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Abstract

This dissertation addresses the problem on designing spectral graph wavelets and filter

banks in order to efficiently analyze and process graph signals.

Spectral graph wavelets and filter banks are one of the fundamental tools for signal

processing on graphs. As in the case in traditional signal processing, they can cap-

ture features of graph signals by dividing the input signal into some different frequency

bands. They are effective to represent signals sparsely since they have basis localized in

the vertex domain unlike the graph Fourier transform. Furthermore, they are expected

to be useful for many practical applications such as signal denoising, segmentation and

compression. Therefore, designs of the efficient spectral graph wavelets and filter banks

are an important problem for graph signal processing. Although there exist several con-

ventional transforms, they have several disadvantages: 1) they have strong limitations on

filter designs or redundancies, 2) decimated transforms are applicable only to the signal

defined on a bipartite graph, and 3) their filter characteristics in graph frequency domain

are not enough, i.e., they does not have all desired properties for spectral graph wavelets

and filter banks such as tight frame, filters defined by smooth functions, and no DC leak-

age. To solve these problems, this dissertation proposes three effective approaches about

spectral graph wavelets and filter banks: i) M-channel oversampled spectral graph filter

bank which have low redundancies and high flexibility in filter design, ii) oversampled

graph Laplacian matrix which enables us to apply arbitrary graph signals into decimated
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transforms, and iii) the method of constructing spectral graph wavelets and filter banks

that having all desired properties. This dissertation is organized as follows.

Chapter 1 describes the background, related works and objective of this dissertation.

The notations and preliminaries on graph signal processing are stated in Chapter 2.

Chapter 3 introduces the overall scheme of the graph spectral wavelets and filter

banks and shows popular conventional approaches.

In Chapter 4, M-channel oversampled spectral graph filter banks are proposed. Since

they are decimated transform with M filters, they have lower redundancies and have

more flexibility in their design than the conventional spectral graph filter banks. The per-

fect reconstruction conditions of the oversampled spectral graph filter banks are shown.

Some design examples indicate that the proposed filter banks have good stopband atten-

uation.

In Chapter 5, the oversampling method for graph signals is presented. It appends the

nodes and edges to the original graph before performing graph filter banks. The effective

oversampling method is also proposed that can make one bipartite graph that includes all

edges of the original non-bipartite graph. It enables us to apply the non-bipartite graphs

into any decimated transforms. Furthermore, the theoretical relationship between the

proposed oversampling method and a covering method in graph theory is clarified.

Chapter 6 shows the method related to the effective spectral graph filter design. It is

proven that any real-valued linear phase finite impulse response filter banks for regular

signals can be reused as the filter banks for graph signals. The spectral graph filter

bank has the same filter characteristic as the corresponding classical one and inherits the

original properties, such as tight frame, smoothness and no DC leakage. Since the filters

are defined by a sum of sinusoidal waves, they produce low approximation errors even

if we use a lower-order shifted Chebyshev polynomial approximation for acceleration,

and the upper bound of the error can be calculated rigorously. It is easily to design
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the spectral graph filter banks from the regular signal processing counterparts, such as

Cohen-Daubechies-Feauveau wavelets, the discrete cosine transform, and the lapped

orthogonal transform.

Chapter 7 concludes this dissertation and describes the future works.

The numerical performances of the proposed methods are evaluated by the experi-

ments on denoising and non-linear approximation in each chapter. The proposed meth-

ods outperform the conventional decimated and critically sampled spectral graph wavelets

and filter banks in all experiments.
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Chapter 1

Introduction

With the development of computer technology, and the cost reduction and miniatur-

ization of devices, there have been considerable interests for analyzing or processing

irregular and high-dimensional data in many fields, including intelligent infrastructure,

physical infrastructure network like sensor networks, co-authorship studies, and neural

networks. Graph signal processing has been developed to respond to these demands [1].

Graph is a generic data structure that can represent complex relationships among

data and can be used in many fields of engineering and science. It consists of nodes and

edges, and each edge is usually assigned a weight determined by the similarity of the

nodes, e.g., physical or feature space distance between nodes in the network. In graph

signal processing, a sample is placed on each node of a graph. Graph signal processing

can explicitly consider the structure of the signal, unlike regular signal processing1.

Graph signal processing is a relatively new field that has been extensively studied

since around 2011. It has been a hot topic in signal and information processing for both

theoretical and practical reasons [1–10]. From a theoretical viewpoint, it is related to

signal processing, information theory [11], (spectral) graph theory [12], and computa-

tional harmonic analysis [13, 14]. Moreover, from a practical viewpoint, it has been

used on an extensive amount of data with irregular structures, e.g., sensor and brain

networks [15–17], traffic [18], learning [19–25], and images [26–29].

1Regular signal processing indicates the traditional digital signal processing.
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The aim of graph signal processing is to achieve effective analysis and processing of

graph signals as in the case of regular signal processing, that is useful to analyze regular-

structured data, such as audio, image, video, and radar. Graph signal processing is also

expected to be useful in many practical applications including compression, restoration,

transmission and interpolation of data. To achieve the aim, the fundamental tools used

in regular signal processing, including Fourier transform, filtering, and sampling, should

be extended to graph signals.

Among them, wavelets and filter banks are one of the most important techniques.

They consist of filters and sampling operators, and divide the input signal into several

different frequency bands. The transforms are localized both in time/spatial and fre-

quency domains, whereas Fourier transform has global basis in time/spatial domain.

Therefore, wavelets and filter banks can provide a compact representation of a signal

if the primary information of the signal is localized in time/spatial domain. They are

effective for analyzing and processing data and useful for many applications such as

denoising, segmentation, deconvolution and compression.

Wavelets and filter banks would be also effective for analyzing and processing graph

signals and expected to be key techniques for applying graph signal processing into real

problems on irregular and high-dimensional data, such as compression and denoising.

However, researches on transforms for graph signals are in progress and there exist many

issues to be solved. The main issues come from the fact that they should consider the

data structures during filtering and sampling operations.

1.1 Related Works

The desired properties of graph wavelets and filter banks are listed as follows:
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1. Bandpass and highpass filters should have no DC leakage. DC component is im-

portant information of a graph signal, and should not be affected during transform

in many applications. Therefore, it is desirable that the lowpass filter passes all

the DC energy.

2. Transform should form tight frames (for undecimated transform) or orthogonal

expansions (for decimated transform). The filter set forming tight frame or trans-

form with orthogonal expansion can avoid the calculation of the pseudo inverse

of the analysis transform for reconstruction.

3. Filters should be parametrized with smooth or polynomial functions. The filters

defined by polynomial functions can avoid the full eigendecomposition of the

matrix and have localization in graph vertex domain. To obtain these benefits,

the Chebyshev polynomial approximation [30] is often applied for filters defined

by non-polynomial functions. If the filters are defined by smooth functions, they

show small errors even when we use a lower-order Chebyshev polynomial ap-

proximation.

4. Transform should be applicable to any graphs and variation operators. The trans-

form should be available to any graph signals regardless of their structure and

should not modify the original relationships between the samples. There exist

several variation operators, that are the basis of all tools for graph signal process-

ing as the matrix representation of graph. They include combinatorial/normalized

graph Laplacian and adjacency matrix. They should be selectable according to the

applications.

There exist several conventional spectral graph wavelets and filter banks [13,16,31–

38]. They are summarized in Table 1.1 with their properties. They are classified into

undecimated and decimated.
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Table 1.1: Conventional Perfect Reconstruct Spectral Graph Wavelet and Filter Banks
with These Properties, Acronyms, And Corresponding Sections. The following prop-
erties are evaluated. UD: Undecimated, CS: Critically Sampling, DC: No-DC leakage,
OE: Tight Frame or Orthogonal Expansion, SD: All filter kernels are Defined by Smooth
or Polynomial Function, GS: Applicable to Any Graph Signals. Acronyms indicate
SP: Cubic Spline, TM: Tight-Meyer, WH: Warped-Hann, UH: Uniform-Hann, QMF:
Quadrature Mirror Filter, And SF: Spectral Factorization.

Method Type DC OE SD GS Acronym Section
SGWT [13]

UD

X X UD-SP
III-A-1

Tight-Meyer [16] X X X UD-TM
Uniform-Hann [31] X X X UD-UH

III-A-2
Log-Warped-Hann [31] X X X UD-WH

GraphQMF [32]
CS

X X CS-QMF
III-B-1

GraphBior [33] X X X CS-SF

The undecimated transforms have high flexibility in their design, i.e., they can use

any filters with perfect reconstruction as long as they form a frame. However, they have

high redundancy; the redundancy ρ is ρ = M , where M is the number of filters, and

require a large amount of computations and memory. Spectral graph wavelet transform

(SGWT) [13] firstly provided a framework of a graph wavelet with spectral graph filters,

and the kernels can properly decompose the input signal into each frequency subband.

However, it does not form tight frame and does not defined by smooth functions. Tight-

Meyer [16] extends the kernels of SGWT to form a tight frame. However, the kernels

are also not defined by smooth functions. Uniform-Hann and log-warped-Hann (octave-

Hann) have been proposed in [31]. Uniform-Hann is defined by smooth functions and

forms tight frame, but it produces DC leakage. Log-warped-Hann forms tight frame and

does not produce DC leakage, but the kernels are not smooth functions.

The decimated transforms have a downsampling operation, and their redundancy is

ρ < M . The conventional decimated transforms have strong limitations on their fil-

ter designs because of the critically sampled structure (ρ = 1). The downsampling of

graph signal requires very careful manipulations. Unlike sampling for regular signals,
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Table 1.2: Proposed Methods with These Acronyms And Corresponding Sections: Un-
decimated (UD), Critically Sampled (CS), Oversampled (OS), Spectral Factorization
(SF), Frequency Conversion (FC), And Paraunitary (PU).

Method Type DC OE SD GS Acronym Section
OSGFB

OS

X X – OS-SF Chap. 5
OS w/ OSGLM properties depend

X
filter name +

Chap. 6
CS w/ OSGLM on combined filters (OSGLM)

FC: OSPRFB [39] X X X – OS-PU-FC V-B-3
FC: CDF 9/7 [40, 41]

CS
X X X – UD-9/7-FC

V-A-1FC: CDF 5/3 [40, 41] X X X – UD-5/3-FC
FC: CDF 4/4 [40, 41] X X X – CS-4/4-FC

FC: DCT [42–44]
UD

X X X X UD-DCT-FC
V-A-2

FC: LOT [45, 46] X X X X UD-LOT-FC

the sampling points of graph signal are not determined uniquely, and the relationship

between the frequency of the original signal and that of the signal after downsampling-

then-upsampling is not clarified, except for the case of bipartite graphs. Only when

the underlying graph is bipartite, the downsampling-then-upsampling operation causes

spectral folding phenomenon that is similar to aliasing effect. Therefore, the conven-

tional spectral graph transforms with decimations can only be applicable to signal de-

fined on the bipartite graph. The famous spectral graph transforms with decimations

are graphQMF [32] that is orthogonal transform but not localized in vertex domain, and

graphBior [33] that is biorthogonal transform and localized both in vertex and graph

spectral domains.

1.2 Contributions

The objective of this dissertation is to propose effective design methods of filter banks

and wavelets for graph signals. The contributions of the proposed transforms are sum-

marized as follows:
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1. They can control the tradeoff between the redundancies and limitations on the

filter design.

2. The decimated version of the transforms can also be applied to graph signals de-

fined on any non-bipartite graphs.

3. They have all desirable properties listed above, i.e., no DC leakage, tight frame,

smooth functions and applicability for signals on any graphs.

The transform satisfying above properties is realized by using three methods: two kinds

of the oversampled transforms for graph signals and a novel and effective filter design

method.

One of the oversampled transform is theM -channel spectral graph filter banks which

have M filters and sampling operations. They would be useful for graph signals, since

oversampled filter banks for regular signals have more freedom in their design and it

has been shown that they outperform critically sampled systems in several applications

[39, 47–51]. In fact, they have higher flexibility on their design than the conventional

decimated spectral graph filter banks and have lower redundancies (ρ = M/2) than the

undecimated transforms. We show the design examples of the filter set which satisfy the

perfect reconstruction condition and have good stopband attenuation.

Another oversampled transform expands the signal on graphs as well as the under-

lying graph. It uses an oversampled graph Laplacian matrix (OSGLM), which adds the

nodes and edges to the original graph. We consider the effective oversampling method

that can construct one bipartite graph including all edges in the original non-bipartite

graph. The decimated transform with the OSGLM can be applied to any graph signals

even if the original graph is non-bipartite. Furthermore, we clarify the theoretical rela-

tionships between the proposed oversampling method and the graph covering method

proposed in the context of graph theory.
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Finally, we design the spectral graph filters defined by a sum of sinusoidal waves.

The advantages of these filters are (a) they have low approximation errors even if a

lower-order shifted Chebyshev polynomial approximation is used, (b) the upper bound

of the error after the pth order Chebyshev polynomial approximation can be calculated

rigorously without complex calculations, and (c) their parameters can be efficiently ob-

tained from any real-valued linear phase finite impulse response filter banks in regular

signal processing. The proposed filter bank has the same filter characteristics as the

corresponding classical filter bank in the frequency domain and inherits the original

properties, such as tight frame and no DC leakage. Furthermore, their approximation

orders can be determined from the desired approximation accuracy. We show the graph

filters based on the famous filters in regular signal processing: discrete cosine trans-

form (DCT) [42–44, 52], lapped orthogonal transform (LOT) [45, 53, 54] and Cohen-

Daubechies-Feauveau (CDF) wavelets [40,41]. They satisfy the desired properties listed

above: no-DC leakage, tight-frame, smooth function, and perfect reconstruction.

The proposed methods are summarized in Table 1.2. The OSGLM is preprocessing

and is used by combining with arbitrary decimated transforms. Therefore, their proper-

ties on DC, OE and SD depend on the filters used. The proposed decimated transforms

with OSGLM satisfy GS and those without OSGLM do not satisfy GS.

1.3 Outline

Chapter 2 shows the notations and preliminaries on graph signal processing. The con-

ventional spectral graph wavelets and filter banks are described in Chapters 3. Chapter 4

and 5 introduce the oversampled spectral graph filter banks: M -channel spectral graph

filter banks and oversampling method for graph signals. Chapter 6 constructs the filter
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banks based on the perfect reconstruction linear phase FIR filter banks in regular signal

processing. Finally, Chapter 7 concludes this dissertation.
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Chapter 2

Notation and Preliminaries on Graph

Signal Processing

This chapter shows the definitions and preliminaries which are useful for understanding

the spectral graph wavelets and filter banks.

2.1 Graph

A graph G is represented as G = {V , E}, where V = {v0, v1, . . . , vN−1} and E denote

sets of nodes and edges, respectively. We will only consider a finite undirected graph

with no loops or multiple links. The number of nodes is N = |V|, unless otherwise

specified. The proposed graph spectral transforms are defined by using graph Laplacian

matrix which is calculated from the graph adjacency matrix and graph degree matrix.

The (m,n)-th element of the adjacency matrix A is defined as follows:

A(m,n) =


wmn if nodes m and n are connected,

0 otherwise,
(2.1)

where wmn denotes the weight of the edge between m and n. The degree matrix D is a

diagonal matrix, and its m-th diagonal element is

D(m,m) =
∑
n

wmn. (2.2)

9



The combinatorial graph Laplacian matrix (GLM) is defined as L := D − A, and the

symmetric normalized GLM is L := D−1/2LD−1/2. The symmetric normalized GLM

has the property that its eigenvalues are within the interval [0, 2]. For spectral analysis of

graph signals, we can use the eigenpairs of arbitrary variation matrix, such as adjacency

matrix, graph Laplacian matrix and random walk matrix. Although we will mainly use

L in this dissertation, L can also be used for undecimated spectral graph filter banks in

the same way. The eigenvalues of L are λi and ordered as: λmin = 0 = λ0 < λ1 ≤

λ2 . . . < λN−1 = λmax ≤ 2 without loss of generality1. The eigenvector ui corresponds

to λi and satisfies Lui = λiui. The eigenvectors U = [uλ0 , . . . ,uλN−1
] satisfy

UUT = IN , (2.3)

where ·T is the transpose of a matrix or a vector and IN is an N ×N identity matrix.

2.2 Graph Signal and Spectrum

Graph signal has samples on each node and is defined as f ∈ RN . This section in-

troduces the Fourier transform for graph signals. The traditional Fourier transform for

regular signals is defined as the expansion of a function f(t) in terms of the complex

exponentials:

F (ω) := 〈f, ejωt〉 =

∫
R
f(t)e−jωtdt, (2.4)

where ω = 2πξ and ξ indicates frequency. In this equation, ejωt is the eigenfunction of

one-dimensional Laplace operator:

− ∂2

∂t2
ejωt = ω2ejωt. (2.5)

1The eigenvalue λ1 will be nonzero only if the graph is connected. λN−1 = 2 only for bipartite
graphs.

10



(a)

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10

(b)

Figure 2.1: Graph signal and its spectrum. (a) signal on random network graph (vertex
domain). The black lines, red circles, and blue lines indicate the edges, nodes, and
samples, respectively. (b) spectrum of (a) (graph spectral domain).

(a) i = 0 (b) i = 1 (c) i = 9 (d) i = 29

Figure 2.2: ith eigenvector placed on the corresponding graph shown in Fig. 2.1.

Based on the above definitions, the graph Fourier transform is defined as the expan-

sion of a function f in terms of the eigenvectors of the graph variation operators [12,13]:

f(i) = 〈ui,f〉 =
N−1∑
n=0

u∗i (n)f(n). (2.6)

where ·∗ is the complex conjugate. The inverse graph Fourier transform is defined as

f(i) = 〈u∗i ,f〉 =
N−1∑
n=0

ui(n)f(n). (2.7)

An example of graph Fourier transform and its Fourier basis (eigenvectors) are shown

in Figs. 2.1 and 2.2. It can be seen as the eigenvector associated with large eigenvalue
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Figure 2.3: Number of zero crossing and total variation of eigenvectors corresponding
graph shown in Fig. 2.1. (a) number of zero crossing. (b) total variation.

corresponds to high frequency and oscillates rapidly. In contrast, that associated with

small eigenvalue, i.e., close to 0, corresponds to low frequency. This fact is evaluated

by the number of zero crossing and total variation of each eigenvectors. The set of zero

crossing and total variations for u are defined as

ZG(u) = {e = (i, j) ∈ E : u(i)u(j)} , (2.8)

and

TV(u) =
∑
i∈V

(∑
j∈V

wi,j (u(j)− u(i))2
) 1

2

, (2.9)

respectively. The numbers of zero crossing and total variations of eigenvectors are

shown in Fig. 2.3.

The entire spectrum of G is defined by σ(G) := {λ0, . . . , λN−1}. The projection

matrix for the eigenspace Vλ is

Pλ =
∑
λi=λ

uiu
T
i . (2.10)
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(a) (b)

Figure 2.4: (a) ring graph. (b) path graph.

