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Abstract 
 

 

Increasing amounts of plastics are entering the oceans on account of increases in production and 

poor waste management. Plastic debris is ubiquitous in the oceans around the world. Many species of 

marine-based organisms, such as seabirds, ingest these plastics. The plastics cause injury and inhibit 

the digestion of food. Further concerns arise from the toxic chemicals both contained in the plastics as 

additives and adsorbed from ambient seawater. Assessing the ecological effects associated with 

chemicals in marine plastics depends on whether the chemicals are transferred into organisms’ tissues, 

but there has been no clear answer. 

Several studies have examined the transfer of polychlorinated biphenyls (PCBs) from ingested 

plastics to seabirds, though the evidence was weak because seabirds intake PCBs not only from 

plastics but also from their preys which biomagnify PCBs through the food web. In the present study, 

the author focused on polybrominated diphenyl ethers (PBDEs), which are a class of brominated flame 

retardants. Additive PBDEs have been detected in marine plastic fragments in the open ocean. PBDEs 

are compounded in plastics with high concentration (5-30% by mass), and biomagnified less than 

PCBs. Therefore, contribution of transfer and accumulation from ingested plastics to seabirds could be 

more clearly seen for PBDEs. Study on the mechanisms of the transfer was also necessary. Because 

PBDEs are compounded in polymer matrix and highly hydrophobic, they were supposed to be difficult 

to leach out. It was assumed that the stomach oil, which was made in the stomach of members of the 

order Procellariiformes, might act as an organic solvent and accelerate leaching. The objectives of the 

present study were: 1) to examine the transfer of additive PBDEs from ingested plastics to the tissue of 

short-tailed shearwaters (Puffinus tenuirostris) in North Pacific Ocean; 2) to examine the role of 

stomach oil to facilitate the transfer of plastic-derived chemicals; 3) to study the controlling factors of 

the accumulation of plastic-derived chemicals through comparison among seabirds of various species 

from different areas. 

The author analyzed PBDEs in short-tailed shearwaters, a pelagic bird species in the order 

Procellariiformes, from North Pacific Ocean. In 5 of 30 birds, BDE209 was detected in both tissue and 

ingested plastics. BDE209 is not present in their natural prey, but is a main congener of deca-BDE 

technical product. It was suggested that seabirds ingested plastic with deca-BDE and accumulated 

plastic-derived BDE209 into their tissue. In the other 2 birds, similarly, transfer of octa-BDE or 

hexa-BDE technical products from plastic to tissue was suggested.   

To understand how the PBDEs are absorbed to the biota, leaching of PBDEs from plastics into 

digestive fluids was studied. Pieces of plastic compounded with deca-BDE were soaked in several 



leaching solutions. Trace amounts were leached into distilled water, seawater, and acidic pepsin 

solution. In contrast, over 20 times as much was leached into stomach oil. Model calculation of PBDE 

exposure to birds based on results of the leaching experiments suggested the dominance of 

plastic-mediated internal exposure to BDE209 over exposure via preys. 

The author analyzed PBDEs in tissues and ingested plastics of three species of Procellariiformes 

from two oceans, i.e., northern fulmar (Fulmarus glacialis) from North Atlantic Ocean, white-chinned 

petrel (Procellaria aequinoctialis) and shy albatross (Thalassarche cauta) from South African waters. 

Three of twenty adult northern fulmars accumulated high concentration of BDE209 in their tissues. 

Although no plastics were observed in the digestive tracts or no PBDEs were detected in plastics, the 

sporadic detection of elevated concentrations of BDE209 in the tissue was corresponded to short-tailed 

shearwaters, and indicated plastic-derived accumulation. Among the birds of African waters, 2 of 23 

white-chinned petrels accumulated hepta- to nona-brominated congeners, whose profiles were similar 

to that of octa-BDE, and 2 of 5 shy albatrosses accumulated nona- to deca-brominated congeners. 

PBDEs were not detected in plastics in their stomachs. The congener profiles which resembled that of 

octa-BDE could be considered to be specific to additives. However, low concentration of BDE209 in 

tissue as seen in shy albatross was difficult to distinguish from background accumulation of BDE209.  

In several individuals of short-tailed shearwater and northern fulmar, the ratios of BDE209 

concentration in liver to those in adipose (L/A ratio) were remarkably deviated from equilibrium. High 

or low L/A ratio was related to recent initiation or termination of exposure to high concentration of 

BDE209, respectively. The non-equilibrium state may be specific to plastic-derived BDE209 exposure. 

The profile of debromination products of BDE209 indicated difference of metabolic mechanism 

among species. Further study on the metabolism of PBDEs is important to understand behaviors and 

toxic risks of plastic-derived PBDEs in seabirds. 

The conclusion is that plastics are transported in the ocean retaining additives, and after ingestion 

by seabirds, chemicals in plastics can be rapidly extracted by stomach oils and exposed to the birds. 

Marine plastics also contain many other chemicals than PBDEs. Bioaccumulation and toxicological 

risks of these chemicals should be studied in future. 
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1.1.  Introduction 
 

Problems of Marine Plastic Pollution 

The consumption of plastics and the resultant generation of wastes have increased globally over 

the last several decades [1]. Some of the waste is released into the environment and ends up in the 

oceans [2]. Plastic debris is ubiquitous in the oceans around the world; it is estimated that at least 5.25 

× 1012 plastic particles weighing 2.7 × 105 t are currently floating at sea [3]. Plastics last a long time 

there because of their chemical stability. In particular, lighter polymers such as polyethylene and 

polypropylene float on seawater and are transported for long distances, and some of them accumulate 

in ocean gyres or stranded on beaches [4,5]. Plastics made of heavier polymers than seawater readily 

sink to the floor of the ocean [6].  

Plastic debris is fragmented into smaller pieces, mainly by UV radiation, and results in the 

generation of a larger number of smaller particles [2]. In addition to the increment of the flow of the 

plastic into the ocean, their fragmentation makes this pollution more complicated and more difficult to 

recover. Even in the pelagic waters, increase in the amount of floating plastics is observed, e.g., the 

North Pacific Subtropical Gyre [7], North Pacific Central gyre [4] and the North Atlantic, during 

several decades [8]. The mass of plastic exceeds that of plankton at several points in the North Pacific 

Central gyre [4].   

Marine plastics affect a wide range of species, from invertebrates to seabirds and whales [9]. The 

most visible and widely recognized problem is entanglement. Lost or discarded fishing gear such as 

nets, rope and lines may continue to catch and kill marine organisms over an extended period of time, 

which is called as “ghost fishing”. In addition to fishing gear, there are numerous reports of 

entanglement by the other anthropogenic material such as packing loops [9,10]. In the case of resident 

flora and fauna, smothering with plastic debris causes mechanical damage and disturbs their activity 

[9,10].  

Ingestion of plastic debris is also found in a variety of marine organisms [10,11]. There are 

reports on ingested plastic in seabird and sea turtle from 1960s, and those in whale and fish from 

1970s. Today, over two hundreds of species are known to ingest plastics [9]. Their motivation to 

ingest plastics is not clearly identified, however, in the case of turtles and birds, they are suspected to 

mistake plastic debris for their prey, e.g., jelly fish or crustaceans [12,13]. Ingested plastics may cause 

lethal damage such as penetration or blockage of the digestive tracts of marine organisms. They also 

cause wounds, ulcerating sores and clogging of the digestive tract and impairment of feeding [10]. In 

addition to these physical effects, ingested marine plastics also pose toxicological risks because of the 

chemicals present in them. Marine plastics retain chemicals applied during the manufacturing process, 

e.g., flame retardants, plasticizer and antioxidant, and also retain chemicals adsorbed from seawater, 
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e.g., PCBs, DDTs and PAHs [14]. Some of these chemicals are known to have adverse effects, such as 

endocrine disruption, on organisms. There is great concern about how the mixture of toxic chemicals 

associated with marine plastics affects marine organisms which ingest plastics. 

Assessing the ecological effects associated with chemicals in marine plastics depends on whether 

the chemicals are transferred from the ingested plastics into the organisms’ tissues, but there is no 

clear answer [15,16]. To get evidence of the transfer of plastic-derived chemicals to the tissues of 

marine organisms is one of the most important keys to understand the ecological risk of plastics in the 

marine environment. In the present study, the author focused on seabirds and studied about the transfer 

and accumulation of plastic-derived chemicals into their tissue. 

 

Chemicals in marine plastics and their effects on marine organisms. 

Today, we can not construct our life without plastics because of their unique properties, i.e., 

mouldable, light weight, low cost, strong and tough [17]. The most widely used plastics are 

polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polystyrene (PS) and polyethylene 

terephthalate (PET). They account for approximately 90 per cent of the total demand [17].  

Various chemicals are added to plastics to improve their properties, e.g., plasticity, flame 

resistance, stability and resistance to oxidation. Although these applications append essential property 

to plastic products, there is considerable concern about their adverse effects on animals. For example, 

polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardants, which have been 

added into plastics of products such as electrical appliances (5-30% of these products by weight [18]). 

They effect on neurobehavioural development, thyroid hormone homeostasis and carcinogenicity [19]. 

Phthalates may constitute up to 50 % of PVC products by weight, and cause developmental disorders 

and reproductive toxicity [20]. UV stabilizers, which are applied in plastics from 0.05% to 2% by 

weight [21], are suggested to have antiandrogenic activity [22], and agonistic activities toward aryl 

hydrocarbon receptor [23]. In addition, some polymers contain monomers and unreacted starting 

materials. Bisphenol A mainly used as a monomer for polycarbonate or epoxy resin, and effects 

estrogenic activity [24]. Styrene monomer is anticipated to be a carcinogen [25]. 

Marine plastics may retain many additives which are compounded into plastic products, and 

because of their highly hydrophobic nature, they adsorb and concentrate hydrophobic compounds such 

as polychlorinated biphenyls (PCBs) from sea water [26]. Hirai et al. (2011) analyzed polychlorinated 

biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), dichloro-diphenyl-trichloroethane 

(DDTs), PBDEs, alkylphenols and bisphenol A in marine plastic fragments (-10 mm) from the open 

ocean and remote and urban beaches [14]. Some of the fragments sporadically retained high 

concentration of chemicals such as PBDEs suggested to be derived from additives. They also detected 

hydrophobic organic compounds such as PCBs and PAHs, which were sorbed from seawater [14].  
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To assess the biological effects of plastic-derived chemicals, researchers have studied their 

transfer and accumulation in tissues of marine organisms [27,28]. There is increasing number of 

studies on transfer to invertebrate and fish by laboratory experiments, and some studies examined field 

caught samples of birds. All of these previous studies mainly focused on adsorbed hydrophobic 

chemicals. 

In laboratory experiments, the accumulation of PCBs in lugworm (Arenicola marina) was 

facilitated by the existence of polystyrene in sediment [29], and another study observed the transfer of 

chemicals (nonylphenol, phenanthrene, PBDE-47 and triclosan) presorbed on plastic to the tissues of 

lugworm (Arenicola marina) [28]. Chua et al. (2014) exposed amphipods (Allorchestes compressa) to 

PBDEs in the presence or absence of plastics, and suggested the ability of plastic to transfer 

hydrophobic chemicals from water to biological tissue [30]. Rochman et al. (2013) exposed fish to 

plastics with chemicals presorbed in the marine environment, and found transfer of chrysene, PCB 28 

and several congeners of PBDEs to fish [31]. There are also some laboratory studies about adverse 

effects of plastic ingestion on invertebrate [28,32] and fishes [31,33-37]. Some of these studies 

emerged the evidence of the impacts associated with chemicals derived from plastics [28,31,33-35], 

e.g., alteration of feeding behavior in lugworm [28], structural change of tissues and alteration of some 

biomarker responses in fish [31,34].  

