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Aerial Image Analysis Applications in 

Plant Discrimination and Land Cover 

Mapping for Agro- 
 

Abstract 

In this thesis we introduce and evaluate a methodology to analyze, discriminate, and classify the 

earth surface by utilizing aerial images from different source and sensors in agro-environmental 

applications. In such applications, often accessing the area of interest is practically impossible or 

it is time consuming and requires high cost. Therefore, utilizing aerial images for such 

applications is the most common option for the users.  

In first part, we focus on aerial images from unmanned aerial vehicles (UAVs) with Red, Green, 

and Blue (RGB) channel sensors. The overall objective in this part is to provide a methodology 

for analyzing the aerial images from a small commercial UAV in order to be used in agro-

environmental applications. First, we select the hairy vetch (Vicia villosa) as target plant to be 

detect and discriminated in UAV images. We characterized the features and collected the data for 

further analyze. Then, the challenges in image mosaicking in such applications were investigated. 

In the next step, we introduced a methodology for plant detection in UAV images by using 

machine learning techniques. Finally, the proposed methodology was test and evaluated. 

In the second part, we modify the methodology for landcover mapping by utilizing satellite 

imagery. The overall objective in this part is to provide a tool for landcover classification in 

national level for the country of Lesotho. The study was carried out in collaboration with the 

United Nations Food and Agriculture Organization. the proposed methodology utilizes free and 

open access satellite data, cloud based geospatial data processing platforms, and FAO datasets. 

The methodology was successfully test and evaluated in national level for Lesotho.  

Finally, the thesis will discuss the potential, limitations and future directions of the study. 

  



 

4 

 

ACKNOWLEDGEMENT 

 

  

First, I would like to thank you professor Takafumi Saito whom that 

support my study and my research with his invaluable and endless 

kindness. His knowledge and guide where the most valuable source for 

my study. 

Also, I would like to appreciate professor Yoshiharu Fujii for letting me 

to join his lab and ideas that were formed part of the research. I thank 

professor Ikuko Shimizu for her kind support during the research. Also, 

I appreciate all the supports and guide that I received from Dr. De 

Simone, Dr. Samuel Varas, and Dr. Boliko at Food and Agriculture 

Organization of the United Nations. 

Lastly, I would like to thank my friends and family, does who their 

unconditional love was the main reason that I could continue my way. 

Specially, I would like to express my deepest gratitude toward my 

amazing mother for her love and care. And, I am sincerely grateful to 

my father for his special support. 

I greatly appreciate the moral and financial support provided by the 

Japan Ministry of Education, Culture, Sports, Science and Technology 

(MEXT) and Department of Food and Energy Systems Science in 

Tokyo University of Agriculture and Technollogy. 



 

5 

 

Table of Contents 

I. COMMITTEE MEMBERS ............................................................................................... 2 

ACKNOWLEDGEMENT .......................................................................................................... 4 

TABLE OF CONTENTS ............................................................................................................ 5 

LIST OF TABLES ...................................................................................................................... 8 

LIST OF FIGURES .................................................................................................................... 9 

CHAPTER 1: INTRODUCTION ............................................................................................ 12 

1.1 Current studies and methods............................................................................................................. 14 

1.2 The selected case studies .................................................................................................................... 18 

1.2.1 Hairy vetch .................................................................................................................................... 18 

1.2.2 Common reed ................................................................................................................................ 19 

1.3 References ........................................................................................................................................... 20 

CHAPTER 2: DETECTION AND MAPPING OF HAIRY VETCH IN IMAGES 

OBTAINED BY UAVS ............................................................................................................. 23 

2.1 Abstract ............................................................................................................................................... 23 

2.2 Introduction ........................................................................................................................................ 23 

2.3 Related works ..................................................................................................................................... 25 

2.4 Proposed method ................................................................................................................................ 26 

2.5 Discussion ............................................................................................................................................ 38 

2.6 Conclusion ........................................................................................................................................... 40 

2.7 References ........................................................................................................................................... 41 



 

6 

 

CHAPTER 3: THE CHALLENGES AND ASPECTS OF UAV IMAGES MOSAICKING

 42 

3.1 Abstract ............................................................................................................................................... 42 

3.2 Introduction ........................................................................................................................................ 42 

3.3 Proposed method ................................................................................................................................ 43 

3.4 Result and discussion ......................................................................................................................... 48 

3.5 Conclusion ........................................................................................................................................... 53 

3.6 References ........................................................................................................................................... 54 

CHAPTER 4: APPLICATION OF UAVS IN AGRO-ENVIRONMENTAL STUDIES: 

DISCRIMINATION OF NATURAL VEGETATION IN HIGH COMPLEX AERIAL 

IMAGES..................................................................................................................................... 56 

4.1 Abstract ............................................................................................................................................... 56 

4.2 Introduction ........................................................................................................................................ 56 

4.3 Dataset ................................................................................................................................................. 61 

4.4 Methodology........................................................................................................................................ 63 

4.5 Results and discussion ........................................................................................................................ 65 

4.6 Conclusion ........................................................................................................................................... 72 

4.7 References ........................................................................................................................................... 72 

CHAPTER 5: INTEGRATION OF MACHINE LEARNING AND OPEN ACCESS 

GEOSPATIAL DATA FOR LAND COVER MAPPING ..................................................... 74 

5.1 Abstract: .............................................................................................................................................. 74 

5.2 Introduction ........................................................................................................................................ 74 

5.3 Study Area and Data .......................................................................................................................... 76 



 

7 

 

5.4 Methods ............................................................................................................................................... 84 

5.5 Results ................................................................................................................................................. 88 

5.6 Discussion ............................................................................................................................................ 93 

5.7 Conclusions ......................................................................................................................................... 96 

5.8 Application of Deep Learning and Open Access Geospatial Cloud Processing Platforms in Land 

Cover Mapping ......................................................................................................................................... 97 

5.8.1 Introduction ................................................................................................................................... 97 

5.8.2 study area and data ........................................................................................................................ 97 

5.8.3 methodology.................................................................................................................................. 97 

5.8.4 results and discussion .................................................................................................................... 98 

5.9 References ........................................................................................................................................... 99 

CHAPTER 6: CONCLUSION AND FUTURE OF RESEARCH ...................................... 104 

6.1 Conclusion ......................................................................................................................................... 104 

6.2 Future of research ............................................................................................................................ 105 

 

 

  



 

8 

 

List of Tables 

Table (2-1). UAV technical characteristics. 

Table (2-2). Camera technical characteristics. 

Table 2-3. Color parameter for leaves 

Table 2-4. Color parameters for flowers 

Table (2-5). Maximum and Minimum boundaries for leaves color. 

Table (2-6). Maximum and Minimum boundaries for flowers color. 

Table (2-7). Selected boundaries for each parameter in feature vector. 

Table 3-1. Camera technical characteristics. 

Table 4-1. The overall accuracy for trained models 

Table 5-1. FAO LCL classes and classes definitions 

Table 5-2. FAO LCL specifications of utilized images  

Table 5-4. Confusion Matrix - Bagged Trees Model (%). 

Table 5-5. Confusion Matrix - Cubic SVM Model (%). 

 

 

  



 

9 

 

List of Figures 

FIGURE 1-1 THE SHARE OF EACH TYPE OF AERIAL IMAGERY IN AGRICULTURE AND 

ENVIRONMENTAL APPLICATIONS ........................................................................................ 14 

FIGURE 1-2 THE LOCATION OF THIS STUDY BETWEEN OTHER SIMILAR STUDIES IN TERM OF 

IMAGE COMPLEXITY AND TYPE OF SENSOR ......................................................................... 15 

FIGURE 1-3 LOCATION OF THIS STUDY AMONG OTHERS IN TERM OF TYPE OF THE ENVIRONMENT 

AND THE OBJECTIVE OF STUDIES ......................................................................................... 16 

FIGURE 1-4 HAIRY VETCH IN ITS NATURAL HABITAT NEAR THE TONE RIVER IN JAPAN ............. 18 

FIGURE 1-5 COMMON REED ALSO CALLED PHRAGMITES GROW NEAR THE ROAD AND WETLANDS 

IN ITAKURA CITY, JAPAN ..................................................................................................... 19 

FIGURE 2-1 HAIRY VETCH FLOWER ............................................................................................. 24 

FIGURE 2-2 FLOWCHART OF PROPOSED METHOD ........................................................................ 26 

FIGURE 2-3 STUDY AREA: TONE RIVER SHORE, ITAKURA CITY .................................................. 28 

FIGURE 2-4 ORTHOMOSAIC IMAGES ............................................................................................ 28 

FIGURE 2-5 ENTERED SAMPLE IMAGE IN ALGORITHM ................................................................ 29 

FIGURE 2-6 QUERY IMAGE AND GROUND-TRUSTED TAG ............................................................ 29 

FIGURE 2-7 HAIRY VETCH GROWN IN GREENHOUSE ................................................................... 30 

FIGURE 2-8 CUT LEAVES SAMPLES TO EXTRACT COLOR PARAMETERS ...................................... 30 

FIGURE 2-9 HAIRY VETCH CUT FLOWER SAMPLES....................................................................... 31 

FIGURE 2-10 SAMPLE RESULTS FOR COLOR FILTERING ............................................................... 32 

FIGURE 2-11 DISPLACEMENT AND ORIENTATION IN GLCM CALCULATION ............................... 33 

FIGURE 2-12 SAMPLE OF RESULTS FOR TEXTURE ANALYSIS ....................................................... 36 

FIGURE 2-13 SAMPLE OF RESULTS FOR TEXTURE ANALYSIS ....................................................... 37 

FIGURE 2-14 SAMPLE OF RESULTS FOR TEXTURE ANALYSIS ....................................................... 37 

FIGURE 2-15 CORRELATION VARIATION FOR DIFFERENT ORIENTATION AND DISTANCES OF SOIL, 

HAIRY VETCH AND OTHER PLANT. ...................................................................................... 39 

FIGURE 2-16 CONTRAST VARIATION FOR DIFFERENT ORIENTATION AND DISTANCES OF SOIL, 

HAIRY VETCH AND OTHER PLANT. ...................................................................................... 39 

FIGURE 2-17 ENERGY VARIATION FOR DIFFERENT ORIENTATION AND DISTANCES OF SOIL, 

HAIRY VETCH AND OTHER PLANT. ...................................................................................... 40 

FIGURE 2-18 HOMOGENEITY VARIATION FOR DIFFERENT ORIENTATION AND DISTANCES OF 

SOIL, HAIRY VETCH AND OTHER PLANT. ............................................................................. 40 

FIGURE 3-1 SAMPLE IMAGES OF SET 1 ......................................................................................... 47 

FIGURE 3-2 SAMPLE IMAGES OF SET 2 ......................................................................................... 47 

file:///C:/Users/mohammad/Google%20Drive/Dissertation/Drafts/final%20version%20-%202020-03-02.docx%23_Toc34052727
file:///C:/Users/mohammad/Google%20Drive/Dissertation/Drafts/final%20version%20-%202020-03-02.docx%23_Toc34052727
file:///C:/Users/mohammad/Google%20Drive/Dissertation/Drafts/final%20version%20-%202020-03-02.docx%23_Toc34052728
file:///C:/Users/mohammad/Google%20Drive/Dissertation/Drafts/final%20version%20-%202020-03-02.docx%23_Toc34052728
file:///C:/Users/mohammad/Google%20Drive/Dissertation/Drafts/final%20version%20-%202020-03-02.docx%23_Toc34052729
file:///C:/Users/mohammad/Google%20Drive/Dissertation/Drafts/final%20version%20-%202020-03-02.docx%23_Toc34052729
file:///C:/Users/mohammad/Google%20Drive/Dissertation/Drafts/final%20version%20-%202020-03-02.docx%23_Toc34052730
file:///C:/Users/mohammad/Google%20Drive/Dissertation/Drafts/final%20version%20-%202020-03-02.docx%23_Toc34052731
file:///C:/Users/mohammad/Google%20Drive/Dissertation/Drafts/final%20version%20-%202020-03-02.docx%23_Toc34052731
file:///C:/Users/mohammad/Google%20Drive/Dissertation/Drafts/final%20version%20-%202020-03-02.docx%23_Toc34052746
file:///C:/Users/mohammad/Google%20Drive/Dissertation/Drafts/final%20version%20-%202020-03-02.docx%23_Toc34052746
file:///C:/Users/mohammad/Google%20Drive/Dissertation/Drafts/final%20version%20-%202020-03-02.docx%23_Toc34052747
file:///C:/Users/mohammad/Google%20Drive/Dissertation/Drafts/final%20version%20-%202020-03-02.docx%23_Toc34052747
file:///C:/Users/mohammad/Google%20Drive/Dissertation/Drafts/final%20version%20-%202020-03-02.docx%23_Toc34052748
file:///C:/Users/mohammad/Google%20Drive/Dissertation/Drafts/final%20version%20-%202020-03-02.docx%23_Toc34052748
file:///C:/Users/mohammad/Google%20Drive/Dissertation/Drafts/final%20version%20-%202020-03-02.docx%23_Toc34052749
file:///C:/Users/mohammad/Google%20Drive/Dissertation/Drafts/final%20version%20-%202020-03-02.docx%23_Toc34052749


 

10 

 

FIGURE 3-3 SAMPLE IMAGES OF SET 3 ......................................................................................... 48 

FIGURE 3-4 STUDY AREAS 2 AND 3 AND THEIR DIFFERENCE IN HEIGHT OF PLANTS ................... 48 

FIGURE 3-5 IMAGE STITCHING RESULTS FOR SET 1 ..................................................................... 50 

FIGURE 3-6 IMAGE STITCHING RESULTS FOR SET 3 ..................................................................... 51 

FIGURE 3-7 IMAGE STITCHING RESULTS FOR SET 2 ..................................................................... 51 

FIGURE 3-8 ORIGINAL IMAGE (LEFT) AND UNDISTORTED IMAGE (RIGHT). ................................. 52 

FIGURE 3-9 CAMERA ANGLE AND PLANTS IN DIFFERENT POSITIONS .......................................... 53 

FIGURE 3-10 RESULT FOR BLENDING TWO ADJACENT IMAGES WITHOUT ADJUSTMENTS ........... 53 

FIGURE 4-1 THE STRUCTURE OF SFTA ALGORITHM ................................................................... 57 

FIGURE 4-2 SUPPORT VECTORS ARE THE TRAINING DATA THAT LIE ON THE MARGIN ................ 60 

FIGURE 4-3 RESULT OF ORTHOMOSAICING AND MANUAL CLASSIFICATION FOR HAIRY VETCH 

2016 (UP) AND 2017 (DOWN) ............................................................................................... 62 

FIGURE 4-4 THE SAMPLE IMAGES IN EACH CATEGORY IN IMPLEMENTED DATASET. A) NATURAL 

GRASS. B) HAIRY VETCH. C) GRAVEL READ. D) COMMON REED. E) OTHER TYPES OF 

PLANTS. F) DEAD PLANTS OR BARE SOIL. G) BLACK IMAGE. .............................................. 63 

FIGURE 4-5 METHODOLOGY’S WORKFLOW. ............................................................................... 64 

FIGURE 4-6 THE CONFUSION MATRIX FOR TRAINING MODELS ON COLOR FEATURES. SVM 

MODEL 94% (UP) AND ENSEMBLED TREES 91.7% (DOWN). ................................................. 67 

FIGURE 4-7 THE RECEIVER OPERATOR CURVE AND AREA UNDER THE CURVE FOR SVM MODELS 

TRAINED ON COLOR FEATURES ............................................................................................ 68 

FIGURE 4-8 THE CONFUSION MATRIX FOR TRAINED MODELS ON GLCM FEATURES. SVM MODEL 

84% (UP) AND ENSEMBLED TREES 78% (DOWN). ................................................................ 69 

FIGURE 4-9 THE TEST RESULTS OF HAIRY VETCH DISCRIMINATION FOR SVM MODEL AND COLOR 

FEATURES. THE 2016 ORTHOMOSAIC (UP) AND 2017 ORTHOMOSAIC (DOWN). .................. 70 

FIGURE 4-10 THE TEST RESULTS OF HAIRY VETCH DISCRIMINATION FOR SVM MODEL AND 

GLCM FEATURES. THE 2016 ORTHOMOSAIC (UP) AND 2017 ORTHOMOSAIC (DOWN). ...... 71 

FIGURE 5-1 THE KINGDOM OF LESOTHO (STUDY AREA) WITHIN THE CONTINENT OF AFRICA. .. 77 

FIGURE 5-2 AGRO-ECOLOGICAL ZONES OF LESOTHO BASED ON LENGTH OF GROWING PERIOD 

(LGP) AND FOOT-PRINT OF PILOT AREAS. 1) LEJONE, 2) MASERU, AND 3) MOKHOTLONG 78 

FIGURE 5-3 COMPARISON BETWEEN MEAN OF NORMALIZED DIFFERENCE VEGETATION INDEX 

(NDVI) OF THREE STUDIED PILOT AREAS AND AGRICULTURAL SEASONS IN LESOTHO. ..... 79 

FIGURE 5-4 ALGORITHM WORKFLOW OF PROPOSED MACHINE LEARNING CLASSIFICATION AND 

ACCURACY ASSESSMENT METHODOLOGY. .......................................................................... 85 



 

11 

 

FIGURE 5-5 A) GOOGLE EARTH HIGH RESOLUTION IMAGE. B) SENTINEL-2 10-METER 

RESOLUTION IMAGE. C) FIRST PRINCIPAL COMPONENT OF 4 SELECTED BANDS. D) PCA 

SHARPENED IMAGE WITH FIRST PRINCIPAL COMPONENT. E) SECOND COMPONENT OF PCA. 

