
SPU-166	Salvia miltiorrhiza Bunge	タンシ゛ン	葉
SPU-167	Verbena officinalis L.	クマツツ゛ラ	葉
SPU-168	Momordica cochinchinensis. (Lour.) Spreng.	ナンハ゛ンキカラスウリ	葉
SPU-169	Podophyllum peltatum L.	ホ。ト、フィルム	葉
SPU-170	Hyoscyamus niger L.	t = X	葉
SPU-171	Geranium thunbergii Sieb. et Zucc.	ケ゛ンノショウコ	葉
SPU-172	Platycodon grandiflorum A.DC.	キキョウ	葉
SPU-173	Arctium lappa L.	コ゛ホ゛ウ	葉
SPU-174	Zingiber officinale Rosc.	ショウカ゛	葉
SPU-175	Adenophora triphylla A.DC. var. japonica Hara	ツリカ゛ネニンシ゛ン	葉

SPU-176	Trichosanthes anguina L	へと゛ウリ	葉
SPU-177	Argemone mexicana L.	アサ゛ミケ゛シ	葉
SPU-178	Apios americana Medic.	アメリカホト゛	葉
SPU-179	Polygala senega L.var.latifolia Torr. et Gray	ヒロハセネカ゛	葉
SPU-180	Spilanthes acmella (L.) Murr.	オランタ゛センニチ	葉
SPU-181	Akebia quinata Decne.	アケヒ゛	葉
SPU-182	Oenothera tetraptera Cav.	ツキミソウ	葉
SPU-183	Scrophularia ningpoensis Hemsley	ケ゛ンシ゛ン	葉
SPU-184	Ligusticum sinense Oliver	コウホン	葉
SPU-185	Glehnia littoralis Fr.Schm.	ハマホ゛ウフウ	葉
SPU-186	Angelica dahurica Benth.et Hook. f.	3 p 1 / 2 * #	葉
SPU-187	Cynara scolymus L.	チョウセンアサ゛ミ	葉
SPU-188	Dichroa febrifuga Lour.	シ゛ョウサ゛ンアシ゛サイ	葉
SPU-189	Bistorta sp.	イブ゛キトラノオの 仲 間	葉
SPU-190	Tetragonia tetragonoides O. Kuntze	ツルナ(ハマンシ゛ャ)	葉
SPU-191	Petasites japonicus Maxim.	フキ	葉
SPU-192	Leonurus japonicus Houtt.	メハシ゛キ、ホソハ゛メハシ゛キ	葉
SPU-193	Digitalis lanata Ehrh.	ケシ゛キ゛タリス	葉

SPU-194	Ricinus communis L.	トウコ゛マ	葉
SPU-195	Sinomenium acutum Rehder et Wills.	オオツツ゛ラフシ゛	葉
SPU-196	Spilanthes acmella (L. Murr.)	オランタ゛センニチ	葉
SPU-197	Humulus lupulus L.	ホッフ [°]	葉
SPU-198	Rabdosia japonica Hara	ヒキオコシ	葉
SPU-199	Thymus quinquecostatus Celak.	イフキシャコウソウ	葉
SPU-200	Scutellaria baicalensis Georgi	コカ゛ネハ゛ナ	葉
SPU-201	Celastrus orbiculatus Thunb.	ツルウメモト゛キ	葉
SPU-202	Agastache foeniculum (Pursh) Kuntze	アニスヒソッフ゜	葉
SPU-203	Ephedra distachya L.	フタマタマオウ	葉
SPU-204	Hypericum perforatum L.	セイヨウオトキ゛リソウ	葉
SPU-205	Metaplexis japonica Makino	カ [*] カ [*] イモ	葉
SPU-206	Berchemiella berchemiifolia (Makino) Nakai	ョコク゛ラノキ	葉
SPU-207	Geranium thunbergii Sieb. et Zucc.	ケ゛ンノショウコ	葉
SPU-208	Hymenaea courbarii L.	オオイナコ゛マメ	葉
SPU-209	Aristolochia debilis Sieb. et Zucc.	ウマノスス゛クサ	葉
SPU-210	Mentha piperita L.	セイヨウハッカ	葉
SPU-211	Paeonia lactiflora Pallas	シャクヤク	葉

SPU-212	Ampelopsis japonica Makino	カカ゛ミク゛サ	葉
SPU-213	Chelidonium majus L. var.asiaticum Ohwi	クサノオウ	葉
SPU-214	Cocculs trilobus A.P.De Candole.	アオツツ゛ラフシ゛(カミエヒ゛)	葉
SPU-215	Trachelospermum asiaticum Nakai var. intermedium	テイカカス゛ラ	葉
	Nakai		
SPU-216	Lonicera japonica Thunb.	スイカス、ラ	葉
SPU-217	Bistorta vulgaris Hill. (Polygonum bistorta L.	イフ゛キトラノオ	葉
SPU-218	Angelica acutiloba Kitagawa	トウキ	葉
SPU-219	Atractylodes japonica Koidzumi	オケラ	葉
SPU-220	Spilanthes acmella (L.) Murr.	オランタ゛センニチ	葉
SPU-222	Apios americana Medic.	アメリカホト゛イモ	葉
SPU-223	Plantago psyllium L.	エタ゛ウチオオハ゛コ	葉
SPU-224	Datura metel L.	チョウセンアサカ゛オ	葉
SPU-225	Ranunculus japonicus Thunb.	ウマノアシカ゛タ	葉
SPU-226	Eucommia ulmoides Oliv.	トチュウ	葉
SPU-227	Chelidonium majus L. var. asiaticum Ohwi	クサノオウ	葉
SPU-228	Ranunculus cantoniens is DC.	ケキツネノホ゛タン	葉
SPU-229	Angelica acutiloba Kitagawa	オオフ゛カトウキ	葉

SPU-230	Aster tataricus L	シオン	葉
SPU-231	Epimedium sagittatum Maxim.	ホサ゛キイカリソウ	葉
SPU-232	Aucuba japonica Thunb.	アオキ	葉
SPU-233	Gossypium nanking Meyen	DЯ	葉
SPU-234	Hibiscus cannabinus L.	ケナフ	葉
SPU-235	Epimedium cremeum Nakai	キハ゛ナイカリソウ	葉
SPU-236	Cornus officinalis Sieb. et Zucc.	サンシュユ	葉
SPU-237	Vetiveria zizanioides Stapf.	^* f ^ ~	葉
SPU-238	Epimedium sempervirens Nakai	トキワイカリソウ	葉
SPU-239	Hydrangea serrata (Thunb.) Ser.	アマキ゛アマチャ	葉
SPU-240	Angelica keiskei Koidz.	アシタハ゛	葉
SPU-241	Hydrangea involucrata Sieb.	タマアシ゛サイ	葉
SPU-242	Persicaria tinctoria (Ait.) H.Gross	アイ、タテ゛アイ	葉
SPU-243	Dioscorea bulbifera L.	ニカ゛カシュウ	葉
SPU-244	Rauwolfia serpentina Benth.	イント゛シ゛ャホ゛ク	葉
SPU-245	Helleborus orientalis Lam.	ハルサ゛キクリスマスロース゛	葉
SPU-246	Lonicera japonica Thunb.	スイカス゛ラ	葉
SPU-247	Aspidistra elatior Blume	ハラン	葉

SPU-248	Inula helenium L.	オオク゛ルマ	葉
SPU-249	Scrophularia buergeriana Miq.	コ゛マノハク゛サ	葉
SPU-250	Cnidium monnieri Cusson	オカセ゛リ	葉
SPU-251	Aconitum chinense Sieb. ex Paxton)	ハナトリカフ゛ト	葉
SPU-252	Dioscorea bulbifera L.f. spontanea Makino et	カシュウイモ	葉
	Nemoto		
SPU-253	Fritillaria verticillata Willd.var.thunbergii Baker	アミカ゛サユリ	葉
SPU-254	Astilbe thunbergii (Siebold et Zucc.) Miq. var.	トリアシショウマ	葉
	congesta H.Boissieu		
SPU-255	Cynara scolymus L.	チョウセンアサ゛ミ	葉
SPU-256	Collinsonia japonica (Miq.) Harley.	シモハ゛シラ	葉
SPU-257	Allium victorialis var. platyphyllum Makino	キョウシャニンニク	葉
SPU-258	Magnolia sieboldii K.Koch ssp.japonica Ueda	オオヤマレンケ゛	葉
SPU-259	Aster scaber Thunb.	シラヤマキ゛ク	葉
SPU-260	Iris tectorum Maxim.	イチハツ	葉
SPU-261	Pinellia tripartita Schott	オオハンケ゛	葉
SPU-262	Sophora flavescens Ait.	クララ	葉
SPU-263	Wollemia nobilis W.G.Jones, K.D.Hill & J.M.Allen	シ゛ェラシックツリー	葉

SPU-264	Thymus quinquecostatus Celak.	イフ゛キシ゛ャコウソウ	葉
SPU-265	Asparagus cochinchinensis Merr.	クサスキ゛カス゛ラ	葉
SPU-267	Hypericum ascyron L.	トモエソウ	葉
SPU-268	Euphorbia neriifolia L.	キリンカク	葉
SPU-269	Linderastrychnifolia F.Vill.	テンタ゛イウヤク	葉
SPU-270	Caloscordum inutile(Makino) Okuyama et Kitagawa	ステコ゛ヒ゛ル	葉
SPU-271	Ardisia japonica Blume (=Bladhia japonica)	ヤフ゛コウシ゛	葉
SPU-272	Celosia argentea L.	ノケ゛イトウ	葉
SPU-273	Strophanthus gratus Franch.	ニオイストロファンツス	葉
SPU-274	Lithospermum erythrorhizon Sieb. et Zucc.	ムラサキ	葉
SPU-275	Artemisia capillaris Thunb.	カワラヨモキ゛	葉
SPU-276	Stauntonia hexaphylla Decne.	44.	葉
SPU-277	Acer palmatum Thunberg	イロハモミシ゛(タカオモミシ゛)	葉
SPU-278	Liriope platyphylla Wang et Tang	ヤフ゛ラン	葉
SPU-279	Zanthoxylum bungeanum Maxim.	カホクサ゛ンショウ	葉
SPU-280	Magnolia officinalis Rehder & E.H.Wilso n var.	ヤハス゛ホオノキ	葉
	biloba Rehder&E.H.Wilson		
SPU-281	Taxodium distichum Rich.	ラクウショウ	葉

SPU-282	Pterocarya rhoifolia Sieb.et. Zucc.	サワク゛ルミ	葉
SPU-283	Saururus chinensis Baill.	ハンケ゛ショウ	葉
SPU-284	Brasenia schreberi J.F.Gmel.	シ゛ュンサイ	葉
SPU-285	Fraxinus japonica Blume	トネリコ	葉
SPU-286	Antenoron filiforme Robertv.et Vautier (Polygonum	ミス゛ヒキ	葉
	filiforme Thunb.		
SPU-287	Peucedanum japonicum Thunb.	ホ゛タンホ゛ウフウ	葉
SPU-288	Petasites japonicus Maxim.	フキ	葉
SPU-289	Phellodendron amurense Rupr.	キハタ゛	葉
SPU-290	Macleaya cordata R.Br.	タケニク゛サ	葉
SPU-291	Berberis thunbergii DC.	X+*	葉
SPU-292	Punica granatum L.	サ * クロ	葉
SPU-293	Thalic tnum mimus L var hypoleucum Miq		葉
SPU-294	Rosmainus offianalis L.	ロース゛マリー	葉
SPU-295	Agrimonia pilosa Ledeb.var.japonica Nakai	キンミス゛ヒキ	葉
SPU296	Pleuropterus multiflorus (Thunb.) Turcz.	ツルト゛クタ゛ミ	葉
	(Reynoutria multiflora(Thumb.) Moldenke)		
SPU-297	Viburnvm erosum Thunb	コハ゛ノカ゛マス゛ミ	葉

SPU-298	Liex cornutd Lindi	ヤハ゛ネヒイラキ゛モチ	葉
SPU-299	Euonymus japonica Thunb.	マサキ	葉
SPU-300	Viburnvm erosum Thunb.	コハ゛ノカ゛マス゛ミ	葉
SPU-301	Silene dioica (L.) Clairv.	レット゛キャンヒ゜オン	葉
SPU-302	Pieris japonica D. Don	ret"	葉
SPU-303	Clematis teriu folora DC.	ウスハ゛ニアオイ	葉
SPU-304	Cotiuns coggygria Scop	レンキ゛ョウ	葉
SPU-305	Stachys byzantine K.Koch	モナルタ゛(ラムス゛イヤー)	葉
SPU-306	Dipsacus japonicus Miq.	ナヘ゛ナ	葉
SPU-307	Hypericum erectum	オトキ゛リソウ	葉
SPU-308	Equisetum arvense L.	スキ゛ナ	葉
SPU-309	Saponaria officinalis L.	サホ゛ンソウ	葉
SPU-310	Campanula punctata Lam.	ホタルフ゛クロ	葉
SPU-311	Cynara scolymus L.	センニンソウ	葉
SPU-312	Lycium chinense Mill.	スモークツリー	葉
SPU-313	Stachys buygantina K. Koch	ラムス゛イヤー	葉
SPU-314	Stachys riederi Cham var. hispidula Hara	132° 7	葉
SPU-315	Quercus acuta Thunb.	アカカ゛シ	葉

SPU-316	Cedrus deodara Loud.	ヒマラヤスキ゛	葉
SPU-317	Styrax japonica Sieb. et Zucc.	エコ゛/キ	葉
SPU-318	Euphorbia tirucalii L.	アオサンコ゛	葉
SPU-319	Cynara scolymus L.	チョウセンアサ゛ミ	葉
SPU-320	Lycium chinense Mill.	7 =	葉
SPU-321	Chrysanthemum cinerariaefolium (Trevir.) Vis.	シロハ゛ナムショケキ゛ク	葉
SPU-322	Rpeum rhaponticum L.	ルハ゛ーフ゛	葉
SPU-323	Myrtus communis L.	キ゛ンハ゛イカ	葉
SPU-324	Ruta graveolens L.	ヘンルータ゛	葉
SPU-325	Thymus vulgaris L.	タチシ゛ャコウソウ	葉
SPU-326	Aralia cordata Thunb.	ウト゛	葉
SPU-327	Plantago asiatica L.	オオハ゛コ	葉
SPU-328	Stauntonia hexaphylla Decne.	44.	葉
SPU-329	Alnus japonica Steud.	ハンノキ	葉
SPU-330	Solidago virgiaurea L. subsp. asiatica Kitamura	アキノキリンソウ	葉
SPU-331	Vincetoxicum sublanceolatum (Miq.) Maxim. var.	コハ゛ノカモメツ゛ル	葉
	sublanceolatum (シノニム: Cynanchum		
	sublanceolatum (Miq.) Matsum.)		

