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Abstract 

 

 

Leguminous plants form root nodules, within which soil bacteria called rhizobia symbiotically fix 

atmospheric nitrogen gas into ammonia, and provide the legumes with organic nitrogen compounds, 

such as ureides or asparagine, in exchange for the energy derived from photosynthates. This 

symbiotic relationship enables the legumes to grow in nitrogen-deficient soils. However, excessive 

nodulation damages the host growth by over-consuming nutrients in the plant. It can be assumed 

that legumes have evolved diverse mechanisms to regulate root nodule number according to the 

host’s own energy demands. 

Autoregulation of nodulation (AON) is a mechanism that regulates root nodule number, 

which is systemically controlled by roots and shoots via long-distance signaling factors. In AON, it 

is thought that a root-derived signal, generated upon infection by rhizobia, is transported to the 

shoot, eliciting a shoot-derived signal, which is translocated down to the roots to inhibit root 

nodulation. In addition to systemic regulation via long-distance signals derived from roots and 

shoots (AON), local regulation via short-distance signaling that occurs only in the root has been 

postulated as another mechanism for controlling root nodule formation. Plants also defend 

themselves against bacteria and other pathogens by the induction of localized acquired resistance 

(LAR) surrounding local lesions formed by hypersensitive response (HR) in the infected areas, and 

of systemic acquired resistance (SAR) or/and induced systemic resistance (ISR) to survive. Herein, 

I show that the number of root nodules is suppressed by programmed cell death (PCD), and is 

simultaneously controlled by SAR and ISR in soybean (Glycine max [L.] Merr.). 

I observed that both the numbers of root nodule primordia (Stage1 + Stage2) and the 

ratios of Stage2 to (Stage1 + Stage2) in wild-type soybean Williams 82 were noticeably fewer than 

in hypernodulation mutant NOD1-3 on d4, d5, and d6, indicating that root nodule formation and 

development are suppressed in wild type during d4-d6, which also suggests that these suppression 

phenomena are genetically and biochemically regulated during d0-d4 after inoculation of the 

wild-type soybean roots with rhizobium. I also discovered characteristics of PCD accompanied by 

accelerated DNA degradation at 3.5 (d0), 26.5 (d1), 37 (d1), 66 (d2), 78 (d3), 97.5 (d4), and 122 h 

(d5), enhanced generation of reactive oxygen species (visualized by 3, 3′-diaminobenzidine 

staining) on d2, and markedly more cell death (detected on staining with trypan blue) and fewer 
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root nodule primordia on d3 after rhizobia inoculation in wild-type soybean Williams 82 than 

hypernodulation mutant NOD1-3. These findings suggest that the number of root nodules in 

wild-type soybean is suppressed by PCD. In addition, I conducted microarray, gene ontology and 

pathway analyses to detect the transcriptional response controlling the number of root nodules at 

rhizobia infection sites. Numbers of up-regulated genes associated with defense responses in wild 

type were several times larger than those in hyper-nodulation mutant (incidentally, it is shown that 

many genes were upregulated on d0 and/or d5, and were downregulated on d2 and/or d4 in 

Williams 82 compared with NOD1-3, suggesting that many genes are probably involved in the 

suppression of formation and development of root nodule primordia on d0 and/or d5, whereas these 

genes possibly participate in delaying the formation and development of root nodule primordia on 

d2 and/or d4 in wild type compared with the hypernodulation mutant.); essential factors for HR or 

disease resistance such as resistance genes, proteins generating H2O2, mitogen-activated protein 

kinase cascade, SAR, salicylic acid, jasmonic acid, ethylene etc., were activated in wild-type plants; 

the total numbers of sequences and enzymes participated in the pathways involved in defense 

responses including primary and secondary metabolisms in wild type were obviously larger than 

those in hyper-nodulation mutant. The data obtained from these analyses also corroborate the above 

finding that soybean controls its root nodule number by PCD suggesting simultaneously through 

SAR and ISR. I further show that most nodulins do not move in tandem with the regulatory 

mechanisms of defense response except for 2 nodulins. These findings provide new insight into the 

control of nodulation to balance nutritional requirements and energy status in legumes. 

Like SAR and ISR, AON is induced by bacterial infection, and thus, exhibits systemic 

resistance against bacteria. In the present study, I elucidated the mechanisms underlying the 

suppression of root nodule formation in soybean using wild-type cv. Williams 82 and 

hypernodulation mutant NOD1-3. In the present study, I show that the containment of root nodule 

number in soybean is associated with PCD and HR, and is simultaneously controlled by SAR and 

ISR, suggesting that AON or local regulation is a part of SAR and ISR. It seems that LAR is 

induced around the local lesions in the infected areas by HR from pathogen infection, and shows a 

high degree of resistance in wild-type soybean Williams 82; and that the reason why it exhibits 

strong resistance in LAR is that the LAR around the HR site includes genes expressed both in the 

SAR and ISR. 
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Abbreviations 

 

 

ABA: abscisic acid 

AON: autoregulation of nodulation 

bp: base pairs 

CC: coiled-coil 

DAB: 3, 3′-diaminobenzidine 

DEGs: differentially expressed genes 
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GO: gene ontology 
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PTI: PAMP-triggered immunity 

RdRP: RNA-dependent RNA polymerase 

R genes: resistance genes 

RLKs: receptor-like kinases 

ROS: reactive oxygen species 

RT: reverse transcription 

SA: salicylic acid 

SAR: systemic acquired resistance 

siRNAs: interfering RNAs 

smRNAs: small RNAs 

St1: Stage1 

St2: Stage2 

TE: tracheary element 

TFs: transcription factors 

TIR: Toll interleukin-1 receptor 

TMV: tobacco mosaic virus 

USDA: United States Department of Agriculture 

UV: ultraviolet  

WSR: wound-induced systemic resistance 
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Chapter 1 Introduction 

 

 

Leguminous plants form root nodules, within which soil bacteria called rhizobia symbiotically fix 

atmospheric nitrogen gas into ammonia (Udvardi and Day 1990), and provide the legumes with 

organic nitrogen compounds, such as ureides or asparagine, in exchange for the energy derived 

from photosynthates (Udvardi et al. 1988). This symbiotic relationship enables the legumes to grow 

in nitrogen-deficient soils. However, excessive root nodulation is harmful to plants because of the 

overconsumption of energy from photosynthates (Nishimura et al. 2002). It can be assumed that 

legumes have evolved diverse mechanisms to regulate root nodule number according to the host’s 

own energy demands. 

Autoregulation of nodulation (AON) is a mechanism that regulates root nodule number, 

which is systemically controlled by roots and shoots via long-distance signaling factors (Kosslak 

and Bohlool 1984, Delves et al. 1986, Caetano-Anolles and Gresshoff 1991). In AON, it is thought 

that a root-derived signal, generated upon infection by rhizobia, is transported to the shoot, eliciting 

a shoot-derived signal, which is translocated down to the roots to inhibit root nodulation (Oka-Kira 

and Kawaguchi 2006). AON was discovered by researchers investigating the suppression of new 

root nodule formation by earlier developed nodules (Nutman 1952). Many studies have been 

conducted to identify both the root- and the shoot-derived signaling factors, including their 

receptors in the signaling pathway. For example, several leucine-rich repeat receptor-like kinases 

and other proteins, including HYPERNODULATION ABERRANT ROOT FORMATION1 (HAR1), 

NITRATE TOLERANT SYMBIOSIS1 (NTS1; NODULE AUTOREGULATION RECEPTOR 

KINASE [NARK]), SUPER NUMERIC NODULES (SUNN), and SYMBIOSIS29 (SYM29), 

which function in the shoots of Lotus japonicus, Glycine max, Medicago truncatula, and Pisum 

sativum, respectively, have been identified as key components of AON (Krusell et al. 2002, 
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Nishimura et al. 2002, Searle et al. 2003, Schnabel et al. 2005). All these proteins are orthologs of 

CLAVATA1 (CLV1) in Arabidopsis, which controls shoot and floral meristem size (Clark et al. 

1997). In L. japonicus, two peptides, CLE-ROOT SIGNAL1 (CLE-RS1) and CLE-RS2, are 

candidates for root-derived mobile signaling factors that are specifically induced in infected roots. 

CLE-RS2 glycopeptides are transported through the xylem to the shoot where they directly bind to 

HAR1 (Okamoto et al. 2009, Okamoto et al. 2013). TOO MUCH LOVE was identified as a 

root-acting AON factor acting downstream of HAR1 to suppress nodulation (Magori et al. 2009, 

Takahara et al. 2013). As shoot-derived signaling factors, cytokinins systemically regulate root 

nodulation downstream of the CLE-RS1/2-HAR1 signaling pathway in AON (Sasaki et al. 2014). 

Mutants defective in AON showed supernodulation and increased number of lateral roots (Searle et 

al. 2003). During root nodule development, legumes respond to nodulation (Nod) factors produced 

by rhizobia. Perception of these factors by receptor kinases triggers a signaling cascade in the root 

epidermis (Suzaki et al. 2012). This induces dedifferentiation of some of the cortical cells, which 

subsequently divide to form the root nodule primordia (Szczyglowski et al. 1998, Oldroyd and 

Downie 2008, Oldroyd et al. 2011). During the course of root nodule development, rhizobia invade 

the dividing cortical cells via a tubular structure called the infection thread (Murray 2011), 

indicating that AON regulates the number of root nodules by controlling the redifferentiation of root 

cortex cells or cortical cell division, which eventually leads to the formation of root nodule 

primordia via shoot- or/and root-derived substances. Soybean hypernodulation mutant NOD1-3 was 

isolated from the cv. Williams (Gremaud and Harper 1989). Although the mutated site(s) have not 

been reported, evidence (Akao and Kouchi 1992, Vuong et al. 1996, Vuong and Harper 2000, 

Nishimura et al. 2002, Searle et al. 2003) suggests that the mutated locus is GmNARK (Glycine max 

nodule autoregulation receptor kinase) which controls AON in soybean (Searle et al. 2003, Ito et al. 

2008). 

In addition to systemic regulation via long-distance signals derived from roots and shoots 
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(AON), local regulation via short-distance signaling that occurs only in the root has been postulated 

as another mechanism for controlling root nodule formation (Yoshida et al. 2010). Susceptibility to 

infection by rhizobia is limited to the zone of root elongation and emerging root hairs 

(Bhuvaneswari et al. 1980), implying that the control of root system development indirectly leads to 

the regulation of root nodule formation. A few studies have reported that phytohormones affect 

local regulation. Root nodule formation is negatively affected by phytohormones, such as ethylene, 

abscisic acid (ABA), and jasmonic acid (JA) (Cho and Harper 1993, Penmetsa and Cook 1997, 

Suzuki et al. 2004, Nakagawa and Kawaguchi 2006, Sun et al. 2006). The position of root nodule 

primordia formation (usually opposite the xylem poles) is controlled by ethylene (Heidstra et al. 

