
Operator-based robust nonlinear
vibration control for flexible plate with

piezoelectric actuator

March, 2020

Guang Jin

Department of Electronic and Information Engineering
The Graduate School of Engineering

(Doctoral Course)

TOKYO UNIVERSITY OF
AGRICULTURE AND TECHNOLOGY



i

Acknowledgements
The completion of this dissertation could not have been possible without the advice

and encouragement of many people whose names may not all be enumerated. I

would like to take this opportunity to express my appreciation to you all.

First of all, I would like to express my sincere gratitude to my supervisor

Professor Mingcong Deng, for his constant encouragement and guidance. I have

greatly benefited fromhis inspired and valuable guidance and instructive comments

that are essential to help to improve my research ability. Without his support and

encouragement, it would be impossible to complete writing this dissertation.

I would like to expressmy gratitude tomy supervisors Professor KenNagasaka,

Professor Yasuhiro Takaki, Associate Professor Hiromasa Shimizu, and Associate

Professor Kenta Umebayashi for their constructive advices and useful suggestions

on my research, especially in writing this dissertation. I am deeply grateful for

their help in the completion of this dissertation.

With many thanks to my colleagues and friends, who have supported and

helped me while taking the doctor’s course at Tokyo University of Agriculture and

Technology. Especially thanks go to Dr. Changan Jiang, Mr. Yuta Katsurayama,

Mr. Guanqiang Dong, Ms. Ximei Li, and other members of Deng laboratory for

their advices and kind help.

Last, but certainly not least, I cannot express enough thanks to my family for

their continued support and encouragement: my dear parents and sister, who have

providedmuchmoral andmaterial support on every aspect ofmy life, especially the

long years of my education. Simultaneously, to my caring, loving, and supportive

wife, Qingmei Shen: my deepest gratitude, your encouragements when the times

got rough are so much appreciated and duly noted. My heartfelt thanks.



ii

Summary
This dissertation discusses the operator based nonlinear vibration control problems

for a flexible plate using piezoelectric actuator with hysteresis nonlinearity. By

using operator theory, bounded input bounded output (BIBO) stability of the de-

signed nonlinear vibration control systems is guaranteed and the desired vibration

control performance is ensured by the proposed control schemes.

With the development of smart materials, many kinds of actuators and of sen-

sors are made of them. Recently, vibration control using smart materials has been

a key technology in vibration suppression techniques. Among them, the piezo-

electric elements can be used as both actuators and sensors due to the piezoelectric

effect. However, the piezoelectric actuator has hysteresis nonlinearity. When

using the piezoelectric actuator, the control performance is affected by hystere-

sis nonlinearity. In this dissertation, to address the hysteresis nonlinearity of the

piezoelectric actuator, Prandtl-Ishlinskii(P-I) hysteresis model is considered. The

model of flexible plate is considered by theory of thin plates. Based on operator

theory, nonlinear vibration control schemes are proposed in this dissertation.

First, for the plate with a free vibration and perturbations case, operator based

controllers are designed to guarantee the robust stability of the nonlinear control

system. Simultaneously, for ensuring the desired vibration control performance,

operator based compensation method is given. In the designed compensator, the

desired compensation performances of tracking and of perturbations are obtained

by increasing the number of designed n-times feedback loops. The effectiveness of

the proposed design scheme is verified by numerical simulation and experimental

results.

Second, for the plate with a forced vibration case, operator based nonlinear

vibration control scheme is given. At the step of designing the controller to satisfy

stability, a controller including characteristics of Proportional-Integral-Differential
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(PID) controller is designed. The designed controller can be controlled by only one

design parameter without adjusting PID parameters. After that, for compensating

the forced vibration to improve the vibration control performance, the compensator

is given by designed operators. Both numerical simulation results and experimental

results are shown to verify the effectiveness of the proposed control scheme.

Third, operator based some vibration control approaches are introduced. For

improving vibration control performance, the time-varying unimodular function

based robust right coprime factorization approach is considered. The system

mismatching compensation approach is designed for plate with a forced vibration.

Operator based estimation structure is considered in unknown input nonlinearity

compensation approach for reducing the effect of unknown input nonlinearity to

improving the vibration control performance.

In summary, this dissertation proposes operator based nonlinear vibration

control schemes for a flexible plate using piezoelectric actuator. By using the

designed controllers based on the concept of Lipschitz operator and robust right

coprime factorization condition, the nonlinear vibration control systems are BIBO

stable and the desired vibration control performances are realized.
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Chapter 1

Introduction

1.1 Background

The developments in the field of smart materials have motivated many researchers

to work in the field of smart structures. The smart structure can be defined as the

structure that can sense external disturbance and respond to that with active control

in real time to maintain the mission requirements. There are some smart materials

such as the piezoelectric material, shape memory alloy (SMA), electrorheological

(ER) fluid and magnetorheological (MR) fluid, which are applied widely as actu-

ators. Also, these actuators can sense and respond to environmental changes to

realize desired goals by the characteristics of materials. Among them, the piezo-

electric element is a smart element that has the nature of converting electrical

energy into mechanical energy, and vice versa. Characteristics of a piezoelectric

element are that, it has a fine resolution, a large resistance of the weight of a load

and a fast response, and it does not generate a magnetic field. However, hysteresis

nonlinearity behavior exists widely in smart materials and the performances of

actuators are affected by the hysteresis nonlinearity [1],-,[26]. For addressing the

hysteresis nonlinearity, many kinds of hysteresis models have been proposed [5].

The vibration control has been a key technology in many engineering fields.

1
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The vibration control methods mainly falls into two categories: passive vibration

control and active vibration control. From the viewpoint of energy saving, passive

vibration control is desirable. However, active vibration control is necessary to

suppress vibration more efficiently. Recently, vibration control using smart actu-

ators attracts attention as one of the vibration suppression techniques. However,

hysteresis nonlinearity of smart actuators effect the performances of actuators and

let may become the vibration control systems using smart actuators are unstable.

Therefore, the vibration control using smart materials is one of the interesting sub-

jects. The study of the nonlinear vibration control of a flexible plate using smart

actuators with hysteresis nonlinearity is a challenging topic in the control field.

In addition, suppression of the vibration and compensation of the nonlinearity

are important issues for obtaining the desired vibration control performance of a

flexible plate [27],-,[29].

Contrary to linear system theory, it is difficult to find a general control theory

to all nonlinear systems [32],-,[33]. The developments in the field of design of

nonlinear control system have motivated many researchers to work in this field.

Some nonlinear control approaches guarantee the stability of nonlinear system

by using Lyapunov method with the condition of system states being observable.

However, for nonlinear system, it is difficult to observe every state. Without

considering the knowledge of system state, bounded input bounded output (BIBO)

stability is easier than Lyapunov stability to be realized to guarantee the robust

stabilization for nonlinear systems.

In recent years, nonlinear control method has been proposed based on operator

theory. The robust right coprime factorization approach is used in this method

[34],-,[40]. In addition, the bounded input bounded output (BIBO) stability of the

nonlinear system can be guaranteed by this method. The output tracking problem

of nonlinear systems has been considered in by extending the design scheme.
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More recently, an applicable condition for the robust right coprime factorization

has been proposed, and the robust stabilization of the nonlinear control system

can be obtained by using the condition in practical applications, such as nonlinear

vibration control design of flexible arm [72], nonlinear control for peltier actuated

process [75] and so on. By using the approaches of the above literatures, nonlinear

plants can be described by two factors of right coprime factorization of these

plants. As a result, it brings advantage to apply the above methods to nonlinear

vibration control using smart actuators [69],-,[98].

1.2 Motivation

In the field of vibration control using smart actuators, many studies have beenmade

to improve vibration control performance. Among them, one of the important

issues is to guarantee the stability of the nonlinear control system and improve the

control performance by compensating for the nonlinearity.

Considering nonlinear vibration control using piezoelectric actuator with hys-

teresis nonlinearity, the stabilization and desired control performance of the non-

linear system should be realized. The operator based robust right coprime factor-

ization method is proved to be effective for the control and design of the nonlinear

system. In this dissertation, for solving the above problems, operator-based non-

linear vibration control schemes are provided.

1.3 Contribution

This dissertation provides the nonlinear vibration control schemes for a flexible

plate using piezoelectric actuatorwith hysteresis nonlinearity, which can be applied

for the design of the vibration control system using smart actuators with hysteresis

nonlinearity for the purpose of realizing the desired vibration control performance



4 CHAPTER 1. INTRODUCTION

and guaranteeing the robust stability of the designed control systems. The main

contributions of this study are summarized as follows.

(1) The plate with a free vibration and perturbations

For the plate with a free vibration and perturbations, operator-based n-times

feedback loops are designed. Simultaneously, the desired compensation perfor-

mance of tracking and of perturbations are obtained by increasing the number of

designed n-times feedback loops. In this case, we confirmed that the stability of

the control system could be guaranteed even when there with perturbations. The

numerical simulation and experimental results are shown to verify the effectiveness

of the control scheme.

(2) The plate with a forced vibration

For the plate with a forced vibration, a controller including characteristics of

Proportional-Integral-Differential (PID) controller is designed to improve vibration

control performance. And the designed controller can be controlled by only

one design parameter without adjusting PID parameters. The vibration control

performance of designed control scheme is confirmed by numerical simulation

and experiment.

(3) Operator-based some new vibration control approaches

Operator based some new vibration control approaches are introduced. The

time-varying unimodular function based robust right coprime factorization is de-

signed to realize the vibration control performance. In this case, the condition of

output tends to zero is given by the inverse of the time-varying unimodular function

tends to zero. And, the operator based system mismatching compensation method

is given. The vibration suppression condition is given in systemmismatching com-

pensation approach. Operator based estimation structure is considered in unknown

input nonlinearity compensation approach. The vibration control performances of

the designed control schemes are confirmed.
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1.4 Organization of the dissertation

This dissertation is organized as follows.

In Chapter 2, some mathematical preliminaries including the basic definitions

and notations are provided for the nonlinear control design in this dissertation. For

addressing the hysteresis nonlinearity of piezoelectric actuator, the P-I hysteresis

model is used. The model of flexible plate is given by theory of thin plates. Based

on these theories and problem setup, nonlinear vibration control schemes are stated

in this dissertation.

In Chapter 3, operator based nonlinear control scheme is designed for plate

with a free vibration and perturbations. Based on the dynamicmodel of the flexible

plate, operator-based controllers are designed to guarantee the robust stability of

the nonlinear control system. In addition, operator-based compensation method

is given to ensure the desired vibration control performance of the flexible plate

with a free vibration and sudden perturbations. Both of numerical simulation and

experimental results are shown to verify the effectiveness of the proposed control

scheme.

In Chapter 4, for considering plate with a forced vibration, the nonlinear control

scheme is designed based on operator theory. A controller with characteristics of

Proportional-Integral-Differential (PID) controller is considered. After that, for

compensating the hysteresis nonlinearity and improving forced vibration vibration

control performance, the compensator is designed by operator B and DPI . The

effectiveness of the designed control scheme is confirmed by numerical simulation

and experimental results.

In Chapter 5, operator based some vibration control approaches are designed.

The time-varying unimodular function based robust right coprime factorization

approach is considered to realize the vibration control performance. The operator

based system mismatching compensation approach is designed for plate with a
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forced vibration. Operator based unknown input nonlinearity compensation is

designed to improve the vibration control performance. Both of numerical simu-

lation and experiment results are shown to verify the effectiveness of the proposed

design scheme.

In Chapter 6, the proposed control schemes in this dissertation are summa-

rized. That is, the nonlinear vibration control systems of a flexible plate using

piezoelectric actuator with hysteresis nonlinearity are BIBO stable and the desired

control performances are realized by proposed nonlinear control schemes.



Chapter 2

Preliminaries and problem setup

2.1 Introduction

Coprime factorization for nonlinear feedback control systems has been one of the

approach for nonlinear systems analysis, design, stabilization and control, and has

been consistently pursued with tremendous effort by many researchers in the field.

In this chapter, the mathematical preliminaries and problems setup are provided

to serve the theoretical basis for the research and the following chapters in this

dissertation.

