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Abstract

The scarcity of spectrum resources is a pressing challenging problem in the field of wire-

less communications. This is due mainly to the current static and exclusive spectrum

allocation. In fact, many spectrum measurement results all over the world reveal the

allocated spectrum to existing wireless systems are not fully utilized or under-utilized.

For this issue, dynamic spectrum access (DSA) has been extensively investigated glob-

ally. In DSA, secondary users (SUs), which have lower priority to use the spectrum, can

use the spectrum owned by primary users (PUs) without causing harmful interference

to PUs. For achieving the concept of DSA, several practical approaches have been pro-

posed. These approaches are roughly classified into sensing-based DSA, database-based

DSA, and these hybrid version. Among them, smart spectrum access (SSA), which is

DSA based on spectrum measurement, modeling, database, management, and sensing

is a promising approach to an advanced and practical DSA. Conceptually, SSA exploits

useful a priori information regarding spectrum usage via spectrum measurements for

achieving smart DSA. Therefore, one important aspect in SSA is spectrum measure-

ment with efficiency and high accuracy since the results of spectrum measurements

may affect the performance and operation of SUs.

Spectrum measurements are performed by several spectrum sensors which are dis-

tributed over wide geographical area. Each spectrum sensor observes surrounding radio

environment, acquires the radio signal such as I/Q signal, detects spectrum occupancies,

and send their occupancy data to a fusion center. Previous spectrum measurements uti-

lize energy detector (ED) based on the fast Fourier transform(FFT) to detect spectrum

usage. There is one most important issue with ED regardless of how it is implemented:

its limited detection performance. To overcome this, Welch FFT-based ED (Welch

FFT-ED) is an effective approach. Welch FFT consists of three steps: segmentation



of the data sequence with a specific FFT size, calculation of multiple power spectra

and averaging of the power spectra. Here, the number of segments defines over how

many segments the averaging is performed and more averaging provides better detec-

tion performance. Due to the the Welch FFT operation, there is a trade-off between

the detection performance and frequency resolution in terms of FFT size. Thus, this

trade-off affects awareness performance of spectrum usage at each spectrum sensor.

In this dissertation, we investigate FFT size setting problem in Welch FFT-ED

by considering the above trade-off. The first part of this dissertation formulates the

optimum FFT size as the one that allows the accurate detection of spectrum occupancy

while maintaining target DC estimation accuracy and a small enough target false alarm

rate. In addition, we also define a sub-optimum FFT size which is obtained analytically.

The analysis reveals that the FFT size depends on SNR and true DC value. This

indicates that FFT size setting is challenging problem since prior knowledge of SNR

and actual DC value is impractical.

The second part of this dissertation proposes two practical adaptive FFT size setting

methods which utilizes outputs of noise floor (NF) estimation instead of SNR and DC

information. Thus, the proposed methods are very practical and easy to use. The

first method uses NF estimation outputs for all possible FFT sizes in Welch FFT.

Thus, this method is expected to achieve a high performance in terms of RMSE of

DC estimation and WSDR metric, but to also have a relatively high computational

cost. For reducing the computational cost of the first method, the second method is

proposed. This method achieve both reasonable RMSE and WSDR performances and

low computational complexity since it searches the proper segment size while limiting

the searchable segment sizes. These two methods can adaptively select the proper FFT

size in real time without human intervention. Therefore, we expect to the contributions

in this dissertation are helpful for developing the real-time and automatic spectrum

measurement systems.
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Chapter

1
Introduction

1.1 Background

1.1.1 Demand and Scarcity of Spectrum Resources

About 120 years have passed since German physicist, Heinrich Rudolf Hertz confirmed

the existence of electromagnetic spectrum experimentally. After that, an Italian inven-

tor, Guglielmo Marconi, invented a practical system for wireless telegraphy capable to

use electromagnetic waves to send information; it is the beginning of wireless commu-

nication via electromagnetic spectrum (especially radio spectrum). On this occasion,

remarkable progress has been made in the wireless communication field and the wire-

less communication has become indispensable to our now. Especially, data traffic has

significantly increased during the last decade due to the spread of high-function mo-
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Fig. 1.1: Forecasts by Cisco about number of devices, 2016 to 2021 [1]

bile terminals such as smart phones and table terminals and the growth content-rich

services, etc. In fact, the number of devices is expected a 1.5-fold increase between

2016-2021 (7.6 billion in 2016 and 11.6 billion in 20121) [1]. [1] predicts an exponential

increase in data traffic that corresponds to a 7-fold increase in traffic between 2016-

2021, as shown in Fig. 1.2. This is due mainly to the diversification of usage scenes;

they mainly include cellular, wireless local area network (WLAN), bluetooth, machine-

type communications (MTC). This means wireless communication is an indispensable

lifeline and the demand for spectrum resources continues to increase. In addition, radio

spectrum, which are one of the wireless resources have to be exploited efficiently since

they are limited and precious resources.

However, although the demands for wireless communications are explosively ex-

panding, we face a fundamental, but critical problem: severe scarcity of the spectrum

resources. Due to the propagation properties of radio waves, the signal transmitted

by an antenna interferes with the other communication systems that share the same

spectrum at the same time and location. Therefore, spectrum have been statically and

exclusively assigned to each specific system for a long term and over a large geographical

area in order to avoid the unintended degradation (interference) of the communication
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This chart is a graphic single-point-in-time portrayal of the Table of Frequency Allocations used by the
FCC and NTIA. As such, it does not completely reflect all aspects, i.e., footnotes and recent changes
made to the Table of Frequency Allocations. Therefore, for complete information, users should consult the
Table to determine the current status of U.S. allocations.

Fig. 1.3: Frequency Allocation Chart in U.S. [2]

quality.

Figure 1.3 summarizes the spectrum allocation in U.S. [2]. The figure clearly ex-

plains that almost all bands from several kHz to several hundred GHz have been already



allocated to any wireless systems. In particular, in several hundred MHz to several

GHz bands, which are suitable for mobile communication systems from the viewpoint

of antenna design and radio propagation, several wireless communications systems even

share the same spectrum. Thus, it is clear that there is almost not the spectrum allocat-

able to new wireless systems appearing in the future if the current spectrum allocation

or management strategy is not changed.

Furthermore, many researchers and wireless companies reported some wireless sys-

tems such as wireless local area networks (WLANs) and cellular networks are over-

crowded and the desired quality of service of communication can not be satisfied. This

means the overcrowded wireless systems require more spectrum to alleviate the con-

gestion.

1.1.2 Potential Solutions to Spectrum Scarcity Problem

The scarcity of spectrum resources is one of the most important problem in the field

of wireless communication and it has to be solved early. Therefore, many researches

have attacked the problem from different viewpoint, and today’s countermeasures for

the problem can mainly be classified into three approaches as follows.

Development of High-Spectral Efficient Techniques

A simple direction is to improve the spectral efficiency via new radio techniques

in the framework of the current frequency allocation (statical and exclusive allo-

cation). This direction includes massive MIMO, new waveform such as fOFDM

[4–6], FBMC [7, 8], spatial modulation [9–11], full-duplex radio [12–14], non-

orthogonal multiple access (NOMA) [15–17], coded MAC [18, 19], and new error

correction coding such as polar codes [20, 21]. The improvement of spectrum ef-

ficiency may be solve the congestion in the crowded wireless systems since more

users are accommodated compared to the current using the same spectrum re-

sources. Moreover, it can create the spectrum allocatable to new wireless systems

while satisfying the demand of spectrum resources for existing wireless systems as

the spectrum should be allocated to the existing wireless systems is compressed.



Opening of additional frequency band

As mentioned above, the spectrum in several hundred MHz to several GHz bands,

say below 6GHz has been already allocated to some wireless systems. However,

most of higher frequency bands, say above 6GHz such as mm-wave band and

THz band are not allocated to any wireless systems yet due to the poor propaga-

tion characteristic compared to the lower frequency bands. So, many researchers

attempt to develop their higher frequency bands for bandwidth-hungry wireless

systems and new wireless systems. Especially, mm-wave communications are very

important for the next-generation cellular mobile communication systems (the 5G

systems). However, there are several difficult problems. These include path loss,

blocking, atmospheric and rain absorption, link acquisition and development of

new transceiver architectures.

Spectrum Sharing with Existing Wireless Systems

Most of the frequency bands suitable for mobile communication have already been

allocated exclusively to some system as shown above. However, many experimen-

tal results show that the spatio-temporal usage rates in these bands are very low,

and the other spectra are not used effectively. Therefore, spectrum sharing which

uses these free bands while guaranteeing the communication quality of existing

communication systems is also widely discussed over the last decades. There are

several spectrum sharing models and they will be introduced in the next section.

In summary, all these approaches can deal with the spectrum scarcity today. How-

ever, from the viewpoint of fundamental physical characteristics such as antenna size

and radio propagation, the frequencies below several GHz, say 6 GHz undoubtedly are

exploited for wireless communications and/or non-wireless communications in the fu-

ture. Thus, the spectrum sharing with existing wireless systems is a most appropriate

approach in sub-6GHz spectrum since these frequency bands have been allocated to

any wireless systems and there is no room for accommodating new wireless systems.
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(Spectrum Common Model)

Hierarchical Access Model

Spectrum Property Rights Dynamic Spectrum Allocation Spectrum Underlay
(Ultra Wide Band)

Spectrum Overlay
(Cooperative Communication)

Interweave
(Opportunistic Spectrum Access)

Fig. 1.4: Dynamic Spectrum Access Model

1.1.3 Dynamic Spectrum Access

Spectrum sharing with the existing wireless systems are called as Dynamic Spectrum

Access (DSA) and have been investigated from the various aspects over about 20 years.

The concept of DSA has a potential to bring to the ultimate spectrum usage over

several frequency bands regardless of the wireless services. Although spectrum sharing

is not a new idea, it has gained popularity for a long time. With this background,

several DSA models have been proposed and some new models recently appear. There

are many DSA models, but the models can be broadly are broadly classified into three

models as shown in Fig. 1.4 following the survey papers [22–25]. We will describe their

models in detail below.

Dynamic Exclusive Use Model [26–28]

This model maintains the basic structure of the current spectrum regulation pol-

icy, but some flexibility is introduced to improve spectrum efficiency. There are

two approaches under this model: �Spectrum property rights [26] and dynamic

spectrum allocation [27, 28]. The former approach allows licensees to sell and

trade own spectrum. The purchasers can freely choose technology. The fields of

economy and market will thus play a more important role in this approach. Note

that even though licensees have the right to lease or share the spectrum for profit,

such sharing is not mandated by the regulation policy.

The second approach, dynamic spectrum allocation, was brought forth by the

European DRiVE (Dynamic Radio for IP-Services in Vehicular Environments)

project. It is aimed at managing the spectrum utilized by a converged radio

system and share it between participating Radio Access Networks (RANs) over



space and time to increase overall spectrum efficiency. Similar to the current

static spectrum allocation policy, such approach allocates, at a given time and

region, a portion of the spectrum to a RAN for its exclusive use. However, this

allocation varies at a much faster scale than the current policy, where the period of

allocation in the current policy is several years, but dynamic spectrum allocation

can vary every one hour or one minute.

Open Sharing Model [29,30]

This model is referred to as spectrum commons and its history is relatively long

compared with other models. It employs open sharing among peer users as the

basis for managing a spectral region. Advocates of this model draw support

from the phenomenal success of wireless services operating in the unlicensed in-

dustrial, scientific, and medical (ISM) radio band (e.g., WiFi, bluetooth, etc.).

Spectrum commons proponents assert that wireless transmissions can be regu-

lated by baseline rules that allow users to coordinate their use, to avoid collisions.

Centralized and distributed spectrum sharing strategies have been investigated

to address technological challenges under this spectrum management model. For

example, WiFi systems (IEEE 802.11 family) operate in a distribute manner, i.e.,

CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance) protocol. In re-

cent year, the latest IEEE 802.11 standard (IEEE 802.11 ax) adopts a centralized

mechanism since the unlicensed ISM band has become highly congested due to

the success of WiFi and bluetooth.

Hierarchical Access Model

This model adopts a hierarchical access structure depending on the right to

access the spectrum. Typical model consists of two layer structure: primary

users (PUs) and secondary users (SUs). PUs have highest right to access the own

spectrum and SUs have lower right to access than PUs. The basic idea is to open

licensed spectrum to SUs while limiting the interference towards PUs. Three

approaches to spectrum sharing between PUs and SUs have been considered:

Spectrum underlay, Spectrum overlay, Interweave.
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Fig. 1.5: Opportunistic Spectrum Access Concept

The underlay approach allows concurrent transmissions for SUs but imposes con-

straints on their transmission power so that they operate below the noise floor of

PUs. To meet such requirements, SUs can use some technologies such as Code

Division Multiple Access (CDMA) or Ultra Wide Band (UWB). This approach

allows SUs to potentially achieve short-range high data-rates with extremely low

transmission power. Based on a worst-case assumption that PUs transmit all the

time, this approach does not rely on detection of spectrum white space (WS).

Another advantage is that the activity of PUs does not need to be tracked by

SUs since secondary transmissions are allowed provided that power constraints

are met. Despite the aforementioned benefits, this approach suffers from some

practical drawbacks that mitigate its importance [19], the most important one

being that the low transmission power still limits the applicability of spectrum

underlays to short-range applications.

The overlay approach also allows concurrent transmission for SUs at the same

time, frequency and location. The knowledge sharing and cooperation between



the SUs and PUs is critical in this model. Specifically, the interference imposed

on the PUs can be offset by using part of the SUs’ power for relaying the PUs’

information. Some SUs assist the PUs to free up some spectrum bands. These

vacant spectrum bands would then be used by other CUs for their secondary

transmission. Thus, This type of approach is also referred as to cooperation

communication between PUs and SUs.

The interweave approach is also referred to as opportunistic spectrum access

(OSA) and is basically based on cognitive radio technology [3, 31]. Differing

from spectrum underlay, this approach is not necessarily characterized by severe

restrictions on the transmission power of SUs. The restriction on this approach

is that when and where SUs may transmit. Thus, the basic idea of this ap-

proach is to explore spatial and temporal spectrum gaps not occupied by PUs,

referred to as spectrum holes or white spaces, and exploit such spaces for sec-

ondary transmissions. This idea allows SUs to harvest the spectrum resources

for own transmissions without causing harmful interference towards PUs. The

main subject of this approach is therefore to explore and exploit local and in-

stantaneous spectrum availability in a non-intrusive and opportunistic manner

as illustrated in Figure 1.5. Compared to the dynamic exclusive use and open

sharing models, this hierarchical model is perhaps the most compatible with the

current spectrum management policies and legacy wireless systems due to no PUs

intervention. Furthermore, these three approaches can be employed simultane-

ously to further improve spectrum efficiency.