F) SHARPENED IMAGE WITH SECOND COMPONENT OF PCA. .............................................. 88 

FIGURE 5-6 PRECISION RECALL AND F-SCORE PARAMETERS FOR EACH CLASS. LEFT: SUPPORT 

VECTOR MACHINE MODEL. RIGHT: BAGGED TREES MODEL. ............................................. 91 

FIGURE 5-7 AREA UNDER CURVE (AUC) VALUES IN RECEIVER OPERATOR CURVE (ROC), 

RECALL, AND FALSE POSITIVE RATE PER CLASS FOR TRAINED MODELS.............................. 92 

FIGURE 5-8 COMPARISON BETWEEN THE PILOT AREAS 1, 2 AND 3 FOR A: FAO LAND COVER OF 

LESOTHO (FAO LCL), B: RESULTS OF TRAINED SVM MODEL AND C: RESULTS OF BT 

MODEL. ................................................................................................................................ 93 

  



 

12 

 

Chapter 1: INTRODUCTION 

In the stories, religions, and novel books, looking from the above and watching the world from 

the sky is an advantage and superpower that belongs to the gods or supernatural creatures. In 

ancient civilizations, building towers, pyramids, or even kites for observing the ground from the 

upper levels were considered as superior technology. Looking at the ground from higher levels 

let the human to see the whole instead of parts. It helped the rollers of human the history to 

understand the overall facts on the earth. The fact that we, as humans, always try to go higher and 

higher was the reason for us to make Babylonia’s towers, invent the balloons, kites, airplanes etc. 

In fact, we were so eager to see the earth from sky and have the gods power that, in 19th century, 

we got so high that we left the atmosphere and entered the space. Access to the sky led human 

being to think about how to observe the earth surface and take advantage of those new horizons. 

And of course, the best way to think about it and share the new knowledge with others was to 

capture the image of it.  

The aerial imagery’s history starts from the French photographer Gaspard F. Tournachon also 

known as Nadar. He first practiced the aerial photography from balloons in 1850’s. Also, some 

of the first aerial photographs that exist today are from Boston, USA by James Wallace Black 

in1860 (Graham and Read 1986). In addition, early unmanned aerial imagery was utilizing string 

kites and Pigeons (known as Bavarian Pigeons). From then the aerial images were used in vast 

variety of application such as military, urban monitoring, forest monitoring, ocean observations, 

agriculture, geology, fire and earthquake monitoring etc.(Banzhaf and Hofer 2008; Lomax, Corso, 

and Etro 2005; Martínez-de Dios et al. 2011; Merino et al. 2010).  

In general, there is four different types of aerial imagery methods for collecting the data: (1) the 

tower aerial imagery (2) airborne aerial imagery (3) satellite aerial imagery, and (4) drone aerial 

imagery. The tower imagery is cost effective and suitable for acquiring data from a fixed location 

during a long period of time, but its disadvantage is the angle of the sensor and field of the view 

that effects the quality and methodology of processing data. The airborne imagery is the imagery 

using sensors that are mounted on aircrafts, helicopter, or balloons. Airborne sensors are capable 

of capturing high spectral and spatial data in larger areas. Also, it is flexible toward the frequency 

of imagery and is suitable for making high resolution time series for larger areas. However, 

airborne imagery is expensive and requires experts to fly the equipment’s.  

The satellite imagery has the ability of covering very large areas on the earth. The frequency of 

imaging (revisiting period or temporal resolution) is different for each satellite mission and 

location of the area on planet. Meanwhile, satellite sensors usually provide the higher spectral 
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resolution (several band) data which allows further information acquisition. Disadvantage of 

satellite imagery is that mostly they are not open access and it need the experts to acquire the data 

and analyze it (Gilvear and Bryant 2003). The drone imagery uses the unmanned aerial vehicles 

(UAV) for data acquisition. The advantages of this type of imagery is that: first, it is very cost 

effective. Due to the recent advances in UAV technologies the commercial UAVs that are getting 

cheaper and they are accessible for everyone. Second, UAVs can fly almost everywhere and 

anytime. The ease of use, light wait, and cost effectivity of the UAVs allows the users to be able 

to fly them every time that it is necessary (Aasen et al. 2018). 

The aerial image analysis is extracting the meaningful information from aerial sensors data by 

utilizing image processing techniques. The aerial image analysis goal is to provide effective and 

efficient tools for remote sensing applications. The image processing techniques that are used in 

different application (such as medical image processing) are able to offer new tools for remote 

sensing applications. However, generally remote sensing method are only depending on spectral 

analysis of images. It can be due to the early days of remote sensing that aerial images had very 

coarse spatial resolution and the most important part of data was available in spectral data. Here 

we should mention that the scale of images has little importance to the method that used to analyze 

them. A microscope image with micrometer resolution and a satellite image with several meter 

resolution require many of the same algorithms. The measurement of images is the principal 

method for acquiring scientific data, and generally requires that objects or structure be well 

defined, either by edges or by unique brightness, color, texture, or some combination of these 

factors (Russ 2016).  
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1.1 Current studies and methods 

The use of satellite imagery in agriculture and environment applications is still the most dominant 

data. Satellite products make up 52% of all studies, followed by airborne (34%), field 

measurements (e.g. through field spectrometers; 11%) and UAV (2%) (Vaz et al. 2018).  At first 

here, we will have a survey on UAV applications in agriculture and environment field. Then we 

will look at studies that use the satellite data for landcover products.  

Satellite image processing is applied in a wide range of applications. the satellite data has several 

unique characteristics such as ability to collect the long-term time series due to the temporal 

resolution of satellite data (revisiting time), hyperspectral imaging (sensors with several visible 

and invisible bandwidth) and data collection coverage (they can cover vast area on the planet). 

Satellite time series have been used for obtaining the spectral footprint of plant or other target 

objects on the earth surface (Fattahi, Agram, and Simons 2016; Inglada et al. 2017; Molero et al. 

2018; Pelletier et al. 2016). Also, time series are used to compare the plant or objects status over 

a period of time (Halabisky et al. 2016).  

One of the most applied field for satellite data is landcover mapping and landcover processing. 

Landcover is the physical objects and materials on the surface of earth such as grass-land, barren-

land, wetland, farms and agriculture etc. The landcover data provide information on the location 

 

Figure 1-1 The share of each type of aerial imagery in agriculture and environmental 

applications 
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and type of the land surface on map (Almeida et al. 2016; Grekousis, Mountrakis, and Kavouras 

2015; Yifang, Gong, and Gini 2015).  

In last 10 years the advances in battery, flight control, and electric motor accelerated the progress 

in producing smaller, cheaper, and more capable UAVs. Today UAVs are utilized in a very wide 

range of applications including agriculture and environment. The agricultural UAVs carry two 

types of payloads: 1) material to be applied on farms (Material delivery) (Faiçal et al. 2017) 2) 

sensors to collect data. The data collection is necessary for first type of application (material 

delivery). There are several types of sensors for UAVs based on their type of application. The 

most common type is the red, green, and blue (RGB) channel sensors. The other type is multi-

spectral or hyperspectral sensors. These sensors can collect the data in near infrared or infrared 

spectrum. However, these types of sensors are more expensive and require higher level of 

expertise to be utilize by individuals. There are several studies that utilizing multi-spectral UAV 

imagery for agriculture purposes (Ampatzidis and Partel 2019; Navia et al. 2016).  

There is limited amount of effort for application of UAVs in dense and complex natural habitat 

of plants. For agro-environmental studies it is necessary to be able to access to remote aerial that 

is impossible or near impossible to reach by human. These areas are usually located in remote 

 

Figure 1-2 the location of this study between other similar studies in term of image 

complexity and type of sensor 
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areas and require light wait equipment’s to carry. Therefore, small commercial UAVs are the 

most promising tools for such applications. However, such UAVs are usually equipped with RGB 

sensor and have moderate spatial resolution. Also, in such applications the area under the survey 

is usually has very complex vegetations habitat or irregular plantation order. In figure 1-2 we 

explain how this study is located among other studies in the term of complexity of images and the 

type of the sensor that has been used in other efforts. Also, figure 1-2 shows that this study covers 

two areas of studies in both satellite and UAV image analysis that have not been cover with other 

studies. These to areas are 1) utilizing low spectral and spatial sensors for plant discrimination in 

natural environment and 2) utilizing satellite image processing for landcover mapping of very 

wide areas (national level) using machine learning techniques. 

In this study, in order to provide a solution to this problem, we worked on the idea to recommend 

appropriate aerial images processing methodology that can be utilized for agro-environmental 

applications. By implementing this methodology, we aim to contribute to solving the problem 

that existing methodologies are focused on site specific or data specific application but not the 

target objects (figure 1-3). Here is a summary of our contributions: 

• Focus on commercial UAVs with inexpensive sensors and open access satellite data 

  

Figure 1-3 location of this study among others in term of type of the environment and the 

objective of studies 
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• Try to propose method that work with any environment weather it is the satellite imagery 

or UAV images. The goal is to provide flexible method that works with minimum 

modifications. 

• Propose method that can classify the earth (or land) surface based on user demand. It 

means the method should work with minimum amount of labelled (ground truth data) 

The objectives of the study are: 

• To propose a land surface classification methodology based on inexpensive aerial 

imagery. 

• To discriminate the plant species in their natural habitat and discriminate the complex 

land surface types using aerial imagery. 

• To introduce a land surface classification method that is robust against changes in location 

of the area, land surface type, or etc. 

• To propose a methodology that is capable of utilizing various aerial imaging sensor types. 

 

  



 

18 

 

 

1.2 The selected case studies  

In the first part of this study we selected two plant species as our target plants to be detected in 

aerial images. Here we will describe the characteristics and visual specifications of each plant. 

1.2.1 Hairy vetch 

Hairy vetch (Vicia villosa Roth L.) is an annual or winter annual legume. It is most often grown 

for soil improvement, roadside, or bank stabilization. It can also be grown as a pasture or hay 

crop, but it can be toxic to horses, especially on high selenium soil. It grows well on a broad range 

of soils but is best adapted to sands or loamy sands (Singer et al, 1999).  

Hairy vetch Vicia villosa is a hardy winter annual cover crop and can add 80–150 pounds/acre of 

nitrogen to soil (Figure 1-4). the Hairy vetch growth is small during the winter; therefore, it is 

recommended to grow it along with other grasses during the summer in order to achieve enough 

soil coverage. Hairy vetch can claim the physical support structures during the spring and adding 

rye is recommended to decrease the matting and leveling up the incorporation into the soil. Hairy 

vetch also can be planted during the spring as a follow crop; thus, it can act as a cover through 

late summer. It is drought tolerant it has the highest cold tolerance among other winter annual 

legumes. (Brust 2019). 

 

Figure 1-4 Hairy vetch in its natural habitat near the Tone river in Japan 
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Hairy vetch’s round stems have spreading white hairs and conspicuous ridges. The leaves clusters 

are up to 25 cm long and 5 cm across, and they are consisting of 8-12 pairs of leaflets and a 

terminal tendril that grabs adjacent plants for climbing. The central stalk of each leaf cluster has 

white and smooth hair spreading uniformly on it. The length of leaflets are up to 25 mm and they 

are 7 mm in width each. They are linear and have smooth margins with small pointed tips. long 

and small cluster of flowers can develop up to 18 cm long from the leaf clusters. The stalks of 

these flower clusters are covered with spreading hairs and usually turn purple toward their tips. 

The flower clusters are hanging on one side of the cluster stems and they consist of 5-20 pairs of 

nodding flowers. These flowers vary in color from pink to blue-violet, depending on the strain or 

local ecotype. This color variation which add extra challenge in discrimination tasks. Each tube 

shape flower is around 7-14 mm long, and they are consisting of 5 petals and a hairy calyx. Aside 

from its long tube-shaped base, the flower typically is similar to peas in structure. Flowers are 

consisting of a standard, keel, and 2 side petals. The upper petal forming the standard is usually a 

darker shade of color than the remaining petals (www.illinoiswildflowers.info). 

1.2.2 Common reed 

Common reed also known as phragmites or phragmites australis can be observed in disturbed and 

undisturbed wet areas including wetlands, salt and fresh-water flooding areas, river edges, lake 

shores and ponds, roadsides and ditches.  Phragmites can tolerate fresh and salinized waters, and 

It prefers to grow in fully sunny places.  (Hellings and Gallagher 1992). Phragmites is a tall and 

 

Figure 1-5 Common reed also called Phragmites grow near the road and wetlands in Itakura 

city, Japan 
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warm season grass that last for a long time one area. The stems can grow up to 6 meters tall and 

they are smooth, rigid, and erected upward. The leaves are stiff, and between 20 to 40 cm long 

and 1-4 cm a cross. Flowers occur during the summer and are arranged in tawny spikelet’s with 

tufts of silky hair. Flower’s hair is purple like color but turn to brown to dark brown at its maturity. 

Common reed is especially common in alkaline and brackish environments. Common reed can 

survive in highly acidic wetlands environments. (indiananativeplants.org). 