In Section 2.2, definitions of spaces such as normed linear space, Banach

space, extended linear space are introduced firstly. Then, definitions of operators

are described. Based on these definitions, the right coprime factorization are

introduced.

In Section 2.3, for addressing the hysteresis nonlinearity of piezoelectric actu-

ator, model of piezoelectric actuator is introduced by P-I hysteresis model.

In Section 2.4, a dynamics model of flexible plate with piezoelectric actuator

is introduced, and its model based on theory of thin plates.

In Section 2.5, the experimental devices on this dissertation is introduced.

In Section 2.6, the problem setup of this dissertation is given. That is, re-

7
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alization issues of operator based robust nonlinear vibration control systems is

studied.

2.2 Preliminaries

In this section, some fundamental definitions on spaces and operators for operator

theory are introduced.

2.2.1 Definitions of spaces

In mathematics, two basic spaces include a linear spaces (also called a vector

spaces) and a topological spaces. The linear spaces are of algebraic nature. On

linear spaces, there are real linear spaces (over the field of real numbers), complex

linear spaces (over the field of complex numbers), andmore generally, linear spaces

over any field. In this dissertation, the used space is based on linear spaces.

Normed linear spaces

A space V of time functions, V is said to be a vector space if it is closed under

addition and scalar multiplication. The space V is said to be normed if each

element v inV is endowed with norm ∥ · ∥V , satisfying the follow three conditions:

(1) ∥ v ∥≥ 0; and ∥ v ∥= 0 if and only if v = 0;

(2) ∥ av ∥=| a | ∥ v ∥, for any scalar a;
(3) ∥ v1 + v2 ∥≤∥ v1 ∥ + ∥ v2 ∥ ;

Banach space

In mathematics, a Banach space is a complete normed vector space. This means

that a Banach space is a vector space V over the real or complex numbers with a

norm ∥ · ∥ such that every Cauchy sequence (with respect to the metric d(b1, b2)=∥
b1 − b2 ∥) in V has a limit in V .
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Extended linear space

letV be a Banach space of real-valuedmeasurable functionswhich is defined on the

time domain [0, ∞). If the following linear vector space (usually not complete) of

real-valued measurable functions f (t)which is defined on the time domain [0, ∞):

V e
n = { f (t) :} ∥ fT ∥Vn< ∞, ∀T ∈ [0, ∞)} (2.1)

where fT is the truncation of f (t) by T which is defined as

fT (t) =
{

f (t), t ≤ T
0, t > T

V e
n is called an extended Banach space associated with Vn.

2.2.2 Definitions of operators

Let U and Y be linear spaces defined in the field of real numbers, and let Us

and Ys be two normed linear spaces, called the stable subspaces of U and Y ,

respectively, defined suitably by two normed linear spaces under certain norm

denoted Us = {u ∈ U :∥ u ∥< ∞} and Ys = {y ∈ Y :∥ y ∥< ∞}.

Operator

An operator F: U → S is generally a mapping that acts on the elements of input

space U to produce other elements of the output space S. The operator F can be

expressed as y(t) = F(u)(t) where u(t) is the element of U and y(t) is the element

of S.

Linear and nonlinear operator

Let S : U → Y be an operator mapping from input space U to the output space

Y , and denote by D(S) and R(S), respectively, the domain and range of S. If the
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operator S : D(S) → Y satisfies Addition Rule and Multiplication Rule

S : av1 + bv2 → aS(v1) + bS(v2)

for all v1, v2 ∈ D(S) and all a, b ∈ R, then S is said to be linear operator;

otherwise, it is called to be nonlinear operator.Since linearity is a special case of

nonlinearity, in what follows "nonlinear" will always mean "not necessarily linear"

unless otherwise indicated.

Bounded input bounded output (BIBO) stability

Let S be a nonlinear operator that acts on its domain D(S) ⊆ U and range

R(S) ⊆ Y . S is said to be input-output stable, if S(U) ⊆ Y . Another crucial

definition is bounded input bounded output (BIBO) stability. From the viewpoint

of signal processing, the BIBO is form of stability for linear signals and systems

with taking inputs. If S maps all input functions from Us into the output space Ys,

such that S(Us) ⊆ Ys, then operator S is said to be bounded input bounded output

(BIBO) stable or simply stable. That is, the output will be bounded for every input

to the system. Otherwise, S is said to be unstable, when S maps some inputs from

Us to Y e\Ys (if not empty). For any stable operators defined here and later, in this

dissertation they always mean BIBO stable.

Invertible

An operator M is called invertible if there exists an operator F such that

M ◦ F = F ◦ M = I

where I denotes the identity operator, F is said to be the inverse of M expressed in

the form of M−1, in which ◦ denotes the operation defined in the operator theory

which can be simple presented as M ◦ F.
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Unimodular operator

F (U,Y ) is the set of stable operators fromU toY . Then, F (U,Y ) contains a subset
defined by ∑

(U,Y ) ={L : L ∈ S(U,Y ),

L is invertible with L−1 ∈ F (U,Y )}.

Elements of
∑(U,Y ) are said to be unimodular operators.

Lipschitz operator

Let L(U,Y ) be the family of all nonlinear operators mapping form U into Y . Let

O be a subset of U and K(O,Y ) be the family of operators A in L(U,Y ) with
D(A) = D. A semi-norm on K(O,Y ) is denoted by

∥S∥ := sup
x1,x2∈O
x1,x2

∥S(x1) − S(x2)∥Y
∥x1 − x2∥U

And, it is called the Lipschitz semi-norm of the operator S on Us.

Note that, in general, ∥ S ∥= 0 does not necessarily imply S = 0. In fact,

∥ S ∥= 0 if and only if S is a constant-operator (need not be zero) that maps all

elements from Us to the same element in Ys.

For any fixed x0 ∈ Us, the number

∥ S ∥Lip:=∥ S(x0) ∥Ys + sup
x1,x2∈Us
x1,x2

∥ S(x1) − S(x2) ∥Ys
∥ x1 − x2 ∥Xs

(2.2)

defines a norm for all S ∈ Lip(Us,Ys). Then, ∥ S ∥Lip is called the Lipschitz norm
of S defined by x0 ∈ Us. It is worth reminding that, it amounts to showing that

∥ S ∥Lip= 0 implies S = 0, which called zero operator. It is also evident that a

Lipschitz operator is both bounded and continuous on its domain.
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Generalized Lipschitz operator

Let L(X,Y ) denote the family of two normed linear operators over the complex

numbers from X toY . LetN(X,Y ) be the family of all nonlinear operatorsmapping

from X into Y , which are two Banach spaces. Obviously, L(X,Y ) ⊆ N(X,Y ). In
the case that X = Y , we use the notation L(X) and N(X), respectively, instead of

L(X,Y ) and N(X,Y ) for simplicity.

Let Xu and Yu be two extended linear spaces, which are associated with two

given Banach spaces X and Y of real-valued measurable functions defined on the

time domain [0,∞), respectively. LetU be a subset of Xu. If there exists a constant

L such that

∥ [S(x1)]T − [S(x2)]T ∥Yu≤ L ∥ [x1]T − [x2]T ∥Xu (2.3)

for all x1, x2 ∈ U and for all T ∈ [0;∞). The nonlinear operator S : U −→ Yu is

called a generalized Lipschitz operator on U, and its actual norm can be given by

∥ S ∥Lip =∥ S(x0) ∥Yu + ∥ S ∥=∥ S(x0) ∥Yu

+ sup
T∈[0,∞)

sup
x1,x2∈U
x1,x2

∥ [S(x1)]T − [S(x2)]T ∥Yu
∥ [x1]T − [x2]T ∥Xu

(2.4)

for any fixed x0 ∈ U.

Note that the least such constants L shown in Eq. (2.3) is given by

∥ S ∥:= sup
T∈[0,∞)

sup
u1,u2∈De

u1,u2

∥ [Q(u1)]T − [Q(u2)]T ∥
∥ [u1]T − [u2]T ∥ (2.5)

which is a semi-norm for general nonlinear operators.

2.2.3 Operator-based right coprime factorization

A nonlinear plant with uncertainties is denoted as operator P + ∆P : U → Y .

Where P denotes the nominal plant, ∆P denote uncertainties of the system. U and

Y are the input and output space of the system.
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Right factorization

Figure 2.1: Right factorization of a nominal plant

The nominal plant operator P : U → Y is shown in Fig. 2.1. The given plant

operator P : U → Y is said to have a right factorization, if there exist a linear space

W and two stable operators N : W → Y and D : E → U such that D is invertible

and P = ND−1. Such a factorization of P is denoted by (N,D) and space W is

called a quasi-state space of P.

Right coprime factorization

Let (N,D) be a right factorization of P. If there exist two stable operators A : Y →
U and B : U → U that satisfying the following Bezout identity, the P is said to

have a right coprime factorization, or factorization is said to be coprime.

AN + BD = L, for some L ∈ U(W, U),

where B is invertible and L is an unimodular operator. The right coprime

factorization of a nonlinear feedback system is shown in Fig. 2.2.

Robust condition

Generally speaking, if the system with uncertainty remains stable, the system

is said to have robust stability property. As to the nonlinear feedback control
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Figure 2.2: A nonlinear feedback system

systemswith unknown bounded uncertainty, a robust condition about right coprime

factorization was derived. The plant with uncertainty denoted as operator P+∆P,

if the following Bezout identity is satisfied,

A(N + ∆N) + BD = L̃ (2.6)

the BIBO stability of the nonlinear system with uncertainty can be guaranteed.

Where, L̃ is an unimodular operator. For obtaining this condition, referred that if

A(N + ∆N) = AN (2.7)

under the condition of satisfaction of R(∆N) ⊆ N(A), where N(A) is the null set
defined by

N(A) = {x : x ∈ D(A) and A(x + y) = A(y) for all y ∈ D(A)}

Based on the proposed sufficient condition, the fact that

A(N + ∆N) + BD = AN + BD = L
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is obtained, which guarantee the robust stability of the nonlinear systems with

unknown bounded perturbations.

However, the nonlinear systems with unknown bounded uncertainty is crucial

to realize. Therefore, a generalized sufficient condition is proposed in [65] which
compared with [33] in order to improve and extend the condition.

Lemma 2.1 Let De be a linear subspace of the extended linear spaceUe asso-

ciated with a given Banach spaceU, moreover denoted (A(N +∆N) − AN)M−1 ∈
Lip(De). Denote the Bezout identity of the nominal system and the exact plant

respected to ∆N in the form of AN + BD = L, A(N +∆N)+ BD = L̃ , respectively.

If

∥ (A(N + ∆N) − AN)M−1 ∥Lip< 1

the system is stable, where ∥ · ∥Lip denotes Lipschitz operator norm.

Figure 2.3: A nonlinear system with uncertainty

2.3 Model of piezoelectric actuator

There are many hysteresis models have been proposed, such as Preisach model,

Prandtl-Ishlinskii model, Maxwell-Slip model, Krasnosel’skii-Pokrovskii model

and so on. Among them, the Prandtl-Ishlinskii model is a subclass of the Preisach
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model. The Prandtl-Ishlinskii model has the same level of expression as the

Preisach model, and the description is concise than the Preisach model. Further,

the Prandtl-Ishlinskii model can be expressed based on both operators, called

Play hysteresis operator or Stop hysteresis operator. In this dissertation, the Play

hysteresis operator based Prandtl-Ishlinskii model is considered to express the

hysteresis nonlinearity of the piezoelectric actuator.

Play Hysteresis Operator

The Play hysteresis operator is defined as follows.

Fh(u(0); u∗1) = fh(u(0), u∗1)

Fh(u(t); u∗1) = fh(u(t), Fh(u(ti); u∗1)) (2.8)

( ti < t ≤ ti+1, 0 ≤ i ≤ N − 1 )

fh(u, q) = max(u − h,min(u + h, q)) (2.9)

( 0 = t0 < t1 < · · · < tN = tE, [0, tE ] )

where u(t) is the input, u∗1 is the initial value, and h is the threshold value of Play

hysteresis operator Fh(u)(t). The u(t) in ti < t ≤ ti + 1 is piecewise monotonous

with respect to t. By defining Fh(u)(t) as Eq. (2.10), it is possible to substitute

Eqs. (2.8) and (2.9) of the Play hysteresis operator by Eq. (2.11).