1997). Ethylene also exerts an inhibitory effect on infection thread initiation, infection thread 

growth after initiation, root hair deformation, early gene expression, and calcium spiking (Penmetsa 

and Cook 1997, Oldroyd et al. 2001). The sickle, an ethylene-insensitive mutant of M. truncatula, is 

characterized by hyperinfection of rhizobia (Penmetsa and Cook 1997). Generally, at the infection 

sites, coordination at various levels of controls represses production of excess nodules and failure of 

this coordination allows thousands of rhizobia to invade the root cells (Yoshida et al. 2010).  

As mentioned above, it appears that leguminous plants manipulate systemic (AON) and 

local regulation harmoniously in order to maintain the appropriate level of root nodulation. 

Alternatively, plants defend themselves against countless bacteria and other microbial pathogens by 

the induction of both localized and systemic responses (Vijayan et al. 1998).  

A nearly ubiquitous feature of plant-pathogen interactions is host cell death, which entails 

a rapid collapse of tissue, termed the hypersensitive response (HR; Dangl et al. 1996). The HR is 

triggered locally upon invasion by a pathogen, thus, inducing a defense response leading to the 

death of infected cells that appear as necrotic lesions (Hammond-Kosack and Jones 1996). The HR 

is genetically programmed in the plant, and is a consequence of transcription and translation of a 

unique set of genes that are induced upon infection in the host (Dixon et al. 1994, Godiard et al. 
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1994). Typically, HR is controlled by classic disease resistance (R) genes in the host plant (Dangl 

1995, Staskawicz et al. 1995, Bent 1996). The local HR is often associated with the onset of 

systemic acquired resistance (SAR; Chester 1933, Ross 1961a, Enyedi et al. 1992, Ryals et al. 1994, 

1996) that immunizes the entire plant against further infection (Ryals et al. 1996). Preceding the 

initiation of SAR, a high degree of resistance is induced in the local tissues surrounding the infected 

areas, which is termed as localized acquired resistance (LAR) (Ross 1961b). Invariably, sites of HR 

are focal points for transcriptional induction of plant defense genes in the neighboring cells 

(Somssich et al. 1988, Schmelzer et al. 1989). Subsequent biosynthesis of protective secondary 

metabolites and cell wall fortification around the HR site are also thought to contribute to overall 

pathogen containment (Dangl et al. 1996). 

SAR is a mechanism that confers systemic resistance against a broad spectrum of plant 

pathogens (Durrant and Dong 2004). Long-distance signals initiated at the HR site lead to the 

induction of specific pathogenesis-related (PR) genes at the infection site as well as in uninfected 

parts of the plant, which is thought to contribute to resistance (Ryals et al. 1996). Signaling 

molecules, such as salicylic acid (SA), methyl jasmonate, ethylene, hydrogen peroxide, and 

superoxide radicals, have been proposed to be involved in induction and coordination of these plant 

responses (Hammond-Kosack and Jones 1996, Ryals et al. 1996). However, SA has been ascribed a 

central role in localized response and SAR (Delaney et al. 1994, Ryals et al. 1995, 1996, Dangl et al. 

1996, Baker et al. 1997, Vijayan et al. 1998). In response to SA, the positive regulator protein NPR1 

(non-expressor of PR1) moves to the nucleus, where it interacts with TGA transcription factors 

(binding specifically to variants of the palindrome TGACGTCA) to induce defense gene expression, 

thus, activating SAR (Durrant and Dong 2004). 

Another type of systemic resistance is known as induced systemic resistance (ISR), which 

is induced by nonpathogenic rhizobacteria, and is phenotypically similar to pathogen-induced SAR 

(van Loon et al. 1998). The rhizobacteria-mediated ISR has been demonstrated against fungi, 
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bacteria, and viruses in Arabidopsis, bean, carnation, cucumber, radish, tobacco, and tomato. 

However, the inducing bacteria and the challenging pathogen remain spatially separated (van Loon 

et al. 1998). Some rhizobacteria induce resistance through the SA-dependent SAR pathway, 

whereas others do not and require perception of JA and ethylene by the plant for ISR to develop 

(van Loon et al. 1998). The key regulatory protein NPR1 functions downstream of the JA and 

ethylene response in the ISR pathway (Pieterse et al. 1998). Van Wees et al. (2000) demonstrated 

the enhancement of induced disease resistance by simultaneous activation of the SAR and ISR 

pathways in Arabidopsis. 

Like SAR and ISR, AON is induced by bacterial infection, and thus, exhibits systemic 

resistance against bacteria (Nakagawa and Kawaguchi 2006). In the present study, I elucidated the 

mechanisms underlying the suppression of root nodule formation in soybean using wild-type cv. 

Williams 82 and hypernodulation mutant NOD1-3. In the present study, I show that the containment 

of root nodule number in soybean is associated with programmed cell death (PCD) and HR, and is 

simultaneously controlled by SAR and ISR, suggesting that AON or local regulation is a part of 

SAR and ISR. 

These findings provide new insight into the control of nodulation to balance nutritional 

requirements and energy status in legumes, and reveal how legumes could preserve the mechanism 

of restraint of rhizobium infection for tens of millions of years. Thus, our findings will be able to fill 

various gaps in the agricultural field with regard to problems associated with the inoculation of root 

nodule bacteria into soybean, and I believe that these findings will provide a baseline for the 

development of a microbial inoculation technology useful in crop production. 



14 

 

Chapter 2 Materials and methods 

 

 

2.1. Bacterial materials 

The root nodule bacterium Bradyrhizobium diazoefficiens USDA110 (10 µl liquid taken from 15% 

glycerol stock) was inoculated into approximately 100 mL yeast-mannitol broth (Somasegaran and 

Hoben 1994) liquid culture medium in a 300-mL Erlenmeyer flask. This flask was wrapped in 

aluminum foil and shaken in an incubator under dark conditions at 118 rpm at 25°C for 5 days. The 

incubated USDA110 was washed thrice with 1X phosphate buffered saline using a centrifuge (at 

10,000 rpm at 4°C for 3 minutes per time), and the absorbance was adjusted to 0.073 (λ = 600 nm) 

using sterilized nitrogen-free plant nutrient solution prior to inoculation of plants (Somasegaran and 

Hoben 1994). 

 

2.2. Plant materials 

Wild-type soybean (Glycine max [L.] Merr. cv Williams 82) and hypernodulation mutant NOD1-3 

(a mutant of soybean Glycine max [L.] Merr. cv Williams, Gremaud and Harper 1989) seeds were 

surface-sterilized and sown in troughs formed using paper wicks of autoclaved seedling growth 

pouches (177 mm by 163 mm) that were filled with autoclaved 17 mL sterilized nitrogen-free plant 

nutrient solution (Somasegaran and Hoben 1994) in clean benches. The root area of the pouch was 

wrapped in aluminum foil to block out light. The sown soybean seeds were grown hydroponically 

in a growth chamber under the following conditions: temperature 25°C, relative humidity 60%, 14 h 

light/10 h dark photoperiod, illuminance 13,000 lx (adjusted using ultraviolet [UV]-fluorescent 

lamps meant for plants), and UV intensity 0.026 mW/cm
2
. Two days after sowing, when root hairs 

emerged, a mark was made on the pointed end of the vascular bundle (red color mark) near the root 

tip. Four days after sowing, when lateral roots emerged, the zone (approximately 2 cm) from the 
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boundary between the shoot and root up to the mark was designated as the position (approximately 

2 cm) of inoculation, and was inoculated with 1 mL suspension of B. diazoefficiens USDA110 

adjusted to absorbance 0.073 (λ = 600 nm), which contained approximately 1.0 × 10
8
 bacterial cells. 

In this experiment, I designated the onset of the inoculation as day 0 (d0), and cuttings (as 

mentioned above, approximately 2-cm-long portion of main roots, including lateral roots) adjacent 

to the inoculation site were taken on d0 (immediately following rhizobium inoculation), d2 (at the 

time point of 48 h after inoculation), d4 (at 96 h), d5 (120 h), and d6 (144 h) to be used as the 

experimental material. The cuttings taken on d6 were utilized only for histological observations and 

counting of root nodule primordia under a stereomicroscope (SZX16, Olympus, Tokyo, Japan).  

As a side note, susceptibility to infection by rhizobia is limited to the zone of root 

elongation and emerging root hairs (Bhuvaneswari et al. 1980). On d0, I applied rhizobia to the 

zone where root hairs had just emerged, thus infection of the rhizobia is considered to have 

occurred mostly on d0. Then, on other days, I sampled roots from the same zone inoculated on d0. 

Therefore, under our experimental condition, the infection timing of rhizobium and the 

developmental status of the soybean root-nodules is thought to be almost synchronized. 

 

2.3. Histological observations and counts of root nodule primordia 

The plant materials collected were fixed in formaldehyde:acetic acid:70% (v/v) ethyl alcohol 

(5:5:90, v/v/v), and stained with 0.03% (w/v) toluidine blue solution, and then observed under a 

stereomicroscope to identify the differences in the number of root nodule primordia between 

wild-type plant Williams 82 and hypernodulation mutant NOD1-3, and to count the number of root 

nodule primordia. 

 

2.4. RNA isolation and confirmation of total RNA quality 

The marked positions where (approximately 2-cm-long portion of main roots, including lateral 
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roots) fresh roots of wild-type soybean Williams 82 and hypernodulation mutant NOD1-3 seedlings 

had been inoculated, were cut and collected on d0, d2, d4, and d5. The roots were immediately 

frozen in liquid nitrogen and stored at −80°C until RNA extraction. The root infection sites from 

more than three independent seedlings were pooled as a single biological replicate, and three 

biological replicates were obtained from more than nine independent seedlings at each time point. 