SPU-332	Isoetes japonica A.Br.	ミス゛ニラ	葉
SPU-333	Collinsonia japonica (Miq.) Harley.	シモハ゛シラ	葉
SPU-334	Ardisia japonica (Thunb.) Blume	ヤフ゛コウシ゛	葉
SPU-335	Plantago asiatica L var. densiuscula Pilg.	オオハ゛コ	葉
SPU-336	Symplocarpus renifolius Schott ex Tzvelev	サ゛セ゛ンソウ	葉
SPU-337	Geranium thunbergii Sieb. et Zucc.	ケ゛ンノショウコ	葉
SPU-338	Fraxinus japonica Blume	トネリコ	葉
SPU-339	Saururus cernuus L.	アメリカハンケ゛ショウ	葉
SPU-340	Viburnum opulus L. var.roseum L. ssp. calvescens	テマリカンホ゛ク	葉
	Sugimoto form.		
SPU-341	Coptis japonica (Thunb.) Makino var.major (Miq.)	セリハ゛オウレン	葉
	Satake.		`
SPU-342	Uncaria rhynchophylla Miq.	カキ゛カス゛ラ	葉
SPU-343	Angelica anomala Lallem.	エソ゛ノヨロイク゛サ	葉
SPU-344	Symplocarpus foetidus Nutt. var. latissimus Hara.	サ゛セ゛ンソウ	葉
SPU-345	Juncus decipiens Nakai	17° t	葉
SPU-346	Eupatorium fortunei Turcz.	フシ゛ハ゛カマ	葉
SPU-347	Salvia nipponica Miq.	キハ゛ナアキキ゛リ	葉

SPU-348	Chrysanthemum makinoi Matsum. ex Nakai	リュウノウキ゛ク	葉
SPU-349	Geum japonicum Thunb.	タ゛イコンソウ	葉
SPU-350	Amsonia elliptica Roem. et Schult.	チョウシ゛ソウ	葉
SPU-351	Kaempferia parviflora Wall. Ex. Baker	クラチャイタ゛ム	葉
SPU-352	Angelica keiskei Koidz.	アシタハ゛	葉
SPU-353	Lindera strychnifolia Lindera	テンタ゛イウヤク	葉
SPU-354	Euonymus alatus Sieb.	ニシキキ゛	葉
SPU-355	Machilus thunbergii Sieb. et Zucc.	タブ゛ノキ	葉
SPU-356	Cinnamomum sieboldii Meisn. (C. loureirii Nees)	ニッケイ	葉
SPU-357	Pieris japonica D.Don	アセヒ	葉
SPU-358	Juniperus chinensis L. var. kaizuka Nakai	カイス゛カイフ゛キ	葉
SPU-359	Diospyros japonica Sieb.et Zucc. (D. lotus L.)	マメカ゛キ	葉
SPU-360	Litsea citriodora Hatusima (L. cubeba)	アオモシ゛	葉
SPU-361	Arachis hypogaea L.	ラッカセイ(ナンキンマメ)	葉
SPU-362	Scaevola frutescens Krause (S. sericea Vahl.)	クサトヘ゛ラ	葉
SPU-363	Davidia involucrata Baill.	ハンカチノキ	葉
SPU-364	Magnolia salicifolia Maxim.	タムシハ*	葉
SPU-365	Prunus jamasakura Sieb.	ヤマサ゛クラ	葉

SPU-366	Catalpa ovata G.Don	キササケ゛	葉
SPU-367	Cynara scolymus L.	チョウセンアサ゛ミ	葉
SPU-368	Cymbopogon citratus Stapf.	レモンク゛ラス	葉
SPU-369	Coptis trifolia (L.) Salisb.	ミツハ゛オウレン	葉
SPU-370	Taxus cuspidata Sieb.et Zucc.var. nana Rehd.	キャラホ゛ク	葉
SPU-371	Sinomenium acutum Rehder et Wills. (S.	オオツツ゛ラフシ゛	葉
	diversifolium Diels)		
SPU-372	Prunus zippeliana Miq.	ハ゛クチノキ (ビランジュ)	葉

第5節 サンドイッチ法による薬用植物の検索結果

昭和薬科大学薬用植物園で採取した全植物 372 種のアレロパシー活性をサンドイッチ法で検定した。重複して採取したものがあったので、全植物数は 324 種であった。重複したものについては、その平均値を求めた。検定結果を、表 2 - 1 から表 2 - 11 に、10mg および 50mg の植物を使って検定したときの結果を示す。なおこれらの表では、便宜上 50mg の幼根伸長阻害活性の強い順に並べている。表の中で、R は Radicle の意味で、幼根伸長率を、H は hypocotyl の意味で下胚軸伸長率を示す。表中の数字は、幼根あるいは下胚軸の伸長率を対照区に対する%として表しており、値が小さいほど、伸長が抑制されていること、すなわち阻害活性が強いことを示している。

表 2-1 サンドイッチ法の結果(阻害率 1 位から 30 位まで)

学名	R-	Н-	R -	Н-
	10 m g	10 m g	50 m g	50 m g
Tamarindus indica L.	7	15	0	0
Artabotrys uncinatus (Lam.) Merr.	30	76	7	33
Tamarindus indica L.	40	76	7	15
Zingiber officinale Rosc.	54	105	8	27
Hibiscus cannabinus L.	27	79	8	16
Liriope platyphylla Wang et Tang	8	17	9	15
Polygala senega L. var. latifolia Torr.	47	82	10	45
et Gray				
Taxodium distichum Rich.	12	29	10	26
Acacia catechu Willd.	21	40	10	16
Wollemia nobilis W.G.Jones,	27	78	11	61
K.D.Hill& J.M.Allen				
Elaeocarpus sylvestris Poir. var.	24	82	12	48
ellipticus Hara				
Ranunculus cantoniensis DC.	47	103	13	74
Berberis thunbergii DC.	39	82	13	39

Momordica cochinchinensis (Lour.)	33	75	13	55
K. Spreng.				
Datura stramonium var. inermis	5 5	121	13	73
Geranium thunbergii Sieb. et Zucc.	36	82	14	63
Cestrum nocturnum L.	43	78	14	57
Piper longum L.	47	73	15	53
Bixa orellana L.	38	91	15	51
Celosia argentea L.	48	110	15	65
Silene dioica (L.) Clairv.	76	71	15	17
Santalum album L.	29	65	16	53
Tribulus terrestris L.	22	77	17	59
Crataeva religiosa G.Forst.	40	79	17	48
Datura stramonium L.	50	116	17	74
Datura metel L.	54	121	17	69
Ranunculus japonicus Thunb.	64	103	17	45
Sophora japonica (L) Schott	41	76	17	38
Melia azedarach L. var. toosendan	54	65	17	22
Makino				
Perilla frutescens var. crispa	26	51	17	52

表 2-2 サンドイッチ法の結果 (阻害率 31 位から 60 位まで)

24. 17	R-	Н-	R-	Н-
学名	10 m g	10 m g	50 m g	50 m g
Apios americana Medic.	63	111	17	71
Malpighia glabra L.	40	86	18	73
Cnidium monnieri Cusson	54	95	18	51
Amomum subulatum Roxb.	51	94	18	46
Datura metel L.	65	110	19	40
Arctium lappa L.	28	96	19	80
Eucommia ulmoides Oliv.	89	101	19	74
Pimenta racemosa J.W.Moore	71	75	20	38
Lycium chinense Mill	28	66	20	61
Terminalia bellirica (Gaertn.) Roxb.	54	105	21	85
Tabebuia chrysotricha (Mart.) Standley	56	106	21	70
Cephaelis ipecacuanha A.Richard	47	95	21	59
Fritillaria verticillata Willd. var.	51	93	21	75
Digitalis purpurea	51	107	22	53
Verbena officinalis L.	60	79	23	82

Astragalus membranaceus (Fisch.)	41	113	23	93
Bunge.	• •	113	23	<i>y</i> 3
Piper kadzura Ohwi	45	105	23	69
Artemisia capillaris Thunb.	78	100	23	46
Abrus precatorius L.	91	90	24	64
Trichosanthes anguina L	38	94	24	79
Trichosanthes bracteata Voigt	53	90	24	84
Paeonia lactiflora Pallas	46	84	24	79
Eulophia macrobulbon Hook.f.	31	87	24	70
Oenothera tetraptera Cav.	52	115	24	95
Strobilanthes flaccidifolius Nees	58	112	25	92
Sauropus androgynus Merr.	41	87	25	67
Geranium thunbergii Sieb. et Zucc.	55	85	25	68
Curcuma longa L.	47	80	25	65
Astragalus membranaceus (Fisch.)	42	88	26	95
Bunge.	7	00	20	9 0
Spilanthes acmella (L.) Murr.	54	88	26	49

表 2-3 サンドイッチ法の結果 (阻害率 61 位から 90 位まで)

24 H	R-	Н-	R-	Н-
学名	10 m g	10 m g	50 m g	50 m g
Chelidonium majus L.	80	114	27	81
Ardisia elliptica Bedd.	82	107	27	63
Spilanthes acmella (L.) Murr.	54	84	27	41
Ampelopsis japonica Makino	59	108	27	89
Tetragonia tetragonoides O. Kuntze	86	140	27	102
Pleuropterus multiflorum Turcz.	82	114	28	62
Plantago psyllium L.	77	107	28	65
Ephedra sp.	29	89	28	73
Sinomenium acutum Rehder et Wills.	64	114	28	67
Aspidistra elatior Blume	63	99	28	69
Calophylum inophyllum L.	81	113	28	84
Symplocarpus foetidus Nutt. var.	64	97	28	60
Ricinus communis L.	63	95	28	57
Argemone mexicana L.	55	100	29	84
Lithospermum erythrorhizon Sieb. et	85	106	29	96
Zucc.				

Psidium cattleianum Sabine var.	73	117	29	73
Cinnamomum cassia Blume	71	110	29	79
Lucuma nervosa A.DC.	60	103	29	65
Strophanthus gratus Franch.	76	89	30	69
Angelica keiskei Koidz.	94	166	30	101
Lawsonia inermis L.	40	71	31	75
Hyoscyamus niger L.	34	82	31	71
Adenophora triphylla A.DC. var.	61	93	32	95
Zingiber officinale Rosc.	74	111	32	93
Lippia dulcis Trevir.	74	133	32	89
Geranium thunbergii Sieb. et Zucc.	88	99	32	67
Styrax japonica Sieb. et Zucc.	68	87	32	76
Pleuropterus multiflorum Turcz.	65	91	32	75
Hibiscus manihot L.	71	98	32	91
Sterculia nobilis Sm.	41	98	33	99

表 2-4 サンドイッチ法の結果 (阻害率 91 位から 120 位まで)

学名	R-	Н-	R-	Н-
字名	10 m g	10 m g	50 m g	50 m g
Euphorbia neriifolia L.	56	107	33	106
Hymenaea courbarii L.	72	93	33	54
Dipsacus japonicus Miq.	96	94	33	70
Cinnamomum cassia Blume	75	124	33	83
Terminalia chebula Rez.	46	69	33	65
Euphorbia millii Des Moul.	83	116	33	108
Celosia argentea L.	82	115	34	93
Asparagus cochinchinensis Merr.	73	122	34	90
Bistorta sp.	68	123	35	100
Sapindaceae	93	96	35	61
Theobroma grandiflorum (G.Don)	86	110	35	98
K.Schum.	80	110	33	90
Rauwolfia serpentina Benth.	68	126	3 5	99
Dichroa febrifuga Lour.	73	102	36	86
Dioscorea bulbifera L. f.	71	114	36	95
Myrciaria cauliflora Berg.	75	100	37	77

Cedrus deodara Loud.	56	68	37	76
Illicium verum Hook.f.	72	96	37	56
Pinellia tripartita Schott	67	115	37	92
Hydrangea involucrata Sieb.	75	138	37	112
Murraya paniculata Jack	68	120	38	91
Metaplexis japonica Makino	71	112	38	101
Chelidonium majus L.	80	99	39	90
Aconitum chinense Sieb. ex Paxton	71	106	39	103
Agastache foeniculum (Pursh)	7.4	100	2.0	0.2
Kuntze	74	100	39	82
Artabotrys uncinatus (Lam.) Merr.	78	89	40	93
Manihot utilissima Pohl	66	101	40	96
Glehnia littoralis Fr.Schm.	78	112	40	81
Dioscorea bulbifera L.	78	147	41	120
Achras sapota L.	83	117	41	90
Vetiveria zizanioides Stapf	97	135	41	121

表 2-5 サンドイッチ法の結果 (阻害率 121 位から 150 位まで)

24 <i>t</i> z	R-	Н-	R-	Н-
学名	10 m g	10 m g	50 m g	50 m g
Sizygium cumini Skeels	48	86	41	86
Eupatorium fortunei Turcz.	84	109	42	95
Clematis teriu folora DC	84	117	42	92
Averrhoa carambola L.	90	107	42	88
Apios americana Medic.	83	102	42	79
Leonurus japonicus Houtt.	69	93	42	63
Aquilaria sinensis Gilg	75	99	42	93
Plumeria rubra L.	95	113	42	95
Euonymus alatus Sieb.	105	140	43	105
Piper nigrum L.	56	108	43	101
Lycium chinense Mill.	92	125	43	104
Epimedium sempervirens Nakai	97	129	43	108
Ervatamia pandacaqui Pichon	56	110	43	105
Spilanthes acmella (L.) Murr.	63	95	44	87
Aster tataricus L.	100	99	44	51
Podophyllum peltatum L.	76	86	44	91

Inula helenium L.	76	109	44	109
Akebia quinata Decne.	87	137	45	102
Derris malaccensis Prain	78	91	45	110
Valeriana fauriei Briq.	8 1	133	45	96
Alnus japonica Steud.	83	129	45	92
Ephedra distachya L.	45	88	45	81
Eugenia uniflora L.	85	106	45	105
Adiantum trapeziforme L.	90	117	45	95
Aristolochia debilis Sieb. et	66	98	45	91
Piper nigrum L.	73	94	46	88
Croton sublyratus Kurz	96	133	46	106
Ceiba pentandra	99	121	46	114
Angelica dahurica Benth.et Hook.f.	83	132	46	104
Alocasia odora (Lodd.) Spach	80	127	46	113

表 2-6 サンドイッチ法の結果 (阻害率 151位から 180位まで)

学名	R-	Н-	R-	Н-
子名	10 m g	10 m g	50 m g	50 m g
Rivina humilis L.	82	98	47	110
Ceiba sp.	85	101	47	99
Bauhinia racemosa Lam.	80	107	47	100
Pongamia pinnata Merr.	90	111	48	102
Cocculs trilobus A.P.De Candole	76	122	48	111
Ceiba pentandra Gaertn.	97	131	48	106
Saraca indica L.	99	102	48	80
symplocarpus renifolius schott ex miq	97	126	48	97
Myrtus communis L.	66	86	48	103
Eucommia ulmoides Oliv.	99	141	49	89
Humulus lupulus L.	83	125	49	93
Croton sublyratus Kurz	86	141	49	115
Angelica acutiloba Kitagawa	96	126	49	89
Thalic tnum mimus L var hypoleucum	0.7	10.5	4.0	0.0
miq	87	125	49	90
Curcuma zedoaria Rosc.	72	104	50	71