If λi and λj are different eigenvalues, Pλi and Pλj are orthogonal; that is,

PλiPλj = δ(λi − λj)Pλi , (2.11)

where δ(λ) is the Kronecker delta function.

2.2.1 Connection With Traditional Signal Processing

Some graphs have the same basis as the famous transform in traditional signal process-

ing. Ring graph shown in Fig. 2.4 (a) has following combinatorial graph Laplacian

matrix:

Lring =



2 −1 −1

−1 2 −1

. . .

−1 2 −1

−1 −1 2


(2.12)

Its eigenvectors are coincide with the basis of discrete Fourier transform (DFT)

uk = [1, wk, w2k, . . . , w(N−1)k]T , k = 0, . . . , N − 1, (2.13)

where w = ej
2π
N .
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The another graph is path graph shown in Fig. 2.4 (b). The combinatorial graph

Laplacian is

Lpath =



1 −1

−1 2 −1

. . .

−1 2 −1

−1 1


. (2.14)

Its eigenvectors are coincide with the basis of discrete cosine transform:

uk(n) = cos

((
n+

1

2

)
kπ

N

)
. (2.15)

2.2.2 Spectral Graph Filtering and Chebyshev Polynomial Approx-

imation

The spectral domain filtering for graph signals can be written as

Hf = UH(Λ)UTf

=
∑
λ∈σ(G)

H(λ)Pλf ,
(2.16)

where H(·) is a spectral filter kernel. The example of the kernel of lowpass filter and,

input and filtered signals are shown in Fig. 2.5. The lowpass filter is defined as

H(λi) =


1 if i < 7

0 otherwise.
(2.17)
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Figure 2.5: Filtering example. (a) filter kernel, (b) input signal, (c) graph spectrum of
(b), (d) output signal, (e) graph spectrum of (d).

A filter kernel defined by polynomial function has some advantages. One is that it

can avoid calculating the exact filter responses through a full eigendecomposition of a

given Laplacian matrix L (or L). Spectral filtering with filters defined by p-th order

polynomial function only needs O(p|E|), whereas those with filters defined by non-

polynomial function needs O(N3) computational complexity. The another advantage is

the graph filters defined by polynomial are localized in the vertex domain, because if the
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graph spectral filter is a p degree polynomial, i.e., H(λi) = αpλ
p
i it is p-hop localized2

in the vertex domain:

fout(k) =
N−1∑
i=0

fin(λi)H(λi)ui(k)

=
N−1∑
l=0

fin(l)
K∑
p=0

αp

N−1∑
i=0

λpiu
∗
i (l)ui(k)

=
N−1∑
l=0

fin(l)
K∑
p=0

αp(Lp)kl.

(2.18)

The pth order shifted Chebyshev polynomial is often used to approximate H(λ) as

H̃p(λ) = αpλ
p [1, 13]3 for graph spectral filtering. The signal filtered by H̃p(λ) is

represented as

fout = H̃p(L)fin =

{
1

2
c0 +

p∑
i=1

ciTi(L)

}
fin, (2.19)

where T0(L) = 1, T1(L) = 2(L−1)/λmax, Ti(L) = 4(L−1)Ti−1(L)/λmax−Ti−2(L),

and

ci =
2

S

S∑
m=1

cos

(
πi
(
m− 1

2

)
S

)
Hk

(
λmax

2

(
cos

(
π
(
m− 1

2

)
S

)
+ 1

))
(2.20)

for i = 0, . . . , p, where S is the number of sampling points used to compute the Cheby-

shev coefficients and is usually set to S = p+ 1.

2If the diameter dG of graph G is dG ≤ p, the graph spectral filter with a p degree polynomial becomes
a global operation.

3Although designing graph spectral wavelet and filter banks requires λmax, λmax can be easily estimated
by using the power method [55] or the Arnoldi algorithm [34].
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The overall computational complexity in applying an spectral graph filter with a

Chebyshev polynomial approximation is O(p(|E| + N)). O(p|E|) is the cost of com-

puting the Chebyshev polynomials Tk(L)f , and O(pN) is the cost of computing the

coefficients for each scale.
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Chapter 3

Wavelets and Filter Banks in Regular

and Graph Signal Processing

This section describes the wavelets and filter banks for regular and graph signals. The

wavelets and filter bank are sets of filters, sometimes linked by sampling operators. The

basis are localized both in time/spatial/vertex domain and frequency domain. We show

the overall scheme of the transforms and the typical filters for regular signals (Section

3.1) and for graph signals (Section 3.2).

3.1 Wavelets and Filter Banks for Regular Signals

Firstly, we introduce the wavelets and filter banks used in regular signal processing. The

overall scheme of an M -channel filter bank with downsampling factor of P , where P

is an integer, is shown in Fig. 3.1. When M = P , it is called a critically sampled

filter bank. If M > P then it is called an oversampled filter bank. Hi(z) and Gi(z) are

arbitrary analysis and synthesis filters in z domain. ↓ P and ↑ P are the downsampling

and upsampling operators with sampling factor of P . The downsampled signal fd ∈

RN/P with downsampling factor P can be represented as

fd(i) = f(Pi). (3.1)
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Analysis bank Synthesis bank

Figure 3.1: M -channel filter banks for regular signals with downsampling factor P .

The upsampling from f ∈ RN/P to fu ∈ RN is

fu(i) =


f(i/P ) for mod(i, P ) = 0

0 otherwise.
(3.2)

The most of the filter banks in regular signal processing uses P = M > 2. We show the

famous transforms with P = M > 2, where the most of the filter banks in regular signal

processing and with P = 2 which is corresponds to the critically sampled spectral graph

wavelets (if P = M ) and the proposed

3.1.1 Filter Banks With P = M > 2

The time domain matrix Ψ of an M -channel FIR filter bank is represented as [56]

Ψ =


. . . . . . . . .

ΨD−1 . . . Ψ0

ΨD−1 . . . Ψ0

. . . . . . . . .


. (3.3)
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where each block Ψd, 0 ≤ d ≤ D − 1, is the M × P matrix

Ψd =


h0(dP ) h0(dP + 1) . . . h0(dP + (P − 1))

h1(dP ) h1(dP + 1) . . . h1(dP + (P − 1))

... . . . ...

hM−1(dP ) hM−1(dP + 1) . . . hM−1(dP + (P − 1))


(3.4)

where hk is the k-th basis function. Ψ is a block Toeplitz matrix and has non-zero D

blocks in each row. The polyphase matrix of the FIR filter bank is represented as

Ψp(z) = Ψ0 + Ψ1z
−1 + . . .ΨD−1z

−(D−1). (3.5)

In order for the filter bank to be orthogonal (Ψp(z)TΨp(z) = IM ), Ψ should satisfy the

following condition:
D−1−l∑
i=0

ΨT
i Ψi+l = δ(l)IM . (3.6)

Discrete Cosine Transform

An example for the case of D = 1 is the DCT [42–44]. The (k,m)-th element of its

M ×M transform matrix CDCT is represented as

CDCT(k,m) = sDCT cos

(
(2m+ 1)π

2M
k

)
, (3.7)

where

sDCT =


1√
2

for k = 0,

1 otherwise.
(3.8)
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Figure 3.2: The basis function of the LOT with M = 8.

Lapped Orthogonal Transform

LOT is a linear phase FIR filter bank with D = 2. Its M × 2M transform matrix is

defined as follows [45, 46]:

CLOT =

V 0

0 W

Ce
DCT −Co

DCT JM/2(C
e
DCT −Co

DCT)

Ce
DCT −Co

DCT −JM/2(C
e
DCT −Co

DCT)

 , (3.9)

where Ce
DCT and Co

DCT areM/2×M matrices of the symmetric and antisymmetric basis

functions in the DCT. JM/2 is the M/2 ×M/2 counter-identify matrix. V and W are

freely chosen orthogonal matrices. The basis functions with M = 8 are shown in Fig.

3.2.

Although this dissertation considers the above-mentioned M -channel linear phase

FIR filter banks with filter lengths L = DM , those with L = DkM + η, k =

0, 1, . . . ,M − 1, where η is an arbitrary integer, have the same paraunitary constraints
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[56] and can be applied to the proposed method. The detailed conditions of the M -

channel linear phase perfect reconstruction filter bank with L = DkM +η are described

in [57].

3.1.2 Filter Banks With P = 2

Two-Channel Wavelet Transform

In the z-domain, the perfect reconstruction condition of the two-channel discrete wavelet

transform (DWT) can be expressed as [58]

G0(z)H0(z) +G1(z)H1(z) = 2z−l (3.10)

G0(z)H0(−z) +G1(z)H1(−z) = 0, (3.11)

where z−l is delay, l = (L0 + L1 − 2)/2, Hi(z) =
∑Li−1

m=0 hi(m)z−m, and L0 and L1

are the filter lengths of the lowpass filter H0(z) and the highpass filter H1(z), respec-

tively. The filter lengths of the synthesis-side filters G0(z) and G1(z) are L1 and L0,

respectively.

Theorem 1. [59, Proposition 3.3], [58, Theorem 4.3] In a two-channel biorthogonal

linear phase wavelet transform, the filter lengths are all odd or all even. The analysis

filters H0(z) and H1(z) should be

a) Both symmetric of odd length, differing by an odd multiple of 2.

b) One symmetric, the other antisymmetric1, of even length, and equal to each other

or differing by an even multiple of 2.

1Generally, lowpass filters are symmetric, and highpass filters are antisymmetric.
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M -Channel Oversampled Filter Banks

For the sake of simplicity, this dissertation deals with oversampled filter banks whose

filter lengths are L = PK, where P is a downsampling factor and K is an arbitrary

integer, and the even-indexed filters are symmetric and the odd-indexed filters are anti-

symmetric. The perfect reconstruction condition of the oversampled filter banks with a

downsampling factor of P = 2 is expressed as [39, 60]

M−1∑
k=0

Gk(z)Hk(z) = 2z−l (3.12)

M−1∑
k=0

Gk(z)Hk(−z) = 0. (3.13)

3.2 Spectral Graph Wavelets and Filter Banks

This section describes the existing approaches to design wavelets and filter banks in the

graph spectral domain. The undecimated transforms are introduced in Section 3.1 and

critically sampled transforms are in Section 3.2. The properties and acronyms of the

conventional spectral graph wavelets and filter banks are summarized in Table 1.1.

3.2.1 Undecimated Transform

The undecimated transform divide the input signal into M different frequency subbands

by using M spectral filters. Let us denote ψk,n as the spectral graph wavelet function in

the vertex domain, at vertex n:

ψk,n(m) =
N−1∑
i=0

Hk(λi)u
∗
i (n)ui(m), (3.14)

where Hk(λ) is the spectral filter response of the kth filter in the graph spectral domain.
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Figure 3.3: Ideal filter characteristics of spectral graph filter banks for M = 6 (black
lines indicate F (λ)): (a) UD-SP [13]. (b) UD-TM [16]. (c) UD-UH (γ = λmax, R = 3,
K = 1 and α0 = α1 = 1/2) [31]. (d) UD-WH [31].

The family of vectors F := {ψk,n}k=0,...,M−1, n=0,...,N−1 is a frame of RN , if there

exist two constants B ≥ A > 0 such that

A‖f‖22 ≤
N−1∑
n=0

M−1∑
k=0

|〈f ,ψk,n〉|2 ≤ B‖f‖22 (3.15)

for all f ∈ RN . IfA = B, it is called a tight frame. In particular, the case ofA = B = 1

is the Parseval frame. It conserves energy and has a simple reconstruction scheme; i.e.,

the analysis operator is also used as the synthesis operator [16].
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Theorem 2. ( [13, Theorem 5.6] [31, Lemma 1]) If F (λ) :=
∑M−1

k=0 |Hk(λ)|2 > 0 for

all λ ∈ σ(L), F = {ψk,n}k=0,...,M−1, n=0,...,N−1 is a frame with bounds,

A = min
λ∈σ(L)

F (λ),

B = max
λ∈σ(L)

F (λ).

(3.16)

If F (λ) is constant for all λ ∈ σ(L), F is a tight frame.

Spectral Graph Wavelet Transforms

Graph wavelet kernels of the spectral graph wavelet transform (SGWT) have been de-

signed on the basis of a cubic spline, so that the kernel Hspline(λ) and its derivative

H ′spline(λ) are continuous [13]:

Hspline(λ) =


λ−αa λα for λ < λa

s(λ) for λa ≤ λ ≤ λb

λβbλ
−β for λ > λb

(3.17)

where α and β are integer parameters, λa and λb are parameters for the transition regions,

s(λ) is a cubic polynomial that satisfies s(λa) = s(λb) = 1, s′(λa) = α/λa and s′(λb) =

−β/λb. The wavelet kernels are defined as Hk,SGWT = Hspline(tkλ), k = 1, . . . ,M −

1, where scales {tk} are logarithmically equispaced between the minimum scale t1 =

λb/λmin and the maximum scale tM−1 = λb/λmax, λmin = λmax/K, and K is a design

parameter. The scaling kernel is defined as H0,SGWT(λ) = µe
−( λ

0.6λmin
)4 , where µ is set so

that H0,SGWT(0) has the maximum value of the wavelet kernels. Their graph frequency

characteristics with α = β = 2, λa = 1, λb = 2, s(x) = −5 + 11x − 6x2 + x3,

and K = 20 are shown in Fig. 3.3(a). As can be seen from the figure, the SGWT is
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not tight, i.e., G(λ) is not constant, so the pseudoinverse should be calculated for the

synthesis transform.

Tight Mayer

To make the wavelet frames tight, several spectral graph wavelet kernels have been

derived from regular wavelet kernels by transforming the variables [16]. As an example,

Meyer-like kernels are defined as:

HMeyer(λ) =


sin
(
π
2
ν
(
λ
a
− 1
))

∀λ ∈]a, 2a]

cos
(
π
2
ν
(
λ
2a
− 1
))
∀λ ∈]2a, 4a]

0 elsewhere

H0,Meyer(λ) =


1 ∀λ ∈ [0, a]

cos
(
π
2
ν
(
λ
a
− 1
))
∀λ ∈]a, 2a]

0 elsewhere

ν(x) = x4
(
35− 84x+ 70x2 − 20x3

)

(3.18)

where a ∈ R+. The wavelet kernels are represented as Hk,Meyer = HMeyer(tkλ) with the

wavelet scaling tk = a
λmax

2k, k = 1, . . . ,M − 1. The graph frequency characteristics of

Meyer-like kernels (tight-Meyer) with a = 2/3 are shown in Fig. 3.3(b). The kernels

clearly form a tight frame.
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Uniform/Octave Hann

Another tight graph wavelet frame was presented by Shuman et al. [31]. The kernel is

defined as

HUniform
Half-cosine(λ) =

K∑
l=0

αl cos

(
2πl

(
R′λ+

1

2

))
1− 1

R′≤λ<0, (3.19)

where K < R/2, 2 < R ≤ M , R′ = M+1−R
Rγ

, γ is an upper bound on the spec-

trum, and R controls the overlap of the shifted kernels. The real sequence al satisfies∑K
l=0(−1)lαl = 0. The k-th filter for an M -channel graph filter bank is represented on

the basis of the kernel HUniform
Half-cosine(λ), as

HUniform
k,Half-cosine(λ) = HUniform

Half-cosine

(
λ− 1

RR′
k

)
. (3.20)

The kernels form a tight frame:

G(λ) = Rα2
0 +

R

2

K∑
l=1

α2
l . (3.21)

Figure 3.3(c) shows the shifted and scaled Hann kernel (uniform-Hann)HUniform
k,Hann (λ) with

γ = λmax, which is obtained from the half-cosine kernel HUniform
k,Half-cosine(λ) with R = 3,

K = 1 and α0 = α1 = 1/2. It can be seen that the filter bank has a uniform band and

that the DC component of the spectrum; i.e., the filter response at λ = 0, is shared by

two filters.

A method of converting the UD-UH into octave-band spectral graph wavelets was

also proposed in [31]. M − 1 wavelet kernels are constructed by warping the uniform
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filter kernels with a logarithmic warping function. As a result, the wavelet kernels and

the scaling kernel are defined as

HOctave
k,Hann(λ) =HUniform

k−1,Hann (log(λ)) , k = 1, . . . ,M − 1, (3.22)

HOctave
0,Hann(λ) =

√√√√Rα2
0 +

R

2

K∑
l=1

α2
l −

M−1∑
k=1

|HOctave
k,Hann(λ)|2. (3.23)

where γ = log(λmax) and the frame bounds are the same as those of the uniform kernels.

The graph frequency characteristics (UD-WH) are shown in Fig. 3.3(d). We can see

that the kernels still form a tight frame, but the scaling function will be different from a

sinusoidal wave.

Furthermore, in [31], the spectrum-adapted filters are obtained using warping fil-

ters with a cumulative spectral density function. The warped filters are defined as

HWarped
k,Hann (λ) = HUniform

k,Hann (ω̃(λ)), where γ = ω̃(λmax) and ω̃(λ) is the spectral density-

based warping function.

3.2.2 Decimated Transform

The conventional transforms with decimation have scheme shown in Fig. 3.4, where Hi,

and Gi for i = 0, 1 are analysis and synthesis filters, and ↓ S and ↑ S are down- and up-

sampling operations, respectively. The conventional transforms can only be applicable

to the signals defined bipartite graph. A bipartite graph is two-colorable graph where

nodes can be decomposed into two disjoint sets L and H such that every link connects

a node in L to one inH and is represented as G = {H,L, E}.

The downsampling and upsampling operations are defined as follows. We consider

the downsampling by remaining the samples on L. Let G = {V , E} = {H,L, E} and

G1 = {V1, E1} be the original bipartite graph and the reduced-size graph, respectively,
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where V1 = L for downsampling operation keeping the samples on L and removing

the samples on H. The downsampling operator of a bipartite graph from f ∈ R|V| to

fd ∈ R|L| is defined as

fd(n) = f(n′) if vn′ ∈ L corresponds to v1,n ∈ V1. (3.24)

It can be rewritten by using the matrix form as:

fd = Sd,Lf , (3.25)

where Sd,L = [IN ]VL and [IN ]VL is the restriction matrix of I, which is obtained from

extracting columns indexed by L from I. The upsampling operator from fd ∈ R|L| to

fu ∈ R|V| is

fu(n) =


fd(n

′) if vn′ ∈ V1 corresponds to vn ∈ L

0 otherwise.
(3.26)

Its matrix form is

fu = Su,Lfd, (3.27)

where Su,L = STd,L.

The downsampling-then-upsampling operation is defined as [32]

Ddu,L = Su,LSd,L =
1

2
(IN + SL),

Ddu,H = Su,HSd,H =
1

2
(IN + SH),

(3.28)
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Figure 3.4: Critically sampled spectral graph filter bank.

where SL is the diagonal sampling matrix of a bipartite graph defined as

SL(m,m) =


+1 if m ∈ H,

−1 if m ∈ L,
(3.29)

and S := SH = −SL.

