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Summary

This dissertation considers robust nonlinear control design for uncertain

systems with disturbances using operator-based right coprime factorization

method, which complements the theoretical analysis and control design of

nonlinear systems. That is, by using operator theory a unified control design

scheme is provided for rejecting nonlinear systems with uncertainties and

disturbances as well as robustly bounded input bounded output stable is

realized.

With the increasing complexity requirement of the modern technology, a

great number of systems possess nonlinear property and multivariable char-

acteristic. Therefore, researches on the nonlinear systems have attracted

many researchers’ attention due to the important role they have played in

real application. Especially, these issues, for instance, robust analysis, out-

put tracking problem and uncertainties as well as disturbances reduction

which are belong to the nonlinear systems still remain challenging owing to

their complex structures and the nonlinear characteristics. Meanwhile, the

uncertainties almost exist in many kinds of systems where the uncertain-

ties are major concern of two types in the control of uncertain nonlinear

systems-parametric perturbations, general perturbations yielding from mod-

eling errors and external disturbances which are central considered in this

dissertation due to making a tremendous affection within the control systems,

hence, it is necessary to reduce the adverse effects from the uncertainties as

well as disturbance.

In this dissertation, firstly, by introducing a nonlinear operator controller,

operator-based right coprime factorization is employed to consider the non-

linear system with disturbances. Then, based on the proposed feasible design

schemes, adverse effect resulting from disturbance in nonlinear system is re-

duced. Secondly, the nonlinear systems with uncertainties and disturbances
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are considered by redesigning the feedback controller, which can deal with a

broader class of nonlinear systems. Further, three cases respectively for il-

lustrating the relationship between the proposed conditions and the internal

uncertainties or disturbances. Meantime, by the proposed design scheme,

both of robust stability and tracking performance are realized, which can

get better performances. Thirdly, besides the above contributions, in this

dissertation, bilinear operator-based right coprime factorization for a class of

nonlinear systems with disturbance and perturbation is considered from the

input-output view of point, which provides a quantitative analysis method

for the appearing uncertainty and disturbance. The merit of the proposed

method lies in that it utilizes the characteristic of bilinear operator to design

two stable integral controller such that the disturbance can be reduced and

meantime output maintains. Then, robust stability of the considered non-

linear systems is guaranteed using reset control method, which enriches the

coprime factorization methods. Finally, simulation examples are provided to

illustrate effectiveness of the proposed design scheme.
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Chapter 1

Introduction

1.1 Background

Considering development of modern design engineering and control techno-

logical requirement on comfort creatures, reliability and safety for practical

manufacture, simple and effective control method and design scheme in or-

der to improve performance of systems and meet demand of customers are

greatly necessary and rapidly over the past decades, leading to that much

attentions focusing on simple and effective control design scheme are received

from engineers and researchers [1]− [17], [41]− [48], [59]− [68].

Concerning control design of systems, there have been significant develop-

ments from various perspectives for both linear and nonlinear control systems

over the last four decades. Although the linear systems thanks to its inher-

ent characteristic on simple structure which has obtained greatly advance-

ments, in practice, a great number of systems possess nonlinear property

and multivariable characteristic. That is, in practical application, most of

dynamic systems posses nonlinear characteristics since the unavoidable fac-

tors exists. Therefore, for dealing with difficulties that linear control method

cannot work, the nonlinear control and design methods have attracted many

researchers’ attention due to the important role they have played in real ap-

1
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plication [38] − [58], and [69] − [87]. In particular, these issues, robustness,

output tracking, perturbation and disturbance belonging to the nonlinear

systems still remain challenging owing to their complex structures and non-

linear characteristics [15], [37], [59], [61], [88]− [93]. Meanwhile, perturbation

and disturbance phenomenons almost exist in a great number of systems

where disturbance has major concern of two types in the control of unknown

disturbance and estimated disturbance. General perturbation and distur-

bance yielding from modeling errors and external environment are central

considered in this dissertation due to making a tremendous affection within

the control systems, hence, it is necessary to reduce the adverse effects from

them.

For considering control design for nonlinear systems with perturbation

and disturbance to guarantee robust stability of the overall systems, a great

number of control methods have been proposed from different viewpoints

such as Lyapunov-based control method, model predictive control method,

gain scheduling method, fuzzy control method, adaptive control method,

feedback linearization design method, sliding mode control method and so

on [13] − [20], [32] − [45], [88] − [93]. Among these methods, all of them

are proposed based on ordinary differential equations expression of nonlinear

systems or linear systems, which are of rather difficulty to measure state vec-

tors directly on-line measurements, leading to some restrictions on applying

these approaches [50] − [54]. For dealing with robust phenomenons always

appearing in systems and avoiding the existing unnoticeable and unavoid-

able adverse effect of real systems, one promising method, operator-based

right coprime factorization control method, has been proposed on robust con-

trol design thanks to a convenient framework established using this method

from input-output view of point according to operator theory [32]− [37] and

[55]− [93].

As to operator-based right coprime factorization method, there are com-
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parative and main merits, although each control design method for nonlinear

systems has its own inherent merits and limitations on studying nonlinear

systems. We summarized the main merits of operator-based right coprime

factorization from the following aspects. Firstly, operator-based right co-

prime factorization is proposed for dealing with general cases, which merely

requires input-output mapping function. Moreover, the input-output rela-

tionship can be a relatively easy work using directly methods like taking

experimental data. On this point, compared to other techniques aforemen-

tioned of nonlinear systems, it is not necessary to get all the states informa-

tion of systems and build ordinary differential equations. Therefore, it gives

a convenient framework to consider nonlinear systems. Secondly, control de-

sign using opertor-based right coprime factorization is easy comparatively,

whose requirement lies in building a Bezout identity based on the internal

signal of systems in order to guarantee stability in context of bounded in-

put bounded output stable definition. Finally but not least, for studying

robustness of uncertain nonlinear systems, the operator-based right coprime

factorization method has a great advantage over the other control methods.

A simple and effective description for the uncertain nonlinear systems can

be given based on this method, which avoids difficulties in analyzing uncer-

tainties quantitatively.

In the following statements, a detailed and systematic summary on his-

tory of the operator-based nonlinear control with disturbances method is

proposed [18]− [80].

1.2 Developments of operator-based nonlin-

ear control

In recent decades, there have been significant developments from various

perspectives for both linear and nonlinear systems [21]− [35], [59]− [63], [88].
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As well known, the linear coprime factorization theory has being increas-

ingly perfected. Particularly, in practice, almost all systems possess non-

linear property and multivariable characteristic, which have been attracting

researchers’ attention due to important role. For nonlinear systems, robust

control, sensitivity and tracking issues [59], [63] still remain challenging due

to inevitable factors appearing in systems, such as parametric perturbations,

modeling errors and uncertainties. For dealing with these issues, a great

number of effective methods are proposed, such as the adaptive control,

the sliding mode control method, operator-based right coprime factorization

method, the geometric approach and so on.

Since the early 1970s, Rosenbrock [18] was the first person who introduced

the coprime factorization method into the multivariate system, which has

played a decisive role in the study of control system on stabilization as well

as robustness. The author considered an optimization controller on the basis

of parameterizing all stable controllers by utilizing polynomial matrix expres-

sion defined in the linear time invariant setting. In [19], the authors proposed

an available method based on a least-square Wiener-Hopf minimization of an

appropriately chosen cost functional in which the method is so-called Youla ‒

Kučera parametrization (aslo simply called as Youla parametrization) which

is a formula that describes all possible stabilizing feedback controllers for

a given plant, as function of a single parameter based on the physical as-

sumptions. This formula greatly facilitates the study of robust stability and

adaptive control throughout the viewpoint of left and right coprime factor-

ization for the given plant and controllers. Further, in 1984, Nett took the

attention on the class of elements for the existence of coprime fractional rep-

resentations which from the Bezout domain as well as given the expression on

left or right coprime factorization of the given plant. After that, in the aspect

of linear control system, Mcfarlance [20] made a significant development on

state space expression based on the introduced definition of normalization of
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mutual factor decomposition, which method could provide a convenient ex-

pression using normalization coprime factorization in the research of robust

stability issues. Besides, some sufficient conditions for existence of a dou-

bly coprime factorization belonging to a large class of infinite-dimensional

systems have been proposed in [21]. Moreover, there were many practical

methods on dealing with linear control system for reaching robust stability

or robustness as well. However, in practical almost all the actual control

systems are non-linear systems, the researchers have payed more and more

attentions on it.

Recently, the results on coprime factorization method of nonlinear control

system can be summarized into two categories, one is to study the relation-

ship between factorization and composure by means of input-output opera-

tor, the other is to study the left and right coprime factorization from the

viewpoint of state space. There many researchers have made great contri-

butions on coprime factorization method, such as Hammer, Verma, Moore,

Paice, Tay and Guanrong Chen and so on[21]−[37]. Most of them provided a

convenient framework to research the nonlinear systems based on the idea of

coprime factorization from a viewpoint of the input-output stability. Ham-

mer [21] − [25] who was the first person considered the robustness of the

nonlinear coprime factorization based on operator theory method from the

factorization technology of input-output operator with set theory method

defined in nonlinear discrete time system. Later in 1994, Hammer [25] in-

vestigated the internal stability of a class of discrete nonlinear systems with

output interference taking advantage of the right coprime factorization, in

which from the input or the interference to the output response is parameter-

ized as well as combined with the fixed controller for stabilizing the internal

system. During the decade Hammer has made a great improvement in co-

prime factorization, however, it was very difficulty to get the solutions on

coprime factorization based on Bezout identity defined on the discrete-time
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system. In order to overcome the above issues, the author in [26], [27] re-

defined the continuous system based on the concept of construction from

the view of input-output point, so that made right coprime factorization

independent of the solution with Bezout identity. Verma had popularized

right and left coprime factorizations into all of nonlinear system described

by input-output viewpoint and made much more convenient application on

stabilizing nonlinear system using coprime factorization. Later, concerning

the state-space characterization with Youla-Kucera parameterization so as to

generalize the Youla-Kucera parameterization into normal nonlinear control

system, Paice, Moore and Tay el. [28] − [31] have done a lot of attempts

both right coprime factorization and left coprime factorization for nonlinear

system. In [31], the authors considered the intention of constructing analytic

tools for the solution of stabilizing a nonlinear system to construct a class

of stable controllers to realize the whole stable system based on left coprime

factorization method as well proposed a necessary and sufficient conditions

for stabilizing the nonlinear system. Over the next few years, the formula of

Youla parameterization which is completely consistent with the linear system

is given by the left coprime factorization [28], that is for a given nonlinear

plant, if it has a bound stable left coprime factorization, then for any bound

input there exists a stable feedback-compensator, and parameterizing a class

of such stabilizers in the context of a bounded-input bounded-output (BIBO)

stable. On this basis, the robust stability of the system is studied using this

parametric formula[30]. Further, this robust stability result was of great

significance for the study of nonlinear adaptive control and simultaneous

stabilization problems [29].

In 1993, Figueriedo and Chen [35] payed much more attention to robust

control and robust stabilization of the nonlinear system based on operator

right coprime factorization of nonlinear system which emphasized qualitative

properties analysis rather than design as well as the left coprime factorization
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can be done in the same manner. In [35], the author considered in a general

operator-based setting which can be regards as to be linear or nonlinear, fi-

nite dimensional or infinite dimensional, and can be either in the frequency

domain or in the time domain. First, there two main mathematical back-

ground the classical nonlinear Lipschitz operator and the generalized nonlin-

ear Lipschitz operator theory have been proposed by Chen which served as a

foundation for the research topics in systems theory. Proceeding to the next

step, the authors provided that main idea of right coprime factorization for

nonlinear feedback systems from input-output state space based on operator

theory. The original idea of right coprime factorization can be addressed as

follows [37]: to factorize a given plant operator P as a composition of two

different operators N and D such that P = ND−1, where N is stable and

D is stable and invertible; then, to design two suitable stable operators A,B

satisfying the Bezout identity AN+BD = M , where M is an unimodular op-

erator. Then, according to operator theory, the given plant P is said to have

right coprime factorization, and the system is said the be stable. Based on the

right coprime factorization approach, more and more attentions have been

payed on robust and tracking control for the nonlinear system with unknown

bounded perturbations in [37], [61], [63], and [69]. In [37], the authors inves-

tigated robust right coprime factorization to conduct the nonlinear systems

with perturbation, which provided a fairly general operator-theoretic setting

for system analysis, control and design. A sufficient condition for guarantee-

ing robust stability of nonlinear systems with perturbation is proposed using

robust right coprime factorization. Later, in [62], a new condition was pro-

posed based on a Lipschitz norm inequality to consider robust stability, whose

merit lies in that the proposed design scheme of this dissertation could deal

with a broader class of nonlinear system compared with the former method

in [37]. Based on the robust sufficient condition of [63], in [70], the authors

provided an operator-based isomorphism method to obtain factorization of



8 CHAPTER 1. INTRODUCTION

nonlinear systems quantitatively. In 1989, the author Figueired and Chen

who are the first introduced the disturbance rejection under the viewpoint

of coprime factorization aspect. In [74], the authors proposed an internal

model control to analyze effects from uncertainties of nonlinear systems. In

real application, the robust right coprime factorization method has also been

developed, such as robust controller design of uncertain discrete time-delay

systems with input saturation and disturbance in [89], employed low-order

modes to design the control scheme using the operator-based approach in

[67] and so on.

As for the development of reset control, much attention has been given to

focus on design and control aspects on linear systems or nonlinear systems

[94] and [95]. In [94], a reset adaptive observer is considered, including an

adaptive observer and a reset law that resets the output of an integrator

depending on a predefined condition. In [95], a class of square continuous-

time nonlinear controllers are designed based on a suitable resetting rule,

which proves that the arising hybrid system with temporal regularization is

passive in the conventional continuous-time sense. Moreover, based on the

passivity property, the finite gain stability of the nonlinear systems is in-

vestigated. Reset control can achieve sensor noise suppression performance

without degrading disturbance rejection, which makes reset control an im-

portant technique for performance improvement.

1.3 Motivations of the dissertation

Although it is simple and effective using the operator-based robust right

coprime factorization method in the aspect of controlling and designing for

nonlinear systems, and a great number of results are proposed in many fields.

However, there are still some points worthy being studying, not only the

purpose of enriching and refining the operator-based robust right coprime
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factorization method, but also dealing with more issues using it.

In this dissertation, main motivated concepts based on operator-based

right coprime factorization are stated from the following three aspects. First,

when it comes to that the operator-based right coprime factorization ap-

proach is used to deal with robust stability of uncertain nonlinear systems,

the basic idea lies in how to guarantee robust Bezout identity. However,

there is little research that authors consider the issue of reducing the ad-

verse effect resulting from the existing uncertainties such that stability of

the nominal system still remain. Based on this idea, in this dissertation,

the Chapter 3 address an effective design scheme of combing operator-based

right coprime factorization with a new nonlinear operator controller to deal

with nonlinear systems with unknown disturbance for guaranteeing robust

stability and reducing adverse effects. That is, with the framework estab-

lished by using operator-based right coprime factorization, both of robust

stability and reduction of disturbances are obtained by using the proposed

nonlinear operator controller. Second, meantime with this issue, other mo-

tivated idea for dealing with both perturbation and disturbance is proposed

in Chapter 4. Most traditional researches were aiming at one interference

object in control system design, either internal perturbation or external dis-

turbance, as has been stated above. However, in most practical nonlinear

control systems there are a number of different kinds of external disturbance

and internal perturbation subjected to the circumstance, temperature, cou-

pling between different systems and so on. Therefore, in Chapter 4, for

removing the adverse effect resulting from the external disturbance and in-

ternal perturbation, a feasible framework is proposed based on the designed

scheme, which provides a convenient structure to consider the nonlinear sys-

tem with external disturbance and internal perturbation. Moreover, based

on the proposed design scheme, the adverse effects of internal perturbation

and external disturbance are reduced, and output tracking performance is
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realized simultaneously. However, in Chapter 4, the quantitative analysis

for the existing perturbation and disturbance is not considered. Therefore,

in Chapter 5, a bilinear operator-based right coprime factorization for non-

linear system with perturbation and disturbance is introduced, which can

consider adverse effect resulting from perturbation and disturbance quanti-

tatively. Based on the proposed method, a feasible framework is established

for considering robust control, sensitivity and tracking performance, which

not only separates perturbation and disturbance, but also provides a fun-

damental base to design a controller for the considered system. After that,

operator-based reset control for nonlinear systems with unknown bounded

disturbance is addressed. That is, in the context of operator-based right co-

prime factorization, reset control is realized and robust stability of nonlinear

systems with unknown bounded disturbance is guaranteed.

1.4 Contributions of the dissertation

The proposed nonlinear control scheme on uncertain nonlinear systems en-

rich the operator-based coprime factorization method. Meanwhile, bilinear

operator-based right coprime factorization for nonlinear systems with per-

turbation and disturbance are discussed, providing a quantitative analysis

method for the appearing perturbation and disturbance. The proposed con-

trol design scheme employs operator theory setting formulated under ex-

tended norm linear space, which is suitable for stability, causality, robust-

ness, uniqueness of internal control signals as well as coprime factorization

in nonlinear systems control theory and application. Extended norm linear

space is important since all control signals in engineering are supposed to be

time-limited. However, in the study of a control processing we do not know

the time the process stops. That is the reason for providing the extended

norm linear space definition, which can deal with the practical issue from
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mathematical theory, and many useful techniques and results can be carried

over from the standard Banach space to the extended norm linear space,

which is fundamental for a realizable physical control system.

Robust stability and tracking performance are necessary and critical for

nonlinear systems, due to the fact that uncertainties always exist in the real

systems, making an bad effect in the nonlinear systems. Based on operator-

based right coprime factorization method, main principle of robust control

is to design feedback controllers such that robust Bezout identity is satisfied

even in the cases where the considered nonlinear systems exist uncertainties.

Comparing to general control methods in nonlinear systems, such as lin-

ear matrix inequality, sliding mode control, adaptive control, operator-based

right coprime factorization method is more simple and effective thanks to

the simple framework obtained based on robust Bezout identity. This is one

of the merits of operator-based right coprime factorization. Meantime, it is

one main contributions of the proposed design schemes in this dissertation

as well.

This dissertation is mainly focusing on considering the uncertain nonlin-

ear systems by using operator-based right coprime factorization method. In

detail, by introducing a nonlinear operator controller, opeartor-based right

coprime factorization is employed to consider the nonlinear system with dis-

turbance. Then, based on the proposed feasible design schemes, adverse

effect resulting from disturbance in nonlinear system is reduced. Next, the

nonlinear systems with perturbation and disturbance are considered by re-

designing the feedback controller, which can deal with a broader class of

nonlinear systems. Three cases respectively for illustrating the relationship

between the proposed conditions and the internal perturbations or distur-

bances, that means which kind of cases would be corresponding to which

conditions is shown respectively. Meantime, by the proposed design scheme,

both of robust stability and tracking performance are realized, which can get
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better performances. Besides the above contributions, in this dissertation,

bilinear operator-based right coprime factorization for a class of nonlinear

systems with disturbance and perturbation is considered from the input-

output view of point. Robust stability of the considered nonlinear systems

is guaranteed, which enriches the coprime factorization methods.