Total RNA was isolated using RNAiso Plus reagent (Takara Bio, Shiga, Japan). Quality 

characterization of RNA samples was determined and confirmed using a NanoDrop 2000 

spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). Total RNA samples were 

analyzed for the absence of genomic DNA contamination as follows: as positive controls, total 

RNAs were subjected to reverse transcription (RT) using Super Script III Reverse Transcriptase 

(Thermo Fisher Scientific) according to the manufacturer’s instructions; as negative controls, 

RNase-free water was added instead of the RT enzymes in the RT reaction; after positive RT 

reaction, cDNAs were amplified by Polymerase chain reaction (PCR) using primers amplifying the 

endogenous control ubiquitin (ubiquitin [SUBI-1] F [5′-GAAGTCGAAAGCTCCGACAC-3′] and 

ubiquitin [SUBI-1] R [5′-TTTTGGGAACACATCCAACA-3′]), which hybridize to exon sequences 

of the SUBI-1 (soybean polyubiquitin) genes; negative controls, which did not contain the RT 

enzymes in the PCR mix, were also subjected to PCR using the same primer sets. As shown in 

Supplementary Fig. S2, the bands in the positive controls were amplified from cDNAs (lanes 

10-17), whereas no bands were observed in negative controls without RT enzymes (lanes 2-9), 

indicating that there was no genomic DNA contamination in our samples. In this experiment, 1.5% 

(w/v) agarose gel was used and stained with ethidium bromide. The gel pattern was photographed 

using an electronic UV transilluminator system (Funakoshi, Tokyo, Japan) and a bioprinter (Bio 

Craft, Tokyo, Japan). I also conducted a total RNA quality confirmation for all the 24 samples 

composed of the three biological replicates using an electrophoresis apparatus MultiNA (Shimadzu, 

Kyoto, Japan). 
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2.5. Microarray analysis, data processing, and detection of transcriptional response  

After quality confirmation as described above, total RNAs were subjected to RT reaction using 

Super Script III Reverse Transcriptase (Thermo Fisher Scientific) following the manufacturer’s 

instructions. The synthesized cDNA samples were subjected to microarray analysis using 

Affymetrix Soybean Gene 1.1 ST Array Strip, which contains 66,473 probe sets of G. max and 

8,250 probe sets of B. diazoefficiens (http://www.affymetrix.com). For data processing, Affymetrix 

Power Tool (a cDNA microarray analysis system) was used to generate CEL files (raw data sets) to 

detect transcriptional response of soybean controlling the number of root nodules at rhizobia 

infection sites. CHP files (normalized expression data sets) were generated from the CEL files using 

the Expression Console software (Version 1.1; Affrymetrix). The CHP files were loaded into 

DNASTAR ArrayStar software (Version 5.0, http://www.dnastar.com/) using which differentially 

expressed genes (DEGs) whose expressions were upregulated or downregulated more than 2.9-fold 

in wild-type Williams 82 compared with hypernodulation mutant NOD1-3, in at least one time point 

on d0, d2, d4, or d5, were extracted. 

 

2.6. Hierarchical cluster analysis 

Hierarchical cluster analysis of the DEGs was carried out by DNASTAR ArrayStar software 

(Version 5.0, http://www.dnastar.com/). 

 

2.7. Gene ontology (GO) analysis 

To compare the functions of the DEGs in wild-type Williams 82 and hypernodulation mutant 

NOD1-3 in response to rhizobia, GO analysis was conducted using the Blast2GO (Version 2.5; 

Conesa et al. 2005; Götz et al. 2008) online service (https://www.blast2go.com) through the 

following steps: (1) loading sequences, in which the FASTA format sequence data file 

“SoyGene-1_0-st-v1.glyma1.transcript_cluster.fa” (Affymetrix) was loaded into Blast2GO; (2) 

https://www.blast2go.com/
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BLAST, in which Blast2GO used the Basic Local Alignment Search Tool (BLAST; Altschul et al. 

1990) to find sequences similar to our query set; (3) mapping, the process of retrieving GO terms 

associated to the hits obtained after a BLAST search; (4) GO annotation, the process of selecting 

GO terms from the GO pool obtained from the mapping step and assigning them to the query 

sequences. Then, the sequence distribution was filtered by #Seqs: cutoff = 15.0 (selecting scores 

containing more than 15 sequences).  

 

2.8. Pathway analysis 

The GO-annotated upregulated sequences were used to carry out the main pathway analysis through 

the processes “Enzyme Code and KEGG” and “Load KEGG maps” in the Blast2GO online service 

(KEGG, the Kyoto Encyclopedia of Genes and Genomes; https://www.blast2go.com).  

 

2.9. DNA degradation analysis 

DNA degradation analysis was performed according to Yamada et al. (2003) with modifications. 

Genomic DNA was isolated from roots using Plant DNA Isolation Reagent (Takara Bio) according 

to the manufacturer’s instructions. DNA was isolated from infected areas of roots at different time 

points, i.e., 3.5, 26.5, 37, 66, 78, 97.5, and 122 h, after rhizobia inoculation. The root infection sites 

from more than three independent seedlings were pooled as a single biological replicate, and three 

biological replicates were obtained from more than nine independent seedlings at every time point 

from wild type (Williams 82) and hypernodulation mutant (NOD1-3). Extracted DNA was 

electrophoresed in a 3% (w/v) agarose gel and stained with GelRed™ (Biotium, 

https://biotium.com/). The gel patterns obtained from three biological replicates were photographed 

with GelDoc
TM

 XR Plus system (Bio-Rad, http://www.bio-rad.com/). DNA degradation analysis 

using the photographs was conducted as follows. First, the intensities of Band2 (approximately 180 

base pairs [bp] DNA) and the intensities of Band1 (undegraded DNA) in each lane were quantified 

https://www.blast2go.com/
http://www.bio-rad.com/
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by GelDoc
TM

 XR Plus system (Bio-Rad) and the ratios of intensities (Band2)/(Band1) in each lane 

were calculated. Then, the second ratios, calculated as ([Band2]/[Band1] in Williams 

82)/([Band2]/[Band1] in NOD1-3), obtained at the time points mentioned above were compared 

between Williams 82 and NOD1-3.  

 

2.10. H2O2 detection by 3, 3′-diaminobenzidine (DAB) DAB Staining 

To visualize H2O2 at the sites of infection by rhizobia, DAB staining was performed as described by 

Fester and Hause (2005), with slight modification. Intact soybean roots were collected on d2 after 

inoculation and incubated in DAB buffer (1 mg/mL DAB buffered in 100 mM sodium citrate, pH 

3.7) for 2-4 h at room temperature. Stained samples were transferred into 10% (v/v) lactic acid for 

rinsing. Then, the samples were transferred into freshly prepared 10% (v/v) lactic acid and 

photographs were taken using a digital camera (DMC-TZ20, Panasonic, Osaka, Japan).  

 

2.11. Cell death detection by trypan blue staining 

Trypan blue staining was conducted as described by Koch and Slusarenko (1990), with slight 

modification (Kobayashi et al. 2011). Soybean roots were sampled on d3 after inoculation and 

boiled for 10 min in trypan blue solution (10 mL lactic acid, 10 mL glycerol, 10 g phenol, 10 mL 

distilled water, 40 mL ethanol, and 10 mg trypan blue). Then, the stained roots were decolorized in 

trichloroacetaldehyde monohydrate (2.5 g of trichloroacetaldehyde monohydrate dissolved in 1 mL 

of distilled water) for 24-48 h and observed under a stereomicroscope (SZX16, Olympus) to detect 

cell death. 
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Chapter 3 Results 

 

 

3.1. Histological observation of soybean roots at rhizobia infection sites 

Sampling for histological observation was performed on d3 (3 days), d4, d5, and d6 after rhizobium 

inoculation by fixing and staining with toluidine blue (Fig. 1A). Histological observation was 

conducted under a stereomicroscope to identify differences in the number of root nodule primordia 

between wild-type soybean Williams 82 and hypernodulation mutant NOD1-3 (Fig. 1B). Root 

nodule primordia were classified into Stage1 (St1) and Stage2 (St2; Fig. 2A, a and b). St1 signifies 

division in deep cortical tissue without an upheaval of cortical cells and St2 is represented by 

bulging out of the cortical layer without any constriction (Fig. 2A, a and b; Yamaya and Arima 

2010). Lateral root primordia develop from the vascular bundles (Fig. 2A, b and c). Different 

developmental stages of root nodule primordia were counted on d4, d5, and d6 by observation 

under a stereomicroscope (Fig. 2B). On d3, observation of root nodule primordia under the 

stereomicroscope was extremely difficult because their structures could not be clearly discriminated. 

Starting from d4, a significant difference was observed in the number of root nodule primordia 

between wild type and hypernodulation mutant (Fig. 2B). The number of St1 root nodule primordia 

reached a peak on d5 in wild type and on d4 in hypernodulation mutant (Fig. 2B; Supplementary 

Fig. S1). The ratios of St2 to total primordia (St1 + St2) were 46% on d4, 83% on d5, and 100% on 

d6 in hypernodulation mutant NOD1-3, whereas they were 26% on d4, 46% on d5, and 78% on d6 

in wild-type Williams 82 (Supplementary Fig. S1; Fig. 2B). The higher ratios of St2 in NOD1-3 

throughout d4-d6 indicate that development of root nodules is faster in the mutant than in wild type. 

In addition, the significantly fewer number of root nodule primordia (St1 + St2) on d4, d5, and d6 in 

wild type compared with hypernodulation mutant indicate that formation of root nodules is 

suppressed in wild type (Fig. 2B). Since the total number of primordia and the St2 ratio, both were 
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lesser in the wild type than in the mutant on d4, I suggest that suppressive regulation of root nodule 

formation and development starts during d0-d4 in wild-type soybean roots. 

 

3.2. Detection of transcriptional response through microarray analysis 

Total RNA was extracted from 24 samples composed of three biological replicates of wild type and 

hypernodulation mutant, collected on d0, d2, d4, and d5 after rhizobium inoculation, and was 

confirmed for the absence of genomic DNA contamination (Supplementary Fig. S2) and the quality 

(Supplementary Fig. S3). The 24 RNA samples, whose A260/A280 ratio was 1.7-2.1 (Affymetrix 

recommended), were subjected to microarray analysis and a total of 591 DEGs, whose expressions 

were either upregulated or downregulated by more than 2.9-fold at least at one time point in 

wild-type Williams 82 compared with hypernodulation mutant NOD1-3, were extracted (Table 1). 

The data showing percentages of these DEGs expressed on d0, d2, d4, and d5 out of the 

total 591 DEGs have been presented in Table 1. The number of genes upregulated in wild type 

decreased from d0 (244) to d2 (33) and d4 (11), and again increased on d5 (254; Table 1). At the 

beginning (d0 and d2) and end (d5) of the rhizobium infection period, a higher number of genes 

were upregulated (244 on d0, 33 on d2, and 254 on d5) compared with downregulated genes (30 on 

d0, 0 on d2, and 32 on d5; Table 1). These data indicate that these genes induced in wild type at 

different time points are possibly involved in the suppression of formation and development of root 

nodules. In contrast, in the middle stage of rhizobium infection (d4), there were more genes 

downregulated (62 on d4) than upregulated (11 on d4) in wild type (Table 1). This result indicates 

that expression of many genes is repressed on d4 in wild type compared with hypernodulation 

mutant to delay the formation and development of root nodule primordia. 

To analyze the similarities and differences in expression patterns among the 591 DEGs, 

hierarchical cluster analysis was carried out (Supplementary Fig. S4). In wild-type plants, the 

expression patterns on d0 and d5 were similar, suggesting that there are many common early-term 
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(immediately after infection on d0) and late-term (on d5) responses. However, I consider that 

short-term (d2) and middle-term (d4) responses are different from the early- (d0) and late- (d5) term 

responses. 