Study on seabirds in the field samples also showed some evidences of chemical transfer. A weak 

correlation between the mass of ingested plastics and the concentration of lower-chlorinated biphenyls 

in adipose tissue of twelve short-tailed shearwaters suggested the transfer of the chemicals from the 

plastics to the birds [38]. Great Shearwaters (Puffinus gravis) also showed the correlation between the 

mass of ingested plastics and PCBs concentration in the adipose tissue and eggs [27]. However, the 

correlation was weak, as explained by the exposure of the seabirds, as the top predators, to PCBs in 

their prey as well as by the ingestion of plastics. Marine plastics adsorb hydrophobic chemicals in the 

marine environment, and at the same time, marine organisms also concentrate them. Moreover, the 

chemicals can be biomagnified in food chain if the chemical does not have low bioavailability or high 

biodegradability. To get clearer evidence for the transfer of chemicals from ingested plastics to 

seabirds in the field, we must focus on chemicals which have larger exposure from ingested plastics 

than exposure from their preys. In this study, the author focused on PBDEs, which are applied in 

plastic products as additive, and the higher-brominated congeners of which are not biomagnified [39].  

 

Plastic ingestion by seabirds and the risk of chemical exposure. 

Plastic ingestion by seabirds is investigated for a long time, at least four decades [40]. Seabirds 

ingest mm- to cm-size plastics, and most of ingested plastics are accumulated in gizzard [41,42]. It is 

suggested that they mistake plastics for prey [43]. There is a relation between feeding ecology and 
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frequency of plastic ingestion; Day (1980) detected plastics in 15 of 37 Alaskan seabird species and 

found more than 25% was feeding by pursuit-diving, 16% was feeding by surface-seizing, 9% was 

feeding by dipping, and none of those feeding by plunging or piracy contained plastic [44]. One study 

estimates that the frequency of plastic ingestion is increasing, and it will reach 99% of all seabird 

species by 2050 [45]. 

In this study, the author focused on Procellariiformes. Procellariiformes includes Diomedeidae 

and Procellariidae, and they show the highest frequency of plastic ingestion among seabirds [46]. In 

addition to the frequency, Procellariiformes are expected to be at high risk for chemical exposure from 

plastics because of their unique nature. Additives are compounded in a polymer matrix, and especially, 

hydrophobic chemicals are stable in plastics. Therefore, these chemicals are supposed to be difficult to 

leach out, and leaching of chemicals is the most important process in transfer of chemicals from 

plastic to biological tissue. First, Procellariiformes do not usually regurgitate ingested plastics and 

other indigestible items, therefore, they accumulate more plastics in the stomach than the other species 

such as gulls [47,48]. Accumulated plastics in gizzard are ground up and excreted after they wear 

down or fragment into sizes small enough to pass into the intestines [47]. Retention time of plastics in 

stomachs is estimated to be ranged from a half month to more than a year, by some field observation 

[44,47] and an experimental work [49]. The long retention time of plastics and grinding process in 

gizzards may cause high efficiency of extraction of chemicals retained in plastics. Next, the stomach 

oils of seabirds may act as an organic solvent and accelerate leaching. The stomachs of members of 

the order Procellariiformes hold oils derived from their diet, mainly fish. Stomach oils are composed 

mainly of wax esters or triacylglycerol (>70% of total lipids) [50,51] and could therefore facilitate the 

leaching of hydrophobic chemicals from ingested plastics. Thus, seabirds, especially in the order of 

Procellariiformes, may extract additives from plastics in their stomach and can be exposed to high 

concentration of the chemicals.  

 

 

1.2.  Purpose of this study 
 

This study examined the accumulation of plastic-derived chemicals in tissue of seabirds, 

especially in the order Procellariiformes. The hypothesis is that plastics with applied chemical 

additives is transported in the marine environment retaining additives, and after ingestion by seabirds, 

chemicals in plastics are extracted in the stomach of seabirds. The author focused on PBDEs, which 

applied in plastic during the manufacture and can be contained in ingested plastic at much higher 

concentration than prey. The transport of PBDEs from plastics to seabirds was examined. Plastic 

debris distribute all over the ocean and many avian species are found to ingest plastics, therefore, the 
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chemical pollution caused by plastics may occur in many species from different oceans. 

The objectives of the present study are:  1) to examine the transfer of additive PBDEs from 

ingested plastics to the tissue of short-tailed shearwaters (Puffinus tenuirostris) in North Pacific 

Ocean;  2) to examine the role of stomach oil to facilitate the transfer of plastic-derived chemicals;  

3) to study the controlling factors of the accumulation of plastic-derived chemicals through 

comparison among seabirds of various species from different areas. 
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Chapter 2.  
Measurement of PBDEs in field-caught seabirds 
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2.1.  Introduction 
 

2.1.1. Objectives 

There is great concern about the effect of toxic chemicals associated with marine plastics on 

marine organisms which ingested plastics. To get evidence of the transfer of plastic-derived chemicals 

to marine organisms is one of the most important keys to understand the ecological risks of plastics in 

the marine environment. Marine plastics retain additives that are compounded into plastic products 

[14]. Among the chemicals present in plastic fragments, the author focuses on polybrominated 

diphenyl ethers (PBDEs) as additives, because they are compounded in plastic with relatively high 

concentration [18]. The objective of the studies in this chapter is to get evidence of the transfer of 

PBDEs from ingested plastics to the tissues of seabirds through the analysis of PBDEs in seabird’s 

tissue and ingested plastics. 

 
2.1.2 Seabird samples 

To examine the accumulation of plastic-derived chemicals in seabirds, the author analyzed 

PBDEs in tissue and ingested plastics of field caught short-tailed shearwaters (Puffinus tenuirostris) 

from North Pacific Ocean.  

 

Short-tailed shearwaters (Puffinus tenuirostris) 

Short-tailed shearwaters migrate annually from breeding grounds in southeastern Australia, 

including Tasmania (from October to March), to forage in the northern North Pacific (from May to 

September). In both regions, they feed on pelagic species such as crustacea and fish [52]. Short-tailed 

shearwaters are one of the species which ingest plastics the most frequently [12,53]. Ingestion of 

plastics by short-tailed shearwaters has been reported since the 1970s [44,54].  

  

2.1.3. Target compounds 

Polybrominated diphenyl ethers (PBDEs) 

PBDEs are a class of brominated flame retardants, and compounded into various plastics at 5% to 

30% by weight. Three commercial mixtures are used (penta-, octa-, and deca-BDEs), along with some 

minor technical mixtures such as hexa-BDEs. Penta- and octa-BDEs are now globally regulated by the 

2009 Stockholm Convention because of their toxicity potential. Although deca-BDE is not yet banned 

globally, deca-BDE is now being phased out in many countries and the eleventh and twelfth meeting 

of the Persistent Organic Pollutants Review Committee (POPRC) recommended to list decabromo- 

diphenyl ether in Annex A. Large amounts of plastic products containing deca-BDE are still used or 

landfilled, and deca-BDE has been detected in marine plastic fragments in the open ocean [14]. 
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2.2.  Materials and Methods 
 

2.2.1.  Sample collection and treatment 

Thirty short-tailed shearwaters were caught as by-catch in experimental driftnets by the research 

vessel Wakatake-maru (Hokkaido Prefectural Government) in the northern North Pacific Ocean 

(56°30′–57°30′N, 179°00′E–178°00′W) during June to July 2008 to 2010, and the training ship 

Osyoro-maru (Hokkaido University) in the northern North Pacific Ocean (41°44′–43°57′N, 155°00′–

165°00′E) during May to July 2010 and 2011. Collection on the Wakatake-maru was approved as a 

part of the Bering/Aleutian Salmon International Survey (North Pacific Anadromous Fish Commission 

2001), but no permission was required for the collection on the Oshoro-maru.  

The carcasses were stored at –30 °C until dissection. In the laboratory, the carcasses were 

dissected with a solvent-rinsed stainless steel knife. Sets of abdominal adipose, liver, and plastics were 

collected from short-tailed shearwaters sampled during 2008-2011. Abdominal adipose and plastics 

were collected from short-tailed shearwaters sampled in 2005. 

The tissues were removed, put in solvent-rinsed glass vials, and stored in the freezer at –30 °C 

until analysis. The stomachs were removed to examine the contents. Plastic pieces found in the 

stomach were washed in distilled water, dried at room temperature, and weighed on an electronic 

balance (AB54, Shimadzu, Kyoto, Japan) with precision of 0.1 mg. The plastics were identified and 

sorted according to polymer type by near-infrared spectrometry (PlaScan-W, OPT Research Inc., 

Tokyo, Japan). Identification was done by comparison of infrared spectra with those in a library (e.g. 

[55]). After sorting, they were ultrasonicated in distilled water and dried at room temperature. 

Specimens of lanternfish (Myctophidae) and squid (Gonatidae), prey species of short-tailed 

shearwaters, were collected in midwater trawl nets from the training ship Oshoro-maru (Hokkaido 

University) in the northern North Pacific Ocean (NNPO) as follows. Three individuals of lanternfish 

and one squid were collected in the eastern part of NNPO (39°300 –43°150 N, 155°000 E) in May 

2012. Another three individuals of lanternfish were collected in the western part of NNPO (45°330 N, 

159°210 W) in July 2012. The fishes and squid were analyzed whole. 

 

2.2.2.  Extraction and clean up of tissues and plastic samples 

PBDEs in abdominal adipose tissue and ingested plastics of all samples were analyzed, and 

additionally PBDEs in liver were also analyzed for 18 of 30 short-tailed shearwaters.  

All solvents were distilled in glass. All glass and stainless steel equipment were rinsed with the 

distilled solvents before use. Separate sets of equipment were used for the tissues and the plastic to 

avoid cross-contamination. If high concentrations of PBDEs were detected in a sample, the glassware 

used for the sample was not used again. Approximately 5 g (wet weight) of liver (from the right lobe), 
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1 g (wet weight) of abdominal adipose tissue and 10 g (wet weight) of lanternfish were first weighed 

and then extracted in a Polytron PT2000 homogenizer with dichloromethane (DCM), and the 

homogenate was then dried with anhydrous sodium sulfate. One gram of stomach oil was diluted with 

DCM to 2 mL. Plastics from each individual were analyzed together as a single sample. The samples 

were Soxhlet-extracted with 150 mL of DCM at a rate of 3–4 cycles per hour for 24h, the extract was 

concentrated to ~2 mL, and 3–4× volume of n-hexane was added to enhance the eduction of dissolved 

plastic. One-tenth of the supernatant was used for analysis.  

The sample extracts were spiked with surrogate standards (13C-labeled BDE3, 15, 28, 47, 99, 153, 

154, and 183, and 4′-fluoro-2,2′,3,3′,4,5,5′,6,6′-nonabromo-diphenyl ether) and those of biological 

samples were purified by centrifugation (737× g for 30 min) and then, an aliquot (normally one-tenth) 

was subjected to determine lipid contents from the weight of the dried extracts. Another aliquot was 

rotary-evaporated just to dryness. The residue was dissolved in 1 mL of n-hexane/DCM (3:1, v/v) and 

transferred onto a 5%-H2O-deactivated silica gel column (1 cm i.d. × 9 cm). PBDEs and PCBs were 

eluted with 20 mL n-hexane/DCM (3:1, v/v). Eluent was concentrated just to dryness in a rotary 

evaporator and topped up to ~2 mL with DCM, subjected to GPC (2 cm i.d. × 30 cm, CLNpak 

PAE-2000; Showa-denko, Tokyo, Japan) to separate target compounds from lipids in DCM at an 

eluent at flow rate of 4 mL/min. The fraction with a retention time of 15.5 to 25 min was collected for 

further purification. The GPC eluent was rotary-evaporated just to dryness, re-dissolved into 0.4 mL of 

n-hexane, and transferred onto fully activated silica gel column (0.45 cm i.d.× 18 cm).  The first 

fraction containing alkanes and the second fraction containing PBDEs and PCBs were eluted with 4 

mL of n-hexane and 10 mL of n-hexane/DCM (3:1, v/v), successively. Eluent in the second fraction 

was rotary-evaporated and transferred to a 1 mL glass ampoule. The solvent in the ampoule was 

evaporated just to dryness under gentle nitrogen stream, and the residue was re-dissolved into 100 µL 

of iso-octane containing 40 ppb of 13C-labeled BDE77 and 13C-labeled BDE139 as internal injection 

standards. 