In summary, this dissertation considers robust nonlinear control design

for uncertain systems with disturbances using operator-based right coprime

factorization, which complements the theoretical analysis and control design

of nonlinear systems.

1.5 Organization of the dissertation

This dissertation is organized as follows. In Chapter 2, the mathematical

preliminaries and problem statement are provided. Mathematical prelimi-

naries will be recalled as the theoretical foundation for the research and also

as the cornerstone leading to the following chapters in this dissertation.

Chapter 3 is devoted to investigate an effective design scheme of com-

bining right coprime factorization with a new nonlinear operator controller

to deal with nonlinear systems with unknown disturbance for guaranteeing

robust stability and reducing the adverse effects of unknown disturbance.

That is, with the robust right coprime factorization method, the equivalent

framework of nonlinear systems is obtained, which provides a convenient

viewpoint; then based on operator theory, a new nonlinear operator is pro-

posed for dealing with the unknown disturbance of nonlinear systems to

reduce adverse effects on nonlinear systems. Finally, a simulation example is

provided to illustrate effectiveness of the proposed design scheme.

In Chapter 4, both internal perturbation and external disturbance of the

nonlinear systems are considered together using a new design scheme based

on redesigning the feedback controller. In detail, from error signal point of
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view, the adverse effects resulting from external disturbance and internal

perturbation of the nonlinear systems are removed by the designed nonlinear

operator. Three cases respectively for illustrating the relationship between

the proposed conditions and the internal perturbations or disturbances, that

means which kind of cases would be corresponding to which conditions, re-

spectively is shown. Simultaneously, output tracking performance is realized

using the proposed design scheme. Finally, a simulation example is provided

to illustrate effectiveness of the proposed design scheme.

In Chapter 5, the bilinear operator-based right coprime factorization for

nonlinear system with perturbation and disturbance is introduced, which can

consider adverse effect resulting from perturbation and disturbance quanti-

tatively. Based on the proposed method, a feasible framework is established

for considering robust control, sensitivity and tracking performance, which

not only separates perturbation and disturbance, but also provides a fun-

damental base to design a controller for the considered system. In terms

of the insensitivity property, it is addressed for the case where perturbation

and disturbance both exist in nonlinear systems. After that, operator-based

reset control for nonlinear systems with disturbance is addressed. That is,

in the context of operator-based right coprime factorization, reset control is

realized and robust stability of nonlinear systems with disturbance is guar-

anteed. Finally, a simulation example is provided to illustrate effectiveness

of the proposed design scheme.

In Chapter 6, the proposed design methods in this dissertation for uncer-

tain nonlinear systems are summarized, including operator-based nonlinear

systems with unknown disturbance rejection using right coprime factoriza-

tion, operator-based perturbed nonlinear systems with external disturbance

rejection using right coprime factorization and bilinear operator-based right

coprime factorization for robust control and sensitivity analysis of uncertain

nonlinear systems.





Chapter 2

Mathematical preliminaries and
problem statement

2.1 Introduction

In this chapter, the mathematical preliminaries and problem statement are

provided. Mathematical preliminaries will be recalled as the theoretical foun-

dation for the research and also as the cornerstone leading to the following

chapters in this dissertation [32]− [37].

In Section 2.2, firstly, the definitions of spaces as the basis of the research

including linear space, normed space, Banach space, Hilbert space, extended

linear space which are all associated with Banach space are defined. Secondly,

the definition of operator and some important operators are provided such as

linear and nonlinear operator, invertible operator, stable operator, unimodu-

lar operator, Lipschitz operator and generalized Lipschitz operator which are

all defined in Banach space. Based on the generalized Lipschitz operator, the

causality is discussed about the relationship within the generalized Lipschitz

operator. Thirdly, a special topic of factorization for nonlinear mappings

which always shows the description on control systems will be provided. Co-

prime factorization as a basic tool for linear mapping has been well developed

15
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into nonlinear control systems. In here, as a key point, we recommended the

right coprime factorization which has been an important techniques in the

study of robust stabilization of the nonlinear system. Fourthly, the definition

of robust right coprime factorization will be recalled, which are used to im-

prove reference tracking and to enhance the rebustness of the compensated

system in the face of plant uncertainties. Based on the operator theory, a

simple necessary and sufficient condition on the existence of a right coprime

factorization will be formulated to guarantee the coprimeness of the factor-

ization for the nonlinear systems as well as to guarantee robust stability of

the nonlinear systems with perturbations by a sufficient robust condition.

In Section 2.3, the main problem statements in this dissertation are dis-

cussed in order to develop the main results of this dissertation. In details,

the extended robust right coprime factorization conditions associated to each

kind of framework of nonlinear control systems with different form of uncer-

tainties are described. At the same time, for separating the appearing inter-

nal perturbation and external disturbance in the systems, bilinear operator

controller is proposed such that a feasible framework is established aiming to

design and control of robust stability, sensitivity and tracking performance.

2.2 Mathematical preliminaries

In this section, the fundamental definitions and notations on kinds of spaces

and operators are clarified throughout this dissertation aiming to enhance

understanding the method that proposed in this control systems. Moreover,

some important results are listed.

2.2.1 Definitions of spaces

In modern mathematics spaces are defined as sets with some added struc-

ture. They are frequently described as different types of manifolds, which
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are spaces that locally approximate to Euclidean space, and where the prop-

erties are defined largely on local connectedness of points that lie on the

manifold. There are however, many diverse mathematical objects that are

called spaces. For example, vector spaces such as function spaces may have

infinite numbers of independent dimensions and a notion of distance very

different from Euclidean space, and topological spaces replace the concept of

distance with a more abstract idea of nearness. In here, first, there are two

basic space will be introduced: linear space that is also called vector space,

and topological space. A vector space (also called a linear space) is a collec-

tion of objects called vectors, which may be added together and multiplied

by numbers, called scalars. Moreover, in the number sense, the linear space

is made up of real linear spaces what over the field of real numbers, complex

linear spaces what over the field of complex numbers and more general linear

spaces over any field. A topological space may be defined as a set of points,

along with a set of neighbourhoods for each point, satisfying a set of axioms

relating points and neighbourhoods. In this dissertation, the used space is

based on linear space that is also named vector spaces which played as a

fundamental role during the research.

Linear spaces

A nonempty set V that is an arbitrary field is called a linear space if there

exist any pair of elements f, g ∈ V can satisfy:

(1) added together by an operation can get an element f + g ∈ V that is

called the property of addition;

(2) f + g = g + f ;

(3) f + (g + h) = (f + g) + h, such that, for any elements f, g, h ∈ V are

hold;

(4) for all f ∈ V , such that f + 0 = f always hold, since there exists a

unique element 0 ∈ V ;
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(5) for each element f ∈ V such that f +(−f) = 0, if and only if −f ∈ V ;
(6) multiplied by any coefficient α of a field R of real numbers can get

an element α · f ∈ V that is called the property of multiplication;

(7) α(f + g) = αf + αg;

(8) (α + β)f = αf + βf , where β ∈ R;

(9) (αβ)f = α(βf);

(10) 1× f = f .

Moreover, a complex vector space is a vector space whose field of scalars

is the complex numbers. A nonempty subset U of a linear space V is called

a subspace of V if it is satisfied with the addition and scalar multiplication

in V from (1)− (10), which can be expressed in the form of U ⊂ V .

Normed linear spaces

A normed linear space (also called normed vector space) is a vector space

which defined in norm from the viewpoint of mathematics. A normed linear

space is a pair V, ∥ · ∥ where V is a vector space and ∥ · ∥ is a norm on V .

∥ · ∥ is called the length of vector, that has the following properties in such

a vector space:

(1) ∥ x ∥≥ 0; and ∥ x ∥= 0 if and only if x = 0;

where x is any elements in V , 0 is the zero vector associated to zero

length; every other vector has a positive length.

(2) ∥ ax ∥=| a |∥ x ∥, for any scalar a;

in which a vector multiply by random positive number just changing its

length without changing its direction.

(3) ∥ x+ y ∥≤∥ x ∥ + ∥ y ∥ ;

whenever x, y ∈ V ; which is called the triangle inequality. That is the

distance from point A through B to C is never shorter than going directly

from A to C, or the shortest distance between any two points is a straight

line.
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Banach space

In mathematics, a Banach space is a complete normed vector space more

specifically in functional analysis. In details, a Banach space is a vector

space over the field R of real numbers which is respect to a norm, or a

Banach space is a vector space over the field C of complex numbers, which is

complete associated to norm. From the view of geometrical point, a Banach

space is a vector space with a metric that allows the computation of vector

length and distance between vectors.

From the view of sequence point, in the sense that a Cauchy sequence of

vectors always converges to a well defined limit which is within the space.

That is, for every Cauchy sequence xn belongs to a vector space X, there

always exists an element x ∈ X such that

lim
n→∞

xn = x ⇐⇒ lim
n→∞

∥ xn − x ∥X= 0.

Extended linear space

In general, an extended linear space also called an extended normed linear

space is not complete in norm indicating that it is determined by a relative

Banach space [35]. Let M be a linear space which is the family of real-valued

measurable functions defined on [0, ∞). Let FT be the projection operator

mapping from M to MT which is another linear space defined in measurable

function, for each constant T ∈ [0, ∞), such that

fT (t) := FT (f)(t) =

{
f(t), t ≤ T
0, t > T

where fT (t) ∈ MT is called the truncation of f(t) associated to T . Then, for

any given Banach space X of measurable functions, set

Xe = {f ∈ M :∥ fT ∥< ∞ for all T < ∞} (2.1)

Obviously, Xe is a linear subspace of X. The space Xe is called the extended

linear space related to the Banach space.
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It is worth mentioning that the extended linear space is usually not com-

pleteness in norm. As a matter of fact, there only is local norm boundedness

corresponding to an element in Xe, such that even a norm cannot be well

defined in Xe. The reason for considering extended linear space is that all

the control signals are time-limited in practical as well as many useful ap-

proaches and results can be bring from the standard Banach space X to the

extended space Xe if the norm is defined in a suitable way.

2.2.2 Definitions of operators

Let U and Y be linear spaces defined in the field of scalar numbers, and let

Us and Ys be two normed linear spaces, called the stable subspaces of U and

Y , respectively, defined suitably by two normed linear spaces under certain

norm denoted Us = {u ∈ U :∥ u ∥< ∞} and Ys = {y ∈ Y :∥ y ∥< ∞} [61].

Operator

In mathematics, an operator S : U → Y is generally a mapping that acts

on the elements of input space U to produce other elements of the output

space Y . And the framework of the operator S can be shown in Figure 2.1,

moreover, its expression form can be written as

y(t) = S(u)(t)

form the viewpoint of mathematical, where u(t) and y(t) are the element of

U and Y denoted the input single and output single, respectively.

Linear and nonlinear operator

Let S : U → Y be an operator mapping from input space U to the output

space Y denoted by D(S) and R(S) as the domain and range of S, respec-

tively. Provided that S is satisfied with the following condition (Addition



2.2. MATHEMATICAL PRELIMINARIES 21

Figure 2.1: An operator diagram

Rule and Multiplication Rule)

S : au1 + bu2 → aS(u1) + bS(u2)

for all u1, u2 ∈ D(S) and all a, b ∈ R, then S is said to be linear operator;

otherwise, it is called to be nonlinear operator. According to the definition

of linear operator, it is noted that a linear operator is satisfied with addition

rule and multiplication rule for different elements belonging to domain space.

It can be found that linearity is a special case of nonlinearity. In what follows,

nonlinear will always mean not necessarily linear unless otherwise indicated.

Bounded input bounded output (BIBO) stability

Let S be a nonlinear operator that acts on its domain D(S) ⊆ U and range

R(S) ⊆ Y . S is said to be input-output stable, if S(U) ⊆ Y . Another crucial

definition is bounder input bounded output (BIBO) stability [61]. From the

viewpoint of signal processing, the BIBO is form of stability for linear signals

and systems with taking inputs. If S maps all input functions from Us into

the output space Ys, such that S(Us) ⊆ Ys, then operator S is said to be

bounded input bounded output (BIBO) stable or simply, stable. That is, the
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output will be bounded for every input to the system. Otherwise, S is said to

be unstable, when S maps some inputs from Us to Y e\Ys (if not empty). For

any stable operators defined here and later, in this dissertation they always

mean BIBO stable.

Invertible

An operator S is called invertible if there exists an operator P such that

S ◦ P = P ◦ S = I

where I denotes the identity operator, P is said to be the inverse of S ex-

pressed in the form of P−1, in which ◦ denotes the operation defined in the

operator theory which can be simple presented as SP .

Unimodular operator

Let S(U, Y ) be the set of stable operators from U to Y . Then U(U, Y ) is a

subset which defined under S(U, Y ) in the form of

U(U, Y ) ={F : F ∈ S(U, Y ),

F is invertible with F−1 ∈ S(U, Y )}.

Hence, every elements of U(U, Y ) are said to be unimodular operators [37].

Lipschitz operator

Let L(Xs, Ys) denote the family of two normed linear operators over the

complex numbers from Xs to Ys, where Xs and Ys are two normed linear

spaces. Let N (Xs, Ys) be the family of all nonlinear operators mapping from

Xs into Ys, obviously, L(Xs, Ys) ⊆ N (Xs, Ys). In the case that Xs = Ys, we

use the notation L(Xs) and N (Xs), respectively, instead of L(Xs, Ys) and

N (Xs, Ys) for simplicity.
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Let F(Us, Ys) be the family of operators S, where Us is a subset ofXs, and

F(Us, Ys) ∈ N (Xs, Ys). Let Lip(Us, Ys) be the subset of F(Us, Ys) with all its

elements S satisfying ∥ S ∥< ∞. Each S ∈ Lip(Us, Ys) is called a Lipschitz

operator mapping from Us to Ys, and the number ∥S∥ is introduced by

∥S∥ := sup
x1,x2∈Us
x1 ̸=x2

∥S(x1)− S(x2)∥Ys

∥x1 − x2∥Xs

is called the Lipschitz semi-norm of the operator S on Us [35].

Note that, in general, ∥ S ∥= 0 does not necessarily imply S = 0. In fact,

∥ S ∥= 0 if and only if S is a constant-operator (need not be zero) that maps

all elements from Us to the same element in Ys.

For any fixed x0 ∈ Us, the number

∥ S ∥Lip:=∥ S(x0) ∥Ys + sup
x1,x2∈Us
x1 ̸=x2

∥ S(x1)− S(x2) ∥Ys

∥ x1 − x2 ∥Xs

(2.2)

defines a norm for all S ∈ Lip(Us, Ys). Then, ∥ S ∥Lip is called the Lipschitz

norm of S defined by x0 ∈ Us. It is worth reminding that, it amounts to

showing that ∥ S ∥Lip= 0 implies S = 0, which called zero operator. It is

also evident that a Lipschitz operator is both bounded and continuous on its

domain.

Generalized Lipschitz operator

Let L(X, Y ) denote the family of two normed linear operators over the com-

plex numbers from X to Y . Let N (X,Y ) be the family of all nonlinear

operators mapping from X into Y , which are two Banach spaces. Obviously,

L(X,Y ) ⊆ N (X, Y ). In the case that X = Y , we use the notation L(X)

and N (X), respectively, instead of L(X, Y ) and N (X, Y ) for simplicity.

Let Xu and Yu be two extended linear spaces, which are associated with

two given Banach spacesX and Y of real-valued measurable functions defined
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on the time domain [0,∞), respectively. Let U be a subset of Xu. If there

exists a constant L such that

∥ [S(x1)]T − [S(x2)]T ∥Yu≤ L ∥ [x1]T − [x2]T ∥Xu (2.3)

for all x1, x2 ∈ U and for all T ∈ [0;∞). The nonlinear operator S : U −→ Yu

is called a generalized Lipschitz operator on U , and its actual norm can be

given by

∥ S ∥g−Lip =∥ S(x0) ∥Yu + ∥ S ∥=∥ S(x0) ∥Yu

+ sup
T∈[0,∞)

sup
x1,x2∈U
x1 ̸=x2

∥ [S(x1)]T − [S(x2)]T ∥Yu

∥ [x1]T − [x2]T ∥Xu

(2.4)

for any fixed x0 ∈ U .

Note that the least such constants L shown in (2.3) is given by

∥ S ∥:= sup
T∈[0,∞)

sup
u1,u2∈De

u1 ̸=u2

∥ [Q(u1)]T − [Q(u2)]T ∥
∥ [u1]T − [u2]T ∥

(2.5)

which is a semi-norm for general nonlinear operators.

There are some remarks need to be mentioned, it is since that the standard

Lipschitz operator and generalized Lipschitz operator have different domains

and ranges, so that the family of standard Lipschitz operator and generalized

Lipschitz operator are not comparable. However, it can be verified that many

standard Lipschitz operators are also extended Lipschitz. And it can be

also verified that generalized Lipschitz operator is more widely useful than

standard Lipschitz operator for nonlinear systems in the aspects of control

design and engineering such as stability, robustness, uniqueness of internal

control signals. For any operator defined throughout this section always

assumed to be generalized Lipschitz operator.

Causal

Let U e be the extended linear space depended on a given Banach space U ,

and let S : U e → U e be a nonlinear operator defined on a nonlinear control
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system. Then, S is called causal if and only if

PTSPT = PTS

for all T ∈ [0,∞), where PT is a projection operator.

Form the viewpoint of physical the definition of causality is addressed as

follows. The idea that the outputs of the systems at any time depends only

on the present and past values of the corresponding system inputs, then we

have SPT (u) = Q(u) for all input signals u belonging to the domain of S,

so that PTSPT = PTS. Conversely, if PTSPT = PTS for all T ∈ [0, ∞),

then we have PTS(I − PT )(u) = 0 for all input u in the domain of Q, which

implies that any value of a system input in the future, (I −PT )(u), does not

affect the present and past values of the corresponding system output given

by PTS(·), or in other words, system outputs depend only on the present and

past values of the corresponding system inputs.

Lemma 2.1 A nonlinear operator S : Ue → Ue is causal if and only if

for any x1, x2 ∈ Ue and T ∈ [0,∞) , x1T = x2T implies [S(x1)]T = [S(x2)]T .

Proof . The proof is given in Appendix A.1 [35].

Lemma 2.2 If S : Ue → Ue is a generalized Lipschitz operator, then S is

causal.

Proof . The proof is given in Appendix A.2 [35].

Lemma 2.3 A nonlinear generalized Lipschitz operator produces a unique

output from an input, that is, if the input x and output y are related by a

generalized Lipschitz operator S such that y = S(x), then xT = x̃T implies

that yT = ỹT for all T ∈ [0, ∞).

It is worth mentioning that a nonlinear operator may produce nonunique

outputs from an input for a set-valued mapping. It is clear that from

Lemma 2.2 and Lemma 2.3 imply that the uniqueness requirement can

be guaranteed by introduced the generalized Lipschitz operator. That is, in

real systems, the internal signals of the systems are required to be unique.
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2.2.3 Definition of right coprime factorization

A nominal operator based nonlinear control system is shown in Figure 2.2,

in which the given plant P : U → Y is from the input space U to the output

space Y , where the signals u and y denote the control input and system

output, respectively.