 

3.3. GO analysis of DEGs 

To determine the functions of the 591 DEGs in wild-type Williams 82 and hypernodulation mutant 

NOD1-3 in response to rhizobia, I conducted GO analysis. The results of GO analysis are shown in 

Supplementary Table S1. In the GO analysis, 429 out of these 591 DEGs were annotated. GO terms 

with more than 15 sequences were filtered among GO terms for the annotated genes and are shown 

in Supplementary Table S2. I further selected the top 10 categories based on highest scores, as 

shown in Supplementary Table S2. Fig. 3 shows the percentage of score obtained out of the total 

score (778) for the top 10 categories, which are oxidation-reduction process (7%), DNA-dependent 

regulation of transcription (6%), protein phosphorylation (4%), organic substance catabolic process 

(4%), signal transduction (3%), and defense response (3%), as shown in Fig. 3. I focused on 5 out 

of these 10 categories (Fig. 4) because of many previous reports demonstrating that the processes of 

these 5 categories are associated with defense responses in plants (Dangl et al. 2000; Dangl and 

Jones 2001; Dong 2001; Asai et al. 2002; Gershenzon 2002; Hoeberichts and Woltering 2003; see 

‘Discussion’ section). I showed that the number of genes upregulated from these five categories in 

wild-type Williams 82 was several times higher than the genes upregulated in hypernodulation 

mutant NOD1-3 (Fig. 4). Based on previous studies on defense responses in plants, from these five 

categories, I selected genes recognized to be associated with HR or disease resistance 

(Supplementary Table S3; Dangl et al. 2000; Dangl and Jones 2001; Dong 2001; Asai et al. 2002; 

Gershenzon 2002; Hoeberichts and Woltering 2003; see ‘Discussion’ section), i.e., I selected 23 out 

of 52 genes functional in oxidation-reduction process, 16 out of 44 genes in DNA-dependent 

regulation of transcription, 10 out of 33 genes in protein phosphorylation, 13 out of 26 genes in 
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signal transduction, and 23 out of 25 genes in defense response (Supplementary Table S3). Table 2 

was constructed using the data presented in Supplementary Table S3 to highlight the genes 

functional in defense response out of all the other loci shown in Supplementary Table S3 that have 

similar functions. Many genes (51 in Table 2; 85 in Supplementary Table S3) included in the five 

categories are associated with HR or plant disease resistance in wild type (see ‘Discussion’ section 

for details). 

 

3.4. Analysis of pathways where DEGs are functional based on the two types of soybeans’ 

response to rhizobia 

The pathways where 359 out of the total 59l DEGs annotated and upregulated in wild type 

(Williams 82) and 74 out of 591 DEGs annotated and upregulated in hypernodulation mutant 

(NOD1-3) are functional were analyzed (Supplementary Table S4 and Supplementary Image S1; 

Supplementary Table S5 and Supplementary Image S2). Table 3 was constructed from 

Supplementary Tables S4 and S5, focusing on primary and secondary metabolism in terms of 

disease resistance. The total number of sequences (#Seqs) and enzymes (#Enzs) participating in the 

pathways involved in defense responses, including primary and secondary metabolism pathways 

induced by rhizobia, was higher in wild type (#Seqs = 40, #Enzs = 29) than hypernodulation mutant 

(#Seqs = 11, #Enzs = 7; Table 3). The six pathways induced, i.e., starch and sucrose metabolism, 

glycolysis/gluconeogenesis, pentose phosphate pathway, and phenylalanine metabolism in primary 

metabolism, and phenylpropanoid biosynthesis and isoflavonoid biosynthesis in secondary 

metabolism were common to both the plants (Table 3). However, the same #Seqs and #Enzs were 

shared by the two soybeans only in phenylalanine metabolism pathway (#Seqs = 3, #Enzs = 1) in 

primary metabolism and isoflavonoid biosynthesis pathway (#Seqs = 1, #Enzs = 1) in secondary 

metabolism. In the other four pathways, there were more #Seqs and #Enzs in wild type than 

hypernodulation mutant (Table 3). Seven pathways, including oxidative phosphorylation, 
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phenylalanine, tyrosine, and tryptophan biosynthesis, and tryptophan metabolism in primary 

metabolism, and flavonoid, flavones, and flavonol biosynthesis, cyanoamino acid metabolism, and 

nicotinate and nicotinamide metabolism in secondary metabolism, were induced only in wild type, 

but not in hypernodulation mutant (Table 3).  

 

3.5. PCD in the infected areas of wild-type plant Williams 82 

Total DNA was extracted from infected areas at 3.5, 26.5, 37, 66, 78, 97.5, and 122 h after 

inoculation of wild-type soybean Williams 82 and hypernodulation mutant NOD1-3 with rhizobia. 

Extracted DNA was electrophoresed in an agarose gel and stained. A photograph of DNA 

degradation with faint laddering of multiple bands of size approximately 180 bp was taken (Fig. 

5A). DNA degradation appears to be a hallmark of animal apoptosis, a type of PCD (Wyllie 1980; 

Jacobson et al. 1997). Apoptosis is characterized by the activation of endogenous endonucleases 

with subsequent cleavage of chromatin DNA into internucleosomal fragments of roughly 180 bp 

and multiples thereof (McCabe et al. 1997; Danon and Gallois 1998; Enari et al. 1998). This effect 

can be used to detect apoptosis via the DNA laddering assay (Wyllie 1980). The DNA ladder is 

characteristic of apoptosis and can arise during PCD in plants (Ryerson and Heath 1996). DNA 

degradation analysis was conducted in Williams 82 and NOD1-3 using three gel patterns obtained 

from three biological replicates (Fig. 5). The averages of second ratios calculated as 

([Band2]/[Band1] in Williams 82)/([Band2]/[Band1] in NOD1-3) were derived from three 

biological replicates and three technical replicates (quantification of intensity of bands in the three 

biological replicates was performed thrice). The average ratios of ([Band2]/[Band1] in Williams 

82)/([Band2]/[Band1] in NOD1-3) at 3.5, 26.5, 37, 66, 78, 97.5, and 122 h were 3.0, 2.3, 20.0, 5.5, 

1.8, 4.9, and 6.4, respectively (Fig. 5B). Similar DNA degradation result was obtained in a repeat 

experiment using four to five biological replicates (data not shown). These data indicate that DNA 

degradation with faint laddering of multiples of approximately 180 bp occurs in the infected areas 
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of both wild-type soybean Williams 82 and hypernodulation mutant NOD1-3. Additionally, Fig. 5B  

shows that the DNA degradation rate in wild-type Williams 82 is higher than in hypernodulation 

mutant NOD1-3, suggesting that progression of PCD possibly involves the control of root nodule 

number in wild-type soybeans. 

The production of hydrogen peroxide (H2O2) has been recognized as an important feature 

of plant cells that undergo PCD during host-pathogen interaction (Liu and Friesen 2012). I 

performed DAB staining which helps in visualization of H2O2 accumulation in the form of a brown 

precipitate (Thordal-Christensen et al. 1997). Initially, stronger polymerization of DAB was 

observed within approximately 2 cm of the inoculated areas in roots of wild type (Williams 82) 

compared with hypernodulation mutant (NOD1-3) on d2 (Fig. 6). This result indicates that the 

infected areas of wild-type soybeans generate more reactive oxygen species (ROS), including H2O2, 

than those of hypernodulation mutant.  

As clear and countable root nodule primordia (Fig. 2 and Supplementary Fig. S1) and 

generation of ROS (Fig. 6) were detected on d4 and d2, respectively, observation of dead cells was 

performed on d3. To detect and compare dead cells in infected areas of wild-type Williams 82 and 

hypernodulation mutant NOD1-3, roots were stained with trypan blue and toluidine blue, which 

stain dead cells and root nodule primordia, respectively, after rhizobia inoculation on d3 (Fig. 7). 

The results indicated a higher amount of cell death in wild type than hypernodulation mutant, 

whereas the number of nodule primordia was lesser in wild type than hypernodulation mutant (Fig. 

7). This suggests that the number of root nodule primordia in wild-type Williams 82 is restrained by 

cell death. 

 

3.6. Relationship between nodulins and mechanism of regulation of defense response in 

wild-type soybean Williams 82 

Additionally, I investigated if there was an association between nodulins and mechanism of 
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regulation of defense response in wild-type soybean Williams 82 based on the results obtained from 

microarray analysis and the data shown in Supplementary Table S1 (Table 4). Table 4 shows 

patterns of changes in the amount of sequences annotated as nodulin genes. Pattern 6 was similar to 

the one presented in Table 2, which showed a higher fold change on d0 and/or d5, as compared with 

d2 and d4, for most of the genes associated with HR or disease resistance, whereas patterns 1-5 

were different from those shown in Table 2. This suggests that most nodulins are involved in nodule 

organogenesis, but do not function in tandem with the regulatory mechanisms of defense response; 

however, the two nodulins showing pattern 6 are probably associated with these mechanisms. 
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Chapter 4 Discussion 

 

 

I observed that both the numbers of root nodule primordia (St1 + St2) and the ratios of St2 to (St1 + 

St2) in wild-type soybean Williams 82 were noticeably fewer than in hypernodulation mutant 

NOD1-3 on d4, d5, and d6 (Fig. 1B and 2B, and Supplementary Fig. S1), indicating that root 

nodule formation and development are suppressed in wild type during d4-d6, which also suggests 

that these suppression phenomena are genetically and biochemically regulated during d0-d4 after 

inoculation of the wild-type soybean roots with rhizobium. I also discovered characteristics of PCD 

accompanied by accelerated DNA degradation at 3.5 (d0), 26.5 (d1), 37 (d1), 66 (d2), 78 (d3), 97.5 

(d4), and 122 h (d5), higher amount of ROS generation on d2, and markedly more cell death and 

fewer root nodule primordia on d3 after rhizobia inoculation in wild-type soybean Williams 82 than 

hypernodulation mutant NOD1-3 (Fig. 5-7). These findings suggest that the number of root nodules 

in wild-type soybean is probably suppressed by PCD. In addition, I conducted microarray, GO, and 

pathway analyses to detect the transcriptional response controlling the number of root nodules at 

rhizobia infection sites (Table 2 and Table 3). The data obtained from these analyses also 

corroborate the above finding that soybean controls its root nodule number by PCD. Incidentally, it 

is shown that many genes were upregulated on d0 and/or d5, and were downregulated on d2 and/or 

d4 in Williams 82 compared with NOD1-3 (Table 2 and Supplementary Fig. S4), suggesting that 

many genes are probably involved in the suppression of formation and development of root nodule 

primordia on d0 and/or d5, whereas these genes possibly participate in delaying the formation and 

development of root nodule primordia on d2 and/or d4 in wild type compared with the 

hypernodulation mutant. 