Proposition 1. (Downsampling Phenomenon of Bipartite Graph [32, Proposition 1])

The eigenspace projection matrix Pλi and the sampling matrix S are related as follows:

SPλi = P2−λiS. (3.30)

The nodes inH store the output of the highpass channel, whereas the nodes inL store

the output of the lowpass channel. Critically sampled graph filter banks decompose f

into |L| lowpass coefficients and |H| highpass coefficients, where |L| + |H| = N , as

illustrated in Fig. 3.4. The overall transfer function of graph-QMF [32] and graphBior

[33] can be written as

T =
1

2
G0(I− S)H0 +

1

2
G1(I + S)H1

=
1

2
(G0H0 + G1H1) +

1

2
(G1SH1 −G0SH0).

(3.31)
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The spectral folding term G1SH1 −G0SH0, arising from downsampling and upsam-

pling, must be zero. From proposition 1, It can be rewritten as

G1SH1 −G0SH0 =
∑
λ

G1(λ)PλSH1(λ)Pλ −G0(λ)PλSH0(λ)Pλ

=

(∑
λ

G1(λ)H1(2− λ)−G0(λ)H0(2− λ)

)
PλP2−λS.

(3.32)

In addition, T = IN should be satisfied for perfect reconstruction, i.e.,

G1H1 −G0H0 =

(∑
λ

G1(λ)H1(λ)−G0(λ)H0(λ)

)
Pλ = 0. (3.33)

should be satisfied. Hence, the perfect reconstruction condition of graph-QMF [32] and

graphBior [33] can be expressed as

G0(λ)H0(λ) +G1(λ)H1(λ) = 2, (3.34)

G0(λ)H0(2− λ)−G1(λ)H1(2− λ) = 0. (3.35)

Additionally, the orthogonal transform, graph-QMF, has an orthogonality condition

H2
0 (λ) + H2

0 (2− λ) = c2. Therefore, filters are chosen in a way that satisfies H1(λ) =

H0(2−λ), H0(λ) = G0(λ) and H1(λ) = G1(λ). Unfortunately, filters that satisfy these

conditions are not compact supports. That is, if graph-QMF were forced to be a compact

support, it would suffer from a loss of orthogonality and a reconstruction error. On the

other hand, graphBior relaxes the orthogonal condition of graph-QMF and has a perfect

reconstruction condition and compact support because it uses a design method similar

to Cohen-Daubechies-Feauveau’s construction for regular signals [40].

The critically sampled filter bank is designed for bipartite graphs. When it is applied

to an arbitrary graph, the original graph should be decomposed into an edge-disjoint
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collection of KG bipartite subgraphs by using a bipartite subgraph approximation such

as Harary’s algorithm [32, 61] and the transform performed on each subgraph. Each

subgraph has the same node set as the original graph, and their union yields back the

original graph. This decomposition leads to a separable multidimensional graph wavelet

filter bank.
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Chapter 4

M -channel Oversampled Spectral

Graph Filter Banks

In this chapter, we describe the M -channel filter banks for graph signals which have

M filters both in the analysis and synthesis sides. They allow us to design filters with

arbitrary parameters, i.e., perfect reconstruction is possible even if we use an arbitrary

lowpass filter, unlike the conventional critically sampled graph filter banks. Further-

more, they show that they outperform critically sampled systems in several applications

similar to the case in regular signal processing.

The overall scheme and perfect reconstruction conditions are described in Section

4.1. Section 4.2 designs filters having good stopband attenuation. They satisfy the per-

fect reconstruction conditions and are based on the spectral factorizations. The design

examples and their performances on signal analysis and denoising are shown in Section

4.3.

4.1 Perfect Reconstruction Condition

The details of the perfect reconstruction condition are discussed in this section. For

clearer understanding, we present the case of M = 4 first, and extend it to any value of

M afterwards.
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Figure 4.1: Oversampled graph filter bank.

4.1.1 Four-Channel Case

Consider the four-channel graph filter bank shown in Fig. 4.1. After filtering with Hk,

the zeroth and first channels pass |L| signals, whereas the second and third ones keep

|H| signals. f̂k is represented as

f̂k =


1
2
Gk(I− S)Hkf k = 0, 1

1
2
Gk(I + S)Hkf k = 2, 3.

(4.1)

where

Gk =
∑

λi∈σ(L)

Gk(λi)Pλi

Hk =
∑

λi∈σ(L)

Hk(λi)Pλi .
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Therefore, the overall transfer function T is

T =
1

2

∑
λi

3∑
k=0

Gk(λi)Hk(λi)Pλi

+
1

2

∑
λi,γj

{G2(λi)H2(γj) +G3(λi)H3(γj)

−G0(λi)H0(γj)−G1(λi)H1(γj)}PλiSPγj .

(4.2)

From Proposition 1, PλiSPγj = PλiP2−γjS and the orthogonality of Pλi , we get

T =
1

2

∑
λi

3∑
k=0

Gk(λi)Hk(λi)Pλi

+
1

2

∑
λi

{G2(λi)H2(2− λi) +G3(λi)H3(2− λi)

−G0(λi)H0(2− λi)−G1(λi)H1(2− λi)}PλiS.

(4.3)

As a result, the perfect reconstruction condition becomes

3∑
k=0

Gk(λ)Hk(λ) = 2 (4.4)

and

G2(λ)H2(2− λ) +G3(λ)H3(2− λ)−G0(λ)H0(2− λ)−G1(λ)H1(2− λ) = 0 (4.5)

for any λ. (4.5) is satisfied if we use the constraints G0(λ) = H2(2 − λ), G1(λ) =

H3(2 − λ), G2(λ) = H0(2 − λ), and G3(λ) = H1(2 − λ) (similar to what is done

in [33]). Accordingly, (4.4) becomes

G0(λ)H0(λ) +G0(2− λ)H0(2− λ) +G1(λ)H1(λ) +G1(2− λ)H1(2− λ) = 2. (4.6)
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21

2

Figure 4.2: Four-channel product filter example.

Figure 4.3: M -channel oversampled graph filter bank.

Let us define a product filter as pk(λ) = Gk(λ)Hk(λ). Finally, (4.6) can be rewritten as

p0(λ) + p0(2− λ) + p1(λ) + p1(2− λ) = 2. (4.7)

By using this perfect reconstruction condition, we can select four-channel product filters

instead of two-channel systems of the critically sampled graph filter bank. The situation

is shown in Fig. 4.2.
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4.1.2 General M -Channel Case

Let us assume that an oversampled graph filter bank has M channels, where M is even.

Additionally, we assume that M/2 filters keep |L| signals and the other ones keep |H|

signals, as shown in Fig. 4.3. Similar to (4.3), the transfer function can be calculated as

T =
1

2

∑
λi

M−1∑
k=0

Gk(λi)Hk(λi)Pλi

+
1

2

∑
λi

M/2−1∑
k=0

{−Gk(λi)Hk(2− λi) +Gk+M/2(λi)Hk+M/2(2− λi)}PλiS.

(4.8)

The perfect reconstruction condition is

M−1∑
k=0

Gk(λ)Hk(λ) = 2 (4.9)

M/2−1∑
k=0

−Gk(λ)Hk(2− λ) +Gk+M/2(λ)Hk+M/2(2− λ) = 0 (4.10)

for any λ. The latter equation is valid if we choose Gk(λ) = Hk+M/2(2 − λ) and

Gk+M/2(λ) = Hk(2− λ). Accordingly, (4.9) becomes

M/2−1∑
k=0

Gk(λ)Hk(λ) +Gk(2− λ)Hk(2− λ) = 2. (4.11)

As a result, the product filter pk(λ) must satisfy the following condition:

M/2−1∑
k=0

pk(λ) + pk(2− λ) = 2. (4.12)
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4.1.3 Redundancy of M -channel Spectral Graph Filter Banks

Let m < M be the number of filters which keep |L| signals after downsampling. The

overall redundancy ρ of the M -channel spectral graph filter banks can be expressed as

ρ =
m|L|+ (M −m)|H|

N

=
m|L|+ (M −m)(N − |L|)

N
,

(4.13)

where |H| = N − |L|. For example, when M = 4, m = 2, i.e., using a four-channel

filter bank, ρ = 2.

4.2 Design of M -Channel Oversampled Graph Filter

Bank

First, we will consider the case of M = 4. Let us define q(λ) = p0(λ) + p1(λ). (4.7)

can be rewritten as

q(λ) + q(2− λ) = 2. (4.14)

This equation is the same as that of a two-channel biorthogonal graph filter bank [33].

Therefore, the design problem boils down to separating the critically sampled product

filter q(λ) into lowpass and bandpass (Fig. 4.2) filters p0(λ) and p1(λ) such that the sum

of filters is q(λ).

Let us assume that a lowpass product filter p0(λ) is arbitrarily chosen so that H0(λ)

and G0(λ) are “good” lowpass filters. By changing the variable of λ = 1 + l [33],

p0(1 + l) can be expressed as

p0(1 + l) = (1 + l)K

(
J0∑
m=0

αml
m

)
, (4.15)
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where αm is an arbitrary parameter.

Following [33], q(1 + l) has the degree 2K − 1 and its even degree must be zero

from the halfband condition.1 Hence, q(1 + l) is represented as

q(1 + l) = (1 + l)K

(
1 +

K−1∑
m=1

rml
m

)
= 1 +

K−1∑
n=0

c2n+1l
2n+1, (4.16)

which is, of course, the same as that in [33] and has a unique solution satisfying (4.14).

Finally, the remaining product filter p1(λ) can be defined as follows:

p1(1 + l) = q(1 + l)− p0(1 + l) = (1 + l)K

(
J1∑
m=0

βml
m

)
. (4.17)

Example: K = 2 zeros at l = −1

This is the same example as in [33]. We assume J0 = 1. As in (4.15) and (4.17),

p0(1 + l) and p1(1 + l) are

p0(1 + l) = (1 + l)2 (α0 + α1l) (4.18)

p1(1 + l) = (1 + l)2 (β0 + β1l) , (4.19)

where α0 and α1 are arbitrarily chosen parameters. Then, the sum of the product filter

q(1 + l) is defined as

q(1 + l) =
1

2
(1 + l)2(2− l), (4.20)

1Although Proposition 1 in [33] restricts q(λ) to being a product of two kernels, it is nonetheless
applicable to the sum of two kernels assumed in this dissertation.

39



which is an odd-order polynomial and it is the same product filter as that in [33]. To

guarantee the perfect reconstruction, β0 and β1 must be

β0 = 1− α0

β1 = −
(
α1 +

1

2

)
.

(4.21)

That is, we can add free parameters (α0 and α1) to design a halfband filter, and this will

lead to better filter characteristics.

A similar derivation is possible for general M -channel graph filter banks. In that

case, the parameters for (M − 2)/2 product filters can be freely chosen, and the last

product filter can be designed so that the entire product filter q(λ) is a maximally flat

halfband filter.

Remark 1: The above design method yields perfect reconstruction graph filter banks.

Unfortunately, the filter selection similar to CS-QMF [32] cannot obtain the perfect re-

construction filter set with the real-valued exact polynomial filters even for this over-

sampled case. This is easily confirmed by examining the transfer function in (4.8). If

the filter bank is chosen similar to CS-QMF, the condition Gk(λ) = Hk(λ) must be

satisfied. Therefore, the perfect reconstruction condition (4.12) becomes

M/2−1∑
k=0

H2
k(λ) +H2

k(2− λ) = 2. (4.22)

Here, let us focus on the highest degree of
∑M/2−1

k=0 H2
k(λ). Indeed, each H2

k(λ) has an

even highest degree. However, as previously mentioned,
∑M/2−1

k=0 H2
k(λ) must be an odd

degree polynomial. Hence, at least one H2
k(λ) has a complex coefficient to cancel the

highest degree. This means real-valued oversampled graph filter banks with the filter

selection similar to CS-QMF cannot be designed.
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Remark 2: Let us define Ta to be the matrix form of the analysis transform. Riesz

bounds, which give the lower and upper boundsA andB such thatA||f ||2 ≤ ||Taf ||2 ≤

B||f ||2, of the analysis filter bank can be calculated similarly to what is shown in [13,

33], as

TT
aTa =

1

2

∑
λi

M−1∑
k=0

H2
k(λi)Pλi

+
1

2

∑
λi

M/2−1∑
k=0

{−Hk(λi)Hk(2− λi) +Hk+M/2(λi)Hk+M/2(2− λi)}PλiS.

(4.23)

Practically speaking, the second term in (4.23) can be ignored since the first term is

much larger than the second one. That is, the Riesz bounds can be approximated as

A ∼ inf
λ

1

2

M−1∑
k=0

H2
k(λ)

B ∼ sup
λ

1

2

M−1∑
k=0

H2
k(λ).

(4.24)

This result is the similar to what is shown in [33].

4.3 Design Examples and Experimental Results

In this section, we show the design methodology ofM -channel oversampled graph filter

banks and a few design examples.

4.3.1 Design Methodology

As mentioned above, we can use arbitrary parameters to design filters. In what follows,

we will use a sequential design method to obtain good filter banks:

41



1. DesignHk(1− l) andGk(1− l) (k = 0, . . . ,M/2−2) with k0 and k1 zeros (where

K = k0 + k1 in (4.15)–(4.16)) at l = 1 (λ = 2). They are represented as follows:

Hk(1− l) = (1− l)k0
J
(h)
k∑

m=0

sh,k,ml
m

Gk(1− l) = (1− l)k1
J
(g)
k∑

m=0

sg,k,ml
m

(4.25)

where sh,k,m and sg,k,m are filter coefficients. i.e., the product filter pk(1 − l) =

Gk(1− l)Hk(1− l) can be represented as

pk(1− l) = (1− l)K
J

(h)
k +J

(g)
k∑

m=0

αk,ml
m

 . (4.26)

The numbers of arbitrary parameters in Hk(1− l) and Gk(1− l) are J (h)
k and J (g)

k ,

respectively.

The filters are optimized by using the cost function of the stopband attenuation

shown below:

C(Hk) = w0

∫
l∈ωp

(
√

2−Hk(1− l))2dl + w1

∫
l∈ωs

H2
k(1− l)dl, (4.27)

where w0 and w1 are weights and ωp and ωs are defined as the passband and

stopband (−1 ≤ ωp, ωs ≤ 1), respectively.

2. Calculate the two-channel halfband filter pair q(1 − l) = q(λ) and q(1 + l) =

q(2− λ) with K zeros at l = 1 so that the pair satisfies (4.14).
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Figure 4.4: Four-channel oversampled graph filter banks. From left to right: (k0, k1) =
(2, 2), (4, 4), and (8, 8). Top row: analysis filter bank. Black lines indicate graphBior(6,
6) [33]. Bottom row: halfband filters.

3. Calculate the bandpass product filter2

pM
2
−1(1− l) = q(1− l)−

M/2−2∑
k=0

pk(1− l) = (1− l)K p̃M
2
−1(1− l). (4.28)

4. Factorize pM
2
−1(1 − l) into two bandpass filters HM

2
−1(1 − l) and GM

2
−1(1 − l).

Test all combinations of roots as long as both bandpass filters have real-valued co-

efficients, and select the best combination, i.e., the filters minimizing C(HM
2
−1)+

C(GM
2
−1).

2There always exists q(1 − l) which satisfies the perfect reconstruction condition (4.14) [33]. There-
fore, pM

2 −1
(1 − l) also has a unique solution with real coefficients as long as all of the arbitrary design

filters have real coefficients. Additionally, since the perfect reconstruction condition is only imposed on
pM

2 −1
(1− l), J (h)

k and J (g)
k in (4.25) can be set arbitrarily regardless of K.
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Figure 4.5: Six-channel oversampled graph filter bank: analysis bank.

Fig. 4.4 shows an example of oversampled graph filter banks. The arbitrary lowpass

filters H0(λ) and G0(λ) are designed to have degree 10 and 11, respectively. We used

−1 ≤ ωp ≤ −0.84 and −0.75 ≤ ωs ≤ 1. For comparison, the frequency responses of

the critically sampled CS-SF [33] are also plotted. They have 13-taps for the lowpass

filter and 12-taps for the highpass filter. It is clear that our oversampled lowpass filter has

a sharper transition band and a more uniform response in the passband than the critically

sampled graph filter banks have. In the following experiments, we use the oversampled

filter bank with (k0, k1) = (4, 4) zeros.

Additionally, Fig. 4.5 presents a six-channel oversampled graph filter bank with

(k0, k1) = (4, 4) zeros and {Jh, Jg} = {7, 8}. The filter lengths are 11 or 12 taps. For

lowpass filters, we used −1 ≤ ωp ≤ −0.93 and −0.83 ≤ ωs ≤ 1. For bandpass ones,

−0.83 ≤ ωp ≤ −0.75 and −1 ≤ ωs ≤ −0.95 ∧ −0.65 ≤ ωs ≤ 1 are used. It is clear

that our sequential design methodology can be used for the general M -channel case and

the frequency responses of the filters are well localized.
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original

Figure 4.6: Multiresolution Coins image after three-level decomposition using the over-
sampled graph filter bank. The original image on the same scale is shown at the top
right. The values of the transformed coefficients are scaled to be in the range [0, 1] for
the sake of visualization.
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Figure 4.7: Graphs decomposed by the proposed oversampled graph filter bank. (Colors
are adjusted according to each channel for the sake of visualization.) Original signal
is shown in Fig. 4.9(a). We use a two-dimensional four-channel filter bank leading
to 42 = 16 channels. Note that the graph is three-colorable: therefore, channels 8, 9,
12, and 13 (corresponding to the HL channel for the critically sampled filter banks) are
empty.

4.3.2 Graph Signal Decomposition

The signal on graph is decomposed by the proposed M -channel graph filter bank. Since

the filters designed in this dissertation are exact polynomials, the filtered signal can

be efficiently computed by using Chebychev polynomials [13]. Therefore, an explicit

computation of the entire set of eigenvalues and eigenvectors of L is not required.
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Figure 4.8: Structure of the Minnesota Traffic Graph. It was reproduced from the MAT-
LAB code of Narang and Ortega [33], and Harary’s algorithm [32,61] was used to yield
two bipartite subgraphs. From left to right: Original graph, bipartite graph #1, and
bipartite graph #2.

Figs. 4.6 and 4.7 show the decomposed results of the graph signals using the pro-

posed oversampled graph filter bank. For the Coins image shown in Fig. 4.6, the eight-

connected image graph is decomposed into a rectangular bipartite subgraph and a diag-

onal bipartite subgraph. Its further details can be found in [32, 33]. The structure of the

Minnesota Traffic Graph, whose decomposition is presented in Fig. 4.7, is shown in Fig.