Figure 2.2: A nominal operator diagram

Right factorization

For the given normal system operator P : U → Y shown in Figure 2.3,

where U and Y are the input space and the output space [61]. If there exist

a linear space W and two stable operators N and D, such that the operator

P as a composition of N and D in form of P = ND−1, where N : W → Y

and D : W → U is invertible, then the operator P is said to have a right

factorization, the linear space W is called a quasi-state space of P .

Right coprime factorization

Provided that P exists a right factorization (N, D), furthermore, the two

stable operator N andD satisfy the Bezout identity AN+BD = M , for some
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stable operators A and B, where A : Y → U and B : U → U is invertible,

Bezout identity as shown in the form of

AN +BD = M, for M ∈ U(W, U),

where M is unimodular, then the factorization is said to be coprime, that is,

operator P is said to have a right coprime factorization [61]. Generally, P is

unstable and (N, D, A, B) are stable to be determined to be design in the

system issue.

Figure 2.3: A nonlinear system with right coprime factorization

We remake that the transformative Bezout identity introduced here is

defined on the linear space X. Moreover, if X = U , the M can be usually

replaced by the identity operator I. Note that the initial state should be con-

sistent with the Bezout identity, that is, AN(w0, t0)+BD(w0, t0) = M(w0, t0)

should be satisfied. Furthermore, in this dissertation, we select t0 = 0 and

w0 = 0 without loss of generality.
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Well-posedness

The nonlinear control system shown in Figure 2.3 is said to be well-posed,

if for every input signal r ∈ U determine an unique corresponding signals in

the system (i.e. e, u, w, b and y) are uniquely determined.

Overall stable

The nonlinear system shown in Figure 2.3 is said to be overall stable, provided

that r ∈ U , implies that u ∈ U, y ∈ Y, w ∈ W, e ∈ U and b ∈ U .

Lemma 2.4 Assume that the system shown in Figure 2.3 is well-posed

and the system has a right factorization in the form of P = ND−1. Then

the system is said to be overall stable if and only if the operator M in Bezout

identity is a unimodular operator.

Proof. The proof is given in Appendix A.3 [35].

2.2.4 Definition of robust right coprime factorization

Considering the nonlinear system with perturbation show in Figure 2.4. Sup-

pose that the system is denoted as P = P +∆P , in which P is denoted the

normal system and the perturbed system are given as P . ∆P denotes the

case N → N + ∆N , in other words, the perturbation can be considered as

the results caused by ∆N . The right factorization of the nominal system P

and the overall system P can be rewritten as

P = ND−1

and

P +∆P = (N +∆N)D−1

respectively, where N and D are stable operators, D is invertible and ∆N is

denoted as the bounded perturbations.
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Figure 2.4: A nonlinear system with bounded perturbations

It is worth mentioning that under what conditions the nonlinear system

with unknown bounded perturbations is said to have a robust right coprime

factorization, when the perturbed nonlinear system still remains a right co-

prime factorization, that is, what conditions can guarantee the nonlinear

system still having the robust stability property.

In the discussion of this problem, according to the definition of null set,

in [37], if and only if the following condition is satisfied, so as to guarantee

the nonlinear system with unknown bounded perturbations to be robustly

stable,

A(N +∆N)− AN = 0. (2.6)

under the condition of satisfaction of R(∆N) ⊆ N(A), where N(A) is the
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null set defined by

N(A) = {x : x ∈ D(A) and A(x+ y) = A(y) for all y ∈ D(A)}

Based on the proposed sufficient condition, the fact that

A(N +∆N) +BD = AN +BD = M

is obtained, which guarantee the robust stability of the nonlinear systems

with unknown bounded perturbations.

However, because of the condition in [37] is harsh to satisfy, so that the

proposed design scheme for the nonlinear systems with unknown bounded

perturbations is crucial to realize. Therefore, a generalized sufficient condi-

tion is proposed in [35] which compared with [37] in order to improve and

extend the condition.

Lemma 2.5 Let De be a linear subspace of the extended linear space Ue

associated with a given Banach space U , moreover denoted (A(N + ∆N) −
AN)M−1 ∈ Lip(De). Denote the Bezout identity of the nominal system and

the perturbed system respected to ∆N in the form of AN +BD = M,A(N +

∆N) +BD = M̃ , respectively. If the condition as follows

∥ (A(N +∆N)− AN)M−1 ∥< 1

is satisfied, then the system shown in Figure 2.4 is robust stable

Proof. The proof is given in Appendix A.4 [35].

Then remarking the above Lemma, considering the system shown in Fig-

ure 2.4, assume that right factorization of the unstable system is given as

P +∆P = (N +∆N)D−1, where N +∆N is an unimodular operator. Then

M in the nominal Bezout identity can be equivalent ot M +∆M as a result

of N → N+∆N . If two designed operators A and B satisfy the Bezout iden-

tity A(N +∆N) +BD = M +∆M , moreover, (N +∆N)(M +∆M)−1 = I,

then the output can track to the reference input while the nonlinear system

is overall stable.
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2.3 Problem statement

In terms of operator-based right coprime factorization, there exist a great

number of significant developments of this method, which are mainly em-

ployed to consider nonlinear systems. This method considers a nonlinear

system as an operator from mathematical point of view, then based on op-

erator theory, control design for the nonlinear system is considered. Among

the existing method, robust right coprime factorization to conduct nonlinear

systems with perturbation, which provided a fairly general operator theoretic

setting for system analysis, control and design. A new sufficient condition

for nonlinear systems with unknown perturbation was proposed based on a

Lipschitz norm inequality to consider robust stability, whose merit lies in

that the proposed design scheme could deal with a broader class of nonlinear

system compared with the former method. However,there is little research

that considers the issue of reducing the adverse effects on a system result-

ing from unknown disturbances. Therefore, in order to solve this method,

an effective design scheme of combining right coprime factorization with a

new nonlinear operator controller is proposed to deal with nonlinear systems

with unknown disturbance for guaranteeing robust stability and reducing the

adverse effects of unknown disturbance.

For the record, most traditional researches are aimed at one interfer-

ence object in control system design, either internal perturbation or external

disturbance, as has been stated above. However, there still exist some fun-

damental and critical issues which need to be considered. In most practical

nonlinear control systems there are a number of different kinds of exter-

nal disturbance and internal perturbation subjected to the circumstance,

temperature, coupling between different systems and so on. Besides that

the previous methods of dealing with internal perturbation or external dis-

turbance employ the same controller to guarantee robust stability, which
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restricts application range of the proposed method because the considered

perturbation or disturbance in the former researches is indirectly determined

by controllers. Therefore, the next main important issue in this dissertation,

both internal perturbation and external disturbance of the nonlinear systems

are considered using new design scheme. The main benefits of method lie

in: 1) Both external disturbance and internal perturbation of nonlinear sys-

tems are considered. Compared with the former works, the proposed design

scheme using the designed compensator not only can deal with the external

disturbance, but also can handle the existing perturbation simultaneously,

based on which robust stability of the considered nonlinear systems is guar-

anteed; 2) For removing the adverse effect resulting from the external distur-

bance and internal perturbation, a feasible framework is proposed based on

the designed scheme, which provides a convenient structure to consider the

nonlinear system with external disturbance and internal perturbation; 3) A

nonlinear operator controller for removing internal perturbation and exter-

nal disturbance is designed, which provides a united scheme for dealing with

the adverse effect. Based on the proposed design scheme, output tracking

performance is realized simultaneously.

Further, even though the external disturbance and internal perturbation

have been removed by the proposed united design scheme, but the adverse

effects haven’t separated effectively for many practical control system. Best

on this motivation, the bilinear operator-based right coprime factorization for

nonlinear system with perturbation and disturbance is introduced, which can

consider adverse effect resulting from perturbation and disturbance quantita-

tively. The bilinear operator controller is estabilished in a special way, which

means that the controller has a more freedom to be satisfied with practial

requirement. Based on the proposed method, a feasible framework is estab-

lished for considering robust control, sensitivity and tracking performance,

which not only separates perturbation and disturbance, but also provides
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a fundamental base to design a controller for the considered system. After

that, robust stability for the uncertain nonlinear systems is guaranteed under

the proposed framework.

2.4 Conclusion

In this chapter, the mathematical preliminaries including the basic defini-

tions and notations are introduced, which are necessary for developing main

results of this dissertation. In details, such as the definition of extended linear

spaces, the definition of generalized Lipschitz operators which play an foun-

dation role for this dissertation. Next for considering nonlinear systems, the

concept of right coprime factorization and robust right coprime factorization

are described. Moreover, two main sufficient conditions are given in a fairly

general operator setting for guaranteeing robust stability of the nonlinear

systems with perturbations, which served as the tool of the theoretical basis

for developing the main results in this dissertation. Finally, the concerned

problems are also summarized in this chapter.





Chapter 3

Operator-based nonlinear
systems with unknown
disturbance rejection

3.1 Introduction

In terms of control design of systems, there have been significant develop-

ments from various perspectives for both linear and nonlinear control sys-

tems over the past decades. Nevertheless, in practice, a great number of

systems possess nonlinear property and multivariable characteristic. There-

fore, researches on the nonlinear systems have attracted many researchers’

attention due to the important role they have played in real application.

Especially, these issues, for instance, robust analysis, output tracking prob-

lem and disturbance reduction which are belong to the nonlinear systems

still remain challenging owing to their complex structures and the nonlinear

characteristics. Meanwhile, the disturbance almost exist in many kinds of

systems where the disturbance has major concern of two types in the control

of unknown disturbance and estimated disturbance , general disturbance

yielding from modeling errors and external environment which are central

considered in this chapter due to making a tremendous affection within the

35
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control systems, hence, it is necessary to reduce the adverse effects from the

disturbance.

One of methods in studying nonlinear systems is operator-based right co-

prime factorization. There exist a great number of significant developments

of this method, which are mainly employed to consider nonlinear systems.

This method considers a nonlinear system as an operator from mathemat-

ical point of view, then based on operator theory, control design for the

nonlinear system is considered. In terms of operator-based right coprime

factorization, there exist many relevant results on robust stability of non-

linear systems with unknown disturbance [88] − [93]. In [37], the authors

investigated robust right coprime factorization to conduct nonlinear systems

with perturbation, which provided a fairly general operator theoretic setting

for system analysis, control and design. However, there is little research that

considers the issue of reducing the adverse effects on a system resulting from

unknown disturbances.

Therefore, this chapter is devoted to investigate an effective design scheme

of combining right coprime factorization with a new nonlinear operator con-

troller to deal with nonlinear systems with unknown disturbance for guar-

anteeing robust stability and reducing the adverse effects of unknown dis-

turbance. That is, with the robust right coprime factorization method, the

equivalent framework of nonlinear systems is obtained, which provides a con-

venient viewpoint to consider the above issue; then based on operator theory,

a new nonlinear operator is proposed for dealing with the unknown distur-

bance of nonlinear systems to reduce adverse effects on nonlinear systems.

In Section 3.2, based on the developments in the previous chapter, this

position to study some general theories and strategies in qualitatively for

now compensator design of the nonlinear system. At first, the framework

of the considered nonlinear systems will be introduced. Second, in order to

describe the design scheme more precisely three admissible classes related to
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source inputs, outputs and error signals of the given control systems have

been clarified, what these considerations are all formulated in a general ex-

tended linear space setting in the time domain. Meanwhile, according to the

proposed framework of the nonlinear system and Bezout identity using in

reference, the robust stability for nonlinear system with right coprime fac-

torization will be discussed from different viewpoints. In Section 3.3, based

on the provided brief motivation for the issues in above section, the unknown

disturbance rejection for the nonlinear systems on account of operator theo-

rem with right coprime factorization has been discussed in detail. Firstly, a

precise description on the generalized inner inverse operator has been given

for the proposed problem. And then for the unknown disturbance reject-

ing problem, a general constructive procedure for realizing the object has be

discuss in a mathematical formulation viewpoint by providing an equivalent

operator controller on the nonlinear systems. That is, robust stability of

the nonlinear systems with unknown disturbance is guaranteed by combin-

ing right coprime factorization with the proposed controller. Simultaneously,

adverse effects resulting from the disturbance are removed by using the pro-

posed nonlinear operator controller. Last, a simulation example is given

based on the basic results using right coprime factorization to show the ef-

fectiveness of the proposed design scheme. In Section 3.4, operator-based

nonlinear systems with unknown disturbance rejection using right coprime

factorization methods are summarized.
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3.2 Construction on the considered nonlinear

systems based on operator theorem

3.2.1 Construction on the considered nonlinear sys-
tems

In this section, a general multi-input and multi-output nonlinear system is

considered, which is defined in an extended linear space setting in the time

domain. Before describing the proposed feasible method for solving the main

design problem more precisely, a available lemma, at least qualitatively, for

investigating the proposed method has to be provided from mathematical

viewpoint.

Lemma 3.1 Let H be a linear subspace defined in the extended linear

space Xe which is associated with a given Banach space X, and let S ∈
Lip(H) with ∥ S ∥< 1, where ∥ · ∥ is the semi-norm for the generalized

Lipschitz operator as defined in (2.5). Then, the operator I − S is invertible

on H with satisfying

∥ (I − S)−1 ∥Lip≤∥ (I − S)−1(x0) ∥X +(1− ∥ S ∥)−1

for any x0 ∈ H. Moreover, defined C0 := I and inductive Cn := I + SCn−1

for n = 1, 2, ..., then for each fixed T ∈ [0,∞) and all x̄ ∈ H, we can get

lim
n→∞

[Cn(x̄)]T = [(I − S)−1(x̄)]T

obviously, the bound error within the above equation is that,

∥ [(I − S)−1(x̄)]T − [Cn(x̄)]T ∥X≤
∥ S ∥n∥ [S(x̄)]T ∥X

1− ∥ S ∥
(n = 0, 1, 2, ...)

Consequently, for each T ∈ [0,∞), when satisfying ∥ S ∥Lip< 1, can be

got

∥ [(I−S)−1(x̄)]T − [Cn(x̄)]T ∥X

≤ ∥ S ∥n∥ [S(x̄)]T ∥X
1− ∥ S ∥

≤
∥ S ∥nLip∥ [S(x̄)]T ∥X

1− ∥ S ∥Lip
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Proof. For any x̄1, x̄2 ∈ H, obtained

∥ [(I − S)(x̄1)]T − [(I − S)(x̄2)]T ∥X
≥∥ [x̄1]T − [x̄2]T ∥X − ∥ [S(x̄1)]T − S(x̄2)]T ∥X
≥ (1− ∥ S ∥) ∥ [x̄1]T − [x̄2]T ∥X

Then, dividing both sides by the non-zero ∥ [x̄1]T − [x̄2]T ∥X and taking

supremum over [0,∞), it is obvious that I−S is injective on H with [x̄1]T ̸=
[x̄2]T . Hence, in order to prove that I − S is invertible belonging to Lip(H),

this problem has been transformed into prove that it is surjective on H with

(I − S)−1 is Lipschitz on H.

Continuously, fix T ∈ [0,∞). First step is to prove that (I − S)−1 is

existing and it is in Lip(H). For any x1, x2 ∈ H, corresponding x̄1, x̄2 ∈ H

associated with x1(t) = (I − S)(x̄1)(t) and x2(t) = (I − S)(x̄2)(t) for all

[0,∞). Then, if (I − S)−1 exists, follows the above inequality

∥ [(I − S)−1(x1)]T − [(I − S)−1(x2)]T ∥X
=∥ [x̄1]T − [x̄2]T ∥X
≤ (1− ∥ S ∥)−1 ∥ [(I − S)(x̄1)]T − [(I − S)(x̄2)]T ∥X
= (1− ∥ S ∥)−1 ∥ [x1]T − [x2]T ∥X

since ∥ S ∥≤ 1, it implies that the inverse mapping of I − S is in Lip(H)

with

∥ (I − S)−1 ∥Lip≤∥ (I − S)−1(x0) ∥X +(1− ∥ S ∥)−1

Second step is to verify that I−S is surjective on H such that (I−S)−1 ∈
Lip(H). By the definition of the operators Cn, we can obtain that

∥ [Cn+1(x̄)]T − [Cn(x̄)]T ∥X≤∥ S ∥n∥ [S(x̄)]T ∥X n = 1, 2, ...

where fixed T ∈ [0,∞), x̄ ∈ H.
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a) Indeed, it is obviously true, when n = 0.

b) Suppose that for n = k − 1, this above inequality is held. Then, we

can get that

∥ [Ck+1(x̄)]T − [Ck(x̄)]T ∥X
=∥ [SCk(x̄)]T − [SCk−1(x̄)]T ∥X
≤∥ S ∥∥ [Ck(x̄)]T − [Ck−1(x̄)]T ∥X
≤∥ S ∥∥ S ∥k−1∥ [S(x̄)]T ∥X

so that the inequality is satisfied for all n = 0, 1, 2, ....

c) Consequently, for any positive integer m, always exists that

∥ [Cn+m(x̄)]T − [Cn(x̄)]T ∥X

=∥
m−1∑
k=0

([Cn+k+1(x̄)]T − [Cn+k(x̄)]T ∥X

≤
m−1∑
k=0

∥ [Cn+k+1(x̄)]T − [Cn+k(x̄)]T ∥X

≤
m−1∑
k=0

∥ S ∥n+k∥ [S(x̄)]T ∥X

≤ ∥ S ∥n∥ [S(x̄)]T ∥X
1− ∥ S ∥

Then the above inequality implies that for arbitrary x̄ inH, C has domain

H with independent of T . Moreover, we can get lim
n→∞

[Cn(x̄)]T = [C(x̄)]T for

all x̄ ∈ H. Further, follow the above inequality that

∥ [C(x̄)]T − [Cn(x̄)]T ∥X = lim
m→∞

∥ [Cn+m(x̄)]T − [Cn(x̄)]T ∥X

≤ ∥ S ∥n∥ [S(x̄)]T ∥X
1− ∥ S ∥

and note that A is continuous Lipschitz operator. Consequently, we can get
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that

[C(x̄)]T = lim
n→∞

[Cn(x̄)]T

= lim
n→∞

[(I + SCn−1)(x̄)]T

= x̄T + [SC(x̄)]T

where the convergence belongs to norm. Since C = I+SC, so that (I−S)C =

I, which implies that C is the inverse of I − S. Above all imply that I − S

is surjective. Completing the proof of the Lemma.

In the following investigation, the problem statement is proposed. To

some extent, a flexible design is difficult to obtain because of many diffi-

culties in dealing with unknown disturbance of nonlinear systems. How to

effectively finding a corresponding framework to analyze adverse effect of

unknown disturbance of nonlinear systems is a crucial step. Therefore, in

this chapter, a new design scheme will be considered to solve robust stability

and unknown disturbance issues based on the operator-based right coprime

factorization method. It is worth to emphasize that all space sets associated

with the following issues will be re-defined in the Banach space with Lipschitz

norm which are different from above appeared.