 

4.1. R genes are upregulated at the infection sites in wild-type soybean Williams 82 



28 

 

R genes of plants perceive attacks by various pathogens (Shirasu and Schulze-Lefert 2000), and are 

classified into two main classes: (1) Nucleotide-binding site (NBS)-leucine-rich repeats (LRR) 

containing NBS and C-terminal LRR, which can be further divided into Toll interleukin-1 receptor 

(TIR)-NBS-LRR and coiled-coil-NBS-LRR, and (2) extracellular LRR. Tobacco N genes that 

confer resistance to tobacco mosaic virus (TMV) are R genes (Whitham et al. 1994). In the present 

study, gene loci functional in signal transduction, defense response, and protein phosphorylation 

were upregulated in Williams 82, compared with NOD1-3, and these genes are considered to be R 

genes (Table 2). The defense-related genes shown in Table 2 are similar to At3g14460-like gene, 

and were upregulated in the root of wild-type soybean Williams 82 (Table 2). The Arabidopsis 

ortholog (At3g14460) of adenyl cyclases in Zea mays pollen is annotated as disease resistance 

protein belonging to the NBS-LRR family used for pathogen sensing with a role in defense 

responses and apoptosis-like cell death (PCD; DeYoung and Innes 2006; Gehring 2010). Moreover, 

the gene locus Glyma18g36000.1, functional in defense response (Table 2) was upregulated in 

Williams 82, but not in NOD1-3, particularly on d0 and d5. The function of Glyma18g36000.1 is 

predicted to be similar to RPM1-interacting protein 4, which is required for the induction of HR by 

RPM1 in Arabidopsis (Mackey et al. 2002; RPM1 is an NBS-LRR protein from Arabidopsis 

thaliana that confers resistance to Pseudomonas syringae expressing either avirulence [avr] 

Rpm1 or avrB [Grant et al. 1995]). 

 

4.2. Proteins participating in the generation of H2O2 are induced in wild-type soybean Williams 

82 

An oxidative burst leading to the generation of superoxide (O2
-
) and accumulation of H2O2 is a 

characteristic early feature of HR following the perception of an avirulent pathogen attack (Doke 

1983; Jabs et al. 1996; Lamb and Dixon 1997). These ROS generated from this oxidative burst are 

directly protective and drive oxidative cross-linking of cell wall structural proteins that later become 
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lignified (Lamb and Dixon 1997). I detected higher ROS generation on d2, and observed more cell 

death and fewer root nodule primordia in wild-type soybean Williams 82 than hypernodulation 

mutant NOD1-3 on d3 after rhizobia inoculation (Fig. 6 and 7). Enzymes considered to be 

responsible for H2O2 generation include a peroxidase catalyzing oxidation of NADH (Gross et al. 

1977), cell-wall-bound laccase (Bao et al. 1993), NADPH oxidase (Levine et al. 1994; Lamb and 

Dixon 1997; Sagi and Fluhr 2001; Yoshioka et al. 2003), and diamine oxidase (Federico and 

Angelini 1991; Møller and McPherson 1998). In the present study, as shown in Table 2, the gene 

loci functional in the category of oxidation-reduction processes, such as NADH-plastoquinone 

oxidoreductase subunit4, laccase diphenol oxidase family protein isoform1, laccase family protein, 

laccase-11-like, laccase17, peroxidase10-like, and peroxidase64 (for their detailed GO IDs, see 

Table 2), were markedly induced at the infection sites of wild-type roots Williams 82, particularly 

on d0 and d5, compared with NOD1-3. These data imply that these genes are induced in wild type 

for the generation of H2O2, inducing lignin that strengthens cell walls, inhibiting the extension of 

bacteria. 

 

4.3. Kinases involved in mitogen-activated protein kinase (MAPK) cascade, which induces ROS 

and HR-like cell death, are activated in wild-type soybean Williams 82 

Previous studies have indicated that MAPK cascade is involved in the control of ROS generation 

and HR-like cell death induction (Yang et al. 2001; Ren et al. 2002; Katou et al. 2003). MAPK 

kinase (MAPKK) and MAPK are identified as serine/threonine kinases (Matsuda et al. 1993; Katou 

et al. 2003). In the present study, as shown in Table 2, the nine gene loci categorized under protein 

phosphorylation pathway, such as serine/threonine-protein kinase nek2, probable 

serine/threonine-protein kinase At5g41260, serine/threonine-protein kinase ht1-like, probable LRR 

receptor-like serine/threonine-protein kinase At1g14390-like, and MAPKK kinase yoda-like, were 

upregulated at the infection sites in wild-type roots compared with hypernodulation mutant, 
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especially on d0 and d5. I suggest that these genes probably function in MAPK cascade and 

participate in the regulation of ROS generation and HR-like cell death. 

 

4.4. Protein kinases related to calcium influx which triggers oxidative burst or cell death in 

wild-type soybean Williams82 

Calcium influx into the cytoplasm (Chandra and Low 1997, Piedras et al. 1998) and changes in 

protein phosphorylation (Kauss and Jeblick 1995, Miura et al. 1995) are implicated in the activation 

process of the oxidative burst. In soybean cells, H2O2 stimulates Ca
2+

 influx to activate a 

physiological cell death program that is remarkably similar to apoptosis in animals (Levine et al. 

1996). The gene loci described with calcium-dependent protein kinase 3-like and 

calmodulin-domain protein kinase 5 isoform 1 in the category of protein phosphorylation in Table 2 

may be involved in the activation process of the oxidative burst or cell death.  

 

4.5. Several primary and secondary metabolism pathways related to defense response are 

activated in wild-type soybean Williams 82 

Nakane et al. (2003) revealed that high levels of proteins functional in glycolysis and shikimate 

pathway are necessary to condition downstream metabolism, such as isoprenoid and 

phenylpropanoid pathway, and that NADPH produced through the pentose phosphate pathway 

seems to participate in the oxidative burst. Their results demonstrated that signals from the 

pathogen activate not only the secondary metabolism but also the primary metabolism, leading to 

the rapid expression of defense response in potato tubers. This report appears to corroborate our 

finding that acceleration of primary metabolism and secondary metabolism (in the wild-type 

Williams 82 compared with NOD1-3; Table 3) results in hastening of defense response, including 

HR and so-called PCD, which substantially suppresses the number of root nodule primordia in 

Williams 82 as compared with NOD1-3 soybeans. 
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4.6. Suppression of the root nodule primordia in wild-type soybean is regulated by HR and is 

simultaneously controlled by SAR and ISR via phytohormones 

In the present study, the gene locus Glyma02g41700.1, categorized under signal transduction in 

Table 2, is described in several GO IDs, such as JA-mediated signaling pathway, SA biosynthetic 

process, SAR, SA-mediated signaling pathway, regulation of plant-type HR, defense response to 

bacterial pathogens, MAPK cascade, and leaf senescence, and its expression is enhanced in the 

roots of wild-type soybean Williams 82, but not in NOD1-3, particularly on d0 and d5. This result 

suggests that the suppression of generation and development of root nodule primordia in wild-type 

soybean Williams 82 is regulated by HR, and that SAR, SA, JA, and MAPK cascade are involved in 

the suppressive regulation. Similarly, Glyma04g30930.1 categorized under signal transduction in 

Table 2, is functional in SAR, ABA-mediated signaling pathway, response to ethylene stimulus, and 

SA biosynthetic process, as per the GO IDs, and its expression was elevated in the roots of Williams 

82, but not in NOD1-3, particularly on d0 and d5. This result indicates that the suppression of the 

number of root nodule primordia in wild-type Williams 82 is also controlled by SAR, and that SA, 

ET (ethylene), and ABA are involved in the signaling pathway.  

In the present study, the gene locus Glyma11g34940.1, categorized under defense 

response in Table 2, is described as coronatine-insensitive protein1-like, and is functional in JA- 

mediated signaling pathway, defense response to bacterial pathogens, and JA and 

ethylene-dependent systemic resistance, as per the GO IDs, and its expression was promoted in the 

roots of Williams 82, but not in NOD1-3, particularly on d5. In addition, the gene locus 

Glyma13g18410.1, categorized under DNA-dependent regulation of transcription was upregulated 

in wild type, but not in hypernodulation mutant on d0. Glyma13g18410.1 is described as 

ethylene-responsive transcription factor1b (ERF1b)-like. ERF1b is known to act as a transcriptional 

activator, binding to GCC-box PR promoter element, and seems to be a key integrator of ET and JA 

signals in the regulation of ET/JA-dependent defenses (Solano et al. 1998; Lorenzo et al. 2003). 
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Similar to these reports, our results also suggest that the suppression of the number of root nodule 

primordia in wild-type soybean Williams 82 is regulated by JA and ET-dependent defense 

pathways.  

It has become evident that plants utilize multiple pathways to transduce pathogenic 

signals to activate HR, SAR, and other resistance responses, and that SA-mediated SAR is not the 

only pathway that can lead to broad-spectrum disease resistance (Dong 1998). Emerging evidence 

strongly suggests the importance of JA and ET as alternative signals in the induction of resistance 

against microbial pathogens, along with their well-characterized roles in wound-induced systemic 

resistance (WSR) and ISR in plants (Doares et al. 1995; Dong 1998; Pieterse and van Loon 1999). 

ISR differs from pathogen-inducible SAR, and is not accompanied by the accumulation of SA or the 

systemic expression of PR genes, but requires JA and ET (Pieterse et al. 1996; Knoester et al. 1999; 

Van Wees et al. 2000). Van Wees et al. (2000) demonstrated the enhancement of induced disease 

resistance due to the simultaneous activation of SAR and ISR pathways in Arabidopsis.  

Based on these results and the reports stated above, it appears that suppression of the 

number of root nodule primordia in wild-type soybean Williams 82 is regulated by HR and is 

simultaneously controlled by SAR and ISR (WSR).  

 

4.7. Numeral suppression of nodule primordia in wild-type soybean is simultaneously regulated 

by LAR and SAR along with HR via WRKY network 

Plants are capable of extensive reprogramming of their transcriptome in a highly dynamic and 

temporal manner (Pandey and Somssich 2009). This regulation in response, leading to adaptive 

plasticity of plants in highly variable environments, is mainly achieved by enforcement of a 

network of various transcription factors (TFs; Pandey and Somssich 2009). WRKY TFs are a large 

family of regulatory proteins forming such a network (Eulgem and Somssich 2007).  

The WRKY TF superfamily consists of 74 and 109 members in Arabidopsis (Arabidopsis 
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thaliana) and rice (Oryza sativa), respectively (Eulgem and Somssich 2007, Ross et al. 2007, 

Pandey and Somssich 2009). The majority of the analyzed WRKY genes respond to pathogen attack 

and to the endogenous signal molecule SA (Eulgem and Somssich 2007, Pandey and Somssich 

2009). 

Plant innate immunity is composed of two inter-connected branches: (1) PTI, or 

pathogen-associated molecular pattern (PAMP)-triggered immunity, which is initiated by the 

recognition of molecular patterns (such as bacterial flagellin) of many pathogens by extracellular 

receptor-like kinases (RLKs) and often activates downstream MAPK cascades, defense genes, 

production of ROS, and deposition of callose to reinforce the cell wall at sites of infection; and (2) 

ETI, or effector-triggered immunity, driven by plant disease resistance proteins (major R gene 

products) that recognize directly or indirectly specific pathogen-derived effectors (Chisholm et al. 

2006). PTI and ETI activate LAR as well as SAR, which are modulated by phytohormones, 

especially JA and SA (Durrant and Dong 2004, Bostock 2005). JA-dependent plant defenses are 

generally activated by necrotrophic pathogens and chewing insects, whereas SA-dependent 

defenses are often triggered by biotrophic pathogens. JA and SA signaling usually act 

antagonistically, but synergism between these two phytohormons has also been observed (Mur et al. 