Hernandia sonora L.	84	106	50	98
Cinnamomum cassia Blume	114	100	50	79
Astilbe Thunbergii var. congesta	79	123	50	100
Ceratonia siliqua L.	95	105	50	64
Allium victorialis var.	75	105	51	103
Cornus officinalis Sieb. et Zucc.	87	114	51	94
Acer palmatum Thunb. var. palmatum	69	98	51	84
Nicotiana glauca Graham	70	111	51	93
Collinsonia japonica (Miq.) Harley	85	113	52	101
Richardella dulcifica	72	99	52	94
Geum japonicum Thunb.	99	119	52	105
Thymus quinquecostatus Celak.	87	137	53	95
Clivia nobilis Lindl.	73	105	53	97
Chrysanthemum makinoi Matsum. ex	7.6	110	5.2	104
Nakai	76	110	53	104
Juncus decipiens Nakai	117	128	54	91

表 2-7 サンドイッチ法の結果 (阻害率 181 位から 210 位まで)

N	R-	Н-	R-	Н-
Name	10 m g	10 m g	50 m g	50 m g
Helleborus orientalis Lam.	98	127	54	66
Macleaya cordata R.Br.	82	108	54	83
Brasenia schreberi J.F.Gmel.	95	115	54	72
Actinidia deliciosa C.F.Liang.	75	107	54	108
Sterculia balanghus L.	85	97	54	90
Pongamia pinnata Merr.	86	115	54	101
Caloscordum inutile (Makino)	83	122	54	93
Bistorta vulgaris Hill.	80	117	54	108
Sophora flavescens Ait.	88	115	54	114
Plantago asiatica L. var.	87	102	55	80
Petasites japonicus Maxim.	101	131	55	118
Gossypium nanking Meyen	80	107	55	117
Zanthoxylum bungeanum Maxim.	85	118	55	83
Peucedanum japonicum Thunb.	95	128	55	102
Strophanthus gratus Franch.	92	117	55	105
Cinnamomum zeylanicum Nees	88	108	55	98

Terminalia chebula Rez.	88	101	5 5	75
Antenoron filiforme Robertv. et Vautier	82	109	56	95
Inga edulis Mart.	96	106	56	93
Angelica anomala Lallem.	104	131	56	99
Hydrangea serrata Ser. var. angustata	0.7	1.40	5.6	122
Ohba	97	148	56	133
Platycodon grandiflorum A.DC.	92	115	57	103
Cananga odorata var. fruticose	66	89	57	94
Thymus quinquecostatus Celak.	88	123	57	101
Hemigraphis okamotoi Masam.	95	108	58	114
Lonicera japonica Thunb.	72	102	58	85
Amsonia elliptica Roem. et Schult.	108	128	58	89
Carapa guianensis Aubl.	85	103	58	98
Hypericum ascyron L.	79	94	59	91
Cynara scolymus L.	84	112	59	87

表 2-8 サンドイッチ法の結果 (阻害率 211 位から 240 位まで)

P4	R-	Н-	R-	Н-
学名	10 m g	10 m g	50 m g	50 m g
Ardisia japonica Blume	75	106	59	96
Mentha piperita L.	83	102	59	93
Celastrus orbiculatus Thunb.	88	107	59	92
Solidago virgiaurea L.	85	122	59	108
Angelica acutiloba Kitagawa	104	136	59	112
Rhoeo discolor Hance	89	94	60	81
Pyrrosia adnascens (Sw.) Ching	8 1	100	60	102
Digitalis lanata Ehrh.	99	105	60	84
Persicaria tinctoria (Ait.) H.Gross	95	142	60	122
Myrciaria cauliflora Berg.	8 1	100	61	91
Litchi chinensis Sonn.	93	94	61	92
Rpeum rhaponticum L.	121	127	61	104
Uncaria rhynchophylla Miq.	118	147	61	122
Phellodendron amurense Rupr.	87	118	61	86
Tapeinochilos ananassae (Hassk.) K.Schum.	96	132	62	99
Lindera strychnifolia F.Vill.	94	110	62	97

Croton sublyratus Kurz	90	120	62	107
Angelica acutiloba Kitagawa	81	112	62	92
Barringtonia racemosa BI.	86	111	62	110
Atractylodes chinensis Koidz.	95	100	62	57
Tectona grandis L.f.	82	114	63	110
Cocculs trilobus A.P.De Candole	86	107	63	90
Atractylodes japonica Koidzumi	105	133	63	108
Collinsonia japonica (Miq.) Harley	91	110	63	116
Agrimonia pilosa Ledeb. var. japonica Nakai	96	111	63	91
Valeriana fauriei Briq.	112	135	64	100
Coptis japonica Makino var. major Satake	84	104	64	98
Shorea robusta C.F.Gaertn.	97	107	64	110
Viburnum opulus L. var. roseum L. ssp.	124	114	64	85
Tinospora tuberculata Beumee (T. crispa	94	117	64	104
Miers)	2 1	11/	04	104

表 2-9 サンドイッチ法の結果 (阻害率 241 位から 270 位まで)

N	R-	Н-	R-	Н-
Name	10 m g	10 m g	50 m g	50 m g
Annona muricata L.	100	124	65	114
Rabdosia japonica Hara	88	111	65	101
Cyperus rotundus L.	95	109	67	117
Viburnvm erosum thunb	96	115	67	94
Saponaria officinalis L.	80	108	67	102
Trachelospermum asiaticum Nakai var.	86	114	67	125
Epimedium cremeum Nakai	105	138	68	119
Dendrobium sp.	85	120	68	102
Aristolochia debilis Sieb. et Zucc.	90	109	68	115
Chrysanthemum makinoi Matsum. ex Nakai	106	132	68	90
Cotiuns coggygria scop	92	108	68	111
Stachysriederi cham var hispidula Hara	98	101	68	90
Rhoeo discolor Hance	80	123	68	127
Litsea citriodora Hatusima	124	133	69	91
Syzygium samarangens Merr. et Perry	103	113	69	100
Punica granatum L.	88	109	70	78

Hedychium coronarium Koen.	91	92	70	80
Berchemiella berchemiifolia (Makino) Nakai	91	98	70	80
Kaempferia parviflora	109	140	70	129
Strophanthus gratus Franch.	127	136	71	113
Chrysanthemum cinerariaefolium Vis.	104	112	71	117
Angelica keiskei Koidz.	108	132	72	133
Isoetes japonica A.Br.	118	126	73	118
Tacca chantrieri Andre	95	113	73	115
Carapa guianensis Aubl.	108	123	74	95
Saururus chinensis Baill.	96	123	74	88
Ardisia japonica (Thunb.) Blume	113	142	74	129
Thymus vulgaris L.	131	122	74	118
Alpinia katsumadai Hayata	95	111	74	102
Coffea arabica L.	55	95	74	115

表 2-10 サンドイッチ法の結果 (阻害率 271 位から 300 位まで)

24 ti	R-	Н-	R-	Н-
学名	10 m g	10 m g	50 m g	50 m g
Theobroma cacao L.	89	99	74	108
Caesalpinia pulcherrima (L.) Sw.	112	142	75	133
Hibiscus rosa-sinensis L.	108	140	75	111
Scrophularia ningpoensis Hemsley	101	120	75	100
Thymus quinquecostatus Celak.	103	109	75	81
Salvia miltiorrhiza Bunge	84	99	75	108
Cynara scolymus L.	99	127	76	114
Ligusticum sinense Oliver	86	119	76	114
Litchi chinensis Sonn.	87	103	76	94
Asimina triloba Dunal	110	134	76	111
Ficus religiosa L.	111	148	76	136
Epimedium sagittatum Maxim.	82	100	77	107
Viburnvm erosum thunb	98	103	77	74
Cinnamomum burmanni B1.	114	118	80	107
Derris elliptica Benth.	91	113	81	108
Lippia dulcis Trevir.	86	94	81	109

Adiantum trapeziforme L.	94	107	82	120
Clitoria ternatea L.	109	115	82	119
Salvia nipponica Miq	118	138	83	110
Hypericum erectum Thunb. var. erectum	113	110	84	106
Cynara scolymus L.	117	115	84	117
Plantago asiatica L. var.	94	107	84	120
Quercus acuta Thunb.	108	115	84	96
Alpinia officinarum Hance	88	106	85	113
Rabdosia japonica Hara	98	106	85	100
Euphorbia tirucalii L.	125	124	86	109
Eucommia ulmoides Oliv.	118	147	86	137
Equisetum arvense L.	110	115	87	119
Atractylodes japonica Koidzumi	93	121	87	142
Macadamia integrifolia Maiden et Betche	88	108	87	111

表 2-11 サンドイッチ法の結果 (阻害率 301 位から 324 位まで)

学名	R-	Н-	R-	Н-
	10 m g	10 m g	50 m g	50 m g
Hymenaea courbarii L.	102	114	88	120
Pterocarya rhoifolia Sieb. et. Zucc.	116	121	88	109
Dianella ensifolia (L.) DC.	84	126	89	118
Saururus cernuus L.	116	137	90	114
Cinnamomum daphnoides Sieb. et Zucc.	117	120	90	110
Stauntonia hexaphylla Decne.	107	124	90	101
Psidium guajava L.	91	101	91	111
Magnolia officinalis Rehder & E.H.Wilson	96	113	91	114
Coptis japonica Makino var. major Satake	134	126	92	102
Petasites japonicus Maxim.	103	112	92	84
Fraxinus japonica Blume	107	120	92	90
Morinda citrifolia L.	111	119	95	106
Stachys buygantina K. Koch	133	124	96	94
Diospyros japonica Sieb. et Zucc.(D. lotus L.)	118	132	96	125
Machilus thunbergii Sieb. et Zucc.	123	134	96	116
Stauntonia hexaphylla Decne.	110	123	97	119

Epimedium sagittatum Maxim.	107	121	97	143
Rosmainus offianalis L.	118	144	97	116
Theobroma cacao L.	95	94	97	106
Aucuba japonica Thunb.	103	130	97	135
Aloe africana Miller	99	102	98	114
Aster scaber Thunb.	102	107	100	105
Fraxinus japonica Blume	135	124	103	129
Pieris japonica D. Don	100	112	103	106

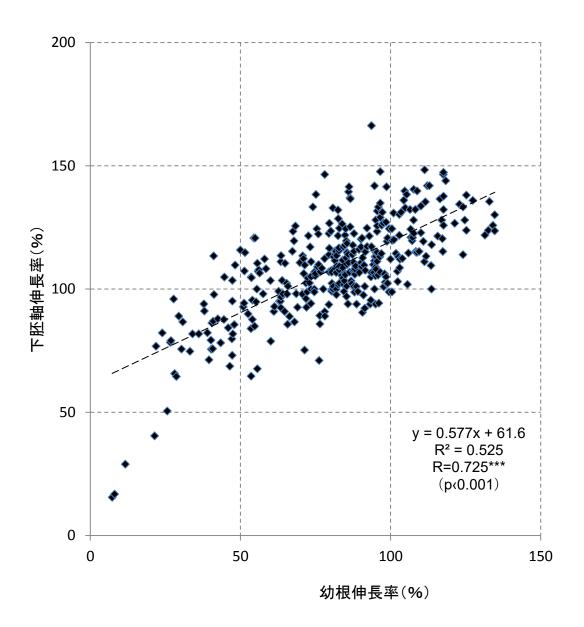


図 2-4 サンドイッチ法で求めた幼根伸長率と下胚軸伸長率の関係

図 2 -4 にサンドイッチ法で求めた全データの幼根伸長率と下胚軸伸長率の関係を図示した。両者の間には高い正の相関(0.1%水準で有意)があった。このような関係はこれまでのサンドイッチ法の検定においても認められている(Fujii ら、2003)。

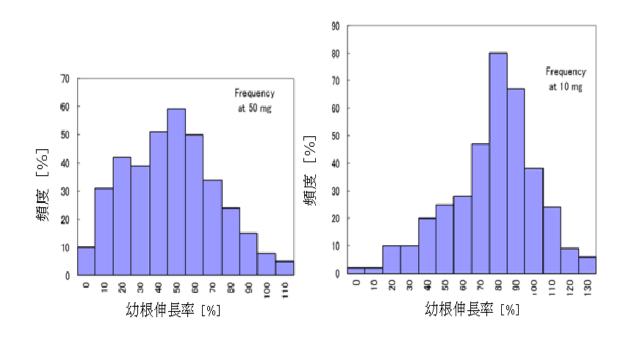


図 2-5 サンドイッチ法の検索結果の分布

図 2-5 は、324 薬用植物のサンドイッチ法の検定結果が正規分布する

かどうかを調べた結果である。左の図は 50mg での検定結果であるが、 正規分布には従わなかった。右の図は、10mg での検定結果であるが、 この結果は、正規分布に従い、1%水準で有意であった。

50mgの結果では、阻害活性の強いものが出過ぎて正規分布しなかったものと考えられる。一方、10mgのデータは、正規分布し、活性が本当に強いものを選抜することができると考えられる。

そこで、10mgで検定した結果がより信頼度が高いと考え、10mgのデータで活性の高い、上位 20 位までを選抜した結果を表 2-12 に示す。

表 2-12 サンドイッチ法の結果活性が強い薬用植物の上位 20位

学名	R-10mg	H-10mg	和名
Tamarindus indica L.	7	15	タマリント゛
Liriope platyphylla Wang et Tang	8	17	ヤフ゛ラン
Taxodium distichum Rich.	12	29	ラクウショウ
Acacia catechu Willd.	21	40	アセンヤクノキ
Tribulus terrestris L.	22	77	ハマヒ゛シ
Elaeocarpus sylvestris Poir. var.	24	82	ホルトノキ(モカ゛シ)
Perilla frutescens var. crispa	26	51	シソ
Wollemia nobilis W.G.Jones	27	78	シ゛ュラシックツリー
Hibiscus cannabinus L.	27	79	ケナフ
Arctium lappa L.	28	96	コ゛ホ゛ウ
Lycium chinense Mill	28	66	クコ
Santalum album L.	29	65	ヒ゛ャクタ゛ン
Ephedra sp.	29	89	マオウ
Artabotrys uncinatus (Lam.) Merr.	30	76	アルタホ゛トリス
Eulophia macrobulbon Hook.f.	31	87	タイミンセッコク
Momordica cochinchinensis K.	33	75	ナンハ゛ンキカラスウリ
Spreng.			