Although the dynamic exclusive use model is able to improve the spectrum effi-

ciency without changing legacy management policies, this approach cannot completely

eliminate white spaces resulting from the bursty nature of wireless traffic. The interest

of the open sharing model has recently been decreasing due to the increased amount of

interference among multiple wireless technologies on the band adopting the model.

On the other hand, the hierarchical access model is perhaps the most promising

alternative because it does not require the change of current spectrum management

policies and legacy wireless systems and it can be strictly managed the spectrum and
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the interference. In particular, the spectrum overlay or OSA approach is one of the

most popular frameworks nowadays. The spectrum overlay/OSA scheme has received

large attention during the last years and also constitutes the DSA model considered in

this dissertation.

1.1.4 Cognitive Cycle for Opportunistic Spectrum Access

As mentioned above, in the interweave or OSA model in the hierarchical access model,

SUs can share the spectrum owned by PUs exploiting WS if SUs do not interfere

to PUs significantly. Therefore, SUs may be able to access to the shared spectrum

based on a cognitive cycle as shown in Fig. 1.6. The cognitive cycle is consisted of

spectrum sensing (awareness of spectrum usage), spectrum decision, spectrum sharing

and spectrum mobility [3]. We will describe each component of the cognitive cycle in

detail below.

Spectrum Sensing

The role of this function is determining which portions of the spectrum are avail-

able to secondary users for opportunistic use, i.e., exploring WS. Also, it provides

basic information or data to capture the parameters related to sensing bands (e.g.,

cumulative power levels, PUs’ activities, etc.). Spectrum sensing becomes a func-

tion of paramount importance to enable spectrum sharing between PUs and SUs

since it is the foremost functionality in the cognitive cycle and its performance

affects subsequent cognitive functions as shown in Fig. 1.6.



Spectrum sensing may be performed in cooperative and non-cooperative fashions.

In non-cooperative schemes, SUs detect the primary transmitter signal indepen-

dently based on locally sensed spectrum information. The sensed spectrum in-

formation must be accurate high enough to reach accurate conclusions regarding

the radio environment. Furthermore, spectrum sensing must be fast in order to

track the temporal variations of the radio environment. Such requirements of

spectrum sensing puts stringent requirements on the hardware implementation

of cognitive radios in terms of the sensing bandwidth, the processing power, the

radio frequency (RF) circuitry, etc. Existing spectrum sensing techniques include

matched filter detection, energy detection, feature detection. The difference of

these techniques is the amount of information regarding PUs and matched filter

detection has highest performance because it exploits full information of PUs. On

the other, energy detection can operate without any information of PUs leading

to its applicability, but it cannot achieve high sensing performance. The future

detection ranks between matched filter detection and energy detection in terms

of sensing performance and the amount of information required. In general, this

non-cooperative schemes are very susceptible to surrounding radio environment

such as path loss, shadowing, multi-path fading.

For this issue, cooperative spectrum sensing schemes have been considered. It

relies on the exchange of sensing information from multiple SUs. Cooperation

among secondary users is theoretically more accurate due to spatial diversity

which mitigated the negative effects of multi-path fading and shadowing. In

addition, it allows individual secondary terminals to relax the detection perfor-

mance requirements. However, cooperation also has some disadvantages. First,

it requires a reliable control channel to exchange sensing information. Second,

it introduces additional signaling overhead, which might be significant depend-

ing on the amount of cooperating nodes and the type of information exchanged

(e.g., binary busy/idle decisions or signal statistics). Third, cooperation implies

additional energy consumption, which is an important aspect in battery-powered

terminals. Forth, cooperation may produce security issues due to e.g., the existing



malicious users and emulation attacks.

Spectrum Analysis

This function is in charge of characterization of the spectrum holes and the sur-

rounding radio environment that are measured through spectrum sensing. Specif-

ically, the characteristics of the spectrum holes detected in different spectrum

bands are analyzed in terms of interference level, path loss, channel error rate,

link layer delay, expectable vacancy duration, and other appropriate parameters.

Spectrum Decision

This function decides the most suitable spectrum band to meet the communi-

cation requirements of the SU based on spectrum analysis results. Specifically,

based on spectrum analysis results, the operating band is selected based on the

user Quality of Service (QoS) requirements (e.g., data rate, error rate, delay, etc.)

and the spectrum characteristics. This function is also aimed at providing a fair

spectrum access to the coexisting SUs by coordinating the access to the available

WS. Therefore, the problem of spectrum decision shows some analogies with the

Medium Access Control (MAC) problem in traditional communication systems.

However, there are some substantially different challenges which are described in

[64].

Adaptation/Reconfiguration of Transmission Parameters

The last step for access to WS is the adaptation of reconfiguration of transmission

parameters. This function distinguishes a cognitive radio from a traditional one,

and is essential part for complete the cognitive cycle depicted in Fig. 1.6. Specif-

ically, it is its ability to re-tune its transceiver parameters on the fly based on its

assessment of the surrounding radio environment (spectrum decision functional-

ity). While today’s radios have considerable flexibility in terms of their ability

to reconfigure some transmission parameters such as the transmission rate and

power, they are typically designed to operate over certain frequency band(s) ac-

cording to a certain communication protocol. On the other hand, transceiver for

realizing OSA concept should be more flexible than just this in order to be able to



exploit emerging WS over a wider spectrum range. For example, the transceiver

must be able to configure the transmission bandwidth to adapt to spectral op-

portunities of different sizes. Furthermore, it must determine the appropriate

communication protocol based on the characteristic of WS and surrounding radio

environment.

Spectrum Mobility

To avoid harmful interference towards PUs, SUs must vacate a communicating

channel when a PU is detected and move to an alternative available channel. Per-

haps, the requirement of the movement to an alternative available channel occurs

by other reasons such as preserving or improvement of the QoS. Such transition

from one spectrum band to another is referred to as spectrum handover or mo-

bility. The objective of the spectrum mobility function is to maintain seamless

wireless connectivity for avoiding harmful interference to PUs and preserving or

improvement of own QoS, etc. This function involves not only the change of pa-

rameters in physical layer, but also the change of parameters in higher layers and

their changes should be performed rapidly.

By the cognitive cycle OSA concept can be realized, but its cycle speed should be

fast enough so that it can track the dynamics of spectrum usage by PUs. Furthermore,

the high-reliable cognitive cycle is required. Therefore, we must seek the new approach

to solve the very difficult task for cognitive cycle.

1.1.5 Smart Spectrum Access

During the last years, the OSA concept has gained popularity as a promising solu-

tion to conciliate the existing conflicts between the ever-increasing spectrum demand

growth and the demonstrated spectrum underutilization. As explained in Sects. 1.1.3

and 1.1.4, the basic idea of the OSA is that SUs are aware of WSs exploiting spectrum

sensing techniques and then opportunistically exploit them for achieving the spectrum

sharing with PUs though spectrum analysis, spectrum decision and adaptation of trans-

mission parameters. In addition, SUs have to vacate the channel as soon as a primary
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Fig. 1.7: Realizing the Reliable and efficient Cognitive Cycle by SAS

Fig. 1.8: Conceptual Diagram of Smart Spectrum Access

user reappears to avoid harmful interference to PUs based on spectrum mobility func-

tionality.

While conceptually simple, the realization of the OSA poses great difficulties in

practice because of very difficult and complicated task in cognitive cycle as mentioned

previous section. Thus, many critical aspects in terms of the cognitive cycle still remain

open. Especially that is, How to enable the cognitive cycle with high-reliability and high-

efficiency. More efforts must therefore be devoted to the development of new concepts

realizing the reliable and efficient cognitive cycle, leading to ultimate spectrum usage.

For enabling this vision, smart spectrum access (SSA) is a promising concept. SSA



exploits a prior useful information such as statistical information regarding spectrum

usage by PUs for realizing the reliable and efficient cognitive cycle as shown in Fig. 1.7.

SSA consists of the typical OSA approach using CR techniques in combination with an

external spectrum awareness system (SAS) as shown in Fig. 1.8. The SAS is responsible

for spectrum measurement, modeling, database, and spectrum management.

The SAS provides useful statistical spectrum usage information to SUs based on

spectrum measurements so that SUs in DSA can be relieved of having to perform energy

and time consuming SPU measurements. The SPU information, based on long term,

wide band,and broad area spectrum measurements, is stored in a data base. The long

term information is processed by adequate spectrum occupancy modeling to extract

a set of parameters sufficiently characterizing the full information (which would be

impractical to share).

As will be described in the following section, there are many works which show

exploiting information regarding spectrum usage by PUs is very useful for enabling the

cognitive cycle with high-reliability and high-efficiency

1.1.6 Survey Related to Smart Spectrum Access

As mentioned before, SSA exploits a prior useful information such as statistical infor-

mation regarding spectrum usage by PUs for realizing the reliable and efficient cognitive

cycle. Exploiting information regarding spectrum usage by PUs itself is not new since

the behavior of SUs depends strongly on PUs’ spectrum usage. Thus, there exist a

lot of works related to smart spectrum access. In this section, we provide a compre-

hensive literature review related to smart spectrum access. Specifically, we survey the

dynamic spectrum access techniques exploiting a prior statistical information regarding

spectrum usage by PUs.

Physical Layer Spectrum Sensing [32–35]

In spectrum sensing in physical layer, it is important to set a decision threshold

properly. It determines the sensing performance evaluated by detection proba-

bility and false alarm rate. Previous works show the statistical information in

terms of spectrum usage can improve the sensing/detection performance. This is



achieved to properly set the decision threshold based on duty cycle or transition

probability for Markov chain model. Intuitively, the threshold should be lower

when the sensing band is expected to have a high traffic to improve the detection

probability. On the other hand, the threshold should be higher when the sensing

band is expected to have a lower traffic to reduce the false alarms. This can be

realized if SUs know the spectrum usage model and its corresponding parameters.

MAC Layer Spectrum Sensing [36–38]

The role of spectrum sensing in MAC layer is to decide which and how frequently

band/channel sensing is done. In addition, the channel order of performing the

sensing is also important factor. Several works exploit statistical information

regarding spectrum usage such as to determine above parameters.

Spectrum Decision [39–46]

In spectrum decision, statistical information regarding spectrum usage has very

important role. As mentioned in Sect. 1.1.4, spectrum decision is done based

on the spectrum sensing results. However, the function of spectrum sensing is to

detect instantaneous/local WS over time, frequency and space dimensions lead-

ing to insufficient information about spectrum usage. As the complementary

role, statistical information is very useful since this information provides more

global interpretation about spectrum usage. Perhaps, ultimately spectrum sens-

ing function can be excluded by exploiting statistical information if SUs decide

the available channel exploiting only statistical information [47]. This situation

would correspond to one that the spectrum usage can be easily predicted.

Spectrum Mobility [39,41,44,48]

Perhaps statistical information become most useful resource in spectrum mobil-

ity function since it allows SUs to proactively change the channel. This results

in low channel switching delay, lower interference to PUs, and higher spectrum

utilization efficiency. Eventually, exploiting statistical information can improve

overall agility of cognitive cycle.



In summary, statistical information regarding spectrum usage can contribute all the

cognitive functions. However, most of previous works do not explicitly consider ”How

to obtain useful statistical information”. On the other hand, SSA approach explicitly

deals with this issue and the spectrum awareness system is responsible for this role as

shown in Fig. 1.8.



1.2 Thesis Motivation and Contributions

In SAS, one of the important aspects is spectrum measurement part is the spectrum

awareness system. This is because spectrum measurement performance strongly affects

subsequent spectrum usage modeling performance, eventually spectrum sharing perfor-

mance. For this reason, we focus on the signal processing part each spectrum sensor in

the spectrum measurement system.

To data, there have been many spectrum measurement campaigns all over the world

[references]. Many spectrum occupancy studies reported in the literature have been

conducted with a single device at a fixed location, focusing on the time and frequency

dimensions since the characterization of spectrum occupancy in spatial domain involves

several spectrum sensors leading to expensive and difficult tasks. Most of their spectrum

measurement campaigns aim at quantifying duty cycle (DC) or channel occupancy rate

(COR), i.e., the proportion of time when a certain frequency channel or frequency band

is occupied in a given area. Measurements can be used to assess the current status of

the spectrum use and the availability of the spectrum for other users. Some spectrum

measurement studies give us detailed spectrum occupancy models in time, frequency,

space domains and their mixtures. These detailed spectrum occupancy models are

beneficial for SUs, which attempt to share the spectrum owned by PUs by exploiting

these models effectively; This is certainly the idea of smart spectrum access. In addition,

measurement campaigns also give valuable information to administrators each country

about the efficiency of the current spectrum allocations.

In most spectrum measurements, energy detection (ED) has been utilized energy

detector (ED) to detect spectrum usage as it does not require a prior signal information

of PUs and its implementation and computational costs are low compared with cyclo-

stationary feature based detection and matched filter detection. Conventionally, the

ED has been implemented with swept-frequency spectrum analyzers as spectrum sen-

sor. This type of sensor can miss signals that occur between the sweeps and it may lead

to inaccurate spectrum measurements. On the other hand, we focus on the ED with

real-time spectrum analyzers such as in [10], [11]. This type of sensor can observe large

instantaneous bandwidths without any time domain gaps between the outputs unlike



the swept-frequency counterpart. In general, the outputs correspond to I/Q baseband

samples and a spectrum analysis such as fast Fourier transform (FFT) over the I/Q

baseband samples is performed as a first step of signal processing. After that, the ED

detects spectrum usage based on power spectrum estimated by FFT. There is one main

issue with ED regardless of how it is implemented which is not deeply considered to

date in the field of spectrum measurement. That is, time and frequency resolutions

setting issue and detection performance of ED. In FFT-based spectrum measurement,

both time and frequency resolutions depend on FFT size. Moreover, the detection

performance of ED is closely related with time and frequency resolutions.

Therefore, the main contribution of this dissertation is the realization of accurate

spectrum measurement in FFT-based spectrum measurements considering time and

frequency resolutions as well as the detection performance of ED. The detailed contri-

butions of this dissertation follow:

[C1 ] We define the optimum FFT size as the one that allows the accurate detection

of the spectrum occupancy in time and frequency domains while maintaining

target DC estimation accuracy and a small enough target false alarm rate. The

DC estimation accuracy is quantified in terms of its root mean squared error

(RMSE), which is related to signal detection performance without considering the

frequency resolution. On the other hand, the detection accuracy of the spectrum

occupancy in time and frequency domains is quantified by means of the white

space detection ratio (WSDR), defined as the ratio of true WS to estimated WS,

which also includes the effect of the frequency resolution.