4.8. It is three-colorable: thus, the HL channel is empty and not shown. It is clear that

the decomposed graph signals are well localized and different channels extract different

signal characteristics.

4.3.3 Denoising of Graph Signal

Here, we show the potential ability of using oversampled graph filter banks to remove

additive white Gaussian noise from graph signals of the Minnesota Traffic Graph. The

oversampled graph filter bank is compared with graphBior(6, 6) (CS-SF) [33], the

spectral graph wavelet transform (UD-SP) with three scales [13] and a regular one-

dimensional wavelet sym8, which can be found in the Wavelet Toolbox in MATLAB.

For the regular wavelet transform, the input signal f is treated as a vector, and one-level

and five-level dyadic decompositions are performed. Only one level transform is used
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Table 4.1: Denoised Results of Minnesota Traffic Graph (Average of Ten Executions):
SNR (dB)

σ noisy sym8 sym8 CS-SF UD-SP OS-SF
(1 level) (5 levels)

1/32 30.04 30.02 30.06 31.25 33.24 34.64
1/16 24.08 24.24 24.03 25.66 27.73 28.77

Example 1 1/8 18.07 18.59 17.96 20.16 22.22 21.82
1/4 12.06 12.00 11.02 14.25 15.19 15.36
1/2 6.05 6.26 5.74 8.51 10.29 10.31
1 0.00 1.60 3.05 2.77 8.82 4.18

1/32 29.45 28.69 28.24 29.13 29.17 30.30
1/16 23.44 22.81 22.00 23.45 23.08 24.54

Example 2 1/8 17.41 16.64 15.31 17.91 17.27 18.09
1/4 11.44 9.99 8.52 11.90 11.59 11.99
1/2 5.40 4.40 3.31 6.49 7.35 7.32
1 -0.64 0.27 0.94 1.54 4.72 3.22

Redundancy – 1.00 1.00 1.00 4.00 4.00

for the graph filter banks. All methods retain the lowest-frequency subband and the re-

maining high-frequency subbands are hard-thresholded with T = 3σ, where σ is the

standard deviation of noise.

Two signal examples, shown in Figs. 4.9(a) and 4.10(a) were tested. Both struc-

tures, i.e., the original GLM, are the same, but the values on the nodes are different.

Table 4.1 summarizes the denoising performances together with the redundancies of the

transforms. As expected, the graph filter banks perform much better than the regular

wavelet transform. Furthermore, our oversampled graph filter bank outperforms CS-SF

by 1–3 dB in SNR. The UD-SP performs better for the strong noise case σ = 1, whereas

the proposed oversampled graph filter banks are better than the UD-SP for the other σ.

The both OS-SF and UD-SP have four filters: however, the frequency partitions are

different. The UD-SP belongs to a class of nonuniform graph filter banks, whereas our

filter bank is a uniform one. Indeed, the performance depends on the signal characteris-

tics. The graph Fourier spectra of both examples are shown in Fig. 4.11. Obviously, the
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Figure 4.9: Denoising results of Example 1.

spectrum of Example 1 is more concentrated at the low λ values than that of Example

2. This characteristic is responsible for the good denoising performance of the UD-SP

with σ = 1 in Example 1.
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Figure 4.10: Denoising results of Example 2.

The denoised signals of Example 1 and 2 for σ = 1/2 are shown in Figs. 4.9 and

4.10, respectively. Since the regular wavelet transform does not consider the structure

of signals explicitly, the signals are over-smoothened across the boundary of the center

and surrounding areas; many blue points appear in the surrounding area. In contrast,

50



0 1 2 3 4 5 6 7

0

10

20

30

40

Spectrum of Example 1 

(a) Example 1

0 1 2 3 4 5 6 7

0

10

20

30

40

Spectrum of Example 2 

(b) Example 2

Figure 4.11: Graph Fourier spectra of Minnesota Traffic Graph. Since the experiment
uses the unnormalized graph Laplacian matrix, the maximum value of λ is not restricted
to be 2. We utilized the code by Shuman et al. in [31].

graph filter banks preserve the solid boundary. It is clear that the proposed filter bank

performs better than the critically sampled one. It is well-known in signal/image pro-

cessing circles that the oversampled filter banks are better than the critically sampled

ones for signal analysis. The experiment showed this to be the case for graph signal

processing.

4.4 Summary

We presented a method of designing M -channel oversampled filter banks for graph

signals. It satisfies the perfect reconstruction condition and allows us to use arbitrary

parameters, unlike critically sampled graph filter banks. Furthermore, it was shown to

outperform other transforms, including regular wavelet transforms, in a graph signal

denoising experiment.
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Chapter 5

Oversampled Graph Laplacian Matrix

This chapter introduces the concept of graph oversampling using an oversampled graph

Laplacian matrix (OSGLM) and shows the effective ways of graph oversampling. The

oversampling method is the completely different from theM -channel oversampled spec-

tral graph filter banks shown in Chapter 4.

For the graph oversampling, we can append nodes and edges to the graph somewhat

arbitrarily and freely choose additional graph signals. This chapter presents the effec-

tive method of applying graph oversampling to non-bipartite graphs, which can solve

the problem on the conventional decimated transforms such as critically sampled graph

filter banks and oversampled ones, i.e., the problem that the conventional decimated

transforms can only be applied into bipartite graphs. Our method can converts an ar-

bitrary K-colorable graph into one bipartite graph containing all edges of the original

graph. Hence, the decimated transform with the proposed oversampling can treat any

graph signals without removing the edges in the original graphs.

The concept of graph oversampling is shown in Section 5.1. Section 5.2 describes

the way of oversampling arbitrary graphs that makes one oversampled bipartite graph

from a K-colorable graph. We also clarify the theoretical relationship between the

proposed oversampled graph and the bipartite double cover of a graph in graph the-

ory [62–64]. Section 5.3 shows examples of graph oversampling for images and a ring

graph, and compares oversampled bipartite graphs with the critically sampled ones. We

validated the performance of graph oversampling through an experiment on non-linear

approximation of images and denoising of graph signals in Section 5.4.
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Figure 5.1: Graph oversampling followed by M -channel oversampled graph filter bank.

5.1 Concept of Graph Oversampling

In this section, we describe the concept of oversampling method for graph signals. Fig-

ure 5.1 shows an example of the transform using graph oversampling with anM -channel

oversampled graph filter bank. The graph and graph signals are oversampled before ap-

plying graph filter banks by using the oversampled graph Laplacian matrix. Firstly, we

describe the detail of oversampling of underlying graph and signal.

5.1.1 Oversampled Graph Laplacian Matrix

Before applying the graph filter bank, the original bipartite graph G = {L,H, E} is

expanded into an oversampled bipartite graph G̃ = {L̃, H̃, Ẽ} where L̃ and H̃ include

L and H, respectively. The spectral domain filtering is then performed based on the

oversampled GLM.

Let us denote the original GLM of a bipartite graph by L0 and its adjacency matrix

by A0, and let us set their sizes as N0×N0. The normalized oversampled GLM L̃ is an

N1 × N1 matrix (N1 > N0), and N1 − N0 is the number of the additional nodes. It is

represented as

L̃ = D̃−1/2L̃D̃−1/2 (5.1)
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where

L̃ = D̃− Ã (5.2)

Ã =

A0 A01

AT
01 0N1−N0

 , (5.3)

in which Ã is the oversampled adjacency matrix, and D̃ is the degree matrix that normal-

izes the new GLM. Additionally, A01 contains information on the connection between

the original nodes and appended ones. Note that nodes are appended so that L̃ is still a

bipartite graph. Filters in the spectral domain in Fig. 5.1 are defined as

Hk =
∑

λi∈σ(G̃)

Hk(λi)P̃λi ,

Gk =
∑

λi∈σ(G̃)

Gk(λi)P̃λi ,

(5.4)

where P̃λi is the projection matrix of the oversampled graph.

The downsampling matrix S̃ = −SL̃ = SH̃ of the oversampled graph is determined

by L̃ and H̃. It can be represented as follows:

S̃ =

S0 0

0 S1

 , (5.5)

where S0 and S1 are the downsampling matrices of the original and additional nodes,

respectively. The oversampled signal f̃ is written as

f̃ =

f0
f1

 , (5.6)
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(a) (b)

Figure 5.2: Toy example of graph oversampling. (a) Scenario 1: Two-node-graph. (b)
Scenario 2: Oversampled two-node-graph. The black lines are appended edges.

where f1 is the signal for the additional nodes and its length isN1−N0. Since the perfect

reconstruction condition of graph filter banks does not depend on the graph oversam-

pling as long as the oversampled graph is bipartite, the output signal f̂ ′ is equal to the

input signal f̃ regardless of the additional signal value f1. Naturally, f̂0 can be obtained

from f̂ ′.

5.1.2 Relationship With Undecimated Transforms

We would like to mention that the output signal after filtering with the oversampled

normalized GLM is completely different from that obtained with undecimated graph

filtering. To introduce the fact, we assume two following scenarios:

Scenario 1: Filtering using the original graph without downsampling.

Scenario 2: Filtering using the oversampled graph with downsampling.

Here, a toy example is considered: a two-node-graph illustrated in Fig. 5.2(a). All

weights on edges are 1 and the original graph signal is f0 = [f(0) f(1)]T . We use

this graph for the scenario 1. For the scenario 2, the oversampled graph shown in

Fig. 5.2(b) is used. Obviously, the oversampled graph is still a bipartite graph. The

oversampled graph signal in this example is defined as the duplicated copy of f0, i.e.,

f̃ = [f(0) f(1) f(1) f(0)]T .
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The original GLM is represented as

L0 = L0 =

 1 −1

−1 1

 . (5.7)

Its eigenvalues and eigenvectors are clearly {λ0, λ1} = {0, 2} and

U0 =
[
u0 u1

]
=

1√
2

1 1

1 −1

 .
The oversampled GLM is

L̃ =


2 −1 0 −1

−1 2 −1 0

0 −1 1 0

−1 0 0 1


, (5.8)

and its normalized version is

L̃ =


1 −1/2 0 −1/

√
2

−1/2 1 −1/
√

2 0

0 −1/
√

2 1 0

−1/
√

2 0 0 1


. (5.9)
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Its eigenvalues are {λ̃0, λ̃1, λ̃2, λ̃3} = {0, 1/2, 3/2, 2} and

Ũ =
1√
6



√
2 1 −1

√
2

√
2 −1 −1 −

√
2

1 −
√

2
√

2 1

1
√

2
√

2 −1


.

For the scenario 1, the output signal after filtering with H0(λ) can be represented as

f ′0 =
1

2

1 1

1 −1

H0(0)

H0(2)

1 1

1 −1

f(0)

f(1)


=

1

2

H0(0) H0(2)

H0(0) −H0(2)

f(0) + f(1)

f(0)− f(1)

 .
(5.10)

As a result, it captures the signal characteristics at λi = 0, 2 (the minimum and maxi-

mum eigenvalues).
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Whereas for the scenario 2, we can observe the different filter response. The filtered

and downsampled signal for the scenario 2 can be represented as follows:

f̃ ′ =
1

6

√2 1 −1
√

2

1 −
√

2
√

2 1



H0(0)

H0(
1
2
)

H0(
3
2
)

H0(2)



×



√
2
√

2 1 1

1 −1 −
√

2
√

2

−1 −1
√

2
√

2
√

2 −
√

2 1 −1




f(0)

f(1)

f(1)

f(0)


=

√2c0H0(0)− c1H0(
3
2
) c0H0(

1
2
) +
√

2c1H0(2)

c0H0(0) +
√

2c1H0(
3
2
) −

√
2c0H0(

1
2
) + c1H0(2)

f(0) + f(1)

f(0)− f(1)

 ,

(5.11)

where c0 = 1
6
(
√

2 + 1) and c1 = 1
6
(
√

2 − 1). In this example, the extra eigenvalues

λ̃i = 1/2, 3/2 are used for the signal analysis. Roughly speaking, finer characteristics

of the graph signal can be captured by oversampling the graph signal and the underlying

graph.

5.1.3 Redundancy of Transform With Oversampled Graph Lapla-

cian Matrix

Let m < M be the number of filters which keep |L| signals after downsampling. The

overall redundancy ρ of the M -channel spectral graph filter banks with oversampled

GLM can be expressed as

ρ =
m|L̃|+ (M −m)(N1 − |L̃|)

N0

, (5.12)
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where |H̃| = N1 − |L̃|.

5.2 Effective Graph Expansion Methods

As described in Section 5.1.1, the appended nodes of the oversampled GLM can be

arbitrarily connected to the nodes as long as the oversampled graph is bipartite. The

additional signal value f1 can also be freely chosen. However, an inappropriate choice of

graph oversampling causes a performance loss. In this section, we describe an efficient

way to construct oversampled graphs that avoids such losses. Since the oversampled

graph has to be a bipartite graph, we first decompose the original graph into bipartite

subgraphs. We take one bipartite subgraph and append nodes and edges in the other

bipartite subgraphs to it. In this way, one oversampled bipartite graph containing all

the edges of the bipartite subgraphs is obtained.

5.2.1 Three-Colorable Graphs

First, we describe a way to convert a three-colorable graph into one oversampled bipar-

tite graph containing all edges of the original graph. We assign three colors to nodes

such that adjacent nodes have different colors and distinguish these nodes as F1, F2 and

F3, respectively. The three-colorable graph (Fig. 5.3(a)) can be decomposed into two

bipartite subgraphs: B1 that contains edges linking F1 ∪ F2 and F3 (Fig. 5.3(b)), and B2

that contains edges between F1 and F2 (Fig. 5.3(c)). Hence, the edges in B2 only have

connections on one side of the subsets (F1 and F2) of B1.

To make the oversampled graph, nodes are appended just above each node in F1 and

F2 of B1. The additional node sets are represented as F ′1 and F ′2, respectively. Each

appended node has the same value as the corresponding node. By adding the edges

between F1 and F2 to the graph, we can convert the original graph into one bipartite
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(a) (b) (c)

(d) (e)

Figure 5.3: Bipartite oversampled graph construction for three-colorable graphs. (a)
three-colorable graph whose node sets are F1, F2 and F3. (b) bipartite subgraph B1.
(c) bipartite subgraph B2. (d) oversampled bipartite graph. The gray lines are edges
contained in B1, and the dashed and solid black lines are vertical edges and additional
edges according to the edge information of original graph, respectively. (e) sets L̃ and
H̃ of the oversampled bipartite graph.

graph that contains all edges and nodes in the original graph (Fig. 5.3(d)). Since each

appended node and its corresponding node have the same value, they can be connected

by a vertical edge. The oversampled graph has node sets L̃ = F1 ∪ F2 and H̃ =

F ′1 ∪ F ′2 ∪ F3, as shown in Fig. 5.3(e).

If some of the nodes in F1 and F2 only have connections to F3, they are isolated in

B2. Hence, there is no need to append these nodes to the oversampled graph. The redun-

dancy after a transformation by using theM -channel graph filter bank and oversampling

of a three-colorable graph can be computed as

ρ =
M{(|F1|+ |F2|) + (|F ′1|+ |F ′2|+ |F3|)}

2N

=
M(N + |F1|+ |F2| − |I|)

2N

(5.13)

where |I| is the number of isolated nodes and satisfies |F ′1|+ |F ′2| = |F1|+ |F2| − |I|.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 5.4: Examples of oversampled bipartite graphs for a five-colorable graph. The
circles filled with red and blue represent sets L̃ and H̃ sets, respectively. (a) original
graph. (b) foundation bipartite graph with l = 3. (c) oversampled graph with l = 3. (d)
oversampled bipartite graph with l = 3. The dashed lines indicate the vertical edges.
(e) foundation bipartite graph with l = 1. (f) oversampled graph with l = 1. (g)
oversampled bipartite graph with l = 1.

5.2.2 K-Colorable Graphs

For K-colorable graphs where K ≥ 4, the method described above can be extended to

make one bipartite graph including all of the edges of the original graph. We assume

that the nodes of the original graph G = {V , E} are assigned colors and divided into K

sets F1, F2, . . . , FK . Figure 5.4 shows two examples of the oversampled bipartite graphs

for a five-colorable graph. The oversampled bipartite graph is generated according to

the following steps:

1. The foundation bipartite graph Gb = {Lb,Hb, Eb} is made from the original graph.

Lb = {F1, F2, . . . , Fl} and Hb = {Fl+1, Fl+2, . . . , FK}, where l is an arbitrary

integer value satisfying 1 ≤ l ≤ K. Eb is defined as the edge set containing all

edges between Lb andHb (Figs. 5.4(b) and 5.4(e)).
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2. The remaining graph G = {V , E \ Eb} is computed. G has two disjoint graphs: an

l-colorable graph G(Lb) and a (K − l)-colorable graph G(Hb) (Figs. 5.4(c) and

5.4(f)).

3. We place appended nodes F ′1 directly above each node in F1 of the foundation

bipartite graph. The nodes in F ′1 have the same values as those in F1.

4. By letting F ′1 be in H̃, it can be connected freely with the nodes in {F2, . . . , Fl}

since they belong to L̃. The edges between F ′1 and {F2, . . . , Fl} are appended in

accordance with the edge information of G(Lb). By using the above operation, all

nodes can connect with F1 or F ′1 while keeping the graph bipartite.

5. Steps 3 to 4 are repeated for F2, . . . , Fl to yield oversampled sets F ′2, . . . , F
′
l and

appended new edges in G(Lb).

6. Similar operations to Steps 3 to 5 can also be applied to the sets inHb. As a result,

the sets F ′l+1, . . . , F
′
K and the edges in G(Hb) are appended to the foundation

bipartite graph.

Consequently, the sets F ′1, . . . , F
′
K and the edges corresponding to E \ Eb are added to

the foundation bipartite graph. Based on the above operations, an oversampled bipartite

graph G̃ = {L̃, H̃, Ẽ} containing all edges of the original graph is generated as shown

in Figs. 5.4(d) and 5.4(g), where L̃ and H̃ respectively include Lb and Hb. Note that L̃

and H̃ of the oversampled graph become

L̃ = F1 ∪ . . . Fl ∪ F ′l+1 ∪ . . . F ′K , (5.14)

H̃ = F ′1 ∪ . . . F ′l ∪ Fl+1 ∪ . . . FK . (5.15)
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Similar to the three-colorable case, vertical edges can be appended and isolated nodes in

G will be removed. As a result, the number of the nodes in these sets can be represented

as

|L̃| =
l∑

i=1

|Fi|+
K∑

i=l+1

|F ′i | = N − |IHb|, (5.16)

|H̃| =
K∑

i=l+1

|Fi|+
l∑

i=1

|F ′i | = N − |ILb|, (5.17)

where |ILb| and |IHb| are the number of isolated nodes in G(Lb) and G(Hb), respectively,

and satisfy

l∑
i=1

|F ′i | =
l∑

i=1

|Fi| − |ILb|, (5.18)

K∑
i=l+1

|F ′i | =
K∑

i=l+1

|Fi| − |IHb|. (5.19)

The redundancy after the transformation with the M -channel graph filter bank with

graph oversampling can be calculated as

ρ =
M((N − |ILb |) + (N − |IHb|))

2N

= M − M(|ILb|+ |IHb|)
2N

.