Fh(u)(t) = Fh(u(t); u∗1) (2.10)

Fh(u)(t) =


u(t) + h, u(t) + h ≤ Fh(u(ti))
Fh(u)(ti), −h < u(t) − Fh(u)(ti) < h
u(t) − h, u(t) − h ≥ Fh(u)(ti)

(2.11)
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Prandtl-Ishlinskii Model

Based on Play hysteresis operator, the P-I hysteresis model is represented as

following equation.

PI(u)(t) =
∫ H

0
p(h)Fh(u)(t)dh

= DPI(u)(t) + ∆PI(u)(t) (2.12)

where DPI is an invertible and linearly controllable part, ∆PI is its remaining part.

And can be expressed as Eqs. (2.13) and (2.13).

DPI(u)(t) =
∫ hx

0
p(h)dh · u(t) (2.13)

∆PI(u)(t) = −
∫ hx

0
Snhp(h)dh

+

∫ H

hx
p(h)[Fh(u)(ti) − u(t)]dh (2.14)

Sn =
{
1, if u(t) − Fh(u)(ti) ≥ 0
−1, if u(t) − Fh(u)(ti) < 0 (2.15)

where hx is themaximumnumber that satisfies h ∈ [0, hx] and h ≤ |u(t)−Fh(u)(ti)|
when h = [h, hx]. And, p(h) is p(h) ≥ 0, the unknown density function and

satisfies ∫ ∞

0
hp(h)dh < ∞ (2.16)

When H exists and h > H, the density function p(h) satisfies condition of

p(h) = 0, (h > H).

2.4 Model of flexible plate

The controlled object as shown in Fig. 2.4. In Fig. 2.4, p1 − p3 denote piezoelectric

actuators, and a, b represent length of ϵ , η directions, respectively. Where l
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denotes the distance from flexible plate to the center of the servomotor, and α

is an angle between a x-axis and ϵ-axis. Then the flexible plate is vibrated by

the reciprocating movement ω f (t) of the servo-motor. The activated piezoelectric

actuators will induce moments in the flexible plate, and these moments can be

described as following equation.

∂2mϵ

∂ϵ2
= Mp[δ′(ϵ − ϵ1pi ) − δ′(ϵ − ϵ2pi )][H(η − η1pi ) − H(η − η2pi )] (2.17)

∂2mη

∂η2
= Mp[H(ϵ − ϵ1pi ) − H(ϵ − ϵ2pi )][δ′(η − η1pi ) − δ′(η − η2pi )] (2.18)

where Mp, H(·), δ′(·) are the moments from piezoelectric actuators, Heaviside

function, and differentiation of a delta function, respectively.

Figure 2.4: Controlled object.

The equation of motion for the flexible plate that is considered piezoelectric

actuators and external force is represented as the following equation.

Ds∇4ω + ρts
∂2ω

∂t2
+ c̄s

∂ω

∂t
= Fd(t) +

∂2mϵ

∂ϵ2
+
∂2mη

∂η2
(2.19)

where Fd(t) denotes a external force, and parameters of the flexible plate are shown

in Table 2.1.
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Table 2.1: Parameters of the flexible plate.

Definition Value Units
Young’s Modulus E = 2.94 × 109 N/m2

Poisson’s Ratio ν = 0.38 −
Density ρ = 1430 kg/m3

Length of ϵ Direction a = 0.31 m
Length of η Direction b = 0.27 m

Thickness ts = 2 × 10−3 m
Bending Stiffness Ds =

Et3s
12(1−ν2) N ·m

Damping Ratio c̄s = 0.6 −

A displacement ω(t) of the flexible plate is given as follows using eigenfunc-

tions ϕm(ϵ) and ψn(η) in ϵ and η directions.

ω(t) =
∞∑

m=1

∞∑
n=1

ϕm(ϵ)ψn(η) f (t) (2.20)

where m and n are vibration order mode of ϵ and η directions, respectively.

According to the theory of thin plate, eigenfunctions ϕm(ϵ) and ψn(η) are described
as follows.

ϕm(ϵ) = cosh
γϵ
a
ϵ − cos

γϵ
a
ϵ − sinh

γϵ
a
ϵ + sin

γϵ
a
ϵ

ψ1(η) = 1

ψ2(η) =
√
3(1 − 2η/b)

ψn(η) = cosh
γη

b
η + cos

γη

b
η − sinh

γη

b
η − sin

γη

b
η, (n > 2)

and where γϵ = (2m − 1)π/2，γη = (2n − 3)π/2. From orthogonality of eigen-

functions, Eq. (2.21) can be obtained by substituting Eq. (2.20) to Eq. (2.19).

k1
d2 f (t)
dt2

+ k2
df (t)
dt
+ k3 f (t) = k4Mp(t) + k5Fd(t) (2.21)
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where f (t) is displacement in a mode coordinates system of the flexible plate,

and

k1 = ρts

∫ a

0
ϕ2m(ϵ)dϵ

∫ b

0
ψ2
n(η)dη

k2 = c̄s

∫ a

0
ϕ2m(ϵ)dϵ

∫ b

0
ψ2
n(η)dη

k3 = Ds

(
2
∫ a

0

d2ϕm(ϵ)
dϵ2

ϕm(ϵ)dϵ
∫ b

0

d2ψn(η)
dη2

ψn(η)dη

+

∫ a

0

d4ϕm(ϵ)
dϵ4

ϕm(ϵ)dϵ
∫ b

0
ψ2
n(η)dη

+

∫ a

0
ϕ2m(ϵ)dϵ

∫ b

0

d4ψn(η)
dη4

ψn(η)dη
)

k4 =
(
dϕm(ϵ2pi )

dϵ
−
dϕm(ϵ1pi )

dϵ

) ∫ η2pi

η1pi

ψn(η)dη

+

(
dψn(η2pi )

dη
−
dψn(η1pi )

dη

) ∫ ϵ2pi

ϵ1pi

ϕm(ϵ)dϵ

k5 = ρts

(∫ a

0
ϕm(ϵ)dϵ

∫ b

0
ψn(η)ηdη

+

∫ a

0
ϕm(ϵ)ϵ cos(α)dϵ

∫ b

0
ψn(η)dη

+ l
∫ a

0
ϕm(ϵ)dϵ

∫ b

0
ψn(η)dη

)
Then we obtain

f (t) = L−1
( 1
k1s2 + k2s + k3

)
∗ (k4Mp(t) + k5Fd(t)) (2.22)

and Eq. (2.20) can be represented as

ω(t)=
∞∑

m=1

∞∑
n=1

[
Jmn

∫ t

0
e−αmn(t−τ)

· sin βmn(t − τ)(k4Mp(τ) + k5Fd(τ))dτ
]

(2.23)
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where

Jmn =
ϕm(ϵ)ψn(η)

k1

√
k3
k1
− k22

4k21

, αmn =
k2
2k1

, βmn =

√√
k3
k1

−
k22
4k21

Figure 2.5: Experimental devices.

2.5 Experimental devices

The experimental devices and detailed explanation of the experimental system are

shown in Figs. 2.5 and 2.6, respectively. The piezoelectric actuators are attached

on the one side of the flexible plate, and the piezoelectric sensors are attached

on the other side opposite to the actuators. The vibration of the flexible plate

is generated by servo-motor. In experiments, controllers are designed in Visual

C++ 6.0. The Analog-to-Digital (A/D) and Digital-to-Analog (D/A) conversion

are performed by the PCI board. After that, the control input is transmitted to
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piezoelectric actuators by passing through a direct voltage amplifier from the PCI-

3521 board. In this experiment, the output of the direct voltage amplifier is limited

between +100V and -100V.

Figure 2.6: Detailed explanation of the experimental system.

2.6 Problem setup

The need of studying on vibration control of flexible plate with smart actuators

has been motivated by the increasing complicated requirement of the practical

problems in many engineering fields. However, the vibration control performance

effected by hysteresis nonlinearity of smart actuator. In addition, how to design the

nonlinear system to guarantee stability and to ensure desired control performance

are difficult problems on vibration control using smart actuators.

Therefore, for dealing with these problems more effectively, robust right co-

prime factorization approach is used to consider the vibration control on the flexible

plate using piezoelectric actuator with hysteresis nonlinearity, which is the main

objective of this dissertation. In details, the vibration control schemes of the plate
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Figure 2.7: A plant with hystersis nonlinerarty.

with a free vibration and perturbations, and of the plate with a forced vibration are

discussed respectively in the following chapters.

2.7 Conclusion

In this chapter, the mathematical preliminaries including the basic definitions

and notations are introduced. Especially, the definitions of spaces and Lipschitz

operators are introduced, which serve a foundation for the dissertation. The

models of piezoelectric actuator and flexible plate are discussed. In addition, the

experimental devices on this dissertation is introduced. After these preliminaries,

the problems discussed in this dissertation are defined.



Chapter 3

Operator-based nonlinear control
scheme for plate with a free
vibration and perturbations

3.1 Introduction

The developments in the field of smart materials have motivated many researchers

to work in the field of vibration control. Recently, smart actuators have been pro-

posed such as piezoelectric element, shape memory alloy, magnetic fluid actuator,

and so on. Among them, the piezoelectric elements can be used as both actuators

and sensors due to the piezoelectric effect. However, the piezoelectric actuator

has hysteresis nonlinearity. When using the piezoelectric element, if linearly ap-

proximated or ignored the hysteresis nonlinearity of the piezoelectric element, the

control performance may deteriorate or the designed control system may become

unstable. Therefore, when using the piezoelectric actuator, we need to consider

the hysteresis nonlinearity.

In recent years, the nonlinear control method based on right coprime factor-

ization approach has been proposed. Also, operator theory is one of the nonlinear

control methods, and it can guarantee the Bounded Input Bounded Output (BIBO)

24
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stability of the nonlinear feedback control system by robust right coprime factor-

ization. Considering the flexible plate with a free vibration and perturbations,

operator-based nonlinear control scheme is shown in this chapter.

In Section 3.2, based on the dynamic model of the flexible plate, operator-

based controllers are designed to guarantee the robust stability of the nonlinear

control system. In addition, for ensuring the desired vibration control performance

of the flexible plate with a free vibration and sudden perturbations, operator-

based compensation method is given by the proposed design scheme. In the

designed compensator, the desired compensation performances of tracking and of

perturbations are obtained by increasing the number of designed n-times feedback

loops.

In Section 3.3, based on the designed nonlinear control system, effectiveness

of the proposed control scheme is discussed by numerical simulation results.

In Section 3.4, the designed nonlinear control scheme is performed by experi-

ment. The experimental results are shown to confirm the control performance of

the designed control scheme.

In Section 3.5, the conclusion of this chapter is given.

3.2 Operator-based nonlinear free vibration control
of plate with sudden perturbations

In this section, the flexible plate with a free vibration and perturbations case is

considered. The designed nonlinear control system is shown in Fig. 3.1. In Fig.

3.1, U, U∗, Y , andW are input space of the P-I hysteresis model, output spaces of

the P-I hysteresis model and perturbations, output space of the original nonlinear

plant, and quasi-state space, respectively. In this design scheme, the conditions of

perturbations d ∈ Up and Up ⊆ U are considered. And, the target of this control

is stabilizing the vibration at the flexible plate. Therefore, the target value of r = 0
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is considered in this design scheme.

For guaranteeing the stability of the nonlinear systemwith hysteresis nonlinear-

ity, the operator based controllers are designed. After that, design the compensator

C to obtain tracking performance and desired perturbations compensation perfor-

mance. In this design scheme, we consider the nominal vibration mode with a

first-order mode, and uncertainties with second- and third-order modes. The plant

with uncertainties is considered as the following equation.

Figure 3.1: Proposed control system for plate with a free vibration and perturba-
tions.

[P + ∆P](u∗)(t) = (1 + ∆)
[
J11

∫ t

0
e−α11(t−τ) sin β11(t − τ)u∗(τ)dτ

]
(3.1)

where ∆ denote uncertainties.

3.2.1 Controllers design for stability

The plant [P + ∆P] can be right factorized as follows.