Phragmites expansion into tidal wetlands of North America is most extensive along the northern 

and middle Atlantic coasts, but over 80% of the US coastal wetland area (Chambers, Meyerson, 

and Saltonstall 1999). 
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Chapter 2: Detection and mapping of hairy vetch in images obtained by UAVs 

 

2.1 Abstract 

Recent advances in unmanned aerial vehicles (UAVs) for civilian use make it possible to regularly 

monitor fields at spatial and temporal scales that would be difficult to achieve using conventional 

methods. Mapping the undercover area of a specific plant in images can contribute to compare its 

annual expansion ability. Hairy vetch is a moderately winter-hardy species. In this study we try 

to detect hairy vetch in aerial images by using color and texture features. Images obtained from 

Tone river shore in Gunma prefecture, Japan. Color features extract based on hairy vetch leaves 

and flowers separately. Grey Level Co-occurrence Matrix (GLCM) used for texture feature 

extraction. Results show feasibility of using purpose method in discriminates between hairy vetch 

and different plants in aerial imagery.  The study highlights advanced techniques in sampling, 

processing and analyzing UAV images and identifies some research challenges and limitations in 

the use of UAV platforms. This project demonstrates the utility of UAV applications in agriculture 

and the potential for their use in many other areas of research. 

 

2.2 Introduction  

Recent advances in unmanned aerial vehicles (UAVs) for civilian use make it possible to regularly 

monitor fields at spatial and temporal scales that would be difficult to achieve using conventional 

methods. The unique characteristics of aerial images provide by UAVs like high resolution, low 

cost, fast, reliability and easy to use encouraged studies about plants detection and recognition 

systems. Another important exclusivity of UAV image refers to distance between reflection 

surfaces and sensors which distributes to receive more accurate information. Discrimination of 

the plants in their different stages of development needs images at very high spatial resolution, 

often in the order of millimeters or very few centimeters (Hengl, 2006 and López-Granados, 

2011). Also, it is required that the image acquaintance process should be done in specific time of 

plant’s development stage. The best suitable tools with both characteristics are unmanned Aerial 

Vehicles; UAVs fly at low altitude (maximum flight altitude in Japan is 150 meters) which can 

provide high resolution images. also, UAVs can be lunched in a very short time which allow to 

take images in any plants’ life stage that is necessary to discrimination.  
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Figure 2-1 Hairy vetch flower 

Detect and mapping the plants species can have a various application in agriculture and 

environmental field. Mapping the undercover area of a specific plant in georeferenced images can 

contribute to comparing the annual expansion ability of that plant species. Expansion ability 

determine the ability of a specific plant to be either an invasive variety or not. In this study we try 

to illustrate the feasibility of purposed method in discriminating plants species in real field 

complex aerial images. Another end for this study is to detect hairy vetch plant in its natural 

habitat. Detecting the hairy vetch will prepare aerial images to map the covered area for compare 

the annual expansion of it.  

Hairy vetch also known as sand vetch is a plant species known for its moderately winter-hardy 

characters. organic farmers grow hairy vetch as cover crop in no-till farming since it is both 

winter-hardy and fixes the atmospheric nitrogen in soil. Hairy vetch can claim and scramble up 

to 2 meters. The whole plant has a white-woolly appearance because of the long soft hairs.   self-

fertilized flowers mainly purple to blue in color but sometimes white (J. Frame, FAO website). 

Hairy vetch was introduced to Japan as cover crop in abounded patty fields. Fujii et. al show that 

hairy vetch has the best results for the weed control in abandoned fields due to its ability to die 

off during summer season to make a thick straw-like mulch layer (Y. Fujii, 2001).  
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2.3 Related works 

J.m. Pena et al (2015) tried to detect weeds seedling in sunflower field. The study attempt to 

perform early weed detection in sunflower and review the limit and efficiency of methodology 

with UAV images. They showed that the weed discrimination ability is significantly affected by 

the spectral, spatial, and temporal resolutions of the imagery and camera. The color-infrared 

images captured at 40 m and 50 days after sowing (date 2), when plants had 5–6 true leaves, had 

the highest weed detection accuracy (up to 91%). Slightly better results were observed at 40 m 

altitude images in compare with the images that were captured during the other flights. However, 

this trend changed in the visible-light images captured at 60 m and higher, which had notably 

better results because of the larger size of the weed plants. The study showed that sufficient spatial 

and spectral resolution and the right design of flight plans are required for detecting and mapping 

the weeds. 

Their proposed algorithm consists steps as below: 

• Field segmentation in sub-plots 

• Sub-plots segmentation in objects 

• Vegetation objects discrimination:  

• Excess Green index (ExG) 

• Normalized Difference Vegetation Index (NDVI) 

• Crop-row classification 

• Weed and crop discrimination 

• Weed coverage assessment 

The entire process is automatic and is composed of a sequence of routines. They implemented 

these steps in eCognition software.  

C. Huang et al (2014) proposed learning-based approach by introducing a feature learning 

approach to minimize the supervised classification methods. They apply this system to the 

classification of invasive weed species. In this study, the feature learning was applied to generate 

a set of image filters that can extract image features so that the weeds and background obejcts can 

be discriminated. These features are pooled to summarize the image statistics and form the input 

to a texton-based linear classifier that classifies an image patch as weed or background. 

methodology was evaluated for weed classification on three weeds species in Australia namely: 

water hyacinth, tropical soda apple and serrated tussock. The results showed the best performace 

and accuracy in 5-10 flight altitude images with F1 score of 94%. 
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2.4 Proposed method  

We propose the following new method based on color features and Gray-Level Co-occurrence 

Matrix (GLCM). Our methodology consist of the following steps: 

a. data collection  

b. image pre-processing  

c. classification 

A multi-copter was used to gather all the imagery in this study. Provided images was passed into 

a feature extractor to determine local feature vector based on color and GLCM. Also, a set of 

sample images provided and pass into the feature extraction step. Feature vector passed to a 

classifier to be classify base on similarity with sample images features. Our methodology can be 

described in figure (2-2).  

 

 

Figure 2-2 Flowchart of proposed method 

a. Data collection  

A multi-copter was used to gather all the imagery in this study. The UAV used in this study is 

DJI Phantom 3 advanced model. UAV technical characteristics are shown in table (2-1). Pix4d 

capture App was used for control and doing imagery in an automatic process. 
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Table (2-1). UAV technical characteristics. 

Manufacturer, model DJI, Phantom 3 advanced 

Weight (including battery and propellers) 1280 g 

Diagonal Size (Excluding Propellers) 350 mm 

Max Ascent Speed 5 m/s 

Max Speed 16 m/s (no wind) 

Max Service Ceiling Above Sea Level 6000 m  

Max Flight Time Approx. 23 minutes 

 

 UAV camera was DJI camera with Sony EXMOR 1/2.3” sensor. Image resolution is 3000*4000 

pixel.  Camera technical characteristics are presented in table (2-2).  

Table (2-2). Camera technical characteristics. 

Manufacturer DJI 

Sensor 
Sony EXMOR 1/2.3” Effective pixels: 12.4 

M (total pixels: 12.76 M) 

Lens 
FOV 94° 20 mm (35 mm format equivalent) 

f/2.8, focus at ∞ 

ISO Range 100-1600 (photo) 

Shutter Speed 8s -1/8000s 

Image Max Size 4000×3000 

 

All the imagery was done June 6th, 2016 at Itakura town, Gunma prefecture, Japan. The weather 

was fine with a tiny cloud covered almost all the sky. But the light condition was enough and 

natural. Figure 2-3 shows the location the study areas. 
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Figure 2-3 Study area: Tone river shore, Itakura city 

At first two area were check by agriculture experts to select best data collection sites in real 

condition. C. Huang et al (2014) showed 5~10 m altitude has the highest results for weed 

classification in UAV imagery. Therefore, due to the time limits in imagery, altitude of 10m was 

selected for data collection.  Sites orthomosaic images are shown in figure 2-4. 

 

Figure 2-4 Orthomosaic images 
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Figure 2-5 Entered sample 

image in algorithm 

 

Figure 2-6 Query image and ground-trusted tag 

Two 1 in 1-meter areas in one of the sites were tagged by red ribbon to select the ground-trusted 

samples. Sample images for extracting texture feature vectors were obtained from ground-trusted 

areas.  

In order to extract the color features, it is necessary to obtain mean of intensity in each color 

channel of RGB images. Therefore, Hairy vetch cultivated in greenhouse during winter. A set of 

108 images provided under natural light in greenhouse. Next, by cutting the leaves out of the 

images manually, a set of 287, 250 by 250 pixels sample images with black background was 

extracted. Figure 2-7 and 2-8 show the images taken in greenhouse and the image samples that 

were extracted for the next step. 
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Figure 2-7 Hairy Vetch grown in greenhouse 

 

 

Figure 2-8 Cut leaves samples to extract color parameters 

For each image of sample leaf; mean of pixel intensity calculated for Red, Green and Blue 

channels. Then the total maximum, minimum, mean and standard deviation of each channel 

determined over all 287 images. Table (2-3) illustrates the number of calculated parameters. 

Table 2-3. Color parameter for leaves 

 

Red Green Blue  

variance 180.2 237.8 233.0 

max 113.0 121.0 108.2 

min 33.2 42.2 23.7 
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Standard deviation 13.4 15.5 15.3 

Mean 63.5 77.6 53.2 

 

To obtain color parameters of hairy vetch flowers; samples were extracted from the original aerial 

images that were taken in study site (figure 2-9). The Same procedure as leaves parameters 

calculation applied to obtain color parameter of flowers. Table (2-4) illustrates the number of 

calculated parameters. 

 

Figure 2-9 hairy vetch cut flower samples 

 

Table 2-4. Color parameters for flowers 

 

Red green blue 

variance 247.9 216.2 254.5 

max 141.3 128.3 160.7 

min 82.4 76.3 109.7 

Standard deviation 15.7 14.7 15.9 

mean 113.8 105.1 131.2 

 

b. Image pre-processing  

Color is the basic feature; color histograms are commonly used for color feature extraction. The 

color histogram method requires simple calculation. However, it is unsuitable for images in which 

there is a great color variation. But it does not include any spatial information. 

To extract color feature two color mask applied on input images. First for leaves and other one 

for flowers. By using the color histogram and color parameters which obtained before; color 

masks boundaries selected as presented in table (2-5,2-6). 
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Table (2-5). Maximum and Minimum boundaries for leaves 

color. 

 Red Green Blue 

Minimum 50 62 38 

Maximum 76 92 58 

 

Table (2-6). Maximum and Minimum boundaries for 

flowers color. 

 Red Green Blue 

Minimum 98 91 111 

Maximum 128 119 146 

 

The result for color masking shown in figure (2-10). 

 

Figure 2-10 Sample results for color filtering 

Next step in image pre-processing is to extract the texture features of aerial images and sample 

images. Texture is one of the most important features in an image. Textural features contain 

information about the spatial distribution of tonal variation within a band (Haralick et al 1973). A 

co-occurrence matrix 𝐶 is a matrix that is defined over an image to be the distribution of co-
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occurring values at a given offset. This matrix is defined over an 𝑛 ×  𝑚 image 𝐼, parameterized 

by an offset (𝛥𝑥, 𝛥𝑦), as: 

 

𝐶∆𝑥,∆𝑦(𝑖, 𝑗) =  ∑ ∑ {
1,    𝑖𝑓 𝐼(𝑝, 𝑞) = 𝑖  𝑎𝑛𝑑  𝐼(𝑝 + ∆𝑥, 𝑞 + ∆𝑦) = 𝑗
0,                                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝑚

𝑞=1

𝑛

𝑝=1

 

Where 𝑖 and 𝑗 are the image intensity values, 𝑝 and 𝑞 are the spatial positions in the image 𝐼 and 

the offset (𝛥𝑥, 𝛥𝑦) depends on the direction and distance which used. The offset distance and 

direction are shown in figure (2-11). 

 

 

Figure 2-11 Displacement and orientation in GLCM calculation 

Grey Level Co-occurrence Matrix (GLCM) used to extract texture features. For calculating the 

GLCM not only the displacement (distance from pixel of interest) but also the orientation of 

neighbor pixels must be considered. GLCM was extracted in four orientations 0, 45, 90 and 135 

degree with three displacements which are 2, 4 and 12 pixels. Haralick et al (1973) suggested a 

set of 14 original properties for describe GLCM characteristics.  

Offsets = [0 1; 0 2; 0 3; 0 4;... 

           -1 1; -2 2; -3 3; -4 4;... 

           -1 0; -2 0; -3 0; -4 0;... 

           -1 -1; -2 -2; -3 -3; -4 -4]; 
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Below are described all the texture features used in this study. The meaning of each property in 

actual analysis case is explained in Haralick et al (1973), Gebejes et al., 2013 and Clausi et al., 

2002.  

Contrast  

Contrast is a local grey level variation in the grey level co-occurrence matrix. It can be thought 

of as a linear dependency of grey levels of neighboring pixels. 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  ∑|𝑖 − 𝑗|2𝑝(𝑖, 𝑗)

𝑖,𝑗

 

Where i and j are the horizontal and vertical cell coordinates and 𝑝 is the cell value. In case of 

texture, the grey level variations show the variation of texture itself. High contrast values are 

expected for heavy textures and low for smooth, soft textures. The range of Contrast is 

[0, (𝑠𝑖𝑧𝑒 (𝐺𝐿𝐶𝑀, 1) − 1)^2] where Contrast is 0 for a constant image (Gebejes et al, 2013). 

Energy  

Energy is a measure of local homogeneity and therefore it represents the opposite of the Entropy. 

Basically, this feature will tell us how uniform the texture is 

𝐸𝑛𝑒𝑟𝑔𝑦 =  ∑ 𝑝(𝑖, 𝑗)2

𝑖,𝑗

 

The higher the Energy value, the bigger the homogeneity of the texture. The range of Energy is 

[0,1], where Energy is 1 for a constant image (Gebejes et al, 2013). 

Correlation  

Correlation describe the correlation between the cell pairs 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  ∑
(𝑖 − 𝜇𝑖)(𝑗 − 𝜇𝑗)

𝜎𝑖𝜎𝑗
𝑝(𝑖, 𝑗)

𝑖,𝑗

 

Where (𝜇𝑖 , 𝜇𝑗)  represents the mean of row i and column j; and (𝜎𝑖, 𝜎𝑗 ) represents standard 

deviation of row i and column j in GLCM (Clausi et al, 2002). 

Homogeneity 

Homogeneity measures the uniformity of the non-zero entries in the GLCM. It weights values by 

the inverse of contrast weight. 
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𝐻𝑜𝑚𝑜𝑛𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =  ∑
1

1 − (𝑖 − 𝑗)2
𝑝(𝑖, 𝑗)

𝑖,𝑗

 

The GLCM homogeneity of any texture is high if GLCM concentrates along the diagonal, 

meaning that there are a lot of pixels with the same or very similar grey level value. The larger 

the changes in grey values, the lower the GLCM homogeneity making higher the GLCM contrast. 

The range of homogeneity is [0,1]. If the image has little variation, then homogeneity is high and 

if there is no variation then homogeneity is equal to 1. Therefore, high homogeneity refers to 

textures that contain ideal repetitive structures, while low homogeneity refers to big variation in 

both, texture elements and their spatial arrangements (Gebejes et al, 2013). 

Entropy  

Entropy in any system represents disorder, where in the case of texture analysis is a measure of 

its spatial disorder. 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  ∑ 𝑝(𝑖, 𝑗)log (𝑝(𝑖, 𝑗))

𝑖,𝑗

 

A completely random distribution would have very high entropy because it represents chaos. 

Solid tone image would have an entropy value of 0. This feature can be useful to tell us if entropy 

is bigger for heavy textures or for the smooth textures giving us information about which type of 

texture can be considered statistically more chaotic (Gebejes et al, 2013). 

In our method we compute the GLCM characteristics for input sample images; also, those 

characteristics will compute for a window with same size as sample image so that all the pixels 

in each query image select as the center of window. Then the calculated characteristics for each 

window will store in a matrix as parameters for corresponding interest pixel with same position 

in query image. This procedure will make the feature vector for each query image.  

classification 

In this study we used the simple absolute difference of each parameter in feature vector from the 

corresponding parameter of sample images as the classifier. A set of boundaries were selected as 

interest distance for each parameter by experience. Boundaries selected by a supervised 

procedure. Boundaries are presented in table (2-7). 