(5.20)

According to the choice of l, there exists bK
2
c variations of the oversampled graph

for K-colorable graphs. For the special case of l = 1, Lb is equal to F1 and G(Lb) has
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(a) (b)

Figure 5.5: (a) bipartite double cover of a three-colorable graph. (b) its set of L̃ and H̃.

no edges as shown in Figs. 5.4(e) and 5.4(f). Therefore, we do not need to append nodes

just above Lb, and the oversampled bipartite graph becomes

L̃ = F1 ∪ F ′2 ∪ . . . F ′K , (5.21)

H̃ = F2 ∪ . . . FK . (5.22)

Similarly, when l = K − 1, the oversampled bipartite graph becomes

L̃ = F1 ∪ . . . FK−1, (5.23)

H̃ = F ′1 ∪ . . . F ′K−1 ∪ FK . (5.24)

The oversampling is done in the same way as described in Section 5.2.1 for three-

colorable graphs.

5.2.3 Theoretical Relationship with Bipartite Double Cover

In graph theory, the bipartite double cover of a graph G is defined as the tensor product

G̃BDC = G ⊗ K2, where K2 is the complete graph of two vertices [62–64]. G̃BDC has

2N nodes and 2|E| edges. An example of the bipartite double cover of a three-colorable

graph (Fig. 5.3(a)) is shown in Fig. 5.5. The set of foundation nodes {F1, . . . , FK}

is contained in L̃ and the set of additional nodes {F ′1, . . . , F ′K} is in H̃. The bipartite
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double cover is equivalent to the proposed oversampled graph in the case of l = K

without vertical edges.

The adjacency matrix of G̃BDC can be represented as

ÃBDC =

0 A

A 0

 (5.25)

and its normalized GLM is

L̃BDC =

 I −D−
1
2 AD−

1
2

−D−
1
2 AD−

1
2 I

 . (5.26)

If ui is an eigenvector of L with the eigenvalue λi, one can immediately see that

ũλ̃i = 1√
2
[uTi u

T
i ]T and ũλ̃i = 1√

2
[uTi −uTi ]T are eigenvectors of L̃BDC with eigenval-

ues λ̃i = λi and 2 − λi, respectively. The graph Fourier coefficient of the oversampled

graph signal f̃ = [fT0 f
T
0 ]T associated with λi is

ũTλif̃ =
1√
2

[
uTi uTi

]f0
f0

 =
√

2uTi f0 =
√

2f0(λi), (5.27)

and that associated with 2− λi is

ũT2−λif̃ =
1√
2

[
uTi −uTi

]f0
f0

 = 0. (5.28)

As a result, we can obtain only N nonzero graph Fourier coefficients which are equal

to those with the original GLM. In other words, the graph Fourier spectrum using the

bipartite double cover is the same as the one using the original graph.
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On the other hand, let us define the adjacency matrix of the foundation bipartite

graph Gb of the proposed method as Af and that of the remaining graph G as Ar. For

simplicity, we will consider the expansion method without vertical edges. The adjacency

matrix and degree matrix of our approach become

Ã =

Af Ar

Ar 0

 (5.29)

and

D̃ =

D 0

0 Dr

 , (5.30)

where A = Af + Ar and D = Df + Dr. Its normalized GLM is

L̃ =

I−D−
1
2 AfD

− 1
2 −D−

1
2 ArD

− 1
2

r

−D
− 1

2
r ArD

− 1
2 I

 . (5.31)

If we assume the oversampled graph has eigenvectors ũλi = [uTi u
T
i ]T , then it must

satisfy

L̃

ui
ui

 =

I−D−
1
2 AfD

− 1
2 −D−

1
2 ArD

− 1
2

r

−D
− 1

2
r ArD

− 1
2 I

ui
ui


= λi

ui
ui

 . (5.32)

The constraint can be simplified as

(I−D−
1
2 AfD

− 1
2 −D−

1
2 ArD

− 1
2

r )ui = λiui. (5.33)
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On the other hand, the original GLM satisfies

λiui = Lui

= (I−D−
1
2 AD−

1
2 )ui

= (I−D−
1
2 (Af + Ar)D

− 1
2 )ui. (5.34)

Comparing (5.33) and (5.34), D−
1
2 ArD

− 1
2 = D−

1
2 ArD

− 1
2

r has to be satisfied. As a

result, L̃ has the eigenvector ũi = 1√
2
[uTi u

T
i ]T with λ̃i = λi iff Dr = D, which is

the case of the bipartite double cover. In other cases, the eigenvalues and eigenvectors

of the oversampled graph are different from those of the original graph. Hence, we can

obtain a different graph Fourier spectrum from that of the original graph by using our

approach with l < K. Additionally, Ar has columns and rows whose elements are all

zero when l = K − 1 or the remaining graph has isolated nodes. In this case, the size of

L̃ is less than 2N .

In summary, the proposed oversampled way in the case of l = K without vertical

edges is a bipartite double cover, and its graph Fourier spectrum is the same as that of

the original graph except for a trivial scaling. The proposed oversampled method with

l < K has different eigenvectors from those of the original graph, and its redundancy is

less than that of the bipartite double cover.

5.3 Examples of Graph Oversampling

Here, we show examples of graph oversampling for images and arbitrary graphs. Fur-

thermore, we compare the oversampled bipartite graph of ring graph with the critically

sampled ones.
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(a) (b) (c)

(d) (e)

Figure 5.6: (a) image graph. (b) rectangular bipartite subgraph. (c) diagonal bipartite
subgraph. (d) oversampled rectangular bipartite graph. (e) oversampled diagonal bi-
partite graph. The appended nodes are black circles filled with blue, and the appended
edges are black lines.

5.3.1 Image Graphs

Images can be viewed as graph signals by connecting each pixel with its eight neigh-

boring ones, as shown in Fig. 5.6(a) [32]. Since this graph is four-colorable, it can

be decomposed into rectangular (Fig. 5.6(b)) and diagonal (Fig. 5.6(c)) bipartite sub-

graphs. If we use critically sampled graph filter banks on the image signal, the diagonal

edges will be ignored in a single stage if only the rectangular bipartite graph is used.

Moreover, horizontal and vertical edges will be ignored if only the diagonal graph is

used. For the critically sampled graph filter banks, a multidimensional transform is

applied to multiple bipartite subgraphs to resolve the problem [32, 33]. However, we

cannot perform the transform that considers the rectangular and diagonal connections

simultaneously.

The above problem can be partially solved by exploiting the oversampled GLM.

That is, we append diagonal edges to the rectangular bipartite graph while keeping the
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Oversampled rectangular

bipartite subgraph

Oversampled diagonal

bipartite subgraph

Oversampling

graph signals

Oversampling

graph signals

Figure 5.7: One-level decomposition of images. SL̃r /SH̃r and SL̃d/SH̃d denote the
downsampling operations of the rectangular graph and the diagonal graph, respectively.

oversampled graph bipartite. The rectangular oversampled image graph is illustrated in

Fig. 5.6(d). The blue nodes are appended just above the red nodes of the rectangular

bipartite graph, and they have diagonal edges connecting them to the red nodes. The

additional blue nodes have the same pixel values as the corresponding red nodes. In

order for the number of lowpass coefficients to be equal to the critically sampled case,

we append nodes only on the H side. After the downsampling of the critically sampled

graph filter bank, the red nodes contain the lowpass component, and their corresponding

nodes (additional blue nodes) and blue nodes in the original graph contain the highpass

component. Hence, the transform becomes redundant in spite of the use of the critically-

sampled transform. At this point, we can use the oversampled diagonal bipartite graph

(Fig. 5.6(e)) as a second stage of decomposition. The overall transform including the

critically sampled graph filter bank with the oversampled GLM for images is shown in

Fig. 5.7. We can iterate this process on the LL subbands to realize a multilevel image

decomposition. Thus, with the oversampled bipartite graph, we can transform images

with the rectangular graphs plus diagonal connections as well as diagonal graphs plus

horizontal and vertical connections in the single stage transform.
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(a) (b)

(c) (d) (e)

Figure 5.8: (a) ring graph (n = 4). (b) oversampled bipartite graph. (c) sets L1 and H1

of the bipartite subgraph B1. (d) sets L2 and H2 of the bipartite subgraph B2. (e) sets L̃
and H̃ of the oversampled bipartite graph.

5.3.2 Ring Graph

All ring graphs with an odd number of nodes are three-colorable as shown in Fig. 5.8(a).

Let us assume that the original graph has 2n + 1 nodes, and F1, F2, and F3 are the red,

blue, and green nodes in Fig. 5.8(a), respectively. F1 and F3 each have n nodes, and F2

has 1 node.

The bipartite subgraphs B1 and B2 of this ring graph are shown in Figs. 5.8(c)

and 5.8(d). The critically sampled graph filter bank must be applied to each bipartite

graph. After the signal decomposition using the critically sampled graph filter bank, the

LL and HL channels each have n nodes, whereas the LH channel has only one node

(the HH channel is empty). Therefore, the number of coefficients in each channel is

heavily biased. Because of the graph decomposition basis, the transform for B1 treats

all edges except the one between v0 and v1, whereas the transform for B2 handles only

the edge between v0 and v1. Although v2 and v2n are in the 3-hop neighborhood in

the original ring graph, their relationship becomes very weak as a result of the bipartite
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decomposition. That is, v2 and v2n are in the (2n− 2)-hop neighborhood of B1 and are

not connected to B2.

The oversampled bipartite graph of the ring graph and its sets L̃ and H̃ are shown

in Figs. 5.8(b) and 5.8(e), respectively. As shown in Fig. 5.8(e), L̃ has nodes in F1 and

F2 and H̃ has those in F ′1, F
′
2 and F3. Therefore, the number of nodes in L̃ and H̃ are

n+ 1 and n+ 2. Hence, the redundancy is only (2n+ 3)/(2n+ 1). In the oversampled

bipartite graph, all adjacent nodes are connected and all edges of the original graph can

be considered in a single stage transform. Furthermore, if we append vertical edges,

nodes v2 and v2n are in a 4-hop neighborhood and have a strong connection like that of

the original graph.

5.4 Experimental Results

We performed experiments on images and arbitrary graphs to assess the performances

of the oversampled GLM.

5.4.1 Image Processing

We performed non-linear approximation to introduce the potential ability of graph over-

sampling. The proposed methods are compared with the standard separable CDF 9/7

wavelet filter bank [40], the Laplacian pyramid for regular signals [65], the critically

sampled CS-SF filter bank [33], and the Laplacian pyramid for graph signals [66]. The

graph-based methods used the same filters (CS-SF(5,5)). The Laplacian pyramid for reg-

ular signals used 9/7 filters and a reconstruction scheme using the pseudo inverse [67].

The CS-SF used an edge-aware image graph [68]. The edge-aware image graphs were

made as follows. The links around the edges of the images are classified into regular or
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Table 5.1: Reconstruction of Images Using NLA: PSNR (dB)
Fraction of highpass coeffs. 0.00 0.01 0.02 0.04 0.08 0.16

Ballet
9/7 filter [40] 24.57 31.76 35.83 43.10 52.87 60.05

Laplacian pyramid [65] 24.57 30.49 33.71 38.27 45.74 55.29
CS-SF [32] 31.66 42.39 45.98 50.69 56.10 61.37

graph Laplacian pyramid [66] 31.66 41.37 44.16 47.70 52.00 56.96
proposed (without vertical edges) 30.78 45.12 50.12 55.04 59.35 63.80

proposed (with vertical edges) 33.01 49.97 53.51 57.02 60.35 64.58
Synthetic

9/7 filter 30.44 37.95 42.96 50.81 66.73 110.10
Laplacian pyramid 30.44 36.30 39.43 44.23 51.64 66.61

CS-SF 32.92 40.77 44.18 49.34 58.94 76.88
graph Laplacian pyramid 32.92 39.77 42.35 45.60 50.48 58.83

proposed (without vertical edges) 33.22 40.40 43.99 49.83 60.20 81.62
proposed (with vertical edges) 34.29 43.36 46.99 52.53 61.53 82.38

Cameraman
9/7 filter 20.66 23.38 25.30 27.61 30.82 35.73

Laplacian pyramid 20.66 23.73 25.15 27.05 29.81 33.76
CS-SF 21.74 25.82 27.42 29.58 32.46 37.07

graph Laplacian pyramid 21.74 25.28 26.66 28.49 30.76 33.95
proposed (without vertical edges) 21.29 24.47 25.92 27.97 30.69 35.11

proposed (with vertical edges) 21.75 26.26 27.78 29.81 32.72 37.12
Coins

9/7 filter 23.23 26.49 28.29 30.73 34.32 40.17
Laplacian pyramid 23.23 26.34 27.94 30.11 33.11 37.66

CS-SF 24.78 28.87 30.54 32.77 35.92 40.88
graph Laplacian pyramid 24.78 28.43 29.76 31.55 33.94 37.37

proposed (without vertical edges) 24.56 27.21 28.70 30.73 33.93 38.63
proposed (with vertical edges) 25.15 29.11 30.75 33.09 36.22 40.75

less-reliable links. They were determined by checking that the difference in pixel inten-

sity between the edge pixels is more than or less than a certain threshold. The weights

of less-reliable links are set to zero or reduced to a value lower than those of the regular

links (Figs. 5.6(a)-(c)). For example, the edge-aware image graphs of Fig. 5.9(a) are

shown in Figs. 5.9(b) and 5.9(c). The graph Laplacian pyramid used the same graph

and downsampling operation as CS-SF for the lowpass channel. The proposed method
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(a) (b) (c)

(d) (e)

Figure 5.9: (a) original image. (b) edge-aware rectangular bipartite graph. The solid and
dashed lines are regular and less-reliable links, respectively. (c) edge-aware diagonal
bipartite graph. (d) oversampled edge-aware rectangular bipartite graph. The black
lines are additional edges. The dashed black lines indicate vertical edges. The red nodes
contain the lowpass component, and the blue nodes contain the highpass component
after downsampling. (e) oversampled edge-aware diagonal bipartite graph.

used the oversampled edge-aware image graph [69]. In this case, on the basis of the

edge-aware image bipartite graph, the nodes and the links are added along the edges: 1)

diagonal direction regular links are added to the edge-aware rectangular graph and 2)

rectangular direction regular links are added to the edge-aware diagonal graph. For in-

stance, the oversampled graphs for the rectangular and diagonal bipartite graphs of Fig.

5.9(a) are shown in Figs. 5.9(d) and 5.9(e). The critically sampled graph filter banks are

applied to these graphs using the method described in Section 5.3.1.

Table 5.1 lists the PSNRs of the reconstructed images, i.e., reconstructions from all

lowpass coefficients and some fraction of the highpass coefficients after the three-level

decomposition. Since the fraction of highpass coefficients is relative to the size of the

original image, the number of the lowpass and highpass coefficients used for the re-

construction is the same for all methods. However, the ratio of the remaining highpass
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Figure 5.10: Images reconstructed from all lowpass coefficients and 3% of the highpass
coefficients after a three-level decomposition. From top to bottom: original image, CDF
9/7 wavelet, the Laplacian pyramid for regular signals, CS-SF, the Laplacian pyramids
for graph signals, and the proposed method with vertical edges. From top to bottom:
Ballet, Synthetic, Cameraman, and Coins.
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(a) (b) (c)

(d) (e) (f)

Figure 5.11: Zoomed in Coin image reconstructed from lowpass coefficients and 3%
of the highpass coefficients after three-level decomposition. (a) original image. (b)
CDF 9/7 wavelet (PSNR: 29.64dB). (c) Laplacian pyramid for regular signals (PSNR:
29.13dB). (d) CS-SF (PSNR: 31.75dB). (e) Laplacian pyramid for graph signals (PSNR:
30.75dB) (f) proposed method with vertical edges (PSNR: 32.10dB).

coefficients to the total number of highpass coefficients varies since the Laplacian pyra-

mid and the proposed method are redundant transforms. In spite of this, the proposed

method performed better than the other methods, including CS-SF, in most cases. It can

be seen that the vertical edges provide significant gains.

Figure 5.10 shows images reconstructed from all lowpass coefficients and 3% of

the highpass coefficients, and Fig. 5.11 shows zoomed-in Coins images. The standard

CDF 9/7 and Laplacian pyramid for regular signals did not take into account the edge

information, and as a result, the reconstructed images were blurred around the edges.

Since the graph-based transforms consider the rectangular and/or diagonal edges, they

preserve the edges well. We can see that blurring and ringing artifacts around the edges
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Figure 5.12: (a) original graph of the Minnesota Traffic Graph. (b) input signal. The
original graph and input signal were reproduced from the MATLAB code of Narang and
Ortega [32]. (c) bipartite subgraph #1. The blue squares and red circles indicate sets L
andH, respectively. (d) bipartite subgraph #2.

in the reconstructed image of the proposed method are greatly suppressed compared

with other graph-based transforms.

5.4.2 Experiments on Oversampled Graphs

The performance of the proposed oversampled graph was examined in two applica-

tions for arbitrary graphs. We made the oversampled bipartite graphs from two original

graphs, a three-colorable Minnesota Traffic Graph GMN and a four-colorable Yale Coat

of Arms GY C , according to the description in Section 5.2. These original graphs can be

decomposed into two bipartite graphs by using Harary’s algorithm [32,61], as shown in

Figs. 5.12 and 5.13, respectively. The original signals are shown in Figs. 5.12(b) and

5.13(b). We tested a number of setups for the oversampled graphs, such as with/without

vertical edges and different values of l of the foundation bipartite graph. Let us denote
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Figure 5.13: (a) original graph of the Yale Coat of Arms. It was reproduced from the
course website by Spielman [70]. The four-colorable graph was made by removing the
nodes assigned the fifth color from the original five-colorable graph. (b) input signal. It
was created using SGWT toolbox [13]. (c) bipartite subgraph #1. The blue squares and
red circles indicate sets L andH, respectively. (d) bipartite subgraph #2. (e) foundation
graph of G̃3Y C . (f) remaining graph of G̃3Y C .

an oversampled graph without vertical edges as G̃l and with vertical edges as G̃l′ . The

notations of the tested oversampled graphs are summarized in Table 5.2. In order to

verify the performance of the proposed oversampled graphs, we applied the CS-SF to

each graph.