[P + ∆P](u∗)(t) = (N + ∆N)D−1(u∗)(t)

[N + ∆N](ω)(t) = (1 + ∆)

·
[
J11

∫ t

0
e−α11(t−τ) sin β11(t − τ)ω(τ)dτ

]
(3.2)

D(ω)(t) = I(ω)(t) (3.3)
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where I is identity operator. Considering the P-I hysteresis model, the invertible

and linearly controllable part DPI is used to design the controller for stability of

the nonlinear control system. And the remaining part ∆PI is treated as a bounded

uncertainty. The operator D̃ is treated as D̃ = D−1
PID. And, when there exist two

stable operators A and B that satisfy Bezout identity, the designed controllers can

guarantee BIBO stability of the nonlinear system.

AN + BD̃ = M (3.4)

where M is an unimodular operator. The designed controllers A and B are shown

in the following equations.

A(y)(t) = (1 − Km)
β11J11

( Üy(t) + 2α11 Ûy(t) + (α2
11 + β

2
11)y(t)) (3.5)

B(u)(t) = KmDPIu(t) (3.6)

where Km is a designed parameter. In addition, under the following equations

are satisfied, robust stability of the designed nonlinear control system can be

guaranteed.

A(N + ∆N) + BD̃ = M̃ (3.7)

∥ [A(N + ∆N) − AN]M−1 ∥Lip< 1 (3.8)

where M̃ is an unimodular operator.

3.2.2 Compensation method for tracking and perturbations

Considering Fig. 3.1, the output y(t) can be expressed by

y(t) = (N + ∆N)D−1(DPIB−1(r∗(t) − b∗(t))

+∆PI(u)(t) + d(t))

= (N + ∆N)(A(N + ∆N) + BD̃)−1

·(r∗(t) + BD−1
PI (∆PI(u)(t) + d(t)))

= (N + ∆N)M̃−1(r∗(t) + BD−1
PI ∆̃) (3.9)
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where ∆̃ = ∆PI(u)(t) + d(t). In Eq. (3.9), if there only using controllers A and B,

the output y(t) can not track the target value r∗(t). Therefore, compensator C is

designed to compensate for the perturbations of the flexible plate and to ensure the

desired tracking performance. From Fig. 3.1 and Eq. (3.9), the output y(t) can be
obtained by the following equations.

e(t) = r(t) − b(t)

b(t) = y(t) = (N + ∆N)M̃−1(C(e)(t) + BD−1
PI ∆̃)

r(t) = e(t) + b(t) = e(t) + (N + ∆N)M̃−1(C(e)(t) + BD−1
PI ∆̃)

e(t) = (I + (N + ∆N)M̃−1C)−1(r(t) − (N + ∆N)M̃−1BD−1
PI ∆̃)

y(t) = b(t) = r(t) − e(t)

= r(t) − (I + (N + ∆N)M̃−1C)−1

·(r(t) − (N + ∆N)M̃−1BD−1
PI ∆̃) (3.10)

In Eq. (3.10), for obtaining the desired tracking performance, compensator C is

designed to satisfy the following conditions.

1. The designed compensator C is stable.

2. In Eq. (3.10), when the condition of e(t) → 0 can be satisfied by the

designed compensator C, (y(t) − r(t)) can be made arbitrarily small.

For designing compensator C to satisfy the above conditions 1 and 2, operator-

based design scheme is considered.

First, from Eqs. (3.7) and (3.9), we use the operators [N + ∆N] and M̃ design

two stable operators A0 and B0 that satisfy Bezout identity.

A0(N + ∆N) + B0M̃ = M0 (3.11)
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where M0 is an unimodular operator.

Next, we use the operators [N + ∆N] and M0 design each feedback loop of

the n-times feedback loops to satisfy Bezout identity, respectively. The designed

n-times feedback loops shown in the following equations.

A1(N + ∆N) + B1M0 = M1 (3.12)
...

An(N + ∆N) + BnMn−1 = Mn (3.13)

where M0,M1, · · · ,Mn are unimodular operators, A1 to An and B1 to Bn are

designed stable operators, respectively. And, the designed operators are shown as

follows.

A0(y)(t) =
s(t)

J11β11

(
a0

a0 + |s(t)|

)c0
(3.14)

s(t) = (kpy(t) + kd Ûy(t)) (3.15)

B0 = k0 (3.16)

An = knA0 (3.17)

B1 = · · · = Bn = kM−1
t < 1 (3.18)

where a0, c0, kp, kd , k0, and 0 < k < 1 are designed parameters, respectively.M−1
t

is an designed unimodular operator. When each feedback loop of the designed

n-times feedback loops satisfies Bezout identity, the following conditions can be

obtained.

(a) When the designed operator B0 and the designed unimodular operator M−1
t

satisfy conditions of B0M̃ = I and M−1
t M0 = I, the following conditions
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can be obtained.

A0(N + ∆N) + B0M̃ = (I + α) = M0

A1(N + ∆N) + B1M0 = k(I + α) = kM0 = M1

A2(N + ∆N) + B2M1 = k2(I + α) = k2M0 = M2
...

An(N + ∆N) + BnMn−1 = kn(I + α) = knM0 = Mn

where I is identity operator andα = A0(N+∆N). In this case, the unimodular

operators M0,M1, · · · ,Mn satisfy geometric progression with a geometric

ratio of 0 < k < 1. Therefore, the Mn can be made arbitrarily small.

(b) When the conditions of B0M̃ = I and M−1
t M0 = I can not be satisfied, the

unimodular operator Mn also can be made arbitrarily small. Because the

each feedback loop of the n-times feedback loops satisfy Bezout identity.

Moreover, the designed parameters 0 < k < 1 and kM−1
t < 1. Therefore,

when n → ∞, conditions of An(N +∆N) → 0 and BnMn−1 → 0 also can be

obtained.

Thus, the condition of Mn → 0 can be obtained by the designed compensator C.

The equivalent system of Fig. 3.1 is shown in Fig. 3.2. Considering Fig. 3.2 and

Eq. (3.10), the output y(t) can be obtained by the following equations.

b(t) = y(t) = (N + ∆N)M−1
n (e(t) + ∆p)

r(t) = e(t) + b(t) = e(t) + (N + ∆N)M−1
n (e(t) + ∆p)

e(t) = (I + (N + ∆N)M−1
n )−1(r(t) − (N + ∆N)M−1

n ∆p)

y(t) = b(t) = r(t) − e(t)

= r(t) − (I + (N + ∆N)M−1
n )−1(r(t) − (N + ∆N)M−1

n ∆p) (3.19)
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Figure 3.2: Equivalent system of Figure 3.1.

where

∆p = Bn · · · B0BD−1
PI ∆̃ (3.20)

FromEqs. (3.18), (3.19), and (3.20), the conditions of tracking and of perturbations

compensation can be obtained as follows.

I) Condition of perturbations compensation:

When n → ∞, conditions ofMn → 0, (I+(N+∆N)M−1
n )−1(N+∆N)M−1

n →
I, and BB0 · · · Bn → 0 can be obtained. Therefore, the ∆p can be made

arbitrarily small.

II) Condition of tracking:

In Eq. (3.19), when n → ∞, Mn → 0, and ∆p → 0, inverse term (I +
(N + ∆N)M−1

n )−1(r)(t) of the right-hand side becomes arbitrarily small.

Therefore, (y(t) − r(t)) can be made arbitrarily small.

3.3 Numerical simulations

In this section, effectiveness of the proposed design scheme will be discussed

by numerical simulations. The simulation results show the vibration control
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performance of the flexible plate. In this simulations, only used the first-order

mode of the flexible plate as the nominal plant. The second- and third-order

modes of this simulation are treated as uncertainties. The sampling time is 0.01s.

The flexible plate is added the moment fd(t) = 0.1sin(2π f0t) at the bottom of it

to make a vibration when t ≤ 5s. Then t > 5s, we start to control the vibration

of the flexible plate with free vibration. And, the perturbations d(t) = 0.5 fd(t) is
added at t ≥ 8s. Where f0 = 32.74/2π[Hz] is eigenfrequency of the flexible plate.
The density function p(h) = 0.00038e−0.00086(h−1)2 where h ∈ [0, 30] of the P-I

hysteresis model is used in this simulation. The parameters of designed controllers

are shown in Table 3.1.

Table 3.1: Parameters of controllers

Parameter Value Units
Km 0.53 −
a0 0.25 −
c0 2.4 −
kp 45 −
kd 18 −
k0 0.8 −
k 0.9 −
Mt 1.1 −

Sampling Time 0.01 s
Simulation Time 15 s

Simulation results are shown in the following figures.

In Fig. 3.3, the simulation result without control shows a dashed line. At the

full line in Fig. 3.3, we show the result of simulation only using controllers A and

B case. The corresponding control input to piezoelectric actuators is shown in

Fig. 3.4. From Figs. 3.3 and 3.4, when the flexible plate with a free vibration and

sudden perturbations, we can confirm that the stability of the nonlinear system can
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Figure 3.3: Outputs of the system with and without control (without considering
compensator C; with a free vibration and sudden perturbations).
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Figure 3.4: Control input of Figure 3.3 (without compensator C).
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Figure 3.5: Comparison between the proposed method n = 4 and n = 9.
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Figure 3.6: Control input of Figure 3.5 (with compensator C, n = 4 ).
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Figure 3.7: Control input of Figure 3.5 (with compensator C, n = 9 ).

be guaranteed by the designed controllers A and B.

Next, for confirming the tracking performance and perturbations compensation

performance by the condition of n → ∞, the results of n = 4 and of n = 9 are

compared in without exceeding the maximum control input. The corresponding

comparisons of the outputs are shown in Fig. 3.5. Corresponding control inputs

of n = 4 and of n = 9 are shown in Figs. 3.6 and 3.7, respectively. From above

results, we can observe the output with case of n = 9 is stabilized quickly than

with case of n = 4 at the 5s < t < 8s. And, at the t ≥ 8s, the vibration with the

case of n = 9 is suppressed well than with the case of n = 4. The effectiveness of

the proposed design scheme is confirmed.
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3.4 Experiments

In this experiment, the sampling time is 0.001s. The density function p(h) =
0.00038e−0.00086(h−1)2 where h ∈ [0, 30] of the P-I hysteresis model is used in this

experiment. In flexible plate with a free vibration case, the flexible plate is added

a vibration at the t ≤ 5s by reciprocating movement of servo-motor. Then t > 5s,

we stopped the reciprocating movement of servo-motor to make a free vibration

of the flexible plate. At the same time, we start to control the vibration of the

flexible plate with a free vibration. In addition, for considering the perturbations,

we started the reciprocating movement of servo-motor to make perturbations when

t > 8s. The parameters of the designed controllers are shown in Table 3.2.

Table 3.2: Parameters of controllers

Parameter Value Units
Km 0.75 −
a0 0.165 −
c0 3 −
kp 40 −
kd 3 −
k0 0.8 −
k 0.9 −
Mt 1.25 −

Sampling Time 0.001 s
Experiment Time 15 s

In the flexible plate with a free vibration case, results of outputs with(blue line)

and without(red line) control are shown in Fig. 3.8. In this case, the compensator

C (n = 5) is used. The corresponding control input of this case is shown in Fig.

3.9. From Figs. 3.8 and 3.9, we can confirm the stability of the nonlinear system

can be guaranteed by the proposed method. Also, we can observe that the output
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of the system with the proposed method is stabilized faster than without control.
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Figure 3.8: Outputs with and without control (with compensator C, n = 5 ).

In the flexible plate with a free vibration and sudden perturbations case, results

of outputs with compensator C (n = 5) and (n = 8) are compared in without

exceeding the maximum control input. The corresponding control inputs for the

case in Fig. 3.10 are shown in Figs. 3.11 and 3.12, respectively. From Figs.

3.10, 3.11, and 3.12, when the flexible plate with a free vibration and sudden

perturbations, we can confirm the output with case of n = 8 is stabilized quickly

than case of n = 5, and the vibration is suppressed well than the case of n = 5.