Table (2-7). Selected boundaries for each parameter in 

feature vector. 
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Parameter  Boundary value  

Contrast 0.05 

Energy  0.003 

Correlation  0.001 

Homogeneity 0.001 

Entropy 0.375 

 

results for texture base classification presented in figure (2-12~14) 

 

Figure 2-12 Sample of results for texture analysis 
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Figure 2-13 Sample of results for texture analysis 

 

 

Figure 2-14 Sample of results for texture analysis 
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2.5 Discussion  

This research was intended to explore the feasibility of the methodology that was described in the 

chapter 2. In the current proposed method, there are several limitations, and correspondingly, 

several potential improvements can be listed. First, Complexity of images in real field are very 

high. This complexity cause difficulty in matching images for orthomosaic them. One of the 

reasons for complexity is change in orientation and overlapping of the plant leaves from one 

image to other.  

Second, color is highly light dependent which means color of same species can vary from image 

to other. This variation also could happen for different species. Colors of same plant are different 

in different life stages of plant. Using the other color space than RGB might help to solve the 

problem. 

Third, the camera lens angel was 94°. It causes high variation in shape and color of plants such 

that a same plant in center of image are vary from one near the edge of image. This issue addresses 

the importance of scale and orientation invariant methods for feature extraction. 

Four samples selected from all of the study area. This sample selected randomly and include two 

hairy vetch sample, one soil and one sample of other plants. Samples were used to extract the four 

first parameters of GLCM texture, means Contrast, correlation, energy and homogeneity. Graph 

(1~4) show these parameters for each image by different orientation and angels. Orientation and 

angels are same as what we used in our study. Graphs shows that the parameters are enough for 

first four orientations and for other orientations same patterns will appear. This could distribute 

to decrease the size of feature vector. Comparison between graphs can show s that energy have 

the highest variation and lowest variation belongs to homogeneity for different textures. Most 

similarity in distribution patterns of hairy vetch can be discriminates in can be seen in contrast 

and correlation. It shows that correlation and contrast have higher potentials to show the texture 

characteristics.  
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Figure 2-15 Correlation variation for different orientation and distances of Soil, Hairy vetch 

and other plant. 

Figure 2-16 Contrast variation for different orientation and distances of Soil, Hairy vetch and 

other plant. 
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In addition, by comparing the results of texture filtering and color masking we can realize the 

potentials for combination of these filters to increase the efficiency of the method. However, miss 

classifications in results remind the extra efforts in improving the classifier in next steps works. 

2.6 Conclusion  

Results of initial classification show the feasibility of proposed method to detect the hairy vetch 

in UAV imageries. By comparing the results of color filtering and texture analysis we can realize 
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Figure 2-17 Energy variation for different orientation and distances of Soil, Hairy vetch and 

other plant. 

Figure 2-18 Homogeneity variation for different orientation and distances of Soil, Hairy vetch 

and other plant. 
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the potential of proposed method to implement an automatic algorithm to detect and map the hairy 

vetch (or other plants) in aerial imagery. However, the lack of ground-trust information and 

unproportioned hairy vetch leaf size to imagery resolution ratio prevent us from calculate the 

accuracy of method in this stage. In the next works we will try to emphasize on approve the 

accuracy of algorithm. Experiments show that classification step play a significant role in plant 

detection. High variation in color shows that in the next steps we should pay attention to 

effectiveness of color filtering or apply other color spaces to approve the algorithm. 
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Chapter 3: The challenges and aspects of UAV Images Mosaicking 

 

3.1 Abstract 

Advances in drone technology made them suitable tools for monitoring farm and fields. They can 

fly easily in anytime and anywhere. High resolution images provide by drone should be mosaic 

to be capable for producing maps and be used in other application like plant detection etc. an 

automatic image stitching method was used to mosaic the drone images obtained from Tone river 

shore in Gunma prefecture and Tokyo University of Agriculture and technology farm; and its 

advantages and weaknesses was studied and some suggestions have been provided for future 

works. 

 

3.2 Introduction 

Unmanned Aerial Vehicles (UAV) are becoming more and more advance and pervasive for some 

of their unique abilities. UAVs are cheap, they can be flown very easy and fast, and can fly almost 

everywhere. These characteristics makes them suitable tools for monitoring the field and farms. 

Provided images by UAVs have high resolution which make them suitable to produce aerial maps 

by combining them and making bigger mosaic image. 

Image mosaicking and in this study, aerial image mosaicking, stitches a number of images into a 

composite image (orthomosaic image). The mosaic image must include all the images that are 

placed at the right position. In mosaicking the aim is to make the edges between images invisible 

or seamless. Thus, the quality of stitching is articulated by measuring both the correspondence 

between adjacent stitched images that form the orthomosaic image and the visibility of the seam 

between the stitched images (Levin, Anat, et al.; Rankov, Vladan, et al. 2005) 

Usually, one can categorize the image alignment and stiching into two major categories— First, 

direct (Szeliski and Kang, 1995; Irani and Anandan, 1999) and second, feature based (Zoghlami 

et al., 1997). Direct methods as an advantage utilize all the available image data. Therefore, the 

registrations have a very high accuracy in these methods, but a close initialization required in this 

category. In the feature-based registration, initialization step is not required, but on the other hand 

, traditional feature matching methods (e.g., correlation of image patches around Harris corners 
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(Harris, 1992; Shi and Tomasi, 1994))  are incapable of detecting invariant features that are 

required for a reliable matching results. 

In this study we tried to have a survey on an automatic image stitching method described in B. 

Matthew and G. Lowe (2003 and 2007) for UAV driven aerial image stitching. Automatic 

matching and blending method have been presented in method have several advantages for aerial 

image mosaicking, like it works with arbitrary image sequences. Thus, it doesn’t have problem 

with side or up and down overlaps or rotations which exist in aerial images. 

3.3 Proposed method 

the method is including three main steps: 

a. Keypoint extraction 

b. Registration  

c. Blending   

The first step in the automatic image mosaicking algorithm is to extract and match the scale 

invariant feature transform (SIFT) (Lowe, 2004) features between all the images. SIFT starts with 

calculating the difference of Gaussian function for images. The first step is to find the local 

maxima/minima of DoG function. SIFT features are located at scale-space maxima/minima of a 

DoG function. For each feature location, the scale and orientation will be calculated.  This process 

will give a similarity invariant widow to each feature location that helps with measuring the 

similarities. While simply sampling intensity values in this window is similarity invariant, the 

invariant descriptor is computed by accumulating local gradients in orientation histograms. This 

allows edges to shift slightly without altering the descriptor vector, giving some robustness to 

affine change. Brown showed that the spatial accumulation is important for robustness against 

shifts because interest point locations are accurate in up to 3 pixels distance (Brown et al., 2005; 

Sivic and Zisserman, 2003). The algorithm gains the robustness against the light variation by 

utilizing the gradients and normalizing the descriptor vector which will result in eliminating bias 

and gain in the algorithm. 

We should note that the Harris corners and ordinary correlation are note invariant to scale 

changes. This means that Harris corners and correlation of image patches feature matching are 

not able to find matches in case of rotation and changes in scale of the images. But SIFT features 

are invariant under rotation and scale changes, therefore, the algorithm can handle images with 

varying orientation and zoom.  
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In the case that camera rotates along its optical center the transformation that apllies to the image 

is a special group of homographies. We assume that each camera has a rotation vector 𝜃 =

[𝜃1, 𝜃2, 𝜃3] and focal length 𝑓. This gives pairwise homographies 𝑢̃𝑖 =  𝐻𝑖𝑗𝑢̃𝑗 where: 

 

𝐻𝑖𝑗 =  𝐾𝑖𝑅𝑖𝑅𝑗
𝑇𝐾𝑗

−1 (1) 

 

and 𝑢̃𝑖 , 𝑢̃𝑗 are the homogeneous image positions (𝑢̃𝑖  = 𝑠𝑖 [𝑢𝑖, 1], where 𝑢𝑖  is the 2-dimensional 

image position). 

The 4-parameter camera model is defined by: 

 

𝐾𝑖 =  [
𝑓𝑖 0 0
0 𝑓𝑖 0
0 0 1

] (2) 

 

and (using the exponential representation for rotations) 

 

𝑅𝑖 =  𝑒[𝜃𝑖]×  , [𝜃𝑖]×  = [

0 −𝜃𝑖3 𝜃𝑖2

𝜃𝑖3 0 −𝜃𝑖1

−𝜃𝑖2 𝜃𝑖1 1
] (3) 

 

ideal conditions image features that are invariant under this transformations will be used. 

However, for small changes in image position 

 

𝑢𝑖 =  𝑢𝑖0 +
𝜕𝑢𝑖

𝜕𝑢𝑗
|

𝑢𝑖0

∆𝑢𝑗 (4) 

 

Or equivalently 𝑢̃𝑖 =  𝐴𝑖𝑗𝑢̃𝑗 , where 
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𝐴𝑖𝑗  = [
𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

0 0 1
] (5) 

 

That is affine transformation and it can be calculated by linearizing the homography about 𝑢𝑖0. 

One can conclude that for each patch in images an affine transformation applies and it shows that 

utilizing the SIFT features are partially invariant under the affine transformations.  

After extracting the features for all n aerial images, they must be matched. Because multiple 

images can be overlapped in a single point on ground, each feature vector should be matched to 

its k nearest neighbors in feature space (in this study k = 4). This can be done in O(n log n) time 

by using a k-d tree to find approximate nearest neighbors (Beis and Lowe, 1997). K-D tree is 

aligned binary space partitioning method that recursively partitions the feature space by using the 

mean in that dimension of the feature space which has the highest variance. 

in this study, RANSAC was utilized to select a set of inliers that are compatible with a 

homography between the images.  In next step a probabilistic model was used to verify the 

accuracy of matching features. When a geometrically consistent set of match features are obtained 

the bundle adjustment (Triggs et al.,1999) was applied to solve all the camera parameters once 

together. The following algorithm shows the overall steps for produce orthomosaic image: 

Algorithm: Automatic Stitching 

Input: n unordered images 

I. Extract SIFT features from all n images 

II. Find k nearest-neighbors for each feature using a k-d tree 

III. For each image: 

Select m candidate matching images that have the most feature matches to this image. 

Find geometrically consistent feature matches using RANSAC to solve for the 

homography between pairs of images.  

Verify image matches using a probabilistic model 

IV. Find connected components of image matches 

V. For each connected component: 

Perform bundle adjustment to solve for the rotation 𝜃1, 𝜃2, 𝜃3 and focal length 𝑓 of all 

cameras 

Render panorama using multi-band blending 

Output: Panoramic image(s) 
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This algorithm concluded in license free application AutoStitch. This application is accessible 

from link below: 

http://matthewalunbrown.com/autostitch/autostitch.html 

A multi-copter was used to gather all the imagery in this study. The UAV used in this study is 

DJI Phantom 3 advanced model. Pix4d capture App was used for control and doing imagery in 

an automatic process. UAV camera was DJI camera with Sony EXMOR 1/2.3” sensor. Image 

resolution is 3000*4000 pixel.  Camera technical characteristics are presented in table 3-1.  

Table 3-1. Camera technical characteristics. 

Manufacturer DJI 

Sensor 
Sony EXMOR 1/2.3” Effective pixels: 12.4 M 

(total pixels: 12.76 M) 

Lens 
FOV 94° 20 mm (35 mm format equivalent) 

f/2.8, focus at ∞ 

ISO Range 100-1600 (photo) 

Shutter Speed 8s -1/8000s 

Image Max Size 4000×3000 

 

Tree different sets of aerial images have been prepared. For the first set (set 1) the altitude of 

imagery flight is 25 meters. A 30cm by 30cm plat was inserted in imagery site 1 as ground trust 

scale. Set 1 is include 45 images. Based on camera characteristics and the ground trust scale the 

spatial resolution of aerial images is 1 cm. images have been taken in Tokyo University of 

Agriculture and technology farm on May 25th, 2015. Sample images for the site 1 are show in 

figure 3-1. 

http://matthewalunbrown.com/autostitch/autostitch.html
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Figure 3-1 Sample images of set 1 

The second set (set 2) is include 93 images. The imagery altitude is 10 meters and imagery haven 

done on June 4th, 2016 in Itakura city, Gunma, Japan. Sample images are shown in figure 3-2. 

 

Figure 3-2 Sample images of set 2 

 

Set 3 is include 63 images and same characteristic with set 2. Sample images for set 2 are shown 

in figure 3-3. 
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Figure 3-3 Sample images of set 3 

 

 

Figure 3-4 Study Areas 2 and 3 and their difference in height of plants 

 

3.4 Result and discussion 

This research was intended to explore the feasibility of the methodology described in this report 

to make mosaic images from UAV’s aerial images. In the current system, there are several 

limitations, and correspondingly, several potential advantages that can be listed. First, Complexity 
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of images in real field are very high. This complexity cause difficulty in matching images for 

orthomosaic them. One of the reasons for complexity is similarity of target objects. In our work 

the goal is to stitch aerial images of plants. Typically, plants’ prospect is very similar between 

one species. Other reason for high complexity can be change in orientation and overlapping of 

the plant leaves from one image to other which can affect the DoG in SIFT.  

Results of images stitching for image sets 1 and 3 are shown in figures 3-5 and 3-6. Presented 

method was successful in stitching aerial images for these two study areas. However, as shown 

in figure 3-7 image stitching for image set 2 is defective. This defectiveness caused by inability 

of SIFT in extracting  accurate feature points to match and calculating the homography of images. 

Lack of accuracy of feature points can be caused by several factors. 
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Figure 3-5 Image stitching results for set 1 
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Figure 3-6 Image stitching results for set 3 

 

 

Figure 3-7 Image stitching results for set 2 

 

First, it could be caused by height of plants in study area set 2. Since study area of set 2 and 3 

were close to each other and the flight altitude is same for both areas, one of differences between 

two areas is the kind of plants with variation in height. This difference can be seen in figure 3-4 

which plants in set are taller. It can also result in instability of plant stem and leave in different 

images. Also objects of set 3 are include road or dead plants but in set 2 number of significant 

objects are few.  

Another reason that can be consider for SIFT problem is the difference in adjacent images caused 

by camera lens distortion. Lens distortion is capable to change the images homography. 

Therefore, camera lens parameters were calculated in camera calibration experiments. Results of 

calibration showed that UAV camera has slight distortion with radial distortion coefficient vector: 
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[𝑘1 , 𝑘2] = [−0.04224, 0.02602] (6) 

 

The distorted point in images (𝑥𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 , 𝑦𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑) can be denote as: 

𝑥𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 =  𝑥( 1 + 𝑘1 ∗ 𝑟2 + 𝑘2 ∗ 𝑟4) 

𝑦𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 =  𝑦( 1 + 𝑘1 ∗ 𝑟2 + 𝑘2 ∗ 𝑟4) 
(7) 

 

Which:  

(𝑥, 𝑦) = 𝑢𝑛𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 𝑝𝑖𝑥𝑒𝑙 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 

 

𝑟2 =  𝑥2 + 𝑦2 

(8) 

 

Results of images undistorting show in figure 3-8. Since the amount of distortion is small, it 

cannot be considered as a reason for SIFT problem.  

 

Figure 3-8 Original image (left) and undistorted image (right). 

The camera which used for obtaining the images equipped with  94°  diagonal angle lens. 