2006). These responses to pathogen attack require large-scale transcriptional reprogramming, 

including those of TF families such as WRKY genes (Eulgem 2005, Ryu et al. 2006, Naoumkina et 

al. 2008). In addition, WRKY TFs can modulate the expression of many PR genes via binding to a 

W-box ([T][T]TGAC[C/T]) in PRs promoters, and result in cell death (Yang et al. 2009, Rushton et 

al. 2010, Tang et al. 2013).  

In the root of wild-type soybean Williams 82, the gene locus, Glyma14g12260.1 

belonging to the category of protein phosphorylation in Table 2 is described as lrr receptor-like 

kinase-family protein in Seq. Description, and its expression is promoted than in hypernodulation 

mutant NOD1-3, particularly on d0 and d4. The lrr receptor-like kinase-family protein may be 
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thought to belong to one of R genes, also be used to one of extracellular RLKs to recognize PAMP 

in PTI. Additionally, in the root of wild-type soybean Williams 82, the gene loci, Glyma01g31920.1, 

Glyma14g38010.1, Glyma18g22730.1, and Glyma18g37630.1 belonging to the category of 

regulation of transcription, DNA-dependent in Table 2 are described as probable wrky transcription 

factor 33-like, probable wrky transcription factor 33, probable wrky transcription factor 21, and 

wrky transcription factor 21 family protein in Seq. Description, respectively, and their expressions 

are enhanced than in hypernodulation mutant NOD1-3, particularly on d0 and/or d5. Moreover, in 

the root of wild-type soybean Williams 82, the gene locus, Glyma03g28850.1 belonging to the 

category of defense response in Table 2 is described as endo-beta- -glucanase in Seq. Description, 

and as carbohydrate metabolic process, and defense response in GO IDs, and its expression is 

promoted than in hypernodulation mutant NOD1-3, particularly on d5. Bata-glucanase represents a 

group of carbohydrate enzymes that break down beta-glucan, a polysaccharide made of several 

glucose sub-units. These glucans also create the cell wall of certain types of pathogens, such as 

fungi or bacteria. This hydrolase is known as a member of PR genes induced by the infection of 

microbes in plants. Furthermore, in the root of wild-type soybean Williams 82, the gene locus, 

Glyma19g24520.1 belonging to the category of defense response in Table 2 is described as 

regulation of plant-type hypersensitive response and negative regulation of programmed cell death 

in GO IDs, and its expression is downregulated almost 3 times than in hypernodulation mutant 

NOD1-3 on d4, implying that the PCD triggered by HR is much more progressed in wild-type 

Williams 82 than in hypernodulation mutant NOD1-3, and which leads to the suppression of nodule 

primordia in wild-type soybean Williams 82. 

These results and the reports mentioned above suggest that the suppression of the number 

of nodule primordia in wild-type soybean Williams 82 is simultaneously regulated by LAR and 

SAR, which require MAPK cascades, ROS, phytohormones, WRKY TFs and PR genes, along with 

HR during the nodule primordial appearance and the subsequent nodule formational and 
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developmental processes.  

The importance of small RNAs (smRNAs), including micro RNAs (miRNAs) and small 

interfering RNAs (siRNAs), in plant processes related to adaptation to (a)biotic stresses is 

increasingly becoming evident, and the endogenous plant-derived smRNAs probably have broad 

implications in posttranscriptionally regulating plant response to pathogen attack (Navarro et al. 

2006, Pandey and Baldwin 2007, Voinnet 2008, Pandey and Somssich 2009). The smRNAs regulate 

gene expression posttranscriptionally in a process often called RNA interference, RNA silencing, or 

posttranscriptional gene silencing (PTGS; Pandey and Somssich 2009). Previous data show the 

existence of a WRKY-smRNA interactome, where on the one hand, pathogen attacks trigger the 

expression of WRKY genes that regulate cellular smRNA populations, and on the other hand, several 

differentially regulated smRNAs modulate WRKY TF levels by targeting their transcripts (Zhang et 

al. 2008, Zhou et al. 2008, Pandey and Somssich 2009). RNA-dependent RNA polymerase (RdRP) 

synthesizes smRNAs, and is induced by SA and pathogen attacks activating plant defense response 

(Xie et al. 2001, Pandey and Somssich 2009). In the root of wild-type soybean Williams 82, the 

gene locus, Glyma08g04490.1 belonging to the category of regulation of transcription, 

DNA-dependent in Table 2 is described as actin-related protein 4-like in Seq. Description, and as 

chromatin silencing by small RNA; production of miRNAs involved in gene silencing by miRNA in 

GO IDs, and its expression is upregulated than in hypernodulation mutant NOD1-3, particularly on 

d0 and d5.  

Our results and the reports described above suggest that the suppression of the number of 

nodule primordia in wild-type soybean Williams 82 is also regulated by WRKY-smRNA 

interactome during the nodule primordia appearance and the subsequent nodule formational and 

developmental processes.  

 

4.8. Activation of autophagy in wild-type soybean Williams 82 
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Research on plant PCD has focused mainly on two categories: PCD during normal development and 

PCD during HR triggering by pathogen infection (Lv et al. 2014). Previous studies have suggested 

that autophagy plays crucial roles in both these processes. Kwon et al. (2010) reported that 

autophagy occurred during tracheary element (TE) differentiation, and that RabG3b, being a 

component of autophagy, regulated the TE PCD in vitro in Arabidopsis cultures. Kwon et al. (2013) 

also showed that RabG3b plays a positive role in autophagy and promotes HR PCD in response to 

avirulent bacterial pathogens in Arabidopsis. Transgenic plants overexpressing RabG3b displayed 

accelerated, unrestricted HR PCD within 1 d of infection, in contrast to the autophagy-defective 

atg5-1 mutant, which gradually developed chlorotic cell death of uninfected sites over several days 

(Kwon et al. 2013). Escamez et al. (2016) proposed that eukaryotic cells undergoing PCD tightly 

regulate the level of autophagy to avoid detrimental consequences for the surrounding cells. These 

reports suggest that autophagy has substantial implications for PCD. In the roots of wild-type 

soybean Williams 82, expression of the gene locus Glyma09g41160.1, categorized under protein 

phosphorylation and autophagy as per the GO ID, was upregulated in wild type, but not in 

hypernodulation mutant, particularly on d0 and d5 (Table 2). In corroboration with the reports stated 

above, our results suggest that activation of autophagy triggers PCD, or vice versa, to protect other 

cells from bacteria in wild-type soybean Williams 82. This result also implies that root nodule 

formation and development are suppressed by HR PCD in wild-type soybean Williams 82.  

 

4.9. Detection of DNA degradation at infection sites in soybean roots 

In most multicellular organisms, PCD is built into the routine processes of development, growth, 

and response to environmental stresses (Wang H et al. 1996; Ito and Fukuda 2002). Formation of 

DNA ladder on visualization by gel electrophoresis is characteristic of apoptosis, and can arise 

during PCD in plants (Ryerson and Heath 1996), although it does not occur in all forms of PCD 

(McCabe et al. 1997). In plants, the same apoptotic-like DNA ladder has been reported in PCD that 
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is associated with death of cereal aleurone or endosperm (Wang M et al. 1996; Young et al. 1997), 

senescence of the carpel, petal, and leaf (Orzáez and Granell 1997a; 1997b; Yen and Yang 1998), 

loss of cell viability in cell-suspension cultures (Callard et al. 1996), abiotic stress-induced cell 

death, such as by cold , salt stress, D-mannose, and UV-C radiation (Katsuhara 1997; Koukalova et 

al. 1997; Danon and Gallois 1998; Stein and Hanson 1999), and biotic stress-induced cell death, 

such as the HR to microbial pathogens (Ryerson and Heath 1996; Wang H et al. 1996).  

Consistent with these studies, our results also show that DNA degradation with faint 

laddering of multiples of approximately 180 bp fragments occurs in the rhizobia-infected areas of 

soybean roots (Fig. 5), although Levin et al. (1996) reported that DNA in soybean cells treated with 

an avirulent strain of a pathogen seemed to be fragmented into large, ~50kb pieces. Moreover, the 

DNA degradation rate in wild-type Williams 82 is higher than in hypernodulation mutant NOD1-3 

(Fig. 5), suggesting a possibility that PCD is accelerated in wild-type soybean, which leads to lesser 

nodulation in wild type compared with hypernodulation mutant. 
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Chapter 5 Conclusion 

 

 

Our present study suggests that the formation of root nodules in wild-type soybean Williams 82 is 

regulated by PCD accompanied with HR, and is simultaneously controlled by SAR and ISR. It 

seems that LAR is induced due to HR around the local lesions caused by bacterial infection, and 

leads to a high degree of resistance in wild-type soybean Williams 82. The strong resistance 

exhibited by LAR is due to the expression of genes involved in both SAR and ISR in the regions 

surrounding the HR site. 

To our knowledge, this is the first study indicating involvement of defense responses in 

AON. Further study is needed to understand the relationship between long-distance signaling 

factors already reported in AON and defense responses in regulation of nodule formation to balance 

nutritional requirements and energy status in soybean plants. 
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 Figure 2. The number of nodule primordia in wild-type soybean Williams 82 and hypernodulation mutant 

NOD1-3. (A) Classification according to developmental stages of root nodule primordia. Stage1 represents 

dividing tissue in the deep cortical part without an upheaval of cortical cells (a and b). Stage2 is represented by 

a bulge in the cortical layer without any constriction (b). Lateral root primordia develop from the vascular 

bundles (b and c). Arrows point to Stage1, Stage2, or lateral root primordium. Bars = 2 mm in A. (B) The 

number of root nodule primordia (Stage1 = St1, Stage2 = St2, Stage1 + Stage2 = St1 + St2) on d4, d5, and d6 

in wild type and hypernodulation mutant. Each bar represents the mean ± standard error obtained from five to 

eight different samples. Asterisks indicate significant differences at P<0.01 (**) and P<0.05 (*) between wild 

type and hypernodulation mutant (Welch’s t-test, Mann-Whitney’s U test, and Student’s t-test). 
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Time (h) 3.5 26.5 37 66 78 97.5 122 
Williams 82 
/ NOD1-3 Lane1/Lane8 Lane2/Lane9 Lane3/Lane10 Lane4/Lane11 Lane5/Lane12 Lane6/Lane13 Lane7/Lane14 
Averaged 

second ratio 3.0 ± 0.4  2.3 ± 1.3 20.0 ± 19.0 5.5 ± 4.8 1.8 ± 0.9 4.9 ± 1.4 6.4 ± 5.7 

A 

B 

Figure 5. DNA degradation in the areas infected with rhizobia in wild type (Williams 82) and hypernodulation mutant 

(NOD1-3). Total DNA was extracted from infected areas at 3.5, 26.5, 37, 66, 78, 97.5, and 122 h after rhizobia inoculation. 