Hyoscyamus niger L.	34	82	ヒヨス
Geranium thunbergii Sieb. et Zucc.	36	82	ケ゛ンノショウコ
Trichosanthes anguina L	38	94	ヘヒ゛ウリ
Bixa orellana L.	38	91	ヘ゛ニノキ

324 種の薬用植物のアレロパシー活性をサンドイッチ法により検定した結果、タマリンド(Tamarindus indica)の葉が最も高い活性を示した。タマリンドのアレロパシーは既に報告済みであり、クエン酸などの有機酸によるものと報告されている(Parves ら、2000)。

次いでヤブラン ($Liriope\ platyphylla$)の活性が高く、その成分としてアゼチジン-2-カルボン酸が推定されている (前田ら、2019)。

ラクウショウ(Taxodium distichum、ヒノキ科ヌマスギ属)は、生きた化石として知られ、日本列島では中生代(2億5200万年前~6600万年前)から新生代の古第三紀・新第三紀(6600万年前~260万年前)にかけての化石として多く発見される。アセンヤクノキ(Acacia catechu、マメ科)と、ハマビシ(Tribulus terrestris、ハマビシ科)はこれまでにアレロパシーに関する報告があまりなく、有望なアレロケミカルを含む可能性がある。以上の5種類の植物が活性の高い植物であった。これらの植物から新たなアレロケミカルが発見される可能性がある。

第3章 ディッシュパック法によるアレロパシー活性の 検索

第1節 はじめに

植物から放出される揮発性物質のアレロパシー経路の中で植物の葉 など地上部分から揮発性物質として放出される揮散 (evaporation) (藤 井、2000)は、重要な経路の一つである。多くの植物は自然環境に揮発 性物質を放出する場合が多い。特に乾燥や半乾燥地域に生育する植物は 顕著である。これらの植物が放出する揮発性物質にはそれぞれの生態的 な機能には、化学交信、昆虫の誘導や排除などの機能がある(孔ほか、 2003)。それらの揮発性物質は同時に周囲の植物に対して抑制作用を引 き起こす (Kong et al.、 1999)。このような植物の揮発性物質による アレロパシー現象は古くから観察されていた。例えば、リンゴの木は揮 発性物質を放出してジャガイモの発芽を抑制する。Molisch はこのよ うな揮発性物質が多数の植物の成長に対して抑制作用を引き起こす現 象を観察している (Molisch、 1937)。Muller らの研究では、サルビア の木の周囲には生育阻止帯ができ、次第に草原を蚕食してゆくというサ ルビア現象に注目した。そして、この原因が、サルビアの葉から放出さ

れるテルペン類 によるものであることを報告している (Muller et al.、1964)。また、ユー カリから放出される揮発性物質は強いアレロパシー作用を示すことがオーストラリアの研究で確認されている (Willis、1999)。

揮発性物質のアレロパシーの事例としては、アメリカ原産のフウチョウソウ科のクレオメ (Creome spinosa) から放出される揮発性物質が強い活性を持つことが確認されている。その作用物質を同定した結果、メチルイソチオシアネートであり、ワサビやアブラナ科に含まれるアリルイソチオシアネートの類縁化合物であることが確認された(藤井、2002)。これらの植物から放出される揮発性物質は周囲の植物の発芽や成長を阻害し、自分たちの群落形成や生存をはかるという戦略的意義を持つと推定されている。イスラエルの砂漠生態系には、植物種は少なくであり、年間平均降水量が 100mm 程度の厳しい環境の中で、多くの植物はアレロパシー活性があり、特に先駆植物は顕著なアレロパシー強い活性があることが知られている。

そこで、本研究では、昭和薬科大学で採取した 372 種の薬用植物の中で、においが強かったり、揮発性成分を含むと推定される 139 種を選んでディッシュパック法によりアレロパシー活性を検定した。

第2節 揮発性他感物質検定手法(ディッシュパック法)

植物から放出される揮発性物質によるアレロパシーの検定法として、 これまでに開発されたディッシュパック法(Fujii ら、2005)を用いて、 揮発性のアレロパシー活性を検定した。

組織培養用 6 穴マルチディッシュのふたにドリルで穴を開け、シリコンゴムセプタムをはめた器具を作成した。左下の穴に、生の植物体の場合は 2gを、乾燥した葉の場合は 500mgを切って入れ、その他の穴にはろ紙を敷き、レタス種子を7粒入れ、蒸留水 0.7mlを加えた。ふたをして、容器をテープで密封し、アルミホイルで覆い、25℃の恒温器に置いて、4日後に幼根長、下胚軸長を測定した。また、標準物質についても一定量を入れたサンプルカップを左下の穴に入れ、同様に検定した。

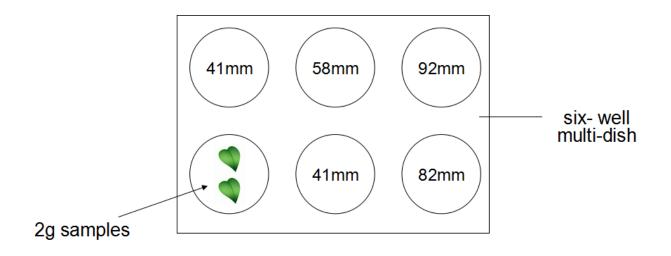


図3-1 ディッシュパック法の要領

図3-2 ディッシュパック法の実験例

処理後3日めに、レタスの幼根長、下胚軸長を測定し、薬用植物が添加された位置からの距離(4.1 cm、5.8 cm、8.2 cm、9.2 cm の4つの距離)と検定植物の生育阻害の程度を調査した。

ディッシュ内の揮発性物質を検定する場合は、容器内のガスをガスタイトシリンジで 0.5ml 抜き取り、島津製作所 GC-MS、QP-5000 で揮発性物質の種類と濃度を分析した。

第3節 研究で使用した薬用植物

揮発性物質によるアレロパシー活性の検定に用いた植物とその使用部は、第2章第4節のリスト(表2-1)にある374種の植物の中から、においが強かったり、揮発性成分を含むと推定される139種を選んで、ディッシュパック法による揮発性物質による活性の検索に用いた。

第4節 ディッシュパック法における薬用植物の実験結果

139 種の薬用植物から放出される揮発性物質によるアレロパシー活性をディッシュパック法によって評価した結果を表 3-1 から表 3-5 に示す。(%) は、葉からの距離 41 mmにおける伸長率を示している。

表 3-1 ディッシュパック法の結果 (阻害率 1 位から 30 位まで)

· 学名	H (%)	評価	R (%)	評価
Illicium verum Hook.f	0.0	***	0.0	***
Crataeva religiosa G.Forst.	13.8	****	105.0	
Shorea robusta C .F .Gaertn.	65.6	* * *	109.0	
Artabotrys uncinatus (Lam.) Merr.	68.2	* * *	101.0	
Sinomenium acutum Rehder et Wills.	68.8	* * *	101.0	
Cinnamomum cassia Blume	68.9	* * *	97.0	
Dendrobium sp.	69.7	* * *	95.0	
Ricinus communis L.	75.3	* *	93.0	
Atractylodes chinensis Koidz.	77.2	* *	91.0	
Cinnamomum burmannii B1.	77.3	* *	87.0	*
Tabebuia chrysotricha Standley	77.3	* *	89.0	*
Piper longum L.	78.2	**	85.0	*

Terminalia bellirica (Gaertn.) Roxb.	78.5	**	83.0	*
Clivia nobilis Lindl.	78.6	**	107.1	
Tinospora tuberculata Beumee	79.5	*	94.3	
Malpighia glabra L.	79.5	**	109.8	
Arctium lappa L.	80.3	*	75.8	**
Podophyllum peltatum L.	80.7	*	84.5	*
Ceiba pentandra Gaertn.	81.8	*	100.6	
Santalum album L.	81.8	*	115.2	
Acacia catechu Willd.	82.7	*	94.0	
Polygala senega L. var. latifolia Torr. et	83.5	*	108.6	
Gray				
Tectona grandis L.f.	83.9	*	105.0	
Valeriana fauriei Briq.	84.7	*	116.6	
Derris elliptica Benth.	85.1	*	115.1	
Celosia argentea L.	85.5	*	90.4	
Ficus religiosa L.	85.6	*	88.3	*
Croton sublyratus Kurz	86.0	*	95.8	
Eucommia ulmoides Oliv.	87.2	*	108.1	
Achras sapota L.	87.5	*	110.1	

表 3-2 ディッシュパック法の結果(阻害率 31位から 60位まで)

学名	H (%)	評価	R (%)	評価
Tapeinochilosananassae(Hassk.)K.Schum.	87.6	*	108.8	
Digitalis lanata Ehrh.	87.7	*	104.8	
Tacca chantrieri Andre	87.8	*	98.8	
Croton sublyratus Kurz	88.3	*	100.1	
Saraca indica L.	89.0		85.0	*
Sterculia balanghus L.	89.2		106.8	
Trichosanthes anguina L	89.3		93.6	
Zingiber officinale Rosc.	89.7		89.5	*
Adenophora triphylla A.DC. var. japonica	90.1		85.4	*
Hara				
Tapeinochilos ananassae K. Schum	90.1		109.3	
Crinum asiaticum L. var. japonicum Baker	90.7		86.7	*
Aquilaria sinensis Gilg	90.7		113.4	
Curcuma longa L.	90.9		92.9	
Plumeria rubra L.	90.9		95.6	
Akebia quinata Decne.	91.5		97.7	
Lucuma nervosa A.DC.	91.7		110.5	

Piper kadzura Ohwi	91.8	110.5	
Angelica acutiloba Kitagawa	92.2	117.1	
Strobilanthes flaccidifolius Nees	92.2	194.0	
Cinnamomum burmanni (Nees & T.Nees) Blume	93.1	96.1	
Alpinia katsumadai Hayata	93.2	104.8	
Scrophularia ningpoensis Hemsley	93.7	101.2	
Carapa guianensis Aubl.	94.0	101.2	
Psidium cattleianum Sabine var. lucidum Hort.	94.3	94.0	
Murraya paniculata Jack	94.3	97.3	
Pongamia pinnata Merr.	94.5	99.2	
Theobroma cacao L.	94.5	99.9	
Eucommia ulmoides Oliv.	94.6	97.3	
Richardella dulcifica Baehni.	94.8	81.4 *	
Derris malaccensis Prain	95.4	73.7 **	

表 3 - 3 ディッシュパック法の結果 (阻害率 61 位から 90 位まで)

学名	H (%) 評価	R (%) 評価
Oenothera tetraptera Cav.	95.5	80.4 *
Theobroma cacao L.	95.7	77.4 **
Terminalia chebula Rez.	95.7	106.4
Richardella dulcifica (Schumacher & Thonn.)	95.8	88.5 *
Baehni		
Morinda citrifolia L.	96.2	75.9 **
Bistorta sp.	96.2	77.4 **
Hedychium coronarium Koen.	96.2	91.5
Salvia miltiorrhiza Bunge	96.7	104.8
Geranium thunbergii Sieb. et Zucc.	96.7	112.5
Euodia hupehensis Dode	97.1	90.4
Astragalus membranaceus (Fisch.) Bunge.	97.1	106.7
Momordica cochinchinensis (Lour.) K.	98.0	110.6
Spreng.		
Croton sublyratus Kurz	98.3	101.0
Cestrum nocturnum L.	98.3	114.4
Lippia dulcis Trevir.	98.7	97.1

Melia azedarach L.	98.8	118.6	
Hernandia sonora L.	98.9	102.6	
Datura stramonium var. inermis	98.9	109.0	
Epimedium sagittatum Maxim.	100.0	138.9	
Eugenia uniflora L.	100.0	175.5	
Hibiscus manihot L.	100.6	133.5	
Strophanthus gratus Franch.	101.0	89.7	*
Astragalus membranaceus (Fisch.) Bunge.	101.4	75.0	**
Rhoeo discolor Hance	101.9	89.0	*
Coffea arabica L.	102.3	90.0	
Trichosanthes bracteata Voigt	102.8	121.5	
Myrciaria cauliflora Berg.	103.2	112.7	
Sauropus androgynus Merr.	103.6	122.2	
Pyrrosia adnascens Ching.	104.1	128.8	
Ervatamia pandacaqui Pichon	104.5	113.6	

表 3-4 ディッシュパック法の結果 (阻害率 91 位から 120 位まで)

	H (%) 評価	R (%)	評価
Datura metel L.	105.0	108.9	
Petasites japonicus Maxim.	105.4	85.2	*
Datura stramonium L.	105.8	117.0	
Argemone mexicana L.	106.3	26.5	****
Annona muricata L.	106.7	122.2	
Cinnamomum zeylanicum Nees.	107.2	99.8	
Platycodon grandiflorum A. DC.	107.6	83.3	*
Trewia nudiflora L.	108.0	90.4	
Piper nigrum L.	108.5	19.4	****
Dichroa febrifuga Lour.	108.9	81.0	*
Adiantum trapeziforme L.	109.4	99.1	
Calophylum inophyllum L.	109.8	79.4	*
Bixa orellana L.	110.2	91.4	
Strophanthus gratus Franch.	110.7	114.5	
Rhoeo discolor Hance	111.1	128.5	
Apios americana Medic.	111.6	119.5	
Tetragonia tetragonoides O. Kuntze	112.0	135.5	

Dichroa febrifuga Lour.	112.4	126.5
Amomum subulatum Roxb.	112.9	124.5
Hibiscus rosa-sinensis L.	113.3	8 4.0 *
Litchi chinensis Sonn.	113.8	100.0
Ephedra gerardiana Wall.	114.2	116.8
Glehnia littoralis Fr.Schm.	114.6	123.7
Dianella ensifolia (L.) DC.	115.1	115.1
Aristolochia debilis Sieb. et Zucc.	115.5	119.4
Atractylodes japonica Koidzumi	116.0	119.4
Calophylum inophyllum L.	116.4	131.5
Cinnamomum cassia Blume	116.8	117.0
Cynara scolymus L.	117.7	124.6
Piper nigrum L.	118.2	98.4

表 3-5 ディッシュパック法の結果 (阻害率 121 位から 139 位まで)

学名	H (%) 評価	R (%) 評価
Sizygium cumini Skeels	118.6	80.2 *
Pleuropterus multiflorum Turcz.	119.0	103.1
Cinnamomum daphnoides Sieb. et Zucc.	119.5	93.0
Coptis japonica (Thunb.) Makino var.	119.9	93.0
major		
Syzygium samarangens Merr. et Perry	120.4	98.4
Ligusticum sinense Oliver	120.8	99.5
Aloe africana Miller	121.2	95.7
Leonurus japonicus Houtt.	121.7	97.2
Carapa guianensis Aubl.	122.1	101.6
Hymenaea courbarii L.	122.6	103.8
Sterculia nobilis Sm.	123.0	80.4 *
Angelica dahurica Benth. et Hook. f.	123.4	96.5
Psidium guajava L.	123.9	94.3
Euphorbia millii Des Moul.	124.3	99.4
Terminalia chebula Rez.	124.8	100.0
Macadamia integrifolia Maiden et Betche	125.2	93.6

Averrhoa carambola L.	125.6	120.9	
Citrus hystrix DC.	126.1	88.5	*
Pimenta racemosa J.W.Moore	126.5	92.9	
Mean, M	98.0	100.7	
Standard Deviation, SD	18.4	21.5	
M-0.5 SD	88.8 *	89.9	*
M-1.0 SD	79.6 **	79.2	**
M-1.5 SD	70.4 ***	68.5	***
M-2.0 SD	61.2 ***	** 57.7	***

評価は標準偏差に基づく偏差値で行った。表の一番下に示したように標準偏差値から*を求め、この数が多いほど植物成長阻害活性が強いと判断した。なお、表中で H:胚軸 (コントロールの%)、R:幼根(コントロールの%)を示す。