Considering the flight altitude ℎ = 10 𝑚𝑒𝑡𝑒𝑟𝑠 , the shape and characteristics of objects in images 

will change from image to image so that in one image top side of plants appear in the middle of 

image and in other adjacent images side of the plants will appear in images (figure 3-9) which 

can affect the accuracy of SIFT in extracting the feature points. This effect shown in results of 

non-similarity registration and simple blending of images figure 3-10. 
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Figure 3-9 Camera angle and plants in different positions 

 

 

Figure 3-10 Result for blending two adjacent images without adjustments 

 

3.5 Conclusion 

The results of experiments address important points that should be focused on in future efforts. 

The applied method for mosaicking the aerial images initially developed for stitching images and 

making panorama photos. This initial aim changes the developers to consider different kind of 

problems. This issue occurs when movement of camera supposed to be around one axis and the 

camera would not twist horizontally. The effect of this assumption can be the reason for distorted 

mosaic image in figure 3-5. This problem should be considered in future works. Also, inability of 
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SIFT in extracting accurate feature points addresses the future efforts to increase the number of 

feature point by installing ground tags in imagery area or increase the flight altitude and applying 

different lenses.  
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Chapter 4: Application of UAVs in Agro-environmental Studies: Discrimination of 

Natural Vegetation in High Complex Aerial Images 

4.1 Abstract 

In agro-environmental studies, it is necessary to have access to a vast study area in high temporal 

resolution. Detect and discrimination of vegetation is an important part of the efforts to produce 

land cover map of remote study areas. However, having access to all the area is not practical in 

most cases by humans. Land cover maps of natural and agriculture land uses are essential to 

monitor and understand the land use changes, invasive plants discrimination, biomass estimation 

and herbicide/pesticide application. In this study, we utilized a machine learning algorithm based 

on spectral and spatial features to analyze the high complex natural vegetation in aerial images 

driven from a commercial drone. The algorithm was trained using an implemented training set of 

7 different land covers classes. This study discusses the ability of different spatial and spectral 

feature extractors and classifiers in detecting the high complex and low-resolution natural 

vegetation patterns. trained models yielded on average 80% accuracy in 5-fold cross validation. 

The model was used to predict the land cover types of natural vegetation at Tone river shore, 

Gunma prefecture, Japan. The results showed the potential ability of the algorithm in turning a 

low spectral resolution commercial drone into a powerful tool for agro-environmental studies and 

land cover monitoring. 

4.2 Introduction 

In general, textures are complex visual patterns that have characteristics like brightness, color, 

slope, size, etc. Thus, texture can be regarded as a similarity grouping in an image (Kak et al. 

1982). There are several approaches for texture analysis and texture feature extraction like 

structural, statistical, model-based transform, etc. some of the most popular statistical texture 

features are derive from Grey Level Co-occurrence Matrices (GLCM) (Materka et al. 1998). 

Haralick introduced 14 textural features derived from GLCMs (Haralick et al. 1973) that was 

explained in previous chapter in details. Segmentation-based texture analysis (SFTA) describes 

the texture of an image by decomposing the input image into a set of binary images from which 

the fractal dimensions of the resulting regions are computed in order to describe segmented 

texture patterns (Costa et al. 2012). the SFTA extraction algorithm has two parts: 

A. Two-Threshold Binary Decomposition 

The Two-Threshold Binary Decomposition (TTBD) takes as input a grayscale image I(x, y) and 

returns a set of binary images by applying Otsu algorithm (Liao et al 2001).  
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 B. SFTA extraction algorithm 

After applying the TTBD to the input gray level image, the SFTA feature vector is constructed as 

the resulting binary images’ size, mean gray level and boundaries’ fractal dimension. The fractal 

measurements are employed to describe the boundary complexity of objects and structures in the 

input image. Figure 4-1 shows the structure of the SFTA feature extraction algorithm. The GLCM 

and SFTA were used in this study to describe the textural properties of images. 

Spectral property of image is the basic feature. Color explains the spectral feature of the objects 

in RGB sensors. The basic spectral features are the statistical features such as mean and standard 

deviation of each R, G, or B channel. Each image also can be represented in HSI color space. In 

HSI color space each pixel has three property: Hue, Saturation, and Intensity of each pixel. The 

mean and standard deviation on each channel in HSI color space also can represent a basic feature 

to the describe the spectral feature.  

The other types of spectral features for RGB images are the different indices that can be obtain 

by band-wise calculations. The Synthetic Normalized Difference Vegetation Index (or Synthetic 

NDVI or Green Red Vegetation Index (GRVI)) is a measure that try to predict the NDVI values 

only using red and green channels. NDVI is the most common vegetation index that is used in 

remote sensing applications. We will describe and use the NDVI in this Thesis latter on and we 

will explain it in detail. The Synthetic NDVI is calculate as: 

𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 𝑁𝐷𝑉𝐼 =  
(𝐺𝑟𝑒𝑒𝑛 − 𝑅𝑒𝑑)

(𝐺𝑟𝑒𝑒𝑛 + 𝑅𝑒𝑑)
 

 

Figure 4-1 The structure of SFTA algorithm 
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Synthetic NDVI values are between -1 and 1, And the greater the value, the healthier the plant is. 

It tries to predict the chlorophyll contents of plant leaves. Each plant species has a unique 

chlorophyll content in its leaves. This can help to describe the spectral features of the plant 

(Motohka et al., 2010). 

The next vegetation index that can be calculated for RGB sensors is The Excess Green Index 

(ExGI). The ExGI proved to outperform the other indices that can be calculated by RGB channels 

(Sonnentag et al., 2012, Larrinaga et al. 2019). It is defined as: 

Excess Green Vegetation Index = 2 × Green − (Red + Blue) 

It contrasts the green against the other visible channels to distinguish between soil and or residue 

background and green plants. It is also able to minimize the effect of changes in illumination. 

Since, it can recognize how green an object in the image is, it is a suitable feature descriptor for 

plant spectral properties.  

Machine learning (ML) techniques have become one of the most powerful tools for different 

range of applications. ML is consisting of supervised, semi-supervised, and unsupervised 

methods. Also, ML is a branch of artificial Intelligence (AI). In each problem, the ML offers a 

different solution. Support vector machine (SVM) and bagged decision trees (BT) are two of the 

best-known ML supervised classifiers. Unlike the neural network models that have superiority in 

accuracy, SVM and BT models can be trained on small datasets while still have high accuracy. 

Besides, the SVM and BT models are fast in training in compare to neural networks which make 

them suitable for classification tasks that require customizing and modifications frequently. 

A support vector machine (SVM) is a supervised learning algorithm which learns a given 

independent and identically distributed set of training instances {(𝑥1, 𝑦1), … , (𝑥𝑁 , 𝑦𝑁)} , where  

y ∈  {−1, 1} are binary classes to which data points belong (Wittek, 2014). 

A hyperplane in  ℝ𝑑 has the generic form 

𝑤𝑇x − 𝑏 = 0. (4.1) 

where w is the normal vector to the hyperplane, and the bias parameter b helps determine the 

offset of the hyperplane from the origin. 

We assume that the data instances are linearly separable—that is, there exists a hyperplane that 

completely separates the data instances belonging to the two classes. In this case, we look for two 



 

59 

 

hyperplanes such that there are no points in between and we maximize their distance. The area 

between the hyperplanes is the margin. 

In its simplest, linear form, a support vector machine is a hyperplane that separates a set of positive 

examples from a set of negative examples with maximum margin. The distance between the two 

planes is ‖
2

𝑤
‖ hence, minimizing w will lead to a maximal margin, which in turn leads to good 

generalization performance. The formula for the output of a linear support vector machine is 

𝑦̂𝑖 = 𝑠𝑖𝑔𝑛 (𝑤𝑇𝑥𝑖 +  𝑏) (4.2) 

Where the 𝑥𝑖  is the 𝑖 𝑡ℎ training example. With this, the conditions for data instances for not 

falling into the margin are as follows: 

𝑤𝑇x − 𝑏 ≥ 1   𝑓𝑜𝑟 𝑦
𝑖

= 1, 

𝑤𝑇x − 𝑏 ≤ −1  𝑓𝑜𝑟 𝑦
𝑖

=  −1. 
(4.3) 

These conditions can be written briefly as 

𝑦
𝑖(𝑤𝑇x − 𝑏) ≥ 1,           𝑖 = 1, … , 𝑁 (4.4) 

The optimization is subject to these constraints, and it seeks the optimal decision hyperplane with 

𝑎𝑟𝑔 min
𝑤,𝑏

1

2
‖𝑤‖2. (4.5) 

The margin is also equal to the distance of the decision hyperplane to the nearest of the positive 

and negative examples. Support vectors are the training data that lie on the margin (Figure 4-2). 
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Figure 4-2 Support vectors are the training data that lie on the margin 

3. Bagging decision tree classifiers 

In this section, we review bootstrap aggregated tree classifiers as well as estimators of the 

misclassification error. 

3.1. Bagging 

Let L = {(𝑦1, 𝑥1), … , (𝑦𝑁 , 𝑥𝑁)}  denote a learning sample of N  independent observations 

consisting of p-dimensional vectors of predictors 𝑥𝑖 = (𝑥𝑖1, … , 𝑥𝑖𝑝) ∈ 𝑅𝑝 and class labels 𝑦𝑖 ∈

{1,2} . We assume that the observations in the learning sample are independent identical 

distributed (iid) random variables from some distribution function 𝐹𝐿 

(𝑦1,𝑥1),…,(𝑦N,𝑥N) ∼𝑖𝑖𝑑  FL. 

A classifier C (x̃, L) predicts future ỹ-values for a vector of predictors x̃ based on a learning 

sample L. In the following we denote future observations by (ỹ, x̃) distributed according to 𝐹ỹ,x̃. 

Classifiers C can be stabilized by averaging over multiple learning samples (Breiman, 1996). An 

aggregated classifier 𝐶𝐴 for a new observation x̃ is given by 

𝐶A(x̃) = 𝐸F LC(x̃,L), 

where the expectation is over learning samples L  distributed according to 𝐹𝐿 . Bagging as 

introduced by (Breiman, 1996, Breiman, 1996) estimates the aggregated rule 𝐶A(x̃) using the 

bootstrap by 

ĈA(x̃) = 𝐸F̂ LC(x̃,𝐿∗), 
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where 𝐿∗ is a random sample from the empirical distribution function F̂L 

(𝑦1
∗,𝑥1

∗),…,(𝑦N
∗,𝑥N

∗) ∼𝑖𝑖𝑑  F̂L. 

The bagged classifier Ĉ
B

A based on B bootstrap samples is computed as follows. 

1. Draw B random samples 𝐿∗ (1),…,𝐿∗ (B) of size N with replacement from L. 

2. Construct the classifier C using the bootstrap sample 𝐿∗ (b). 

3. Iterate step 2 for all b = 1, … , B bootstrap samples. 

4. A new observation x̃ is classified by majority voting: 

ĈA
B

(x̃) = argmax
0≤j ∈ {1,2}

  ∑ χ {j} ( C(x̃,L∗ (b)) )

𝐵

𝑏=1

 

Where the χ is the indicator function 

χZ(x) = {
1    𝑥 ∈ 𝑍
0      𝑒𝑙𝑠𝑒

. 

 

4.3 Dataset 

We collected the data from the study site that has been described in previous chapter.  The aerial 

imagery was repeated for the same site in 2016 and 2017. The UAV that was used in previous 

research was utilized in second year. The area was checked by agriculture experts and then the 

obtained imagery was classified manually in order to provide an estimation of the location for 

two target plants. The nature of study site did not allow the experts to go into the site and have 

complete survey. Therefore, the grand truth data for next step were collected from the aerial 

images later at laboratory. AgiSoft Photoscan software (Agisoft LLC) was used to prepare 

orthomosaic images with up to 6.5 mm spatial resolution. The result of orthomosaic and manual 

classification for both years are shown in figure 4-3. 
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Figure 4-3 result of orthomosaicing and manual classification for hairy vetch 2016 (up) and 

2017 (down) 

In the next step, a data set of 374 sample images were prepared for training the ML models. The 

sample images were selected manually by our colleagues in agriculture department. The image 
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size for each sample image is 90 by 90 pixel. This image size was selected by considering the 

image resolution and the size of the leaves and flowers for each plant. The dataset consists of 7 

category of land surface including common reed and hairy vetch samples. Figure 4-4 shows the 

image samples for each category in dataset. 

 

Figure 4-4 The sample images in each category in implemented dataset. A) Natural grass. B) 

Hairy vetch. C) Gravel read. D) common reed. E) Other types of plants. F) Dead plants or bare 

soil. G) black image. 

 

4.4 Methodology 

A new method based on color and texture features was proposed. Our methodology can be 

decomposed in following steps: 

3.1. Pre-processing and feature extraction 

 Figure 4-5. shows the overall methodology’s workflow. First the aerial images were preprocessed 

to obtain the orthomosaic image and the sample data in dataset as it was explained in the previous 
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section. After the preprocessing the data, we extract all the features of each sample image in the 

dataset and obtain the feature vectors for all the samples in the dataset. For the feature extraction, 

first we extracted the basic color features (mean and standard deviation of each band in RGB and 

HSI) and the ExGI. The GLCM second order statistics and the SFTA features were extracted as 

texture features of each sample image in the dataset.  

In this study the GLCM was extracted for 2, 4, and 12 pixels displacement with 0, 45, 90, 135 

degrees rotation with the following offset parameter: 

The distances were selected based on the size and shape the plants leaves and flowers. 

 

Figure 4-5 Methodology’s workflow. 

 

3.2. Training the models  

The next step in methodology is to train ML models for classification. We trained SVM with the 

cubic kernel and bagged trees classifiers. We trained 2 models for each set of features (in total 6 

Offsets = [0 2; 0 4; 0 12; ... 

          -2 2; -4 4; -12 12; ... 

          -2 0; -4 0; -12 0; ... 

          -2 -2; -4 -4; -12 -12]; 
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models). Each classifier was trained on each of feature sets separately (e.g. one for basic color 

features + ExGI, one for GLCM, one for SFTA). The models were validated in a 5-fold cross 

validation process. The results of validation and receiver operator curves for each model were 

calculated.  

3.3. Classification 

Provided orthomosaic images were passed into a feature extractor as input images to detect local 

color and texture features based on tile-based image objects (Alhichri et al., 2018). Regarding to 

the hairy vetch and Phragmites leaves’ size and images resolution, 90 by 90 pixels tiles were used. 

The algorithm processes all orthomosaic image with a sliding window and extract the features for 

each processed block. Then processed block’s features appended to a data table and form the 

feature vectors for classification step. The feature vector was passed in each trained model for 

prediction. The result of prediction step then returned to the block processing step and all the 

pixels in the correspondent block of orthomosaic image was marked the same as the predicted 

class. 

4.5 Results and discussion 

4.1 validation 

This study was intended to explore the feasibility of the described methodology. In the current 

system, there are several limitations, and correspondingly, several potential improvements can be 

listed. Results showed high accuracy for SVM model in classifying color properties of images. 

This trained model was used to classified orthomosaic images of two years from the same area. 

Figure 4-9 and 4-10 show the results of SVM and BT classification of hairy vetch base on color 

and textural properties in 2016.  