Denoising

First, we tried denoising the graph signals. The input signal was corrupted by addi-

tive white Gaussian noise. After a one-level decomposition, we retained the lowest-

frequency subband and the remaining high-frequency subbands were hard-thresholded

with T = 3σ, where σ is the standard deviation of the noise. Table 5.3 summarizes the
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Table 5.2: Notation of Oversampled Bipartite Graphs
Graph L̃ H̃ Vertical Edges

Minnesota G̃2′MN F1, F2 F3, F
′
1, F

′
2 YES

Traffic Graph G̃2MN NO

G̃2′Y C F1, F2, F
′
3, F

′
4 F3, F4, F

′
1, F

′
2 YES

Yale Coat G̃2Y C NO

of Arms G̃3′Y C F1, F2, F3 F4, F
′
1, F

′
2, F

′
3 YES

G̃3Y C NO

Table 5.3: Comparison of Oversampled Graphs (Denoising): SNR (dB)
σ 1/32 1/16 1/8 1/4 1/2 1 Redundancy

Minnesota Traffic Graph
G̃2′MN 32.19 26.46 20.58 14.59 8.68 2.80 1.37
G̃2MN 32.46 26.76 20.88 14.94 9.00 3.11 1.37
noisy 30.15 24.08 18.06 12.02 5.99 -0.02 –

Yale Coat of Arms
G̃2′Y C 31.12 25.20 19.31 13.37 7.69 1.86 1.96
G̃2Y C 31.14 25.21 19.32 13.36 7.68 1.87 1.96
G̃3′Y C 31.13 25.34 19.45 13.96 8.59 3.14 1.78
G̃3Y C 31.33 25.32 19.90 14.29 9.23 4.11 1.78
noisy 30.15 24.10 18.08 12.01 6.04 0.00 –

denoising results. For the Minnesota Traffic Graph, G̃2MN performs better than G̃2′MN . For

the Yale Coat of Arms, the SNR of G̃2Y C is the almost same as that of G̃2′Y C when l = 2.

In contrast, for l = 3, G̃3Y C outperforms G̃3′Y C . Furthermore, the oversampled graph with

l = 3 provides better SNRs than that with l = 2 in spite of it having less redundancy.

Non-linear Approximation

Next, we considered the non-linear approximation of the signal on the Minnesota Traffic

Graph. We used a two-level decomposition of the proposed methods, i.e., after applying

the CS-SF using the oversampled graph, the lowpass signal was further decomposed

on the basis of a downsampled graph consisting of vertices in the set L̃ and edges in
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Table 5.4: Comparison of Oversampled Graphs (Non-linear Approximation): SNR (dB)
# of highpass coeff. CSGLM G̃2′MN G̃2MN

0 18.49 19.06 19.10
30 26.71 25.03 26.12
60 32.18 33.04 33.55
90 35.02 36.45 36.72

120 37.77 39.81 40.18
150 40.59 42.16 42.02
180 45.22 44.76 44.74

the original graph. Table 5.4 shows the SNR values of the reconstructed signals from

all lowpass coefficients and some fraction of the detail coefficients. As a benchmark,

we applied CS-SF with critically sampled GLM (CSGLM). The number of lowpass

coefficients was the same for all methods.

It can be seen that the proposed method performed better when the reconstructed

signal was approximated from only lowpass signals and from all lowpass coefficients

with 60–150 highpass coefficients. Since the redundancy of the oversampled graphs

is greater than the critically sampled bipartite graph, the critically sampled graph out-

performed the oversampled graphs in the case of the reconstruction using > 180 detail

coefficients. Additionally, G̃2MN had a better SNR than G̃2′MN in most cases.

For these results, we decide to use oversampled graph with l = K − 1 without

vertical edges (G̃K−1) in the following experiments on arbitrary graphs.

5.4.3 Signal Spread on Arbitrary Graphs

To demonstrate the advantage of the oversampled bipartite graph, we compared the

signal spreads of a critically sampled bipartite graph and an oversampled one. The

original graph in this case was the Petersen graph, and it was decomposed into the two

bipartite subgraphs. The input signal is shown in Fig. 5.14(a). The comparison is

between the critically sampled bipartite graph and the oversampled bipartite graph. The

79



 

 

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a)

 

 

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b)

 

 

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c)

 

 

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(d)

Figure 5.14: Signal spread. (a) input signal. (b) lowpass filtered signal using the (non-
bipartite) original graph. (c) lowpass filtered signal using bipartite subgraph. (d) lowpass
filtered signal using oversampled bipartite graph.

lowpass filtered signals are shown in Figs. 5.14(b)–(d). As expected, the spread of the

signal after using the oversampled bipartite graph is very similar to that of the original

(non-bipartite) graph.

5.4.4 Denoising of Graph Signals

The detailed experiments of graph signal denoising are shown; signals are corrupted by

white Gaussian noise. For the proposed method, we applied the CS-SF (abbreviated as

CS-SF with OSGLM) [33] or the four-channel oversampled graph filter bank (abbrevi-

ated as OS-SF with OSGLM) [71] on oversampled graphs.
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Table 5.5: Denoised Results of Minnesota Traffic Graph: SNR (dB)
σ 1/32 1/16 1/8 1/4 1/2 1 Redundancy

sym8 (1 level) 30.17 24.25 18.65 11.94 6.23 1.59 1
sym8 (5 level) 30.22 24.07 17.99 11.07 5.76 3.13 1

CS-SF (CSGLM) 31.44 25.61 19.97 14.19 8.50 2.63 1
GLP 31.39 25.68 20.02 14.24 8.51 2.61 2.05

UD-SP 33.35 27.76 22.08 15.05 10.33 8.82 4
OS-SF (CSGLM) 34.75 28.78 21.84 15.26 10.29 4.24 4

CS-SF (BDC) 32.54 26.75 20.81 14.79 8.92 3.03 2
CS-SF (OSGLM) 32.46 26.76 20.88 14.94 9.00 3.11 1.37
OS-SF (OSGLM) 35.08 29.34 23.17 17.63 12.31 7.04 2.74

noisy 30.15 24.08 18.06 12.02 5.99 -0.02 -

Table 5.6: Denoised Results of Yale Coat of Arms: SNR (dB)
σ 1/32 1/16 1/8 1/4 1/2 1 Redundancy

sym8 (1 level) 29.64 23.67 18.02 11.36 6.19 1.82 1
sym8 (5 level) 29.41 23.33 17.04 10.19 4.98 2.21 1

CS-SF (CSGLM) 29.85 24.24 18.75 13.16 8.66 3.94 1
GLP 30.10 24.71 19.21 13.58 8.80 4.00 1.79

UD-SP 29.40 23.70 18.24 12.95 8.85 6.47 4
OS-SF (CSGLM) 30.11 24.66 19.05 13.98 10.25 7.45 4

CS-SF (BDC) 31.55 25.43 20.01 14.39 9.23 3.88 2
CS-SF (OSGLM) 31.33 25.32 19.90 14.29 9.23 4.11 1.78
OS-SF (OSGLM) 31.77 26.80 21.22 15.21 10.49 7.48 3.56

noisy 30.15 24.10 18.08 12.01 6.04 0.00 -

We compared the above two methods with the regular one-dimensional wavelet

sym8 with one-level and five-level decompositions, graphBior(6, 6) (CS-SF with CS-

GLM) [33], the Laplacian pyramid for graph signals (GLP) [66], the UD-SP with three

scales [13], CS-SF with the bipartite double cover (CS-SF with BDC), and the four-

channel oversampled graph filter bank with the bipartite graph decomposition (OS-SF

with CSGLM) [71, 72]. Since sym8 treated the signal as a vector, it did not take into

account the structure of the signals. For a fair comparison, the graph Laplacian pyramid

used the same bipartite graphs and downsampling operation as those of CS-SF for the

lowpass channel. All of the graph-based methods performed one-level transforms. That
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Figure 5.15: Denoising results of Minnesota Traffic Graph.

is, CS-SF, the oversampled graph filter bank and the graph Laplacian pyramid performed

two-dimensional transforms by using two subgraphs, whereas the proposed methods

performed one-dimensional transforms by using the oversampled bipartite graph. The
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Figure 5.16: Denoised results of the Yale Coat of Arms. (a) noisy observation. (b) sym8
(1 level). (c) sym8 (5 level). (d) CS-SF with CSGLM. (e) GLP. (f) CS-SF with BDC.
(g) UD-SP. (h) OS-SF with CSGLM. (i) CS-SF with OSGLM. (j) OS-SF with OSGLM.

lowest frequency subband was kept, and the other high-frequency subbands were hard-

thresholded with the threshold T = 3σ.

83



Tables 5.5 and 5.6 compare the SNRs after denoising. The graph-based transforms

outperformed the regular wavelet transforms. OS-SF with OSGLM shows better per-

formance than other graph-based transforms in most cases. It was especially superior

to OS-SF with CSGLM and UD-SP on the Minnesota Traffic Graph, in spite of it hav-

ing less redundancy. In comparison with the methods using graphBior filters, CS-SF

with BDC and CS-SF with OSGLM have significantly better SNR. Moreover, CS-SF

with OSGLM had similar levels of performance as CS-SF with BDC, especially for the

strong noise case, despite that its redundancy is less than CS-SF with BDC.

Figures 5.15 and 5.16 show the denoised signals of the Minnesota Traffic Graph and

the Yale Coat of Arms for σ = 1/2, respectively. Since the regular signal processing did

not take into account the structure of the signals, the signals denoised by sym8 were still

noisy. We can see that OS-SF with OSGLM performed better than the other transforms.

5.5 Summary

This chapter presented a method of oversampling graph signals. The method appends

nodes and edges to the original graph to construct an oversampled GLM. It is applicable

to arbitrary K-colorable graphs, including image graphs. The graph oversampling can

consider connections of many nodes while keeping the oversampled graph bipartite. We

performed non-linear approximation for images and graph signal denoising experiments

showing that our oversampling method outperforms the other transforms.
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Chapter 6

Spectral Graph Filters With Low

Approximation Error

This chapter aims to design the spectral graph filters having good characteristics. The

desired graph filters satisfy following conditions: a) they do not produce DC leakage, b)

they are defined by smooth function, c) they satisfy perfect reconstruction conditions,

and d) they form a tight frame. However, the filter satisfying all of the conditions does

not exist in graph signal processing. Furthermore, the existing wavelets and filter banks

in the graph spectral domain do not consider the magnitude of the approximation errors,

although they often uses Chebyshev polynomial approximation, and the approximation

order for achieving a good approximation has not yet been studied. In addition, to the

best of our knowledge, there are no studies on the appropriate approximation orders of

each filter in the graph filter banks regardless of their deep connection with localization

in the vertex domain. In regular signal processing, the basis functions of wavelets/filter

banks can have different lengths according to the features of the signals passed by each

filter. Slowly varying signals are well represented by long basis functions, whereas

rapidly oscillating signals should be represented by short basis functions [73].

The proposed graph filters are obtained from the real-valued linear phase finite im-

pulse response (FIR) filter banks of regular signal processing. They are defined as a

sum of sinusoidal waves, and therefore, they can be easily approximated by lower-order

polynomials because of their smoothness. The property yields both theoretical and prac-

tical advantages. From a theoretical perspective, the upper bound of the error after the
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Chebyshev polynomial approximation can be rigorously calculated. We can determine

the approximation order such that the error is less than a pre-determined tolerable value.

From a practical perspective, when the proposed filter banks are approximated with the

minimum approximation orders whose errors are acceptably small, the highpass filter is

more localized in the vertex domain than the lowpass filter, which is similar to the case

of regular signal processing.

In this approach, all real-valued linear phase filter banks for regular signals are com-

pletely reusable for graph signals, and their filter characteristics in the graph spectral

domain are easily recognized from their frequency domain counterpart. The filters ob-

tained by the proposed method satisfies the desired conditions listed above and shows

better performances than the conventional filters.

Section 6.1 describes the derivation of the proposed spectral graph filter banks and

the upper bound of the approximation errors. Section 6.2 shows several examples of

designing spectral graph filter banks. For undecimated filter banks, we construct the

octave-band and uniform-band spectral graph filter banks based on the undecimated

CDF wavelets [40, 41], the DCT [42–44, 52], and the LOT [45, 53, 54]. They form

tight frames and do not produce DC leakage. These uniform-band filter banks can be

converted into spectrum-adapted filter banks by using the warping function described

in [31]. We also show that decimated spectral graph filter banks derived fromM -channel

linear phase perfect reconstruction filter banks with a downsampling factor of 2 also sat-

isfy the perfect reconstruction condition for graph signals in Section 6.2. The proposed

method also enables us to design odd-channel oversampled spectral graph filter banks,

whereas the method in Chapter 4 is only for the even-channel case. Section 6.3 presents

experimental results on denoising and non-linear approximation applications.
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Table 6.1: Four Types of Linear Phase FIR Filters
Type Filter length Symmetry

I odd symmetric:
II even h(n) = h(L− 1− n)
III odd antisymmetric:
IV even h(n) = −h(L− 1− n)

6.1 Spectral Graph Filters Defined by Sinusoidal Waves

Filters in the graph spectral domain should 1) be precisely defined over the interval

[0, λmax], and 2) be real-valued functions. Here, we use the discrete-time Fourier trans-

form of the linear phase FIR filters to construct graph filters that consist of sums of

sinusoids and have these two properties. Furthermore, we show that the upper bound of

the approximation error can be calculated.

6.1.1 Conversion from Frequency Domain to Graph Spectral Do-

main

Real-valued linear phase FIR filters are divided into four types depending on whether

they are symmetric or antisymmetric and whether their filter lengths are even or odd

[56]. These types are summarized in Table 6.1, where h(n), n = 0, 1, . . . , L − 1 is the

nth element of a linear phase FIR filter and L is the filter length. In the frequency do-

main ω ∈ [0, π], the filter characteristics are formulated using the discrete-time Fourier

transform (DTFT). The transform is represented as follows:

H(ω) =
L−1∑
m=0

h(m)e−jωm. (6.1)
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After elementary calculations, it is found that the filter characteristics of each type

of FIR filter Htype(ω) can be represented in terms of cosine and sine series:

HI(ω) =e−j
L−1
2
ω

2

L−3
2∑

m=0

hI(m) cos

(
bm
2
ω

)
+ hI

(
L− 1

2

) , (6.2)

HII(ω) =2e−j
L−1
2
ω

L
2
−1∑

m=0

hII(m) cos

(
bm
2
ω

)
, (6.3)

HIII(ω) =2je−j
L−1
2
ω

L−3
2∑

m=0

hIII(m) sin

(
bm
2
ω

)
, (6.4)

HIV(ω) =2je−j
L−1
2
ω

L
2
−1∑

m=0

hIV(m) sin

(
bm
2
ω

)
, (6.5)

where bm = L − (2m + 1). We assume that hIII(
L−1
2

) = 0 for odd-length anti-

symmetric filters1. From the above equations, the modulated frequency characteristics

Ĥtype(ω) = ej
L−1
2
ωHtype(ω) become real (for symmetric filters) or imaginary (for anti-

symmetric filters) functions that cover ω ∈ [0, π].

By transforming the variables ω ∈ [0, π] → λ ∈ [0, λmax] and multiplying the

modulated characteristics by −j for types III and IV, all Ĥtype(ω) become real-valued

1An M -channel linear phase FIR filter bank with odd-length filters does not produce DC leakage iff it
satisfies h(L−12 ) = 0 for antisymmetric filters.
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functions that cover the entire graph frequency range. As a result, the closed form of the

spectral graph filters derived from each type of the linear phase FIR filters is

HI(λ) = 2

L−3
2∑

m=0

hI(m) cos

(
bmπ

2λmax
λ

)
+ hI

(
L− 1

2

)
, (6.6)

HII(λ) = 2

L
2
−1∑

m=0

hII(m) cos

(
bmπ

2λmax
λ

)
, (6.7)

HIII(λ) = 2

L−3
2∑

m=0

hIII(m) sin

(
bmπ

2λmax
λ

)
, (6.8)

HIV(λ) = 2

L
2
−1∑

m=0

hIV(m) sin

(
bmπ

2λmax
λ

)
. (6.9)

These filter characteristics in the graph spectral domain consist of a finite number of

sinusoidal waves. To perform the filtering in the graph spectral domain without eigen-

decomposition of the graph Laplacian, the Chebyshev polynomial approximation [13]

is often used as described in Section III-C. We present the upper bound of the approxi-

mation error in the next subsection.

6.1.2 Upper Bound of Approximation Error

The overall computational complexity in applying an M -channel spectral graph filter

bank with a Chebyshev polynomial approximation isO(pmax|E|+N
∑M−1

m=0 pm), where

pmax = max{pm|m = 0, . . . ,M − 1} and pm is the approximation order of the mth

filter Hm(λ) [1, 13]. O(pmax|E|) is the cost of computing the Chebyshev polynomials

Tk(L)f , and O(N
∑M−1

i=0 pi) is the cost of computing the coefficients for each scale.

Therefore, if the complexity is dominated by the cost of computing Tk(L)f , the overall

computational complexity depends only on the maximum approximation order pmax.
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Here, let us derive the maximum error of the Chebyshev polynomial approxima-

tion as Emax,p = max
∣∣∣H(λ)− H̃p(λ)

∣∣∣ for any λ ∈ σ(L), where H(λ) is the original

function, and H̃p(λ) is the pth order approximated function of H(λ). The following

proposition gives an upper bound of the error due to the Chebyshev polynomial approx-

imation of the proposed filters.

Proposition 2. If a filter characteristic is derived from the linear phase FIR filter in

the frequency domain in (6.6)–(6.9), an upper bound of the error due to the Chebyshev

polynomial approximation is represented as follows:

Emax,p = max |H(λ)− H̃p(λ)|

≤ 1

2p−1 (p+ 1)!

Q−1∑
m=0

|h(l)|
(
bmπ

4

)p+1 (6.10)

for any λ ∈ σ(L), where Q = (L− 1)/2 for type I or III and Q = L/2 for type II or IV.

Proof. For simplicity, we will prove the case of the type II filter. The upper bound of

the approximation error of an arbitrary function H (ξ) is represented as

Emax,p ≤
1

2p(p+ 1)!
max

∣∣∣∣ d(p+1)

dξ(p+1)
H (ξ)

∣∣∣∣ , (6.11)

for any ξ ∈ [−1, 1] [74], [30, Theorem 2.4.6]. To calculate the upper bound of the

approximation error of the filter defined in λ ∈ [0, λmax], we shift the domain from

λ ∈ [0, λmax] to ξ ∈ [−1, 1] by using the transformation λ = λmax (ξ + 1) /2. As a

result, the upper bound of the approximation error of HII(λ) is represented as

Emax,p ≤
1

2p(p+ 1)!
max

∣∣∣∣ d(p+1)

dξ(p+1)
HII

(
λmax

2
(ξ + 1)

)∣∣∣∣ , (6.12)
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for any ξ ∈ [−1, 1]. The shifted filter characteristic is represented as

HII (λmax(ξ + 1)/2) = 2

L
2
−1∑

m=0

hII(m) cos

(
bmπ

4
(ξ + 1))

)
. (6.13)

It is differentiable (p+ 1) times, and its (p+ 1)th derivative is

d(p+1)

dξ(p+1)
HII (λmax (ξ + 1) /2) =

2 (−1)
p+2
2

L
2
−1∑

m=0

hII(m)

(
bmπ

4

)p+1

sin

(
bmπ

4
(ξ + 1)

)
for even p,

2 (−1)
p+1
2

L
2
−1∑

m=0

hII(m)

(
bmπ

4

)p+1

cos

(
bmπ

4
(ξ + 1)

)
for odd p.