[C2 ] We also define a sub-optimum FFT size which is obtained analytically. The

analysis reveals that the FFT size depends on SNR and DC. This indicates that

FFT size selection is challenging problem since prior knowledge of SNR and DC

is impractical.

[C3 ] We propose two practical FFT size setting methods which do not require SNR

and DC information. Both method exploit a relationship between output of NF

estimation based on FCME algorithm and the FFT size for proper FFT size set-



ting. The difference between the two is mainly the computational complexity By

the extensive numerical evaluations, we show both methods can achieve a com-

parative WSDR performance compared with optimal one while meeting RMSE

constraint in terms of DC estimation.

1.3 Thesis Outline

Figure 1.9 shows the organization of this dissertation. We survey related works re-

garding smart spectrum access (SSA) comprehensively in chapter 2. Next, chapter

3 describes a spectrum measurement system model in SSA. After we formulate an

optimization problem in terms of FFT size setting from the view point of wideband

spectrum measurement in chapter 4. This chapter corresponds to the contributions

[C1] and [C2]. In chapter 5, we propose two practical FFT size setting methods and

evaluate/compare their performances and the contributions in this chapter correspond

to [C3]. Finally, we conclude the dissertation and point out the future directions in

chapter 6.



Introduction

Comprehensive Survey Related to 

Spectrum Measurements

Spectrum Measurement System in 

Smart Spectrum Access

FFT Size Optimization

Practical FFT Size Setting Methods

Conclusion

Main Contributions 

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Fig. 1.9: Organization of this dissertation.





23

Chapter

2
Comprehensive Survey Related to Spectrum

Measurements

This chapter provides a comprehensive literature review related to spectrum measure-

ments. Specifically, we survey their works from the viewpoint of spectrum measurement

parameters setting since it is one of our subjects in this dissertation.

2.1 Introduction

In OSA which is a promising approach to solving the spectrum resource scarcity, a SU

senses the spectrum availability, learns from the spectrum and changes its parameters

according to the surroundings based on CR technology. To make the SSA and OSA



concepts successful, spectrum measurement is very essential. It estimates the PU ac-

tivity on the different bands and indicates the amount of available spectrum for SUs.

In fact, There have been a large number of measurement campaigns around the world

including US, Europe, Singapore, China, and Japan to study the spectrum utilization

in the context of DSA. Some of these measurement campaigns give detailed data anal-

ysis in terms of statistical models in terms of spectrum usage. On the other hand,

other measurement campaigns only give simple but important sample statistics such as

power, duty cycle (DC), spectrum occupancy. Before proceeding to survey several im-

portant spectrum measurement campaigns, we claim a few common aspects regarding

these campaigns.

First, most of these campaigns have been conducted by using an omnidirectional

antenna that measures surrounding radio signals, a spectrum analyzer acquires data

such as I/Q data and power data and a computer that processes and analyses mea-

sured data. A few measurement campaigns exploit a directional antenna to investigate

the spectrum occupancy in the space domain. Furthermore, a spectrum analyzer is in

general installed at a fixed point, but some measurement campaigns use a vehicle to

investigate the spatial distribution of spectrum usage. The acquired data in a spec-

trum analyzer also are different each measurement campaigns. In general, the type of

the acquired data is classified into I/Q data or power data depending on the type of

exploited spectrum analyzers. Most of measurements use a swept-frequency type spec-

trum analyzer and this type of spectrum analyzer outputs power data on the principle

of its operation. Some of measurements use a real-time spectrum analyzer and this

basically outputs I/Q data.

Second, Most of these campaigns consider either outdoor or indoor locations. As for

the outdoor scenario, the measured locations are basically chosen on the roof of a high

building in order to reduce the effect of radio propagation loss on the measurements

[]. Some measurement campaigns perform the measurement at a ground level to reveal

the realistic spectrum occupancy. As for the outdoor scenario, the measured locations

are often chosen in an office building, a typical application environment for wireless

communications. Some of the measurements use several spectrum analyzer which are



installed at different geographical locations to investigate the location variations in

terms of spectrum occupancy and power. However, introducing several analyzers is

very expensive and complicated task

Finally but not all, different measurements apply different measurement param-

eters such as measurement time span, measurement cycle, measurement bandwidth,

measurement frequency band, to name a few. The setting of measurement parame-

ters are one of critical issues in spectrum measurements. Several works mention the

methodological aspect and investigate the effect of measurement parameter setting to

measurement accuracy. The measurement time span varies from a few hours in some

campaigns to a few years in other campaigns. Intuitively, the longer the time span is,

the more useful but also the more expensive the measurement campaign will be. Also,

most of these campaigns focus on the frequency range between several dozen MHz

(e.g., 20 MHz) and several GHz (e.g., 6 GHz). This range covers some of the very im-

portant applications of wireless communications, such as FM radio, TV broadcasting,

cellular communications currently. And, it is especially important to realize DSA in

this frequency range since many of the spectrum in this frequency range has already

allocated to any wireless services. It will be also important to perform spectrum mea-

surements over higher frequency range because it is expected the next generation mobile

communication systems exploit very higher frequency bands such as mm-wave band.

However, higher frequencies are more vulnerable to propagation loss and it makes the

measurement over higher frequency bands very difficult.

In the next section, we will discuss several important measurement works. Finally,

we make a few summary statements in this chapter.

2.2 Survey of Global Spectrum Measurement Campaigns

Following our survey, the initial spectrum measurement campaigns are performed in

North America, specifically the US and the Canada [49,50]. In these campaigns, their

purpose is reveal the spectrum occupancy and the measured occupancy data are used

to assist in the assignment of radio frequencies. To our best knowledge, there are

two earliest measurement campaigns. First one is performed by Matheson for the In-



Fig. 2.1: Transition of the number of article published per year, Keywords: ”Spectrum

measurement” and ”Cognitive radio”.

stitute of Telecommunication Science in the US and second one is by Vaccani in the

Canada. Matheson has provided basic guidelines for spectrum measurements through

his experience and obtained results for 15 years. Especially, he argued the importance

of spectrum occupancy in terms of five different dimensions called as ”electrospace”:

time, frequency, location, direction and polarization. Finally, he emphasized that dif-

ferent measurement strategies or measurement parameters may lead to significantly

different results through some experimental examples. Miguel et al. extended the

basic guideline by Matheson and they argues the detailed measurement methodology

including the measurement setup, time and frequency resolutions, and post-processing

to obtain accurate measurement results.

On the other hand, Vaccani performed the measurements over land mobile radio

band. In this measurement, average duty cycle (DC) for 16 hours each frequencies and

time variation of DC every one hour are showed. And, in the DC measurement energy

detection (ED) is exploited. His results indicate a maximum average DC is about 57%

and the fluctuations of DC in time domain is small in the land mobile radio band.



After that many observations were conducted in the US and another countries such

as UK [51], Sweden [52], Germany and Australia [53] and one of important broadband

spectrum measurement is perhaps one by Sanders for the Institute of Telecommunica-

tion Science in the US [54]. In this work, Sanders measured the frequency bands from

108 MHz to 19.7 GHz in three different US cities, Denver, San Diego and Los Angeles,

for two weeks. All the measurements were performed outdoors and all evaluations are

based on power data. Using these measurements, it was found that San Diego has

considerably more radio activities than Denver.

More extensive measurement campaign was done by McHenry et al. in the Chicago,

US in 2006 [55]. In this era, the researches of cognitive radio and dynamic spectrum

access spread all over the world. For this reason, the number of articles about spectrum

measurement from the point of view of cognitive radio has been increased at that time.

In fact, Fig. 2.1 shows the transition of the number of published articles per year. This

figure shows the number of achievements such as conference papers, journal articles

published within the year using ”Cognitive Radio” and ”Spectrum Measurement” as

search words in the IEEE Xplore. In [55], measurements were taken from 30 MHz to

3 GHz for a few hours. The location was fixed to the roof of a multistory building in

the Chicago. The results were presented in terms of the maximum power level and the

duty cycle. From the results, a highest average DC is 70.9% at some TV bands. On

the other hand, a lowest average DC is 0% at some satellite bands. Also, the cellular

band also has a heavy occupancy with an average duty cycle of 55%. Furthermore, this

article compares the spectrum occupancy in the Chicago with one in the New York.

This comparative evaluations reveal a significant difference although two cities are large

in the US.

In 2007 and 2008, three conference papers were published [56–58]. The measure-

ment locations are respectively in German, in New Zealand and in Singapore. All these

measurements use the swept-type spectrum analyzer and energy detection as a spec-

trum usage detection. Moreover, these measurements show duty cycle, distribution of

power or amplitude mainly. Especially, [56] made comparisons the measurement result

between outdoor scenario and indoor scenario.



In 2009, there are seven journal and conference papers [59–65]. Spectrum measure-

ments are performed at the various locations including Spain, Qatar and China. All

these measurements also use the swept-type spectrum analyzer and energy detection as

a spectrum usage detection. Especially, [59] investigated the effect of frequency resolu-

tion setting into the spectrum occupancy results, but a concrete guideline for frequency

resolution setting was given. Moreover, [60] considered a problem about adaptive en-

ergy detection threshold setting and claimed the importance of using the difference

threshold each frequency band/channel.

Seven articles are explored in 2010 [66–73]. The location of these spectrum measure-

ments include US, Spain and Finland. Almost all measurements also use the swept-type

spectrum analyzer and energy detection as a spectrum usage detection. [72] used USRP

(Universal Software Radio Peripheral) as a spectrum sensor, but basic structure is same

as the swept-type spectrum analyzer In [72], a spectrum occupancy model based on

independent Poisson process was proposed and the modeling method was introduced.

In 2011, five papers were published [74–78]. All these measurements also use the

swept-type spectrum analyzer and energy detection as a spectrum usage detection.

Especially, [75] reviewed past measurement campaigns performed by different research

groups and analysis of empirical results from the viewpoint of cognitive radio. The

conclusion was the past results show that the average occupancy of the spectrum is very

low. Thus, there is a significant amount of spectrum available for the future deployment

of cognitive radio. Further, it provided a spectrum occupancy measurement framework

for the proposed spectrum measurement in India.

There are eight papers in 2012 [79–86]. All these measurements also use the swept-

type spectrum analyzer and energy detection as a spectrum usage detection. [85] pre-

sented the first comprehensive study on the level of ”usable” spectrum available to

SUs based on RWTH data set, which include large amount of data measured at vari-

ous locations including German and Netherlands. Their analysis shows that even with

extensive statistical knowledge on PU’s spectrum usage pattern, and while running

optimal algorithms, secondary devices can only extract 20% − 30% of available spec-

trum in a channel. To provide better spectrum availability, they proposed frequency



bundling. It is a method that SUs build reliable channels by combining multiple unre-

liable frequencies into virtual frequency bundles.

In 2013, 17 papers were published [87–103]. The number is a maximum from 2006

to 2017 as far as I can see. In this year, several spectrum occupancy models were

proposed based on real spectrum measurement results. [102] proposed the spectrum

occupancy models in time dimension He considered the low-time resolution and high-

time resolution spectrum usage models. Their model parameters were extracted from

real-wold spectrum measurement data he obtained. He concluded almost all wireless

systems can be modeled by a generalized Pareto distribution at long-time scale, but

different models must be applied at short-time scale.

In 2014, there are six papers [104–109]. All these measurements also use the swept-

type spectrum analyzer and energy detection as a spectrum usage detection. An impor-

tant paper is [107]. In this paper, vehicle-based spectrum measurements were performed

for enhancing whitespace spectrum databases. They proposed a system V-Scope, a

measurement framework for TV whitespaces. The system leverages spectrum sensors

mounted on public vehicles to collect spectrum measurements during the drive, where

FFT-based spectrum measurements are adopted.

In 2015, nine papers were published [110–118]. An important paper is [114]. This

paper surveys past spectrum measurement campaigns used in diverse locations by re-

search campaigns worldwide. The detail analyses of the empirical results in different

scenarios of measurement have been compared. The purpose of this survey was to eval-

uate up to what percentage the whole spectrum band is occupied by different services.

They concluded that most of the bands are vacant worldwide which can be utilized for

the DSA.

There are 16 papers in 2016 [119–134]. In these papers, two survey papers are

included [126, 129]. [126] surveyed measurement-based spectrum occupancy modeling

from the viewpoint of cognitive radio. In addition, they surveyed various models for

spectrum occupancy prediction. Recently, spectrum occupancy prediction has gained

popularity due to its ability of improvement of cognitive cycle efficiency [135]. They

concluded most models are established based on the observations from the measure-



ments and are extracted by fitting them to the well-known theoretical models. This

leads to a large number of different models for similar situations. Thus, we should

investigate a point that whether a general model exists that can unify most existing

models.

Finally, seven papers were published in 2017 [136–142]. Almost all measurements

also use the swept-type spectrum analyzer and energy detection as a spectrum usage

detection. [137] used USRP as a spectrum sensor. The USRP they used is similar to the

real-time spectrum analyzer, but USRP basically adopts direct-conversion method as

a frequency transformation unlike typical real-time spectrum analyzer adopting super-

heterodyne method. The observe data is I/Q data and they applied FFT as a spectrum

analysis. They concludes a high variability of the spectrum occupancy at different

locations and notable differences between the values measured in the two locations.

2.3 Chapter Summary

In this chapter, we comprehensively surveyed past spectrum measurement campaigns.

Many campaigns have revealed most of allocated frequency bands are underutilized and

the vast about of available spectrum resources, i.e., white space. Most of the spectrum

measurements exploit sweep-type spectrum analyzers and energy detection for inves-

tigation of spectrum occupancy and estimating the duty cycle. A few measurement

campaigns exploit real-time spectrum analyzer in combination with FFT. Most impor-

tant thing is that most of the spectrum measurements did not consider the frequency

and time resolutions as well as detection performance. A few works investigated the

effect of frequency resolution and detection performance (i.e., detection threshold set-

ting) in terms of measurement results. These facts have motivated our to study the

design and setting of FFT size which affects time and frequency resolutions setting and

detection performance.
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Chapter

3
Spectrum Measurement System in Smart

Spectrum Access

In this chapter, we introduce the spectrum measurement system prototype we have

developed for achieving smart spectrum access. Furthermore, we in detail describe the

model of a spectrum sensor assumed throughout this dissertation.