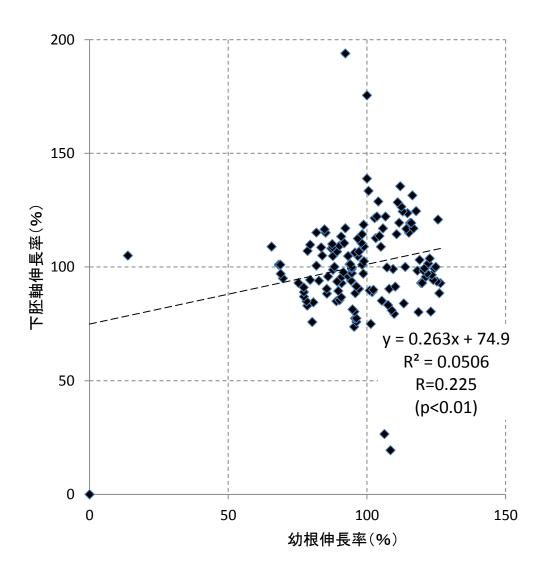


図 3-3 ディッシュパック法の幼根と下胚軸の活性の関係

図3-3にディッシュパック法の全データの幼根伸長と下胚軸伸長の活性の関係を図示した。スピアマンの相関係数 R は 0.225 で、nが139 あるので 1%水準で有意ではあるが、高い相関があるとはいえなかった。両者の間にはサンドイッチ法(図2-4)で見られたような高い正の相関関係は認められなかった。特異的に離れた点は、幼根伸長率、

下胚軸伸長率ともに 0%と完全に阻害されていたトウシキミであった。

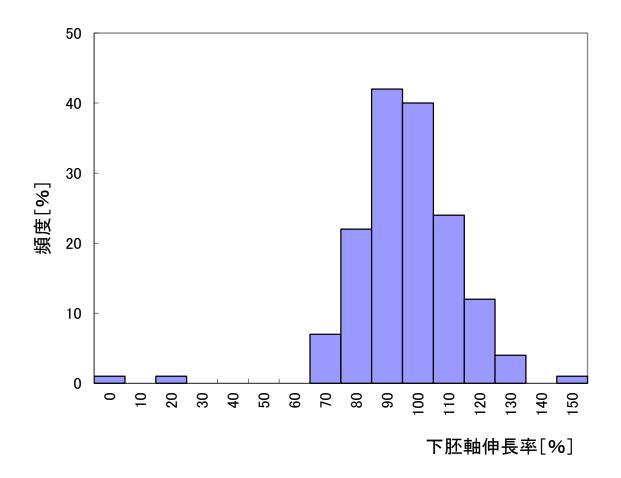


図3-4 ディッシュパック法による薬用植物 139 種のアレロパシー活性の分布図(下胚軸伸長率)

図3-4は、ディッシュパック法による薬用植物139種のアレロパシー活性の分布図(下胚軸伸長)を示している。この結果は正規分布に従い、1%水準で有意であった。

表 3 - 6 ディッシュパック法の結果 (下胚軸長阻害活性の上位 10 位)

学名	H (%)	評価	R (%)	評価
Illicium verum Hook.f	0	****	0	***
Crataeva religiosa G.Forst.	14	****	105	
Shorea robusta C .F .Gaertn.	66	***	109	
Artabotrys uncinatus (Lam.) Merr.	68	* * *	101	
Sinomenium acutum Rehder et Wills.	69	***	101	
Cinnamomum cassia Blume	69	***	97	
Dendrobium sp.	70	***	95	
Ricinus communis L.	75	* *	93	
Atractylodes chinensis Koidz.	77	* *	91	
Cinnamomum burmannii B1.	77	**	87	*

下胚軸伸長阻害活性(H)が高い上位 10 種の植物を表 3 - 6 に示す。 トウシキミ (Illicium verum) と、ギョボク (Crataeva religiosa) の活性 がずば抜けて強かった。とくにトウシキミは検定した条件下で、検定植 物レタスの下胚軸伸長を完全に阻害した。

トウシキミは、北米、西インド諸島、および東アジアに分布する常緑樹であり、テルペノイドなどのユニークな二次代謝産物により、伝統的な漢方薬および食品産業での果実の使用が知られている。トウシキミの実は、漢方薬の八角として知られており、インフルエンザの特効薬であるタミフルの原料として、高価で取引されている。葉と果物の両方に、独特の甘草の味の強い香りがあり(Huang et al、2010)、フェニルプロパノイド、リグナン、およびベンゾキノン(Wang、2011、Liu、2009)

の存在が報告されている。殺虫活性(Szczepanik、2011)、抗真菌活性(Huang、2010)、および抗菌活性(De、2002)も報告されている。しかし、揮発性物質による植物生育阻害活性についてはこれまでに報告がないので、次章でその作用物質の検定を試みた。

ギョボクはフウチョウソウ科ギョボク属の落葉樹木であり、東南アジア、インド、アフリカなどに分布する。日本でも鹿児島県以南、南西諸島に分布する。フウソウチョウ科はアブラナ科に近縁で、原始的なアブラナ科と考えられている。アブラナ科に特有のイソチオシアネート類を含むことが知られているが、この植物のアレロパシー活性についてはほとんど研究されていない。

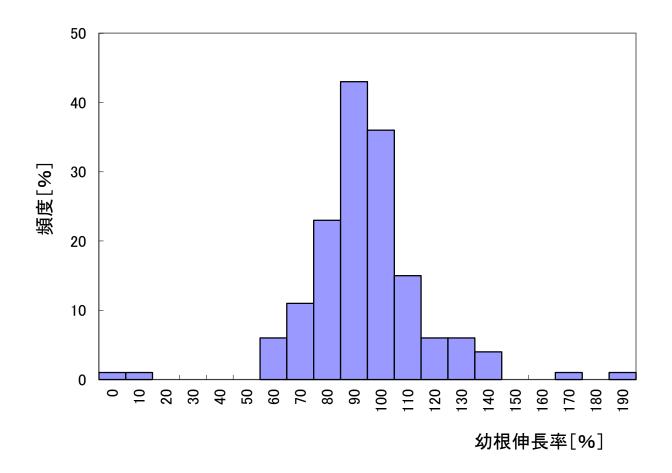


図3-5 ディッシュパック法による薬用植物 139 種のアレロパシー活性の分布図 (幼根伸長率)

図3-5は、ディッシュパック法による薬用植物 139種のアレロパシー活性の分布図(幼根伸長)を示す。この分布は正規分布に従い、1%水準で有意であった。

表 3 - 7 ディッシュパック法の結果(幼根長阻害活性の上位 10 位)

学名	R (%)	評価	H (%)	評価
Illicium verum Hook. f	0	****	0	* * * *
Piper nigrum L.	19	****	109	
Argemone mexicana L.	27	****	106	
Derris malaccensis Prain	74	* *	95	
Astragalus membranaceus (Fisch.) Bunge.	75	* *	101	
Arctium lappa L.	76	* *	80	*
Morinda citrifolia L.	76	* *	96	
Theobroma cacao L.	77	* *	96	
Bistorta sp.	77	* *	96	
Calophylum inophyllum L.	79	*	110	

幼根伸長阻害活性(R)が高い上位 10種の植物を表 3 - 7に示す。トウシキミ (Illicium verum) と、コショウ (Piper nigrum) と、アザミゲシ (Argemone mexicana)の 3種の植物が極めて強い活性を示した。とくにトウシキミは検定した条件下で、検定植物レタスの幼根伸長を完全に阻害した。トウシキミは下胚軸伸長阻害活性も最強であったが、コショウとアザミゲシの場合は、下胚軸伸長阻害活性は弱く、これらの揮発性成分は幼根の生育に対してのみ強く作用すると考えられる。

以上の結果、今回検定した139種の薬用植物の中で揮発性成分による阻害活性が最も強かったのはトウシキミであった。

ディッシュパック法では、図 3-1、3-2 に示すように、供試する葉の入っているセルからの距離が観察された阻害活性に大きな影響を及ぼす。そこで活性が最も強かったトウシキミについて、図 3-6 に、発生源のセルからの距離と伸長率の関係を示す。トウシキミからの距離が遠くなると阻害活性が弱くなり、80mm離れると阻害活性がほぼ無くなることを示している。

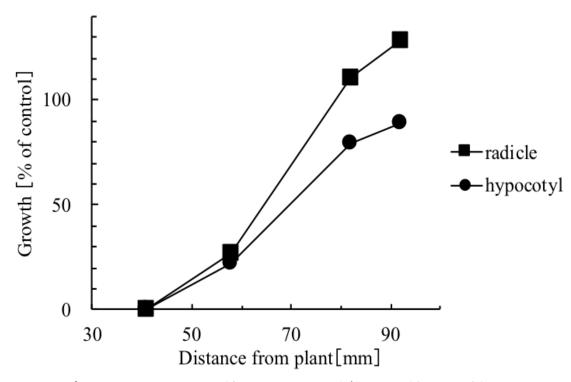


図3-6 ディッシュパック法における距離と活性の関係

第4章 トウシキミに含まれる揮発性物質の分析

第1節 ヘッドスペース法による揮発性物質の分析法

第3章のディッシュパック法による検索で、最も強い生育阻害活性を示した薬用植物は、トウシキミであった。トウシキミはディッシュパック法では生育を完全に阻害する最強力な活性を示した。そこで、トウシキミに絞って、揮発性の植物生育阻害物質の分析と、植物生育阻害物質の本体の解明を試みた

まず、揮発性物質を検定するための手法として、植物体の葉から空気中に放出される物質を分析する手法であるヘッドスペース法を用いて、トウシキミに含まれる揮発性物質の分析を行った

図 4-1 サンプルをバイアル瓶に入れた例

図 4-2 分析に用いたガスクロマトグラフ質量分析装置(GC-MS)

分析方法

バイアル瓶 (容積 20mL、蓋にガスを封じ込めるセプタムを持つ) にトウシキミの葉を 0.5g (乾燥重) 詰め、密封した後に、暗条件下に置いた。1日後にガスタイトシリンジを用いて、バイアル瓶中のヘットスペースから気体を 1000 n L (1 m L) 取り出し、ガスクロマトグラフ質量分析計に注入して気体中に主に含まれる揮発性成分の分析を行なった。ガスクロマトグラフと質量分析計の分析条件は以下の通りである。

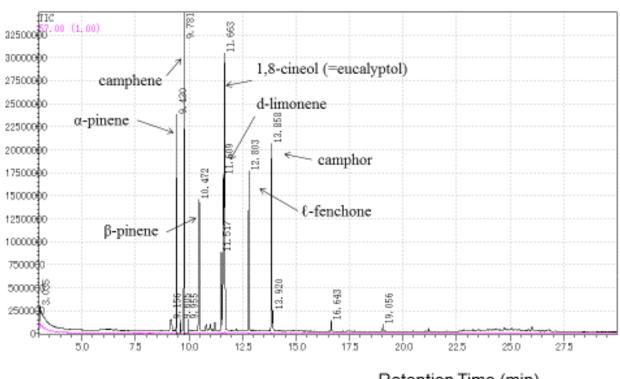
GC-MS 分析条件

質量分析計: GC-MS-QP2010 プラスシステム、島津製作所 (京都)。 インターフェース温度: 250℃。

イオン源温度:200℃、イオン化電圧:70eV

カラム: EQUITY-5 (0.25mm \times 30m \times 0.25um)

オーブン温度プログラム: 40℃ (1 min) 200℃/10℃/min(3min)


注入法:スプリットレス注入法、サンプリングタイム:1min

データ解析

得られた GCMS データはデータ解析ソフト TSS200 およびライブラリーデータ検索 (NIST MS) により化合物を推定した。推定化合物は、市販の標品を同一条件で分析し、保持時間とマススペクトルを比較した。

第2節 トウシキミに含まれる揮発性物質の分析結果

Major volatile compounds emitted from Illicium verum (star anis)

Retention Time (min)

図 4-3 トウシキミから揮散する主な揮発性物質の GC-MS 分析結果

トウシキミのヘッドスペースを GC-MS で分析したころ、主な 7 種の成分を標品との比較により決定することが出来た(図 4-3)(図 4-4)。 保持時間 9.4 分の成分は α -ピネン、9.78 分の成分はカンフェン、10.4 分の成分は β -ピネン、11.60 分の成分は d-リモネン、11.66 分の成分 は、1,8-シネオール (別名:ユーカリプトール)、12.8分の成分は、 0-フェンコン、13.8分の成分は、カンファーであった。