From the above results, effectiveness of the proposed design scheme is confirmed

by experimental results.
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Figure 3.9: Control input of Figure 3.8 (with compensator C, n = 5 ).
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Figure 3.10: Comparison between the proposed method n = 5 and n = 8.
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Figure 3.11: Control input of Figure 3.10 (with compensator C, n = 5 ).
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Figure 3.12: Control input of Figure 3.10 (with compensator C, n = 8 ).



40 CHAPTER 3. PLATE WITH A FREE VIBRATION AND PERTURBATIONS CASE

3.5 Conclusion

In this chapter, for considering the flexible plate with a free vibration and sudden

perturbations, a nonlinear vibration control scheme is given by using piezoelectric

actuator with considering hysteresis nonlinearity. For guaranteeing robust stability

of the nonlinear control system, the controllers are designed based on operator

theory. At the same time, operator-based compensation method is designed to

ensure the desired vibration control performance of the flexible plate with a free

vibration and sudden perturbations. Also, in the proposed design scheme, the

compensation conditions of tracking and of perturbations are given by increasing

the number of designed n-times feedback loops. In the numerical simulation and

experiment, when increasing the number of designed n-times feedback loops, we

can be observed that vibration of the flexible plate can be suppressed more. Thus,

the effectiveness of the proposed design scheme is verified by numerical simulation

and experimental results.



Chapter 4

Operator-based nonlinear control
scheme for plate with a forced
vibration

4.1 Introduction

In this chapter, the operator-based nonlinear control scheme is considered for

plate with a forced vibration. For expressing the hysteresis nonlinearity of the

piezoelectric actuator, the P-I hysteresis model is used to describe it. Based on the

dynamic model of the flexible plate, the control scheme is designed by operator-

based robust right coprime factorization.

In Section 4.2, the designed control scheme is shown. At the step of de-

signing the controller to satisfy stability, a controller including characteristics of

Proportional-Integral-Differential (PID) controller is designed to satisfy Bezout

equation. And that it can be controlled by only one design parameter without

adjusting PID parameters. After that, for compensating the forced vibration to

improve the vibration control performance, the designed operator B and DPI is

used to design the compensator.

In Section 4.3, numerical simulation is conducted the proposed control scheme,

41
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the simulation results are shown to confirm the effectiveness of the proposed control

scheme.

In Section 4.4, the designed nonlinear control scheme is performed by experi-

ment. The experimental results are shown to confirm the control performance of

the designed control scheme.

In Section 4.5, the main contends of this chapter is summarized.

4.2 Operator-based control schemeusing a controller
with characteristics of PID controller

In this section, the flexible plate with a forced vibration case is considered. Op-

erator theory can express a behavior of controlled object in time domain. The

designed nonlinear control system is shown in Fig. 4.1. In Fig. 4.1, the control

input u is inputs of piezoelectric actuators that stuck on the controlled object. The

output y is the displacement at the piezoelectric sensor that is stuck on the opposite

side of actuators, and the target of this control is stabilizing the vibration at the

flexible plate. Therefore, the target value of r = 0 is considered in this design

scheme. The d is considered the external forces. U is input space of the P-I

hysteresis model (input space of piezoelectric actuators), U∗ output spaces of the

Prandtl-Ishlinskii hysteresis model (output space of piezoelectric actuators) and of

the external forces. Let output space of the original plant and quasi-state space be

Y andW . In this control scheme, we consider the nominal vibration mode with a

first-order mode, and uncertainties with second- and third-order modes.

The plant with uncertainties is considered as the following equation.

[P + ∆P](u∗)(t) = (1 + ∆)
[
J11

∫ t

0
e−α11(t−τ) sin β11(t − τ)u∗(τ)dτ

]
(4.1)

where ∆ denote uncertainties.
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Figure 4.1: Proposed control system for plate with a forced vibration.

4.2.1 Controllers design for stability

From Eq. (4.1), the plant [P + ∆P] can be right factorized as follows.

[P + ∆P](u∗)(t) = (N + ∆N)D−1(u∗)(t)

[N + ∆N](ω)(t) = (1 + ∆)

·
[
J11

∫ t

0
e−α11(t−τ) sin β11(t − τ)ω(τ)dτ

]
(4.2)

D(ω)(t) = I(ω)(t) (4.3)

where I is identity operator. In this control scheme, the D̃ = D−1
PID is considered by

the invertible and linearly controllable part DPI of the P-I hysteresis model. Also,

the remaining part ∆PI of the P-I hysteresis model is considered as a bounded

uncertainty. For satisfying the following Bezout identity, controllers A and B are

designed.

AN + BD̃ = M (4.4)

whereM is an unimodular operator. If the designed controllers A and B that satisfy

above Bezout identity, the designed controllers can guarantee BIBO stability of

the nonlinear system. Also, the designed controllers A and B are shown in the
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following equations.

A(y)(t) = Km

β11J11

∫ t

0
( Üy(τ) + 2α11 Ûy(τ) + (α2

11 + β
2
11)y(τ))dτ (4.5)

B(u)(t) = DPIu(t) (4.6)

where Km is a designed parameter. In addition, under the following equations

are satisfied, robust stability of the designed nonlinear control system can be

guaranteed.

A(N + ∆N) + BD̃ = M̃ (4.7)

∥ [A(N + ∆N) − AN]M−1 ∥Lip< 1 (4.8)

where M̃ is an unimodular operator.

4.2.2 Design a compensator

Considering Fig. 4.1, the output y(t) can be expressed by

y(t) = (N + ∆N)D−1(DPIB−1(r∗(t) − b∗(t))

+∆PI(u)(t) + d(t))

= (N + ∆N)(A(N + ∆N) + BD̃)−1

·(r∗(t) + BD−1
PI (∆PI(u)(t) + d(t)))

= (N + ∆N)M̃−1(r∗(t) + BD−1
PI ∆̃) (4.9)

where ∆̃ = ∆PI(u)(t) + d(t). The equivalent system of Eq. (4.9) is shown in Fig.

4.2. From Eq. (4.9) and Fig. 4.2, the stability of the nonlinear control system can

be satisfied by the designed controllers A and B. However, the hysteresis nonlin-

earity and the external forces affect vibration control performance. Therefore, for

improving the vibration control performance, we need to compensate the hysteresis
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Figure 4.2: Equivalent system of Eq. (4.9).

nonlinearity and the external forces. The designed compensator is shown in Eq.

(4.10).

Cp(e)(t) = BD−1
PI kP(e)(t) (4.10)

where kp is a designed parameter. Also, the operators B and DPI are used to

design the compensator Cp. From Figs. 4.1 and 4.2, the output y(t) is represented
in Eq. (4.11).

y(t) = (N + ∆N)(M̃ + (N + ∆N)BD−1
PI kp)−1

·(BD−1
PI kp(r)(t) + BD−1

PI∆dis)

= (N + ∆N)(M̃ + (N + ∆N)BD−1
PI kp)−1

·(BD−1
PI∆dis) (4.11)

where ∆dis = ∆PI(u)(t) + d(t). From Eq. (4.11), the compensations of hysteresis

nonlinearity and of the external forces are considered by adjusting the designed

parameters Km and kp.

4.3 Numerical simulations

In this section, effectiveness of the proposed control scheme will be discussed

by numerical simulations. The simulation results show the vibration control
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performance of the flexible plate. In this simulations, only used the first-order

mode of the flexible plate as the nominal plant. The second- and third-order

modes of this simulation are treated as uncertainties. The sampling time is 0.01s.

The flexible plate is added the moment fd(t) = 0.08sin(2π f0t) at the bottom of it

to make a vibration when t ≤ 5s, where f0 = 32.74/2π[Hz] is eigenfrequency of

the flexible plate. Then t > 5s, we start to control the vibration of the flexible plate

with free vibration. The density function p(h) = 0.00038e−0.00086(h−1)2 , where

h ∈ [0, 30] of the P-I hysteresis model is used in this simulation. The designed

parameters are shown in Table 4.1. In this simulation, we define with controllers

A and B case as "proposed method 1", and we further define with controllers A, B

and compensator case as "proposed method 2".

Table 4.1: Designed parameters

Parameter Value Units
Km 2.5 −
kp 40 −

Sampling Time 0.01 s
Simulation Time 15 s

Simulation results are shown in the following figures.

In Fig. 4.3, the result of using proposed method 1 case is shown. The

corresponding control input to piezoelectric actuators is shown in Fig. 4.4. From

Figs. 4.3 and 4.4, when the flexible plate with a forced vibration, we can confirm

that the stability of the nonlinear system can be guaranteed by the proposedmethod

1.

Next, for confirming the hysteresis nonlinearity and the external forces com-

pensation performances by the proposed method 2, the result of with proposed

method 2 is shown in Fig. 4.5. Corresponding control inputs of Fig. 4.5 is
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Figure 4.3: Outputs of the system with(without compensator Cp) and without
control.

Figure 4.4: Control input of Figure 4.3.
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Figure 4.5: Outputs of the system with(with compensatorCp) and without control.

Figure 4.6: Control input of Figure 4.5.
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Figure 4.7: Comparison between with and without compensator Cp.

shown in Fig. 4.6. Also, results of comparison between proposed method 1 and

proposed method 2 are shown in Fig. 4.7. From above results, we can confirm

the vibration with proposed method 2 is suppressed more than proposed method

1. The effectiveness of the proposed design scheme is confirmed.

4.4 Experiments

The experimental devices and detailed explanation of the experimental system are

introduced in Chapter 2. Based on the experimental devices, the designed control

scheme is performed in this section. In flexible plate with a forced vibration case,

the flexible plate is added a vibration at the t ≤ 5s by reciprocating movement of

servo-motor. At the same time, we start to control the vibration of the flexible plate

with a free vibration. In this experiment, the sampling time is 0.001s. The density

function p(h) = 0.00038e−0.00086(h−1)2 where h ∈ [0, 30] of the P-I hysteresis

model is used in this experiment. The parameters of the designed controllers are
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shown in Table 4.2. In this experiments, we define with controllers A and B case as

"proposed method 1", and we further define with controllers A, B and compensator

Cp case as "proposed method 2".

Table 4.2: Parameters of controllers

Parameter Value Units
Km 0.025 −
kp 0.005 −

Sampling Time 0.001 s
Experiment Time 15 s

The result of using proposed method 1 case is shown in Fig. 4.8. The

corresponding control input to piezoelectric actuators is shown in Fig. 4.9. From

Figs. 4.3 and 4.4, when the flexible plate with a forced vibration, we can observe

that the stability of the nonlinear system can be guaranteed by the proposedmethod

1. Next, for confirming the compensation performance, result of proposed method

2 is shown in Fig. 4.10, and control input in this case is shown in Fig. 4.11. Also,

results of comparison between proposed method 1 and proposed method 2 are

shown in Fig. 4.12. Also, for confirming the effectiveness of the designed control

scheme, the variance and standard deviation of proposed method 1 and proposed

method 2 are shown Table 4.3.

From above results, we can confirm the vibration with compensator Cp case

is suppressed more than without compensator Cp case. The effectiveness of the

proposed design scheme is confirmed.

4.5 Conclusion

In this chapter, for considering the flexible plate with a forced vibration, a nonlinear

forced vibration control scheme is given by using piezoelectric actuator with con-
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Figure 4.8: Outputs of the system with(without compensator Cp) and without
control.

Figure 4.9: Control input of Figure 4.8.
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Figure 4.10: Outputs of the systemwith(with compensatorCp) andwithout control.

Figure 4.11: Control input of Figure 4.10.
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Figure 4.12: Comparison between with and without compensator Cp.

Table 4.3: Variance and Standard deviation

Variance Standard deviation
Without Cp 7.2448 × 10−6 2.692 × 10−3
With Cp 4.7661 × 10−6 2.183 × 10−3
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sidering hysteresis nonlinearity. For guaranteeing robust stability of the nonlinear

control system, the controllers are designed based on operator theory. At the same

time, a controller including characteristics of Proportional-Integral-Differential

(PID) controller is considered in this control scheme. And that it can be controlled

by only one design parameter without adjusting PID parameters. For improving

the forced vibration control performance, the compensator is designed. Then, the

effectiveness of the proposed design scheme is verified by numerical simulation

and experimental results.