(A) The representative gel photograph out of the three replicates is shown. (B) Quantification and comparison of DNA 

degradation between Williams 82 and NOD1-3. First, the intensities of Band2 (approximately 180 bp DNA) and Band1 

(undegraded DNA) from each lane shown in (A) were quantified and the ratio of intensities, i.e., (Band2)/(Band1), was 

calculated for each lane. Then, the second ratio calculated as ([Band2]/[Band1] in Williams 82)/([Band2]/[Band1] in NOD1-3), 

obtained at the time points 3.5, 26.5, 37, 66, 78, 97.5, and 122 h from Williams 82 and NOD1-3 were compared. Finally, the 

second ratios obtained at the same time points from three separate experiments (three biological replicates) were averaged 

and the mean ± standard errors are shown.  
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Figure 7. Comparison of dead cells in infected areas of wild type (Williams 82) and hypernodulation mutant (NOD1-3). To compare cell 

death in wild type and hypernodulation mutant, roots collected from infected (+) and noninfected plants (-) on d3 and stained with trypan 

blue and toluidine blue were observed under the stereomicroscope. Images of roots enclosed by red squares were magnified. Red, 

green, and blue arrowheads point to dead cells, nodule primordia, and lateral root primordia, respectively. Bars = 2 mm. 
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Tables 

 

Table 1. Number of differentially expressed genes (DEGs) in wild-type soybean Williams 82 upregulated (Up) and downregulated (Down) 

compared with NOD1-3 on d0 (immediately following rhizobium inoculation), d2 (2 days after inoculation), d4, and d5.  

Gene Category Number of Genes Percentage in total DEGs 

Up-d0 244 41.3 

Up-d2 33 5.6 

Up-d4 11 1.9 

Up-d5 254 43 

Down-d0 30 5.1 

Down-d2 0 0 

Down-d4 62 10.5 

Down-d5 32 5.4 
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Table 2. Five categories of genes associated with hypersensitive response or disease resistance in Williams 82  

Categories Gene locus Fold change Seq. description GO IDs 

d0 d2 d4 d5 

Oxidation-reduction 

process 

Glyma01g35660.1 2.91 1.80 2.70 4.29 Abscisic acid 8 -hydroxylase 1-like P:oxidation-reduction process 

Glyma02g43600.1 1.18 3.12 1.03 1.65 1-Aminocyclopropane-1-carboxylate oxidase P:ethylene biosynthetic process; P:fruit ripening;                   

P:oxidation-reduction process 

Glyma09g01110.1 1.51 1.42 1.27 3.56 1-Aminocyclopropane-1-carboxylate oxidase P:ethylene biosynthetic process; P:oxidation-reduction process 

Glyma13g43850.1 5.87 1.85 2.21 1.88 Gibberellin 3-beta-dioxygenase 1-like P:oxidation-reduction process 

Glyma15g01500.1 3.53 0.74 1.44 1.19 Gibberellin 3-beta-dioxygenase 1-like P:oxidation-reduction process 

Glyma16g13830.1 3.06 0.97 0.46 2.79 NADH-plastoquinone oxidoreductase subunit 4 P:ATP synthesis coupled electron transport 

Glyma18g42520.1 3.16 1.02 0.48 2.77 Laccase diphenol oxidase family protein isoform 1 P:lignin catabolic process; P:oxidation-reduction process 

Glyma14g06760.1 3.51 0.78 0.59 2.41 Laccase family protein P:secondary cell wall biogenesis; P:lignin catabolic process; 

P:oxidation-reduction process 

Glyma01g37930.1 3.68 1.33 0.87 2.56 Laccase-11-like P:lignin catabolic process; P:oxidation-reduction process 

Glyma18g40070.1 2.21 1.43 0.63 4.33 Laccase 17 P:lignin catabolic process; P:oxidation-reduction process 

Glyma11g06180.1 1.07 1.25 0.88 5.28 Peroxidase 10-like P:oxidation-reduction process; P:response to oxidative stress 

Glyma11g08520.1 1.57 1.05 0.74 3.13 Peroxidase 64 P:oxidation-reduction process; P:response to oxidative stress 

Other 11 gene loci       

Regulation of 

transcription, 

DNA-dependent 

Glyma06g13040.1 3.62 1.11 0.79 1.12 Ethylene-responsive transcription factor crf3-like P:regulation of transcription, DNA-dependent 

Glyma09g38370.1 3.09 1.05 0.44 1.41 AP2-like ethylene-responsive transcription factor 

bbm2-like 

P:regulation of transcription, DNA-dependent 

Glyma13g18410.1 4.03 1.11 0.79 1.02 Ethylene-responsive transcription factor 1b-like P:regulation of transcription, DNA-dependent 

Glyma20g33800.1 6.84 2.54 0.81 2.24 Ethylene-responsive transcription factor P:regulation of transcription, DNA-dependent 

Glyma06g11700.1 2.40 1.07 1.28 3.08 Ethylene-responsive transcription factor ERF012-like P:regulation of transcription, DNA-dependent 

Glyma11g01640.1 0.91 1.17 1.69 4.14 Ethylene-responsive transcription factor ERF021-like P:regulation of transcription, DNA-dependent 

Glyma01g31920.1 3.72 1.43 1.07 2.94 Probable WRKY transcription factor 33-like P:regulation of transcription, DNA-dependent 

Glyma14g38010.1 3.14 1.30 1.04 1.93 Probable WRKY transcription factor 33 P:regulation of transcription, DNA-dependent 

Glyma18g22730.1 2.43 0.88 0.63 4.99 Probable WRKY transcription factor 21 P:regulation of transcription, DNA-dependent 

Glyma18g37630.1 2.22 1.12 0.70 4.18 WRKY transcription factor 21 family protein P:regulation of transcription, DNA-dependent 

Glyma08g04490.1 3.45 1.28 0.40 2.42 Actin-related protein 4-like P:chromatin silencing by small RNA; P:production of miRNAs involved in 

gene silencing by miRNA 

Other 5 gene loci       

Protein phosphorylation Glyma03g16340.1 3.41 1.66 0.51 2.61 Calcium-dependent protein kinase 3-like P:response to salt stress; P:regulation of anion channel activity 

Glyma03g31330.1 2.46 1.12 0.65 3.05 Serine threonine-protein kinase nek2 P:protein phosphorylation 

Glyma03g15830.1 2.31 1.94 0.90 3.23 Probable serine threonine-protein kinase At5g41260 P:protein phosphorylation 

Glyma06g19440.1 3.25 1.29 0.70 2.46 Serine threonine-protein kinase ht1-like P:protein phosphorylation 

Glyma09g41160.1 2.39 1.87 1.00 2.91 Probable receptor-like protein kinase At5g15080-like P:protein phosphorylation; P:autophagy 

      (Continued) 



48 

 

 

 

Table 2. (Continued). 

Categories Gene locus Fold change Seq. description GO IDs 

d0 d2 d4 d5 

 

Glyma14g00320.1 4.35 1.37 1.10 2.18 Calmodulin-domain protein kinase 5 isoform 1 P:protein phosphorylation 

Glyma14g12260.1 3.09 0.74 2.95 1.15 LRR receptor-like kinase family protein P:protein phosphorylation 

Glyma18g16880.1 1.77 1.53 1.25 3.02 Probable LRR receptor-like serine threonine-protein 

kinase At1g14390-like 

P:protein phosphorylation 

Glyma18g24950.1 2.23 0.50 0.50 5.10 Mitogen-activated protein kinase kinase kinase 

yoda-like 

P:protein phosphorylation 

Signal transduction Glyma02g41700.1 4.68 1.21 1.23 3.71 Ribulose bisphosphate carboxylase oxygenase 

activase chloroplastic-like 

P:jasmonic acid-mediated signaling pathway; P:salicylic acid biosynthetic 

process; P:systemic acquired resistance, salicylic acid-mediated 

signaling pathway; P:regulation of plant-type hypersensitive response; 

P:defense response to bacterium; P:MAPK cascade; P:leaf senescence 

Glyma04g30930.1 2.77 1.30 1.00 4.02 ALA-interacting subunit 3-like P:systemic acquired resistance; P:abscisic acid mediated signaling 

pathway; P:response to ethylene stimulus; P:salicylic acid biosynthetic 

process 

Glyma03g07000.1 2.18 3.11 1.62 4.13 Disease resistance protein (TIR-NBS-LRR class) P:signal transduction 

Glyma03g07120.1 2.11 1.59 2.12 3.74 Disease resistance protein (TIR-NBS-LRR class) P:signal transduction 

Glyma06g44520.1 2.12 0.99 0.73 3.56 Leucine-rich repeat family protein P:signal transduction 

Other 7 gene loci        

Defense response Glyma03g04530.1 2.07 1.30 1.81 2.97 Disease resistance protein At3g14460-like P:defense response 

Glyma03g05350.1 3.18 1.77 1.22 3.75 Disease resistance protein At3g14460-like P:defense response 

Glyma03g05420.1 1.36 1.60 1.31 2.97 Disease resistance protein At3g14460-like P:defense response 

Glyma03g04030.1 2.25 0.84 0.74 2.92 Disease resistance protein At3g14460-like P:defense response 

Glyma03g04140.1 4.18 1.20 1.40 2.27 Disease resistance protein At3g14460-like P:defense response 

Glyma17g36420.1 4.72 1.17 0.77 2.40 Probable disease resistance protein At4g33300-like P:defense response 

Glyma03g06920.1 2.32 3.04 1.25 3.83 TMV resistance protein N-like isoform X1 P:defense response; P:signal transduction 

Glyma06g40740.1 1.33 1.41 1.04 3.07 TMV resistance protein N-like P:defense response; P:recognition of pollen; P:signal transduction 

Glyma04g40990.1 3.17 0.89 1.39 2.56 Probable 6-phosphogluconolactonase 

chloroplastic-like 

P:cellular response to redox state; P:pentose-phosphate shunt; 

P:defense response to bacterium 

Glyma11g34940.1 1.87 1.22 0.66 3.29 Coronatine-insensitive protein 1-like P:jasmonic acid mediated signaling pathway; P:defense response to 

bacterium; P:jasmonic acid and ethylene-dependent systemic resistance 

Glyma20g04280.1 3.51 0.99 0.48 1.91 NHL repeat-containing family protein P:virus induced gene silencing; P:vegetative phase change; P:RNA 

splicing, via endonucleolytic cleavage and ligation 

Glyma18g36000.1 3.71 1.15 0.85 2.36 RPM1 interacting protein 4 transcript protein P:cellular process; P:innate immune response; P:response to bacterium 

Glyma03g28850.1 1.23 1.08 1.40 3.08 Endo-beta- -glucanase P:carbohydrate metabolic process; P:defense response 

Glyma19g24520.1 1.13 1.17 0.34 1.33 Lysine histidine transporter 1-like P:regulation of plant-type hypersensitive response; P:negative regulation 

of programmed cell death 

Other 9 gene loci       
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Table 3. Pathways related to defense response induced by pathogen signals in Williams 82 and NOD1-3 

Cultivar Metabolism Pathway #Seqs #Enzs 

Williams 82 Primary metabolism Starch and sucrose metabolism 11 8 

  
Glycolysis / gluconeogenesis 3 2 

  
Pentose phosphate pathway 4 2 

  
Oxidative phosphorylation 2 1 

  
Phenylalanine, tyrosine and tryptophan biosynthesis 1 1 

  
Tryptophan metabolism  1 1 

 
  Phenylalanine metabolism  3 1 

 
Secondary metabolism Phenylpropanoid biosynthesis 4 2 

  
Flavonoid biosynthesis 3 3 

  
Flavone and flavonol biosynthesis 1 1 

  
Isoflavonoid biosynthesis 1 1 

  
Cyanoamino acid metabolism 3 3 

    Nicotinate and nicotinamide metabolism 3 3 

NOD1-3 Primary metabolism Starch and sucrose metabolism 2 2 

  
Glycolysis / gluconeogenesis 1 1 

  
Pentose phosphate pathway 1 1 

 
  Phenylalanine metabolism 3 1 

 
Secondary metabolism Phenylpropanoid biosynthesis 3 1 

    Isoflavonoid biosynthesis 1 1 
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Table 4. Patterns of fold changes of the sequences annotated as nodulin genes in wild-type soybean Williams 82 and hypernodulation mutant NOD1-3 

  Patterns 1-5 are based on microarray analysis and pattern 6 is from Supplementary Table S1. Fold change was calculated as the ratio of expression level of a gene obtained from Williams 82 

compared with NOD1-3. 