 

2.2.3.  Instrumental analyses 

One microlitre aliquots were analyzed by gas chromatography. Purified fractions were analyzed 

by GC/ion trap mass spectrometry (GC/IT/MS) for mono- to hepta-BDEs, and di- to deca-chlorinated 

biphenyls by GC-ECD for higher-brominated congeners. The author quantified 49 BDE congeners 

(BDE 1, 2, 3, 7, 8, 10, 11, 12/13, 15, 17/25, 30, 32, 33/28, 35, 37, 47, 49, 66, 71, 75, 77, 85, 99, 100, 

116, 118, 119, 126, 138, 153, 154, 155, 166, 179, 181, 183, 188, 190, 196, 197, 202, 203, 206, 207, 

208, and 209). Compounds were identified and quantified against native standards. Detailed operation 

conditions are listed in Table 2-1a,b. 

Concentrations are expressed on a lipid weight basis for the tissue samples. In the case of ingested 
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plastic samples, analytical results are expressed as amounts per individual (i.e., ng/individual), because 

all the plastic pieces from each individual were analyzed as a single sample to ensure enough for 

analysis. Concentrations in the samples were corrected against the recovery of the surrogates. The 

limit of detection (LOD) was set at 3 times the signal-to-noise ratio on the detector. LOD values for 

individual runs are listed in Table 2-2. The limit of quantification (LOQ) was set at 3 times the amount 

detected in the procedural blank. Typical blank values were 0.01 ng/g-lipid weight for BDE47, 0.01 

ng/g for BDE183, and 0.09 ng/g for BDE209, though they were variable among the runs. Blank values 

for individual runs are listed in Table 2-3.  

Reproducibility and recovery of the analytical procedures for the tissue samples were confirmed 

in advance through 4 replicate analyses of adipose tissue extracts with and without spiking of native 

PBDE standards. The relative standard deviations of concentrations of individual congeners were 

<10% and the recoveries were >87%. A procedural blank was run with every batch (7 samples). 

 

2.2.4. Statistical analysis 

The similarity of congener compositions of PBDEs among samples was compared by cluster 

analysis with the complete linkage method. The open-source software R was used. 

 

 

2.3.  Results and Discussions 
 

2.3.1.  Short-tailed shearwaters of North Pacific Ocean 

2.3.1.1.  PBDEs in ingested plastics and tissues  

All 30 birds examined held plastics in their stomach (e.g., Fig.2-1), at 0.003–2.16 g per bird 

(Table 2-4). Fragments of end-products accounted for 63.6% of all pieces, followed by plastic sheets 

(18.9%), resin pellets (9.6%), and fibers (7.7%). The proportions of plastic types were similar to those 

found previously in short-tailed shearwaters [38,42]. On average, the author found 24.4 pieces and 

0.28 g per bird. This mass was greater than those in previous studies of short-tailed shearwaters in the 

same region [38,42,53]. 

Although all 30 birds held plastics in their digestive tracts, only eleven (OS10-001, OS10-002, 

OS10-004, OS10-008, WK10-016, WK10-018, WK10-023, WK05-018, WK05-022, WK05-027, and 

WK05-030; Fig. 2-2, Table 2-5) had PBDEs higher than 0.1 ng/individual in the plastics, above which 

discussion about congener profiles would be meaningful. The congeners in the plastics were 

dominated by higher-brominated congeners, i.e., BDE209 and several octa- to nona-brominated 

congeners or hepta- and nona-brominated congeners in all birds except OS10-001, in which hexa- and 

hepta-BDEs were detected and BDE153 was predominant. These congener profiles are similar to that 
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of deca-BDE technical product containing BDE209 as a major component and octa-BDE technical 

product containing BDE183 as a major component, respectively (Fig. 2-3) [56]. These results indicate 

that some of the plastics ingested by the short-tailed shearwaters were fragments of plastic products in 

which deca-BDE was industrially compounded. This sporadic occurrence of plastics containing 

deca-BDE technical product is consistent with that of plastics floating on the open ocean, including in 

the Central Pacific Gyre [14], and the fact that brominated flame retardants are added to specific 

plastic products.  

PBDEs were detected in all birds in both the abdominal adipose (Fig. 2-2A) and liver (Fig. 2-2B).  

Some congeners (e.g., BDE154) were detected in all the samples, whereas the other congeners were 

not detected in some samples. Total PBDEs in the adipose and liver ranged from 0.28 to 186 

ng/g-lipid weight with median of 1.90 ng/g-lipid (Table 2-6) and 0.07 to 65.9 ng/g-lipid weight with 

median of 0.71 ng/g-lipid weight (Table 2-7), respectively. The concentrations were comparable to 

those found in species living in pelagic waters and on remote islands (e.g. [57]), and much lower than 

those found in species living in human-affected areas (e.g. [58]). The lower contamination in 

short-tailed shearwaters was due to their pelagic behavior and their reliance on pelagic plankton and 

fishes that are distant from the sources of PBDEs. 

In many of the birds, profiles were dominated by lower-brominated congeners (tetra- to 

hexa-brominated). These profiles, with a dominance of lower-brominated congeners, are similar to 

those found in pelagic fishes (Fig. 2-4, Table 2-8), the prey of shearwaters. These data indicate that 

these lower-brominated congeners are accumulated in the body of the seabird through the food web. 

On the other hand, in the liver or abdominal adipose of six birds, higher-brominated congeners 

were dominant (BDE209 and octa- and nona-brominated congeners were dominant in five birds, 

OS10-008, WK10-019, WK10-023, WK05-018, WK05-022; and hepta- and nona-brominated 

congeners were dominant in one bird, WK05-027). In particular, the adipose of WK05-022 and the 

liver of OS10-008 showed the highest concentrations of PBDEs (186 ng /g-lipid and 65.9 ng/g-lipid, 

respectively), especially BDE209 (105 ng/g-lipid, and 32.1 ng/g-lipid, respectively).  

The predominance of higher-brominated congeners in the tissues cannot be ascribed to prey, 

which lack those congeners. Their profiles, especially in the tissue of OS10-008, WK10-023, 

WK05-018, and WK05-022 are dominated by BDE209 and are similar to those in deca-BDE technical 

product, suggesting exposure from plastic additives. In fact, OS10-008, WK10-023, WK05-018, and 

WK05-022 had BDE209 in the ingested plastics and similar congener profiles. In the cluster 

dendrogram (Fig. 2-5), samples of tissue and plastic from OS10-008, WK10-023, WK05-018 and 

WK05-022 were clustered together. These similarities in congener profiles and the sporadic 

accumulation of high concentration of higher-brominated congeners in tissue indicate the transfer of 

PBDEs from the plastic to the tissues. The profile in adipose of WK05-027 was dominated by hepta- 
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to nona-brominated congeners, especially BDE183. In addition, BDE183 were detected in the ingested 

plastics in WK05-027, of which profile is similar to that in octa-BDE technical product. This indicates 

that these congeners are derived from the plastics.  

Plastics in the gizzard of OS10-001 showed a unique congener profile, i.e., a predominance of 

BDE153 with minor proportions of BDE154 and BDE183 (Fig. 2-6, Table 2-5). This profile is very 

similar to that of hexa-BDE in a unique commercial product manufactured by a Japanese company in 

the past [59]. The similarity indicates that the plastics contained the hexa-BDE product. The tissue of 

OS10-001 had the same profile with the predominance of BDE153, with the highest concentration 

among all birds examined. The concentrations of BDE153 were 1.4 ng/g-lipid in the liver and 12.7 

ng/g-lipid in the adipose of OS10-001, each an order of magnitude higher than in the other birds 

(means of 0.14 and 0.50 ng/g-lipid, respectively). This correspondence of the profile and higher 

concentrations of BDE153 in OS10-001 is another indicator of the transfer of additive PBDEs from 

ingested plastics to tissues. 

In the comparison of PBDE congener profiles, the author replaced values below LOQ with 0. 

This substitution (option 1) may have underestimated concentrations of some congeners in some 

samples and therefore affect the congener profiles and the comparison. So the author examined two 

other options. In option 2, the author used actual values between LOD and LOQ, and LOD for “not 

detected”. In option 3, the author used actual values between LOD and LOQ, and 0 for “not detected”. 

The four individuals (OS10-008, WK05-018, WK05-022, and OS10-001) showed similarities in 

PBDE congener profiles between tissues and plastics in all options (Figs 2-7 and 2-8). Option 1 would 

give lower limits, while option 2 would give higher limits. Real values must exist between option 1 

and option 2. All the options quantitatively indicate the similarities in PBDE congener profiles 

between tissues and plastics for OS10-008, WK10-023, WK05-018, WK05-022, and OS10-001. This 

means that the similarities exist in the real world.   

However, BDE209 was detected in the tissues of WK10-019 but not in the ingested plastics. A 

likely explanation is that plastics with BDE209 had been ingested and retained long enough for 

PBDEs to be leached and transferred to the tissues, before being broken up in the gizzard and excreted. 

The congener profile of PBDEs in the tissues of WK10-019 supports this process, as discussed in the 

next section. 

On the other hands, BDE209 was not dominant in the tissues of four birds (OS10-002, OS10-004, 

WK10-018, and WK05-030) in which it was dominant in the ingested plastic. These inconsistencies 

may be explained that the plastic might not have been in the stomach long enough for the congener to 

be leached out and absorbed by birds. Because additives are compounded in a polymer matrix and 

PBDEs are highly hydrophobic, PBDEs are stable in plastics and supposed not to leach out easily. 

They can also be explained by the low availability of higher-brominated congeners of PBDEs. 
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Because of the high molecular weight, the adsorption of higher-brominated congeners in seabirds 

progress slowly. In addition, it takes time for the transfer of chemicals among organs. For example, 

although OS10-008 ingested plastic with the highest amount of PBDEs, its highest concentration of 

BDE209 in the liver but low concentration in the adipose tissue suggest that the transfer of BDE209 in 

the tissues was still under way. For more detailed discussion, the author additionally analyzed PBDEs 

in subcutaneous adipose tissue, heart, muscle, and gizzard of OS10-008 (Fig. 2-9). BDE209 and 

higher-brominated congeners are highly accumulated in liver, however, all of the other tissues 

accumulate lower than one tenth of PBDEs in OS10-008 on lipid weight basis, and especially low 

concentration and low proportion of BDE209 were observed in abdominal and subcutaneous adipose 

tissues (Fig. 2-9). This distribution of PBDEs indicates that BDE209 absorbed in intestine is first 

accumulated in liver, and then distributed to the other tissues and lastly accumulates in adipose tissues. 

Because adipose mainly works for lipid storage, the exchange of substances in adipose is less active 

than the other tissues. 