(6.14)

Therefore, the maximum absolute value of the (p + 1)th derivative of the shifted

filter characteristic is

max

∣∣∣∣ d(p+1)

dξ(p+1)
HII

(
λmax

2
(ξ + 1)

)∣∣∣∣ ≤ 2

L
2
−1∑

m=0

|hII(m)|
(
bmπ

4

)p+1

. (6.15)

Substituting (6.15) for (6.12), we obtain (6.10).

Although we only derived an upper bound of the approximation error in the case of

a type II filter, the cases of the other types of real-valued linear phase FIR filter can be

proved similarly.

91



6.2 Graph Filter Banks Derived from Linear Phase FIR

Filter Banks

In this section, we show the examples of the spectral graph wavelets and filter banks

derived from linear phase perfect reconstruction filter banks in regular signal processing

and prove that they satisfy the perfect reconstruction conditions for graph signals.

6.2.1 M -Channel Undecimated Graph Filter Banks

Octave-band Undecimated Spectral Graph Wavelets

The octave-band undecimated spectral graph wavelets can be constructed from the

octave-band linear phase wavelets in regular signal processing which is obtained by

removing the downsampling operations from the CDF filter banks [41]. We calculate

the filter coefficients of the undecimated CDF 9/7 and 5/3 wavelets with M = 4 and

convert them into filters in the graph spectral domain, as shown in Figs. 6.1(a) and

6.1(b). Clearly, the UD-9/7-FC and UD-5/3-FC are not tight-frames, i.e., F (λ) is not

constant due to the filter characteristic in the frequency domain.

Uniform-band Undecimated Spectral Graph Filter Banks

The DCT and LOT are used as examples of uniform-band spectral graph filter banks.

Whereas these filter banks are the decimated filter banks with a decimation factor of

M in regular signal processing, we use them as undecimated filter banks by removing

downsampling operations as in the octave-band ones. This is because the filter banks

with a decimation factor of 2 for regular signals are the only ones that guarantee perfect

reconstruction for graph signals, as described Section V-C.
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Figure 6.1: Ideal filter characteristics of the proposed undecimated spectral graph filter
banks (black lines indicate F (λ)). (a) UD-9/7-FC (M = 4). (b) UD-5/3-FC (M = 4).
(c) UD-DCT-FC (M = 6). Each filter coefficient of the proposed filter banks is divided
by
√
M so that F (λ) = 1. (d) UD-LOT-FC (M = 6). (e) warped UD-DCT-FC with

warping function ω̃(λ) = λ
1
3 . (f) warped UD-LOT-FC.

Filters in the DCT for even M are type II for even-indexed and type IV for odd-

indexed filters. Therefore, the kth filter of the UD-DCT-FC can be represented using

(6.7) and (6.9):

Hk,DCT(λ) =


2sDCT

M
2
−1∑

m=0

cos

(
(2m+ 1)π

2M
k

)
cos

(
bmπ

2λmax

λ

)
for even k,

2sDCT

M
2
−1∑

m=0

cos

(
(2m+ 1)π

2M
k

)
sin

(
bmπ

2λmax

λ

)
for odd k.

(6.16)

where L = M and sDCT is as in (3.8). The transform inherits the advantages of the DCT:

it is composed of a set of smooth functions and does not produce DC leakage. In the

same way, the UD-LOT-FC with L = 2M can be obtained by substituting hk,LOT(m) =

93



CLOT(k,m), k = 0, 1, . . . ,M−1, m = 0, 1, . . . , 2M−1 into (6.7) (for even k) and (6.9)

(for odd k). The ideal filter responses of UD-DCT-FC and UD-LOT-FC are shown in

Figs. 6.1(c) and 6.1(d), respectively. Clearly, they are equivalent to their regular signal

processing counterparts.

Frame Bounds

Let us calculate the frame bounds of the undecimated spectral graph filter banks

derived from the linear phase FIR filter banks. Here, we define Ta =

[H0(λ)H1(λ) . . . HM−1(λ)]T as an analysis transform of the spectral graph filter banks.

Then,

T†a(λ)Ta(λ) =
M−1∑
k=0

|Hk(λ)|2 = F (λ). (6.17)

Proposition 3. If a linear phase FIR filter bank is paraunitary, the converted undeci-

mated filter bank for graph signals satisfies

F (λ) = M (6.18)

for all λ ∈ σ(L); i.e., the spectral graph filter bank is a tight one with frame bounds

A = B = M .

Proof.

Here, let us consider the graph spectral filter bank derived from a linear phase FIR

filter bank whose filter length L = DM . Their M × DM basis matrix is Ψb =

[Ψ0 Ψ1 . . .ΨD−1] = [hT0 h
T
1 . . . hTM−1]

T , where hk = [hk(0) hk(1) . . . hk(L − 1)]

is the kth basis function in the time domain of regular signal processing and Ψd,

d = 0, . . . , D− 1 are M ×M matrices. The analysis transform matrix is represented as

Ta(λ) = ej
DM−1

2
λ̂KΨbΦDTFT(λ̂), (6.19)
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where λ̂ = π
λmax

λ, ΦDTFT(λ̂) = [e−jλ̂·0 . . . e−jλ̂·(L−1)]T , and K is a diagonal matrix

whose (n, n)-th element is

K(n, n) =


1 if hn is a symmetric filter,

−j if hn is an antisymmetric filter.
(6.20)

From the paraunitary property, the basis satisfy the following conditions [58, Theorem

9.5]:

D−1∑
d=0

ΨT
dΨd = I. (6.21)

Then T†a(λ)Ta(λ) can be expanded as

F (λ) =T†a(λ)Ta(λ)

=Φ†DTFT(λ̂)ΨT
b K†KΨbΦDTFT(λ̂)

=Φ†DTFT(λ̂)

(
D−1∑
i=0

ΨT
i Ψi

)
ΦDTFT(λ̂)

=Φ†DTFT(λ̂)ΦDTFT(λ̂)

=M,

(6.22)

i.e., F (λ) = M is satisfied regardless of the value of λ. Therefore, the frame bounds of

M -channel spectral graph filter banks derived from linear phase FIR paraunitary filter

banks are always A = B = M .

We can obtain a Parseval frame by dividing each filter coefficient by
√
M .
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Warped Filter Banks

The undecimated spectral graph filter banks derived from the linear phase FIR filter

banks can be warped with the warping function ω̃(λ), similarly to [31]:

HWarped
k (λ) = Hk(ω̃(λ)), k = 0, 1, . . . ,M − 1. (6.23)

The warped UD-DCT-FC and UD-LOT-FC with the warping function2 ω̃(λ) = λ
1
3 are

shown in Figs. 6.1(e) and 6.1(f), respectively.

The spectrum-adapted spectral graph filter banks can also be constructed with the

warping function generated from the cumulative spectral density function [31]. The

frame bound of the warped filter bank is also M as long as ω̃(0) = 0, ω̃(λmax) =

λmax, since the warping function is a monotonically increasing function and the original

linear phase FIR filter bank is paraunitary. This is because F (λ) is always constant, as

mentioned above.

6.2.2 M -Channel Graph Filter Banks with Downsampling Factor

of Two

Perfect Reconstruction Conditions

Many critically sampled and oversampled spectral graph filter banks so far are only

applicable to bipartite graphs. The downsampling corresponds to decimation with a

factor of 2 for regular signals. For example, downsampling signals on a path graph

corresponds to the operation of deleting every other sample. The decimated spectral

graph filter banks use a normalized graph Laplacian matrix L, and therefore, λmax = 2.

2Although log(x) is used for the warping function in [31], we use a function satisfying ω̃(0) = 0 in
order to avoid log(0) = −∞.
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Figure 6.2: M -channel decimated spectral graph filter bank with filters obtained from
linear phase FIR filters.

Let us define the filters in the analysis and synthesis decimated graph filter banks

as {H ′0(λ), H ′1(λ), . . . , H ′M−1(λ)} and {G′0(λ), G′1(λ), . . . , G′M−1(λ)}, respectively, as

shown in Fig. 6.2. H ′k(λ) and G′k(λ) are yielded by substituting the filter coefficients

into (6.6)–(6.9) according to the type of filter in Table 6.1 with one slight modification.

We should multiply −1 with a synthesis-side graph filter that corresponds to an anti-

symmetric filter for regular signals to ensure perfect reconstruction. As a result, H ′k(λ)

and G′k(λ) are represented as

H ′k(λ) = Hk(λ) (6.24)

for all types, and

G′k(λ) =


Gk(λ) if gk(m) is type I or II,

−Gk(λ) if gk(m) is type III or IV,
(6.25)

where Hk(λ) and Gk(λ) are obtained by substituting the impulse responses hk(m) and

gk(m) into (6.6)–(6.9).

In the proposed M -channel decimated spectral graph filter bank (M ≥ 2) shown in

Fig. 6.2, the even-indexed subbands retain the nodes in L, whereas in [71, 72], the first

M/2 subbands retain those nodes. The proposed filter bank has the same condition as
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(4.9). The condition for cancelling the spectral folding phenomenon (4.10) is modified

as follows:

M/2−1∑
k=0

−G2k(λ)H2k(2− λ) +G2k+1(λ)H2k+1(2− λ) = 0 for even M ,

(M−3)/2∑
k=0

−G2k(λ)H2k(2− λ) +G2k+1(λ)H2k+1(2− λ)

−GM−1(λ)HM−1(2− λ) = 0 for odd M.

(6.26)

The following proposition guarantees perfect reconstruction of these filter banks.

Proposition 4. The critically sampled and oversampled spectral graph filter banks for

bipartite graphs, which are derived from a linear phase perfect reconstruction filter

bank with a downsampling factor of 2, from (6.6)–(6.9), (6.24) and (6.25), satisfy the

perfect reconstruction conditions in (3.34) and (3.35) (for critically sampled spectral

graph filter banks), or (4.9) and (6.26) (for oversampled spectral graph filter banks).

Proof. Let us define H̆(z) = H(−z). Since −z = −ejω = ej(ω+π), H̆(z) in the

frequency domain ω ∈ [0, π] can be represented as H̆(ω) = H(ω+π). From (6.3), type

II of H̆II(ω) becomes

H̆II(ω) = HII(ω + π)

= 2e−j
L−1
2

(ω+π)

L
2
−1∑

m=0

hII(m) cos

(
bm
2

(ω + π)

)

= 2j(−1)
L
2 e−j

L−1
2
ω

L
2
−1∑

m=0

hII(m) cos

(
bm
2

(ω + π)

)
.

(6.27)
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Table 6.2: Four Types of Flipped Filters
Type Modulating function H̆type(λ)

I ej
L−1
2
ω (−1)

L−1
2 HI(2− λ)

II −jej L−1
2
ω (−1)

L−2
2 HII(2− λ)

III −jej L−1
2
ω (−1)

L−3
2 HIII(2− λ)

IV ej
L−1
2
ω (−1)

L−2
2 HIV(2− λ)

By multiplying the modulated characteristics by −jej L−1
2
ω and transforming the vari-

ables ω ∈ [0, π]→ λ ∈ [0, 2], we obtain

H̆II(λ) = (−1)
L
2

2

L
2
−1∑

m=0

hII(m) cos

(
bm
2

(
πλ

2
+ π

))
= (−1)

L−2
2

2

L
2
−1∑

m=0

hII(m) cos

(
bmπ

4
(2− λ)

)
= (−1)

L−2
2 HII(2− λ).

(6.28)

Table 6.2 lists each type of H̆type(λ); these were derived using a similar approach to that

for type II, with a modulating function multiplied so as to obtain a real-valued function

(6.28) from (6.27).

Case 1: Critically sampled spectral graph filter banks with odd-length filters. By

multiplying both sides by ej
L0+L1−2

2
ω, (3.10) in the frequency domain ω ∈ [0, π] can be

rewritten as3

Ĝ0(ω)Ĥ0(ω) + Ĝ1(ω)Ĥ1(ω) = 2. (6.29)

Accordingly, the graph filters derived by transforming the variable ω ∈ [0, π] → λ ∈

[0, 2] and using (6.24) and (6.25) have the following relationship:

G′0(λ)H ′0(λ) +G′1(λ)H ′1(λ) = 2. (6.30)

3From Theorem 1, both synthesis-side filters are symmetric in this case.
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Similarly, from (3.11), we obtain

G0(λ)H̆0(λ) +G1(λ)H̆1(λ) = 0,

−−−−−−−−−−−→
Table 6.2, (6.24), (6.25)

(−1)
L0−1

2 G′0(λ)H ′0(2− λ) + (−1)
L1−1

2 G′1(λ)H ′1(2− λ) = 0.

(6.31)

From Theorem 1, the possible forms of the filter lengths are {L0 = 4n0 + 1, L1 =

4n1 + 3}, or {L0 = 4n0 + 3, L1 = 4n1 + 1}, where n0, n1 ∈ R. In both cases, (6.31) is

equal to (3.35).

Case 2: Critically sampled spectral graph filter banks with even-length filters. In

this case, the highpass filter G1(z) on the synthesis side is type IV. Similar to Case 1,

(3.10) can be modulated as

Ĝ0(ω)Ĥ0(ω)− (−jĜ1(ω))(−jĤ1(ω)) = 2,

−−−→
ω→λ

G0(λ)H0(λ)−G1(λ)H1(λ) = 2,

−−−−−−→
(6.24), (6.25)

G′0(λ)H ′0(λ) +G′1(λ)H ′1(λ) = 2.

(6.32)

(3.11) is rewritten as

Ĝ0(ω)(−j ̂̆H0(ω)) + (−jĜ1(ω))
̂̆
H1(ω) = 0,

−−−→
ω→λ

G0(λ)H̆0(λ) +G1(λ)H̆1(λ) = 0,

−−−−−−−−−−−→
Table 6.2, (6.24), (6.25)

(−1)
L0−2

2 G′0(λ)H ′0(2− λ) + (−1)
L1
2 G′1(λ)H ′1(2− λ) = 0.

(6.33)

The filter lengths should be {L0 = 4n0, L1 = 4n1}, or {L0 = 4n0 + 2, L1 = 4n1 + 2},

from Theorem 1. Hence, the critically sampled spectral graph filter banks with even-

length filters satisfy (3.35).
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Case 3: M -channel oversampled spectral graph filter banks. Since the odd-indexed

synthesis-side filters G2k(ω) are type IV filters, (3.12) with l = L − 1 and even M is

modulated as

M/2−1∑
k=0

Ĝ2k(ω)Ĥ2k(ω)− (−jĜ2k+1(ω))(−jĤ2k+1(ω)) = 2,

−−−→
ω→λ

M/2−1∑
k=0

G2k(λ)H2k(λ)−G2k+1(λ)H2k(λ) = 2.

−−−−−−→
(6.24), (6.25)

M/2−1∑
k=0

G′2k(λ)H ′2k(λ) +G′2k+1(λ)H ′2k(λ) = 2.

(6.34)

(3.13) is rewritten as

M/2−1∑
k=0

Ĝ2k(ω)(−j ̂̆H2k(ω)) + (−jĜ2k+1(ω))
̂̆
H2k+1(ω) = 0,

−−−→
ω→λ

M/2−1∑
k=0

G2k(λ)H̆2k(λ) +G2k+1(λ)H̆2k+1(λ) = 0,

−−−−−−−−−−−→
Table 6.2, (6.24), (6.25)

(−1)
L−2
2

M/2−1∑
k=0

−G′2k(λ)H ′2k(2− λ) +G′2k+1(λ)H ′2k+1(2− λ)

 = 0.

(6.35)

(6.34) and (6.35) indicate that the oversampled spectral graph filter bank with even M

satisfies the perfect reconstruction conditions in (4.9) and (6.26). The case for odd M

can be proven in the same way.

Critically Sampled Spectral Graph Wavelets

Figure 6.3 shows examples of the CDF-based critically sampled spectral graph wavelet

transforms. They were obtained by substituting the filter coefficients hk(m), m =
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Figure 6.3: Analysis filters of critically sampled spectral graph wavelet transforms. The
black line indicates 1

2
(H ′0

2(λ) + H ′1
2(λ)). The filter characteristic of the regular CDF

9/7 DWT is in [75, Fig. 5.3–4].
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Figure 6.4: Analysis filters of oversampled spectral graph filter banks. The black line
indicates 1

2

∑
kH

′
k
2(λ).

0, 1, 2, . . . , Lk − 1 for k = 0, 1 of the CDF-DWTs [40] into (6.6) and (6.8) (for the

CS-9/7-FC and the CS-5/3-FC) and (6.7) (for the CS-4/4-FC). The frequency response
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of a CS-SF with (6, 6)-taps [33] is also shown for comparison. It can be seen that the fil-

ter characteristics of the CS-9/7-FC, CS-5/3-FC and CS-4/4-FC are equivalent to those

of CDF wavelets for regular signals.

Oversampled Spectral Graph Filter Banks

In the oversampled filter banks in regular signal processing, when M is even, the odd-

indexed and even-indexed filters are type IV and type II, respectively. Whereas if M

is odd, the odd-indexed and even-indexed filters are type III and type I, respectively.

Figure 6.4 shows examples of the OS-PU-FC constructed from the oversampled linear

phase paraunitary filter banks in [39] with M = 4, 5.

6.3 Experimental Results

6.3.1 Comparison of Filter Performance and Approximation Er-

rors

Comparison of Uniform Filter Banks

Here, we compare the performances of uniform-band undecimated graph filter banks:

UD-UH [31], UD-DCT-FC, and UD-LOT-FC.

Figure 6.5 plots the approximation errorE between the ideal and approximated filter

responses against the approximation order:

E =
1

M

M−1∑
k=0

(∫ λmax

0

|Hk(λ)− H̃k(λ)|2dλ
)
. (6.36)
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Table 6.3: Total Approximation Errors E of Undecimated Graph Filter Banks
All filters use the same approximation order
p 59 34

UD-SP 9.70× 10−4 3.05× 10−2

UD-TM 3.00× 10−5 3.09× 10−2

UD-WH 1.75× 10−5 2.31× 10−4

Each filter uses the different approximation order
p {59, 51, 25, 12} {34, 26, 14, 7}

UD-9/7-FC 4.88× 10−10 –
UD-5/3-FC – 6.29× 10−11

For reference, we also plot the approximation error of the UD-SP [13], UD-TM [16] and

UD-WH [31]. As can be seen, the uniform-band graph filter banks, i.e., the UD-DCT-

FC, the UD-LOT-FC, and the UD-UH, converged quickly as the approximation order

increased. The approximation with p = 8–10 was close enough to reproduce the ideal

filter response for UD-DCT-FC and UD-LOT-FC, whereas the other graph wavelets,

except the one with the uniform band, required higher order approximations. Even

when p = 20, there were still small differences from the ideal response. This was due to
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Figure 6.6: Filter characteristics of graph filter banks with Chebyshev polynomial ap-
proximation for M = 6. Black lines indicate

∑
k |H̃k(λ)|2. Top row: 8th order approxi-

mation. Bottom row: 30th order approximation. (a) UD-SP [13]. (b) UD-TM [16]. (c)
UD-UH [31]. (d) UD-WH [31]. (e) UD-DCT-FC. (f) UD-LOT-FC.