Chapter 5

Operator-based vibration control
approaches: Some new extensions

5.1 Introduction

In Chapter 4, for plate with a forced vibration case, operator based control scheme

is discussed. In control scheme of Chapter 4, the controller including charac-

teristics of Proportional-Integral-Differential (PID) controller is proposed. And,

the compensation conditions of forced vibration and of hysteresis nonlinearity are

considered by increasing the gain of designed compensator in outer loop. How-

ever, it is difficult to ensure the desired nonlinear vibration control performance.

In this chapter, for improving the vibration control performance, operator based

some new vibration control approaches are discussed.

In Section 5.2, for guaranteeing the robust stability of the noninear forced

vibration control system, operator based controllers are designed. Simultaneously,

for improving forced vibration control performance, the time-varying unimodular

function is constructed by the designed controllers. If the inverse of the time-

varying unimodular function tends to zero by the operator-based controllers and

designed compensator, the output can be made arbitrarily small. Based on the

designed nonlinear control system, effectiveness of the proposed control scheme

55
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is discussed by numerical simulations and experiments.

In Section 5.3, the system mismatching compensation method is considered.

The designed nonlinear control system consists of three parts, the real control

system, reference control system, and system mismatching compensation unit.

With considering the effect of hysteresis nonlinearity from piezoelectric actuators,

operator based controllers are designed to guarantee the stability of the nonlinear

system. Simultaneously, for improving vibration control performance, the system

mismatching compensation unit is given by the designed reference system and

compensator. The simulation and experimental results are shown to confirm the

control performance of the designed control scheme.

In Section 5.4, operator based unknown input nonlinearity compensation ap-

proach is discussed. With considering the effect of unknown input nonlinearity

from the piezoelectric actuator, operator based controllers are designed to guar-

antee the robust stability of the nonlinear free vibration control system. Simulta-

neously, for ensuring the desired tracking performance and reducing the effect of

unknown input nonlinearity, operator based tracking compensator and estimation

structure are given, respectively. Finally, both simulation and experimental results

are shown to verify the effectiveness of the designed control scheme.

In Section 5.5, the conclusion of this chapter is given.

5.2 Time-varying unimodular function based robust
right coprime factorization approach

In this section, according to the obtained models, the nonlinear forced vibration

control design scheme is proposed. First, in order to guarantee the stability of

the nonlinear system with hysteresis nonlinearity, operator based nonlinear control

system is designed. After that, the compensator is designed to guarantee the desired

vibration control performance of the flexible plate. The designed nonlinear control
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system is shown in Fig. 5.1. In Fig. 5.1, u(t) is control input to piezoelectric

actuators, the output y(t) denotes displacement of the flexible plate, the target value

r(t) = 0 is the output displacement to become zero, and we consider the external

force as a bounded disturbance d(t).

Figure 5.1: Proposed control system.

[P + ∆P](u∗)(t) = (1 + ∆)
[
J11

∫ t

0
e−α11(t−τ) sin β11(t − τ)u∗(τ)dτ

]
(5.1)

where ∆ denote uncertainties.

5.2.1 Design scheme

Operator based controllers are designed in this Section. In this paper, we consider

the nominal vibration mode with a first-order mode and the uncertainties with

the second- and third-order modes. Therefore, the plant with uncertainties is

considered as the following equation. The plant [P+∆P] is right factorized by the
following equations.
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[P + ∆P](u∗)(t) = (N + ∆N)D−1(u∗)(t) (5.2)

[N + ∆N](w)(t) = (1 + ∆)

·J11
∫ t

0
e−α11(t−τ) · sin β11(t − τ) · ω(τ)dτ (5.3)

D(ω)(t) = I(ω)(t) (5.4)

where I is identity operator, J11, α11 and β11 are model parameters of the nominal

plant, respectively. In Fig. 5.1, the invertible and linearly controllable part DPI is

used for the design of the controller and the remaining part ∆PI treat as a bounded

disturbance. The operator D̃ is treated as D̃ = D−1
PID. And, when there exist two

stable operators A and B that satisfy Bezout identity, the designed controllers can

guarantee BIBO stability of the nonlinear system.

AN + BD̃ = L (5.5)

where L is an unimodular operator. In addition, if under the following conditions

are satisfied, then robust stability of the designed nonlinear control system can be

guaranteed.

A(N + ∆N) + BD̃ = L̃ (5.6)

∥ [A(N + ∆N) − AN]L−1 ∥Lip< 1 (5.7)

where L̃ is an unimodular operator. The designed controllers A, B, and the

compensator C are shown as follows.

A(y)(t) =
(
ka
4
+ kbQ−c0(t)

)
(2 Ûy(t) + kay(t)) (5.8)

B(u)(t) = DPI(u)(t) (5.9)

C(y)(t) = kcs(t)
|s(t)| + c1

(5.10)
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where s(t) = 2 Ûy(t) + kay(t), ka, kb, c0, kc, and c1 are designed parameters,

respectively. And,

Q−c0(t) =
(
( Ûy(t) + kay(t))2

2
+

Ûy2(t)
2

)−c0
where 0 < c0 < 0.5 is a designed parameter. When the designed controllers A and

B satisfy conditions of Eqs. (5.5), (5.6), and (5.7), the output can be obtained as

the following equation.

y(t) = (N + ∆N)D−1(DPIB−1(e(t) − b0(t)) + ∆PI(u)(t) + d(t))

= (N + ∆N)(A(N + ∆N) + BD̃)−1(e(t) + BD−1
PI∆dis(t))

= (N + ∆N)L̃−1(e(t) + BD−1
PI∆dis(t)) (5.11)

where ∆dis(t) = d(t) + ∆PI(u)(t).
In Eq. (5.11), when the inverse of time-varying unimodular function L̃−1 → 0

can be satisfied by the time-varying parameter kbQ−c0(t) → ∞, the output can

be made arbitrarily small. And, only in the case of A(y)(t) = 0 the time-varying

parameter kbQ−c0(t) = ∞ because of y(t) = 0 and Ûy(t) = 0.

For obtaining the inverse of time-varying unimodular function L̃−1 → 0 by

the time-varying parameter kbQ−c0(t) → ∞, the differential of Q(t) is considered
in this paper. The Q(t) and differential of the Q(t) are shown in the following

equations.

Q(t) =
(
( Ûy(t) + kay(t))2

2
+

Ûy2(t)
2

)
(5.12)

ÛQ(t) = ∂Q(t)
∂y(t)

dy(t)
dt
+
∂Q(t)
∂ Ûy(t)

d Ûy(t)
dt

= ( Ûy(t) + kay(t))( Üy(t) + ka Ûy(t)) + Ûy(t) Üy(t)

= ka Ûy2(t) + k2ay(t) Ûy(t) + (2 Ûy(t) + kay(t)) Üy(t) (5.13)
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Simultaneously, according to the obtained models and Eq. (5.11), the following

equation is considered.

Üy(t) = r0(y, Ûy,∆, d,∆PI, t) + DPI(u)(t) (5.14)

where u(t) is the control input, and we consider the function of r0(y, Ûy,∆, d,∆PI, t)
that included the uncertainties ∆, the disturbance d(t), and the remaining part ∆PI .

And,

|r0(y, Ûy,∆, d,∆PI, t)| ≤ rp, (rp > 0) (5.15)

DPI(u)(t) = DPIB−1(e0)(t)

= −DPIB−1(A(y)(t) + C(y)(t))

= −I(A(y)(t) + C(y)(t)) (5.16)

where rp is a positive number, and I denotes identity operator. FromEq. (5.15), we

consider the function of r0(y, Ûy,∆, d,∆PI, t) is bounded. Therefore, the condition
of Eq. (5.17) can be obtained by substituting Eqs. (5.14), (5.15), and (5.16) to Eq.

(5.13).

ÛQ(t) = ka Ûy2(t) + k2ay(t) Ûy(t) + s(t) Üy(t)

= ka Ûy2(t) + k2ay(t) Ûy(t)

+s(t)(r0(y, Ûy,∆, d,∆PI, t) + DPI(u)(t))

≤ − k3a
4
y2(t) − kbQ−c0(t)s2(t)

−|s(t)|( kc |s(t)|
|s(t)| + c1

− rp) < 0 (5.17)

where s(t) = 2 Ûy(t) + kay(t), and the parameters kc and c1 are designed to satisfy

condition of kc |s(t)|
|s(t)|+c1 > rp. From Eq. (5.13), the condition of ÛQ(t) < 0 can be

obtained by the designed controllers A, B, and the compensator C. Therefore,
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condition of the Q(t) → 0 can be guaranteed by the designed controllers. Thus,

the output can be made arbitrarily small by the designed inverse of time-varying

unimodular function L̃−1 → 0.

5.2.2 Numerical simulations

In this section, effectiveness of the proposed design scheme will be discussed by

numerical simulations. The designed parameters are shown in Table 5.1. In this

simulation, only used first-mode of the flexible plate as the nominal plant. The

second- and third-modes of this simulation are contained as uncertainties. There

use density function p(h) = 0.00032 × e−0.00086(h−1)
2 where h ∈ [0, 30].

Table 5.1: Parameters of controllers

Parameter Value Units
Ka 4 −
kb 0.1 −
c0 0.38 −
kc 0.19 −
c1 0.005 −

Sampling Time 0.01 s
Simulation Time 15 s

Simulation results of vibration control for the flexible plate are shown in the

following figures. The control of flexible plate’s vibration starts at 5s. The external

force of the added vibration is F(t) = 0.1sin(2π f0t). Where f0 = 32.74/2π[Hz] is
the eigenfrequency of the flexible plate. In Fig. 5.2, outputs of the flexible plate

with and without control are shown. In with control, there is not considered the

compensator C. Corresponding control input in Fig. 5.2 is shown in Fig. 5.3.

Next in Fig. 5.4, outputs of the flexible plate with(blue line) and without(green

line) control are shown. In with control, the controllers A, B and compensator C
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Figure 5.2: Outputs with operators A and B only case and without control case.
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Figure 5.3: Control input (with operators A and B only case).
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Figure 5.4: Outputs with compensator C case and without control case.
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Figure 5.5: Control input (with compensator C case).
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are considered in Fig. 5.4. Corresponding control input in Fig. 5.4 is shown in

Fig. 5.5. From the above results, stability of the flexible plate is guaranteed in

Fig. 5.2, and effectiveness of the proposed control scheme is confirmed in Fig.

5.4. Thus, effectiveness of the designed nonlinear forced vibration control system

is confirmed.

5.2.3 Experiments

In this section, the proposed design scheme is confirmed by experiment. The used

parameters of the designed controllers are shown in Tables 5.2. In this experiment,

vibration generated at the flexible plate is 10Hz. If t ≥ 3s, controllers are started

to control the vibration of the flexible plate with forced vibration. The sampling

time is 0.001s and the experiment time is 15s.

Table 5.2: Designed parameters

Parameter Value Units
Ka 4 −
kb 0.1 −
c0 0.42 −
kc 0.1 −
c1 0.039 −

Sampling Time 0.001 s
Experiment Time 15 s

First, outputs of the flexible plate with and without control are shown in Fig.

5.6. In with control, there is not considered the compensator C. The control input

of with control without considering compensator C is shown in Fig. 5.7. Next in

Fig. 5.8, outputs of the flexible plate with and without control are shown. In with

control, there is considered the compensator C. The corresponding control input

in Fig. 5.8 is shown in Fig. 5.9.
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Figure 5.6: Outputs of the system with and without control(without considering
compensator C).
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Figure 5.7: Control input(without considering compensator C).
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Figure 5.8: Outputs of the system with(blue line) and without(green line) con-
trol(with considering compensator C).



66 CHAPTER 5. OPERATOR-BASED VIBRATION CONTROL APPROACHES

0 5 10 15
Time[s]

-60

-40

-20

0

20

40

60

C
o

n
tr

o
l 
in

p
u

t[
V

]

Figure 5.9: Control input(with considering compensator C).

From Fig. 5.6, we can confirm that vibration can be suppressed by operator

based controllers A and B. Therefore, stability of the nonlinear control system

based on operator theory is verified. The effectiveness of the with control with

considering compensator C is confirmed in Fig. 5.8. Thus, effectiveness of the

proposed control method is confirmed.