At this position, a general multi-input and multi-output nonlinear system

is considered shown in Figure 3.1, which is defined in an extended linear space

setting in the time domain. The system equations are given as
e(t) = r(t)− y(t)
y(t) = PC(e)(t) + v(t)
r(t) = W (u)(t)

(3.1)

where r denotes the reference input signal as the output of a controller W

driven by an external signal u; e denotes the error signal between the reference

input r and the system output signal y that means y is required to follow the

given reference signal r; v as a input signal denotes the external disturbance;

P and C denote the plant and the controller, respectively. Note that the plant
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Figure 3.1: The nonlinear system with unknown disturbance

P is a nonlinear operator which is assumed to be given, and the controller C is

another nonlinear operator which is to be design for removing the disturbance

as well as stabilizes the whole system stability.

Let U, Y and D denote input space, output space and uncertain space,

respectively, which are three extended linear spaces of l−, p− and q− di-

mensional complex-valued measurable functions defined on the time domain

[0,∞) where T ≤ ∞ and 1 ≤ l, p, q < ∞, so that can be found u ∈ U ;

y, r, e ∈ Y ; and v ∈ D. Moreover, let D(·) and R(·) denote domains and

ranges for the operators in this configuration respectively.

In order to describe the design scheme more precisely, firstly, we need to

clarify three admissible classes related to source inputs, outputs and error

signals of the given control systems as follows:

U = {u :∥ uT ∥U≤ Mu < ∞ for all T ∈ [0,∞)} (3.2)

Y = {y :∥ yT ∥Y≤ My < ∞ for all T ∈ [0,∞)} (3.3)
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and Y0 ⊆ Y ; where

Y0 = {e : e = r − y, r, y ∈ Y } (3.4)

Based on practical considerations these assumptions make sense that the

choice of Mu and My could be dictated by the allowable maximum dynamic

range.

It is worth to mention that our first objective is to make the system to

be input-output stable under consideration, that is for any input in U the

corresponding system output must be in Y . However, as is well known,

even if the plant P and the designed compensator C are both bounded and

continuous, their boundedness and continuity cannot imply the stability of

the overall system from input space to output space under the closed-loop

configuration due to mapping a signal to somewhere outside the output space.

3.2.2 Robust stability

Figure 3.2: The proposed nonlinear system with unknown disturbance
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It follows from the above statements. We first have to give a new view-

ing angle to consider the unstable nonlinear system using operator-based

right coprime factorization method to guarantee the stability of the uncer-

tain nonlinear system, wherein the real plant P̄ has a nonlinear disturbance

with respect to the nonlinear nominal plant P shown in Figure 3.2, where

a stable operator R is designed to transform the external source d into the

disturbance v, that is, the disturbance v is driven by d, which is assumed to

be associated with the plant input ũ. Moreover, we suppose that the class of

disturbances is defined by D as shown in follows, which is a bounded subset

in the corresponding extended linear space.

D = {d :∥ dT ∥D≤ Md < ∞ for all T ∈ [0,∞)} (3.5)

In order to impose on this system for its well-posed, some necessary as-

sumptions need to be clarified. Assume that W : U → Y and R : D → Y are

both bounded linear operators as well as P : R(C) → Y and C : Y → D(P )

are two nonlinear operators. For the consistency of the overall system, as-

suming that R(C) ⊂ D(P ) and R(W )+̇(R(R)+̇R(P )) ⊂ D(C), where +̇ is

the geometric sum of two sets of vectors.

Further, from the physical viewpoint, can be easily to find the R(W ) ⊆
R(R), that is, the range of disturbance inputs is usually larger than that the

input signals especially taking into account of random disturbance rejection.

Under all of these assumptions, the stability and the uniqueness of internal

signals will be considered using right coprime factorization.

Assume that the given model plant P has a right coprime factorization,

P = ND−1, satisfying with a Bezout identity, where N is stable, D is stable

and invertible, and R has a right factorization in the form R = GD−1, where

G is stable and D is stable and invertible, if there exists a transformative

Bezout identity related to operators A and B, which is satisfied

A(N +G) +BD = M̃ (3.6)
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where A and B are stable, B is invertible as well as M̃ is unimodular. Then

the system is overall stable.

We remake that the transformative Bezout identity introduced here is

defined on the linear space Ω. Moreover, if Ω = U , the M̃ can be usually

replaced by the identity operator I. Note that the initial state should be

consistent with the Bezout identity, that is, A(N+G)(w0, t0)+BD(w0, t0) =

M̃(w0, t0) should be satisfied. Furthermore, in this section, we select t0 = 0

and w0 = 0 without loss of generality.

3.3 Nonlinear systems with unknown distur-

bances rejection

3.3.1 The admissible class of compensator

Figure 3.3: The equivalent system with unknown disturbance

The nonlinear system with unknown disturbance shown in Figure 3.2

can be equivalently transferred into Figure 3.3. Therefore, for the obtained
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equivalent system, the nonlinear system with disturbance design problem can

be stated as follows,
e(t) = r(t)− y(t)

y(t) = NM̃−1C(e)(t) +G(d)(t)
r(t) = W (u)(t)

(3.7)

where r denotes the reference input signal and v the disturbance signal with

respect to the external source d. The system output y is required to follow

the given reference signal r. One of objectives of the section is to design a

controller C in order to reduce the adverse effects coming out of the distur-

bance d for the overall nonlinear system.

Here, it should be noticed that since the set of defined admissible respect

to disturbance is no longer a linear subspace, leading to the subset constituted

by the actual systems outputs is not necessarily a linear subspace. Therefore,

the nonlinear system with unknown disturbance design problem can be stated

as follows. Given M̃, N, W and G as described above, one of objectives of

this section is to design a controller C in order to remove the adverse effect

of disturbance v.

From mathematical view point, we choose the quasi-sate space Ω = U in

this section, a certain admissible class S∗ will be firstly proposed, which is

composed of all nonlinear compensator operators, as follows:

S∗ = {C ∈ Lip(Y ) : NC ∈ Lip(Y )} (3.8)

that S∗ is an infinite-dimensional Banach space. Note that, Y denotes the

output space for the system as well as the input space for the compensator C,

so that Lip(Y ) denotes the family of generalized Lipschitz operators mapping

from Y to itself. Using S∗ defined in (3.8) as an underlying operator space for

the admissible class of compensators, a very large framework for the design

purposes is obtained. The merits of the Banach space, S∗, for the underlying

space of controllers will be elaborated by the following Lemmas.
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Lemma 3.2 Let N and S∗ be given as described above. If the follow-

ing subset S0 consisting of the compensators that belong to the family S∗ is

satisfied, then the overall system is said to be stable:

S0 = {C ∈ S∗ : ∥ NC ∥< 1} (3.9)

where ∥ · ∥ is a generalized Lipschitz semi-norm of the operator.

Proof. First, we remark that in order to formulate this problem, the

nonlinear system as shown in Figure 3.3 will be considered without the dis-

turbance signals and the forward filter W form the physically viewpoint. As

is well known, if the overall feedback system is stable provided that all the

internal signals are mathematically well connected in the since that the over-

all feedback system is causal with unique internal signals to output signals.

Then a detail proof will be given from the mathematical well-connection

viewpoint under an infinite-dimensional Banach space.

It follows from the Figure 3.3 without considering the forward filter and

disturbance signals that:

e(t) +NM̃−1C(e)(t) = r(t)

which is a vector-valued nonlinear equation for each fixed input R corre-

sponding an unique error signal e. In which, without loss of generality, the

M̃ replaced by the identity operator I has been defined. Then composite

operator NC is Lipschitz under the condition in Equation (3.9) in the sense

that the norm is strictly less than 1 uniformly on bounded subsets of Y . Fur-

thermore, NC formulates a mapping from Y to itself, that is, for each r ∈ Y ,

there exists a unique corresponding e ∈ Y satisfying the above equation.

This implies that the overall system is output-input stable.This completes

the proof.

Lemma 3.3 If the condition that ∥ NC ∥< 1 is satisfied, then the non-

linear operator

I +NC : Y → Y
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is invertible, and its inverse, denoted by (I + NC)−1, is also a generalized

Lipschitz operator in Lip(Y ) satisfied with a fixed x0 as

∥ (I +NC)−1 ∥Lip≤∥ (I +NC)−1(x0) ∥Y +(1− ∥ NC ∥)−1

Proof . First, we observe that for any a1, a2 ∈ Y ,

∥ (I +NC)(a1)− (I +NC)(a2) ∥Y
≥∥ a1 − a2 ∥Y − ∥ (NC)(a1)− (NC)(a2) ∥Y
≥ (1− ∥ NC ∥) ∥ a1 − a2 ∥Y (3.10)

By satisfying the condition that ∥ NC ∥< 1. Hence, implying I + NC is

an injective mapping, namely, (I + NC)(a1) = (I + NC)(a2) implies that

a1 = a2.

Finally, for x1, x2 in the range of I + NC, from the above Equation (9)

and the definition of the norm we have

∥ (I +NC)−1 ∥Lip=∥ (I +NC)−1(x0) ∥Y

+ sup
x1,x2∈Y
x1 ̸=x2

∥ (I +NC)−1(x1)− (I +NC)−1(x2) ∥Y
∥ x1 − x2 ∥Y

≤∥ (I +NC)−1(x0) ∥Y +(1− ∥ NC ∥)−1

thus, this completes the proof.

Consider, therefore, relationships within Equations (3.7) and all the con-

ditions stated above are satisfied. Then, the following equation can be ob-

tained,

e(t) +NC(e)(t) = W (u)(t)−G(d)(t)

then, by Lemma 1, we can get

e(t) = (I +NC)−1(W (u)−G(d))(t) (3.11)
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According to the notation found in Eq.(10), we will discuss the adverse

effect of unknown disturbance by separating d and u to reduce the unknown

disturbance of the nonlinear systems. However, there are two issues of cru-

cial importance. First, the two external inputs u and d has a complex rela-

tionship, which plays a negative role in reducing the unknown disturbance.

Second, (I + NC)−1 is not a simple calculation due to nonlinear property.

Hence, in the following, a new design scheme will be proposed in detail to

reduce the disturbance d based on the operator theory.

Consequently, a generalized inner inverse will be proposed in a mathe-

matical manner for solving the objective problems which above posed.

3.3.2 Rejection scheme analysis

It is easily seen from the system Equation (3.11), since (I + NC)−1 is non-

linear, which is different from linear case, not fitting the left distributive law,

so that it is difficult to design a general framework for the nonlinear system

with disturbance to separate W (u)−G(d) in such a general setting. At this

position, the definition of the inner inverse will be introduced.

Definition 3.1. Let X1, X2 be two Banach spaces and B(X1, X2) denote

the Banach space consisting of all bounded linear operators mapping from

X1 to X2. For each T ∈ B(X1, X2), the notions N(T ) and R(T ) denoted the

null space and range of T .

There exists J ∈ B(X1, X2), if condition TJT = T is satisfied, then the

operator J is said to be an inner inverse of T ; as well as if condition JTJ = J

is satisfied, then the operator J is said to be an outer inverse of T . Moreover,

if J is both an inner inverse and outer inverse of T , then the operator J is

said to be a generalized inverse of T . It is noted that the generalized inverse

would not exist as well as without ensureness the property of unique even if

it exist.

There are some properties of the generalized inverse should be introduced
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as follows:

For any given operator T ∈ B(X1, X2), there exists a bounded generalized

inverse T+, having:

(1) There exist TT+ and T+T are both bounded projectors, such that

properties R(TT+) = R(T ), R(T+T ) = R(T+), N(T+T ) = N(T ), and

N(TT+) = N(T+);

(2) Denoted the topological direct sum decompositions: X1 = N(T ) ⊕
R(T+) , X2 = N(T+)⊕R(T ).

Now, Let go back to consider the problem on how to separate the argu-

ment W (u)(t)−G(d)(t) with (I +NC)−1 completely. First, denote the G+

to be inner inverse of G. It is obvious that G : D → Y0 is stable defined

on the closed subset D, its generalized inner inverse G+ : Y0 → D is also a

bounded linear operator. Here, the generalized inner inverse operator G+ is

defined to be one such that

GG+G = G

which defined on the time domain of G implies that

GG+G(d) = G(d) for any d ∈ D

and also have GG+ = I on the range of G, where I is the identity operator,

that is, namely,

GG+(v) = v for any v ∈ R(G)

Moreover, the operator norm of this inner inverse operator has the upper

bound as shown below

∥ G+ ∥:= sup
∥v∥Y =1

∥ G+v ∥D≤ Md (3.12)

because of G+(v) ∈ D for any v ∈ R(G), what Md has been defined in

Equation (3.5). Consequently, it follows from the Equation (3.11), a theorem

will be proposed as below:
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Theorem 3.1. According to Equation (3.12), the norm of e can be ex-

pressed by:

∥ e ∥Y ≤∥ (I +NC)−1 ∥∥ G ∥ Md ∥ W ∥∥ u ∥U
+ ∥ (I +NC)−1G ∥∥ d ∥D (3.13)

which implies that not only the boundedness in terms of ∥ e ∥Y , but also being

separated into two parts.

Proof. First establish the norm of error signal e as shown in follows:

∥ e ∥Y=∥ (I +NC)−1(Wu−Gd) ∥Y

Therefore, based on (3.12),

∥ e ∥Y ≤∥ (I +NC)−1G ∥∥ G+Wu− d ∥D
≤∥ (I +NC)−1G ∥ Md ∥ W ∥∥ u ∥U + ∥ d ∥D)

hence, we can get

∥ e ∥Y ≤∥ (I +NC)−1 ∥∥ G ∥ Md ∥ W ∥∥ u ∥U
+ ∥ (I +NC)−1G ∥∥ d ∥D

The proof of the theorem is completed.

In the position of this point, the main problem is that to simultaneously

reject the disturbance and minimize the norm of the error response of the

system. That is, in this case, the disturbance rejection problem has been

posed as to minimize first part of the second term in the right hand side of

(3.13) for remaining less tan or equal to a prescribed bound enough small.

For simplicity to describe the design scheme, we let

Φ(t) = (I +NC)−1G(d(t)) (3.14)
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However, since the inverse of I+NC in the objective functional is difficult

to calculated, so that this problem is difficult to solve from the technical per-

spective. We will propose a new nonlinear control operator in the following

theorem.

Theorem 3.2. In terms of Equation (3.14), there exists a nonlinear

control operator Q as shown in Equation (3.16) such that Φ(t) tends to be

zero for reducing the unknown disturbance for the nonlinear system shown in

Fig. 3.3.

Proof : For any generalized Lipschitz operator Q ∈ Lip(Y ) satisfying

NQ ∈ Lip(Y ) with ∥ NQ ∥< 1

2
, (I − NQ)−1 exists and is also in Lip(Y ),

then we define

C := Q(I −NQ)−1

so that

∥ NC ∥ =∥ NQ(I −NQ)−1 ∥

≤∥ NQ ∥∥ (I −NQ)−1 ∥< 1

which implies that ∥ NC ∥< 1 is satisfied. Hence, we observe that

I +NC = (I −NQ)−1 (3.15)

In order to reduce the effection of the unknown disturbance d on the

overall nonlinear system, the nonlinear operator Q with the time-varying

gain is designed as follows,

Q(v)(t) = v(t)N−1

∫ t

0

e−v(τ) · 2 sin(v(τ)) · v̇(τ)dτ (3.16)

According to (3.15) and v(t) = G(d(t)), Φ(t) is shown as follows,

Φ(t) = (I +NC)−1G(d(t))

= (I −NQ)(v(t))

= v(t)−NQ(v(t)) (3.17)
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Based on (3.16) and (3.18),

Φ(t) = v(t)− v(t)

∫ t

0

e−v(τ) · 2 sin(v(τ)) · v̇(τ)dτ (3.18)

as t → ∞, ∫ t

0

e−v(τ) · 2 sin(v(τ)) · v̇(τ)dτ

= (−2 sin(v(τ)) · e−v(τ))|t0

+

∫ t

0

e−v(τ) · 2 cos(v(τ)) · v̇(τ)dτ

= lim
t→∞

e−v(τ)(− sin(v(τ))− cos(v(τ))
∣∣∣t
0

→ 1 (3.19)

under (3.19),

v(t)− v(t)

∫ t

0

e−v(τ) · 2 sin(v(τ)) · v̇(τ)dτ → 0 (3.20)

that is,

Φ(t) = (I +NC)−1G(d(t)) → 0 (3.21)

Then the error response of the system, which is composed of two parts has

been transformed into only one part by reducing the unknown disturbance

based on the proposed design scheme. In the next section, a simulation

example will be shown to confirm effectiveness of the proposed design scheme.

3.3.3 Simulation examples

In this section, we will show two examples, in order to illustrate the effective-

ness of the proposed design scheme. Let C[0,∞) be the space of continuous

functions, and C1
[0,∞) consists of all the functions having a continuous first

derivative, both are defined on [0,∞).
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This is the first example including two cases which represent two kinds of

disturbances. Case one, the nominal plant and right factorization are given

as follows:

P (ũ)(t) = 2(2t+ et)ũ(t)

−
∫ t

0

e−2τ · (2τ + eτ ) · ũ(τ)dτ (3.22)

N(ω)(t) = 2ω(t)−
∫ t

0

e−2τω(τ)dτ (3.23)

D(ω)(t) =
1

2t+ et
ω(t) (3.24)

According to the proposed design, the perturbed operator and its right

factorization are given as follows:

R(d)(t) =

∫ t

0

sin2((2τ + eτ ) · d(τ))dτ (3.25)

G(d)(t) =

∫ t

0

sin2(d(τ))dτ (3.26)

The disturbance is assumed to be d(t) = 3.2te−2t + 1 . It is easy to

find that P is unstable with stabilized N, D. Based on the proposed design

scheme, the controllers A and B can be defined as follows:

A(y)(t) =
1

2
y(t) (3.27)
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B(ũ)(t) =

∫ t

0

2τe−2τ + e−τ

2
· ũ(τ)dτ

− 1

2

∫ t

0

sin2((2τ + eτ )ũ(τ))dτ (3.28)

Thus,

(A(N +G) + BD)(ω)(t)

= ω(t)− 1

2

∫ t

0

e−2τω(τ)dτ

+
1

2

∫ t

0

sin2(ω(τ))dτ +
1

2

∫ t

0

e−2τ · ω(τ)dτ

− 1

2

∫ t

0

sin2(ω(τ))dτ

= ω(t)

It can be verified that A and B are satisfied with Equation (3.6).

Based on the proposed design scheme, the proposed controller Q is given

as follows.

Q(v)(t) =v(t) · e(−
1
4
e−2t) ·

∫ t

0

ẏ0(τ)e
1
4
e−2τ

dτ

·
∫ t

0

e−v(τ) · sin(v(τ)) · v̇(τ)dτ} (3.29)

In order to show the example more explicitly, simulation results are given.

The reference input is chosen as r = 1.6te−t + 0.05. Then the simulation

results are given in Figures 3.4-3.7, where the reference input r is shown

in Figure 3.4, the control input is shown in Figure 3.5, the plant output

y(t) under designed scheme is shown in Figure 3.6, in contrast the plant

output without control is shown in Figure 3.7. From the comparison of

Figure 3.6 and Figure 3.7, we can find the proposed design scheme is effective
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Figure 3.4: Reference input
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Figure 3.5: Control input
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Figure 3.6: Plant output with Q
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Figure 3.7: Plant output without Q
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in reducing the disturbance. Therefore, the simulation results demonstrate

the fact that the unknown disturbance is effectively reduced and the overall

robust stability is guaranteed by the proposed method.