105



0 0.25 0.5 0.75 1
10

−8

10
−6

10
−4

10
−2

10
0

S
q

u
a

re
d

 E
rr

o
r

Approximation Errors

 

 

UD-SP

UD-TM

UD-WH

UD-9/7-FC

(a)

0 0.25 0.5 0.75 1
10

−10

10
−5

10
0

S
q

u
a

re
d

 E
rr

o
r

Approximation Errors

 

 

UD-SP

UD-TM

UD-WH

UD-5/3-FC

(b)

Figure 6.7: Approximation errors. Note that the vertical axis is a logarithmic scale. (a)
comparison with UD-9/7-FC. (b) comparison with UD-5/3-FC.

the different definitions of the ideal kernel. The existing transforms are stitched kernels4

; different functions are used for the passband, stopband and/or transition bands. In

contrast, the UD-DCT-FC and UD-LOT-FC covered the entire graph frequency range

with one series of sinusoidal waves, as shown in (6.6)–(6.9).

Figure 6.6 shows the approximated filter responses and
∑

k |H̃k(λ)|2. Each filter

was approximated with p = 8 or 30. As expected, the UD-DCT-FC had an ideal re-

sponse even with p = 8, whereas the UD-LOT-FC and UD-UH produced small errors.

Unfortunately, the other graph wavelets were not tight enough even after the 30th order

approximation. The tight graph wavelets had large errors, especially in their scaling

functions.

Approximation Errors of Octave-band Filter Banks

Let us examine the approximation errors of the UD-9/7-FC and UD-5/3-FC. Figs. 6.1(a)

and 6.1(b) show their ideal characteristics. The approximation order of each filter is

4They are defined with piecewise functions. For the UD-SP kernel, the second derivative will be
discontinuous, which is leading to the slow decay of error for the Chebyshev polynomial approximation.
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determined on the basis of Proposition 1 such that the approximation error does not

exceed the pre-determined tolerable value T = 1.00 × 10−5. The approximation order

is estimated as follows:

1. Initialize p to 1.

2. Calculate the estimated maximum error Emax,p in (6.10).

3. If Emax,p ≤ T , set p. Else, return to Step 2 with p← p+ 1.

This process costs less than directly calculating the error between the ideal filter and

the pth approximated filters, since the direct calculation computes the Chebyshev coef-

ficients (2.20) and approximation errors for all i = 0, . . . , p and k = 0, . . . ,M − 1 [13].

The filter lengths in the time domain and the estimated approximation orders of

filters Hk(λ), k = 0, 1, 2, 3 are L = {57, 57, 25, 9} and p = {59, 51, 25, 12} for UD-

9/7-FC, and L = {29, 29, 13, 5} and p = {34, 26, 14, 7} for UD-5/3-FC. Figure 6.7

shows the approximation errors
∑M−1

k=0

∣∣∣Hk(λ)− H̃k(λ)
∣∣∣2. For comparison, Figs. 6.7(a)

and 6.7(b) also show the errors of the UD-SP [13], UD-TM [16], and UD-WH [31] with

M = 4 with approximation orders p = 59 and p = 34 for all filters, respectively.

Table 6.3 shows the total approximation errors E in (6.36). The proposed filter banks

have significantly smaller total approximation errors compared with the conventional

approaches even when the maximum approximation orders are the same.

It is worth noting that, in our spectral graph filter banks, the lowpass filter needs a

large approximation order, whereas the highpass one requires a relatively small order.

This fact leads to the conclusion that the highpass graph filters in our method are more

localized than the even-order approximations. This is a generally required characteristic

for wavelet transforms.
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Figure 6.8: Original graph signals. (a) Minnesota Traffic Graph (Example 1). The
signal was reproduced from the MATLAB code by Narang and Ortega [32]. (b) Min-
nesota Traffic Graph (Example 2). The signal is obtained by dividing nodes into three
clusters and calculating the signal so that each cluster contains the graph spectrum
[0.06, 0.08], [0.3, 0.5], [3.2, 3.7], respectively, as in [31]. (c) Yale Coat of Arms. The
signals of Figs. (c) and (d) were created by using SGWT toolbox [13]. (d) Swiss Roll.

6.3.2 Denoising

To make a numerical comparison of the undecimated transforms, we performed a graph

signal denoising experiment. The input signal was corrupted by additive white Gaus-

sian noise. For the proposed methods, we applied the UD-DCT-FC, the UD-9/7-FC,

the spectrum-adapted UD-DCT-FC, and the spectrum-adapted UD-9/7-FC. These were

compared with the UD-UH [31], the spectrum-adapted UD-UH [31], and the UD-

SP [13]. We set M = 4 for all methods. All filters used the same filter length p = 12

for a pure comparison of filter banks. After decomposition of the corrupted input sig-

nal, the lowest frequency subband was kept, and the other high-frequency subbands

were hard-thresholded with the threshold T = 3σ, where σ is the standard deviation

of noise5. Figure 6.8 shows the tested signals, and Table 6.4 examines the denoising

performance. Although UD-SP performed well for σ = 1 in a few cases, the proposed

methods outperformed the existing methods for σ ≤ 1/2.

5The noise variance of each subband was estimated by a Monte-Carlo method in order to estimate the
energy of each subband. It repeatedly generates random white noise (graph) signals and averages their
variance after the transformation [76].
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Table 6.4: Denoised Results (Average of Ten Executions): SNR (dB). The Abbreviation
SA Means Spectrum-Adapted.

σ 1/32 1/16 1/8 1/4 1/2 1
UD-UH 32.09 26.23 19.93 7.30 5.26 5.05

SA UD-UH 33.13 27.43 21.33 7.75 5.45 5.29
Minnesota UD-SP 33.21 27.62 22.11 15.07 10.13 9.01

Traffic UD-DCT-FC 34.43 28.21 21.50 15.74 10.75 5.34
Graph UD-9/7-FC 34.08 28.42 22.77 16.90 11.40 6.33

(Example 1) SA UD-DCT-FC 34.68 29.76 22.50 16.44 12.30 7.46
SA UD-9/7-FC 33.70 26.92 22.38 17.85 12.94 8.56

noisy 30.09 24.05 18.08 12.05 6.01 0.12
UD-UH 30.86 25.04 19.25 6.97 4.45 4.14

SA UD-UH 31.32 25.41 19.93 7.75 4.77 4.39
UD-SP 29.16 23.46 18.29 13.02 9.07 6.57

Yale Coat UD-DCT-FC 32.12 26.61 20.32 13.99 10.27 5.67
of Arms UD-9/7-FC 31.58 26.04 20.84 15.05 10.65 6.52

SA UD-DCT-FC 30.99 25.50 18.99 13.62 10.61 6.70
SA UD-9/7-FC 31.45 25.89 21.14 15.20 10.74 7.10

noisy 30.04 23.97 18.24 11.99 6.02 0.05
UD-UH 29.57 21.51 15.97 7.03 5.03 4.73

SA UD-UH 30.76 22.34 16.91 7.86 5.28 4.95
UD-SP 29.32 24.46 19.57 15.33 11.79 8.24

Swiss Roll UD-DCT-FC 32.96 26.36 20.70 15.97 10.79 5.06
UD-9/7-FC 31.41 26.19 21.07 16.59 12.16 7.26

SA UD-DCT-FC 31.47 25.24 20.22 15.99 11.38 5.89
SA UD-9/7-FC 30.12 25.31 20.60 16.14 12.04 7.27

noisy 28.35 22.39 16.27 10.32 4.32 -1.69
σ 1/128 1/64 1/32 1/16 1/8 1/4

UD-UH 28.00 21.13 14.24 8.44 4.58 2.86
SA UD-UH 27.91 21.94 15.50 9.26 4.78 2.82

Minnesota UD-SP 27.85 21.64 15.91 11.35 7.22 3.61
Traffic UD-DCT-FC 28.19 21.58 15.14 10.16 6.20 2.11
Graph UD-9/7-FC 30.72 24.90 19.09 13.33 8.24 3.36

(Example 2) SA UD-DCT-FC 27.92 21.89 15.46 10.66 7.18 3.69
SA UD-9/7-FC 29.69 23.95 18.21 13.00 8.20 4.15

noisy 28.37 22.41 16.38 10.29 4.34 -1.69
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Table 6.5: Results on Non-linear Approximation: SNR(dB) for Minnesota Traffic
Graph and PSNR(dB) for Coins Image

Fraction of highpass coeffs.| 0.00 0.01 0.02 0.04 0.08 0.16
Minnesota CS-QMF 17.79 21.51 24.58 27.83 31.36 33.90

Traffic CS-SF 16.67 20.45 22.80 26.61 33.61 57.57
Graph: CS-5/3-FC 18.75 22.78 27.46 39.71 69.74 124.71

Example 1 CS-9/7-FC 18.17 22.25 26.54 31.60 37.09 58.82
Minnesota CS-QMF 4.28 5.52 6.43 8.02 10.49 14.87

Traffic CS-SF 4.11 5.22 6.02 7.47 9.93 14.16
Graph: CS-5/3-FC 4.46 5.32 6.27 7.66 10.37 15.42

Example 2 CS-9/7-FC 4.33 5.42 6.41 7.96 10.56 15.10
CDF 9/7 DWT 20.38 23.78 25.65 28.25 32.01 38.08

CS-QMF 22.28 25.70 26.77 27.92 29.06 29.93
Coins CS-SF 18.73 26.33 28.34 30.89 34.34 39.39

CS-5/3-FC 23.76 27.91 29.67 31.84 35.06 39.68
CS-9/7-FC 22.61 27.79 29.59 31.96 35.30 40.16

Figure 6.9: Coins image.

6.3.3 Non-linear Approximation

In the non-linear approximation, we compared the CS-9/7-FC and CS-5/3-FC with CDF

9/7 DWT for regular signals, CS-QMF [32], and CS-SF with (5,5)-taps [33]. The origi-

nal signals of the Minnesota Traffic Graph (Examples 1 and 2) and the Coins image are

shown in Figs. 6.8(a), 6.8(b) and 6.9. All graph-based transforms had a filter length of

p = 10, for a fair comparison of filter performance, and used edge-aware image graphs

for the Coins image [68]. Note that the CDF 9/7 for regular signals is not an edge-aware
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(a) (b) (c)

(d) (e) (f)

Figure 6.10: Zoomed in Coins images reconstructed from all lowpass coefficients and
3% of highpass coefficients. (a) original image. (b) CDF 9/7 DWT (27.16dB). (c)
CS-QMF (27.92dB). (d) CS-SF (29.79dB). (e) CS-9/7-FC (30.88dB). (f) CS-5/3-FC
(30.85dB).

transform. After a four-level (for the Coins image) or one-level decomposition6 (for the

Minnesota Traffic Graph), the input signal was reconstructed from all lowpass coeffi-

cients and some fraction of the highpass coefficients. Table 6.5 shows PSNR and SNR

together with the fraction of highpass coefficients. The table shows that the proposed

critically sampled spectral graph wavelet transforms outperformed the other methods on

all signals. Since the CS-5/3-FCs can be exactly approximated at low order, it is very lo-

calized in the graph vertex domain. Therefore, if the original signal is piecewise-smooth,

6Since the edge-aware image graphs and the Minnesota Traffic Graph are four-colorable and three-
colorable graphs, respectively, they can be decomposed into two bipartite subgraphs before applying the
two-dimensional critically sampled spectral graph wavelet transforms [32, 61].
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such as the signal of the Minnesota Traffic Graph (Example 1) in Fig. 6.8(a), it can be

almost perfectly recovered from a small fraction of highpass coefficients. Although the

CDF 9/7 DWT for regular signals and CS-9/7-FC have the same filter characteristics,

the performance of the CS-9/7-FC is significantly better than that of the CDF 9/7 DWT

for regular signals since the graph-based transform can decompose images while con-

sidering the image edges. Figure 6.10 shows the reconstructed Coins images. We can

see that the CS-9/7-FC and CS-5/3-FC suppress ringing artifacts compared to the other

methods.

6.4 Summary

We proposed a method of constructing wavelets and filter banks in the graph spectral do-

main. They are defined as a sum of sinusoidal waves. Therefore, they are very smooth

and the upper bound of their approximation errors can be calculated in a closed form.

We also described the method of constructing these spectral graph filter banks from

the linear phase perfect reconstruction filter banks in regular signal processing. We

showed examples of such M -channel undecimated and decimated perfect reconstruc-

tion spectral graph filter banks. The proposed undecimated spectral graph filter banks

performed very well in the denoising experiments. The critically sampled spectral graph

filter banks derived from the CDF-DWTs were also shown to outperform the existing

critically sampled spectral graph filter banks in non-linear approximation experiments.
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Chapter 7

Conclusion and Future Work

This dissertation addressed the design problems on spectral graph wavelets and filter

banks. They are one of the most important fundamental tools in signal processing on

graphs and useful for analyzing and processing the signals on graphs. The drawbacks of

the conventional methods are 1) they have high redundancies or low flexibilities on their

design, 2) the decimated transforms can be applied only to the bipartite graph, and 3) no

transform exists that satisfies no DC leakage, orthogonal transform, defined by smooth

function and applicable to any graphs.

To solve these problems, the following methods were proposed.

1. M -channel spectral graph filter banks (Chapter 4). The spectral graph filter banks

with M filters and sampling operations were proposed. They are more flexible on

the redundancies and filter design than the conventional critically sampled or un-

decimated filter banks. We showed the perfect reconstruction conditions, design

methods of the filter sets based on spectral factorizations and design examples of

the filter banks.

2. Oversampled graph Laplacian matrix (Chapter 5). The oversampled graph Lapla-

cian matrix that can freely append the nodes and edges into the original graph has

been proposed. The graph signals are also expanded simultaneously along with

the oversampling of the graphs. We showed the oversampling method is effec-

tive when we use decimated spectral graph filter banks. It can make one bipartite

graph that includes all edges in the original non-bipartite graph and it enables us to
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apply the decimated transform into any graphs. We also clarified the relationships

between the proposed method and the graph covering method.

3. Filters converted from those in regular signal processing (Chapter 6). We pro-

posed the filters calculated from the linear phase FIR filters in regular signal pro-

cessing. They are desired by smooth functions and their error caused by the poly-

nomial approximation can be rigorously estimated since they are defined by the

sum of sinusoidal waves. We can reuse any filters in time/spatial domain for graph

signals since the spectral graph filters obtained by the proposed method inherit the

characteristics of corresponding filters in regular signal processing. We showed

the graph filters based on DCT, LOT, CDF wavelets, and oversampled filter banks

for regular signals.

Each of them or their combination is applied to the non-linear approximation and de-

noising. They showed better results than the conventional wavelets for regular signals

and spectral graph wavelets and filter banks for graph signals.

There are several questions that we would like to consider in future. The decimated

transform proposed in Chapter 4 should use normalized graph Laplacian and undirected

graphs. The decimated spectral filter banks with perfect recovery for directed graphs

and another variation operators such as combinatorial graph Laplacian would be useful.

In Chapter 5, we considered the oversampling method for decimated transforms. To

explore the capability of the oversampling method should be considered and theoreti-

cally clarified.

For filter design, we will consider the filters well behaved for directed graphs that

have the different characteristics on eigen-pairs from that of undirected graphs. The

directed graphs have complex valued eigenvalues and eigenvectors, and therefore, we

cannot utilize the theories of the undirected graphs, straightforwardly, such as Cheby-

shev polynomial approximation. Our future work includes construction of the filtering
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methods for directed graphs with high performance and low computational complexity.

It would be useful for utilizing the spectral graph wavelets and filter banks into real

world problems by applying them to other applications such as anomaly detection and

segmentation, and to find more effective implementations for large graphs.
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graphs via graph filtering,” in Proc. GlobalSIP, 2014, pp. 872–876.

[9] D. I. Shuman, P. Vandergheynst, and P. Frossard, “Chebyshev polynomial approx-
imation for distributed signal processing,” in DCOSS’11, 2011, pp. 1–8.

[10] M. Onuki, S. Ono, M. Yamagishi, and Y. Tanaka, “Graph signal denoising via
trilateral filter on graph spectral domain,” IEEE Trans. Signal Inf. Process. Netw.,
vol. 2, no. 2, pp. 137–148, 2016.

116



[11] A. Agaskar and Y. M. Lu, “A spectral graph uncertainty principle,” IEEE Trans.
Inf. Theory, vol. 59, no. 7, pp. 4338–4356, 2013.

[12] F. R. K. Chung, Spectral Graph Theory (CBMS Regional Conference Series in
Mathematics, No. 92). American Mathematical Society, 1997.

[13] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via
spectral graph theory,” Applied and Computational Harmonic Analysis, vol. 30,
no. 2, pp. 129–150, 2011. [Online]. Available: http://wiki.epfl.ch/sgwt

[14] D. I. Shuman, B. Ricaud, and P. Vandergheynst, “Vertex-frequency analysis on
graphs,” submitted to Applied and Computational Harmonic Analysis, 2013.

[15] G. Shen and A. Ortega, “Transform-based distributed data gathering,” IEEE Trans.
Signal Process., vol. 58, no. 7, pp. 3802–3815, 2010.

[16] N. Leonardi and D. Van De Ville, “Tight wavelet frames on multislice graphs,”
IEEE Trans. Signal Process., vol. 16, no. 13, pp. 3357–3367, 2013.

[17] A. Sakiyama, Y. Tanaka, T. Tanaka, and A. Ortega, “Efficient sensor position se-
lection using graph signal sampling theory,” in ICASSP’16, 2016, pp. 6225–6229.

[18] M. Crovella and E. Kolaczyk, “Graph wavelets for spatial traffic analysis,” in Proc.
INFOCOM’03, vol. 3, 2003, pp. 1848–1857.

[19] M. Gavish, B. Nadler, and R. R. Coifman, “Multiscale wavelets on trees, graphs
and high dimensional data: Theory and applications to semi supervised learning,”
in Proc. ICML’10, 2010, pp. 367–374.

[20] S. Chen, F. Cerda, P. Rizzo, J. Bielak, J. H. Garrett, and J. Kovačević, “Semi-
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