3.1 Spectrum Measurement System

Figure 3.1 shows the implemented spectrum measurement prototype system. The sys-

tem prototype consists of an antenna that can observe the target frequency band,

cables, multiple spectrum sensors, a network-attached high-capacity hard disk, a mea-
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Fig. 3.1: Spectrum Measurement System Prototype

surement system manager, and a data analysis computer. In the system, spectrum

sensors perform the spectrum measurement. Here, the synchronization device controls

the measurement timing on spectrum sensors using a pulse train signal with a duty cycle

given by system control PC. Each sensor performs the first function (PUs’ signal acqui-

sition) and transfers obtained data to storage device such as network attached storage

(NAS). After that, signal processing PC performs the last three functions (Welch FFT,

ED and DC estimation). The obtained information also are stored in storage device.

3.2 General Model for Spectrum Measurement in A Spec-

trum Sensor

The general measurement setup and methodology to obtain DC data in this section.

The measurement system manager takes care of the measurement time scheduling,

which is shown in Fig. 3.3. The number of days for spectrum measurement is denoted

by D and we set D = 24 in the spectrum usage measurement. One day (24 hours)

is divided into M time slots. The time duration for one time slot is denoted by TS .

One time slot consists of a measurement period and a data analysis period, whose

time durations are denoted by TM and TA, respectively. Typically TM depends on

the capability of the spectrum sensor, such as internal buffer size and sampling rate.

During one measurement period, the RSA continuously observes the target frequency
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Fig. 3.2: General Model for Spectrum Measurement in A Spectrum Sensor

band for TM seconds. Note that the observation of the RSA is continuous unlike typical

swept spectrum analyzers. TM has to be much longer than one continuous spectrum

usage cycle, such as data packet, for proper DC estimation in the target frequency

band. For example, the time durations for data packet in WLAN is at most about 0.87

ms, (corresponding to the time duration of the IEEE 802.11 PLCP (Physical Layer

Convergence Procedure) protocol data unit). Based on this, we should set TM ≫ 0.87

ms.

The measured data (I/Q data in this spectrum measurement) is first stored in

the hard disk and then transferred to the data analysis computer. The data analysis

computer provides estimates of the DC by means of Welch FFT-based energy detection

(Welch FFT-ED) and post processing to achieve accurate spectrum usage detection

performance. The measurement period TM is divided into MS super fames and noise

floor estimation is performed in each super frame as shown in Chapter 5. One super

frame consists of M time frames. Each time frame has NS I/Q samples and Welch

FFT-ED is performed in each time frame. Then, NS corresponds to time resolution

and FFT size exploited in Welch FFT determines frequency resolution.

The spectrum usage detections are performed based on theM×NF estimated power
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spectrum samples by Welch FFT at the data analysis computer. In this measurement,

the spectrum usage detections consists of typical ED. We set the detection threshold

based on constant false alarm rate criterion where the target false alarm rate is set to

0.01. In this criterion, we need noise floor information in order to set the threshold

and we employ forward consecutive mean excision (FCME) algorithm for noise floor

estimation. The description of FCME algorithm-based noise floor estimation will be

provided in Chapter 5.

Finally the DC in each frequency bins are estimated by exploiting ED results.

The detailed description of energy detection and DC estimation will be introduced in

Chapters 4 and 5.



3.3 Chapter Summary

In this chapter, we have shown the spectrum measurement prototype system. In addi-

tion, a general model for spectrum measurement in a spectrum sensor is also introduced.

Throughout this thesis, we use it as a basic measurement model.
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Chapter

4
FFT Size Optimizationi

4.1 Introduction

As mentioned in Chapter 2, most of previous spectrum usage measurements utilize

energy detector (ED) to detect spectrum utilization. Furthermore, the ED has been

implemented with swept-frequency spectrum analyzers or FFT-based spectrum analyz-

ers. We assume FFT-based spectrum analyzer since it has an advantage that it can

sample the I/Q samples continuously in one observation period without intermittent as

swept-frequency spectrum analyzer. There are one important issue with ED regardless

iThis chapter is based on ”Welch FFT Segment Size Selection Method for Spectrum Awareness

System” [2] in Publications, by the same authors, which appeared in IEICE Transactions on Commu-

nications, Copyright(C)2016 IEICE.



of how it is implemented: That is its limited detection performance.

To overcome the limited detection performance of FFT-based ED, Welch FFT is an

effective approach [143]. Welch FFT consists of three steps: segmentation of the data

sequence with a specific FFT size, calculation of multiple power spectra and averaging

of the power spectra. Here, the number of segments define over how many segments

the averaging is performed and more averaging provides better detection performance.

Due to the the above mentioned process of Welch FFT, there is a trade-off between

the detection performance and frequency resolution in terms of FFT size. More specif-

ically, large FFT sizes lead to poor detection performance due to insufficient averaging

of power spectrum but better frequency resolution. Small FFT sizes can improve signal

detection performance and also noise floor estimation accuracy because of the higher

number of averages of the power spectra. However, decreasing the FFT size can lead to

inaccurate recognition of bandwidth of occupied spectrum due to poor frequency resolu-

tion. As a result, the inaccurate recognition of bandwidth of occupied spectrum results

in inaccurate detection of the spectrum occupancy in time and frequency domains.

In this chapter, we formulate a design criterion for FFT size setting in Welch FFT

based spectrum usage measurements by considering the trade-off between detection

performance and frequency resolution. Our main contributions in this chapter are as

follows:

• We define the optimum FFT size as the one that allows the accurate detection

of the spectrum occupancy in time and frequency domains while maintaining

target DC estimation accuracy and a small enough target false alarm rate1. The

DC estimation accuracy is quantified in terms of its root mean squared error

(RMSE), which is related to signal detection performance without considering the

frequency resolution. On the other hand, the detection accuracy of the spectrum

occupancy in time and frequency domains is quantified by means of the white

space detection ratio (WSDR), defined as the ratio of true WS to estimated WS,

which also includes the effect of the frequency resolution.

1In fact, false alarm rate can be also optimized for DC estimation as shown in [144]. However it is

beyond of this paper and we use constant false alarm rate approach instead.



• We also define a sub-optimum FFT size which is obtained analytically. The

analysis reveals that the FFT size depends on SNR and DC. This indicates that

FFT size selection is challenging problem since prior knowledge of SNR and DC

is impractical.

• Numerical results demonstrate that the optimum FFT size can achieve optimum

WSDR performance while satisfying the RMSE constraint if SNR value is known.

The remainder of the paper is organized as follows. The system model used in

this paper is presented in Section 4.2. In Section 4.3, we introduce the FFT size design

criterion. Specifically, we formulate optimization problem of FFT size. Additionally, we

also formulate sub-optimization problem of FFT size because of difficulty in analysis

of optimization problem. Performance evaluation based on computer simulation is

presented in Section 4.4. Finally, chapter summaries are presented in Section 4.5.

4.2 System model

A detailed block diagram of signal processing for sampled I/Q data is shown in Fig.

4.2. Configuration of time frames for the spectrum usage measurement in the spectrum

sensor is shown in Fig. 4.1. One consecutive measurement duration consists ofMs super

frames, each super frame consists of M time frames, and one time frame of M time

frames consists of Ns complex samples of observed signal with sampling rate fs Hz at

the spectrum sensor.

The block diagram of the spectrum usage measurement process in an spectrum

sensor is shown in Fig. 4.2. The DC estimation process in the spectrum sensor con-

sists of several components: Welch FFT, threshold setting, spectrum usage detection

and DC estimation. In ED, the threshold setting is very important since it determines

the detection performance (detection probability and false alarm rate). In general, the

threshold is based on constant false alarm rate (CFAR) criterion. In this case, the

threshold depends on noise floor information. The noise floor must generally be esti-

mated since its level and shape are time-varying depending on surround environment.

However, we assume a spectrum sensor knows the complete noise floor information for
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simplicity of future analysis in this chapter. In next chapter, we consider practical noise

floor estimation method for achieving the practicality of this thesis. The DC estimation

obtains Ms DC estimates during one measurement duration based on Ms ×M signal



usage detection results.

Multiple PUs may randomly access any channel in the measurement bandwidth

denoted by WM (equivalent to fs in this paper) and WM is set to so as to enable the

observation of multiple PU signals, where the bandwidth of one PU signal is denoted

by WS . We assume there are I communication physical channels with and/or without

overlap between adjacent channels in the measurement bandwidth. We use the 30-dB

bandwidth [145], so that the signal bandwidth is defined by the frequency bandwidth

in which the signal power is 30 dB below its peak value. In addition, we assume that

PU system parameters (e.g., center frequency, bandwidth, SNR, etc.) are not known

at the SAS.

Now let us focus on the mth time frame (m = 0, 1, · · · ,M − 1). The nth sampled

complex baseband signal y[n] (n = mNs,mNs +1, · · · ,mNs +Ns − 1) in the mth time

frame is given by

y[n] =

 z[n] (PU is not active)

x[n] + z[n] (PU is active),
(4.1)

where x[n] represents the PU signal component and z[n] represents the noise component

which follows independent and identically distributed (i.i.d) circular symmetric complex

Gaussian distribution with zero mean and variance σ2
z , i.e., z[n] ∼ CN(0, σ2

z). SNR

is defined by SNR = σ2
x/σ

2
z , where σ2

x and σ2
z are the average signal power and noise

power in the observed spectrum, respectively.

In the Welch FFT, Ns samples are segmented into Lv segments with an overlap

ratio ρ. In Lv, v denotes the index number of FFT size (v = vmin, vmin + 1, · · · , vmax).

Without loss of generality, Ns and FFT size (Nseg,v) are assumed to be powers of two,

i.e., Ns = 2vmax and Nseg,v = 2v, namely v also indicates the exponent of the FFT size.

In this case,

Lv = 2Ns/Nseg,v − 1. (4.2)

After the segmentation, normal FFT is performed on each segment with respect to



each segment and the power spectrum averaged over Lv segments is given by

Pm,v[fv]

=
1

Lv

Lv−1∑
l=0

∣∣∣∣∣∣
Nseg,v−1∑

k=0

(wv[k]y[k +
lNseg,v

2 ]e
−j 2πkfv

Nseg,v )√
Nseg,v

∣∣∣∣∣∣
2

, (4.3)

=
1

Lv

Lv−1∑
l=0

|Ym,v[l, fv]|2 ,

where fv is the index number of the frequency bin (fv = 0, 1, · · · , Nseg,v − 1), m is the

index number of the time frame and wv[k] is the real-valued window coefficient.

Type of window affects the detection performance [146]. In [147], it has been shown

that Hamming window can achieve slightly better performance compared to other win-

dows. Therefore, we employ it and wv[k] is given by:

wv[k]

=

0.54− 0.46 cos
(

2πk
Nseg,v−1

)
(0 ≤ k < Nseg,v − 1)

0 (otherwise).
(4.4)

We assume that time resolution ∆t = Ns/fs for the duration of a time frame is

small enough compared to the time duration of one continuous signal, such as a data

packet, and the time gap between string of two continuous signals as suggested in [148].

On the other hand, the frequency resolution ∆fv is determined by the FFT size as

∆fv = fs/Nseg,v. We also assume that considered PU signal is composed of multiple

frequency bins, i.e., WS/∆fvmax ≥ 2 to enable the averaging of power spectrum in

Welch FFT.

Let fvP(m) denote the index number of the frequency bin in the mth time frame.

Detection result at the mth time frame and the fvP(m)th frequency bin is obtained by

the ED as:

D̂m,vP(m)[fvP(m)] =

{
1 (if Pm,vP(m)[fvP(m)] > η̇vP(m)) (4.5a)

0 (otherwise), (4.5b)

where (4.5a) and (4.5b) correspond to the decisions of occupied spectrum (H1) and

vacant spectrum (H0), respectively. The occupied spectrum (H1) indicates that PU

signal exists in the frequency bin partially or completely and vacant spectrum (H0)

otherwise. In general, the detection performance is summarized in two probabilities



[149]: probability of detection PD = Pr(Pm,vP(m)[fvP(m)] > η̇vP(m)|H1) and false alarm

rate PFA = Pr(Pm,vP(m)[fvP(m)] > η̇vP(m)|H0), where Pr(x) indicates the probability of

event x. In this paper, the threshold η̇vP(m) is set according to the true noise floor σ2
z,F

and the selected FFT size in the mth time frame to satisfy a certain target false alarm

rate, PFA,target. The reader is referred to [146] for the derivation of the threshold for

Welch FFT based ED based on CFAR criterion. Moreover, we can get PD for Welch

FFT based ED in [144].

In this chapter, we consider FFT size can change each time frame. Thus, the

number of frequency bins may change each time frame. Since possible number of bins

is however always a power of two, we can map the detection results with selected FFT

size to detection results with the maximum FFT size as

D̂m,vmax [f ] = D̂m,vP(m)[fvP(m)], (4.6)

where

∆fvP(m)

∆fvmax

fvP(m) ≤ f ≤
∆fvP(m)

∆fvmax

(fvP(m) + 1)− 1. (4.7)

Finally, DC estimation is performed for every super frame and the DC at the fth

bin is given by

Ψ̂[f ] =
1

M

M−1∑
m=0

D̂m[f ]. (4.8)

where M indicates the DC estimation period (equivalent to length of median filter).

In this paper, we use mH1-out-of -M model2 to define the true DC as Ψ[f ] =

mH1 [f ]/M , where mH1 [f ] denotes the number of H1 hypotheses in the fth frequency

bin and M denotes the number of time frames in one super frame.

4.3 FFT size design criterion

Larger FFT size Nseg,v can achieve high frequency resolution ∆fv, however it results

in reduced signal detection sensitivity due to small Lv in (4.2) and vice versa. To set a

2In [144], mH1 -out-of -M model is denoted by m-out-of-M model.



proper FFT size, we define the evaluation criterion for the design of the optimum FFT

size by

vOPT =argmin
v≤vmax

|1−WSDR(v)|, (4.9)

s.t. Worst RMSE(Ψ[f ]) ≤ δ,

PFA = PFA,target,

where optimum FFT size is given by Nseg,vOPT = 2vOPT , WSDR(v) and δ denote the

WSDR and allowable RMSE for DC estimate, respectively. Moreover, Worst RMSE(Ψ[f ]) =

min{RMSE(Ψ[fCHi]), i ∈ {1, 2, · · · , I}} indicates the minimum (worst) DC estimation

error among I PU channels, where RMSE(Ψ[fCHi]) is RMSE in terms of DC estimation

at the center frequency fCHi for ith PU channel.