 

 

2.4.  Conclusion 
 

The author detected sporadic accumulation of higher-brominated congeners of PBDEs in tissue of 

short-tailed shearwater. Seabirds which ingested plastics with deca-BDE accumulated BDE209 from 

plastics into their tissues, and seabirds which ingested plastics with octa-BDE (dominated by 

BDE183) or hexa-BDE (dominated by BDE153) also accumulated corresponding congeners. It is 

indicated that plastic-derived PBDEs were transferred and accumulated in seabirds’ tissue.  
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Figure 2-1. Examples of plastics in the gizzard of short-tailed shearwaters. 
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 Figure 2-3. Congener profiles of PBDE technical products. (La Guraudia et al., 2006 [56]) 
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Figure 2-4. PBDE concentrations and compositions in lanternfish of Northern North Pacific 
Ocean. *NNPO: Northern North Pacific Ocean. 
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Figure 2-5. Cluster dendrogram of PBDE congener profiles in liver (L-), abdominal adipose 
(A-), and plastics (P-) in stomach of short-tailed shearwaters. Option 1: Values < LOQ were 
replaced with 0. 
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Figure 2-6. Concentrations of BDE183, BDE153, and BDE154 in plastic in the stomach, 
liver, and abdominal adipose tissue of short-tailed shearwaters. Asterisks indicate that the 
average of individuals other than OS10-001; upper bars represent the highest concentrations 
of each congener among the birds other than OS10-001; n.d. indicates not detected.  
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Figure 2-7. Cluster dendrogram of PBDE compositions in liver (L-), abdominal adipose (A-), 
and plastics (P-) in stomach of short-tailed shearwaters. Option 2: Actual values between 
LOD and LOQ were used, and LOD was used for “not detected”. 
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Figure 2-8. Cluster dendrogram of PBDE compositions in liver (L-), abdominal adipose (A-), 
and plastics (P-) in gizzard of short-tailed shearwaters. Option 3: Actual values between LOD 
and LOQ were used, and 0 was used for “not detected”. 
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Figure 2-9. PBDEs concentration and composition in abdominal adipose, subcutaneous 

adipose, heart, muscle, gizzard, and liver of OS10-008. 
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Table 2-1a. Instrumental conditions for hepta- to deca- brominated congeners. 
GC: Agilent Technologies 7890A GC system  
Column J&WScience DB-5 (0.25mm i.d. x 15m) 
injection temp.  250C  
carrier gas  Helium  
detector temp 300C 
initial temp 80C 
initial time  2 min 
purge 2 min 
rate 15 C/min 
final temp  310 C 
final time  10 min 
detector  ECD  

 
 
 
Table 2-1b. Instrumental conditions for mono- to hepta- brominated congeners. 
GC: TRACE GC ULTRA, injector: AS2000(Thermo fisher scientific) 
column J&WScience DB-5MS 

 
(0.25mm i.d. x 30m) 

carrier gas  Helium  
mode constant flow 
initial value on 
initial value 1.00 mL/min 
initial time 1 min 
gas saver on 
gas saver flow 20mL/min 
gas saver time 2 min 
vaccume compensation on 
transfer line temp. 250C 
injection temp.  250C  
mode  splitless 
split flow 10 ml/min 
splittless time 1 min 
surge pressure off 
MS:POLARIS Q (Thermo fisher scientific)  
acquisition time  GC run time 
cal. gas  off 
reagent gas  off 
acquire profile  no 
source temp. 250C  
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Table 2-2. LOD values for individual runs. � � � �
Batch code A B, C D E 

�  Liver            
(ng/g-lipid) 

Adipose        
(ng/g-lipid) 

Plastic 
(ng/individual) 

Plastic 
(ng/individual) 

BDE-1 0.12  0.09  0.03  0.31  
BDE-2 0.01  0.01  0.003  0.05  
BDE-3 0.01  0.01  0.003  0.04  
BDE-10 0.01  0.005  0.002  0.01  
BDE-7 0.01  0.01  0.002  0.01  
BDE-11 0.01  0.005  0.002  0.01  
BDE-8 0.01  0.01  0.002  0.01  
BDE-12/13 0.01  0.01  0.002  0.02  
BDE-15 0.01  0.005  0.002  0.01  
BDE-30 0.01  0.01  0.004  0.02  
BDE-32 0.01  0.01  0.003  0.02  
BDE-17/25 0.01  0.01  0.01  0.03  
BDE-33/28 0.01  0.01  0.004  0.02  
BDE-35 0.02  0.02  0.01  0.07  
BDE-37 0.02  0.02  0.01  0.05  
BDE-75 0.01  0.01  0.002  0.01  
BDE-49 0.01  0.01  0.003  0.02  
BDE-71 0.01  0.01  0.004  0.02  
BDE-47 0.01  0.01  0.002  0.01  
BDE-66 0.01  0.01  0.004  0.02  
BDE-77 0.02  0.01  0.005  0.03  
BDE-100 0.01  0.01  0.002  0.01  
BDE-119 0.01  0.01  0.003  0.02  
BDE-99 0.01  0.01  0.002  0.02  
BDE-116 0.03  0.02  0.01  0.04  
BDE-118 0.02  0.01  0.004  0.02  
BDE-85 0.01  0.01  0.003  0.02  
BDE-126 0.02  0.01  0.004  0.02  
BDE-155 0.01  0.005  0.001  0.01  
BDE-154 0.01  0.004  0.001  0.01  
BDE-153 0.01  0.01  0.002  0.01  
BDE-138 0.02  0.01  0.003  0.02  
BDE-166 0.01  0.01  0.002  0.01  
BDE-183 0.01  0.01  0.002  0.01  
BDE-181 0.01  0.01  0.002  0.01  
BDE-190 0.01  0.01  0.002  0.02  
BDE-188 0.01  0.01  0.001  0.01  
BDE-179 0.01  0.01  0.001  0.01  
BDE-202 0.004  0.002  0.001  0.01  
BDE-197 0.01  0.01  0.01  0.01  
BDE-203 0.01  0.01  0.001  0.01  
BDE-196 0.004  0.01  0.002  0.01  
BDE-208 0.004  0.01  0.002  0.01  
BDE-207 0.01  0.01  0.002  0.01  
BDE-206 0.01  0.01  0.002  0.01  
BDE-209 0.01  0.01  0.003  0.01  

 *Batch codes (A–E) for the samples correspond to those in Tables S6, S7, S9, and S10, 
respectively. 
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Table 2-3. Blank values for individual runs. �  �  �  

Batch code A B C D E 

�  Liver            
(ng/g-lipid) 

Adipose        
(ng/g-lipid) 

Adipose        
(ng/g-lipid) 

Plastic 
(ng/individual) 

Plastic 
(ng/individual) 

BDE-47 0.01  0.01  0.01  0.002  0.01  
BDE-100 0.01  0.01  0.01  0.002  0.01  
BDE-99 0.01  0.01  0.01  0.002  0.02  
BDE-154 0.01  0.004  0.004  0.001  0.01  
BDE-153 0.01  0.01  0.01  0.002  0.01  
BDE-183 0.01  0.01  0.01  0.002  0.01  
BDE-202 0.004  0.002  0.004  0.001  0.01  
BDE-197 0.01  0.01  0.01  0.01  0.01  
BDE-203 0.01  0.02  0.01  0.01  0.02  
BDE-196 0.004  0.01  0.01  0.002  0.01  
BDE-208 0.004  0.03  0.01  0.004  0.01  
BDE-207 0.01  0.04  0.01  0.01  0.03  
BDE-206 0.01  0.05  0.01  0.004  0.02  
BDE-209 0.04  0.09  0.02  0.01  0.08  

 *Batch codes (A–E) for the samples correspond to those in Tables 2-5, 2-6, and 2-7, respectively. 
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Table 2-4. Number (pieces) and mass (g) of plastic found in short-tailed shearwaters. 

�  Total number Total mass 
(g) �

�  Total number Total mass 
(g) 

OS10-001 5 0.01 
�

WK05-016 16 0.25 

OS10-002 13 0.27 
�

WK05-017 26 0.12 

OS10-003 30 0.21 
�

WK05-018 27 0.18 

OS10-004 3 0.09 
�

WK05-019 25 0.39 

OS10-005 8 0.06 
�

WK05-020 11 0.04 

OS10-006 7 0.01 
�

WK05-022 12 0.29 

OS10-008 98 2.16 
�

WK05-023 39 0.25 

OS11-001 52 0.46 
�

WK05-025 24 0.09 

WK08-050 17 0.28 
�

WK05-027 101 0.59 

WK08-051 24 0.14 
�

WK05-028 4 0.21 

WK09-060 7 0.02 
�

WK05-030 15 0.29 

WK09-061 1 0.003 
�

WK05-031 26 0.19 

WK10-014 29 0.31 
�    

WK10-016 44 0.71 
�  � �

WK10-017 3 0.05 
� � � �

WK10-018 25 0.38 
� � � �

WK10-019 10 0.21 
� � � �

WK10-023 29 0.21 � � � � � � � �

� � �  �  � � Average 24.4 0.3 

 – : no item found. 
� � � � �
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Table 2-5. PBDE concentration in plastics in the stomach of short-tailed shearwaters (ng/individual).
OS10-

001
OS10-

002
OS10-

003
OS10-

004
OS10-

005
OS10-

006
OS10-

008
OS11-

001
WK08-

050
WK08-

051
WK09-

060
WK09-

061
WK10-

014
WK10-

016
WK10-

017
WK10-

018
WK10-

019
WK10-

023
1Br 1

2
3

2Br 10
7
11
8
12/13 0.01
15 0.02

3Br 30
32 0.02
17/25 0.09 0.02
33/28 0.10
35
37 0.04

4Br 75
49 0.01 0.01 8.06
71 0.33
47 0.22 0.06 0.02 0.004 0.01 0.98 0.01 0.15
66 1.57
77

5Br 100 0.06 0.02 5.03
119 0.11 0.01 4.72
99 0.04 0.01 2.86 0.05
116
118 2.64
85 0.49
126 0.28

6Br 155 0.05 1.31
154 0.48 0.03 0.003 15.3
153 2.69 9.15
138 3.71
166 0.29

7Br 183 0.44 0.19 0.01 65.2 0.004
181 10.8
190 14.9
188 8.63
179

8Br 202 0.14 0.001 49.5 0.22 0.02 0.13
197 0.21 0.03 1150 0.50 0.11 0.01

203 0.74 0.002 331 1.77 0.27 0.11
196 0.45 0.005 234 1.45 0.18 0.03

9Br 208 1.66 0.02 0.01 689 3.66 0.33 0.04
207 2.34 0.004 0.01 1140 6.14 0.53 0.02

206 3.26 0.003 0.01 1400 9.11 0.44 0.01

10Br 209 0.02 21.0 0.004 0.39 0.03 5080 0.03 23.2 0.02 3.73 0.45
total 4.12 30.2 0.03 0.41 0.10 0.01 10200 0.04 0.03 46.2 0.02 5.61 0.81
batch code D D D D D D D D E E E E E E E E E E
  Blank cells mean "not detected" (no peak was detected on chromatogram).
  Italics in gray-highlighted cells show the values < LOQ.
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(continued)
WK05-

016
WK05-

017
WK05-

018
WK05-

019
WK05-

020
WK05-

022
WK05-

023
WK05-

025
WK05-

027
WK05-

028
WK05-

030
WK05-

031
1Br 1

2
3

2Br 10
7
11
8
12/13
15 0.01

3Br 30
32
17/25
33/28
35
37

4Br 75
49
71 0.01 0.01
47 0.01 0.01 0.07 0.01 0.01 0.01
66
77

5Br 100 0.01
119
99 0.07
116
118
85
126

6Br 155
154 0.01 0.09
153 0.08 0.01
138
166

7Br 183 12.2 0.03
181
190
188
179

8Br 202 21.8
197 7.5
203 11.7
196 53.5

9Br 208 60.9 0.13 0.28
207 152 0.24 0.49
206 303 0.76

10Br 209 2350 1.38 12.7
total 0.01 2960 0.01 0.01 1.92 0.01 12.35 14.2
batch code D D D D D D D D D D D D
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Table 2-6. PBDE concentration in abdominal adipose of short-tailed shearwaters (ng/g-lipid weight).
OS10-

001
OS10-

002
OS10-

003
OS10-

004
OS10-

005
OS10-

006
OS10-

008
OS11-

001
WK08-

050
WK08-

051
WK09-

060
WK09-

061
WK10-

014
WK10-

016
WK10-

017
WK10-

018
WK10-

019
WK10-

023
1Br 1

2
3

2Br 10
7
11 0.005
8
12/13
15 0.004

3Br 30
32
17/25 0.02
33/28 0.01 0.02 0.04 0.01 0.38
35
37

4Br 75 0.003
49 0.04 0.15 0.04 0.14 0.06 0.02 0.09 0.02 0.02 0.04
71
47 0.65 1.75 0.23 0.72 0.74 0.73 0.28 0.06 0.16 0.11 0.08 0.19 0.17 0.26 0.15 0.14 0.29 0.05
66 0.10 0.02 0.08 0.01 0.01
77 0.01 0.02