3.56	3.55	3.62 TIC	####	0.2 ####	0.15	3.88 V	Sulfone, 2-hydroxyhexyl t-butyl
9.16	9.08	9.26 TIC	####	1.21 ####		5.75 V	Tricyclo[2,2,1,0/2,6]heptane, 1,7,7-trimethyl-
9.43	9.37		####	5.2 ####		1.32	alpha-Pinene
9.61	9.59	9.62 TIC	####	0.2 ####	0.84	0.7 V	Tungsten, ethyltris(.eta.3-2-propenyl)-
9.67	9.65	9.7 TIC	####	0.2 ####		2.66 V	3-Buten-2-one, 4-(3-cyclohexen-1-yl)
9.78	9.7	9.8 TIC	####	7.81 ####		1.35 V	Camphene
9.96	9.93	9.97 TIC	####	0.23 ####		0.78 V	Tungsten, tris(, piallyl)(, pi1,3-dimethylallyl)-
9.99	9.97	10 TIC	####	0.27 ####		3.15 V	1-Hexen-3-yne, 2-tert-butyl-
10.06	10		####	0.24 ####		2.95 V	Cyclohexanol, 5-methyl-2(1-methylethenyl)-
10.13	10.1	10.1 TIC	####	0.33 ####	0.23	4.1 V	5-(4.5-Dihydro-3H-pyrrol-2-ylmethylene)-4.4-dimethylpyrrolidine-2-thione
10.22	10.2		####	0.21 ####		2.67 V	N-[3-IN-Aziridy[]propylyidene]-2-[2-pyridyl]ethylamine
10.32	10.2	10.2 TIC	####	0.18 ####		2.38 V	Piperdine-4-diol
10.47	10.4	11.4 TIC	####	13.4 ####		5.49 SV	beta-Pinene
10.81	10.7		####	0.37 ####		3.29 TV	beta. Hyroene
11.00	10.9	11 TIC	####	0.45 ####		3.81 TV	Cyclotetrasiloxane, octamethyl-
11.22	11.2		####	0.42 ####		2.87 TV	3-Caree
11.52	11.4	11.6 TIC	####	4.3 ####		2.89 V	Benzene, 1-methyl-2-(1-methylethyl)-
11.61		11.6 TIC	####	7.24 ####		2.51 V	Cyclobutane, 1,2-bis(1-methylethenyl), trans-
11.66	11.6	12.7 TIC	####	17.9 ####		3.54 SV	Eucalyptol
12.80	12.7		####	6.87 ####		2.34 V	L-Ferchone
12.99	12.7	13 TIC	####	0.53 ####		6.28 V	1.6-Octadien-3-ol, 3.7-dimethyl-
13.08	13	13.2 TIC	####	0.55 ####		6.96 V	Nonanal
13.19		13.2 TIC	####	0.24 ####		3.45 V	4-Hydroxybenzoic acid-2TMS
13.19	13.3	13.3 TIC	####	0.33 ####		4.74 V	Bicyclo[2.2.1]heptan-2-ol, 1,3,3-trimethyl-, (1R-endo)-
13.39	13.4		####	0.33 ####		3.22 V	6-(1.4-Berzodioxan-2-ylearbonylhydrazonomethyl)uracii
13.47	13.4	13.5 TIC	####	0.28 ####		4.31 V	2-(1-Hydroxy-1-methyl-ethyl)-1-methyl-cyclohexanol
13.76	13.7		####	0.38 ####		5.18 V	Espinocarveol Isopinocarveol
13.86	13.8	13.9 TIC	####	7.16 ####		2.08 V	Soyin ocareon Sicyclo (2.2.1)heptan-2-one, 1,7,7-trimethyl-, (1S)- Camphor
13.92	13.9	14 TIC	####	1.01 ####		2.28 V	Cyclopentasioxane, decamethyl-
14.00	14	14.1 TIC	####	0.33 ####		4.51 V	2-(16-Acetoxy-11-hydroxy-4,8,10,14-tetramethyl-3-oxohexadecahydrocyclopenta[a]phenanthren-17-ylidene)-6-methyl-hept-5-enoic aci
14.11	14.1	14.1 TIC	####	0.00 ####		3.24 V	2-(10-reces) - Hydroxymethy)-7 alpha, 8 alpha -dimethyl-7-(2-(3-fury)lethyl)bicyclo(4-4.0)dec-2-ene 2-carboxylic acid, methyl ester
14.17		14.2 TIC	####	0.19 ####		2.77 V	Bicyclo[2,2,1]heptan-3-one, 6,6-dimethyl-2-methylene-
14.25	14.2	14.3 TIC	####	0.26 ####		3.79 V	Isoborneol Isoborneol
14.41	14.4	14.5 TIC	####	0.42 ####		6.67 V	Ternineol, cis-beta
14.65	14.6	14.7 TIC	####	0.26 ####	0.17	4.3 V	3-Cyclohexene-1-methanol, .alphaalpha.4-trimethyl-
14.76	14.7		####	0.26 ####	0.18		Cyclohexane, 1,5-diethenyl-3-methyl-2-methylene-, (1,alpha,3,alpha,5,alpha,)-
14.83	14.8	14.9 TIC	####	0.2 ####		3.11 V	8-Methyl-6-nonenoic acid
14.90	14.9	14.9 TIC	####	0.36 ####	0.21	5.09 V	Acetic acid, octyl ester
15.12	15.1		####	0.25 ####		3.47 V	Fenchyl acetate
15.16	15.2		####	0.17 ####	0.17		1-Fluorocctane
15.34	15.3		####	0.19 ####		3.54 V	Aziridinone, 1-(1,1-dimethylethyl)-3-(3,5,7-trimethyltricyclo[3.3.1.1(3,7)]dec-1-yl)-
15.71	15.7	15.7 TIC	####	0.17 ####		3.22 V	9-12-Deoxy-betad-ribohexopyranosyllpurin-6(1H)-one
16.22	16.2		####	0.19 ####		3.82 V	1.2-Epoxy-5.9-cyclododecadiene
16.43	16.4	16.5 TIC	####	0.18 ####		3.83 V	Cyclohexene, 4-(2-(ethoxycarbony/)ethenyl)-5-methyl-
16.64	16.6	16.7 TIC	####	0.76 ####		3.11 V	Cyclohexasiloxane, dodecamethyl-
16.71	16.7		####	0.70 ####		3.87 V	Sylvanization and december in the sylvanization of
17.19	17.1	17.2 TIC	####	0.21 ####		4.18 V	2-Trimethylsiloxy-6-hexadecenoic acid, methyl ester
17.43	17.4	17.5 TIC	####	0.43 ####		7.76 V	1.1.1-Bicyclopropyll-2-octanoic acid, 2'-hexyl-, methyl ester
17.58	17.5	17.6 TIC	####	0.24 ####		4.57 V	Copaene
17.76		17.8 TIC	####	0.19 ####		3.96 V	trans-3-(2,2-Dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid, tert-butyldimethylsilyl ester
17.70		110	n centr	0.10 1111111	0.17	0.00 V	auto o (E.E. Biolino of hity) group open of a disposyno dota, for a disposyno dota

図 4-4 トウシキミから揮散する主な揮発性物質の同定データ

カンファーは樟脳:しょうのう)に含まれる成分であり、アルファー ピネンは多くの植物に含まれる一般的な揮発成分である。これらの揮発 性物質に植物生育抑制作用があることは既に知られている。

また、1,8-シネオールは別名をユーカリプトールといい、ユーカリ属植物の葉に含まれるが、植物の生育阻害活性あ強いことは、よく知ら

れている。

しかし、フェンコンやカンフェンなどの成分についてはあまり研究されていない。そこで次節でこれらの活性を測定した。

第3節綿棒法による阻害活性の生物検定法

綿棒法 (Cotton Swab Method)は、ヘッドスペース中の揮発性物質が植物の生育に及ぼす影響を測定するアレロパシーの生物検定法のひとつであり、農業環境技術研究所および東京農工大(Maryia ら、 2015)においてこれまでに開発され、研究事例が報告されている。以下にその手法を簡単に説明する。

- ① 容量 20mL のバイアル瓶内に 0.75%の寒天を 10mL 入れ、レタス種子を 5 粒播種する。寒天の表面に尖った方を下にして刺すように播種する。
- ② バイアル瓶内の寒天に綿棒を立て、綿の部分に化合物(任意濃度) を 1 μ L 滴下する。化合物を溶解する溶媒はメタノールを用いる。
- ③ すぐにセプタムつきアルミ栓で密閉し、インキュベーター内で温置する。培養条件は明/暗:12/12hr (25/20℃)。
- ④ 3日後、発芽した種子の幼根と下胚軸長を測定する

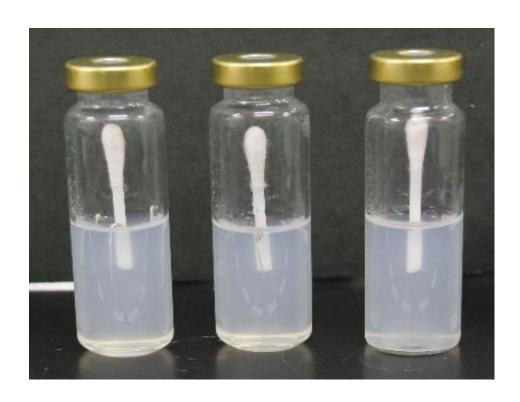


図 4-5 綿棒法のコントロール実例

図4-6 植物体を入れて作用させている実例

第4節 トウシキミに含まれる揮発性物質の阻害活性率

綿棒法を用いて、トウシキミに含まれる主要な揮発性物質の阻害活性 を調べ、トウシキミのヘッドスペースの濃度と活性の強さから、これま でに開発した全活性法によって、生育阻害に寄与している物質を特定し ようとした。

全活性とは、植物体内のそれぞれの生理活性物質の濃度を比活性(本研究では EC50 値を用いた)で割った値である。本研究で言えば、揮発性物質の比活性が小さいものほど植物生育抑制作用は強く、またその濃度が高いものほど強い抑制作用が示される。そのため、全活性は、それぞれの物質の阻害活性に植物体中のその物質の濃度を加味した値となり、どの物質が最も全体の阻害活性に寄与しているのかを示す尺度となる。また、トウシキミの葉を用いた試験で示された阻害活性が、含まれる揮発性物質の濃度と活性の強さで説明できるかどうかを検討した。