5.3 Operator-based system mismatching compensa-
tion approach

In this section, operator based robust nonlinear forced vibration control design

scheme is proposed based on system mismatching compensation. First, in order

to guarantee stability of the nonlinear system, operator based nonlinear control

system is designed. After that, for improving the vibration control performance,

the systemmismatching compensation unit is considered by the designed reference

system and compensator. The designed nonlinear control system is shown in Fig.

5.10. In Fig. 5.10, u ∈ U, u0 ∈ U, y ∈ Y , y0 ∈ Y , and y1 ∈ Y are the control input

to piezoelectric actuators, control input of the reference system, displacement of

the flexible plate, output of the reference system, and error between the output of

the flexible plate and reference system, respectively. In this study, the conditions
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of disturbance d ∈ Up and Up ⊆ U are considered. And, the target of this control

is stabilizing the vibration at the flexible plate. Therefore, the target value of r = 0

is considered.

Figure 5.10: Designed nonlinear control system

5.3.1 Stability of the real system

Operator based controllers are designed in this section. In this study, we consider

the nominal vibration mode with a first-order mode and the uncertainties ∆ with

the second- and third-order modes. Therefore, the plant with uncertainties is

considered the following equation.

[P + ∆P](u∗)(t) = (1 + ∆)
[
J11

∫ t

0
e−α11(t−τ) sin β11(t − τ)u∗(τ)dτ

]
(5.18)



68 CHAPTER 5. OPERATOR-BASED VIBRATION CONTROL APPROACHES

Further, the plant with uncertainties can be right factorized by Eqs. (5.19) and

(5.20)

[N + ∆N](ω)(t) = (1 + ∆)J11
∫ t

0
e−α11(t−τ) sin β11(t − τ)ω(τ)dτ (5.19)

D(ω)(t) = I(ω)(t) (5.20)

where I is identity operator, α11 and β11 are parameters of the nominal plant,

respectively. Also, the operator D̃ is considered as D̃ = D−1
PID. Moreover, when

there exist two stable operators A and B that satisfy Bezout equation, the designed

controllers can guarantee BIBO stability of the nonlinear system.

AN + BD̃=M (5.21)

where M is an unimodular operator. In addition, under the following conditions

are satisfied, robust stability of the designed nonlinear control system can be

guaranteed.

A(N + ∆N) + BD̃ = M̃ (5.22)

∥ [A(N + ∆N) − AN]M−1 ∥Lip< 1 (5.23)

where M̃ denote an unimodular operator. The operators A and B are designed as

follows.

A(y)(t) = (1 − Km)
β11J11

( Üy(t) + 2α11 Ûy(t) + (α2
11 + β

2
11)y(t)) (5.24)

B(u)(t) = KmDPIu(t) (5.25)

where Km is a designed parameter.
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5.3.2 Design a system mismatching compensation unit

From Fig. 5.10 and Eq. (5.22), the output y(t) can be expressed by

y(t)=(N + ∆N)D−1(DPIB−1(e(t) − b∗(t))

+∆PI(u)(t) + d(t))

=(N + ∆N)(A(N + ∆N) + BD̃)−1

·(e(t) + ∆̃)

=(N + ∆N)M̃−1(e(t) + ∆̃) (5.26)

where ∆̃ = BD−1
PI (∆PI + d). From Eq. (5.26), stability of the real system can

be guaranteed by the designed operators A and B. However, due to the effect

of ∆̃, the desired vibration control performance cannot be obtained. Therefore,

for improving the vibration control performance, the compensation of ∆̃ term

needed to consider. The system mismatching compensation unit is shown in Fig.

5.10. In Fig. 5.10, systemmismatching compensation unit consists of the designed

reference system and operatorC. For compensating the ∆̃, the following conditions

are considered in this study.

1. For ensuring the BIBO stability of the real control system, the reference

system should satisfy BIBO stability. If the reference system is BIBO stable,

it can ensure that the input signal e(t) is bounded.

2. The designed operator C is stable. And, the designed operator C satisfies

the condition of (I − CNM−1
0 ) → 0.

First, for ensuring the above condition 1, operator based controllers are de-

signed for the stability of the reference system. The designed operators A0 and B0

are shown as follows.
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A0(y0)(t) =
(1 − K0)
β11J11

( Üy0(t) + 2α11 Ûy0(t) + (α2
11 + β

2
11)y0(t)) (5.27)

B0(u0)(t) = K0DPIu0(t) (5.28)

A0N + B0D̃ = M0 (5.29)

Where M0 is an unimodular operator, and K0 is a designed parameter. Next, for

obtaining the above conditions 2, the designed operator C is shown in Eq. (5.30).

C(y1)(t) =
(1 − K1)
β11J11

( Üy1(t) + 2α11 Ûy1(t) + K2(α2
11 + β

2
11)y1(t)) (5.30)

Where K1 and K2 are designed parameters, respectively. From Fig. 5.10 and the

designed operators, the output y(t) can be represented as follows.

y1(t)=y(t) − y0(t) (5.31)

y0(t)=NM−1
0 (e)(t) (5.32)

e(t)=−C(y1)(t)

=−C(y)(t) + CNM−1
0 (e)(t)

=−C(I − CNM−1
0 )−1(y)(t) (5.33)

From Eq. (5.31), the condition of (y1(t) + y0(t)) → 0 is considered in this study.

And, from Eqs. (5.26) and (5.33),

y(t)=(N + ∆N)M̃−1(e(t) + ∆̃)

=(N + ∆N)M̃−1F−1(I − CNM−1
0 )(∆̃) (5.34)

where F = (I − CNM−1
0 + (N + ∆N)M̃−1C).

Thus, from above conditions, condition of y(t) → 0 can be obtained by the

designed system mismatching compensation unit.
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5.3.3 Numerical simulations

In this section, the effectiveness of the proposed design schemewill be discussed by

simulation. The simulation results show the forced vibration control performance

of the flexible plate. Parameters of the designed operators are shown in Tables

5.3. In this simulation, only used first-order mode of the flexible plate as the

nominal plant. The second- and third-order modes of this simulation are treated

as uncertainties. The density function p(h) = 0.00038e−0.00086(h−1)2 where h ∈
[0, 30] is used in this simulation.

Table 5.3: Parameters of controllers.

Parameter Value Units
Km 0.5 −
K0 0.45 −
K1 0.4 −
K2 1 −

Sampling Time 0.01 s
Simulation Time 20 s

In Fig. 5.11, outputs of the flexible plate with and without control are shown.

In with control, there is not considered the system mismatching compensation.

The corresponding control input in Fig. 5.11 is shown in Fig. 5.12. Next in

Fig. 5.13, outputs of the flexible plate with and without control are shown. The

system mismatching compensation is considered in Fig. 5.13. The corresponding

control input in Fig. 5.13 is shown in Fig. 5.14. From the above results,

stability of the flexible plate is confirmed by Figs. 5.11 and 5.12. And, in

Figs. 5.13, we can be observed that the vibration of the flexible plate with system

mismatching compensation suppressedmore than the result with operators A and B

only. Therefore, effectiveness of the designed system mismatching compensation
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Figure 5.11: Outputs of the systemwith (with operators A and B only) and without
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Figure 5.12: Corresponding control input in Figure 5.11.
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Figure 5.13: Outputs of the system with (with system mismatching compensation)
and without control.
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Figure 5.14: Corresponding control input in Figure 5.13.
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can be confirmed by the Figs. 5.13 and 5.14. Thus, effectiveness of the proposed

control design scheme is confirmed.

5.3.4 Experiments

In this section, the proposed design scheme is confirmed by experiment. The used

parameters of the designed operators are shown in Tables 5.4. The frequency

of the vibration is 10Hz, and the vibration of the flexible plate is generated by

the servo-motor. The vibration control starts from t ≥ 3s. The position of the

piezoelectric sensor is the opposite side of the actuator. The actuator is stuck on

the desired position. These positions obtain the strongest moment at the flexible

plate. Although displacement of all points on the flexible plate may not become

zero, we consider that all of the moments generated on the flexible plate become

zero in this research, if the value of the sensor becomes zero.

Table 5.4: Parameters of controllers.

Parameter Value Units
Km 0.93 −
K0 0.936 −
K1 0.9 −
K2 2.3 −

Sampling Time 0.001 s
Simulation Time 15 s

First, outputs of the flexible plate with and without control are shown in

Fig. 5.15. In with control, there is not considered the system mismatching

compensation. The control input of Fig. 5.15 is shown in Fig. 5.16. Next in Fig.

5.17, output of the flexible plate with (with systemmismatching compensation) and

without control are shown. The corresponding control input in Fig. 5.17 is shown

in Fig. 5.18. From Fig. 5.15, we can confirm that vibration can be suppressed by
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Figure 5.15: Outputs of the systemwith (with operators A and B only) and without
control.
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Figure 5.16: Control input of Figure 5.15.
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Figure 5.17: Outputs of the system with (with system mismatching compensation)
and without control.
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Figure 5.18: Control input of Figure 5.17.
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operators A and B. Therefore, stability of the nonlinear control system based on

operator theory is verified. The effectiveness of thewith operators A, B, and system

mismatching compensation is confirmed in Fig. 5.17. In result of with system

mismatching compensation case, the condition output tends to zero is confirmed.

Thus, effectiveness of the proposed control design scheme is confirmed.

5.4 Operator-basedunknown input nonlinearity com-
pensation approach

In this section, operator based unknown input nonlinearity compensation method

is considered. First, in order to guarantee the stability of the nonlinear system with

unknown input nonlinearity, operator based nonlinear control system is designed.

After that, for ensuring the desired tracking performance and reducing the effect of

unknown input nonlinearity, operator based tracking compensator and estimation

structure are designed, respectively. The designed nonlinear control system is

shown in Fig. 5.19. In this study, we consider the nominal vibration mode with

a first-order mode and the uncertainties with the second- and third-order modes.

Therefore, the plant with uncertainties is considered the following equation.

[P + ∆P](u∗)(t) = (1 + ∆)
[
J11

∫ t

0
e−α11(t−τ) sin β11(t − τ)u∗(τ)dτ

]
(5.35)

where ∆ and J11 are the bounded uncertainties of plant and the model parameter

of plant, respectively.

5.4.1 Controllers Design for Stability

The plant [P + ∆P] can be right factorized by Eqs. (19) and (20).



78 CHAPTER 5. OPERATOR-BASED VIBRATION CONTROL APPROACHES

Figure 5.19: Proposed control system.

[P + ∆P](u∗)(t) = (N + ∆N)D−1(u∗)(t) (5.36)

[N + ∆N](ω)(t) = (1 + ∆)J11
∫ t

0
e−α11(t−τ) · sin β11(t − τ) · ω(τ)dτ (5.37)

D(ω)(t) = I(ω)(t) (5.38)

where I is identity operator, α11 and β11 are parameters of the nominal plant,

respectively. From P-I hysteresis model, the invertible and linearly controllable

part DPI is used to design the controller and the remaining part ∆PI treated as

a bounded uncertainty. Also, the operator D̃ is considered as D̃ = D−1
PID. For

guaranteeing the BIBO stability of the nonlinear system, two stable operators A

and B that satisfy following Bezout equation are designed.

AN + BD̃ = I (5.39)
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where I is identity operator. In addition, under the following conditions are satis-

fied, robust stability of the designed nonlinear control system can be guaranteed.

A(N + ∆N) + BD̃ = M̃ (5.40)

∥ [A(N + ∆N) − AN]I−1 ∥Lip< 1 (5.41)

where M̃ denote an unimodular operator. The operators A and B are designed as

follows.

A(y)(t) = (1 − Km)
J11β11

( Üy(t) + 2α11 Ûy(t) + (α2
11 + β

2
11)y(t)) (5.42)

B(u)(t) = KmKe∗(t) (5.43)

K =
∫ hx

0
p(h)dh

where Km is a designed parameter.