5Br 100 0.27 0.74 0.11 0.21 0.44 0.34 0.19 0.02 0.06 0.10 0.09 0.16 0.88 0.16 0.21 0.13 0.23 0.02
119 0.45 0.12 0.09 0.11 0.04 0.04 0.02 0.33 0.06 0.05 0.06 0.04 0.03
99 0.22 1.43 0.05 0.41 0.69 0.42 0.07 0.08 0.04 0.06 0.13 0.32 0.10 0.26 0.16 0.24
116
118 0.15 0.05
85
126 0.01 0.01 0.02

6Br 155 0.24 0.33 0.06 0.08 0.14 0.18 0.08 0.04 0.01 0.02 0.05 0.05 0.04
154 2.22 1.27 0.19 0.57 0.71 0.93 0.34 0.13 0.23 0.14 0.33 0.78 1.22 0.41 1.17 0.47 0.93 0.05
153 12.7 0.50 0.34 0.27 0.48 0.73 0.18 0.55 0.05 0.88 2.50 0.16 0.49 0.15 0.66 0.11
138 0.01 0.04
166

7Br 183 2.77 0.04 0.07 0.06 0.03 0.06 0.09 0.03 0.34 1.97 0.19 0.01 0.03 0.02 0.45 0.04
181
190
188
179

8Br 202 0.02
197
203 0.03
196 0.04

9Br 208 0.02 0.03 0.02 0.06 0.02 0.04 0.02 0.003 0.05 0.04 0.04 0.08 0.04
207 0.01 0.01 0.005 0.02 0.11 0.06 0.05 0.02 0.03 0.24 0.05 0.04 0.01 0.79 0.12
206 0.01 0.04 0.04 0.06 0.06 0.03 0.14 0.07 0.08 0.13 0.11 0.02

10Br 209 0.07 0.01 0.03 0.07 0.05 0.02 0.06 0.02 0.16 0.04 0.53 0.32
total 19.7 6.69 1.23 2.77 3.56 3.69 1.63 1.12 0.64 0.50 2.19 6.16 3.16 1.52 2.67 1.17 4.45 0.78
batch code B B B B B B C B C C C C C B B C B C
  Blank cells mean "not detected" (no peak was detected on chromatogram).
  Italics in gray-highlighted cells show the values < LOQ.
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(continued)
WK05-

016
WK05-

017
WK05-

018
WK05-

019
WK05-

020
WK05-

022
WK05-

023
WK05-

025
WK05-

027
WK05-

028
WK05-

030
WK05-

031
1Br 1

2
3 0.10

2Br 10
7 0.03
11 0.01
8 0.004
12/13
15

3Br 30
32 0.02
17/25
33/28 0.02 0.01
35
37

4Br 75 0.005 0.01
49 0.01 0.02 0.04 0.01 0.02 0.01 0.03 0.004 0.04 0.03
71
47 0.07 0.36 0.04 0.30 0.32 0.14 0.07 0.13 0.49 0.15 0.49 0.83
66 0.01 0.01 0.02 0.01
77 0.01

5Br 100 0.03 0.13 0.02 0.06 0.11 0.09 0.02 0.03 0.41 0.05 0.53 0.49
119 0.03 0.02 0.02 0.07 0.10 0.01 0.01 0.29 0.02 0.15 0.21
99 0.02 0.13 0.02 0.14 0.17 0.15 0.02 0.09 0.56 0.13 1.34 1.04
116
118 0.01 0.01 0.01 0.03 0.11 0.08
85 0.01
126

6Br 155 0.04 0.01 0.01 0.005 0.02 0.12 0.14 0.32
154 0.14 0.22 0.05 0.13 0.25 0.55 0.08 0.13 1.71 0.10 1.38 2.16
153 0.07 0.09 0.04 0.04 0.18 0.53 0.04 0.11 1.59 0.24 1.00 1.62
138 0.01 0.31
166 0.01

7Br 183 0.02 0.11 0.01 2.11 0.01 5.88 0.01 0.28 0.35
181
190 0.02
188
179

8Br 202 0.08 2.44 0.33
197 0.43 8.64 1.24 0.10 0.06

203 0.57 0.29 0.34 7.60 0.38 0.13 0.19
196 0.53 9.98 0.62

9Br 208 0.26 12.7
207 1.17 28.6 0.35
206 0.31 6.58 0.08

10Br 209 2.54 106 0.23
total 0.38 1.59 5.94 0.73 1.50 186 0.28 0.53 14.38 0.72 5.83 7.44
batch code C C C C C C C C C C C C
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Table 7. PBDE concentrations in liver of short-tailed shearwaters (ng/g-lipid weight)
OS10-

001
OS10-

002
OS10-

003
OS10-

004
OS10-

005
OS10-

006
OS10-

008
OS11-

001
WK08-

050
WK08-

051
WK09-

060
WK09-

061
WK10-

014
WK10-

016
WK10-

017
WK10-

018
WK10-

019
WK10-

023
1Br 1

2
3

2Br 10
7
11
8
12/13
15

3Br 30
32
17/25
33/28 0.04
35
37

4Br 75
49 0.03 0.03 0.02 0.08
71
47 0.12 0.49 0.05 0.27 0.04 0.03 0.19 0.01 0.05 0.02 0.03 0.23 0.13 0.08 0.03 0.08 0.04
66
77

5Br 100 0.05 0.07 0.04 0.02 0.03 0.21 0.03 0.15 0.02 0.05 0.02
119 0.07 0.05 0.06 0.04 0.03
99 0.05 0.31 0.04 0.17 0.07 0.05 0.06 0.05 0.17 0.04 0.11 0.13 0.04
116
118 0.09
85
126

6Br 155 0.12 0.02 0.03 0.01
154 0.21 0.15 0.13 0.12 0.04 0.09 0.74 0.02 0.02 0.02 0.12 0.05 0.75 0.15 0.42 0.07 0.54 0.08
153 1.37 0.06 0.16 0.04 0.06 0.05 0.14 0.07 0.03 0.43 0.42 0.04 0.03 0.05 0.07 0.47 0.20
138
166

7Br 183 0.51 0.05 0.19 0.03
181 0.07
190 0.06
188 0.66 0.09
179

8Br 202 1.02 0.04
197 1.63 0.05
203 1.91 0.18
196 2.50 0.11

9Br 208 5.38 0.03 0.06 0.02 0.04
207 0.12 0.02 11.7 0.06 0.17 0.54 0.53
206 6.95 0.05

10Br 209 0.17 0.03 0.04 32.1 0.12 0.02 0.26 0.02 0.04 0.53 1.40
total 1.74 1.36 0.45 0.73 0.25 0.23 65.9 0.11 0.32 0.07 0.69 0.56 1.46 0.87 0.92 0.23 2.68 2.94
batch code A A A A A A A A A A A A A A A A A A
  Blank cells mean "not detected" (no peak was detected on chromatogram).
  Italics in gray-highlighted cells show the values < LOQ.

Table 2-7. PBDE concentration in liver of short-tailed shearwaters (ng/g-lipid weight). 
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squid
congener No.1 No.2 No.3 No.1 No.2 No.3
1Br 1

2
3 0.01

2Br 10
7 0.01 0.005
11 0.01
8 0.01
12/13 0.00 0.02
15

3Br 30
32 0.002
17/25 0.01 0.01 0.01
33/28 0.01 0.001 0.003 0.04 0.02 0.04
35
37

4Br 75
49 0.08 0.02 0.14 0.20 0.01 0.20
71
47 0.32 0.04 0.34 0.27 0.49 0.32 1.55
66 0.03 0.14 0.08
77 0.002

5Br 100 0.03 0.003 0.12 0.05 0.14 0.09
119 0.01 0.01 0.05 0.02
99 0.03 0.001 0.07 0.02 0.10 0.07
116
118 0.003 0.004 0.02
85
126 0.002 0.004

6Br 155 0.02 0.004 0.09 0.05 0.21 0.10
154 0.05 0.01 0.19 0.11 0.47 0.20 1.38
153 0.01 0.03 0.02 0.05 0.04
138
166

7Br 183 0.002 0.004
181
190
188
179

8Br 202
197
203
196

9Br 208
207
206

10Br 209
total 0.5 0.08 1.01 0.80 1.73 1.20 2.93
  Blank cells mean "not detected" (no peak was detected on chromatogram).
*NNPO : Northern North Pacific Ocean.

Table 8. PBDE concentrations in prey species (ng/g-lipid)
east�NNPO* west NNPO*

lanternfish lanternfish

Table 2-8. PBDE concentration in prey species (ng/g-lipid weight). 
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Chapter 3.  
Leaching experiment 
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3.1.  Introduction 
 

Chapter 2 did not propose a mechanism of transfer. So here the author conducted a leaching 

experiment using stomach oil. Because additives are compounded in a polymer matrix and PBDEs are 

highly hydrophobic, PBDEs are supposed to be difficult to leach out. However, the stomach oil of 

seabirds may act as an organic solvent and accelerate leaching. The stomachs of members of the order 

Procellariiformes, including short-tailed shearwaters, hold oil derived from their diet, mainly fish. 

Stomach oils are composed mainly of wax esters or triacylglycerol (>70% of total lipids) [50,51] and 

could therefore facilitate the leaching of PBDEs from ingested plastics. 

Stomach oils are found in chicks and adults (male and female), breeders and non-breeders [60]. 

The main function of stomach oils has been thought as an energy and water reserve [61]. Stomach oils 

contain from 5 to 35 times the energy content of the prey, and help adults to trip over patchy food 

sources and also help the chicks to go for days without meals [61]. Roby et al. (1989) proposed that 

metabolizing stomach oils during fast periods was more energetically efficient than metabolizing 

adipose tissue because to synthesize and mobilize the adipose tissue consumed more energy [62]. 

Stomach oils are slowly digested and efficiently absorbed by seabirds. This means that the plastics in 

stomach have many chances to contact with the oil, and the extracted chemicals can be efficiently 

absorbed. The objective of this study was to understand how the PBDEs are transferred from the 

plastics to the tissues, with a focus on the facilitation of leaching by stomach oils. To investigate the 

leaching of PBDEs, leaching experiments were conducted using pieces of plastic compounded with 

deca-BDE. 

 

 

3.2.  Materials and methods 
 

Leaching experiments were conducted using pieces of plastic compounded with deca-BDE and 

five types of leaching solution. High-density polyethylene plate (2 mm × 25 mm × 39.5 mm) 

containing deca-BDE was purchased from Dokuritsu Tensyoku Kankyo Hozen Kenkyujo (Tokyo, 

Japan). The plastic was cut into pieces 2 mm × 3 mm × 3 mm, similar to the size of the plastics found 

in the stomach of short-tailed shearwaters [38]. To determine the PBDE concentration in the plastic, 

the plastic plate were dissolved in toluene, the solution was purified by 5% H2O-deactivated silica gel 

column chromatography and then by fully activated silica gel column chromatography, and the 

PBDEs in the toluene solution were measured by a gas chromatograph – electron capture detector 

(GC-ECD). The average concentration of PBDEs in the plate (Table 3-1) was used to calculate the 

percent leaching. Duplicate analyses measured BDE209 in the plastic plate at 697 µg/g (Table 3-1). 
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Leaching experiments were performed with distilled water, seawater, acidic pepsin aqueous 

solution, fish oil (a major component of stomach oil), and actual stomach oil taken from wild seabirds. 