供試薬剤:1.8シネオール (ユーカリプトール)、アルファーピネン、 カンフェン、d-リモネン、Q-フェンコン、カンファーの7種である。

綿棒法による阻害活性の結果

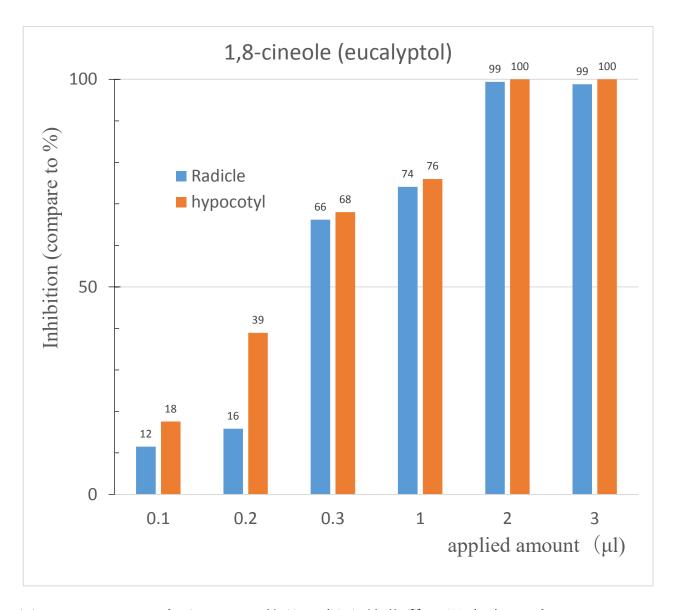


図 4-7 1.8シネオールの純品の揮発性物質の阻害率のグラフ

1.8 シネオールの場合、レタスの生育を 50% 阻害する量は、 $0.2\sim0.3$ μ L であった。

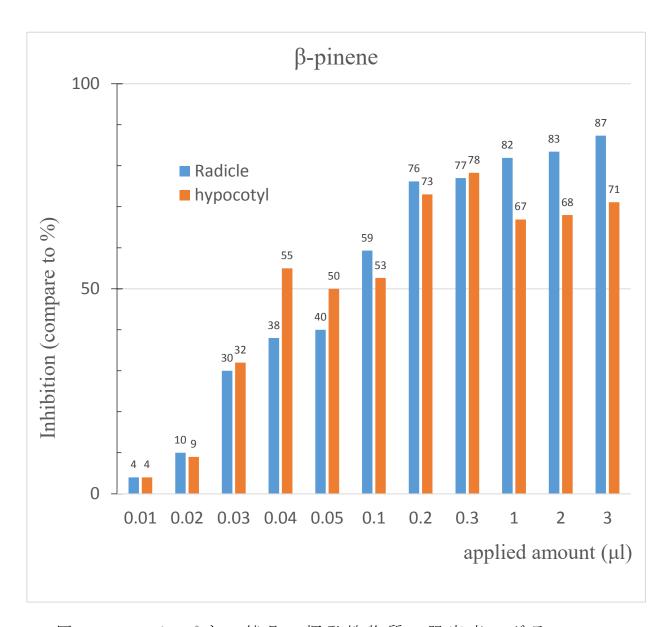


図 4 - 8 β - ピネン純品の揮発性物質の阻害率のグラフ

 β -ピネンの場合、レタスの生育を 50%阻害する量は、0.05 \sim 0.1 μ L であった。

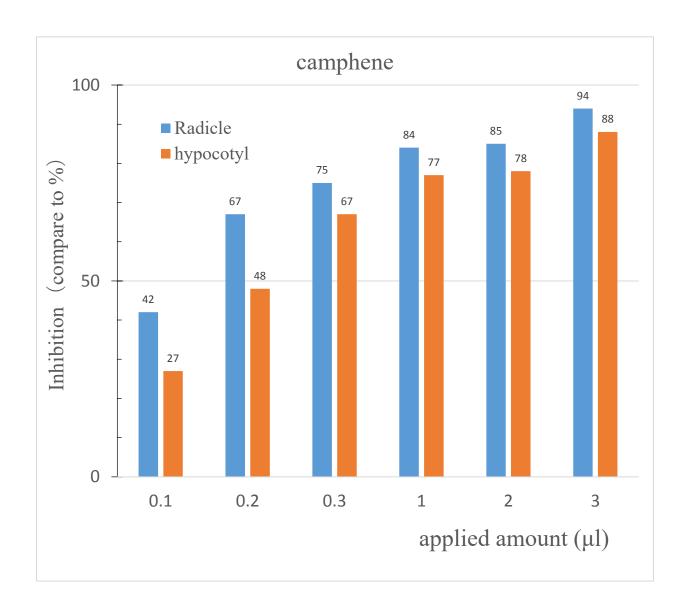


図4-9 カンフェンの純品の揮発性物質の阻害率のグラフ

カンフェンの場合、レタスの生育を 50%阻害する量は、約 $0.2\,\mu$ L であった。

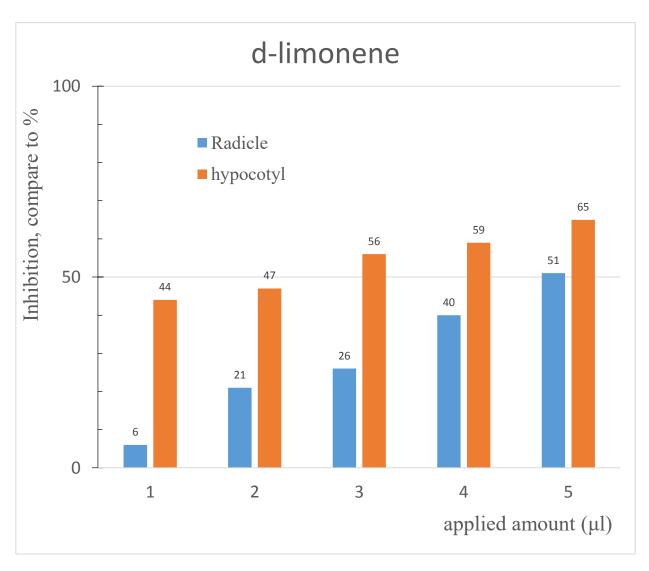


図4-10 d-リモネン純品の揮発性物質の阻害率のグラフ

d -リモネンの場合、レタスの生育を 50%阻害する量は、 $4\sim5\,\mu$ L であった。

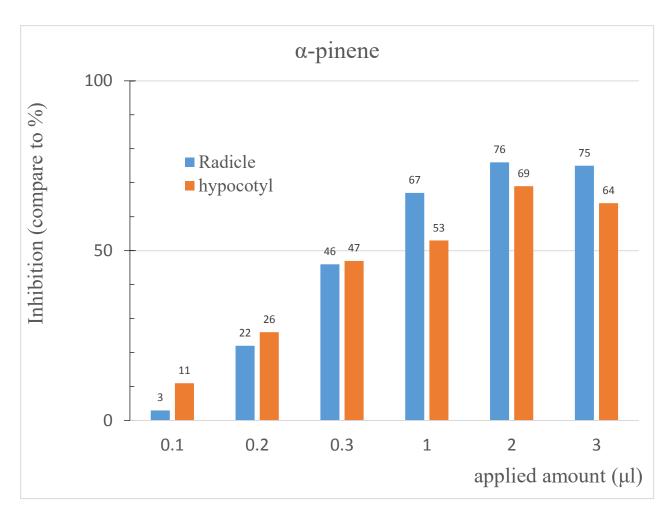


図4-11 α-ピネン純品の揮発性物質の阻害率のグラフ

 α -ピネンの場合、レタスの生育を 50%阻害する量は、0.3 μ L であった。

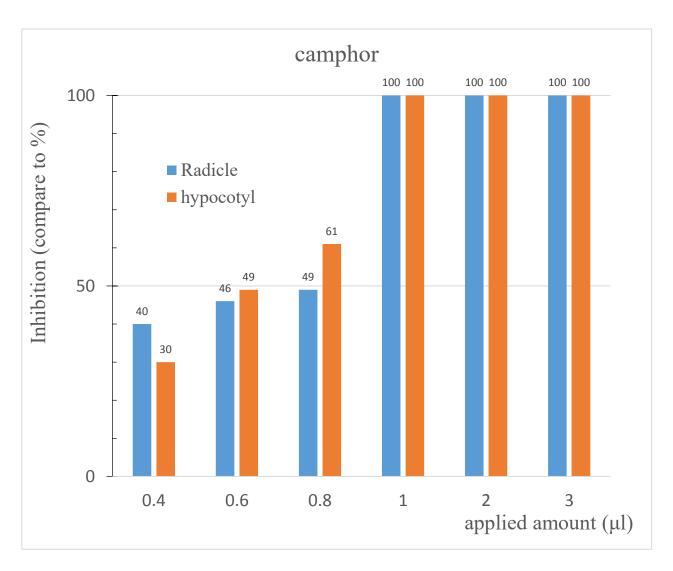


図4-12 カンファー純品の揮発性物質の阻害率のグラフ

カンファーの場合、レタスの生育を 50%阻害する量は、0.6μL であった。

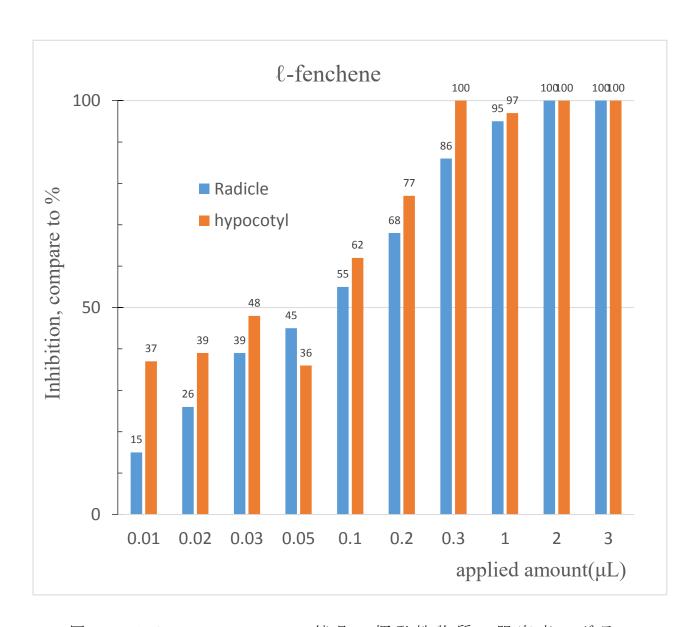


図4-13 ℓ-フェンコン純品の揮発性物質の阻害率のグラフ

 ℓ - フェンコンの場合、レタスの生育を 50% 阻害する量は、 $0.05\sim0.1$ μ L であった。 今回調べた中では、フェンコンの活性が一番強かった

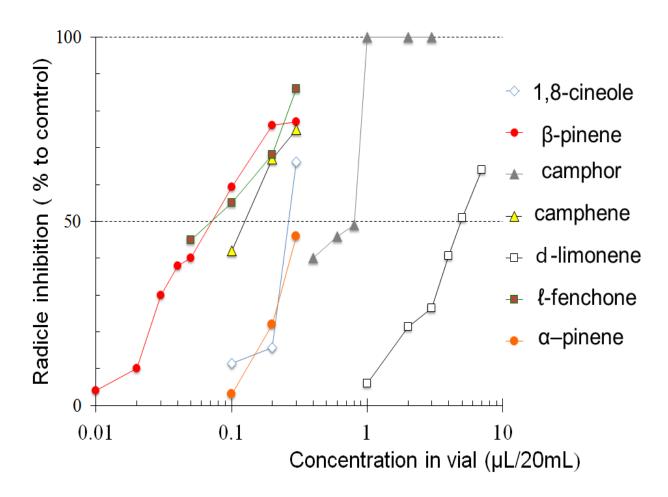


図4-14 トウシキミの葉から放出される主要な揮発性物質のレタス幼根伸長阻害活性の測定

図 4-1 4 は、トウシキミから放出される主な成分である 1,8- cineole (eucalyptol), β -pinene, camphene, d-linmoene, ℓ -fenchonen, α -pinene, comphor の純品の濃度のそれぞれの幼根の阻害活性率を表したグラフである。

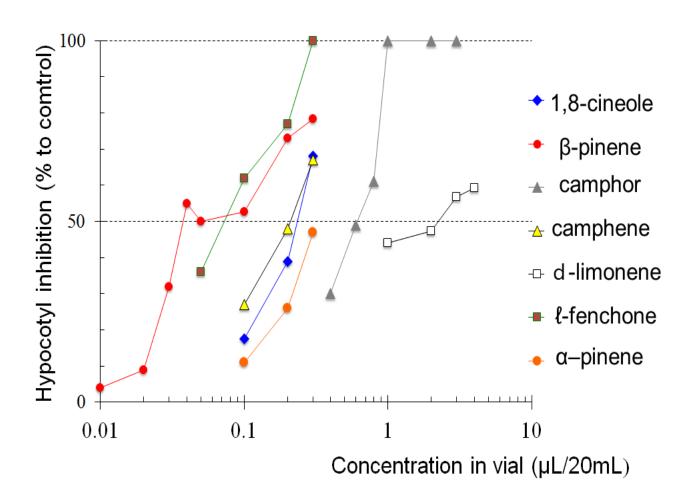


図4-15 トウシキミの葉から放出される主要な揮発性物質のレタス下胚軸伸長阻害活性の測定

図 4-15 は、トウシキミから放出される主な成分である 1,8-1 cineole (eucalyptol), β -pinene, camphene, d-linmoene, ℓ -fenchonen, α -pinene, comphorの純品の濃度のそれぞれの下胚軸の阻害活性率を表したグラフである。。



図4-16 トウシキミから放出される揮発性物質による幼根の阻害率図4-16 はトウシキミの葉を綿棒法で検定したときのレタスの幼根伸長阻害活性を示したものである。トウシキミが多いほど阻害活性が強い。それぞれのトウシキミの葉の量のときのバイアル内の揮発性物質の濃度を、ヘッドスペース法で GC-MS で分析して実測した。

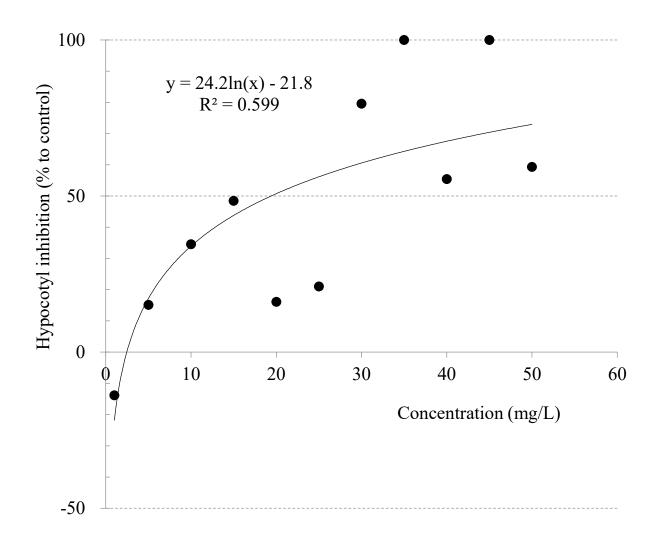


図4-17 トウシキミから放出される揮発性物質による下胚軸阻害率

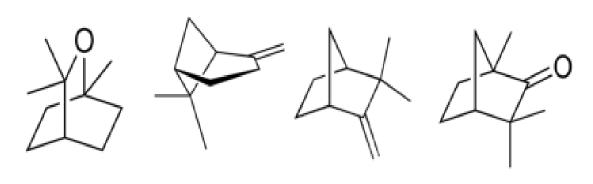
図4-17はトウシキミの葉を綿棒法で検定したときのレタスの下胚軸伸長阻害活性を示したものである。トウシキミが多いほど阻害活性が強い。それぞれのトウシキミの葉の量のときのバイアル内の揮発性物質の濃度を、ヘッドスペース法で GC-MS で分析して実測した。

トウシキミに含まれる揮発性物質の比活性を EC50で評価

表4-1 トウシキミから同定された主要な揮発性物質の阻害活性

			EC ₅₀ [ng/mL]	
保持時間		濃度	幼根長	下胚軸長
(min)	揮発性化合物名	(%)	(Radicle)	(Hypocotyl)
9.43	α -pinene	5.2	19.7±8.2	16.2±11.3
9.78	camphene	7.8	4.6 ± 0.2	5.7 ± 0.7
10.47	β-pinene	13.4	7.7 ± 3.5	6.5 ± 1.1
11.61	d-limonene	7.2	106 ± 67.6	24.0±10.2
11.66	1,8-cineole	17.9	3.7 ± 0.6	3.8 ± 1.6
12.80	Q - fenchone	6.9	1.0 ± 0.2	1.0 ± 0.3
13.86	camphor	7.2	13.0±3.6	7.6±1.5

値は4連の結果の平均値と標準偏差


表 4-1 に測定結果をまとめた。純粋な市販の揮発性物質を用いて検定した植物の生育阻害活性を、50% 阻害する濃度 (EC_{50})を求めた結果、d-リモネンでは、 EC_{50} は胚軸と根でそれぞれ 106 ng/mL および 25 ng/mL、であり、活性は強くなかったが、 ℓ -フェンコンでは、 EC_{50} は根と胚軸で 1.0 ng/mL であり、今回検定した中で最強の植物阻害活性を示したこの研究と同様に、クスノキ、1,8-シネオール、 α -ピネン、および

β-ピネンを含む揮発性テルペンは、侵入性多年生雑草ヨモギ(Artemisia vulgaris) から同定され、ヨモギの定着と導入における増殖における潜在的な役割はそれらの植物毒性の結果であると示唆された(Barney、2005)。 Kaur ら(Kaur、2011)は、ユーカリ・テレティコルニスのエッセンシャルオイルからの揮発性物質(α-ピネン(32.5%)および 1,8-シネオール(22.4%)を含む)が、Amaranthus viridis の初期の苗の成長と活力を著しく抑制したことを報告している。これまでに、1,8-シネオールは強力な植物成長阻害物質であることが知られており、成長異常をもたらす有糸分裂を阻害し、単離されたミトコンドリアの呼吸を阻害し、アスパラギン酸シンターゼを阻害すると報告されている(Puke、2004)。

一方、フェンネルの種子では、0-フェンコンが大量に存在することが知られているが、0-フェンコンが強力な植物成長阻害剤として報告されたことはない。今回、0-フェンコンがトウシキミの葉からの重要な揮発性アレロケミカルであり、揮発性の蒸気の状態で植物の成長を阻害する可能性があることを見出したのは新しい発見である。

ヘッドスペース内の各揮発性化合物の実際の濃度と EC₅₀値から、トウシキミの場合、1,8-シネオール、β-ピネン、カンフェン、およびQ-フェンコンの 4 つの揮発性化合物(図 4 - 1 8)が植物の成長に最も重要

であると結論した。

1,8-cineole β-pinene camphene l-fenchone

図4-18 トウシキミの揮発性アレロケミカルの化学構造

これまでに、東京農工大学の藤井らのグループにおいて、同様の揮発性のアレロケミカルに関する先行研究がある。

セリ科オオハナウドに類縁の侵略的大型雑草であり、ロシア全土からベラルーシ、極東ロシアにまで広がっているヘラクレウム・シャスノフスキー($H.\,sosnowskyi$)の果実には、酢酸オクチルとオクタナールが含まれ、レタスを用いて検定したときの EC_{50} 値は、それぞれ 20 および 9 ng/mL であり、濃度と活性の関係から、オクタナールが、この植物のアレロパシー活性の主要因であることが示唆された (Mishyna ら、2015)。

イランで世界の9割を生産するサフランの揮発性アレロケミカルを

研究した結果、主要な揮発性物質であるサフラナールの EC_{50} 値が 1.2 ng/mL(ppb) であり、揮発性アレロケミカルの本体であることが報告されている (Mardani ら、2015)。

また、最近、アフリカ大陸で、食料、飲料、材木など多様な価値を持つ伝統的な遺伝資源である樹木バオバブの葉から放出されるアレロケミカルを分析した結果、1-デシンという末端に三重結合を持つ特異な炭化水素が大量に含まれており、その EC50値が 0.5 ng/mL とたいへん強く、バオバブの揮発性アレロケミカルの本体であることを報告している(Elmadni ら、2019)。

今回の本研究において、 ℓ -フェンコンの EC_{50} 値は、1.0 ng/mLであり、これらに匹敵する強力な揮発性の植物生育阻害物質であることが明らかになった。 EC_{50} 値から比較をすると最も強い生育抑制が見られたのは ℓ -フェンコンであるが、トウシキミの揮発性阻害物質としては、この他に、1,8-シネオール、 β -ピネンとカンフェンも寄与していると考えられる。

第5章 まとめ

これまでの研究で、薬用植物は高いアレロパシー活性が示めし、とくにアジアの薬用植物に多くのアレロパシー植物が見出されている。そこで、日本で収集できる薬用植物のアレロパシーについて、次の3つの研究を行った。1つは、サンドイッチ法による葉から出る物質によるアレロパシー活性の検索であり、2つめは、ディッシュパック法による揮発性物質によるアレロパシー活性の検索であり、3つめは、これらの検索の結果、確認できたアレロパシー活性の強い植物の化学成分の分析である。

まず、昭和薬科大学の薬用植物園において、324種類の薬用植物を採取した。これらの植物のアレロパシー活性を用いてサンドイッチ法により検定した結果、高い活性を示した植物は、タマリンド、ヤブラン、ラクウショウ、アセンヤクノキ、ハマビシであった。最も高い活性を示したタマリンドのアレロパシー活性は既に報告済みである。次いで活性の高いヤブランの成分も既に研究されており、アゼチジン-2-カルボン酸であることが既に明らかにされている。これに次いで高い活性があったのは、ラクウショウであった。ラクウショウは、ヌマスギ属に属し、生きた化石として知られ、日本列島では中生代から新生代の古第三紀・新第

三紀にかけての化石として多く発見されている。この成分は明らかではない。アセンヤクノキはマメ科に属し、カテキンやタンニンなどを多く含むことが報告されているが、アレロパシーに関する報告はない。ハマビシも、これまでにアレロパシーへの関与の報告があまりない植物であり、今後これらの薬用植物から新たなアレロケミカルの発見が期待される。

次に、ディッシュパック法で 139 種の薬用植物を検定した結果、生育抑制作用が最も強かったのは、トウシキミ (Illicium verum) であった。トウシキミの実は、中国の漢方薬の「八角」として知られており、インフルエンザの特効薬であるタミフルの原料として近年注目されている。