In the following sub-sections, the details of RMSE(Ψ[fCHi]) and WSDR(v) are de-

scribed. In addition, the trade-off with WSDR(v) is shown.

4.3.1 RMSE in terms of DC estimation

The RMSE of DC estimation error in the mH1 -out-of-M model is given by [144]

RMSE(Ψ[fCHi]) =

√
E[(Ψ̂[fCHi]−Ψ[fCHi])2], (4.10)

where E[·] denotes expectation, Ψ[fc] is the true DC, and Ψ̂[fc] is the estimated DC.

Based on [144], analysis of RMSE is as follows

RMSE (Ψ[fCHi])

=

{
1

M
[(1−Ψ[f ])PFA (1− PFA) + Ψ[fc]PD (1− PD)]

+[− (1− PD)Ψ[fc] + PFA (1−Ψ[fc])]
2
} 1

2
, (4.11)

Typically, PFA,target should be set to a small value, such as 0.01. Therefore, PD should

be high enough to satisfy RMSE(Ψ[fCHi]) ≤ δ with small δ. Since fCHi is set to the

center of the ith PU’s channel in frequency domain, the frequency resolution is not

considered in the RMSE which implies that the RMSE can be improved by setting

small FFT size.
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4.3.2 White Space Detection Rate

The criterion in terms of WSDR in (4.9) indicates a vacant spectrum detection ca-

pability in frequency and time domains. In other words, the criterion considers the

frequency resolution. WSDR is defined by

WSDR(v) =

∑Nseg,vmax−1
f=0 (1− E[Ψ̂[f ]])∑Nseg,vmax−1
f=0 (1−Ψ[f ])

, (4.12)

where the denominator and numerator indicate true WS and estimated WS, respec-

tively. In this metric, values closer to one indicate more accurate detection performance.

Note that in (4.12) the effect of frequency resolution is included in the estimated DC

Ψ̂[f ] as f is given by (4.7).

4.3.3 Trade-off regarding the FFT size

Different cases are studied in Fig. 4.3 to determine effects of FFT size on RMSE(Ψ[fc])

and WSDR. Specifically, they are (a) ideal case, (b) large FFT size case, such as



vP = 3, ∀m, i.e., Nseg,vP(m) = Nseg,3 = 23, ∀m, and (c) small FFT size case, such as,

vP = 2, ∀m, i.e., Nseg,vP(m) = Nseg,2 = 22, ∀m. Note that each (a)-(c) in Fig. 4.3 is

a special case so that same FFT size is assumed over all time frames to confirm the

trade-off even though in a real case the WSDR in (4.12) is assumed different FFT size.

In all cases, effects of false alarms are assumed negligible, because PFA,target is

assumed to be sufficiently small. We define observed area as an outermost square in

Fig. 4.3 where the vertical axis and the horizontal axis correspond to frequency and

time, respectively.

In the ideal case (Fig. 4.3 (a)), maximum FFT size is assumed with PD = 1 and

no false alarms within the signal area (dark area). Therefore, true WS and true signal

area in the observed area are perfectly recognized, and WSDR(v) = 1.

In practical cases ((b) and (c) in Fig. 4.3), the trade-off between the detection

performance and the frequency resolution exists.

In the case of large FFT size (Fig. 4.3 (b)), miss detections (diagonal line areas

in the figure) may be caused by insufficient averaging in Welch FFT. On the other

hand, it has high enough frequency resolution and it results in no WS loss caused by

the frequency resolution. Due to the miss detections, E[Ψ̂[f ]] < Ψ[f ] in (4.12) and it

leads to WSDR(v) > 1. In fact, larger WSDR(v), larger DC estimation error due to

the miss detections which is not good actually. However, the amount exceeding one on

WSDR can be controlled by δ which can control probability of miss detection with a

given false alarm rate.

Although the smaller FFT size in Fig. 4.3 (c) leads to better detection performance

due to more averaging of power spectrum, it also leads to reduced frequency resolu-

tion. The reduced frequency resolution leads to overestimation of the occupied area,

shown with dotted lines in Fig. 4.3 (c). The dotted lines correspond to time-frequency

areas detected as occupied but in fact outside the actual signal bandwidth. Due to

overestimation, WSDR(v) < 1.



4.3.4 Analysis of sub-optimum FFT size

An index number of sub-optimum FFT size vSUB−OPT is defined by

vSUB−OPT =max v (4.13)

s.t. Worst RMSE(Ψ[f ]) ≤ δ,

PFA = PFA,target,

The solution of (4.13) means that the largest FFT size satisfying the constraint in

terms of RMSE is selected. Selecting the largest allowed FFT size leads to the highest

frequency resolution. However it does not consider the effect of detection performance,

i.e., the relation between PD and PFA,target on the WSDR. In other words, the largest

allowed FFT size does not necessarily achieve the optimum solution in (4.9). We will

compare the results of vSUB−OPT and vOPT with numerical evaluation to show the

validity of vSUB−OPT.

The sub-optimum FFT size is equivalent to the maximum FFT size which can get

the probability of detection so that it satisfies RMSE(Ψ[fc]) = δ (for given PFA,target)

according to (4.11). The rationale of this is that the probability of detection is sufficient

to satisfy the RMSE constraint. Now, based on (4.11) and RMSE(Ψ[fc]) = δ, we get

vSUB−OPT analytically as follows. Based on RMSE(Ψ[fc]) = δ, the following quadratic

equation

aP 2
D + bPD + c = 0, (4.14)

where 

a = Ψ[fc]
2 − Ψ[fc]

M

b = 2[
(
PFA,target +

1
2M

)
Ψ[fc]

− (1 + PFA,target)Ψ[fc]
2]

c =
(1−Ψ[fc])PFA,target(1−PFA,target)

M

+[PFA,target (1−Ψ[fc])−Ψ[fc]]
2 − δ2.

(4.15)



Two solutions for (4.14) are given by PD1 =
−b
2a −

√
b2−4ac
2a ,

PD2 =
−b
2a +

√
b2−4ac
2a .

(4.16)

Since PD2 and PD1 are probability, both of them have to be between [0, 1]. However,

PD2 ≤ 1 cannot be satisfied by δ2 ≥ 0.

On the other hand, PD1 ≤ 1 can be satisfied under the following condition:

δ ≥
√

P 2
FA,target +

PFA,target(1− PFA,target)

M
. (4.17)

The condition implies that low probability of false alarm is required to satisfy RMSE(Ψ[fc]) =

δ under sufficiently small δ. Moreover, PD1 ≥ 0 can be satisfied by the following con-

dition:

Ψ[fc] ≥

(
2− 1

M

)
P 2
FA,target +

(
2 + 1

M

)
PFA,target

1 + PFA,target

≈ 2PFA,target. (4.18)

The condition (4.18) is not satisfied when DC is very small, such as Ψ[fc] < 2× 0.01.

In conclusion, we consider PD1 as a solution for (4.14) when (4.17) and (4.18) are

satisfied under small target false alarm rate. The conditions (4.17) and (4.18) are

derived in Appendix.

Finally, vSUB−OPT is given as

vSUB−OPT = ⌊log2 [2Ns/(LSUB−OPT + 1)]⌋ , (4.19)

where LSUB−OPT denotes the sub-optimum number of segments and it corresponds to

the minimum number of segments satisfying PD ≥ PD1.

According to the fact that LSUB−OPT depends on PD1, the sub-optimum FFT size

can be selected based on real DC Ψ[f ], SNR and PFA. For selecting the FFT size

properly, we consider the worst case in terms of DC. In other words, if FFT size is

selected in a way that the RMSE constraint is satisfied at Ψ[f ] = 1 subject to (4.17),

the selected FFT size can satisfy the RMSE constraint for any DC. Figure 4.4 shows the

index number of sub-optimum FFT size vSUB−OPT at different Ψ[f ] and δ as a function

of SNR. This figure shows that sub-optimum FFT size has a stepwise property due to
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the fact that the number of v is integer. The RMSE characteristic for sub-optimum

FFT size will be discussed in Section 4.4. Unfortunately, SNR is unavailable in typical

spectrum measurements, therefore it is difficult to select the FFT size based on (4.19).

For this issue, we propose ASSS method which can select a proper FFT size without

SNR information in the next section.

4.4 Numerical evaluations

In this section, we show the validity of our ASSS method based on computer simula-

tions. We assume the measurement bandwidth (equivalent to complex sampling rate)

WM = fs = 44MHz and PU signal bandwidth WS = 22MHz. This signal bandwidth

corresponds to the RF channel bandwidth in IEEE 802.11g WLAN. In this case, six



Table. 4.1: Simulation parameters

Parameter name Parameter

Modulation mode Quadrature phase shift keying

Time frame size Ns 210

v {vmin = 3, 4, 5, 6,

7, 8, 9, vmax = 10}

M 100

σ2
z 1

SNR [dB] [-3 10]

Window type Hamming window

δ 0.05

PFA,target 0.01

Ψ[f ], f ∈ H1 0.5

WLAN channels are contained exactly within measurement bandwidth WM = 44MHz,

but for the sake of clarity we have assumed only one WLAN channel with WS = 22MHz

is used.

In addition, the durations of a packet and a time gap between string of two packets

vary from several tens of microseconds to several milliseconds. Accordingly, we set the

time frame size Ns = 1024 as in [148] where the time resolution ∆t = Ns/fs corresponds

to ∆t = 1024/44×106 ≈ 23µsec, which is shorter than the time duration of distributed

coordination function inter frame space (DIFS) with 28µsec. Then, Ns with 1024 is

equal to the index number of maximum FFT size vmax = 10.

Moreover, we set DC estimation period M to 100 as the RMSE constraint in terms

of DC estimate with δ = 0.05 is satisfied completely by this value. Common simulation

parameters are summarized in Table 4.1.



At first, we verify the effect of the overlap ratio ρ in the Welch FFT and set the

proper ρ through computer simulation. Figure 4.5 shows the probability of detection

as a function of ρ with different values of SNR. For each SNR, the applied FFT size is

the optimum FFT size, i.e., Nseg = 24, 26, 28 for SNR = −3, 0, 6 dB, respectively.
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Fig. 4.5: Probability of detection as a function of ρ at different SNR

The result in Fig. 4.5 indicates that ρ = 0.5 is proper for any case because the

probability of detection at ρ = 0.5 almost attains maximum probability. For this

reason, we use ρ = 0.5 in subsequent computer simulations.

Finally, we verify the property of RMSE in terms of DC estimate and WSDR.

Figure 4.6 shows RMSE(Ψ[fc]) as a function of SNR to confirm whether the RMSE

constraint is satisfied. In Fig. 4.7, WSDR(v) as a function of SNR is shown to confirm

the ability to find WS. In the results of Figs. 4.6 and 4.7, five methods are evaluated.

The optimum result based on (4.9) represents upper bound performance in Fig. 4.7.



The sub-optimum result is obtained based on (4.19) and both optimum and sub-

optimum, SNR information is assumed to be known. In results of v = 3 and v = 7,

FFT sizes Nseg,v = 23 or Nseg,v = 27 are used during whole observation, respectively.

In the cases of fixed FFT size, Nseg,v = 23 and Nseg,v = 27, we can confirm the

trade-off. In low SNR, such as SNR < 2 dB of Fig. 4.6, v = 7 is too large to satisfy the

constraint of RMSE(Ψ[fc]) ≤ 0.05. On the other hand, in the case of v = 3 the RMSE

constraint can be satisfied in any SNR. However, Fig. 4.7 reveals that WSDR(v) with

v = 3 is less than 0.9 in high SNR region such as SNR < 4 dB. This indicates that WS

cannot be found properly.

In Fig. 4.6, the optimum one, sub-optimum one and the result of ASSS method

can always satisfy the RMSE constraint. In the sub-optimum method, the FFT size

corresponds to the maximum one while it satisfies the RMSE constraint. Therefore,

RMSE(Ψ[fc]) of the sub-optimum method is always the closest to δ.

Moreover, we can see that optimum method and sub-optimum method have a

bumpy property. This phenomenon is related to the result in Fig. 4.4 where v is

an integer. In the region where 2 < SNR < 4 in dB, v = 7 is the sub-optimum but in

the case SNR = 5 dB, now v = 8 is the sub-optimum. In principle, higher SNR leads

to smaller RMSE and this can be confirmed in the region 2 < SNR < 4 in dB. On the

other hand, in SNR = 5 dB, v = 8 is used and the larger FFT size leads to larger RMSE

while the constraint is satisfied. In Fig. 4.7, we can confirm that WSDR(v) of the op-

timum method is always the closest to one. On the other hand, the sub-optimum and

ASSS method are also very close to one for all SNR. These results verify the validity

of our proposed methods.

4.5 Chapter Summary

In this chapter, we investigated the optimal design for FFT size in Welch FFT based

energy detection. In Welch FFT based ED, time resolution, frequency resolution and

spectrum usage detection sensitivity determine WS detection performance in the time

and frequency domains. We focused on the trade-off between the detection sensitivity

and achievable frequency resolution regarding the FFT size used in Welch FFT while
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high enough time resolution is achieved.

We have formulated the optimum FFT size design criterion regarding WSDR with

the constraint of RMSE. Due to the difficulty to derive the optimum FFT size analyti-

cally, we have also formulated the sub-optimum FFT size which is obtained analytically.

However, the sub-optimum FFT size depends on the SNR which is an unknown pa-

rameter practically.

Extensive numerical evaluations showed the validity of the optimum design of FFT

size. We revealed the importance of adaptively setting the FFT size according to the

SNR value.
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Chapter

5
Practical FFT Size Setting Methodsii

5.1 Introduction

In previous chapter, Welch FFT-based ED is an effective method for achieving proper

spectrum usage detection if FFT size is appropriately set. To this end, we formulated

the optimum FFT size in terms of a criterion which is determined by white space detec-

tion ratio (WSDR) performance with a constraint determined by sensitivity required

for spectrum usage detection. WSDR is defined by the ratio of estimated WS and ac-

tual WS in time and frequency domains, therefore WSDR = 1 indicates ideal situation,

iiThis chapter is based on ”Welch FFT Segment Size Selection Method for FFT Based Wide Band

Spectrum Measurement” [1] in Publications, by the same authors, which appeared in IEICE Transac-

tions on Communications, Copyright(C)2018 IEICE.