Seawater was collected in Tokyo Bay in June 2013 and autoclaved before experiments. Acidic pepsin 

aqueous solution was prepared from commercial pepsin (Sigma-Aldrich Co. U.S.A.) at 10 g/L, and the 

pH was adjusted to 3 with HCl to simulate a seabird’s gastric juice [63,64]. Fish oil, made from 

walleye pollack (Theragra chalcogramma), was obtained from Hokkaido Fine Chemical (Hokkaido, 

Japan). Stomach oil was taken from adult streaked shearwaters (Calonectris leucomelas) in the 

breeding season (July) on Awa Island (Niigata, Japan) by a non-lethal technique [65]: After the 

injection of water into the proventriculus via the mouth through an elastic tube, the stomach contents 

were flushed into a bucket by gently pushing the belly of the birds. The pH of the leaching solutions 

was 3.0–3.8 in the pepsin solution, 8.5–9.0 in seawater, and 7.2–10.6 in distilled water. The fish oil 

and stomach oil were analyzed in advance of the experiments to confirm no detectable concentrations 

of BDE209. 

 Both the fish oil and the stomach oil are composed mainly of triacylglycerol and are chemically 

similar. The leaching treatments are listed in Table 3-2. In each experiment, one piece of plastic 

(0.015–0.023 g) and leaching solution (15–23 mL) were placed in an amber glass centrifuge tube (50 

mL) at a liquid-to-solid ratio of 1000 mL : 1 g. Experiments using stomach oil were performed in a 

quarter of the size of the other experiments (2 mm × 1.5 mm × 1.5 mm and 5 mL) because only a 

limited amount of stomach oil was available. During the experiments, the centrifuge tube was 

continuously shaken (200 rpm) at 20 °C to simulate the temperature of seawater and cold-blooded 

animals or at 38 °C to simulate the temperature of a seabird’s stomach [66]. All experiments were 

conducted in duplicate. 

The amount of PBDEs leached out was calculated from the concentrations in the leaching 

solution at 5 and 15 days (and at 0.5 and 2 days in fish oil). The water-based solutions were liquid–

liquid extracted with the same volume of dichloromethane (DCM) in the centrifuge tube after the 

plastic was removed. After spiking with surrogate standard 

(4′-fluoro-2,2′,3,3′,4,5,5′,6,6′-nonabromo-diphenylether) and shaking (1 min), the organic phase was 

taken and dehydrated with anhydrous sodium sulfate. The oil-based leaching solutions were spiked 

with the surrogate standard, diluted with DCM, and subjected to gel permeation chromatography to 

remove the oils and obtain the DCM eluent containing PBDEs. 

The extracts or DCM eluents were purified by 5% H2O-deactivated silica gel column 

chromatography and then by fully activated silica gel column chromatography as described in Chapter 

2. Purified samples were concentrated and analyzed by GC with electron capture detector (GC-ECD) 

for 10 BDE congeners (hepta- to deca-brominated; BDE179, 188, 196, 197, 202, 203, 206, 207, 208, 

209). 
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3.3.  Results and discussions 
 

3.3.1.  Leaching of deca-BDE from plastic  

The water-based solutions (distilled water, seawater, and pepsin solution) leached <1% of the 

PBDEs in the plastic, except for 1.09% by pepsin solution on day 15 (Fig. 3-1). On the other hand, 

fish oil leached more than 50 times as much: around 45% by day 2 and thereafter. The stomach oil 

leached 12.6%–14.5% of the PBDEs in the plastic by day 5 and 12.6%–15.6% by day 15 (Fig. 3-1), 

more than 20 times the proportion by water-based leaching solution. These results indicate that the 

contact of oil with plastics in a bird’s stomach greatly facilitates the leaching of hydrophobic 

chemicals. 

Minimal leaching (<1%) by the water-based solutions is consistent with the highly hydrophobic 

nature of PBDEs (Fig. 3-1). Water is not efficient at extracting hydrophobic additives from plastic 

matrix. On the other hand, the hydrophobic nature of the fish oil greatly facilitated leaching. However, 

if fish oil were as highly hydrophobic as non-polar organic solvent (e.g., n-hexane, octanol), it would 

leach 99.9% (i.e., 1 – 1/1000) at an equilibrium based on the liquid-to-solid (plastic) ratio of 1000:1 in 

the experiment. Instead, it reached an equilibrium of ~40% (Fig. 3-1), because fish oil is not as 

hydrophobic as non-polar organic solvents. The fish oil consists of a neutral lipid fraction (90%–95% 

by weight) which is dominated by triacylglycerol and polar lipids (5%–10%) such as phospholipids 

[67,68], which, although hydrophobic, have a considerable polar moiety, which may decrease the 

hydrophobicity of the fish oil. Similarly, stomach oil enhanced the leaching of PBDEs (Fig. 3-1), 

reaching an equilibrium of ~15%. This lower proportion is probably due to the presence of water and 

polar organic matter derived from prey in the stomach oil, which lowered the partitioning of 

hydrophobic components into the stomach oil. 

The obtained results are consistent with the finding that dissolved humic matter and methanol can 

each facilitate the leaching of PBDEs from plastics [69,70]. Sodium taurocholate, a bile salt, increased 

the desorption of adsorbed persistent organic pollutants from microplastics, especially under 

conditions simulating warm-blooded organisms: up to 30 times that in seawater [71]. In the present 

study, however, pepsin solution only slightly enhanced leaching compared with seawater, probably 

because pepsin is not hydrophobic enough to extract hydrophobic additives mixed within plastic 

matrix instead of adsorbed to the surface. 

In the leaching experiment, plastic plate with BDE209 at 697 µg/g was utilized, two orders of 

magnitude higher than observed in plastics floating on the open ocean [14]. If leaching were 

concentration-dependent, PBDEs would be leached more slowly than the measurement of this study. 

However, few surveys of PBDEs in plastics in the open ocean have been conducted, and seabirds may 

encounter plastic debris with similar concentrations of PBDEs to those used in the leaching 
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experiment. The highest level of BDE209 found in plastic was 5080 ng in the bird OS10-008, which 

held 0.452 g of plastic fragments in the gizzard. Therefore, the “average” concentration of BDE209 in 

the ingested plastics was 11 µg/g. However, the additives are not present uniformly in all plastics but 

are compounded into only some plastics, and therefore this “average” value would be an 

underestimate. For example, if BDE209 was present only in the largest piece of plastic fragment in 

OS10-008 (0.0487 g), its concentration would be 103 µg/g, of the same magnitude as in the leaching 

experiment. A more extensive survey of PBDEs in marine plastic fragments is necessary. In addition, 

the concentration dependence of the leaching of plastic additives should be examined in future studies. 

In members of the order Procellariiformes, stomach oils are generated from prey items in the 

proventriculus, where easily digestible organic matter such as proteins and carbohydrates are rapidly 

broken down, and the remaining oily components are separated from the aqueous fraction [50,62,72]. 

The aqueous (lower) phase is emptied first [62,72]. Then the stomach oil is slowly emptied into the 

gizzard and thence into the intestine, where it is gradually digested by pancreatic lipases and bile. 

Plastic fragments become trapped mainly in the gizzard [41], where they come into contact with the 

stomach oil. This contact could be facilitated by intestinal reflux, which moves the contents of the 

intestine back into the stomach. Birds that eat oily prey have a high rate of intestinal reflux, and 

repeatedly shuttle the lipid contents between stomach and intestines to improve digestion [73]. These 

processes would therefore permit intermittent contact between stomach oil and plastics in the gizzard. 

This intermittent contact may explain the inconsistencies in the occurrence of higher-brominated 

congeners between plastics in gizzard and tissues, which observed in field sample analysis in Chapter 

2. 

 

3.3.2.  Model calculation of plastic-derived exposure of PBDEs relative to dietary exposure 

By using PBDE concentrations in plastics, their amounts in the digestive tracts and rate of 

leaching in the experiment, plastic-derived exposure of PBDEs were calculated for comparison with 

exposure through natural foods as below: OS10-008 is used as a model individual. The plastics in 

OS10-008 contained 5080 ng of BDE209. The rate of leaching of BDE209 by stomach oil in the 

leaching experiment was 15%. Therefore, 15% of 5080 ng-BDE209 (i.e., 762 ng) would be leached 

into the digestive fluid within the bird during 15 days, the duration of the leaching experiment. 

Similarly, 0.15 ng of BDE47 would be leached. From the energy requirement (929 kJ/day), 

assimilation efficiency (0.75), and prey composition [74], the consumption of 364 g/day of prey was 

calculated. Assuming that all preys contain the same concentrations of BDEs as those of lantern fish 

(BDE209, 0.002 ng/g; BDE47, 0.03 ng/g) (Table 2-8, Fig. 2-4) an exposure to 11 ng of BDE209 and 

164 ng of BDE47 was calculated through prey over 15 days. The resultant dominance of 

plastic-mediated exposure of BDE209 (762 ng) over natural prey (11 ng) is consistent with the result 
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of fingerprinting of the PBDE profiles. In contrast, the case of BDE47, the model calculates the 

dominance of exposure through prey (164 ng) over ingested plastic (0.15 ng). The model assumes that 

PBDE exposure is saturated at 15% by 15 days. After this time, only dietary exposure of PBDEs 

would continue. However, even after a couple of years, plastic-mediated exposure (762 ng) would 

dominate cumulative dietary exposure (0.002 ng/g × 364 g/day × 365 days × 2 = 531 ng). Meanwhile, 

the bird may continue to ingest plastics with additive deca-BDEs. Although no data are available on 

the exact frequency of plastic ingestion by birds and the occurrence of plastic fragments containing 

deca-BDE in the open ocean, this scenario is likely because of the consistency with environmental 

observations (i.e., similarity of PBDE profiles). These comparisons highlight the important 

contribution of additives in marine plastic debris to chemical exposure to marine organisms. 

 

3.4. Conclusion 
 

The obtained data in the present study indicate that, in members of the order Procellariiformes, 

stomach oil acts as an organic solvent, facilitating the leaching of hydrophobic chemicals from 

ingested plastics. Up to now, hydrophobic chemicals in plastics were expected that they are not likely 

to leach out in marine environment or in digestive tract of marine organisms. It is concluded that in 

case of seabirds, especially in the order Procellariiformes, the leaching of chemicals from plastics can 

be greatly facilitated in their stomach by stomach oil, and the exposure to additive chemicals may be 

far larger than dietary exposure.  
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Figure 3-1. Proportions of total PBDEs in the leaching solutions relative to total PBDEs 

originally present in plastic plate. 
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Table 3-1. PBDE concentrations (µg/g) in plastic plate used in the leaching 
experiment. 
 No. 1 No. 2 Average 

BDE-188 0.1  0.1  0.1  
BDE-179 0.1  0.2  0.1  
BDE-202 0.4  0.4  0.4  
BDE-197 1  1  1  
BDE-203 4  3  3  
BDE-196 3  2  2  
BDE-208 15  16  16  
BDE-207 25  28  26  
BDE-206 17  20  19  
BDE-209 648  746  697  

Total 713  817  765  
 
 
 
 
 
 
 

Table 3-2. Treatments used in leaching experiment. 

 Period (days) Temperature (°C) Details 

Distilled water 5, 15 20  

Sea water 5, 15 20 Tokyo Bay 

Pepsin solution 5, 15 20 Pepsin 1%, pH 3, HCl 

Pepsin solution 5, 15 38 Pepsin 1%, pH 3, HCl 

Fish oil 0.5, 2, 5, 15 38 Walleye pollack (Theragra chalcogramma) 

Stomach oil 5, 15 38 Streaked shearwater (Calonectris leucomelas) 
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Chapter 4.  
Measurement of plastic-derived contaminants  

in seabirds of various species from different areas 
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4.1.  Introduction 
 

4.1.1. Objectives 

In chapter 2, PBDEs in short-tailed shearwater were analyzed and higher-brominated congeners 

were sporadically detected in both of ingested plastics and tissue. It is indicated that additive PBDEs 

retained in ingested plastics were reached out from plastics, and were transferred and accumulated into 

seabirds’ tissue. The reaching process can be greatly facilitated by stomach oil, which is present in the 

digestive tract of birds in the order Procellariiformes (Chapter 3). Therefore, Procellariiformes seems 

to be at high risk of exposure to additive PBDEs retained in marine plastics. There are many species in 

the order Procellariiformes, and they are distributed all around the ocean. The objective of the study in 

this chapter is to investigate the accumulation of plastic derived chemicals across seabird species and 

the oceans, with a focus on Procellariiformes. 