そこで、ガスクロマトグラフ質量分析計を用いて、トウシキミに含まれる揮発性物質の分析を行った。その結果、トウシキミから放出される主な成分として、 α -ピネン(5.2%)、 β -ピネン(13.4%)、カンフェン(7.8%)、d-リモネン(7.2%)、1,8-シネオール(17.9%)、 ℓ -フェンコン(6.9%)が検出された。これらの揮発性物質に関して、植物生育阻害作用について、バイアル瓶を用いた生物試験(綿棒法)によりレタスを用いて検定し、生育抑制作用の強さを EC_{50} 値(生育を 50% 阻害する濃度)で比較した結果、 ℓ -フェンコンの EC_{50} 値は根と胚軸でともに

Ing/mL と最も強力であり、1,8-シネオールがそれぞれ 3.7 および 3.8 ng/mL でこれに次ぎ、カンフェンが 4.6 および 5.7 ng/mL でその次に強く、検出された 7 つの揮発性物質のうち、ℓ-フェンコンが最も強力なであり、続いて 1,8-シネオールおよびカンフェンであることが判明した。1,8-シネオールは強力な植物成長調節剤であることが知られている。しかし、ℓ-フェンコンが強力な植物成長阻害剤として報告されたことはこれまでになく、本研究が、ℓ-フェンコンがトウシキミからの重要な揮発性アレロケミカルであり、揮発性物質として周辺の他の植物の成長を阻害する可能性があることを示した最初の報告である。

発表論文

<u>Gaowa Kang</u>, Maryia Mishyna, Kwame Sarpong Appiah, Masaaki Yamada, Akihito Takano, Valery Prokhorov and Yoshiharu Fujii

Screening for Plant Volatile Emissions with Allelopathic Activity and the Identification of L-Fenchone and 1,8-Cineole from Star Anise (*Illicium verum*) Leaves

Plants, Vol.8, No.9, pp.457 \sim 466, 2019

2019年10月28日発行

DOI: 10.3390/plants8110457

謝辞

本研究の実験及び本論の作成にあたり、主指導教員の東京農工大学国際環境農学生物生産資源学の藤井義晴教授には、終始御指導、御助言を頂きました。ここに御礼申し上げます。

また、東京農工大学の夏目雅裕教授、宇都宮大学の小笠原勝教授には、副主査として研究にご指導ご助言いただきましたことを感謝致します。

用いた植物につきましては、東京農工大学の山田祐彰先生にご助言いただき、昭和薬科大学にお連れいただきましたことを感謝いたします。 薬用植物の採取につきましては、昭和薬科大学植物園の高野昭人先生から快くいただくことが出来ました。また、薬用植物とその学名について多くのことを教わりました。心より感謝致します。

国際生物生産資源学研究室の院生の方々、とくにマリア・ミシナ (Maryia Mishyna)博士からは、揮発性物質の分析法を教わり、多くの助言を戴きました。また、Appiah Kwame Sarpong 博士と Mardani Hossein博士からも、GC-MS の分析をお手伝いただき、いろいろなアドバイスをいただきました。以上の方々に厚く御礼申し上げます。

参考文献 · 資料

- Barney, J.N.; Hay, A.G.; Weston, L.A. (2005) Isolation and characterization of allelopathic volatiles from mugwort (*Artemisia vulgaris*). **J. Chem. Ecol.**, 31, 247-265.
- Bhowmik PC, Doll DJ. (1983) Growth analysis of corn and soybean response to allele-pathic effects of weed residues at various temperature and photosynthetic flux densi-ties. **J. Chem. Ecol.**, 9, 1263-1280.
- Callaway RM, Aschehoug ET. (2000) Invasive plant versus their new and old neighbors: a mechanism for exotic invasion. **Science**, 290, 521-523.
- Chen PK, Leather GR. (1990) Plant growth regulatory activities of artemisinin and its related compounds. J. Chem. Ecol., 16, 1867-1876.
- Chiluwal, K. Kim, J. Bae, S. Do, Park, C.G. (2017) Essential oils from selected wooden species and their major components as repellents and oviposition deterrents of *Callosobruchus chinensis* L.. J. Asia. Pac. Entomol. 20, 1447-1453.
- Connick, W.J., Bradow, J.M., Legendre, M.G. (1989) Identification and bioactivity of volatile allelochemicals from amaranth residues. **J. Agric.**Food Chem. 1989, 37, 792-796.

- da Rocha Neto, A.C., Navarro, B.B., Canton, L., Maraschin, M., Di Piero, R.M. (2019) Antifungal activity of palmarosa (*Cymbopogon martinii*), tea tree (*Melaleuca alternifolia*) and star anise (*Illicium verum*) essential oils against *Penicillium expansum* and their mechanisms of action. **LWT**, 105, 385-392.
- De, M.; De, A.K.; Sen, P.; Banerjee, A.B. (2002) Antimicrobial properties of star anise (*Illicium verum* Hook f). **Phytother. Res.**, 16, 94-95.
- Dudareva, N., Negre, F., Nagegowda, D.A., Orlova, I. (2006) Plant
 Volatiles: Recent Advances and Future Perspectives. Crit. Rev. Plant.
 Sci., 25: 417-440.
- Duke, S.; Oliva, A. (2004) Mode of action of phytotoxic terpenoids. In

 Allelopathy, Chemistry and Mode of Action of Allelochemicals;

 Macias, F., Galindo, J., Molinillo, J., Cutler, H., Eds.; Boca Raton: CRC

 Press.
- Elmadani, H.S.A.M.; Mishyna, M.; Fujii, Y. (2019) Identification of 1-decyne as a new volatile allelochemical in baobab (*Adansonia digitata*) from Sudan. **African J. Agric. Res.**, 907-914.
- Friedman J. (1987). Allelopathy in desert ecosystems. ACS Symposium Series 330, 53-68.

- Fujii, Y., Matsuyama, M., Hiradate, S., Shimozawa, H. (2005) Dish pack method: a new bioassay for volatile allelopathy. **Proc. 4th World Congr.**Allelopathy. 1, 493-497.
- Fujii, Y.; Parvez, S.S.; Parvez, M.M.; Ohmae, Y.; Iida, O. (2003) Screening of 239 medicinal plant species for allelopathic activity using the sandwich method. **Weed Biol. Manag.**, 3, 233-241.
- Gholivand, M.B.; Rahimi-Nasrabadi, M.; Chalabi, H. (2009) Determination of essential oil components of star anise (*Illicium verum*) using simultaneous hydrodistillation-static headspace liquid-phase microextraction-gas chromatography mass spectrometry. **Anal. Lett.**, 42, 1382-1397.
- Howe, G.A; Schilmiller, A.L. (2002) Oxylipin metabolism in response to stress. Curr. Opin. Plant Biol., 5, 230-236.
- Huang, B., Liang, J., Wang, G., Qin, L. (2012) Comparison of the Volatile
 Components of *Illicium verum* and *I. lanceolatum* from East China. J.
 Essent. Oil Bear. Plants, 15, 467-475.
- Huang, Y.; Zhao, J., Zhou, L., Wang, J., Gong, Y., Chen, X., Guo, Z., Wang, Q., Jiang, W. (2010) Antifungal activity of the essential oil of *Illicium* verum fruit and its main component trans-anethole. **Molecules**, 15,

7558-7569.

- Kaur, S., Singh, H.P., Batish, D.R., Kohli, R.K. (2011) Chemical characterization and allelopathic potential of volatile oil of *Eucalyptus* tereticornis against *Amaranthus viridis*. **J. Plant Interact**., 6, 297-302.
- Liu, Y.-N., Su, X.-H., Huo, C.-H., Zhang, X.-P., Shi, Q.-W., Gu, Y.-C. (2009) Chemical constituents of plants from the genus *Illicium*. **Chem. Biodivers.**, 6, 963-989.
- López-Gresa, M.P., Payá, C., Ozáez, M., Rodrigo, I., Conejero, V., Klee, H., Bellés, J.M., and Lisón, P. A (2018) New Role for Green Leaf Volatile Esters in Tomato Stomatal Defense Against *Pseudomonas syringe* pv. tomato. Front. Plant Sci., 9,1855.
- Macias, F.A. (1994) Allelopathy in the search for natural herbicide models, Allelopathy, Chapter 23, pp. 310-32.
- Macías, F.A., Mejías, F.J., Molinillo, J.M. (2019) Recent advances in allelopathy for weed control: from knowledge to applications. **Pest**Manag. Sci., 75, 2413-2436.
- Macias, F. A., Galindo, J., C. G., Molinilo, M.G. Cutler, H. G. Cedes (1999) Recent Advances in Allelopathy, Vol.1, Science for the future, pp.514, International Allelopathy Society

- Mardani, H., Sekine, T., Azizi, M., Mishyna, M., Fujii, Y. (2015)

 Identification of safranal as the main allelochemical from saffron

 (Crocus sativus). Nat. Prod. Commun., 10, 775-777.
- Mishyna, M., Laman, N., Prokhorov, V., Maninang, J.S., Fujii, Y. (2015)

 Identification of octanal as plant growth inhibitory volatile compound released from *Heracleum sosnowskyi* fruit. **Nat. Prod. Commun.**, 10, 771-774.
- Molisch, H. (1937): Der Einfluss einer Pflanze auf die andere -Allelopathie, Jena, Fisher
- Muller C. H., Muller W. H., Haines B. L. (1994): Volatile growth inhibitors produced by aromatic shrubs. Science, 143, 471-473.
- Qinh, N.B., Dai, D.N., Than, B. V., Dung, V.T., Hang, V.T.T., Ogunwande, I.A. (2016) Volatile constituents of three *Illicium* plants. **Rec. Nat.**Prod., 10, 806-811.
- Rice, E.L. (1984) Allelopathy. 2nd Edition, Academic Press, New York, 422.
- Ruther, J., and Kleier, S. (2005) Plant-plant signaling: Ethylene synergizes volatile emission in *Zea mays* induced by exposure to (Z)-3-hexen-1-ol.

 J. Chem. Ecol., 31, 2217-2222.
- Szczepanik, M., Szumny, (2011) A. Insecticidal activity of star anise

- (Illicum verum Hook. F.) fruits extracts against lesser mealworm,

 Alphitobius diaperinus Panzer (Coleoptera: Tenebrionidae). Allelopath.

 J., 27, 277-287.
- Vaughn, S.F.; Boydston, R.A. (1997) Volatile allelochemicals released by crucifer green manures. J. Chem. Ecol., 23, 2107-2116.
- Visser, J. H., Van Straten, S., and Maarse, H. (1979) Isolation and identification of volatiles in the foliage of potato, *Solanum tuberosum*, a host plant of the Colorado beetle, *Leptinotarsa decemlineata*. J. Chem. Ecol., 5, 13-25.
- Wang, G.-W., Hu, W.-T., Huang, B.-K., Qin, L.-P. (2011) *Illicium verum*: A review on its botany, traditional use, chemistry and pharmacology. **J. Ethnopharmacol.**, 136, 10-20.
- Wu, H.; Pratley, J., Lemerle, D., Haig, T., An, M. (2001) Screening methods for the evaluation of crop allelopathic potential. **Bot. Rev.**, 67, 403-415.
- Zhang, Y., Ji, H., Yu, (2018) Aromatic constituents and their changes of *Illicium verum* processed by different heating methods. **Ind. Crops Prod.**, 118, 362-366.
- ハルボーン, B著, 高橋英一, 深海浩訳 (1981) 化学生態学, pp.303,

文永堂

- ライス, E L 著, 八巻敏雄, 安田環, 藤井義晴訳 (1991) アレロパシー, pp.488, 学会出版センター
- 磯島誠一・小泉有生・藤井義晴(2000)ソバのアレロパシーの検証と作 用物質の分析,雑草研究,45,Sup.,92-93.
- 孔垂華・胡飛・王朊著 (2016) **植物化感(相生相克)作用**,高等教育出版(北京) p.3,142,25,118.
- 根本正之(1995)雑草の他感作用(現代生態学とその周辺)pp,269-275.
- 斎藤和季 (2017)植物はなぜ薬を作るのか, 文藝春秋 82巻 4号 pp. 211 219.
- 沼田 真 (1977) 植物群落と他感作用, 化学と生物, 15,412-418
- 神山恵三、B.P.トーキン(1980) 植物の不思議なカ=フィトンチッド、講 談社
- 西村弘行(2011) 北の健康野菜,北海道新聞社 p.103.
- 中久加菜・続栄治・寺尾寛行・小瀬村誠治(1994) アルファルファのアレロパシーに関する研究:第2報アルファルファのアレロパシー物質の卖離と同定,日本作物学会誌 63巻2号 pp.278-284.
- 中村徹 (2007) 草原の科学への招待, 筑波大学出版, p.110.
- 藤井義晴(1990) 植物のアレロパシー, 化学と生物, 28 巻 7 号 pp.471-

478.

- 藤井義晴(1994):**雑草管理ハンドブック**(草薙得一,近内誠登, 芝山秀 次郎編),pp.49-61,朝倉書店
- 藤井義晴(1994)アレロパシー検定法の確立とムクナに含まれる作用物質 L-DOPA の機能,農業環境技術研究報告,10号,pp.115-218.
- 藤井義晴(2000)アレロパシーー他感物質の作用と利用ー, PP.230, 農山漁村文化協会
- 藤井義晴(2000) アレロパシー-他感物質の作用と利用-, pp.23-26
- 藤井義晴(2000)アレロパシー他感物質の作用と利用、農文協 p.30,27.
- 藤井義晴(2003)アレロパシー;植物が放出する化学物質による他の生物との相互作用一特に植物が放出する揮発性物質が他の生物に及ぼす作用,日本生気象学会誌,40巻1号 p.49-54.
- 藤井義晴(2004): アレロパシー研究の最前線、 **農業環境技術研究所・ 研修テキスト**, http://www.niaes.affrc.go.jp/techdoc/inovlec2004/1-3.pdf
 藤井義晴(2009) 植物のにおい・かおり物質のアレロケミカルとしての
 はたらき, におい・かおり環境学会誌, 40 巻 3 号, pp.158-165.
- 藤井義晴 (2016) 植物たちの静かな戦い-化学物質があやつる生存競争, 化学同人, pp.16, 25, 46, 191, 183.
- 藤井義晴・渋谷知子(1991)寒天培地を用いた他感作用検定手法,1)落

- 葉・落枝の浸出物による他感作用の検索,**雑草研究** 36(別)pp.150-151.
- 藤井義晴・松山稔・下澤秀樹・平舘俊太郎・中谷敬子(2000) クレオメ の他感作用と作用物質メチルイソチオシアネートの同定,雑草研 究 45 (別) pp.78-79.
- 藤井義晴・平舘俊太郎・古林章弘 (2005) コンフリーのアレロパシーと 植物生育阻害物質の同定,雑草研究 50 (別) 146-147.
- 藤井義晴・濱野満子(2003)アレロパシー;植物が放出する化学物質による他の生物との相互作用-とくに植物が放出する揮発性物質が他の生物に及ぼす作用-,日本生気象学会雑誌,40巻1号 p.49-54.
- 馬場洋平 (2012):ウスバサイシンの発揮性物質オイカルボンの植物生育抑制作用に関する研究、筑波大学修士論文
- 平野 暁 (1977): 作物の連作障害, pp.282, 農山漁村文化協会
- 敖复·于倬徳·江永敬 (1989) 中国沙棘属植物引種初報, **国際沙棘学術** 交流会論文集 pp.152-154.