The study shows (table 4-1.) that the color has the highest overall (OA) accuracy among other 

feature sets. However, the SFTA feature set has the lowest performance accuracy. This trend can 

be observed for in class accuracy of the models too. The trained model on SFTA features set has 

moderate accuracy in discriminating hairy vetch although its performance on common reed class 

is acceptable. This could reflect the fact that the hairy vetch has significantly smaller leaves in 

compare with common reed and the spatial resolution of the orthomosaic images.  
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Fan et al. 2018 applied the SVM, random forest (a type of bagged trees), and neural network 

(CNN) for detecting the Tobacco plant in the farm. The study report that SVM and random forest 

achieved 93% accuracy. By comparing the results of two studies confirms the ability of our 

method in detecting the hairy vetch and common reed in an environment with significantly higher 

complexity.  

 

Table 4-1. The overall accuracy for trained models 

Feature  SVM OA accuracy (%) BT OA accuracy (%) 

Color feature set 

Mean and std of RGB&HSI 

+ExGI 

97.7 91.4 

SFTA feature set 

nt = 8 → 48 features 
69.3 68.4 

GLCM feature set 

3 distance* 4 angles * 4 statistics + entropy 

→49 features 

84.0 78.1 
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Figure 4-6 The confusion matrix for training models on color features. SVM model 94% (up) 

and ensembled trees 91.7% (down). 

Figure 4-6 and 4-8 show the confusion matrix of trained models. Comparing the in-class 

accuracies shows that the hairy vetch has the highest confusion rate with the untagged plants class 

and the soil and dead plants class. The untagged plants class includes the arbitrary plant species 

that were exist in study sites during the data collections. These plants have very high variation in 

their appearance and color. Confusion matrix of models also show that the same confusion 

happens for all the classes and the dead plants and soil class. This situation appears less for the 

color feature. Therefore, we can conclude that the texture of so2 class is local similar with other 

classes and the color is a critical feature for eliminate the confusions.  

Müllerová et al. 2017 applied similar set of texture features and ML models to detect the two type 

of plants in natural environment. The study achieved moderate accuracy in majority of their 

experiments. The comparison between our method and Müllerová work show that our 

methodology has higher performance despite the larger number of classes. 
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Figure 4-7 The receiver operator curve and area under the curve for SVM models trained on 

color features 

Figure 4-7 indicates the receiver operator curve (ROC) for SVM model and color features. The 

ROC indicates the reliability of model in selecting the true positive samples (TP). The area under 
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curve measure indicates the current model’s ability in separate the TP over all the accepted error 

rates.  

 

 

Figure 4-8 The confusion matrix for trained models on GLCM features. SVM model 84% (up) 

and ensembled trees 78% (down). 
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Figure 4-9 The test results of hairy vetch discrimination for SVM model and color features. 

The 2016 orthomosaic (up) and 2017 orthomosaic (down). 
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Figure 4-10 The test results of hairy vetch discrimination for SVM model and GLCM features. 

The 2016 orthomosaic (up) and 2017 orthomosaic (down). 

4.2. Testing and classification results 
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The result of classification for the trained SVM on color and GLCM features models are shown 

in figure 4-9 and 4-10. The comparison between the result of manual classification of hairy vetch 

(figure 4-3) and the models results indicates the ability of trained models in discriminating the 

hairy vetch in UAV image. Also, it should be noted that the results for color features set is more 

accurate for the 2016 image. Furthermore, SVM results for GLCM features is more accurate in 

detecting hairy vetch in both orthomosaic images although the number misclassified blocks are 

higher that the color feature set model.  

The other important outcome of the classification results is that all the models are light dependent 

and a slight difference in color temperature of two mosaic images introduces higher 

misclassification to the result of all models. This color difference effects the color features models 

more.  

4.6 Conclusion 

Results showed the highest accuracy of 94% for SVM classifier on color properties. Phragmites 

and Hairy vetch were classified using SVM model with the accuracy of 94 and 91%. Although, 

the accuracy for color properties are the highest classification of orthomosaic images showed that 

the models are more successful in discriminating different color and textural patterns in 2016 

images. GLCM texture and SVM classifier showed the highest potential in detecting hairy vetch 

and Phragmites plants in both orthomosaic images. 
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Chapter 5: Integration of Machine Learning and Open Access Geospatial Data for 

Land Cover Mapping  

5.1 Abstract: 

 In-time and accurate monitoring of land cover and land use are essential tools for countries to 

achieve sustainable food production. However, many developing countries are struggling to 

efficiently monitor land resources due to the lack of financial support and limited access to 

adequate technology. This study aims at offering a solution to fill in such a gap in developing 

countries, by developing a land cover solution that is free of costs. A fully automated framework 

for land cover mapping was developed using 10-meter resolution open access satellite images and 

machine learning (ML) techniques for the African country of Lesotho. Sentinel-2 satellite images 

were accessed through Google Earth Engine (GEE) for initial processing and feature extraction 

at a national level. Also, FAO land cover (LC) data were used to train a support vector machine 

(SVM) and bagged trees (BT) classifiers. SVM successfully classified urban and agricultural 

lands with 62 and 67 % accuracy, respectively. Also, BT could classify the two categories by 81 

and 65% accuracy, correspondingly. Trained models could provide precise LC maps in minutes 

or hours. It can also be utilized as a viable solution for developing countries as an alternative to 

traditional geographic information system (GIS) methods, which are often labor intensive, require 

acquisition of very high-resolution commercial satellite imagery, time consuming and call for 

high budgets. 

 

5.2  Introduction 

The United Nations (UN) predicts that the world population will increase to 8.7 billion by 2030 

and 9.7 billion by 2050 (UN, 2015). This population growth impacts natural resources utilization 

and causes land use changes. Hence, the UN 2030 agenda for sustainable developments goals 

(SDG) aims to, achieve food security, improve nutrition, and promote sustainable agriculture so 

as to end hunger (Kamwi et. al, 2015). This aim has been highlighted under target 2.4 of the SDGs 

by promoting political and technological efforts to ensure sustainable food production systems, 

implementing resilient agricultural practices that increase productivity and production, helping 

maintain ecosystems, strengthening capacity for adaptation to climate change, extreme weather, 

drought, flooding, and progressively improving land and soil quality (UN, 2015). In more detail, 

indicator 2.4.1 of the SDGs is defined as the proportions of the agricultural area within productive 
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and sustainable agriculture and was specifically designed to focus on agricultural lands which are 

used to grow crops and raise livestock (UN, 2019). Therefore, characterizing and mapping land 

cover are essential for planning and managing natural resources including agricultural lands 

(Gomez et al, 2016). For this purpose, implementation of efficient operational land cover requires 

advanced remote sensing methodologies with the ability to provide inexpensive, on-demand and 

accurate land cover products using availably free and open access data and free cloud-based data 

processing platforms.  

Regarding land cover mapping resources, Global Land Cover – SHARE database (GLC-SHARE) 

developed by the UN's Food and Agriculture Organization (FAO) is a database with 30 arc-second 

spatial resolution based on available national and regional land cover databases (Latham et. al, 

2014). Inglada et al, provided the land cover of France using Sentinel-2 products for 17 land cover 

classes (Inglada et.al, 2017). Also, a cloud-based platform and dense stack satellite time series 

were utilized to provide artic land cover ( Nyland et. al, 2018). Belgiu et al, investigated the ability 

of a Machine Learning (ML) methodology in land cover mapping in different agro-ecological 

regions of the planet (Belgiu et. al, 2018). Cardille et al, Introduced Bayesian Updating of Land 

Cover (BULC) for the ongoing updating of land cover classification (Cardille et. al, 2016). Xiaong 

et al. developed an automated cropland scheme for the continent of Africa by utilizing Moderate 

Resolution Imaging Spectroradiometer (MODIS) data (250-meter resolution) and Google Earth 

Engine (GEE) (Xiong et. al, 2017). Furthermore, the Climate Change Initiative (CCI) team of the 

European Space Agency (ESA) released a land cover map at 20-meter resolution over Africa for 

the year 2016 (Myroslava et. al, 2017). 

The above researches were performed using supervised or unsupervised methods to map and 

classify land cover. However, such methods are time-consuming and require substantial labor and 

funds (Inglada et.al, 2017). Moreover, the mentioned methodologies have been applied to sets of 

data collected at a certain period of time (Hachigonta et. al, 2013). This leads to the inability to 

monitor changes in land cover or to conduct further necessary post-analysis. Furthermore, 

implementation of such methods on cloud-based platforms are very limited. Thus, many attempts 

with remote sensing have been carried out in order to overcome the challenges of producing less 

costly and more time efficient land cover mapping (Mumby et. al, 1999).  

In this study, we are proposing a combination of an automated land cover mapping methodology 

and machine learning technique using sets of data obtained from the UN’s FAO land cover maps 

and free of cost open access Sentinel-2 high-resolution imagery adapted through open access and 

a cloud-based platform to produce high precision and on-demand land cover maps. The FAO 
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provides land cover maps at the national and global level for a diverse range of purposes such as 

forest management, global land cover, water management, etc (Latham et. al, 2014; Ridder et. al, 

2007; UN 2019). These land cover maps are generated from different methods including field, 

airborne or space-borne data. Provided data are valuable sources of information for various 

applications (Stibig et. al, 2007). GEE is a cloud-based platform providing access to free satellite 

and airborne image services and offering computational power (Gorelick et. al, 2017), as well as 

access to a wide range of satellite data through its Application Program Interfaces (API) including 

the ESA’s Copernicus Programme, (ESA, 2019) NASA and the U.S. Geological Survey 

(Woodcock et. al, 2008; Loveland et. al, 2012). Furthermore, it allows users to ingest and utilize 

other geospatial and/or in-situ data as fusion tables or images. GEE has been utilized in several 

studies covering topics such as global forest change (Hansen et. al, 2013), global surface water 

change (Pekel et. al, 2016), crop yield estimation (Lobell et. al, 2015), rice paddy mapping (Dong 

et. al, 2016), urban mapping (Patel et. al, 2015; Zhang et. al, 2015), flood mapping (Coltin et. al, 

2016), and land cover mapping (Huang et. al, 2017; Sidhu et. al, 2018). The computational power 

of GEE along with its comprehensive data access make GEE a capable option for implementation 

of land cover mapping platforms which are timely, accessible from remote areas and free of cost 

for researchers and countries with economical and technical difficulties.  

The objectives of this study are summarized as following: 

• To investigate the potential, limitations, and utilization of GEE for feature extraction. 

• To study the advantages of adding spatial feature to classify land cover and the feasibility 

of high dimensional feature space in similar applications. 

• To evaluate the performance of machine learning models to classify the land surface by 

using high dimensional feature space. 

• To evaluate the methodology on three different areas in Lesotho to ensure that it is 

independent from climatic variables and agro-ecological zones. 

This study is structured as follows: Section 2 describes the study areas and the data; Section 3 

presents the proposed methods; Section 4 is dedicated to the results and highlights the main 

findings and the implications of this study and is followed by our conclusion. 

5.3  Study Area and Data  

2.1 Study Area. 

This study has been carried out over territory of the Kingdom of Lesotho (Figure 5-1). The 

Kingdom of Lesotho is a landlocked country completely surrounded by South Africa. The total 
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area of the country is 30,450 square kilometers, making it the 137th largest country on the planet. 

Lesotho's population was estimated at 2,174,645 in 2015 by the UN and expected to reach 

2,607,957 by 2030 and 3,203,470 by 2050 (UN, 2015). The poverty level in Lesotho is high with 

62 percent of the population living on less than 2 USD per day. It is estimated that 36.4 percent 

are living on 1 USD or less per day. Agriculture is the main economic sector in Lesotho such that 

60-70 % of the country’s laborers obtain supplemental income from agriculture.  

 

Figure 5-1 The Kingdom of Lesotho (study area) within the continent of Africa. 

Poverty is the worst in rainfed farming areas. The country’s territory is divided into four agro-

ecological zones based on altitude and landscape, namely: lowlands, the foothills, the Senqu River 

Valley (SRV), and the mountains (Hachigonta et. al, 2013). The FAO Global Agro-ecological 

Zones (Fischer et. al, 2012) divide the country into four major agro-ecological zones which are 

characterized by four different lengths of growing period (LGP) based on analysis of climate, soil, 

and terrain data (Figure 5-2). 
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Figure 5-2 Agro-ecological zones of Lesotho based on length of growing period (LGP) and 

foot-print of pilot areas. 1) Lejone, 2) Maseru, and 3) Mokhotlong 

The climate of Lesotho is characterized by two main seasons: a rainy season from October to the 

end of March and a dry season from April to the end of September. Normally the majority of 

precipitation occurs during the southern hemisphere summer thunderstorms (Figure 5-3). 
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Figure 5-3 Comparison between mean of normalized difference vegetation index (NDVI) of 

three studied pilot areas and agricultural seasons in Lesotho. 

In this study three different pilot areas labelled as 1) Lejone, 2) Maseru, and 3) Mokhotlong with 

surface areas of 482.65, 484.45, and 492.39 square kilometers, respectively, were selected from 

the territories of Lesotho in a way that each area would fall within a distinct agro-ecological zone 

to represent Lesotho’s variability of different geological features, land cover and land use.  

Footprints of the selected areas are shown in Figure 5-2. This will ensure the efficiency and the 

independency of the proposed algorithm for providing comprehensive training data. It is well- 

known that different agro-ecological zones form unique ecosystems influencing plant growth 

characteristics including photosynthesis (plant chlorophyll content) and therefore spectral 

reflection (Mokarram et. al, 2015). 

2.2 FAO Land Cover Lesotho Classes 

FAO Land Cover of Lesotho (FAO LCL) was developed in 2016 using commercial satellite 

images and conventional GIS methods, along with supervised image classification techniques 

with very high-resolution satellite and airborne images with spatial resolution of 1.5 meter. It 

utilizes an object-based classification on pan-sharpened images. The FAO LCL consists of 32 

land cover categories based on FAO ISO 19144 Land Cover Meta Language, which provides a 

common reference structure for the comparison and integration of data for any generic land cover 
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classification system (UNFAO, 2012). A list of land cover classes and the specifications of 

satellite images that were used in FAO LCL data are shown in Tables 5-1 and 5-2, respectively 

(UNFAO, 2017). In this study, the FAO LCL resolution was resampled in order to change the 

spatial resolution from 1.5 m to 10m in order to match Sentinel 2 spatial resolution. The pixel 

values of the original dataset represented the dominant land cover for each land cover class within 

each 10 m X 10 m cell.  Such values were aggregated across the new pixel size using a majority 

filter of 100m X 100m cell size. The majority filter algorithm determined the new value of the 

cell based on the most popular land cover value within the filter window. Such a method is mainly 

used with discrete data. Such method has been used by FAO in 2014 to harmonize national land 

cover datasets into the GLC-SHARE land cover and by other studies (Latham et. al, 2014; 

Campbell et. al, 1996; Vancutsem et. al, 2013).  