 

4.1.2 Seabird samples 

The author analyzed PBDEs in tissue and ingested plastics of field caught samples. Three species 

of Procellariiformes from different oceans were sampled: northern fulmar (Fulmarus glacialis) from 

North Atlantic Ocean, and white-chinned petrel (Procellaria aequinoctialis) and shy albatross 

(Thalassarche cauta) from South African waters. 

 

Northern fulmar (Fulmarus glacialis) 

Northern fulmar has a circumpolar range in the northern hemisphere occurring in the pack ice and 

in waters further south in coastal, offshore, and pelagic zones [52]. They mostly feed by 

surface-seizing while swimming buoyantly. The main components of the diet are fish, crustacea, 

cephalopods, and carrion [52]. Plastic ingestion of northern fulmars in North Sea has been monitored 

for long term from early 1980s [75].  

White-chinned Petrel (Procellaria aequinoctialis) 

White-chinned Petrel is pelagic and widely distributes in the subantarctic zone. They travel a long 

distance up to several thousand kilometers when breeding. Their major foods are fish, cephalopods, 

and krill, and they catch the preys mainly by surface-seizing or surface-diving [52]. 

Shy albatross (Thalassarche cauta) 

Shy albatross breeds on several islands around Tasmania, and post-breeding adults tend to remain 

over the continental shelf and slope of south-east Australia. However, young birds are more mobile 

and are known to leach South Africa [52]. They mostly feed on fish by surface-seizing or diving in the 

shallow water.   
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4.1.3. Target compounds 

Although PBDEs were the main focus in this study, polychlorinated biphenyls (PCBs) in adult 

and chick northern fulmar was also analyzed. PCBs are adsorbed on plastics in marine environment. In 

previous study, the correlation between PCBs concentration in tissue and the mass of plastics in 

stomach were investigated, however, only weak correlation have been observed [38]. The author 

focused on chick samples. Because plastics generally retain in the stomach of seabirds for more than 

few months [53], the chick samples, of which were approximately 2-month-old, were expected to hold 

most of ingested plastics without regurgitating. Therefore, the mass of plastics in stomach can be 

assumed to be more precisely correlated with the exposed amount of PCBs from plastics than adults. 

 

Polychlorinated biphenyls (PCBs) 

PCBs were widely manufactured throughout 40 years, from 1930 to the 1970s, being used as 

stable fluid insulators in high-voltage electric transformers, in high-capacity condensers, as heat 

exchangers, pesticide extenders, adhesives, dedusting agents, components of cutting oils, flame 

retardants, hydraulic lubricants, and components of plasticizers in paints, inks, toners, and printing 

inks. By the late 1970s most governments banned PCB production but PCBs still persist and are 

ubiquitous in the environment [76]. Moreover, because PCBs have high bioaccumulation capacity and 

are persistent, they are biomagnified in the food web and found to be highly concentrated in top 

predators, such as seabirds.   

 

4.2.  Materials and Methods 
 
4.2.1.  Sample collection and treatment 

Adult northern fulmars (n = 20) killed accidentally in long-line fisheries have been used. They 

were sampled at the ocean around Faroe Islands (61°36'- 62°52'N, 06°25'-08°00'W) during June to 

August 2011 to 2012, and three birds, i.e., FAE-2012-024, FAE-2011-687, and FAE-2011-688 were 

collected on January 2012, November 2011, and May 2011, respectively. Chick fulmar (n = 18) were 

hunted for human consumption on the ocean at north of Vágoy, which is an island placed in west of 

Faroe Islands, in September 2013. The samples of white-chinned petrels (n = 23) and shy albatrosses 

(n = 5) were killed accidentally on long-lines in South African waters (29°33′–37°40′N, 21°49′E–

32°29′W) during June to October 2012 to 2013.  

The carcasses were stored at –30 °C until dissection. In the laboratory, the carcasses were 

dissected with a solvent-rinsed stainless steel knife. Sets of abdominal adipose, liver, and plastics were 

collected from adult northern fulmars. Abdominal adipose, plastics, and stomach oil were collected 

from chicks of northern fulmar. Abdominal adipose and plastics were collected from white-chinned 
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petrels and shy albatrosses. 

The tissues were removed, put in solvent-rinsed glass vials, and stored in the freezer at –30 °C 

until analysis. Plastic pieces found in the stomach were washed in distilled water, dried at room 

temperature, and weighed on an electronic balance (AB54, Shimadzu, Kyoto, Japan) with precision of 

0.1 mg. The plastics were identified and sorted according to polymer type by near-infrared 
spectrometry (PlaScan-W, OPT Research Inc., Tokyo, Japan). Identification was done by comparison 

of infrared spectra with those in a library (e.g. [55]). After sorting, they were ultrasonicated in distilled 

water and dried at room temperature. 

 

4.2.2.  Extraction and clean up of tissues and plastic samples 

The method for extraction and clean up processes were fully the same as those for short-tailed 

shearwater, which detailed in Chapter 2. PBDEs and PCBs in abdominal adipose tissue, liver, and 

ingested plastics were analyzed for adult northern fulmars, and those in abdominal adipose tissue, 

ingested plastics, and stomach oils in the proventriculus were analyzed for chicks of northern fulmar. 

The African birds, white-chinned petrels and shy albatrosses were analyzed for PBDEs in abdominal 

adipose tissue and ingested plastics. 

 

4.2.3.  Instrumental analyses 

The analytical settings and methods for instrumental analyses were the same as those for 

short-tailed shearwater, which detailed in Chapter 2, but four PBDE congeners, BDE-188, 179, 202, 

197 were excluded. These 4 congeners could not be identified clearly in many of biological samples, 

because of disturbance of ECD chromatogram by some unidentified peaks. In the analysis of northern 

fulmars, 39 PCB congeners (CB-8, 18, 28, 52, 49, 44, 74, 66, 101, 99, 87, 110, 118, 105, 151, 149, 

146, 153, 138, 158, 128, 167, 156, 157, 178, 187, 183, 177, 172, 180, 170, 189, 199, 196, 206, 195, 

194, 206, and 209) were identified. Compounds were identified and quantified against native 

standards. 

 

4.3.  Results and Discussions 
 

4.3.1.  Northern Fulmars of North Atlantic Ocean 

4.3.1.1.  PBDEs and PCBs in ingested plastics and tissues  

Ten of 20 adult fulmars and all of 18 chicks held plastics in their stomachs, at n.d.–0.18 g per bird 

in adults (Table 4-1) and 0.02–0.62 g per bird in chicks (Table 4-2, Fig.4-1). The numerical 

compositions of ingested plastics in adults and chicks were as follows: fragments, 68% and 77%; 

plastic sheets, 5% and 6%; resin pellets, 1% and 6%; and fibers, 23% and 5%, respectively. In the 
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adult birds, the author found 3.9 pieces and 0.03 g per bird on average, and were much less than 

previous investigation of stomach contents of fulmars from the Faroe Islands, which has reported 88% 

of incidence, 14.2 pieces and 0.17 g per bird on average [75]. This difference attributes to that most of 

the adult samples in this study was successful breeders, which are known to regurgitate plastics in the 

stomach during feeding to their chick with food [75]. According to the methods described in [77], 18 

of 20 adult birds were identified as those which had just finished breeding period (Table 4-1).  

Total PBDEs in the adipose of the adults ranged from 12.9 to 386 ng/g-lipid weight with median 

of 40.6 ng/g-lipid (Table 4-3, Fig. 4-2A) and those in liver of adults ranged from 6.59 to 175 

ng/g-lipid weight with median of 20.3 ng/g-lipid weight (Table 4-4, Fig. 4-2B). Total PCBs in the 

adipose of the adults ranged from 1890 to 77400 ng/g-lipid weight with median of 20700 ng/g-lipid 

(Table 4-5) and those in liver of the adults ranged from 3400 to 42800 ng/g-lipid weight with median 

of 11800 ng/g-lipid weight (Table 4-6).  

Total PBDEs in the adipose of the chicks ranged from 1.46 to 26.3 ng/g-lipid weight with median 

of 2.44 ng/g-lipid weight (Table 4-7, Fig. 4-3A). Total PBDEs in stomach oil ranged from 2.86 to 9.49 

ng/g-lipid weight with median of 4.13 ng/g-lipid (Table 4-8, Fig. 4-3C). Total PCBs in the adipose of 

the chicks ranged from 112 to 1860 ng/g-lipid weight with median of 254 ng/g-lipid weight (Table 

4-9). Total PCBs in stomach oil ranged from 78.3 to 394 ng/g-lipid weight with median of 122 

ng/g-lipid (Table 4-10). In one chick (FAE2013-003), apparently higher concentration of both PBDEs 

and PCBs were detected. The reasons for this accumulation in FAE2013-003 are discussed later. 

PBDEs and PCBs in fulmar of Faroe Islands have been analyzed in a previous study [57]. 

Comparing geometric mean of Σ (BDE-47, -99, -100, -153, and -154) and Σ (PCB-105, -118, -128, 

-167, -138, -153, -156, -170, -180, and -183) in adipose of chicks, 19 ng/g-lipid and 880 ng/g-lipid, 

respectively, were reported in the previous study [57], which were higher than the observation in the 

present study (3.6 ng/g-lipid and 276 ng/g-lipid, respectively). This difference may be caused by the 

difference of sampling year, i.e., the birds in Fängström (2005) were collected during 2000-2001 [57], 

and the samples in this study were collected during 2011-2013. PCBs and PBDEs have been phased 

out before the year 2000 in EU, therefore, those in fulmars may reflect the decreasing trends of 

environmental medias. The similar decreasing trends were also found in herring gull of European 

waters [78].  

In many adult and chick fulmars, PBDEs profiles were dominated by lower-brominated 

congeners (tetra- to hexa-brominated) (Tables 4-3, 4-4 and 4-7, Figs 4-2A,B and 4-3A). Stomach oil 

showed similar PBDEs profiles, which were made from lipids in prey fish. The tetra- to 

hexa-brominated congeners in birds’ tissue were indicated to be concentrated from their food. On the 

other hand, in the both liver and abdominal adipose of three adults, i.e., FAE-2012-015, 

FAE-2012-019 and FAE-2012-027, high concentration of higher-brominated congeners (BDE209 and 
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nona-brominated congeners) were detected and they were dominant in the profile (Tables 4-3 and 4-4, 

Fig. 4-2A,B). This accumulation pattern of PBDEs, i.e., sporadic accumulation of higher-brominated 

congeners, corresponded to that observed in short-tailed shearwater. Exposure to PBDEs derived from 

plastics with deca-BDE in their stomachs is indicated. However, in the stomach of these three birds, 

no plastic was found or few plastics with no PBDEs were detected (Table 4-11, Fig. 4-2C). A likely 

explanation is that they had ingested plastics with deca-BDE and accumulated BDE209 in their tissue, 

before excreting the plastics.  

In some of the chicks, low concentration of BDE209 was detected in the adipose (Table 4-7, Fig. 

4-3A), but not in ingested plastics (e.g. FAE-2013-018) (Table 4-12, Fig. 4-3B). This inconsistency is 

hard to be explained by excretion of plastics, because the chicks were approximately 2-month-old and 

seabirds are generally retain plastics in the stomach for more than few months [53]. Chicks, which 

accumulated plastics fed by their parents, are likely to hold most of ingested plastics. One likely 

explanation is that distribution of BDE209 in maternal tissue to egg. In fact, Karlsson et al (2006) 

reported sporadic detection of relatively high levels of BDE209 among egg samples of northern 

fulmar from Faroe islands [79]. 