Case two, in order to show the method feasibly, the other kind of distur-

bance which is called random disturbance is chosen as 16
5
te−2t+rand(size(0.32te(−

2t) + 2)). Then nominal plant which satisfies the right factorization with N

and D is given the same as above, as well as the designed controllers.Then

the random disturbance is given in the same dimension as shown in Figure

3.8. Then the simulation result is given in Figure 3.9, where the plant output

with control is shown. The simulation results demonstrate the fact that the

disturbance is effectively rejected by the proposed method.

Figure 3.8: Random disturbance
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Figure 3.9: Plant output with control
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The other simple example is discussed as follows. The plant and related

controllers are given as follows.

P (ũ(t)) =

∫ t

0

(eũ(τ) + sin(ũ(τ)) + ũ(τ))dτ

W (u(t)) = 2e−2u(t) + 0.5

R(d̃(t)) =

∫ t

0

sin(5d̃(τ))dτ

Based on the proposed design scheme, the controllersQ is given as follows:

Q(r(t)) =
r(t)∫ t

0
(eω(τ) sin(ω(τ)) + ω(τ))dτ

·
∫ t

0

2e−r(τ) sin(r(τ))ṙ(τ)dτ

In order to show the example more explicitly, simulation is done. The

reference input is chosen as r = 2e−2t + 0.5. The disturbance is chosen as

R(d̃(t)) =
∫ t

0
sin(5d̃(τ))dτ . Then the simulation results are given in Figures

3.10-3.12, where control input with Q is shown in Figure 3.10, control output

y(t) without Q is shown in Figure 3.11, control output y(t) with Q is shown in

Figure 3.12. The simulation results demonstrate the fact that the disturbance

is effectively rejected by the proposed method.

3.4 Conclusion

In this chapter, robust stability of nonlinear systems with unknown distur-

bance is guaranteed based on the proposed design scheme. The merits of

the proposed design scheme lie in that the convenient frameworks as shown

in Figures 3.2 and 3.3 are obtained by using the right coprime factorization
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Figure 3.10: Control input with Q



64 CHAPTER 3. NONLINEAR SYSTEMS & DISTURBANCE REJECTION

Figure 3.11: Plant output without Q
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Figure 3.12: Plant output with Q
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technique and the proposed controller C including Q is designed to reduce

the unknown disturbance, which can not only guarantee robust stability of

the overall nonlinear system and but also reduce the unknown disturbance.

Firstly, some basic knowledge with respect to nonlinear operators were re-

viewed. Secondly, a convenient framework was obtained by using the right

coprime factorization technique, based on which a nonlinear operator con-

troller was designed to remove the adverse effects of the unknown disturbance

of the nonlinear systems. The proposed design scheme can not only achieve

the robust stability of the overall system but also reduce the unknown distur-

bance. Finally, a simulation example was given to confirm the effectiveness

of the proposed design scheme.



Chapter 4

Operator-based nonlinear
uncertain systems with
external disturbance rejection
using robust right coprime
factorization

4.1 Introduction

Robust stability control design is a central problem and there have been

significant developments for both linear and nonlinear control systems over

the past decades based on a great number of control methods. Especially,

these issues, such as robust analysis, output tracking problem, perturbation

and disturbance, which are involved in the nonlinear systems still remain

challenging owing to their complex structures and nonlinear characteristics.

In terms of internal perturbation and external disturbance, it is extremely

hard to avoid in practical nonlinear systems, because there are many kinds of

reasons leading to them, such as modeling errors, unknown parameters and

super added unknown part of control input, which are inevitable in some

cases. It is necessary to reduce the adverse effect resulting from internal per-

67
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turbation and external disturbance in order to improve system performance.

For considering the control design for nonlinear systems with perturbation

to guarantee the stability of the overall systems. Many traditional methods

have been proposed from different viewpoints, which is rather difficult to

measure state vectors directly on-line measurements, which leads to some

restrictions on applying these approaches. In Chapter 3, unknown distur-

bance rejection in nonlinear systems has been considered using robust right

coprime factorization based on operator theorem. According to the proposed

method, robust right coprime factorization method has been applied from the

input-output point of view to consider the nonlinear systems and proved to

be an effective method in dealing with control design issues of nonlinear sys-

tems. Moreover, the disturbance rejection has been discussed by designing

a new controller with integrator to realize anti-jamming capability. For the

record, most traditional researches are aimed at one interference object in

control system design, either internal perturbation or external disturbance,

as has been stated in Chapter 3. However, in most practical nonlinear control

systems there are a number of different kinds of external disturbance and in-

ternal perturbation that always exist together subjected to the circumstance,

temperature, coupling between different systems and so on. Therefore, in this

Chapter, both internal perturbation and external disturbance of the nonlin-

ear systems are considered together using new design scheme. In detail, from

error signal point of view, the adverse effects resulting from external distur-

bance and internal perturbation of the nonlinear systems are removed by the

designed nonlinear operator, simultaneously, output tracking performance is

realized using the proposed design scheme.

In Section 4.2, based on the developments in the previous chapter, at

this position to propose a new strategies from the qualitative perspectively

via some general theories in order to design a compensator with integrator

for resisting the adverse effects from the internal perturbation and external



4.1. INTRODUCTION 69

disturbance to ensure the whole system working stable. First, the problem

statements will be provided, in which the motivations as well as merits will

be expounded for catching the main purports of this chapter. Second, as

it well known, Chen and Deng have proposed some sufficient condition in a

fairly general operator-theoretic setting for guaranteeing robust stability of

nonlinear systems with perturbation. In this Section, I will show three cases

respectively for illustrating the relationship between the proposed conditions

and the internal perturbations or disturbances, that means which kind of

cases would be corresponding to which conditions, respectively. Third, an

numerical example will be shown for proving the feasibility of the proposed

condition in the concern of the input-output relation.

In Section 4.3, based on the conception of nonlinear right coprime factor-

izations(input/output approach), the existence of the robustness of nonlin-

ear right coprime factorizations is discussed as well as the stability of overall

system has been realized. On the basis of the proposed design scheme, a

convenient framework is obtained for discussing rejection issues for exter-

nal disturbance and internal perturbation. In details, as emphasized before,

it is extremely hard to avoid uncertainties existing in practical industry ef-

fecting from unknown parameters, modelling errors, coupling and so on. In

this section, these kinds of uncertainties will be generalized into two main

types, one is internal perturbations which always exist within the system,

another is external disturbance which alway yield from the outside factors

of system. Moreover, compared with the former works, the proposed design

scheme using the designed compensator not only can deal with the external

disturbance, but also can handle the existing perturbation as well. Last, with

the proposed convenient structure tracking performance has been realized si-

multaneously.

In Section 4.4, operator-based perturbed nonlinear systems with unknown

disturbance rejection using right coprime factorization methods are summa-
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Figure 4.1: The nonlinear system with internal perturbation and external
disturbance

rized.

4.2 Robust stability of nonlinear uncertain

systems with disturbance

4.2.1 Problem statement

In this chapter, nonlinear systems with both internal perturbation and exter-

nal disturbance are considered which is defined in an extended linear space

setting in the time domain as shown in Figure 4.1, where r ∈ Y denotes ref-

erence input as the output of a filter W driven by an external signal u ∈ U

in which Y is the output space respect to extended linear space ,U is the

external input space also respect to extended linear space; e ∈ Y0 denotes

error signal between reference input r and system output y ∈ Y , in which

Y0 is a subset of Y ; v ∈ D as a input signal denotes external disturbance,

in which D is the admissible class of disturbances, ũ is the plant input. In

general, C is a nonlinear controller which is associated with the plant input

signal.
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In order to describe the design scheme more precisely, firstly, we need to

clarify three admissible classes related to source inputs, outputs and error

signals. The two linear subspaces as input and output spaces are considered

as follows:

U = {u :∥ uT ∥U≤ Mu < ∞ for all T ∈ [0,∞)} (4.1)

Y = {y :∥ yT ∥Y≤ My < ∞ for all T ∈ [0,∞)} (4.2)

Let Y0 ⊆ Y ; where

Y0 = {e : e = r − y, r, y ∈ Y } (4.3)

The objectives of this chapter are mainly to deal with internal perturba-

tion and external disturbance of the nonlinear system to guarantee robust

stability of the overall system and to design tracking control scheme such that

output of the nonlinear system tracks reference input. Firstly, a theorem on

robust right coprime factorization is proposed by using a Lipschitz inequa-

tion with a reconstructed controller for the nonlinear system with internal

perturbation and external disturbance. Secondly, by combining the robust

right coprime factorization method with a new nonlinear operator controller,

tracking performance is realized, while internal perturbation and external dis-

turbance of the nonlinear system are reduced. The proposed design scheme

not only deals with internal perturbation and external disturbance but also

achieves the tracking performance of the overall system.

4.2.2 Three cases of robustly stable conditions

This chapter considers a nonlinear system with internal perturbation and

external disturbance. First of all, it is worth to mention again that the
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Figure 4.2: The proposed nonlinear system with perturbation and distur-
bance

Bezout identity is given for the nominal plant in the form of AN+BD = M .

If the Bezout identity is satisfied that the nominal plant is said to have a

right coprime factorization. Suppose that the plant P has a perturbation

∆P , that is, P → P + ∆P denoted as P ∗ = P + ∆P , where ∆P denotes

the case D → D + ∆D and D + ∆D is an invertible operator, in other

words, the perturbation can be considered as the results caused by ∆D. The

robust right factorization can be rewritten to be P +∆P = N(D +∆D)−1,

where in this chapter, we consider the case of plant with uncertainty from

the input side, shown in Figure 4.2, where the system P ∗ which is composed

of the normal plant P and ∆P as internal perturbation of this nonlinear

system; a stable operator R is assumed to transform the external source d

into the disturbance v. In the considered system, ∆D is took into account as

internal perturbation of the nonlinear system, such that, P ∗ can be factorized

into two parts N and (D +∆D)−1. Moreover, in the view of mathematical,

we suppose that the class of disturbances is defined by Dd ⊆ U as shown
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as follows, which is a bounded subset in the corresponding extended linear

space.

Dd = {d :∥ d ∥Dd
≤ Md̃ < ∞ for all T ∈ [0,∞)} (4.4)

At this position, the objective problems can be summarized that: 1) the

consideration is that under what conditions can guarantee the perturbed

plant of the nonlinear system still holding a robust right coprime factoriza-

tion. 2) the consideration is that satisfying what conditions can maintain the

perturbed system to be overall stability. Based on the above analysis for the

nonlinear system with internal perturbation and external disturbance shown

in Figure 4.2, a theorem on robust right coprime factorization will be dis-

cussed in order to guarantee robust stability by using a Lipschitz inequation

with a new constructed controller.

Theorem 4.1. Let the given normal system P have a right coprime

factorization P = ND−1 , where N is stable; D is stable and invertible. For

the real system P ∗ = P +∆P with external disturbance v, the assumed stable

operator R has a right factorization in the form of R = G(D+∆D)−1, where

G is stable, D+∆D is stable and invertible. If there exists a stable operator

A⋆ and B, such that

∥A⋆(N +G) + B(D +∆D)−BD∥ < 1 (4.5)

then the nonlinear system with internal perturbation and external disturbance

has a robust right coprime factorization, that is, robust stability of the overall

system is guaranteed, where A⋆ and B are stable, ∆D is bounded, ∥ · ∥ is

Lipschitz norm.

Proof. As for the exact system shown in Figure 4.2, D+∆D andN+G are

stable such that the system in the form of (A+A⋆)(N+G)+B(D+∆D) = M̃

is well-posed. According to the fact that for each d, the signal v is uniquely
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determined by the system input ũ, denoted as d = φ(ũ). For any r̃ ∈ U , we

can get

r̃ = B(D +∆D)(ω) + (A+ A⋆)(y)

= B(D +∆D)(ω) + (A+ A⋆)

[G(D +∆D)−1(d) +N(ω)]

= B(D +∆D)(ω) + (A+ A⋆)[G(D +∆D)−1

(D +∆D)(ω) +N(ω)]

= [A(G+N) + A⋆(G+N) +B(D +∆D)](ω)

= [I −BD + A⋆(G+N) +B(D +∆D)](ω)

whenever ∥A⋆(N + G) + B(D + ∆D) − BD∥ < 1, then the operator I −
BD + A⋆(G + N) + B(D + ∆D) has a stable invertible. Moreover, since

A⋆, B,D,N, and G, ∆D are all stable, hence, G + N ,D + ∆D and I −
BD+A⋆(G+N) +B(D+∆D) is stable that can be get. All of these imply

that I −BD + A⋆(G+N) +B(D +∆D) is unimodular. As a result, based

on the proposition of [37] the nonlinear system with internal perturbation

and external disturbance has a robust right coprime factorization, and the

overall system is guaranteed to be robustly stable. The proof of theorem is

completed.

Remark. Something to highlight for you is that, based on the Theorem

4.1, the exact system with internal perturbation and external disturbance

can be illustrated in the form of (A + A⋆)(G + N) + B(D + ∆D) = M̃ ,

which is a Bezout identity associated with the considered nonlinear system

in this chapter, where M̃ is unimodular. Note that the initial state should

be consistent with the Bezout identity, that is, (A + A⋆)(N + G)(w0, t0) +

B(D + ∆D)(w0, t0) = M̃(w0, t0) should be satisfied. Furthermore, in this

chapter, we again select t0 = 0, w0 = 0 but M̃ ̸= I, which is much different

from former, a more general practical form can be used into the robust right
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coprime factorization.

Theorem 4.2. Let the given normal system P have a right coprime

factorization P = ND−1 , where N is stable; D is stable and invertible. For

the real system P ⋆ = P + ∆P , D + ∆D is stable and invertible. If there

exists a stable operator A⋆ and B, such that

∥A⋆N +B(D +∆D)−BD∥ < 1 (4.6)

then the nonlinear system with internal perturbation has a robust right

coprime factorization. That is, robust stability of the overall system is guar-

anteed.

Proof. First, some detail explanations are given for the proposed theorem.

That is, the real system with internal perturbation but without external

disturbance, namely, ∆D ̸= 0 v = 0.

For any r̃ ∈ U , we can get

r̃ = B(D +∆D)(ω) + (A+ A⋆)(y)

= B(D +∆D)(ω) + (A+ A⋆)N(ω)

= [B(D +∆D) + I −BD + A⋆N ](ω)

= [I + A⋆N +B(D +∆D)−BD](ω)

whenever ∥A⋆N+B(D+∆D)−BD∥ < 1, then the operator [I−BD+A⋆N+

B(D + ∆D)] has a stable invertible. Moreover, since A⋆, B,D,N, and ∆D

are all stable, hence, I−BD+A⋆N+B(D+∆D) is stable that can be get. All

of these imply that I−BD+A⋆N +B(D+∆D) is unimodular. As a result,

the nonlinear system with internal perturbation has a robust right coprime

factorization, and the overall system is guaranteed to be robust stable.

Theorem 4.3. Let the given normal system P have a right coprime

factorization P = ND−1 , where N is stable; D is stable and invertible. For

the real system P with external disturbance v, the assumed stable operator R
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has a right factorization in the form of R = GD−1, where G is stable, D is

stable and invertible. If there exists a stable operator A⋆ and B, such that

∥A⋆(G+N)∥ < 1 (4.7)

then the nonlinear system with external disturbance has a robust right coprime

factorization, that is, robust stability of the overall system is guaranteed.

Proof. First, some detail explanations are given for the proposed theorem.

That is, the real system with internal perturbation but without external

disturbance, namely, ∆D = 0 v ̸= 0.

For any r̃ ∈ U , we can get

r̃ = BD(ω) + (A+ A⋆)(y)

= BD(ω) + (A+ A⋆)[GD−1(d) +N(ω)]

= BD(ω) + (A+ A⋆)[GD−1D(ω) +N(ω)]

= [A(G+N) + A⋆(G+N) + BD](ω)

= [I + A⋆(G+N)](ω)

whenever ∥A⋆(N +G)∥ < 1, then the operator [I +A⋆(G+N)] has a stable

invertible. Moreover, since A⋆, N and G are all stable, hence, I+A⋆(G+N) is

stable that can be get. All of these imply that I +A⋆(G+N) is unimodular.

As a result, the nonlinear system with internal perturbation and external

disturbance has a robust right coprime factorization, and the overall system

is guaranteed to be robust stable.

4.2.3 An example for showing the necessity of the pro-
posed method

A numerical example is given to demonstrate the limitation of the former

condition in guaranteeing the robust stability of nonlinear systems. In this
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case, we suppose P, N, D as follows.

P (ũ)(t) =
t+ 1

(2t+ 1)t
(ũ)(t) +

t

2t+ 1

which can be factorizated into tow parts shown in below with satisfying the

right coprime factorization.

N(ω)(t) =
1

2t+ 1
ω(t) +

t

2t+ 1

D(ω)(t) =
t

t+ 1
(ω)(t)

As for the plant, the stable controllers A, B can be defined as follows,

A(y)(t) =
2t+ 1

t+ 1
(y)(t)

and

B(ũ)(t) = ũ(t)− t

t+ 1

which satisfy the Bezout identity.

As for the real plant, however, the uncertainties always be existed, in

this case, whether the controllers A and B also can make the overall system

stable is a problem which need to be proof. So that, we suppose that ∆D

and G represent internal perturbation and external disturbance as follows.

∆D(ω)(t) = 2
t+1

(ω)(t) and G(ω)(t) = 1
2t+1

(ω)(t) + 1.

Based on the previous condition on the robust stability we can find

∥ (A(N +G)− AN +B(D +∆D)−BD)M−1 ∥

=∥ 1

t+ 1
ω(t) +

2t+ 1

t+ 1
+

2

t+ 1
ω(t)− t

t+ 1
∥

=∥ 3

t+ 1
ω(t) + 1 ∥> 1

which verified that the controller A and B didn’t play a desired role to ensure

the system stable. So that the new theorem rises in response to the proper

time and conditions.
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Then taking into account on Theorem 4.1, a new controller A⋆ is given

in the form of

A⋆(y)(t) = −y(t) +
5t2 + 5t+ 1

(2t+ 1)(t+ 1)

, so that the condition can be verified

∥ A⋆(N +G) +B(D +∆D)−BD ∥

=∥ − 2

2t+ 1
ω(t)− 3t+ 1

2t+ 1
+

5t2 + 5t+ 1

(2t+ 1)(t+ 1)
+

2

t+ 1
ω(t)− t

t+ 1
∥

=∥ 2t

2t2 + 3t+ 1
ω(t) ∥< 1

which illustrates that the proposed design scheme of Theorem 4.1 is effec-

tive for dealing with internal perturbation and external disturbance. That

is, based on the former method, the robust stability of the nonlinear systems

with internal perturbation and external disturbance cannot be guaranteed

because the norm value of the inequation is larger than 1. However, A⋆ plays

a necessary role on robust stability of the overall system when the nonlinear

systems with internal perturbation and external disturbance.