WSDR > 1 indicates overestimation of WS, and WSDR < 1 indicates underestima-

tion of WS. The sensitivity in the constraint is quantified by root mean square error

(RMSE) of DC estimation. In facr, if we know SNR and DC values, the optimum spec-

trum measurement performance can be achieved in terms of WSDC metric. Especially,

if we know SNR and DC values, the optimum spectrum measurement performance can

be achieved in terms of WSDC metric. Furthermore, the sub-optimum spectrum mea-

surement performance can be achieved unless we know DC value; It is very difficult for

a spectrum sensor to obtain the true DC value since the role of the spectrum sensor

is just to estimate the true DC value. As for SNR information, its accurate acquisi-

tion is a difficult task since a spectrum sensor cannot know the channel information

between observed PUs and the spectrum sensor. Therefore, this fact makes practical

and optimum FFT size setting difficult.

Furthermore, in (Welch) FFT-based ED, there is another issue in addition to its

detection limit as mentioned in the previous chapter. That is detection threshold

setting. The threshold setting requires the noise floor information. In [84], the noise

floor is measured in an anechoic chamber. In general, the threshold is set based on

m-dB criterion in which the threshold is fixed at m decibels above the noise floor [150].

In the existing literature [56, 58, 73, 97], values such as m = 3, 5, 6, 20 dB have been

employed, respectively. In fact, the noise floor should be estimated periodically due to

its time dependency [151]. In [101,152], threshold setting method based on noise floor

estimation with forward consecutive mean excision (FCME) algorithm was proposed

and it can achieve constant false alarm rate (CFAR) criterion to set threshold. In

this chapter, we use the threshold setting method based on noise floor estimation with

FCME algorithm since it can track the time varying noise floor, which makes a practical

approach in this thesis.

For practicality of FFT size setting, we propose two FFT size setting methods to

select a proper FFT size without SNR information. These are denoted by Exhaustive

search based FFT Size Setting (E-SS) and Limited search based FFT Size Setting (L-

SS). Both methods exploit a relationship between output of noise floor (NF) estimation

based on FCME algorithm and the FFT size for proper FFT size setting. Our main



contributions in this chapter are as follows:

• We reveal the NF estimate by FCME algorithm depends on FFT size and SNR.

This is due to the accuracy of NF estimate also depends on FFT size and SNR.

Thus, the NF estimate which can be easily obtained in a spectrum sensor makes

proper FFT size setting practical.

• E-SS exploits a relationship between output of NF estimation based on FCME

algorithm and the FFT size for proper FFT size setting. E-SS uses NF estimation

outputs for all possible segment sizes in Welch FFT, therefore it can achieve high

WSDR performance but requires relatively high computational complexity. On

the other hand, L-SS searches the proper FFT size while limiting the searchable

FFT sizes. This limiting leads to low computational complexity in terms of FFT

size setting.

• Numerical results show that E-SS and L-SS has comparable performances in terms

of RMSE of DC estimate and WSDR, while computational complexity of L-SS

has sufficiently lower than that of E-SS.

The remainder of the paper is organized as follows. The system model used in this

paper is presented in Sect. 5.2. In Sect. 4.3, we introduce the FFT size design criterion

leading an optimum FFT size by considering the trade-off between detection perfor-

mance and frequency resolution. In Sect. 5.3, we introduce related works regarding

FFT size selection. Specifically, we present the relationship between SNR, FFT size

and NF estimate by FCME algorithm. After that, we propose two practical FFT size

setting methods in Sects. 5.4 and refsec:L-SS, respectively. Performance evaluation

based on computer simulation is presented in Sect. 5.6. Finally, chapter summaries are

presented in Sect. 5.7.

5.2 System model

The block diagram of the signal processing used for spectrum usage measurement is

shown in Fig. 5.1. The process consists of several components: Welch FFT with mem-
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Fig. 5.1: Block diagram of the spectrum measurement process.

ory [143], NF estimation consisting of tentative NF estimation and final NF estimation,

threshold setting, spectrum usage detection, FFT size selection, and DC estimation.

Configuration of time frames for the spectrum usage measurement is shown in Fig.

5.2. One consecutive spectrum usage measurement consists ofMs super frames and each

super frame consists of M time frames. It is desirable to have sufficiently long mea-

surement duration so that multiple primary user signals can be observed for accurately

estimating DC. However, practically maximum duration is limited by the memory size

in a spectrum sensor such as spectrum analyzer in SAS. Welch FFT, spectrum usage

detection, and FFT size selection are performed to obtain signal usage detection results

for every time frame. One time frame consists of Ns complex samples of received sig-

nal with sampling rate fs Hz and this time frame corresponds to one Welch FFT size.

The time frame length determines time resolution which is an important parameter to

understand spectrum activity of PUs. The time frame length is set so that required
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Fig. 5.2: The configuration of time frames in the measurement process.

time resolution can be met.

The tentative NF estimation using FCME algorithm [152] is performed in every

time frame and the final NF estimation is obtained by median filtering the M tentative

NF estimates [147]. The one super frame size M corresponds to median filter length for

final NF estimation. NF estimation accuracy can be improved by using a median filter

for NF estimation [153]. Optimization of super frame length (median filter length) is

out of our scope and we determine the length according to [153]. The rationale for

using the median filter for NF estimation is that NF is usually almost static at least a

few minutes [151, 153]. The DC estimation is obtained based on Ms ×M signal usage

detection results.

SAS observes the wide band spectrum in which several PUs may exist in the ob-

served frequency band and bandwidth is denoted by WM Hz. We assume that PU’s

signal bandwidth can vary with time, but the bandwidth is at most 90% of WM Hz.

The time duration and time interval of PU’s signals can be also changed in time, but



time resolution of spectrum measurement has to be shorter than the time duration

and time interval. The time resolution is determined by the time frame duration. The

maximum signal length is assumed to be less than one measurement duration.

Now let us focus on the mth time frame (m = 0, 1, · · · ,M − 1). The nth sample of

the complex baseband signal y[n] (n = mNs,mNs + 1, · · · ,mNs +Ns − 1) in the mth

time frame is given by

y[n] =

 z[n] (PU is not active)

x[n] + z[n] (PU is active),
(5.1)

where x[n] represents the PU signal component and z[n] represents the noise component

which follows independent and identically distributed (i.i.d) circular symmetric complex

Gaussian distribution with zero mean and variance σ2
z , i.e., z[n] ∼ CN(0, σ2

z). We

assume quasi static fading channel in which channel state is constant during one time

frame. The instantaneous SNR is defined by SNR = σ2
x/σ

2
z , where σ2

x and σ2
z are the

instantaneous received PU signal power in spectrum sensor and noise power in the

observed spectrum, respectively.

In the Welch FFT, Ns samples are segmented into Lv segments with an overlap

ratio ρ. In the rest of the paper, we use ρ = 0.5 since the signal detection performance

at ρ = 0.5 is appropriate as confirmed in previous chapter. In Lv, v denotes the index

number of FFT size (v = vmin, vmin + 1, · · · , vmax) and V denotes the number of all

segment sizes as V = vmax − vmin + 1.

Without loss of generality, Ns and FFT size (Nseg,v) are assumed to be powers of

two, i.e., Ns = 2vmax and Nseg,v = 2v, namely v also indicates the exponent of the FFT

size. In this case,

Lv = 2Ns/Nseg,v − 1. (5.2)

After the segmentation, normal FFT is performed with respect to each segment and

the power spectrum averaged over Lv segments is given by [143]

Pm,v[fv]

=
1

Lv

Lv−1∑
l=0

∣∣∣∣∣∣
Nseg,v−1∑

k=0

(wv[k]y[k +
lNseg,v

2 ]e
−j 2πkfv

Nseg,v )√
Nseg,v

∣∣∣∣∣∣
2

, (5.3)



where fv is an index number of the frequency bin (fv = 0, 1, · · · , Nseg,v − 1), m is

the index number of the time frame and wv[k] is the real-valued window coefficient.

The type of window function also affects the detection performance [146]. Here, we

use Hamming window because it has been shown that it can achieve slightly better

performance compared to other window functions in [147].

Both FFT size selection methods, i.e., L-SS and E-SS perform Welch FFT with

segment sizes specified by a set VS. In the case of E-SS, the elements in VS are all

segment sizes VS = {vmin, vmin + 1, · · · , vmax} and Welch FFT is performed for each

segment in VS at once, thus, E-SS always performs Welch FFT V times.

On the other hand, in the case of L-SS, VS always has only one element and is

updated until a proper FFT size is found. For this reason, the number of Welch FFT

operations can be less than the number in E-SS, i.e, V . The reason for the less number

of Welch FFT operations in L-SS will be described in Sect. 5.6.2.

We assume that time resolution ∆t = Ns/fs for the duration of a time frame is

small enough compared to the minimum continuous signal length such as packet length

and the minimum time gap between two consecutive signals, i.e., idle length [148]. On

the other hand, the frequency resolution ∆fv is determined by the FFT size as ∆fv =

fs/Nseg,v. We assume the maximum frequency resolution, i.e., ∆fvmax = fs/Nseg,vmax is

at least narrower than any PU signal bandwidth.

In the mth time frame, FFT size selection method (E-SS or L-SS) selects the proper

FFT size. The background for performing FFT size selection every time frame is that

in spectrum measurement over wide band including several primary systems, SNR may

be changed by time frame basis and the optimum FFT size depends on SNR. The FFT

size selection methods, E-SS and L-SS, will be presented in detail in Sects. 5.4 and 5.5,

respectively. The FFT size selected is denoted by Nseg,vP(m), where vP(m) denotes the

index number of the selected FFT size in the mth time frame.

The vector of the tentative NF estimates with the selected FFT size is

σ̂2
z = [σ̂2

z,vP(0)
, σ̂2

z,vP(1)
, · · · , σ̂2

z,vP(M−1)]
t,

where the superscript t denotes the vector transpose. The final NF estimate, denoted

by σ̂2
z,F, is obtained by median filtering the elements in σ̂2

z [147].



Let fvP(m) denote the index number of the frequency bin in the mth time frame.

Detection result at the mth time frame and the fvP(m)th frequency bin is obtained by

the ED as:

D̂m,vP(m)[fvP(m)]

=

 1 (if Pm,vP(m)[fvP(m)] > η̇vP(m))

0 (otherwise).
(5.4)

where 1 and 0 respectively correspond to the decisions of occupied spectrum (H1)

and vacant spectrum (H0), and η̇vP(m) indicates the threshold for ED. H1 indicates

that PU signal exists in the frequency bin partially or completely and H0 otherwise.

In general, the detection performance can be summarized by two probabilities [149]:

detection rate PD = Pr(Pm,vP(m)[fvP(m)] > η̇vP(m)|H1) and false alarm rate PFA =

Pr(Pm,vP(m)[fvP(m)] > η̇vP(m)|H0), where Pr(x) indicates the probability of event x.

The threshold η̇vP(m) is set based on σ̂2
z,F, the selected FFT size in the mth time

frame, and a target false alarm rate PFA,target. In case of Welch FFT-based ED, proper

threshold setting for PFA,target or PD is available [144,146].

In the spectrum usage detection (D̂m,vP(m)[fvP(m)]), the number of frequency bins

varies every time frame due to the FFT size selection. For the DC estimation in

each frequency bin, the number of frequency bins in each time frame is unified by the

maximum number of frequency bins Ns = 2vmax . This can be achieved by

D̂m,vmax [f ] = D̂m,vP(m)[fvP(m)], (5.5)

where

∆fvP(m)

∆fvmax

fvP(m) ≤ f ≤
∆fvP(m)

∆fvmax

(fvP(m) + 1)− 1, (5.6)

and ∆fvP(m) and ∆fvmax indicate the frequency resolution for FFT size 2vP(m), i.e.,

∆fvP(m) = fs/Nseg,vP(m) and the frequency resolution for largest FFT size Nseg,vmax =

Ns, i.e., ∆fvmax = fs/Ns, respectively.

DC estimation is performed for each super frame and each frequency bin and the

estimated DC at the fth bin is

Ψ̂[f ] =
1

M

M−1∑
m=0

D̂m,vmax [f ]. (5.7)



We use mH1-out-of-M model [144] to define the true DC as Ψ[f ] = mH1 [f ]/M ,

where mH1 [f ] denotes the number of H1 hypotheses in the fth frequency bin.

5.3 Noise Floor Estimation based on FCME Algorithm

In this section, at first we briefly introduce the noise floor estimation based on for-

ward consecutive mean excision (FCME) algorithm. Then, we will show a relationship

between SNR, FFT size and NF estimate by the tentative NF estimation with brief de-

scription of FCME algorithm. In fact, E-SS and L-SS exploit an aspect of the tentative

NF estimate.

5.3.1 Brief Explanation of FCME algorithm

FCME algorithm [152] used in the tentative NF estimation is an iterative method

that attempts to recognize clean power spectrum samples (noise-only samples) which

correspond to H0 samples.

More specifically, the process of FCME algorithm is as follows. It first sorts the

power spectrum samples in an ascending order. After that, it calculates the mean of

the I smallest sorted samples. The NF estimation assumes that at least I smallest

sorted samples are noise-only samples (clean samples). In general, I = ⌈0.1N⌉, where

⌈·⌉ is the ceiling function and N is the number of frequency bins (FFT size), and we

also use I = ⌈0.1N⌉ throughout the paper according to the related works [147,153]. By

assuming that the calculated mean is correct, the threshold that attains the target false

alarm rate such as 0.01 with the calculated mean is obtained based on the distribution

of noise power samples, which follows Chi-square distribution with degrees of freedom

2Lv [154]. Obviously, the threshold is more than the mean value and the clean samples

are updated by adding samples which have value lower than the threshold. Then, the

threshold is updated based on the updated clean samples and the target false alarm rate.

The updating of clean samples continues as long as new samples are added from the

set of non-clean samples (signal plus noise samples) obtained with the latest threshold.

Finally, the tentative NF estimate is given by the average power of the estimated clean

samples at the final iteration.



5.3.2 Relationship between SNR, FFT size and NF estimate

From process of FCME algorithm, NF estimation accuracy is determined by whether

the algorithm can accurately divide the sorted power spectrum samples into clean

samples and non-clean samples.1 We explain this fact using Figs. 5.3 to 5.8.

Figures 5.3, 5.5 and 5.7 show the power spectrum samples with v = 10, 7 and 2 at

SNR = 5dB, respectively. There is one signal from f = −10MHz to f = 10MHz and

the true NF level is set to 0dB. Also, Figs. 5.4, 5.6 and 5.8 show the ascending sorted

version of power spectrum samples with v = 10, 7 and 2 at SNR = 5dB, respectively.