Table 5-1. FAO LCL classes and classes definitions 

Class 

code 
LC Type LC Name LC description 

1 

BUILT-UP 

 (4 classes) 

Urban Areas 
Relatively larger urban built-up areas, 

commonly with presence of trees  

Urban 

Commercial 

and/or Industrial 

areas 

Commercial and/or industrial built-up areas 

Rural 

Settlements, 

Plain Areas  

Rural houses in flat lying plain areas + small 

cultivated herbaceous crops + closed 

herbaceous natural vegetation, 

often together with trees and/or shrubs 

employed for demarcation 

Rural 

Settlements, 

Rural houses in sloping and mountainous 

areas + herbaceous natural vegetation, 
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Slopping and 

Mountain Areas 

occasionally with shrubs employed for 

demarcation, usually treeless 

2 
AGRICULTUR

E (5 Classes) 

Rainfed 

Agriculture, 

Plain Areas 

Rainfed herbaceous crops cultivated in flat-

lying plains, relatively larger sized fields 

Rainfed 

Agriculture, 

Sloping & 

Mountainous 

regions  

Rainfed herbaceous crops in sloping land and 

mountains with terracing and/or contour 

ploughing, small and medium sized fields, 

sometimes with lines of shrubs demarcating 

fields 

Rainfed 

Agriculture, 

Sheet Erosion 

Rainfed herbaceous crops with visible water 

sheet erosion, commonly with associated 

gully erosion 

Irrigated 

Agriculture 

Small size irrigated herbaceous crops near 

water courses 

Rainfed 

Agriculture + 

Rainfed 

Orchards  

Small rainfed herbaceous crops + regular 

rainfed orchard plantations (usually as rows of 

fruit trees separating elongated fields) 

3 
TREES (7 

Classes) 

Trees, Needle 

leaved, (Closed) 

Closed evergreen needle-leaved trees, 

sometimes occurring as plantations 

Trees, Needle 

leaved, (Open) 

Open evergreen needle-leaved trees + 

herbaceous natural vegetation 

Trees, 

Broadleaved, 

(Closed) 

Closed deciduous broadleaved trees, 

commonly along river beds 
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Trees, 

Broadleaved, 

(Open) 

Open deciduous broadleaved trees + 

herbaceous natural vegetation 

Trees, 

Undifferentiated 

(Closed) 

Closed undifferentiated trees 

Trees, 

Undifferentiated, 

(Open) 

Open undifferentiated trees + herbaceous 

natural vegetation 

Trees, (Sparse) 
Sparse trees + herbaceous natural vegetation 

(closed - open) 

4 

HYDROLOGY  

(4 Classes) 

Large 

Waterbody 

Large perennial fresh water lake or dam 

reservoir 

Small 

Waterbody 

Small fresh water seasonal and/or perennial 

reservoir, Pool, Waterhole, etc. 

Wetland 

(Perennial and/or 

seasonal) 

Natural perennial and/or seasonal fresh 

waterbody + Perennial closed-open natural 

vegetation 

River Bank 
River Bank (soil/sand deposits) + perennial or 

periodic flowing fresh water (river) 

5 

SHRUBLAND 

 (2 Classes) 

Shrub-land – 

(Closed) 
Natural Shrubs (H=0.5 to 1.5m), Closed 

Shrub-land - 

Open 

Natural Shrubs (H=0.5 to 1.5m), Open + 

Natural herbaceous vegetation (Open Closed) 

6 GRASSLAND Grassland Grassland - Natural vegetation 
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 (1 Class) 

7 

BARREN 

LAND (5 

Classes) 

Bare Rock Rock outcrops 

Bare Area 

Bare areas - undifferentiated areas not used for 

cultivation and usually devoid of grass or 

shrub cover 

Boulders & 

Loose Rocks 

Areas with large scattered boulders and/or 

unconsolidated loose rocks, commonly 

sloping, usually together with patchy natural 

vegetation and/or shrubs and/or natural trees 

Gullies 
Gully erosion, occasionally with trees and/or 

tall shrubs 

Mines & 

Quarries 

Major mines and quarries as well as temporary 

building material extraction sites 

 

Table 5-2. FAO LCL specifications of utilized images  

Image source Spatial Resolution (meter) Spectral Resolution 

Rapid Eye 5 5 bands (440 to 850 nm) 

Spot 5 2.5 5 Bands (480 to 1750 nm) 

Aerial orthophotos 0.5 3 Bands (visible light) 

 

2.3 Test and Training Data Set Generation 

Machine learning (ML) models are often used to classify satellite images. In order to train the ML 

models, a set of ground truth labeled data points are required. In this study, we have randomly 

selected over 12,000 points from three pilot areas. To ensure that the accuracy measurements for 
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all classifications are in the same order, the training and validation points were equally distributed 

between all land cover classes. FAO LCL was used for labelling the training points. 

5.4  Methods 

Figure 5-4 shows the workflow of the proposed methodology. First, the FAO LCL data was 

prepared and ingested into the GEE as data assets. Data preprocessing and feature extraction was 

done using GEE on cloud machine by utilizing GEE JavaScript API. All the available Sentinel-2 

imagery between the first of October 2015 until the end of December 2017 were used as open 

access data. Images were preprocessed to remove cloudy pixels and formed 1) an image stack 

divided into four seasons and 2) a single image for all the territory of Lesotho. The image stack 

was used to extract the spectral features as explained in Section 3.3.1. The single image was 

sharpened using Principal Component Analysis (PCA)coefficients and then spatial features were 

extracted as explained in Section 3.3.2. Finally, the feature vectors of three pilot areas were 

exported for training, validation, and classification steps on local or cloud machines. 

3.1 Google Earth Engine Data 

In this regard, GEE was used to collect and extract data at the national level for Lesotho. First, all 

the available Sentinel-2 image tiles were selected for Lesotho and clipped to the country’s borders. 

Clouds were filtered based on a pixel-wise filtering technique by the band QA60 of Sentinel-2 

products with a 5% cloudy pixel rate. This guaranteed that all the image tiles used in the next 

steps were only removing cloudy pixels of each image without removing the whole tile. Then 

image collection was divided into four groups based on the imagery season. Lesotho possesses 

four distinct seasons: spring-rainy season (October first to the end of December), summer-rainy 

season (January first to end of March), Autumn-dry season (April to end of June) and Winter-dry 

season (July to end of September). The season time periods are based on the data available on the 

Famine Early Warning Systems (FEWS) (www.fews.net) and the MODIS NDVI band (Figure 4-

3).  
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Figure 5-4 Algorithm workflow of proposed machine learning classification and accuracy 

assessment methodology. 

3.2. Data Preparation 

3.2.1. Spectral Features 

High spectral resolution satellite sensors produce images in a higher number of bands in both 

visible and invisible spectrums with narrower bandwidth (UNFAO, 2017). Higher spectral 

sensitivity of sensors could help in obtaining more information from earth surfaces including 

vegetation. One of the benefits of high spectral images is the possibility of calculating different 

vegetation indices (VI). VIs, which are obtained from satellite sensors, have been intensively 

studied and applied in many environmental and remote sensing studies. Xue et al. listed 118 

different VIs and reviewed the most popular ones (Xue et. al, 2017). In this regard, the Normalized 

Vegetation Index (NDVI) is the most utilized VI, which was introduced by Rouse Jr. et al. (Rouse 

et. al, 1974) as follows: 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
 (1) 

NDVI is sensitive to vegetation even in conditions of scarce vegetation. However, soil brightness, 

soil color, atmosphere, clouds, and shadows affect the NDVI. Since NDVI has negative 
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correlation with soil brightness and atmospheric effect. Enhanced Vegetation Index (EVI) was 

later introduced which simultaneously correlates soil and atmospheric effects as: 

𝐸𝑉𝐼 =  𝐺 ×  
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝐶1×𝑅𝑒𝑑−𝐶2×𝐵𝑙𝑢𝑒+𝐿
, (2) 

Where G is the gain factor equal to 2.5, L = 1 is the soil-adjustment factor, C1 = 6 and C2 = 7.5 

are the coefficients of the aerosol resistance term, which uses the blue band to correct for aerosol 

influences in the red band (Jiang et. al, 2008; A database for remote sensing indices, 2019). 

In this study, the seasonal mean of NDVI and EVI were calculated as spectral features based on 

Lesotho climatic seasons on all existing data. The combined application of NDVI and EVI 

decreases the effect of atmospheric transmission and insures the reliability of the spectral features. 

3.2.2. Spatial Features 

In addition to the spectral properties of satellite images, the spatial properties (i.e., image texture) 

are important characteristics that can be used to describe land cover. Texture is defined as feel, 

appearance, or consistency of a surface or a substance. In the digital image processing field, the 

texture is the spatial arrangement of colors or pixel intensities. Different sets of metrics are 

designed in image processing to quantify the perceived texture of an image. Hereby, spatial 

properties were extracted from the Sentinel-2 images into two steps. 

3.2.2.1. Image Pre-Processing with PCA 

To extract the textural properties of images, it is necessary to pre-process the images in order to 

remove the noise or increasing the amount of details in each images tile. Therefore, to increase 

the differences between different textures in an image, principal component analysis (PCA) was 

applied.  

PCA uses orthogonal transformation to convert possibly correlated data into linearly uncorrelated 

values so that the first principal component has the largest possible variance (Wold et. al, 1987). 

In general, almost any data matrix can be simplified by PCA. PCA estimates the correlation 

structure of variables. Therefore, principal component analysis of a data matrix extracts the 

dominant patterns in the matrix.  

PCA was applied on visible channels (B2, B3, and B4) and NIR channel (B8) of Sentiel-2 images. 

Then the first component was combined with the original image with a coefficient. Pan-

sharpening is the injection of high-resolution panchromatic image into lower resolution 

multispectral images to get higher resolution multispectral images (Shah et. al, 2008). However, 
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this study takes advantage of PCA pan-sharpening method on Sentinel-2 images by applying PCA 

coefficients that were obtained from visible bands and bands with higher atmospheric 

transmission (i.e. band 8 and 12) on all the bands. Figure 5-5 compares the first and second 

principal components with Google Earth images, Sentinel-2 images and the final sharpening 

results using first and second components. 

3.2.2.2. Texture Features: Grey Level Co-occurrence Matrix 

A co-occurrence matrix is a matrix that is defined over an image 𝐼 in which it is the distribution 

of co-occurring pixel values (grayscale values or colors) at a given offset (∆𝑥, ∆𝑦)  that is a 

position operator to be applied on any pixel in an image. The (𝑖, 𝑗)𝑡ℎ  value of the co-occurrence 

matrix gives the number of times in the image that the  𝑖𝑡ℎ , and 𝑗𝑡ℎ pixel values occur in the 

relation given by the offset. For an image with 𝑝  different pixel values, the 𝑝 × 𝑝 co-occurrence 

matrix 𝐶 is defined over an 𝑛 × 𝑚  image 𝐼 , as: 

𝐶∆𝑥,∆𝑦(𝑖, 𝑗) =  ∑ ∑ {
1,   𝑖𝑓 𝐼(𝑥, 𝑦) = 𝑖  𝑎𝑛𝑑  𝐼(𝑥 + ∆𝑥, 𝑦 + ∆𝑦) = 𝑗
0,                                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑚
𝑦=1

𝑛
𝑥=1 , (3) 

where, 𝐼(𝑥, 𝑦)  indicates the pixel value at the pixel. Here, the co-occurrence matrices are 

calculated over 3 visible and 2 NIR bands for an offset of 8 pixels distance in all directions. 

Second order statistics could be driven from co-occurrence matrices to quantify the properties of 

an image. In this study, we have calculated 18 second-order statistics introduced by Haralick et 

al. and Conners et al., e.g. correlation, sum of variance, contrast, etc. (Conners et. al, 1984; 

Haralick and Shanmugam, 1973). 
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Figure 5-5 A) Google Earth high resolution image. B) Sentinel-2 10-meter resolution image. C) 

First principal component of 4 selected bands. D) PCA sharpened image with first principal 

component. E) Second component of PCA. F) Sharpened image with second component of 

PCA. 

3.3. Trained Machine Learning Models 

For machine learning models, we have trained bagged trees (BT) and support vector machine 

(SVM). BT and SVM have been used in various studies for land surface classification (Hao et. al, 

2015; Mountrakis et. al, 2011; Mardani et. al, 2017). The BT that was used in this study is an 

ensemble of decision trees model with 30 learner trees (Breiman et. al, 1994). The BT model in 

this study only accepts one parameter (number of trees). It should be noted that, typically, in 

remote sensing applications, random forest classifiers are used which are a specific type of bagged 

trees in which it needs two parameters. First, the number of trees, and second is the number of 

features (predictors) to train each decision tree. However, in this study, the BT model was trained 

on all features. The SVM model was trained based on a degree three polynomial kernel (Boser et. 

al, 1992) and one verses one (ovo) decision function. 

5.5  Results 

4.1. Trained Models’ Performance 

Table 5-3 shows the overall accuracy and training time for both models. The training time for the 

SVM model was significantly higher than the BT model. The BT and SVM were trained and 
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validated based on a randomly generated dataset (12,000 point). BT yielded a higher overall 

accuracy in a 5-fold cross validation process.  

 

Both models were trained and validated on a laptop PC with 1.8 GHz dual-core Intel Core i5 CPU 

and 8 GB of memory to demonstrate the efficiency and practicality of the proposed method in 

real world scenarios. Training and segmentation steps in remote sensing applications require high 

computational power as well as memory resources (Inglada et. al, 2017; Gorelick et. al, 2017). In 

this study, the training time for both models showed very high efficiency despite the size of the 

training and validation datasets. Furthermore, the achieved time efficiency would allow the users 

to modify or add ground truth data samples and to retrain the models in the future. This will 

guarantee the operational ability of the algorithm. 

Tables 5-4 and 5-5 show the confusion matrices for the BT and SVM models. The BT achieved 

highest accuracy, in the built-up class, 81%, while the SVM gained the highest accuracy in the 

hydrology class, 76%. The differences of models’ performance are not significant in agriculture, 

tree and barren-land classes. The lowest accuracy was observed in shrub-land and grass-land 

classes for both models. However, in the case of in grass-land class, the BT showed a lower score 

than the SVM. The ESA CCI 20 m land cover of Africa reported the overall accuracy of 65%, 

however, the overall accuracy for Lesotho was reported between 22 to 45%. The proposed 

methodology in this research outperformed the ESA CCI 20m land cover by 20% (Myroslava et. 

al, 2017). 

Table 5-3. Results of the overall accuracy. 

Classifier Training time (seconds) Over-all accuracy (%) 

 Bagged Trees 76 62.6 

Support Vector Machine 1197 60.4 

Table 5-4. Confusion Matrix - Bagged Trees Model (%). 

Class 

No. 

Class name Built-up Agricultur

e 

Trees Hydrolog

y 

Shrub

-land 

Grassl

and 

Barre

n-

land 
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4.2 Classes Accuracy and Inter-Class Similarities 

Tables 5-4 and 5-5 also shows the highest confusion rate for each class. It should be noted that 

both ML models have high confusion rates in similar classes. The built-up class allocated the 

highest confusion rate in agriculture and grass-land classes with 6% and 5% for the BT model 

and 8% and 15% for the SVM model, respectively. Similarly, the highest confusion rate for the 

agriculture class was observed in the grass-land class with 11% and 13% for the BT and SVM, 

respectively.  

Tree and shrub-land classes showed a 13% and 9% confusion rate where the tree class was 

selected as shrubs or vice versa. Also, the highest confusion rate for shrub-lands was occurred in 

grass-land class with 17%. Grass-land class has the highest confusion rates with other classes with 

17%, 14%, and 13% for shrub-land, barren-land, and agriculture areas respectively. 

4.3 Discriminating Ability of The Train Models: Precision, Recall and Receiver Operator Curve  

1 Built-up 81 6 3 1 1 5 3 

2 Agriculture 9 65 2 2 6 11 5 

3 Trees 10 3 66 3 11 4 3 

4 Hydrology 6 7 5 73 2 4 3 

5 Shrub-land 4 6 13 1 55 11 10 

6 Grass-land 11 15 5 3 14 38 14 

7 Barren-land 7 6 3 3 8 9 63 

Table 5-5. Confusion Matrix - Cubic SVM Model (%). 

Class 

No. 