4.3 Rejection scheme analysis and output track-

ing issue

4.3.1 Equivalent problem

The robustness of the right coprime factorization of the nonlinear system

with internal perturbation and external disturbance shown in the Figure 4.2

has been investigated, which results in the robust stabilization of the entire

feedback control system based on right coprime factorization in reasonably

general operator theoretic setting. We are in a position to address the prob-

lem that the relationships around the control system still remain unchanged

under the internal perturbation due to the whole complex structure, so that
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Figure 4.3: Equivalent system

it is difficult to design the compensator belonging to a certain admissible so

as to remove the adverse effects from the uncertainties. Then an equivalent

problem statement will be discussed.

Corollary 4.1 Assume that the nominal plant with right coprime fac-

torization shown in Figure 2.3 is well-posed. If for any r̃ ∈ Ue, can be got

ω = M̃−1(r̃) ∈ We in Figure 4.2, when if and only if M̃ is unimodular oper-

ator, such that the equivalent feedback control system for Figure 4.2 can be

obtained in the sense that show in Figure 4.3.

To state the corollary, denote some notions again. Let the plant input

space, output space and quasi-state space be Ue ⊂ U , Ye ⊂ Y and W ,

respectively. P ∗ = N(D + ∆D)−1 : W → Dd, N : W → Ye, G : Dd → Ye,

D +∆D : W → Ue and M̃−1 : Ue → W is an unimodular operator.

(Sufficiency). Since the feedback system shown in Figure 4.2 is well-

posed, then we define an implicit unimodular operator M̃ : W → Ue, in the

sense that we do not know its explicit construct at present, for any r̃ ∈ Ue,

so that ω = M̃−1r̃. Further, since y = (N + G)ω. From the above two
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equations, we can get

y = (N +G)M̃−1r̃

which the corresponding figure has been shown in Figure 4.3.

(Necessity). To start with, following the Figure 4.2 with the well-posedness

feedback control system. We have r̃ = ẽ+ (A+A⋆)y, ẽ = B(D+∆D)ω and

y = (N +G)ω, such that,

r̃ = B(D +∆D)ω + (A+ A⋆)(N +G)ω

= [B(D +∆D) + (A+ A⋆)(N +G)]ω

from the Theorem 4.1 can be got that (A+A⋆)(G+N)+B(D+∆D) = M̃ ,

which is a Bezout identity associated with the considered nonlinear system.

So as to, r̃ = M̃ω. From the corollary, not only get the equivalent frame-

work of Figure 4.2, but also obtain the quantitative form of M̃ .

4.3.2 The admissible class for controller design

Based on Corollary 4.1, the nonlinear system with internal perturbation

and external disturbance shown in Figure 4.2 can be equivalently transferred

to Figure 4.3. In terns of the obtained equivalent system, it can be described

as follows, 
e(t) = r(t)− y(t)

y(t) = NM̃−1C(e)(t) +G(d)(t)
r(t) = W (u)(t)

(4.8)

where r denotes the reference input and v is external disturbance with re-

spected to the external source d.

Therefore, the nonlinear system with internal perturbation and external

disturbance design problem can be stated as follows. Given M̃, N, W and G

as described above, one of objectives of this section is to design a controller

C in order to remove the adverse effect of internal perturbation ∆D and

external disturbance v such that output tracking performance is realized.
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In order to pose the problem mathematically, a certain admissible class

S∗ will be firstly proposed which is composed of all nonlinear compensator

operators, as follows:

S∗ = {C ∈ Lip(Y ) : NM̃−1C ∈ Lip(Y )} (4.9)

that S∗ is an infinite-dimensional Banach space. Note that, Y denotes the

output space for the system and input space for the compensator C, so that

Lip(Y ) denotes the family of generalized Lipschitz operators mapping from

Y to itself.

Using S∗ defined in Equation (4.9) as an underlying operator space for the

admissible class of controllers, a very large framework for the design purposes

is obtained. The merits of the Banach space, S∗, for the underlying space

of controllers will be elaborated by the following. That is, comparing with

the last Chapter with assuming M̃ = I, the structured admissible class has

a general wider practicability without emphasizing the M̃ quantitatively, in

the sense that M̃ ̸= I.

Lemma 4.1. If the condition that ∥ NM̃−1C ∥< 1 is satisfied, then the

nonlinear operator

I +NM̃−1C : Y → Y

is invertible, and its inverse, denoted by (I+NM̃−1C)−1, is also a generalized

Lipschitz operator in Lip(Y ) satisfied with a fixed x0 as

∥ (I+NM̃−1C)−1 ∥Lip≤

∥ (I +NM̃−1C)−1(x0) ∥Y +(1− ∥ NM̃−1C ∥)−1

Proof . First, we observe that for any a1, a2 ∈ Y ,

∥ (I +NM̃−1C)(a1)− (I +NM̃−1C)(a2) ∥

≥∥ a1 − a2 ∥ − ∥ (NM̃−1C)(a1)− (NM̃−1C)(a2) ∥

≥ (1− ∥ NM̃−1C ∥) ∥ a1 − a2 ∥ (4.10)
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By satisfying the condition that ∥ NM̃−1C ∥< 1. Hence, implying I +

NM̃−1C is an injective mapping, namely, (I+NM̃−1C)(a1) = (I+NM̃−1C)(a2)

implies that a1 = a2.

Finally, for x1, x2 in the range of I +NM̃−1C, from the above Equation

(4.10) and the definition of the norm we have

∥ (I +NM̃−1C)−1 ∥=∥ (I +NM̃−1C)−1(x0) ∥

+ sup
x1,x2∈Y

∥ (I +NM̃−1C)−1(x1)− (I +NM̃−1C)−1(x2) ∥
∥ x1 − x2 ∥

≤∥ (I +NM̃−1C)−1(x0) ∥ +(1− ∥ NM̃−1C ∥)−1

so that, this completes the proof.

It is worth to mention that this theorem has played an significant role

because in the sense that all the operators C, NM̃−1C, and (I+NM̃−1C)−1

in the nonlinear control system all belong to the same family Lip(Y ), which

is an infinite-dimensional Banach space. Therefore, the overall closed-loop

structure can be well defined in mathematically with unique internal signals.

4.3.3 Internal perturbation and external disturbance
rejection and output tracking issue

Considering relationships within Equation (4.8) and all the conditions stated

above are satisfied. Then, the following equation can be obtained,

e+NM̃−1C(e) = W (u)−G(d)

then, by Lemma 4.1, we can get

e(t) = (I +NM̃−1C)−1(W (u)−G(d))(t) (4.11)

Since (I+NM̃−1C)−1 is nonlinear, which is different with linear case, not

fitting the left distributive law, there exist some obstacles to design a general
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framework for the nonlinear system with internal perturbation and external

disturbance to separate W (u)− G(d). However, considering that G : Dd →
Y0 is stable defined on the bounded closed subset Dd, its generalized inner

inverse G+ : Y0 → Dd can be defined based on the closed linear operator

theory which is also a bounded linear operator. Indeed, the operator norm

of this inner inverse operator satisfies

∥ G+ ∥:= sup
∥δ∥Y =1

∥ G+v ∥Dd
≤ Md̃ (4.12)

Consequently, the norm of e can be obtained

∥ e ∥Y =∥ (I +NM̃−1C)−1(W (u)−G(d)) ∥Y
≤∥ (I +NM̃−1C)−1G ∥∥ G+Wu− d ∥Dd

≤∥ (I +NM̃−1C)−1G ∥ (Md̃ ∥ W ∥∥ u ∥U + ∥ d ∥Dd
)

≤∥ (I +NM̃−1C)−1 ∥∥ G ∥ Md̃ ∥ W ∥∥ u ∥U
+ ∥ (I +NM̃−1C)−1G ∥∥ d ∥Dd

(4.13)

In order to simultaneously reject the adverse effect from internal pertur-

bation and external disturbance, namely, design a compensator to minimizing

the norm of the error response of the system as well as realize the tracking

performance from the reference signal to the output signal. In the concern

of the solvability of the problems, we formulate the problem precisely in a

mathematical manner to provide minimizing the first term in the right-hand

side of Equation (4.13) as shown in follows:

min
C∈S∗

∥ (I +NM̃−1C)−1 ∥Lip (4.14)

Theorem 4.4. In terms of Equations (4.15) and (4.16), there exists a

control operator Q as shown in Figure 4.4, whenever t tends to be zero such
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Figure 4.4: The design diagram of controller C

that uncertainties tend to be zero simultaneously for reducing the internal

perturbation and external disturbance for the nonlinear system.

Proof . For any generalized Lipschitz operator Q ∈ Lip(Y ) satisfying

FQ ∈ Lip(Y ) with

∥ FQ ∥< 1

2
, and, (I − FQ)−1(0) = 0

exists and is also in Lip(Y ), then we define

C := Q(I − FQ)−1

where F = NM̃−1, that the design diagram as shown in Figure 4.4.

From Lemma 3.1, we have ∥ (I −NM̃−1Q)−1 ∥< 2, so as to

∥ NM̃−1C ∥ =∥ NM̃−1Q(I − FQ)−1 ∥

≤∥ NM̃−1Q ∥∥ (I − FQ)−1 ∥< 1
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which implies that ∥ NM̃−1C ∥< 1 is satisfied. Hence, we observe that

I +NM̃−1C = I +NM̃−1Q(I − FQ)−1

= [(I − FQ) +NM̃−1Q](I − FQ)−1

= [I − FQ+ FQ](I − FQ)−1

= (I − FQ)−1 (4.15)

In order to remove the adverse effect of internal perturbation and external

disturbance of the nonlinear system, the nonlinear operator Q with the time-

varying gain is designed as follows,

Q(x)(t) = x(t)E

∫ t

0

(x(τ)e−x2(τ) + e−x(τ)

· sin(x(τ))) · ẋ(τ)dτ (4.16)

where x is a variable, and FE = I.

Then, from Figure 4.3, we can get

e(t) = (I +NM̃−1C)−1(W (u)−G(d))(t)

= (I − FQ)(r(t)− v(t)) (4.17)

Furthermore, combing Figure 4.3 and Figure 4.4 we can get

y(t) = N(ω)(t) +G(d)(t)

= NM̃−1(ũ)(t) + v(t)

= F (ũ)(t) + v(t)

= FQ(r − v)(t) + v(t) (4.18)

From Equation (4.16), y(t) is shown as follows,

y(t) = FE · (r − v)(t)

∫ t

0

((r − v)(τ)e−(r−v)2(τ) + e−(r−v)(τ)

· sin((r − v)(τ))) · (ṙ − v̇)(τ)dτ + v(t) (4.19)
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Since FE = I, and as t → ∞,∫ t

0

((r − v)(τ)e−(r−v)2(τ) + e−(r−v)(τ)·

sin((r − v(τ))) · (ṙ − v̇)(τ)dτ → 1 (4.20)

Therefore,

y(t) = (r − v)(t) + v(t)

= r(t) (4.21)

the tracking performance is guaranteed.

Considering the above analysis implies that internal perturbation and

external disturbance can be removed by using the proposed design scheme

based on the operator-based control structure.

4.3.4 Simulation example

In this section, we will provide a simulation example in order to confirm the

effectiveness of the proposed design scheme.

Let C[0,∞) be the space of continuous functions, and C1
[0,∞) consists of all

the functions having a continuous first derivative, both are defined on [0,∞).

Considered a nonlinear plant P ∗ = P +∆P : U → Y as shown in Figure

4.2 is defined as follows, in which the input space and the output space is U

and Y , respectively.

P ∗(ũ) = (P +∆P )(ũ)(t)

= 4et · ũ(t)− 2

∫ t

0

e−τ · ũ(τ)dτ

Based on the proposed P ∗, the operators N , D, and ∆D are factorized

as following,

N(ω)(t) = 2ω(t)−
∫ t

0

e−2τω(τ)dτ
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D(ω)(t) = (2t+ et)−1ω(t)

∆D(ω)(t) =
1

2
(2t− et)e−t(et + 2t)−1 · ω(t)

where ∆D(ω)(t) is denoted as the internal perturbation. Moreover, from

the obtained right factorization, we can get

(D +∆D)−1(ũ)(t) = 2et · ũ(t)

which is obviously unstable.

According to the proposed design, the external disturbance and its right

factorization are given as follows:

R(d)(t) =

∫ t

0

−2e2τ · d(τ)dτ

G(ω)(t) =

∫ t

0

−eτ · ω(τ)dτ

(D +∆D)−1(ũ)(t) = 2et · ũ(t)

where R and G are stable, and (D + ∆D)−1 is unstable, driven signal of

external disturbance d(t) is assume to be 2ũ(t).

In this example, we choose the quasi-state W = U . It is easy to find that

P ⋆ is unstable. Based on Theorem 4.1, the controllers A, A⋆ and B can

be designed as follows:

A(y)(t) =
1

2
(1− e−2t)(y)(t)

A⋆(y)(t) = (
1

4
e−2t − 1

2
te−3t)(y)(t)
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B(ũ)(t) = (2te−2t + e−t)ũ(t)

Moreover, the two conditions are verified as follows.

((A+ A⋆)(N +G) +B(D +∆D))(ω)(t)

=
1

2
(1− 1

2
e−2t − te−3t) · (2)(ω)(t)

+ (2te−2t + e−t)(
1

2
e−t(ω)(t))

= (1− 1

2
e−2t − te−3t)(ω)(t)

+ (te−3t +
1

2
e−2t)(ω)(t)

= ω(t) (4.22)

∥ A⋆(N +G) +B(D +∆D)−BD ∥

=∥ (
1

4
e−2t − 1

2
te−3t)(2(ω)(t)) + (2te−2t + e−t)

· (1
2
e−t)(ω)(t)− (2te−2t + e−t)(

1

2t+ et
)(ω)(t) ∥

=∥ ((e−2t(
1

2
− te−t)) +

2te−t + 1

2e2t

− 2te−t + 1

et(2t+ et)
)(ω)(t) ∥< 1

Based on Equation (4.22), the controller E is designed to be the inverse

of N . That is, NE = I. Therefore, from the designed controllers, the

perturbed Bezout identity for the nonlinear system with internal perturbation

and external disturbance can be verified to be satisfied. That is, robust

stability of the overall nonlinear control system is guaranteed.

In order to show the example more explicitly, simulation results are given.

The reference input is chosen as r = 10e−1.15t sin2(t) + te−t. According to
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Figure 4.5: Effectiveness of robust condition
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Figure 4.6: Control input
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Figure 4.7: Reference input r & plant output y
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the Equation (4.22), the perturbed Bezout identity is verified based on the

proposed design scheme for guaranteeing robust stability of the nonlinear

systems with internal perturbation and external disturbance. In detail, the

obtained perturbed Bezout identity shows the relationship between the ref-

erence input r(t) and internal signal ω(t), which means that a bounded ref-

erence input can lead to bounded internal signal. Meanwhile, combining the

stable part of the right factorization, N , robust stability of the overall system

is guaranteed under the definition of BIBO stability. Then the simulation

results are given in Figures 4.6 and 4.7, where the reference input r and plant

ouput y are shown in Figure 4.7, the control input is shown in Figure 4.6.

Moreover, for showing the effectiveness of the proposed sufficiently robust

condition Equation (4.5), the simulation result is provide as shown in Fig-

ure 4.5. From Figure 4.5, the norm of Equation (4.5) is less than 1, which

furtherly shows the proposed design scheme in this section is effective. There-

fore, the simulation results demonstrate the fact that internal perturbation

and external disturbance of the considered nonlinear system are effectively

removed and output tracking performance is realized.

4.4 Conclusion

In this chapter, robust stability and tracking performance of nonlinear sys-

tems with internal perturbation and external disturbance are discussed by

using operator-based robust right coprime factorization. Firstly, robust sta-

bility was considered based on a Lipschitz norm inequation by the proposed

new controller. Secondly, based on the proposed design scheme o robust

stability, a convenient and feasible framework was obtained in order to re-

ject internal perturbation and external disturbance. Thirdly, the adverse

effect resulting from internal perturbation and external disturbance of the

nonlinear system was removed through the designed nonlinear operator con-
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troller. Simultaneously, output tracking performance was realized using the

proposed design scheme. Finally, a simulation example was given to confirm

effectiveness of the proposed design scheme of this method.





Chapter 5

Operator-based nonlinear
robust control and sensitivity
analysis of uncertain nonlinear
systems

5.1 Introduction

As we addressed in the former chapters, in practice, almost all systems pos-

sess nonlinear property and multivariable characteristic, which have been

attracting researchers’ attention due to important role. For nonlinear sys-

tems, robust control, sensitivity and tracking issues [59], [63] still remain

challenging due to inevitable factors appearing in systems, such as paramet-

ric perturbations, modeling errors and uncertainties. For dealing with these

issues, a great number of effective methods are proposed, such as the adap-

tive control, the sliding mode control method, operator-based right coprime

factorization method, the geometric approach and so on.

In Chapter 3 and Chapter 4, the uncertainties rejection including the

internal perturbation and the external disturbance as well as the nonlinear

control problem has been discussed for nonlinear systems based on general-

95
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ize Lipschitz operator in an extended linear space setting form the physical

meaning and formulating mathematically perspective. However, the previous

two chapters payed more attention to remove the adverse affects in unitary

formulation, nevertheless lost sight of the interplay within the internal per-

turbation and external disturbance. Motivated by this issue, in this chapter,

the bilinear operator-based right coprime factorization for nonlinear system

with perturbation and disturbance is introduced, which can consider adverse

effect resulting from perturbation and disturbance quantitatively. Based on

the proposed method, a feasible framework is established for considering ro-

bust control, sensitivity and tracking performance, which not only separates

perturbation and disturbance, but also provides a fundamental base to design

a controller for the considered system. After that, robust stability for the

uncertain nonlinear systems is guaranteed under the proposed framework.

In terms of the insensitivity property, it is addressed for the case where per-

turbation and disturbance both exist in nonlinear systems, which extend the

former results of [85], [86]. Sequentially, tracking performance is obtained by

using a simple and effective controller.

In Section 5.2, Start to consider the mentioned problems, the bilinear

operator controller based on right coprime factorization for nonlinear sys-

tems with perturbation and disturbance is established in a special way, what

means that the controller is not general expression for a broader class of

nonlinear systems, lacking of design freedom in practical applications. In

this section, we propose a general design scheme for the bilinear operator

controller, which can consider quantitatively adverse effect resulting from

perturbation and disturbance, respectively, as well as making the proposed

design scheme could have a more freedom to be satisfied with practical re-

quirement. After that, based on the proposed method, a feasible framework

is established for considering robust control, which not only separates per-

turbation and disturbance, but also provide a fundamental base to design



5.2. BILINEAR OPERATOR 97

controllers for the considered system.

In Section 5.3, in terms of the insensitivity property, it is addressed for

the case from theoretical perspective, where perturbation exists in the non-

linear system, which extend the former results of and proves a relationship

between robust stability and insensitivity. Compared with the former re-

sults, the obtained results in this section extend the application fields of

operator-based right coprime factorization and improve the design scheme

for quantitatively analyzing the effect of disturbance and perturbation and

tracking performance. Finally, a simulation example is given to confirm the

effectiveness of the proposed design scheme.

In Section 5.4, main result on operator-based reset control for nonlinear

systems with unknown bounded disturbance is addressed. That is, in the

context of operator-based right coprime factorization, reset control is realized

and robust stability of nonlinear systems with unknown bounded disturbance

is guaranteed.

In Section 5.5, the summary of robust control and sensitivity analysis

of uncertain nonlinear system using bilinear operator-based right coprime

factorization is given.