In case of v = 10, the NF estimation algorithm cannot divide the sorted samples

into clean samples and non-clean samples accurately as shown in Fig. 5.4. This is due

to large fluctuations of power spectrum as shown in Fig. 5.3. Thus, this results in a

poor NF estimation accuracy for v = 10.

On the other hand, from Fig. 5.6, in case of v = 7, the sorted samples can be

divided into clean samples and non-clean samples via NF estimation based on FCME

algorithm accurately. A gap can be confirmed at frequency bin number 65 in Fig. 5.6.

The NF estimation can divide the samples by the gap. In v = 7, averaging process in

Welch-FFT suppress the fluctuations due to noise, but in v = 10 there is no averaging.

The averaging leads to accurate NF estimation in v = 7.

However, in v = 2, the power spectrum samples cannot clearly distinguish between

the clean samples and the non-clean samples due to poor frequency resolution. Specif-

ically, frequency bins f = −20 and 20MHz partially include the signal components in

Fig. 5.7. For this reason, the sorted samples cannot be divided into clean samples and

non-clean samples accurately as shown in Fig. 5.8 and this leads to deviation of the

NF estimate with v = 2 from true NF level.

Figure 5.9 shows the average of tentative NF estimates in linear scale as a function

of FFT size for different SNR, i.e. −3 dB, 0 dB and 5 dB. The real noise power is set to

1If the whole observed band is occupied by PU signals, it may cause overestimation of NF due to

non clean samples. However, it may be a rare situation that PUs simultaneously occupy all frequency

range since we are typically assuming to use a wide band observation equipment. In addition, median

filter can be employed to suppress the effect of the overestimation [153].
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Fig. 5.3: Power spectrum with v = 10
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Fig. 5.4: Sorted power spectrum with v =

10
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Fig. 5.5: Power spectrum with v = 7
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Fig. 5.6: Sorted power spectrum with v = 7

-20 -15 -10 -5 0 5 10 15 20

-1

0

1

2

3

4

5

6

Signal bandwidth

P
o
w

er
 s

p
ec

tr
u
m

 [
d
B

]

Frequency [MHz]

Fig. 5.7: Power spectrum with v = 2
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Fig. 5.8: Sorted power spectrum with v = 2
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one. Throughout the paper, the index number of optimum FFT size vOPT is a solution

of the optimization problem (4.9) in which v is the parameter for the optimization

problem. The optimum FFT size can achieve high enough detection performance while

|1−WSDR(v)| is minimized by a proper frequency resolution (larger FFT size). Figure

5.10 shows |1-WSDR(v)| as a function of the index number of FFT size v at SNR = −3,

SNR = 0 and SNR = 5 dB. From this figure, the index number of optimum FFT size is

v = 4 in SNR = −3 dB, v = 6 in SNR = 0 dB and v = 7 in SNR = 5 dB, respectively

as |1-WSDR(v)| is minimized at the index number of optimum FFT size while the

optimum segment sizes meet the constraint of the optimization problem (4.9).

FCME algorithm estimates NF by finding a set of clean samples while power spec-

trum samples are either clean samples or non-clean samples. Specifically, FCME algo-

rithm attempts to find a gap between the clean samples and non-clean samples [155].
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In the case of v = 10, FCME algorithm estimates non-clean samples as clean sam-

ples due to no averaging in Welch FFT leading to large fluctuations of power spectrum

and difficulty to find the gap [155]. Therefore, it leads to the overestimation of the NF

estimate with v = 10 as shown in Fig. 5.9. In case of v = 2, NF estimation accuracy

is also poor as shown in Fig. 5.9. This is reason that some of power spectrum samples

(frequency bins) include signal components partially due to the poor frequency reso-

lution and it cannot clearly distinguish between clean samples and non-clean samples.

If the FFT size is proper (3 ≤ v ≤ 8 in SNR = 5 dB, 3 ≤ v ≤ 6 in SNR = 0 dB and

3 ≤ v ≤ 5 in SNR = −3 dB in Fig. 5.9), NF estimation accuracy is sufficiently high

since averaging power spectrum can show the gap accurately.

Both E-SS and L-SS exploit above aspect of the tentative NF estimate, i.e., the



slope of tentative NF estimate against the FFT size. In fact, the most appropriate

FFT size is such that it can achieve proper NF estimation with the largest possible

FFT size to achieve a sufficiently high frequency resolution.

5.4 Exhaustive Search-based FFT Size Setting: E-SS

In E-SS, at first Welch FFT and the tentative NF estimation are performed with all

segment sizes Nseg,v for each time frame. This provides V tentative NF estimates for the

set VS = {vmin, vmin + 1, · · · , vmax}, i.e., [σ̂2
z,vmin

(m), · · · , σ̂2
z,vmax

(m)]. The increment

of tentative NF estimates between adjacent segment sizes with a positive direction is

given by

∆σ̂2
z,v(m) = σ̂2

z,v+1(m)− σ̂2
z,v(m). (5.8)

Then, the index number of the FFT size maximizing the increment is given by

vMAX(m) = argmax
v

∆σ̂2
z,v(m). (5.9)

The tentative NF estimation with the index number vMAX(m) can achieve relatively

accurate estimation performance. However, it does not necessarily satisfy the RMSE

constraint. Therefore, an adjustable integer parameter β is employed to achieve the

RMSE constraint and the index number of FFT size selected by E-SS is

v
(E−SS)
P (m) = vMAX(m) + β. (5.10)

Thus, the FFT size selected by E-SS is N
seg,v

(E−SS)
P (m)

= 2vMAX(m)+β.

5.5 Limited Search-based FFT Size Setting: L-SS

In this section, we present details of L-SS algorithm. A flowchart of the process of L-SS

is shown in Fig. 5.11. It consists of three decisions: decision-1 (D-1), decision-2 (D-2)

and decision-3 (D-3) to determine appropriate FFT size.

At the mth time frame, the initial value of VS is set by an index number of FFT

size selected in the previous time frame (m− 1): v0(m) = vP(m− 1), where subscript 0
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Fig. 5.11: Flowchart of L-SS.

indicates the initial value. In the case of m = 0, we can employ E-SS to select a proper

FFT size.

Let Ti,vi(m) denote the ratio of the tentative NF estimate (σ̂2
z,vi(m)(m)) to the final



NF estimate from the previous super frame (σ̂2
z,F), i.e.,

Ti,vi(m) =
σ̂2
z,vi(m)(m)

σ̂2
z,F

, i = 0, 1, · · · , V − 1, (5.11)

where the subscript i indicates the index number of FFT size updating.

Typically, the changing rate of NF is very slow and relatively accurate NF estimate

is available by σ̂2
z,F. In fact, it has been shown that NF is usually almost static at

least a few minutes [151, 153]. Considering this aspect, in the case that σ̂2
z,v0(m)(m) is

significantly larger than σ̂2
z,F, i.e., T0,v0(m) > τv0(m), it is considered that the current

checked FFT size 2v0(m) is large compared with a proper FFT size. This leads to the fact

D-1 is ”No”. Then, the threshold τv0(m) is determined by a significance level regarding

whether σ̂2
z,v0(m)(m) is too large compared with σ̂2

z,F. More detailed description about

the threshold setting will be presented at the end of this subsection.

Specifically, in the case that the decision is ”No” in D-1, the index number of FFT

size is updated by vi(m) = vi−1(m)−1, i = 1, · · · , V −1, i.e., the setVS = {vi−1(m)−1}

in D-2. The update is repeated until it achieves an appropriate FFT size so that

Ti,vi(m) ≤ τvi(m) or that it reaches the smallest FFT size Nseg,vmin .

On the other hand, the decision ”Yes” in D-1 indicates that the FFT size is not too

large and proper NF estimation performance may be achievable. However, there is a

possibility that the FFT size is too small, for example due to increase of SNR. In this

case, it goes to D-3 and the FFT size is updated in the increasing direction until an

inappropriate FFT size is found or that it reaches the largest FFT size Nseg,vmax . Once

the inappropriate FFT size is found by the decision ”No” in D-3, the index number of

selected FFT size is given by vP(m) = vi(m)− 1 since the last updated FFT size is the

most appropriate FFT size.

We set τvi(m) so that the following probability equals to a given target probability

PL−SS.

PL−SS = Pr(Ti,vi(m) > τvi(m)|σ̂2
z,F = σ2

z ,H0)

=

∫ ∞

τvi(m)

p(Ti,vi(m)|σ̂2
z,F = σ2

z ,H0)dTi,vi(m), (5.12)

where p(Ti,vi(m)|σ̂2
z,F = σ2

z ,H0) is the conditional probability density function (PDF) of

Ti,vi(m) under σ̂
2
z,F = σ2

z and H0 and it is obtained via Monte Carlo simulations. PL−SS



means a significance level regarding whether σ̂2
z,vi(m)(m) is too large compared with

σ̂2
z,F, thus whether the current checked FFT size is too large compared with a proper

FFT size.

5.6 Numerical evaluations

In this section, we will evaluate two FFT size selection methods, i.e., L-SS and E-

SS. The evaluated metrics are as follows: RMSE in terms of DC, |1 −WSDR(v)| and

computational complexity. In addition, we will also evaluate the adaptivity of FFT size

selection with time, i.e., the behavior of L-SS and E-SS in case that SNR is varied in

time of L-EE and E-SS.

We assume that the measurement bandwidth (equivalent to complex sampling rate

) is set to WM = fs = 44 MHz and the PU signal bandwidth WS = 22 MHz, such

as the bandwidth in IEEE 802.11g WLAN. In addition, the duration and interval of

PU signals are constant and the DC Ψ is 0.5. Specifically, the time duration and the

time interval are about 230µsec. The time frame size is set to Ns = 1024 [148] and the

time resolution ∆t = Ns/fs is 1024/44 × 106 ≈ 23µsec. ∆t is short enough compared

with the time duration and the time interval. Moreover, we apply 23 as the minimum

FFT size with minimum frequency resolution, 44× 106/23 ≈ 5.5MHz, which is narrow

enough compared with the signal bandwidth, 22MHz. Common simulation parameters

are summarized in Table 5.1.

At first, we verify the effect of the adjustable integer parameter β and set the proper

β through computer simulation. Figure 5.14 shows RMSE(Ψ[fc]) as a function of SNR

with different values of β. It can be seen that β gives an almost flat property against

SNR. This means one proper β suffices to satisfy the given allowable DC estimation

error δ. In subsequent computer simulations, we set β = −1 as it satisfies the condition

(4.17).

5.6.1 RMSE in terms of DC and |1−WSDR(v)|

Figure 5.12 shows RMSE(Ψ[fc]) as a function of SNR to confirm whether the RMSE

constraint is satisfied. In Fig. 5.13, |1−WSDR(v)| for every time frame as a function



Table. 5.1: Simulation parameters

Parameter Value

Number of FFT samples: Ns 210

Segment size: v {vmin = 3, 4, 5, 6,

7, 8, 9, vmax = 10}

Length of median filter: M 100

Noise Floor σ2
z 1

SNR [-4 10] dB

Window type Hamming window

Allowable RMSE: δ 0.05

Target false alarm rate: PFA,target 0.01

DC: Ψ[f ], f ∈ H1 0.5

Target probability in L-SS: PL−SS 10−3

of SNR is shown to confirm the ability to find the WS. |1 − WSDR(v)| indicates the

Mean Absolute Error (MAE) of WSDR and |1 − WSDR(v)| closer to zero indicates

more accurate WS detection performance. In the results of Figs. 5.12 (RMSE(Ψ[fc]))

and 5.13 (|1 −WSDR(v)|), five methods are evaluated: the results of L-SS and E-SS,

the optimum method where the optimum FFT size satisfying (4.9) is always used, and

fixed FFT size: v = 3, v = 7 and v = 10.

From the results of v = 3, v = 7 and v = 10 in Figs. 5.12 and 5.13, we can see

that using constant FFT size cannot achieve proper performance when SNR is changed.

When SNR < 2dB in Fig. 5.12, v = 7 is too large to satisfy δ = 0.05. In addition,

v = 10 no longer satisfy δ = 0.05 at SNR < 10dB. These indicate the detection

performance in low SNR and large FFT size is not very good and v = 7 and v = 10 are

not adequate at SNR < 2dB and SNR < 10dB, respectively. On the other hand, in the

case of v = 3 the RMSE constraint δ can be satisfied in any SNR. However, Fig. 5.13

reveals that |1−WSDR(v)| with v = 3 is greater than that with v = 7 at SNR ≥ 2dB.

This is due to reduced frequency resolution and indicates that the WS cannot be found
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Fig. 5.12: RMSE(Ψ[fc]) against SNR.

properly compared with v = 7, and at least v = 7 is adequate at SNR ≥ 2dB.

In Fig. 5.12, the optimum method, and the results of E-SS and L-SS can always

satisfy the RMSE constraint. In addition, the results of E-SS is better than that of

L-SS. In Fig. 5.13, we can confirm that |1 − WSDR(v)| of the optimum method can

achieve the best performance in any SNR. From the results of E-SS and L-SS in Fig.

5.13, we can see E-SS can achieve better |1−WSDR(v)| performance in any SNR.

We can see that optimum method, E-SS and L-SS have bumpy properties in terms

of RMSE. However the results of v = 3 and v = 7 have smooth curves. When 2dB <

SNR ≤ 5dB in Fig. 5.12, the index number of the optimum FFT size is v = 7, therefore

the RMSE of v = 7 is equal to the RMSE of the optimum one. However, at SNR = 6 dB,

the index number of the optimum FFT size is v = 8, so the RMSE is slightly increased
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Fig. 5.13: |1−WSDR(v)| in time frames against SNR.

in a discontinuous manner. Specifically, increasing SNR with fixed FFT size leads to

a smooth curve, but changing FFT size causes the bumpy properties. Obviously, the

three methods, i.e., L-SS, E-SS and the optimum method would change the FFT size

in response to SNR which leads to this behavior.