Class name Built-up Agricultur

e 

Trees Hydrolog

y 

Shrub-

land 

Grass-

land 

Barre

n-

land 

1 Built-up 62 8 5 3 2 15 5 

2 Agriculture 5 67 2 3 5 13 6 

3 Trees 4 2 64 4 13 8 4 

4 Hydrology 2 6 4 76 2 5 5 

5 Shrub-land 2 5 9 2 55 17 9 

6 Grass-land 5 13 4 4 17 43 14 

7 Barren-land 3 7 3 4 9 14 60 
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Figure 5-6 shows the recall, precision and F-score values for both trained models. As can be seen 

in figure 5-6, both models have similar precision and recall values. Precision is the fraction of 

relevant points among the retrieved points in a specific class, while recall is the fraction of relevant 

points that is retrieved over the total amount of relevant points in a class. Our results indicate that 

both models are successful in retrieving relevant classes for both in-sample and out-sample data. 

Precision comparing false positives to true positives. It captures the effect of the large number of 

negative examples on the model’s performance, while higher recall means that the trained model 

is successful in returning most of the relevant results (Davis et. al, 2006).  

Figure5-7 compares the recall, area under the curve (AUC) in a receiver operator curve (ROC), 

and a false positive rate (FPR) for both ML models. When comparing the AUC values of trained 

models, the BT model showed higher ability in retrieving relevant data than the SVM. Also, the 

false positive rate for both models was very low, meaning the number of incorrect points that 

were assigned to each class of the land cover is low. 

   

Figure 5-6 Precision recall and F-Score parameters for each class. Left: Support Vector Machine 

model. Right: Bagged Trees model. 
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Figure 5-7 Area under curve (AUC) values in receiver operator curve (ROC), recall, and false 

positive rate per class for trained models. 

 

4.4 Classification Results and Final Land Cover Product 

The trained models were tested on the selected pilot areas to generate the final land cover 

products. The testing step was run on the same PC as training and validation step. Segmentation 

results for studied pilot areas are shown in Figure 5-8. The images in column A show the FAO 

LCL as the base map for training ML models. Images in columns B and C show the results for 

the SVM and BT models, respectively. The BT model classified the pilot areas in average 51 

minutes for each pilot area. The BT model was 48% faster than those of SVM in classifying pilot 

areas.  
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Figure 5-8 Comparison between the pilot areas 1, 2 and 3 for A: FAO land cover of 

Lesotho (FAO LCL), B: Results of trained SVM model and C: Results of BT model. 

 

5.6  Discussion 

5.1. Google Earth Engine as a Cloud Base Remote Sensing Platform 

GEE was able to calculate the feature vector for the entire territory of Lesotho. Computational 

power of GEE enables feature extraction at the national level; however, it was out of computation-

time in some circumstances. It could be due to high dimensional matrix operations for PCA 

analysis and GLCM passing the system limits on allowed processing time for each request ( 
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Gorelick et. al, 2017). This problem can be avoided by extracting the features at a local level 

instead of a national level, once the initial parameters for PCA (i.e. the mean and covariance of 

pixel values for the selected bands) were extracted for the country’s territory. GEE allows 

processing of data through its APIs in different ways. However, this study selected the JavaScript 

API and GEE code editor as the main data processing tool. The goal was to minimize the cost and 

increase the time efficiency of GEE in land cover mapping. Meanwhile, the processing of 

generated feature vectors required to be partly executed on cloud machine (GEE), then exported 

and partly processed on the local machine (PC), since such processing method was causing the 

GEE code editor to run out of computation-time. This process of exporting and processing the 

feature vector on a local/cloud machine acts as the main bottleneck of the algorithm’s pipeline. 

Further efforts are required to overcome this problem by using new GEE features in the future. 

5.2. The Effect of Spectral and Spatial Features on Accuracy Performance 

Image segmentation has traditionally been applied to single-date satellite images (Desclée et. al, 

2006). Several studies report the advantages of satellite time series segmentation, such as 

automated detection of agricultural fields (Davis et. al, 2006), better and faster forest change 

analysis (Desclée et. al, 2006), robustness against shadowing and registration errors (Desclée et. 

al, 2006; Mäkelä et. al, 2001), reduced salt-and-pepper effect apparent in per-pixel classifications 

(Matton et. al, 2015), and the segmentation of multi-temporal images for cropland mapping 

(Belgiu et. al, 2018). In this study, we trained the ML models based on the mean of a two years’ 

period in order to allow the ML models to learn the spectral and temporal features of different 

land cover classes. Therefore, the proposed methodology successfully takes advantage of the 

power of multi-temporal satellite time series, but still has the flexibility to deliver accurate land 

cover products on an annual base period for land cover and land use change applications. 

Nyland et al. and Xiong et al. used GEE for land cover mapping by using fully spectral features 

of available satellite time series (Nyland et. al, 2018; Xiong et. al, 2017). However, using a times 

series introduces a level of confusion to the final land cover products since the land cover is 

subject to change during the time, i.e. a landscape could vary from forest to agriculture in due 

time because of agricultural development (Inglada et. al, 2017). In this study, we attempted to 

overcome this problem by using the GEE’s potentials in extracting texture features of land 

surfaces in addition to spectral features for the first time. Introducing spatial (texture) features as 

a descriptor for land cover mapping enabled our proposed method to perform on an annual base 

process. It means the method needs the data of one annual period to be able to predict land cover 

classes. The experiment showed that in the case of Lesotho the same method performs with 40% 
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and 51% overall accuracy by utilizing only spectral or spatial features, respectively. On the other 

hand, when utilizing the GLCM in a feature vector, it is important to select the spatial distance 

parameter in the GLCM offset relative to the resolution of the satellite images. Therefore, the 

effect of GLCM parameters in land cover mapping applications ask for more investigation in 

future studies. 

5.3 The Inter-Class Confusion Rates  

Inglada et al. reported high confusion between continuous and discontinuous urban fabrics. Our 

study outperformed their results with 81% accuracy for the BT model, even though in our study, 

we merged all continuous and discontinuous urban fabrics into the built-up class (Inglada et. al, 

2017). The confusion between the built-up, agriculture, and grass-land classes happened in two 

major situations: first, in areas where the built-up class contains large abandoned land between 

buildings and second in areas where small agricultural activities occur in cites or rural areas.  

Moreover, agricultural lands were selected as grassland in areas with higher soil moisture. They 

are mainly consisting of wet land like areas near springs or on slopes or at the bottom of wide 

valleys where vegetation growth is more continuous and in similar temporal patterns with natural 

vegetation (Belgiu et. al, 2018). Also, confusion between agriculture and grass-land was common 

in rainfed and sloping lands where natural vegetation and crops have similar growth periods. 

These results also can be confirmed based on the Table 5-1 definition of each class. 

Shrubs (0.5~1.5 m high) and trees (1.5 m~ high) normally have very similar growth patterns and 

spatial distribution of these two classes are similar. This will cause almost identical spectral and 

spatial characteristics of trees and shrubs. In addition, shrub-lands in FAO LCL data are defined 

as open shrubs with natural vegetation in between, which could lead to confusion between shrub-

land and grass-land classes in which both contains natural vegetation. Moreover, the two classes 

are containing bare rocks or areas without any vegetation and therefore were classified as barren-

land. 

The earth surface geometry influences the quality of segmentation (Yan et. al, 2014). Meanwhile, 

woody shrubs naturally grow on surfaces toward the south while natural vegetation is more 

adopted to areas with shorter daylight time (Daubenmire et. al, 1980). Therefore, the surface 

geometry typically affects the type of land cover in each area. As an example, this effect could be 

seen in the final map product (Figure 5-8) where the shrub-lands are located mostly on areas 

sloping toward the south. The comparison between results, FAO LCL, and visual inspections 

showed that the study results are more compatible with pilot areas’ topology and geometry. 
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The proposed methodology was able to provide an accurate land cover of urban and agriculture 

lands. These land cover products are based on continuously updating satellite data with an annual 

cycle. The annually based product will allow the authorities in the country to monitor urban and 

agriculture lands in line with the indicator 2.4.1 of SDGs to measuring the proportion of 

agricultural area within productive and sustainable agriculture (UN, 2019).  

5.7  Conclusions 

In this paper, an operational land cover mapping methodology is presented based on available 

free access Sentinel-2 data and the GEE cloud processing platform. By utilizing a combination of 

GEE and the FAO LCL data, our main objective was to measure the performance of machine 

learning models and classify the land surface by using high dimensional feature space. The 

validation with the proposed method and satellite imagery revealed an accuracy of 62 and 67%, 

respectively, for the important land cover categories such as ‘urban’ and ‘agricultural lands’. 

Moreover, the trained models provided a precise land cover tool for annual land cover and land 

use change comparison applications. The models were trained, validated and tested on a simple 

laptop PC to demonstrate the cost and time efficiency of the methodology. Such methodology 

opens doors for in field processing and mapping land cover for future studies. 

The study showed the GEE potentials in land cover mapping by processing the feature vector at 

a national level for Lesotho in a short time. Further investigation is required to unveil the ability 

of GEE in applying new ML techniques, i.e. deep learning models, on geospatial data. The current 

GEE pipeline for processing the available data on GEE through the Python or JavaScript APIs 

requires exporting large volumes of data to cloud or local storage as well as running the ML 

models on a cloud machine. These processes are time consuming and require extra funds for cloud 

processing and cloud storage.  

Knowing the scale of the country, moderate resolution of the images, and natural changes and 

errors in FAO LCL as the base map, the proposed methodology achieved accuracy that could be 

considered satisfactory. Therefore, it is hoped that the individuals and organizations involved in 

rural and urban development strategies, as well as forest and land conservation at regional and 

sub-regional scales, can utilize the presented models for developing countries as an alternative to 

traditional higher-cost GIS methods.  
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5.8 Application of Deep Learning and Open Access Geospatial Cloud 

Processing Platforms in Land Cover Mapping 

 

5.8.1  Introduction 

Inspired by the learning processing of human beings, artificial neural networks (ANNs) employ 

a general structure of connected units to learn feature representation. Deep learning models, or 

deep ANNs with more than two hidden layers, provide sufficient model complexity to learn 

feature representations from data (LeCun et al. 1995). In this section we study the abilities and 

potentials of Artificial Neural Networks (ANN) for the land cover classification purposes. We 

introduced two DNN and tried to utilize the data from previous sections in chapter 5 in order to 

improve the accuracy and the reliability of the models.  

5.8.2  study area and data 

5.8.2.1 Study Area 

in continue of the previous sections this utilizes the same study area. The study has been carried 

out over territory of the Kingdom of Lesotho in Africa.  

5.8.2.2  Data 

FAO Land Cover of Lesotho (FAO LCL) was developed in 2016 using commercial satellite 

images and conventional GIS methods. In this study, the FAO LCL were modified and used as 

base line for training and validation data. First, the Sentinel-2 satellite images were processed to 

form a single image for whole the country’s territory using GEE. The produced image consists of 

115 bands including 24 spectral (Normalized Vegetation Index (NDVI) and Enhanced Vegetation 

Index (EVI)) and 90 bands from Gray Level Co-occurrence Matrices texture descriptors (LeCun 

et al. 1995). 

5.8.3  methodology 

Two ANN architecture were used in this study. Both ANN were used for purpose of classification 

task. The main goal was to compare the potential of ANNs in classifying preprocessed signal 

shaped data and compare the results with other machine learning methods (i.e. support vector 

machine and decision trees) performance which were investigated in previous studies. 



 

98 

 

5.8.3.1 Dense Neural Network 

The Dese network consists of input and output layers with 4 fully connected hidden layers. Hidden 

layers have rectified linear unit (Relu) activation function and the SoftMax activation was applied 

in output layer. 

5.8.3.2 Convolutional Neural Network 

The CNN in this study was consist of a reshape layer as input layer 4 one dimensional convolution 

layers with 100 nodes. Each pair of convolutional layers were followed by a max-pooling layer. 

At the end a fully connected layer was used as output layer with SoftMax activation function. 

5.8.4  results and discussion 

The result showed the potential of ANNs in LC mapping and visualization application. The DNN 

achieved high accuracy in training and testing steps with 97% accuracy. 1D CNN was not able to 

achieve a better accuracy result than DNN, SVM, or RF. In CNN convolutional layers are 

extracting features and dense layers classify them. Therefore, lower accuracy in 1D CNN might 

be the result of applying convolutional layers on signal like image pixel in which the pixel value 

by itself is a set of extracted features.  

The study will apply the 1D and 2D CNN on raw satellite images in future work to improve the 

accuracy. Also, the DNN will be trained with a larger dataset to prevent overfitting in future work. 

 

 

Supplementary Materials: Programming codes and supplementary materials are available at: 

https://github.com/coderdud/Supp_materials_fao 

 

 

  

https://github.com/coderdud/Supp_materials_fao?fbclid=IwAR06pMtlO1u_w0dZSNhaJZF2YebXjhn7MeYmrj-vJEaZunJv4rrjNYeOMQg
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Chapter 6: CONCLUSION AND FUTURE OF RESEARCH 

6.1 Conclusion  

We conclude the study in this section. In this thesis, we have discussed unexplored problems and 

challenges on aerial image analysis for agro-environmental studies. 

In chapter 2, we studied the feasibility of role base image analysis method to detect the hairy vetch 

in UAV aerial imageries. Also, we compared the texture properties of different plants in study 

area. By comparing the results of color filtering and texture analysis we can realize the potential 

of proposed method to implement an automatic algorithm to detect and map the hairy vetch (or 

other plants) in aerial imagery. 

In chapter 3, we take look at challenges and aspects of UAV aerial image mosaicking. We try to 

understand the important points and main problems in stitching aerial images form our study area. 

The results showed that the low altitude of flight can significantly affect the quality of stitching 

algorithms and therefore applying more sophisticated methodology that take advantage of camera 

position system is required. Therefore, we moved forward with applying available software. 

In chapter 4, we proposed a machine learning based methodology for detecting 6 different land 

surface types including the two target plants. The methodology resulted in 94% accuracy in 

detecting the land cover types and was tested on the study areas for 2 sequenced years. The results 

reveal that the color features can detect the hair vetch with higher quality however it is not 

successful in detect and discriminate plants in both years and the texture features have higher 

ability in detecting the plant types in both years.  

Chapter 5 is dedicated to applying the idea of the propose methodology in previous chapter on 

satellite driven aerial images. We implemented the methodology and modified it in order to 

provide the landcover products of the Lesotho in southern Africa. The method was taking 

advantage of open access satellite data, open access geospatial analysis platform, Google Earth 

Engine, and the machine learning technology to provide accurate landcover products in 

reasonable time in national level of Lesotho. 

Finally, in chapter 6 we move forward to more advance AI techniques for landcover mapping. In 

this study we proposed a neural network in order to increase the accuracy of landcover products 

in previous chapter.  A fully connected dense network was trained and tested on the same set of 

features. The result opens the door for future studies in this area. 
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6.2 Future of research 

The results of chapter 2,3, and 4 showed that while the methodology is successful in discriminate 

the type of the plants in aerial imagery the problem or the dilemma of ground truth data accuracy 

occurs in this study too. In machine learning the accuracy and the quantity of labeled data or 

ground truth data has direct effect on which path should be selected to solve the problem, weather 

it should be a feature learning methodology or a feature engineering one. Therefore, this thesis 

suggests a deep and comprehensive research on a methodology that can automatically populates 

the ground truth data.  

The chapter 5 and 6 clear the fact that the age of role-based methodologies in the field of remote 

sensing is covered and the future researches must focus on AI methodologies to obtain more 

reliable results. The ability of our methodology in successfully performing on both UAV and the 

satellite imagery indicates that although the targets are slightly different in those data the effect 

of fine grain texture analysis is the key in classifying the type of land surface and spectral analysis 

alone is not adequate for the state of art methodologies. Therefore we suggest that the future 

studies develop methodologies that are capable of learning or extracting highly complex textures 

as well as spectral characteristics of data.  
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