5.2 Bilinear operator-based nonlinear robust

control

5.2.1 Problem statement

Motivated by former research, the bilinear operator-based right coprime fac-

torization for nonlinear systems with perturbation and disturbance is intro-

duced, which can consider quantitatively adverse effect resulting from per-

turbation and disturbance, respectively. Based on the proposed method, a

feasible framework is established for considering robust control and sensitiv-

ity property, which not only separates perturbation and disturbance, but also
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provide a fundamental base to design controllers for the considered system.

After that, robust stability for the uncertain nonlinear system is discussed

under the proposed framework. In terms of the insensitivity property, it

is addressed for the case where perturbation and disturbance exists in the

nonlinear system, which extend the former results of [86] and proves a rela-

tionship between robust stability and insensitivity.

Considering the increasing demand for system reliability and the require-

ment on dealing with perturbation and disturbance of nonlinear systems,

in this chapter, sensitivity analysis and robust control of nonlinear systems

with perturbation and disturbance are considered based on the robust right

coprime factorization. First, the adverse effect resulting from the perturba-

tion and disturbance of the nonlinear systems are analyzed by the sensitivity

index. By using the proposed design scheme, the quantitative analysis on

the sensitivity depending on the appearing perturbation and disturbance is

discussed. Second, for guaranteeing the perfect performance as the nomi-

nal systems works, robust control is designed using the proposed method.

Third, the uniformly insensitivity property has been certified as well as built

the connection between the robustness and sensitivity has been established.

5.2.2 Bilinear operator

In this section, the uncertain nonlinear system shown in Figure 5.1 is con-

sidered by using bilinear operator-based right coprime factorization. For

addressing main results of this section firstly, bilinear operator is introduced

for dealing with perturbation and disturbance. Moreover, the bilinear op-

erator controller is proposed to guarantee robust stability of the uncertain

nonlinear system.

Definition 5.1. In mathematics, a bilinear operator is a mapping yield-

ing an element of a third vector space driven by two elements of two vector

spaces. In details, supposed that Φ : V × W → X is a map, where V, W
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Figure 5.1: Considered nonlinear feedback system

and X are three vector spaces, provided that the following conditions are

satisfied,

(1) Φ(a+ b, c) = Φ(a, c) + Φ(b, c)

(2) Φ(ka, b) = kΦ(a, b)

(3) Φ(a, b+ c) = Φ(a, b) + Φ(a, c)

(4) Φ(a, kb) = kΦ(a, b)

Φ is called to be a bilinear operator.

It is worth to mention the properties of bilinear map that is a function

following Φ : V×W → X

such that for any w ∈ W the map

v 7→ Φ(v,w) is a linear map from V to X,

and for any v ∈ V the map

w 7→ Φ(v,w) is a linear map from W to X.
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In other words, when we hold the first entry of the bilinear map fixed while

letting the second entry vary, the result is a linear operator, and similarly for

when we hold the second entry fixed.

Note that, the proposed bilinear operator serves as a tool to describe the

relationship between perturbation and disturbance. The introduced bilinear

operator can provide two degree of freedom to deal with perturbation and

disturbance. In the follows, we will give Lemma 5.1 for showing existence

of such one bilinear operator controller for developing main results of this

section.

Lemma 5.1. As for the nonlinear system with perturbation and distur-

bance shown in Figure 5.1, there exists a bilinear operator controller Φ(y(t), d(t))

defined in the suitable spaces such that

Φ(y(t), d(t)) = d(t)

∫ t

0

K1(y(τ))dτ + y(t)

∫ t

0

K2(d(τ))dτ (5.1)

where K1(y(t)) and K2(d(t)) are two stable linear operator.

Proof: According to the definition of bilinear operator, if the following

two conditions is satisfied, then the lemma can be proved.

Φ(y1(t) + y2(t), d(t)) = d(t)

∫ t

0

K1(y1(τ) + y2(τ))dτ

+ (y1(t) + y2(t)) ·
∫ t

0

K2(d(τ))dτ

= {d(t)
∫ t

0

K1(y1(τ))dτ}+ y1(t)

∫ t

0

K2(d(τ))dτ

+ {d(t)
∫ t

0

K1(y2(τ))dτ}+ y2(t)

∫ t

0

K2(d(τ))dτ

= Φ(y1(t), d(t)) + Φ(y2(t), d(t)) (5.2)
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Φ(ky(t), d(t)) = d(t)

∫ t

0

kK1(y(τ))dτ + ky(t)

∫ t

0

K2(d(τ))dτ

= k{d(t)
∫ t

0

K1(y(τ))dτ + y(t)

∫ t

0

K2(d(τ))dτ}

= k · Φ(y(t), d(t)) (5.3)

This lemma is completed.

In terms of the equation, it is proposed for separating the appearing per-

turbation and disturbance, which has two time varying input y(t) (output

with perturbation) and d(t) (disturbance of the considered system). That is,

this proposed bilinear operator controller is an operator mapping an input

with y(t) and d(t) to an output. Due to existing perturbation and distur-

bance in the given nonlinear systems, firstly, robust stability of the uncertain

nonlinear system is considered for the normal performance of system, which

is important in the real systems.

After that, a controller is designed using the proposed bilinear operator for

developing the result of guaranteeing robust stability based on right coprime

factorization.

5.2.3 Robust stability and control

In this subsection, robust stability of the uncertain nonlinear system shown in

Figure 5.1 is guaranteed based on the proposed bilinear operator controller.

Theorem 5.1. As for the uncertain nonlinear system shown in Figure

5.1, a controller A∗(y(t), d(t)) = Φ(y(t), d(t)) is designed to be stable, and let

m =∥ A∗ − AN ∥ and n =∥ M−1 ∥. Provided that the following condition is

satisfied with mn < 1, then robust stability of the considered nonlinear system

is guaranteed, where A∗ is under the context of bilinear operator defined in

Lemma 5.1.

Proof: Suppose that M̃ = M + [A∗ − AN ] = [I + (A∗ − AN)M−1]M .

Since, mn < 1 we can get (A∗ − AN)M−1 ∈ Lip(U), I + (A∗ − AN)M−1 is
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invertible, where I is the identity operator.

Consequently, it follows that

M̃−1 = M−1[I + (A∗ − AN)M−1]−1

Meanwhile, from M̃ = M + [A∗ − AN ], (A∗ − AN)M−1 ∈ Lip(U), and

M ∈ U(W,U), obtain

M̃ ∈ U(W,U)

in the context of that the systems shown in Fig.2 is well-posed.

As a result, for any u ∈ U we have ω = M̃−1u ∈ W . Further, combining

y(t) = (N +∆N)(ω(t)), x(t) = BD(ω(t)), and g(t) = A∗(d(t), y(t)), stability

of A∗, B,N,∆N and D implies that y ∈ Y , x ∈ U and g ∈ U . Then, the

nonlinear system with perturbation and disturbance shown in Figure 5.1 is

robust stability. This completes the theorem proof.

From Theorem 5.1, robust stability of the uncertain nonlinear system

is guaranteed using the proposed bilinear operator controller. The merit

of the proposed method lies in that it utilizes the characteristic of bilinear

operator to design two stable integral controller such that the disturbance

can be reduced and meantime output maintains. That is, this proposed

bilinear operator controller for separating the appearing perturbation and

disturbance, which has two time varying input y(t) and d(t). Meantime, by

using the designed integral controller to realize reducing the adverse effect

by disturbance. Next, we will prove insensitivity property for the uncertain

nonlinear system from the input-output view of point.

5.3 Insensitivity analysis for perturbed non-

linear system

In this section, insensitivity property of the uncertain nonlinear system is

proved based on the proposed design scheme. When the considered normal
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plant varies to the perturbation plant, we said that this operator based non-

linear control system is insensitive to the bounded perturbation of the normal

plant if the output corresponding to a given input will not blow up. More

details on sensitivity definition can be founded in [85], [86]. For simplicity,

as for each operator H ∈ N (Js, V ), define µH = inf{⟨Hx −Hx0, x − x0⟩ ∥
x− x0 ∥−2: x, x0 ∈ U, x ̸= x0} > −∞.

5.3.1 Insensitivity property of perturbed system

Further, we consider the general input-output system from the view of the

dependence of the output on small variations of the plant due to uncertainties

when the input is fixed. Essentially, we call this system insensitive. In the

following, the definition on insensitivity will be introduced.

Defination 5.2. Let [T, P ] be to describe an input-output system, where

Js is denoted as the set of states,

T : W × U → N (Js, U)

and

P : W × U → N (Js, V )

and let Θ0 ∈ W .

(i) The input-output system [T, P ] is called insensitive with respect to

Θ0 + P if there exist numbers rz > 0 and az ≥ 0 such that

∥ y − y0 ∥≤ az ∥ Θ −Θ0 ∥ (5.4)

whenever x, x0 ∈ Js, y, yo ∈ V , Θ ∈ Θ0 + P , ∥ Θ −Θ0 ∥≤ rz.

(ii) The input-output system [T, P ] is called uniformly insensitive with

respect to Θ0 +P if there exist fixed constants r > 0 and α, β ≥ 0 such that

∥ y − y0 ∥≤ (α + β ∥ z ∥) ∥ Θ −Θ0 ∥ (5.5)
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whenever z ∈ U , x, x0 ∈ Js, y, yo ∈ V , Θ ∈ Θ0 + P , ∥ Θ −Θ0 ∥≤ r.

Furthermore, no matter (i) or (ii), the validity of the equations

T (Θ0, z)x0 = 0, y0 = P (Θ0, z)x0 (5.6)

T (Θ, z)x = 0, y = P (Θ, z)x (5.7)

all hold, which is accordance with the initial condition of right coprime fac-

torization.

After that, the following lemma is proposed to develop main result on

insensitivity of the nonlinear systems with perturbation and disturbance.

Lemma 5.2. Let T : W × U → N (Js, U), P : W × U → N (Js, V ) and

Θ0 ∈ W be fixed.

If the input-output system can be denoted in the form of T (Θ, z)x =

T (Θ)x− z , also, satisfying the below assumptions:

(i) there exist v > 0 and T (Θ0), K ∈ Lip(Js, U) such that

⟨T (Θ0)x− T (Θ0)x0, Kx−Kx0⟩ ≥ v ∥ x− x0 ∥2 (5.8)

for all x, x0 ∈ Js.

(ii) there exists λ > 0 so that T (Θ)− T (Θ0) ∈ Lip(U,U) and

∥ T (Θ)− T (Θ0) ∥0≤ λ ∥ Θ −Θ0 ∥ (5.9)

whenever Θ ∈ Θ0 + P .

(iii) there exist ρ > 0 and T (Θ0) ∈ Lip(Js, U) such that

∥ T (Θ0)x− T (Θ0)x0 ∥≥ ρ ∥ x− x0 ∥ (5.10)

for all x, x0 ∈ Js.

Then the system [T, I] is uniformly insensitive with respect to Θ0 + P.

Theorem 5.2. Let S∗ = (N + ∆N)D−1B−1, S∗
0 = ND−1B−1. and

x ∈ U , S∗
0 ∈ Lip(U), S∗ ⊂ S∗

0 +P. If µs∗0
> n and µs∗0

µA∗ > −mn, whenever
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T (S∗, z) = (I + A∗(S∗))− z, then the uncertain nonlinear systems shown in

Figure 5.1 is uniformly insensitive with respect to S0 + P.

Proof. First from Figure 5.1, see that the input z, x, and output y are

related to the equations x = z − A∗S∗(x) and y = S∗(x). Thus, referring to

sensitivity definition, the systems can be redescribed as

T (S∗, z) = (I + A∗S∗)x− z, P (S∗, z) = S∗ (5.11)

and let T (S∗) = I + A∗S∗. Referring to Lemma 5.2, put K = S∗
0 , as for x,

x0 ∈ U .

Then, obtain

⟨T (S∗
0)x− T (S∗

0)x0, Kx−Kx0⟩

= ⟨(I + A∗S∗
0)x− (I + A∗S∗

0)x0, S
∗
0x− S∗

0x0⟩

= ⟨x− x0, S
∗
0x− S∗

0x0⟩+ ⟨A∗S∗
0x− A∗S∗

0x0, S
∗
0x− S∗

0x0⟩

≥ µS∗
0
∥ x− x0 ∥2 +µA∗ ∥ S∗

0x− S∗
0x0 ∥2

≥ n(1 +mn) ∥ x− x0 ∥2 (5.12)

where since ∥ S∗
0x − S∗

0x0 ∥≥ µS∗
0
∥ x − x0 ∥, µs∗0

> n > 0 and µs∗0
µA∗ >

−mn > −1. Hence, based on the definition of sensitivity is satisfied with

n(1 +mn) > 0.

Also, for each x ∈ U , we have

∥ [T (S∗)− T (S∗
0)]x ∥ =∥ [(I + A∗S∗)x− (I + A∗S∗

0)]x ∥

=∥ A∗(S∗ − S∗
0)x ∥

≤∥ A∗ ∥0∥ S∗ − S∗
0 ∥∥ x ∥ (5.13)

thus, ∥ T (S∗)− T (S∗
0) ∥≤∥ A∗ ∥∥ S∗ − S∗

0 ∥. Hence, the second condition of

definition of sensitivity also holds, with λ =∥ A∗ ∥. Then the systems [T, I]

is insensitive with respect to S∗
0 + P .
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From Equation (5.5), we can get

∥ y − y0 ∥=∥ x− x0 ∥≤ (α + β ∥ z ∥) ∥ S∗ − S∗
0 ∥ (5.14)

Based on P (S∗, z) = S∗, we can get

∥ y − y0 ∥ =∥ (P +∆P )(z(t))− P (z(t)) ∥

=∥ P (S∗, z)x− P (S∗
0 , z)x0 ∥

≤∥ [P (S∗, z)− P (S∗
0 , z)]x ∥

+ ∥ P (S∗
0 , z)x− P (S∗

0 , z)x0 ∥

≤∥ S∗ − S∗
0 ∥ {∥ x− x0 ∥ + ∥ x0 ∥}

+ ∥ S∗
0 ∥0∥ x− x0 ∥

≤ (γ+ ∥ S∗
0 ∥)(α + β ∥ z ∥) ∥ S∗ − S∗

0 ∥

+ (σ + ω ∥ z ∥) ∥ S∗ − S∗
0 ∥

≤ (α̂ + β̂ ∥ z ∥) ∥ S∗ − S∗
0 ∥ (5.15)

where α̂+ β̂ ∥ z ∥= max{σ+ ρ ∥ z ∥, (γ+ ∥ S∗
0 ∥)(α+ β ∥ z ∥)}, and σ, ρ are

constants large than zero. By the definition of uniformly insensitivity, the

system [T, P ] is uniformly insensitive with respect to S∗
0 + P . The proof is

completed.

In this subsection, insensitivity property of the given nonlinear systems is

proved. In terms of the proposed design scheme, we can not only guarantee

robust stability for the uncertain nonlinear systems, but also prove insen-

sitivity to the existing perturbation and disturbance. That is, the desired

tracking performance can be provided.

5.3.2 Tracking performance

As mentioned above, the uncertain nonlinear systems have been stabilized

based on proposed bilinear operator combining robust right coprime factor-
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ization and insensitivity property is proved as well. In this subsection, track-

ing performance will be addressed using the bilinear operator-based right

coprime factorization method for the nonlinear systems with perturbation

and disturbance by designing a feedforward controller.

Figure 5.2: Transformed nonlinear feedback control system

After that, the nonlinear systems with perturbation and disturbance is

transformed to Figure 5.2. The objective of realizing tracking performance

is to design the compensator C. Firstly, denoting P̃ = NM̃−1 and R̃ =

∆NM̃−1, the nonlinear systems can be expressed as:{
e(t) = r(t)− y(t)

y(t) = P̃C(e(t)) + R̃(z(t))
(5.16)

where r denotes the reference input signal, e the error signal between the

reference signal r and y, ω denotes the perturbation signal respects to the

perturbed operator ∆N , and the output is denoted as y, where y is required

to follow the given reference signal r.

It is then easy to see that

e(t) = (I +NM̃−1C)−1(r(t)− R̃(z(t))) (5.17)
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In what follows, the inverse of I + NM̃−1C will be discussed. More-

over, considering the inverse of I + NM̃−1C is difficult to calculated, we

will propose a design scheme by designing a simple and effective operator to

transform calculation of inverse in the following theorem.

Theorem 5.3. In terms of Equation (5.17), if ∥ NM̃−1C ∥< 1, there

exists a control operator Q as shown in Equation (5.18), whenever t tends

to be infinite such that output tracking performance can be realized for the

nonlinear systems with perturbation and disturbance.

Proof. First, from ∥ NM̃−1C ∥< 1, the inverse of I + NM̃−1C can

be obtained. For any generalized Lipschitz operator Q ∈ Lip(V ) satisfying

FQ ∈ Lip(V ) with ∥ FQ ∥< 1

2
, (I − FQ)−1 exists and is also in Lip(V ),

then define C := Q(I − FQ)−1, where F = NM̃−1.

Therefore,

∥ NM̃−1C ∥ =∥ NM̃−1Q(I − FQ)−1 ∥

≤∥ NM̃−1Q ∥∥ (I − FQ)−1 ∥< 1

which implies that ∥ NM̃−1C ∥< 1 is satisfied. Hence, we observe that

(I +NM̃−1C)−1 = I − FQ.

Furthermore, the nonlinear operator Q with the time-varying gain is de-

signed as follows,

Q(η(t)) = η(t)E

∫ t

0

2e−η(τ) · sin(η(τ))) · η̇(τ)dτ (5.18)

where η(t) is a variable, and FE = I.

Denote e(t) = Φ(t), and η(t) = r − R̃(z(t)), according to the defined C,

Φ(t) is shown as follows,

Φ(t) = (I +NM̃−1C)−1(η(t))

= (I − FQ)(η(t))

= η(t)− FQ(η(t)) (5.19)
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Then, it has that

Φ(t) = η(t)− η(t)

∫ t

0

2e−η(τ) · sin(η(τ)) · η̇(τ)d(τ) (5.20)

as t → ∞, ∫ t

0

2e−η(τ) · sin(η(τ)) · η̇(τ)d(τ) → 1. (5.21)

under Equation (5.16),

η(t)− η(t)

∫ t

0

2e−η(τ) · sin(η(τ)) · η̇(τ)d(τ) → 0 (5.22)

Based on the above analysis, get e(t) → 0, i.e. y(t) → r(t). The proof is

completed.

In this section, bilinear operator-based right coprime factorization method

is proposed for the nonlinear systems with perturbation and disturbance.

Based on the proposed design scheme, robust stability is guaranteed and

insensitivity property is obtained. Meanwhile, output tracking performance

of the considered system is realized by using the proposed designed controller

C. In next section, a simulation example is given to show effectiveness of the

proposed design scheme.

5.3.3 Simulation example

In this section, a numerical example is given to show the effectiveness of the

proposed method. As for the plant, assume that XB = L∞ is the standard

Banach space of real-valued measurable functions defined on [0,∞), with

the associated extended linear space Xe = Le
∞. Suppose that the nominal

plant P without uncertainties is given by the following unstable, time-varying

system.