Table. 5.2: Spectrum occupancy pattern and SNR change pattern

Index number of

time frame

1− 10 11− 20 21− 30 31− 40 41− 50 51− 60 61− 70 71− 80 81− 90 91− 100

State H1 H0 H1 H0 H1 H0 H1 H0 H1 H0

SNR [dB] 5 – 15 – −3 – 9 – 1 –
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Fig. 5.14: RMSE(Ψ[fc]) against SNR, β

5.6.2 Computational complexity

We only evaluate the computational complexity of FFT size selection process in L-SS

and E-SS. As mentioned in Subsect. 5.4 and Sect. 5.5, E-SS and L-SS consist of Welch

FFT and the tentative NF estimation. Thus, the computational complexity of L-SS and

E-SS is determined by the computational complexity of Welch FFT and the tentative

NF estimation in L-SS and E-SS. Inherently, the computational complexity of L-SS

is lower than E-SS since the numbers of executions of Welch FFT and the tentative

NF estimation in L-SS are always equal to or less than ones of E-SS. The reason of

this aspect is as follows. In E-SS, Welch FFT and the tentative NF estimation are

performed for all possible segment sizes. On the other hand, in L-SS, Welch FFT and

the tentative NF estimation are performed for a part of them and the details of L-SS

are shown in Sect. 5.5.
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Fig. 5.15: Computational time of L-SS and E-SS. Computer specifications: Intel Core

i7-2600, 3.4GHz, memory size is 8GB, and the algorithms were implemented in MAT-

LAB.

We quantitatively evaluate the mean computational time of L-SS and E-SS (Fig.

5.15). In this evaluation, we use the same simulation parameters as used in Figs. 5.12

and 5.13. We can confirm the mean computational time of L-SS is lower than that of

E-SS.

5.6.3 Adaptivity of FFT size selection with time

Finally, we observe the behavior of L-SS and E-SS in case that SNR is varied in time.

Changes of spectrum occupancy state and SNR are summarized in Table 5.2.

Figure 5.16 shows ED results in time and frequency domains of L-SS (Fig. 5.16 (a))

and E-SS (Fig. 5.16 (b)), respectively. The spectrum occupancy state and SNR are
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changed in time in Fig. 5.16 and the changes are shown in Table 5.2. For comparison,

the results of v = 3 and v = 10 where segment sizes Nseg,v = 23 and Nseg,v = 210 are

used during the whole observation, respectively are also shown. The PU signal exists

between f = 260 to f = 770, where f is the index number of frequency bin.

In case of v = 3 (Fig. 5.16 (c)), the probability of detection is high at the expense of

less frequency resolution. This leads to overestimation in terms of the signal bandwidth.

In contrast to the case of v = 3, high frequency resolution is achieved but detection

performance is poor in case of v = 10 (Fig. 5.16 (d)).

On the other hand, we can see both L-SS and E-SS can achieve enough detection



performance and this indicates both methods can adaptively select a proper FFT size,

and detection performance of L-SS and E-SS are comparable in the results of Fig. 5.16

(a) and (b). One difference is frequency resolution: bandwidth of false alarm in L-SS

is less than that in E-SS. This indicates that the selected FFT size for E-SS is smaller

than that for L-SS. To verify this fact, Figs. 5.17 and 5.18 show the index number of

FFT size selected by L-SS and E-SS, respectively. The optimum segment sizes are also

plotted by dashed lines in Figs. 5.17 and 5.18. In Figs. 5.17 and 5.18, the spectrum

occupancy state and SNR are changed in time as shown in Table 5.2. From these

figures, both methods can select the FFT size around the optimum FFT size, but E-

SS selects the smaller FFT size than that L-SS selects, especially in high SNR, i.e.,

SNR = 15dB. In both results, we can confirm a biased aspect. Specifically, at a certain

time frame, selected segment may be higher (or lower) than the optimum one. The

reason of this aspect is that the threshold, τ (L-SS) and β (E-SS) to select a FFT size

is constant for whole SNR. In fact, the proper τ and β slightly depend on SNR. One

important fact is that the maximum error of the FFT size selections is one at most.

The error is given by the difference between index number of the optimum FFT size

and index number of FFT size selected by L-SS/E-SS.

5.7 Chapter Summary

In this chapter, we investigated FFT size setting in FFT-based wide band spectrum

measurement. We aimed to estimate the DC and the WS accurately via Welch FFT-

based ED as it is important for spectrum measurement to provide accurate statistical

information, e.g., DC to SUs. In Welch FFT-based ED, time resolution, frequency

resolution and spectrum usage detection performance determine the WS detection per-

formance in the time and frequency domains. The optimum FFT size regarding White

Space Detection Ratio (WSDR) with the constraint on RMSE in terms of DC depends

on the SNR which is an unknown parameter in practice as shown in previous chapter.

Therefore, we proposed a FFT size selection method denoted by Exhaustive search

based FFT Size Selection (E-SS) to select a proper FFT size without SNR informa-

tion, but this method requires relatively high computational complexity. For this issue,
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we proposed Limited search based FFT Size Selection (L-SS), which attempts to se-

lect the proper FFT size with high-computational efficiency. Numerical evaluations

showed that L-SS can match the performance of E-SS in terms of MAE of WSDR, i.e.,

|1−WSDR(v)| with sufficient DC estimation accuracy. On the other hand, we showed

L-SS has much lower computational complexity than E-SS.
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Chapter

6
Conclusions and Future Directions

This chapter concludes our research works on highly efficient spectrum sharing. First,

we summarize the conclusion and contribution of each chapter. After that, the potential

future research directions are discussed.

6.1 Conclusions

For realizing smart spectrum sharing (smart spectrum access), accurate spectrum mea-

surements are required. To this end, we have comprehensively investigated the wide-

band spectrum measurement based on FFT-based ED from the viewpoint of time and

frequency resolutions as well as detection performance Conclusions and contributions

of this thesis are summarized below.



Chapter 1: This chapter provided the spectrum scarcity problem and its counter-

measures. Especially, we focused on spectrum sharing or dynamic spectrum ac-

cess and its broad models and its limitation are given. After that smart spectrum

access concept is introduced for solving the issues of DSA. And then, we have

mentioned the importance of accurate spectrum measurements and the motiva-

tion in this thesis. Finally, we have shown our contributions and the outline in

this thesis.

Chapter 2: This chapter surveyed several spectrum measurement campaigns. Es-

pecially, we have mentioned the extracted statistics from the measurement cam-

paigns and their weak points. From the surveys, we have verified most of the

measurement campaigns exploit energy detection and do deeply not consider the

detection performance, time and frequency resolutions setting problem.

Chapter 3: In this chapter, we described the spectrum measurement system in smart

spectrum access. Specifically, we have shown a spectrum measurement prototype

system we developed. And then, we focused on one spectrum sensor in the mea-

surement system and introduced a basic model for spectrum measurement in the

sensor.

Chapter 4: In Chapter 4, We define the optimum FFT size as the one that allows

the accurate detection of the spectrum occupancy in time and frequency domains

while maintaining target DC estimation accuracy and a small enough target false

alarm rate. The DC estimation accuracy is quantified in terms of its root mean

squared error (RMSE), which is related to signal detection performance without

considering the frequency resolution. On the other hand, the detection accuracy

of the spectrum occupancy in time and frequency domains is quantified by means

of the white space detection ratio (WSDR), defined as the ratio of true WS to

estimated WS, which also includes the effect of the frequency resolution. Further-

more, we also define a sub-optimum FFT size which is obtained analytically. The

analysis reveals that the FFT size depends on SNR and DC. This indicates that

FFT size selection is challenging problem since prior knowledge of SNR and DC is



impractical. Finally, extensive numerical results demonstrate that the optimum

FFT size can achieve optimum WSDR performance while satisfying the RMSE

constraint if SNR value is known.

Chapter 5: In this chapter, we at first reveal the noise floor estimate by FCME

algorithm depends on FFT size and SNR. Thus, we verified the NF estimate

which can be easily obtained in a spectrum sensor makes proper FFT size setting

practical. After that, we have proposed two practical FFT size setting methods:

Exhaustive-search FFT Size Setting (E-SS) method and Limited search FFT Size

Setting (L-SS) method. Both methods exploit a relationship between output of

NF estimation based on FCME algorithm and the FFT size for proper FFT size

setting. E-SS uses NF estimation outputs for all possible segment sizes in Welch

FFT, therefore it can achieve highWSDR performance but requires relatively high

computational complexity. On the other hand, L-SS searches the proper FFT size

while limiting the searchable FFT sizes. This limiting leads to low computational

complexity in terms of FFT size setting. Finally, extensive numerical results

show that E-SS and L-SS has comparable performances in terms of RMSE of DC

estimate and WSDR, while computational complexity of L-SS has sufficiently

lower than that of E-SS.

6.2 Future Directions

This thesis mainly aims to improve the accuracy of FFT-based spectrum measurement

in only single spectrum sensor in spectrum measurement system. On the other hand,

there still exist lots of research scopes for future works. At the end of this thesis, we

briefly discuss the remaining and potential future works.

Extending to Multidimensional Spectrum Measurement In this thesis, we

have investigated relatively long-term and wideband spectrum measurement for

smart spectrum access. However, there are remaining several measurement di-

mensions not handled in this thesis such as geographic locations, angle, code di-

mensions. As for geographic location dimension, many spectrum sensors should



be installed over a large observed area of interest. This leads to several issues such

as development of cost-efficient spectrum measurement system, sensor scheduling

problem, measured data collection problem, to name a few. In terms of the as-

pect of cost, simple ideas are to install low cost but low measurement capability

spectrum sensors such as smart phone and tablet terminal or rely on the power

of crowd, i,e., crowd sensing. It is interesting for our to understand the power

of the crowd sensing. In terms of sensor scheduling, mapping the measurement

pattern in the time and frequency domains into each spectrum sensor is one of

most difficult but important issues. In this mapping, we should consider several

aspects such as measurement accuracy, fairness between spectrum sensors and

the capability of each sensor. Finally, in terms of measured data collection, we

should seek efficient data collection strategies. This problem would more difficult

when the increase of the number of spectrum sensors and/or the increase of the

amount of measured data each sensor sends to fusion center,

Intelligent Spectrum Measurement System In this direction, several technolo-

gies will be considered such as artificial intelligence (AI) technology and machine

learning technology. Especially, deep learning or deep neural network is one of

the interesting topic for intelligent spectrum measurement system because of the

recent success of the deep learning over several fields. Furthermore, we expect

(deep) reinforcement learning such as Q-learning is a promising approach to real-

izing the intelligence of spectrum measurement system. This type of learning can

grow up based on own experiences and automatically go in the proper or right

directions. This leads to reducing the management cost and complexity, but the

selection of objects we want to achieve in the learning is a difficult problem.

Which statistical information are useful? Finally but not all, we must consider

which statistical information are useful for smart spectrum access. This topic is

very important but does not deeply to data. The gain bringing any statistical

information changes depending on adopted spectrum sharing model. To this end,

it may be beneficial to construct spectrum sharing models mathematically by a



means of for example deep neural network. Though these models, we can analyze

the gain of each statistical information analytically.
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[150] M. López-Beńıtez and F. Casadevall, “Methodological aspects of spectrum occu-

pancy evaluation in the context of cognitive radio,” European Trans. Telecom-

mun., vol. 21, no. 8, pp. 680 – 693, Dec. 2010.

[151] D. Torrieri, “The radiometer and its practical implementation,” in in Proc. MIL-

COM. IEEE, Nov. 2010, pp. 304–310.

[152] H. Saarnisaari, P. Henttu, and M. Juntti, “Iterative multidimensional impulse

detectors for communications based on the classical diagnostic methods,” IEEE

Trans. Commun., vol. 53, pp. 395–398, Mar. 2005.
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Appendix

　

Derivation of the condition that 0 ≤ PD1 ≤ 1

In this appendix, we will show the condition that 0 ≤ PD1 ≤ 1 at 0 ≤ Ψ[fc] ≤ 1.

At first, we will prove that the condition (4.17) satisfies PD1 ≤ 1. The condition

PD1 ≤ 1 is given by (4.16) as

1 +
b

2a
≤

√
b2 − 4ac

2a
, (6.1)

where a, b and c are given by (4.15). Finally, (6.1) is given as the following inequality

−4a(a+ b+ c) ≥ 0. (6.2)

Then, a is always larger than or equal to zero because a = Ψ[fc](Ψ[fc] − 1
M ) and

0 ≤ Ψ[fc] ≤ 1
M is not defined for mH1-out-of -M Model. Therefore, (6.2) is satisfied

when a+ b+ c ≤ 0.

On the other hand, (a+ b+ c) becomes a quadratic equation with respect to Ψ[f ]

as

a+ b+ c

= P 2
FA,targetΨ[fc]

2

+

[( 1

M
− 2

)
P 2
FA,target −

1

M
P 2
FA,target

]
Ψ[fc]

+
PFA,target(1− PFA,target)

M
+ P 2

FA,target − δ2. (6.3)

(a+ b+ c) is monotonic and decreasing at 0 ≤ Ψ[fc] ≤ 1 because (a+ b+ c) is a convex

function with respect to Ψ[fc] and the axis Ψ[fc]axis takes Ψ[f ] ≥ 1 as follows,

Ψ[fc]axis = 1 +
1− PFA,target

2MPFA,target
. (6.4)
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From the above results, if a + b + c ≤ 0 is satisfied at Ψ[fc] = 0, a + b + c ≤ 0 is

always satisfied at 0 ≤ Ψ[fc] ≤ 1. Therefore, the condition that satisfies PD1 ≤ 1 is

given as (6.5) by substituting Ψ[fc] = 0 for (6.3),

PFA,target(1− PFA,target)

M
+ P 2

FA,target − δ2 ≤ 0. (6.5)

By solving (6.5) with respect to δ, the obtained condition is given as

δ ≥
√

P 2
FA,target +

PFA,target(1− PFA,target)

M
. (6.6)

This condition is logical because the estimated DC is always overestimated as much as

PFA,target.

Next, we will prove that the condition (4.18) satisfies PD1 ≥ 0 under the condition

(4.17) or (6.6) approximately.

The condition PD1 ≥ 0 is given by (4.16) and the fact that a ≥ 0 as

c ≥ 0, (6.7)

where c is given by (4.15). Then, by substituting the condition (6.6) into δ in c, we
obtain the following inequality,

c ≤ (1 + PFA,target)
2Ψ[fc]

2

−
[(

2− 1

M

)
P 2
FA,target +

(
2 +

1

M

)
PFA,target

]
Ψ[fc]. (6.8)

If we set allowable DC estimation error δ and target false alarm rate PFA,target that

hold the equation for (6.6) subject to PFA,target ≪ 1 and PFA,target ≪ M , the area of

DC to be c ≥ 0 is approximately given as follows,

Ψ[fc] ≥

(
2− 1

M

)
P 2
FA,target +

(
2 + 1

M

)
PFA,target

1 + PFA,target
(6.9)

≈ 2PFA,target.

From the above condition, we see that PD1 ≥ 0 with high probability because we set

small enough probability of false alarm according to (6.6).
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