5.4.2 Compensation for tracking and unknown input nonlin-
earity

Considering Fig. 5.19, the output y(t) can be expressed by

y(t)=(N + ∆N)D−1(DPIB−1(r∗(t) − b∗(t)) + ∆PI(u)(t))

=(N + ∆N)(A(N + ∆N) + BD̃)−1(r∗(t) + ∆̃(u)(t))

=(N + ∆N)M̃−1(r∗(t) + ∆̃) (5.44)

where ∆̃ = BD−1
PI∆PI(u)(t). From Eq. (5.44), stability of the nonlinear control

system can be guaranteed by the designed operators A and B. However, the output

y(t) cannot be ensured to track the target value r∗(t) and be sufficiently able to

obtain damping performance of the plant. Simultaneously, due to the effect of

unknown input nonlinearity term ∆̃, desired vibration control performance cannot

be obtained. Therefore, for improving the vibration control performance, the
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tracking compensator and compensation of the unknown input nonlinearity term

∆̃ are needed to consider. The equivalent system of Fig. 5.19 is shown in Fig.

5.20. For ensuring the desired tracking performance and reducing the effect of

unknown input nonlinearity, operator based tracking compensator and estimation

structure are designed. In Fig. 5.20, operators N0 + ∆N0 and D−1
0 are considered.

Figure 5.20: Equivalent system of Figure 5.19.

And, design operators D0, A0 and B0 that satisfy Bezout equation. The designed

operators are shown as follows.

A0(y)(t) = S(y)(t) + k0A0(y)(t − 1) (5.45)

S(y)(t) =
(1 − K f )
J11β11

( Üy(t) + 2α11 Ûy(t) +
(α2

11 + β
2
11)

2
y(t))

B0(u0)(t) = K f e0(t) (5.46)

D0(r∗)(t) = B−1D̃−1(r∗)(t) (5.47)

A0N0 + B0D0 = M0 (5.48)

A0(N0 + ∆N0) + B0D0 = M̃0 (5.49)

∥ [A(N0 + ∆N0) − AN0]M−1
0 ∥Lip< 1 (5.50)

where N0 = NI−1, M0 and M̃0 are unimodular operators, K f and 0 < k0 < 1 are

designed parameters, respectively. Considering Fig. 5.20, the output y(t) can be



CHAPTER 5. OPERATOR-BASED VIBRATION CONTROL APPROACHES 81

expressed by

y(t)=(N0 + ∆N0)(∆̃0 + D−1
0 B−1

0 (−b0(t)

+C(r(t) − b(t))))

=(N0 + ∆N0)(M0 + (N0 + ∆N0)C)−1

·(C(r)(t) + B0D0∆̃0) (5.51)

and the designed operator C is shown in Eq. (32).

C(e)(t) = kpe(t) (5.52)

where ∆̃0 = (∆̃ − b̃), and kp is a designed parameter. Moreover, from Figs. 5.19

and 5.20, when the Bezout equation of Eq. (5.49) can be satisfied, the signal b̃(t)
can be expressed by

r∗(t)=D−1
0 B−1

0 (r0(t) − A0(y)(t))

B0D0(r∗)(t)=r0(t) − A0(N0 + ∆N0)(r∗(t) + ∆̃)

r0(t) − M̃0(r∗)(t)=A0(N0 + ∆N0)(∆̃)

=(M̃0 − B0D0)(∆̃)

b̃(t)=(Ms − B0D0)−1(r0(t) − Ms(r∗)(t))

=(Ms − B0D0)−1(M̃0 − B0D0)(∆̃) (5.53)

where Ms is an designed unimodular operator. And,

Ms(r∗)(t)=B0D0(r∗)(t) + S(r∗)(t) (5.54)

S(r∗)(t)=I(r∗)(t) + R(r∗)(t)

R(r∗)(t)=I(r∗)(t) + k1R(r∗)(t − 1)

where k1 is a designed parameter.

Thus, for ensuring the desired tracking performance and reducing the effect of

unknown input nonlinearity, the following conditions are considered.
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1. From Eq. (5.53), the unknown input nonlinearity term (Ms − B0D0)−1(M̃0 −
B0D0)(∆̃) can be obtained by the operator based estimation structure. There-

fore, when the condition of (Ms −B0D0)−1(M̃0−B0D0) → I can be satisfied

by the designed Ms, the effect of ∆̃ can be made arbitrarily small.

2. From Eq. (5.49), when the condition of (N0 +∆N0)C ≫ M0 can be satisfied

by the designed operators C, M0 and (N0 + ∆N0), the tracking performance

can be ensured.

5.4.3 Numerical simulation

In this section, the proposed design scheme is confirmed by simulation. The

simulation results show the free vibration control performance of the flexible

plate.

Parameter setting

Parameters of the piezoelectric actuator and the designed controllers are shown

in Tables 5.5 and 5.6, respectively. In this simulation, only used first-order

mode of the flexible plate as the nominal plant. The second- and third-order

modes of this simulation are treated as uncertainties. The density function

p(h) = 0.00038e−0.00086(h−1)2 where h ∈ [0, 30] is used in this simulation.

Table 5.5: Parameters of the piezoelectric actuator.

Parameter Value Units
Young’s Modulus E p = 6.2 × 1010 N/m2

Length ap = 50 × 10−3 m
Width bp = 20 × 10−3 m

Thickness tp = 0.5 × 10−3 m
Piezo Constant d31 = −210 × 10−12 m/V
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Table 5.6: Parameters of the controllers.

Parameter Value Units
Km 0.42 −
k0 0.85 −
k1 0.85 −
K f 0.65 −
kp 20 −

Sampling Time 0.01 s
Simulation Time 15 s

Simulation results

The simulation in MATLAB is performed. In this simulation, the flexible plate is

added themomentMd(t) = 0.1sin( f ·t) at the bottom of it to make a vibration when

t < 5s. Where f is the eigenfrequency of the flexible plate and f = 32.74/2π. If
t ≥ 5s, we start to control the vibration of the flexible plate with free vibration.

In Fig. 5.21, output of the flexible plate with and without control are shown. In

with control case, it does not consider the tracking and unknown input nonlinearity

compensation. The blue line in Fig. 5.21 shows the output of the with control, the

green line in Fig. 5.21 shows the output of the without control. Corresponding

control input in Fig. 5.21 is shown in Fig. 5.22. Next in Fig. 5.23, output

of the flexible plate with (blue line) operators A, B only and with (green line)

considering tracking compensation are shown. The unknown input nonlinearity

compensation was not considered in Fig. 5.23. Corresponding control input in

Fig. 5.23 is shown in Fig. 5.24. From the above results, stability and effectiveness

of tracking compensation are confirmed by Figs. 5.21, 5.22, 5.23, and 5.24.

Furthermore, output of the flexible plate with (blue line) and without (green line)

unknown input nonlinearity compensation are shown in Fig. 5.25. In Fig. 5.25, we

can be observed that the displacement of the flexible plate with the unknown input
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Figure 5.21: Output of the systemwith (blue line) and without (green line) control.
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Figure 5.22: Corresponding control input in Figure 5.21.
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Figure 5.23: Output of the system with (green line) operators A, B only and with
(blue line) considering tracking compensation (without unknown input nonlinear-
ity compensation).
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Figure 5.24: Corresponding control input in Figure 5.23.
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Figure 5.25: Output of the system with (blue line) and without (green line) un-
known input nonlinearity compensation.

0 5 10 15

Time[s]

-80

-60

-40

-20

0

20

40

60

80

C
o
n
tr

o
l 

in
p
u
t[

V
]

With tracking compensation

(with unknown input nonlinearity

compensation)

With tracking compensation

(without unknown input nonlinearity

compensation)
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Table 5.7: Parameters of the controllers.

Parameter Value Units
Km 0.85 −
k0 0.8 −
k1 0.8 −
K f 0.9 −
kp 30 −

Sampling Time 0.001 s
Experiment Time 15 s

nonlinearity compensation reducemore than the result with tracking compensation

only. Thus, effectiveness of the designed nonlinear control system is confirmed.

5.4.4 Experiment

In this section, the proposed design scheme is confirmed by experiment. The used

parameters of the designed controllers are shown in Tables 5.7. The frequency of

the vibration is 10Hz, and the vibration of the flexible plate is generated by the

servo-motor. If t ≥ 5s, controllers are started to control the free vibration of the

flexible plate. In this experiment, the sampling time is 0.001s and the experiment

time is 15s.

Outputs of the flexible plate with (blue line) tracking compensation and with-

out (green line) control are shown in Fig. 12. The corresponding control inputs

in Fig. 12 are shown in Fig. 13. In Fig. 5.27, compared with (blue line) tracking

compensation and without (green line) control, the output with considering track-

ing compensation is stabilized faster than without control case. The stability and

effectiveness of considering tracking compensation are confirmed by Figs. 5.27

and 5.28. Finally, outputs with (red line) unknown input nonlinearity compen-

sation and without (green line) control are shown in Fig. 5.29. By the obtained
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Figure 5.27: Outputs of the system with (blue line) tracking compensation and
without (green line) control.
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Figure 5.28: Corresponding control input in Figure 5.27.
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Figure 5.29: Outputs of the system with (red line) unknown input nonlinearity
compensation and without (green line) control.
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Figure 5.30: Corresponding control input in Figure 5.29.
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experimental results, the vibration of the flexible plate is stabilized quickly using

the unknown input nonlinearity compensation. Thus, the effectiveness of proposed

control design scheme is confirmed.

5.5 Conclusion

In this chapter, operator based some new vibration control approaches are consid-

ered. In time-varying unimodular function based robust right coprime factoriza-

tion approach, the condition of output tends to zero is obtained by the designed

time-varying unimodular function. The condition of output tends to zero is also

obtained by the operator based system mismatching compensation approach. In

addition, operator based unknown input nonlinearity compensation approach is

discussed. The effectiveness of the proposed design schemes are verified by

numerical simulation and experimental results, respectively.



Chapter 6

Conclusions

This dissertation mainly discussed control schemes for nonlinear vibration control

on flexible plate with hysteresis nonlinearity of piezoelectric actuator. With the

considered models of piezoelectric actuator and of flexible plate, operator-based

robust right coprime factorization approach is used to design control schemes.

Based on numerical simulation and experimental results are proved the effective-

ness of the proposed control schemes.

In Chapter 2, some basic definitions and notations are introduced for operator

theory and right coprime factorization. The model of piezoelectric actuator is

explained by P-I hysteresis model. Based on theory of thin plates, the model

of flexible plate is considered. In addition, the experimental devices on this

dissertation is introduced. The main study is discussed in this dissertation is also

introduced in this chapter.

In Chapter 3, operator-based control scheme is proposed for plate with a

free vibration and perturbations. For guaranteeing robust stability of the plate

with perturbations case, operator-based controllers are designed. Simultaneously,

operator-based n-times feedback loops are designed to compensate hysteresis non-

linearity of the piezoelectric actuator and to ensure the desired vibration control

performance of the flexible plate with a free vibration and perturbations. In the

91
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designed control scheme, the desired compensation performances of tracking and

of perturbations are obtained by increasing the number of designed n-times feed-

back loops. In addition, the effectiveness of designed control scheme is confirmed

by numerical simulation and experimental results.

In Chapter 4, for considering plate with a forced vibration, operator-based

nonlinear control scheme is proposed. In this Chapter, a controller with charac-

teristics of Proportional-Integral-Differential (PID) controller is proposed. And

the designed controller can be controlled by only one design parameter without

adjusting PID parameters. After that, for compensating the forced vibration to im-

prove the vibration control performance, the compensator is designed to improve

the vibration control performance. The vibration control performance of designed

control scheme is confirmed by numerical simulation and experiment.

In Chapter 5, operator based some vibration control approaches are discussed.

In time-varying unimodular function based robust right coprime factorization

approach, the time-varying unimodular function is constructed by the designed

controllers. Simultaneously, the condition of output tends to zero is obtained by the

designed time-varying unimodular function. In systemmismatching compensation

approach, with considering the effect of hysteresis nonlinearity from piezoelectric

actuators, operator based controllers are designed to guarantee the stability of

the nonlinear system. In addition, for improving vibration control performance,

the system mismatching compensation unit is given by the designed reference

system and compensator. For reducing the effect of unknown input nonlinearity to

improving the vibration control performance, operator based estimation structure is

considered in unknown input nonlinearity compensation approach. The numerical

simulation and experimental results are shown to verify the effectiveness of the

above proposed control schemes.
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