Pattern of fold change Column ID Gene assignment Gene symbol Fold change 

d0 d2 d4 d5 

1 11882918 D13506 // LOC547773 // early nodulin // --- // 547773 LOC547773 1.08 1.25 0.83 1.22 

11889712 AF065435 // LOC547522 // nodulin // --- // 547522 LOC547522 1.08 1.10 1.02 1.09 

12154311 D13505 // LOC547772 // early nodulin // --- // 547772 LOC547772 1.02 0.97 0.96 0.85 

11828625 L12257 // LOC547967 // nodulin-26 // --- // 547967 /// AF047049 // SPCP1 // SPCP LOC547967 1.00 1.34 1.31 1.23 

12056652 L12258 // LOC547794 // nodulin-26 // --- // 547794 LOC547794 0.98 1.08 1.35 1.27 

12104581 X05091 // LOC548101 // nodulin-27 (AA 1-213) // --- // 548101 LOC548101 0.94 0.98 1.09 0.86 

12047356 D38015 // LOC547778 // late nodulin // --- // 547778 LOC547778 0.92 0.94 0.94 0.83 

12047367 D38015 // LOC547778 // late nodulin // --- // 547778 LOC547778 0.91 0.95 1.12 1.05 

12071959 X03979 // LOC547903 // nodulin (E27) (aa 1-360) // --- // 547903 LOC547903 0.90 0.81 0.90 0.94 

11868439 X16488 // LOC547974 // nodulin-21 (AA 1-201) // --- // 547974 LOC547974 0.88 0.82 1.01 0.75 

12180188 X05092 // LOC547905 // nodulin-26b (AA 1-213) // --- // 547905 LOC547905 0.88 0.82 1.02 1.03 

2 11765532 D13503 // LOC547771 // early nodulin // --- // 547771 LOC547771 1.18 1.29 0.37 0.66 

11990922 AF434718 // GmN6l // nodulin 6l // --- // 547629 GmN6l 0.99 1.06 0.42 0.66 

12134491 D13502 // LOC547770 // early nodulin // --- // 547770 /// X69157 // ENOD55-2 //  LOC547770 0.88 1.01 0.43 0.60 

11798675 D13504 // ENOD40-1 // early nodulin // --- // 547926 /// X69155 // ENOD40-1 // e ENOD40-1 1.70 1.72 0.62 0.64 

3 11909166 DQ418880 // SAN1A // senescence-associated nodulin 1A // --- // 100101864 SAN1A 1.91 2.54 0.91 2.23 

12201584 AB002809 // Uox // nodulin 35 // --- // 100037445 Uox 1.81 1.84 1.03 2.28 

11805771 X69156 // ENOD55-1 // nodulin // --- // 547927 ENOD55-1 0.81 1.43 0.55 1.05 

4 11927963 X04782 // LOC547904 // nodulin // --- // 547904 LOC547904 0.88 1.04 1.53 0.87 

5 11981141 AB002810 // LOC547453 // nodulin 35 // --- // 547453 /// M63743 // LOC547453 //  LOC547453 1.36 0.96 0.90 1.52 

6 11878627 Nodulin 21-like transporter family protein LOC100783910 2.49 1.65 1.80 3.75 

12087773 Early nodulin LOC100818460 2.15 1.30 0.75 3.24 
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Supplementary figures 
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Figure S2. Confirmation of the absence of genomic DNA contamination in total RNA. A segment of the ubiquitin gene was 

amplified by PCR using ubiquitin (SUBI-1) F and ubiquitin (SUBI-1) R primers in positive control lanes from 10-17. Compared 

with positive control lanes, no amplification of the ubiquitin gene was obtained using the same primers from the negative 

controls (2-9). One out of the three biological replicates was selected at random for this experiment. 

Lane 1: Marker                           
Lane 2: W (+) d0 
Lane 3: N (+) d0 
Lane 4: W (+) d2 
Lane 5: N (+) d2 
Lane 6: W (+) d4 
Lane 7: N (+) d4 
Lane 8: W (+) d5 
Lane 9: N (+) d5 
Lane 2-9: N (Negative controls): Water was added instead of a reverse transcriptase enzyme Super Script III RT. 
Lane 10-17: P (Positive controls): The reverse transcriptase enzyme Super Script III RT was used. 

W: Williams 82 
N: NOD1-3 
(+): rhizobium inoculation 
d0: 0 day 
d2: 2 days 
d4: 4 days 
d5: 5 days 

Lane 10: W (+) d0 
Lane 11: N (+) d0 
Lane 12: W (+) d2 
Lane 13: N (+) d2 
Lane 14: W (+) d4 
Lane 15: N (+) d4 
Lane 16: W (+) d5 
Lane 17: N (+) d5 

Fig. S2 
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Supplementary tables 

 

 

Supplementary Table S1: (Table S1 is too large to be placed here. Please see the paper entitled 

“Involvement of programmed cell death in suppression of the number of root nodules formed in 

soybean induced by Bradyrhizobium infection” at SOIL SCIENCE AND PLANT NUTRITION, 

2017 VOL. 63, NO. 6, 561–577. https://doi.org/10.1080/00380768.2017.1403842) 
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Table S2. GO-terms filtered (by selecting more than 15 sequences) from the 429 annotated genes 

GO-id GO-term Score Percentage in total score 

GO:0055114 oxidation-reduction process 52 6.7 

GO:0006355 regulation of transcription, DNA-dependent 44 5.7 

GO:1901575 organic substance catabolic process 33 4.2 

GO:0006468 protein phosphorylation 33 4.2 

GO:0009628 response to abiotic stimulus 28 3.6 

GO:0007165 signal transduction 26 3.3 

GO:0044248 cellular catabolic process 26 3.3 

GO:0006952 defense response 25 3.2 

GO:0055085 transmembrane transport 24 3.1 

GO:1901135 carbohydrate derivative metabolic process 23 3.0 

GO:0048513 organ development 23 3.0 

GO:0009791 post-embryonic development 22 2.8 

GO:0009117 nucleotide metabolic process 21 2.7 

GO:0006996 organelle organization 21 2.7 

GO:0048608 reproductive structure development 20 2.6 

GO:0009888 tissue development 19 2.4 

GO:0048367 shoot system development 19 2.4 

GO:0046394 carboxylic acid biosynthetic process 19 2.4 

GO:0006812 cation transport 19 2.4 

GO:0006629 lipid metabolic process 18 2.3 

GO:0032787 monocarboxylic acid metabolic process 18 2.3 

GO:1901700 response to oxygen-containing compound 18 2.3 

GO:0046907 intracellular transport 17 2.3 

GO:0009653 anatomical structure morphogenesis 17 2.3 

GO:1901566 organonitrogen compound biosynthetic process 17 2.3 

GO:0016051 carbohydrate biosynthetic process 17 2.3 

GO:0006520 cellular amino acid metabolic process 17 2.3 

GO:0051707 response to other organism 17 2.3 

GO:0009725 response to hormone stimulus 16 2.1 

GO:0010035 response to inorganic substance 16 2.1 

GO:1901657 glycosyl compound metabolic process 16 2.1 

GO:0006073 cellular glucan metabolic process 16 2.1 

GO:0071310 cellular response to organic substance 16 2.1 

GO:0065008 regulation of biological quality 15 1.9 

GO:0006820 anion transport 15 1.9 

GO:0015031 protein transport 15 1.9 

 
Total score 778 
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Supplementary Table S3: (Table S3 is too large to be placed here. Please see the paper entitled 

“Involvement of programmed cell death in suppression of the number of root nodules formed in 

soybean induced by Bradyrhizobium infection” at SOIL SCIENCE AND PLANT NUTRITION, 

2017 VOL. 63, NO. 6, 561–577. https://doi.org/10.1080/00380768.2017.1403842) 



58 

 

Supplementary Table S4: (Table S4 is too large to be placed here. Please see the paper entitled 

“Involvement of programmed cell death in suppression of the number of root nodules formed in 

soybean induced by Bradyrhizobium infection” at SOIL SCIENCE AND PLANT NUTRITION, 

2017 VOL. 63, NO. 6, 561–577. https://doi.org/10.1080/00380768.2017.1403842) 
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Supplementary Table S5: (Table S5 is too large to be placed here. Please see the paper entitled 

“Involvement of programmed cell death in suppression of the number of root nodules formed in 

soybean induced by Bradyrhizobium infection” at SOIL SCIENCE AND PLANT NUTRITION, 

2017 VOL. 63, NO. 6, 561–577. https://doi.org/10.1080/00380768.2017.1403842) 
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Supplementary images 

 

 

Supplementary Image S1: (Image S1 [65 pathway maps] is too large to be placed here. Please see 

the paper entitled “Involvement of programmed cell death in suppression of the number of root 

nodules formed in soybean induced by Bradyrhizobium infection” at SOIL SCIENCE AND PLANT 

NUTRITION, 2017 VOL. 63, NO. 6, 561–577. https://doi.org/10.1080/00380768.2017.1403842) 
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Supplementary Image S2: (Image S2 [15 pathway maps] is too large to be placed here. Please see 

the paper entitled “Involvement of programmed cell death in suppression of the number of root 

nodules formed in soybean induced by Bradyrhizobium infection” at SOIL SCIENCE AND PLANT 

NUTRITION, 2017 VOL. 63, NO. 6, 561–577. https://doi.org/10.1080/00380768.2017.1403842)
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