P (u(t)) = 2et(2t+ 1)−1u(t)− t(2t+ 1)−2u(t)− 3
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Based on the given system, a right factorization D(ω(t)) and N(ω(t)) for

P (u(t)) are obtained as follows:

N(ω(t)) = 2ω(t)− t

2t+ 1
e−tω(t)− 3

D(ω(t)) = (2t+ 1)e−tω(t)

In terms of D(ω(t)), N(ω(t)), stability can be verified. Moreover, the inverse

operator of D(ω(t)) is unstable.

Next, for establishing a Bezout identity, we pick a stable controller A such

that the I − AN is invertible and the two controllers A and B are designed

as follows,

A(y(t)) =
1

2
y(t)

B(u(t)) =
t

2(2t+ 1)2
u(t) +

3

2

According to the designed controllers, it can be verified that A and B

satisfy the Bezout identity. Indeed, we have

(AN +BD)(ω(t)) = I(ω(t)) (5.23)

After that, the perturbations, disturbance, the proposed bilinear op-

erator controller and robust right factorization of the overall systems are

given as follows, where the perturbations ∆N(ω(t)) and d(t) are chosen as

∆N(ω(t)) =
2t

2t+ 1
e−tω(t) , d(t) = (t + 1)e−2t for confirming the effective-

ness of proposed design scheme. The robust right factorization are given as

follows,

(P +∆P )(u(t)) =
2et

2t+ 1
u(t) +

t

(2t+ 1)2
u(t)− 3

(N +∆N)(ω(t)) = (2 + ∆N)ω(t)− t

2t+ 1
e−tω(t)− 3

D(ω(t)) = (2t+ 1)e−tω(t)



5.4. SENSITIVITY ANALYSIS AND TRACKING PERFORMANCE 111

Figure 5.3: Control input of the considered nonlinear plant with uncertainty
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Figure 5.4: Output of the considered plant with perturbation and disturbance
by former method
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Figure 5.5: Tracking performance of the considered plant with the proposed
controller
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In this example, the bilinear operator controller is designed show in (5.24),

where K1(y(t)) = y(t)(t2 + 1)−
3
2 , K2(d(t)) = d(t)2(t+ 1)−1e2t−t2

A∗(y(t), d(t)) =(te−2t)

∫ t

0

y(τ)(τ 2 + 1)−
3
2dτ

+ y(t)

∫ t

0

2e−τ2dτ (5.24)

The control input of the considered nonlinear plant with uncertainty is

shown in Figure 5.3. Based on the design scheme for the proposed nonlinear

system, the output of the nominal plant and the output with perturbation

and disturbance are shown respectively in Figure 5.4, in which the solid

curve show the output of the nonimal plant without any uncertainties, the

dotted curve shown that the stability has been realized in the nonlinear

system with perturbation by using the robust right coprime factorization

method as well as the dashed curve shown that the considered nonlinear

system is much more insensitive to the effect of bounded disturbance when

the conditions are satisfied. Then the tracking performance is shown in

Figure 5.5, where dashed curve shows output of the considered nonlinear

plant, solid curve shows the reference input of the considered nonlinear plant

chosen as r(t) = 1 − 0.2e−0.5t. It is easy to find that the proposed design

scheme is effective in reducing the uncertainties, while the system output can

asympotically track to the reference input while the system output is stable.

Therefore, the simulation results demonstrate the fact that the effectively

and feasibility of the proposed design scheme.

5.4 Reset control and robust stability analy-

sis

In this section, the operator-based reset control for nonlinear systems with

unknown bounded disturbance is addressed. That is, in the context of
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operator-based right coprime factorization, reset control is realized and ro-

bust stability of nonlinear systems with unknown bounded disturbance is

guaranteed.

Firstly, the reset control under the framework of operator-based right

coprime factorization for the considered nonlinear systems is presented for

developing main results.

The motivated idea of this section lies in how to realize the reset con-

trol for the perturbed nonlinear systems shown in Fig. 5.6 based on the

right coprime factorization method from the view of point of input-output.

In this section, we consider the general nonlinear feedback system by us-

ing operator-based reset control combining with right coprime factorization

method. Therefore, reset elements including a reset law and a reset opera-

tor controller are addressed for the nonlinear system with unknown bounded

disturbance satisfying right coprime factorization, whose framework is shown

in Fig. 5.6.

Considering that the disturbance is under the framework of robust right

coprime factorization. That is, one necessary condition is that the unknown

disturbance is supposed to be bounded. As for the detailed information for

the assumptions on the disturbance, it can be founded in [35], [37] and [61].

Figure 5.6: The proposed nonlinear system with unknown bounded distur-
bance
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As to the nominal system P , there exist two controllers A and B satisfying

with Bezout identity, which guarantees BIBO stability of the nominal system.

When disturbance happens in the nominal system, the established Bezout

identity cannot hold due to that the feedback signal including adverse effect

resulting from the appearing disturbance. For dealing with this issue, a reset

controller is proposed to define the triggering reset condition as follows,

M = {Q ∈ S(U, Y ) : AN +BD ∈ U(U, Y )}

Based on the proposed reset controller and operator-based right coprime

factorization, the reset operator controller is designed as follows, where K is

a stable operator controller.

CROC =


K+ A(y(t))− AN(ω(t))

if AN+BD /∈ U(U, Y )

r(t)

if AN+BD ∈ U(U, Y )

(5.25)

Mention that right coprime factorization method based on operator the-

ory is established based on the input-output relationship. Therefore, as for

the design of controllerK, the feedback signal of A(y(t)) is employed. For the

design of (5.25), we merely need the feedback signal through A(N(ω) + d),

namely, the signal y, which can be measured by sensor, and without requir-

ing to estimate the unknown bounded disturbance. This is one merit of

operator-based right coprime factorization method.

Remarking that the reset law proposed in this section is derived from the

preliminary knowledge of the nominal nonlinear systems. That is, based on

the known Bezout identity of the nominal nonlinear system, the system is

stable. As to reset law, it can be judged by on-line checking A and B to judge

the reset law based on the feedback inner loop. When the systems slips away

the stability zone, it means the Bezout identity become unsatisfied, which

leads to the reset control working.
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However, one of the main drawbacks of reset control lies in that stability

property of the reset control system is not always guaranteed by the nom-

inal systems, it is well known that the reset action can destabilize a stable

feedback system to some extent. Thus, based on the proposed reset control,

robust stability of the nonlinear systems with unknown bounded disturbance

will be discussed in the following.

In the above analysis, the operator-based reset control is proposed for con-

sidering the nonlinear system with unknown bounded disturbance. There-

fore, the main result of this section on robust stability properties of operator-

based reset control for nonlinear systems with unknown bounded disturbance

is proposed.

Theorem 5.4. As for the reset operator controller, if the K is unimodu-

lar, then the reset control system shown in Fig.5.6 is guaranteed to be robust

stability.

Proof. For guaranteeing robust stability, the reset control system is

supposed to guarantee the stable relationship between e and w. Therefore,

as the cases where the nominal nonlinear system has disturbance, based on

the proposed design scheme shown in Fig. 5.6, obtain

A(y(t)) +BD(ω(t)) = A(N(ω(t) + d) + BD(ω(t))

A(N(ω(t) + d)+BD(ω(t)) = K(e(t))

+ A(N(ω(t)) + d)− AN(ω(t)) (5.26)

From (5.26), derive A(N(ω(t)) + BD(ω(t)) = K(e(t)). Combining with

A(N(ω(t)) +BD(ω(t)) = M(ω(t)), obtain

K(e(t)) = M(ω(t))

i.e.

e(t) = K−1M(ω(t))
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Therefore, based on the above relationship, Fig.5.6 can be transformed

to be Fig. 5.7, where K̄−1 = M−1K. Since N and K̄−1 are stable, as for the

cases where the nominal nonlinear system has disturbance, the perturbed

nonlinear system is robust stability.

The proof of the theorem is completed. Based on the given reset law

Figure 5.7: Equivalent system

and operator-based right coprime factorization method, the controller K is

supposed to be unimodular for guaranteeing robust stability of the perturbed

nonlinear systems shown in Fig. 5.6. Similar to former works [35], [37], and

[61], we can pick one from the suitable set S(K)= K : K ∈ S(U, Y ), K is

invertible with K−1 ∈ S(Y, U).As to the real practice, the feedback signal

through A(N(ω) + d), namely, the signal A(y), which can be measured by

sensor, and without requiring to estimate the unknown bounded disturbance

Mentioned that the robust stability is guaranteed by using the reset con-

trol, without using the Lipschitz norm inequation such as [37], [63] and [73].

The proposed method based on the reset control provides a convenient and

feasible design scheme for guaranteeing robust stability for the nonlinear sys-

tem with unknown bounded disturbance. Besides, compared to the former

result, this part relax the assumption that disturbance is connected with the

internal signal. That is, in this section, the unknown bounded disturbance
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is not necessary to have a interconnection with the signal ω(t).

5.4.1 Simulation example

In this section, we will show an example in order to illustrate the effective-

ness of the proposed design scheme. Let C[0,∞) be the space of continuous

functions, and C1
[0,∞) consists of all the functions having a continuous first

derivative, both are defined on [0,∞). The nominal plant and right factor-

ization are given as follows:

P (ũ(t)) = 3(2t+ 1)ũ(t)

− 1

0.2t+ 1
sin(t)ũ(t)

∫ t

0

(2τ + 1)e−τdτ (5.27)

Therefore, a right factorization is proposed as follows,

N(ω(t)) = 3ω(t)

− 1

0.2t+ 1
sin(t)ũ(t)

∫ t

0

(2τ + 1)e−τdτ (5.28)

D(ω(t)) =
1

2t+ 1
ω(t) (5.29)

From the obtained N and D, P (ũ(t)) = ND−1(ũ(t)) can be confirmed.

Next, two controllers A(y(t)) and B(ũ(t)) are designed for guaranteeing Be-

zout identity.

A(y(t)) =
1

3
y(t) (5.30)

Therefore, based on the designed controller A(y(t)), the feedforward con-

troller B(ũ(t)) can be obtained as follows,

B(ũ(t)) =
1

3
sin(t)

∫ t

0

ũ(t)e−τdτ (5.31)
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It can be verified that A and B are satisfied with the Bezout identity.

The reference input is chosen as r(t) = 0.5te−2t + 0.01. The disturbance

is assumed to be d(t) = te−2t.Considering the assumed disturbance in the

example, and the obtained controllers A and B, obtain the reset operator

controller CROC as follows.

CROC =


5

2
r(t) +

1

3
te−2t+

1

2
if AN+BD /∈ U(U, Y )

0.5te−2t + 0.01

if AN+BD ∈ U(U, Y )

(5.32)

In order to show effectiveness of the operator-based reset control, more

explicitly, simulation results are given in Figure 5.8 and 5.9 as follows, where

the reference input r is shown in Figure 5.8, plant output is shown in Figure

5.9. These two simulation results are given for confirming the effectiveness of

the proposed controller. Therefore, we can find the proposed design scheme

is effective in guaranteeing robust stability of nonlinear system with unknown

disturbance.

5.5 Conclusion

In this section, robust stability, sensitivity and tracking performance of non-

linear systems with perturbation and disturbance are considered using bilin-

ear operator-based right coprime factorization. Robust control design scheme

was proposed for guaranteeing the nonlinear systems under the context of bi-

linear operator controller framework as well as under the reset control frame-

work, sufficient condition is discussed for guaranteeing robust stability of

the considered nonlinear system. Then, combining with the robust condi-

tion and insensitivity property of the considered system, the desired tracking

performance was obtained.
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Chapter 6

Conclusions

In this dissertation, operator-based nonlinear system with perturbation and

disturbance rejection using robust right coprime factorization has been dis-

cussed. This dissertation emphasizes analysis design rather than experiment,

in the sense that mathematical theoretically, especially as regards construc-

tion method based on generalized Lipschitz operator with robust right co-

prime factorization theorem. The analysis that we proposed mainly embodies

the quantitative characteristics and as such should open up a significant in-

sights to assist in system design and analysis. The research essences that we

have presented in detail address issues for instance robust stability, internal

perturbation and external disturbance rejection, tracking performance and

insensitivity analysis.

In Chapter 2, firstly, the mathematical preliminaries including the basic

definitions and notations are introduced, which are necessary for develop-

ing main results of this dissertation. In details, such as the definition of

extended linear spaces which play an foundation role the definition of gen-

eralized Lipschitz operators from a normed linear space to another normed

linear space of complex-valued functions defined on the time domain serve as

the fundamental entities for this dissertation, furthermore, that to be more

useful for nonlinear systems control theory and engineering in the consider-

123
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ations of stability, robustness, and copriime factorization and so on. Next

for considering nonlinear systems, the concept of right coprime factorization

and robust right coprime factorization are described. Moreover, two main

sufficient conditions are given in a fairly general operator setting for guar-

anteeing robust stability of the nonlinear systems with perturbations, which

served as the tool of the theoretical basis for developing the main results in

this dissertation. Finally, the concerned problems are also summarized in

this chapter.

In Chapter 3, supported by some necessary fundamental developments

in mathematics have been presented in the previous chapter, this chapter

is devoted to study some general theories and strategies in qualitatively for

now compensator design of the nonlinear system, in other words, to inves-

tigate an effective design scheme of combining right coprime factorization

with a new nonlinear operator controller to deal with nonlinear systems with

unknown disturbance for guaranteeing robust stability and reducing the ad-

verse effects of unknown disturbance. That is, with the robust right coprime

factorization method, the equivalent framework of nonlinear systems is ob-

tained, which provides a convenient viewpoint to consider the above issue;

then based on operator theory, for dealing with the unknown disturbance of

nonlinear systems to reduce adverse effects on nonlinear systems a general

constructive procedure for realizing the object has be discuss in a mathemat-

ical formulation viewpoint by providing an equivalent operator controller on

the nonlinear systems.

In Chapter 4, nonlinear control systems with external disturbance and

internal perturbation are considered by using operator-based robust right co-

prime factorization for guaranteeing robust stability, rejecting adverse effects

resulting from the existing disturbance and perturbation quantitatively and

meanwhile, realizing output tracking performance. In detail, firstly, robust

stability is guaranteed based on a Lipschitz norm inequation using robust
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right coprime factorization. Secondly, based on the proposed design scheme,

a convenient framework is obtained for discussing rejection issues for exter-

nal disturbance and internal perturbation. Thirdly, from error signal point

of view, the adverse effects resulting from external disturbance and internal

perturbation of the nonlinear systems are removed by the designed nonlinear

operator. Moreover, output tracking performance is realized using the pro-

posed design scheme simultaneously. Finally, a simulation example is given

to confirm effectiveness of the proposed design scheme.

In Chapter 5, nonlinear systems with perturbation and disturbance are

discussed by using bilinear operator-based right coprime factorization method.

In detail, firstly, for separating the appearing perturbation and disturbance in

the system, the bilinear operator controller based on right coprime factoriza-

tion for nonlinear systems with perturbation and disturbance is established

in a special way. we propose a general design scheme for the bilinear opera-

tor controller, which can consider quantitatively adverse effect resulting from

perturbation and disturbance, respectively, as well as making the proposed

design scheme could have a more freedom to be satisfied with practical re-

quirement. Secondly, based on the proposed method, a feasible framework

is established for considering robust control, which not only separates per-

turbation and disturbance, but also provide a fundamental base to design

controllers for the considered system. Meantime, sensitivity analysis is given

to obtain desired tracking performance. Thirdly, tracking performance is re-

alized by designing a compensator under the proposed framework. as well

as simulation examples are given to confirm the effectiveness of the proposed

design scheme. Finlay, operator-based reset control for nonlinear systems

with unknown bounded disturbance is addressed. That is, in the context

of operator-based right coprime factorization, reset control is realized and

robust stability of nonlinear systems with unknown bounded disturbance is

guaranteed.
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Appendix A

Proof

A.1 Proof of Lemma 2.1

Sufficiency: suppose that S is causal defined in Ue → Ue . Then according

to its definition we can get that PTSPT = PTS, then, for any x1, x2 ∈ Ue and

T ∈ [0,∞) , x1T = x2T , such that

[S(x1)]T = PTS(x1) = PTSPT (x1) = PTS(x1T ) = PTS(x2T )

= PTSPT (x2) = PTS(x2) = [S(x2)]T (A.1)

Necessity: suppose that for any x1, x2 ∈ Ue and T ∈ [0,∞), having x1T = x2T

implies [S(x1)]T = [S(x2)]T . Fixed a T ∈ [0,∞), for any x1 ∈ Ue, let x2 = x1T

, so that x1T = x2T , such that [S(x1)]T = [S(x2)]T . Consequently, we have

that

PTSPT (x1) = PTS(x1T ) = PTS(x2)

= [S(x2)]T = [S(x1)]T = PT [S(x1)] (A.2)

Since x1 ∈ Ue and T ∈ [0,∞) are arbitrary, it follows that PTSPT = PTS for

all T ∈ [0,∞), which implies that S is causal.
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A.2 Proof of Lemma 2.2

First, note a sufficient condition that for all x1, x2 ∈ Ue and all T ∈ [0,∞)

∥ [S(x1)]T − [S(x2)]T ∥⩽∥ S ∥Lip∥ x1T − x2T ∥ (A.3)

Hence, x1T = x2T implies that [S(x1)]T = [S(x2)]T for all x1, x2 ∈ Ue and all

T ∈ [0,∞).

A.3 Proof of Lemma 2.4

Sufficiency: Since M ∈ U(W,U), for any r ∈ Ue, we have

r(t) = (AN +BD)w(t)

in the sence that r(t) = M(ω(t)) ∈ We. Moreover, since y(t) = N(w(t)),

e(t) = BD(w(t)), and b(t) = A(y(t)) = AN(w(t)), as well the stability of

A,B,N and D implies that y ∈ Ye, e ∈ Ue and b ∈ Ue. Thus, the system is

overall stable.

Necessity: First, it drives by the well-posedness and through the path of

N and A that M : W → U is invertible. Then, it can be verified that both

M and M−1 are stable. As a result, M ∈ U(W,U).

A.4 Proof of Lemma 2.5

On account of M is unimodular, so as to it is invertible. Based on Bezout

identity

AN +BD = M (A.4)

A(N +∆N) +BD = M̃ (A.5)
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we can get

M̃ = M + A(N +∆N)− AN

= [I + (A(N +∆N)− AN)M−1]M (A.6)

due to (A(N+∆N)−AN)M−1 ∈ Lip(De), then I+(A(N+∆N)−AN)M−1

is invertible, where I is the identity operator. Consequently,

M̃−1 = M−1(I + A(N +∆N)M−1 − ANM−1)−1 (A.7)

Meanwhile, since (A(N + ∆N) − AN)M−1 ∈ Lip(De) and M ∈ U(U, Y ),

then M̃ ∈ U(U, Y ) provided that the system is well-posed. As a result, for

any r ∈ Ue, w(t) = M̃−1(r(t)) ∈ We. Further, since y(t) = (N +∆N)(w(t)),

e(t) = BD(w(t)) and b(t) = A(N +∆N)(w(t)), the stability of A, B, N, D

and ∆N implies that y ∈ Ye ,e ∈ Ue and b ∈ Ue. Then, the system is overall

stable.
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