Plastics in the stomach of one chick, FAE-2013-008, contained more than three orders of total 

PBDEs than the other birds (Table 4-12, Fig. 4-3B). The congeners in the plastics were dominated by 

BDE47 and BDE99. This congener profile is similar to that of penta-BDE technical product 

containing BDE47 and BDE99 as a major component [56]. These results indicate that FAE-2013-008 

ingested plastic in which penta-BDE was industrially compounded. However, the concentrations of 

BDE47 and BDE99 were not significantly higher in the adipose of FAE-2013-008 than the others 

(p-value > 0.05). This indicates that these congeners were not transferred and accumulated from 

plastics to the birds’ tissue, because the plastic might not have been in the stomach long enough for 

PBDEs to be leached out and absorbed by birds. 

The lowest total PCBs were observed in liver and adipose of FAE-2011-687, and different 

congener profile of PCBs than the other birds were detected, i.e., relatively higher proportion of 

CB138 and lower proportion of CB153 (Tables 4-5, and 4-6, Fig. 4-4A,B). In addition, congener 

profiles of PCBs in adipose and liver of FAE-2011-687 were placed closely and separated by the 

others on the dendrogram and Nonmetric multidimensional scaling (NMDS) ordination (Fig. 4-5). 

FAE-2011-687 was the only bird of which color phase was classified double dark (DD), according to 

van Franeker (2004)[77], however, all of the other birds were classified as double light (LL). van 

Franeker (2004) described as follows: colored individuals which include double dark (DD) are 

virtually limited to arctic populations (subspecies F.g.glacialis), and double light (LL) individuals 

make up near 100% of the southern subspecies populations (F.g.auduboni)[77]. The difference of 

congener profile between FAE-2011-687 and the others may be caused by the difference of regional 
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pollution or food.  

 

4.3.1.2.  Correlation between PCBs in tissue and mass of plastics 

To assess the accumulation of plastic derived PCBs, the author investigated the correlation 

between PCBs concentration in tissue and the mass of ingested plastics, using chicks (Fig. 4-6). This 

calculation was not conducted on adult samples because most of the adult samples raised chicks and 

regurgitated ingested plastics (Table 4-1). As a result, there are no positive correlations between the 

concentrations of each PCB homologues in tissue and the mass of ingested plastics. Comparing the 

exposure from plastics and that from natural diet, an estimation was made in Herzke et al. (2016), 

ingesting rate (mass) of plastics by northern fulmar was five orders smaller than that of prey [80]. 

Although it is still needed detailed study on PCBs concentration in floating plastics and in prey 

organisms, in the case of fulmar, PCBs exposure from prey is expected to overcome that from ingested 

plastics.  

The bird with the lowest amount of plastics (FAE2013-003), which plot was colored blue in Fig. 

4-6, accumulated the highest concentration of PCBs. FAE2013-003 also accumulated PBDEs at the 

highest concentration among chick samples (Fig. 4-7). The congener profiles of both PCBs and 

PBDEs in FAE2013-003 do not seem to be different from the other chicks (Figs 4-3A and 4-8A), and 

PBDEs in the tissue are dominated by tetra- to hexa brominated congeners. These features suggest that 

contaminants in FAE2013-003 were accumulated by bio-accumulation. Northern fulmar mainly preys 

on fish, crustacea, and cephalopods, and also feed on carrion (often mammal)[52]. Among the prey 

species, mammals are stated at the highest trophic levels, and generally accumulate much higher 

concentration of PCBs and PBDEs, for example, in a marine food chain of northern Norway, PCBs in 

seals were approximately 30 times higher than those in sandeels [81]. One explanation is that 

FAE2013-003 was fed more carrion of mammals and less lower-trophic organisms such as fish than 

the other chicks. Fewer plastic ingestion of FAE2013-003 may relate to lower frequency of hunting 

for small marine organisms.  

In addition, all of the PCB homologues are decreasing trends, and some of the homologues, such 

as 4-chrorinated and 5-chrorinated PCBs, decrease significantly with the amount of plastics in both 

cases of including or excluding FAE2013-003 (Fig. 4-6). However, there were no significant 

correlation between the number of plastics and any homologues (Fig. 4-9). The number of plastics in 

stomach can be affected by fragmentation of plastics. The observed decreasing trend suggests that 

plastic ingestion is possibly related with the feeding habits, e.g., the bird which mainly feeds on lower 

trophic level species such as planktonic crustaceans may catch more plastics than those which feed on 

higher trophic organisms such as fish or mammals.  
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4.3.2.  PBDEs in white-chinned petrel and shy albatross of South African waters 

The author analyzed twenty-three white-chinned petrels with plastics, at 0.01–2.02 g per bird 

(Table 4-15, Fig.4-10), and one white-chinned petrel (#3482) and five shy albatrosses without plastic. 

In the plastics ingested by white-chinned petrels, fragments of end-products accounted for 40% of all 

pieces, followed by plastic sheets (32%), fibers (19%), and resin pellets (8%). Comparing this profile, 

white-chinned petrels ingest plastics with higher proportion of sheets and fibers and lower proportion 

of fragments than short-tailed shearwater or northern fulmars, in which fragments accounted for over 

60% and sheets and fibers accounted for less than 20% and 10 %, respectively. Some of sheets in 

white-chinned petrels could be identified as packaging of snacks or polyethylene bag (Fig.4-10), and 

fibers are derived from lines or ropes for fishing. White-chinned petrels are known to frequently attend 

fishing vessels [52]. It is indicated that garbage from fishing vessels are relatively higher proportion of 

plastics ingested by white-chinned petrels in South African waters. In addition, one bird (#3499) 

ingested black crinkly sheet of plastics, which seems to be burned cinder (Fig.4-10). A susceptible 

source of burned plastics is debris from incinerator on ships [82]. The plastic in #3499 may be also 

derived from vessels. 

Total PBDEs in the adipose ranged from 1.84 to 23.4 ng/g-lipid weight with median of 5.9 

ng/g-lipid weight (Table 4-16, Fig. 4-11A). The concentration is similar to that of previous report on 

pelagic seabirds around South African waters [83]. The congener profiles were variable among the 

birds, but in most of the birds, the profiles were mostly composed of lower-brominated congeners 

(tetra- to hexa-brominated). On the other hand, in abdominal adipose of two birds, i.e., #3477 and 

#3484, higher-brominated congeners (octa- to deca-brominated congeners) were dominant in the 

profiles, and some other birds also accumulated low concentration of BDE209 and nona-brominated 

congeners, including shy albatross, i.e., # 3486 and #3487 accumulated 0.12 and 0.16 ng/g-lipid 

weight of BDE209, respectively.  

Octa-brominated congeners, i.e., BDE196, BDE197, BDE202, and BDE203, were detected as 

major components in the profiles of higher-brominated congeners accumulated in two white-chinned 

petrels (#3477, #3484). The accumulation pattern of higher-brominated congeners in tissue was similar 

to that observed in short-tailed shearwater, and suggested the transfer of PBDEs from ingested plastic 

to the tissues. The profile dominated by octa-brominated congeners, may be unique to additive 

octa-BDE, because the profiles dominated by octa-brominated congeners is uncommon in marine 

environments, to the best of our knowledge. However, PBDEs were not detected in the plastics in their 

stomachs (Table 4-17, Fig. 4-11B). In the plastic samples, only low concentration (less than 1ng 

/individual) of PBDEs were detected in 6 samples, and higher-brominated congeners were detected in 

one sample, plastics from #3504 (Table 4-17, Fig. 4-11B). 

BDE209 were detected in two shy albatross (# 3486 and #3487) (Table 4-16, Fig. 4-11A), 
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however, a previous study reported that the frequency of plastic ingestion of shy albatross were less 

than 1% [84]. The observed detection frequency of BDE209 in 2 of 5 individuals seemed higher than 

expected. Low concentration of BDE209 was also detected in most of northern fulmars and 

white-chinned petrels, although it was not noticeable in congener profile. It is suggested that the low 

concentration of BDE209 in shy albatross may be derived from the other sources than plastics. In the 

environment, BDE209 is dominant in hydrophobic solids such as soils and sediments [85]. Some birds 

in terrestrial food webs accumulated BDE209 in tissue [86], which can be explained by daily exposure 

to contaminated soils. Pelagic seabirds do not utilize terrestrial food webs, however, they may be 

exposed to BDE209 through prey which ingest hydrophobic solids. Further studies are needed to 

distinguish the sources of low concentration of BDE209 accumulated in seabirds’ tissue.  

Deca-BDE was detected in northern fulmar of North Atlantic Ocean, and deca-BDE, octa-BDE 

and hexa-BDE were detected in short-tailed shearwaters in North Pacific Ocean. This may relate to the 

difference of the use of PBDEs between Europe and Asian countries. In Europe, PBDE technical 

mixtures apart from deca-BDE were phased out, however, some Asian developing countries may still 

use them. In white-chinned petrels of South African waters, lower concentration of PBDEs, in which 

was similar profile to octa-BDE, were observed. South African waters is assumed to be more remote 

from human activities than North Atlantic or North Pacific Ocean. PBDEs are not combined with 

polymer of plastics, therefore, they can be leached out slowly in the marine environment during 

floating for long periods. Thus, one possible explanation of the lower accumulation of PBDEs is that 

the plastics in South African waters retain lower concentration of additive PBDEs. To interpret the 

difference of the accumulation pattern, and to understand the risks of plastic ingestion to seabirds, it is 

needed to quantify the PBDEs burden in marine plastics in each of the waters. 

 
4.4.  Conclusion 

The author detected sporadic accumulation of higher-brominated congeners of PBDEs in tissue of 

seabirds from North Atlantic Ocean and South African waters. The sporadic detection of PBDEs was 

corresponded to that observed in short-tailed shearwater. It was indicated to be derived from additives 

retained in ingested plastics. The obtained data indicate that chemical exposure to seabirds by plastic 

ingestion occurs all around the ocean. 

Some of the northern fulmars and short-tailed shearwaters accumulated much higher 

concentration of plastic-derived PBDEs than that derived from bio-accumulation. Because plastics are 

applied many kinds of chemicals during the manufacturing process, marine plastics may retain them in 

the marine environment. Seabirds which ingested plastics can be exposed to the other additives as well 

as PBDEs. It is needed to quantify the PBDEs and the other chemicals contained in marine plastics to 

assess the toxic risks of plastic ingestion. 
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Figure 4-1. Examples of plastics in the stomach of northern fulmars. 
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Figure 4-2. PBDE concentrations and compositions in the (A) abdominal adipose, (B) liver, 

(C) plastics in the stomach of adult northern fulmars. n.d. indicates not detected.  
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Figure 4-3. PBDE concentrations and compositions in the (A) abdominal adipose, (B) 

plastics in the stomach, (C) stomach oil in the stomach of juvenile northern fulmars. n.d. 

indicates not detected.  
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Figure 4-4. PCB concentrations and compositions in the (A) abdominal adipose, (B) liver, 

(C) plastics in the stomach of adult northern fulmars. n.d. indicates not detected.  
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(A) cluster dendrogram 

  

(B) NMDS ordination 

  

Figure 4-5. (A) Cluster dendrogram of PBDE compositions in liver (L-), abdominal adipose 

(A-), and plastics (P-) in gizzard of short-tailed shearwaters. (B) Nonmetric multidimensional 

scaling (NMDS) of PBDE congener profiles. 
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Figure 4-6. PCBs concentration in tissue vs mass of ingested plastics in chicks of northern 

fulmars. Blue character: r-value and P-value of t-test calculated using all of the samples; 

Black character: r-value and P-value of t-test calculated excluding an outlier, FAE-2013-003 

(blue plot). 
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Figure 4-7. PBDEs concentration in tissue vs mass of ingested plastics in chicks of northern 

fulmars. Blue character: r-value and P-value of t-test calculated using all of the samples; 

Black character: r-value and P-value of t-test calculated excluding an outlier, FAE-2013-003 

(blue plot). 
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Figure 4-8. PCB concentrations and compositions in the (A) abdominal adipose, (B) plastics 

in the stomach, (C) stomach oil in the stomach of juvenile northern fulmars. n.d. indicates not 

detected.  
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Figure 4-9. PCBs concentration in tissue vs number of ingested plastics in chicks of northern 

fulmars. Blue character: r-value and P-value of t-test calculated using all of the samples; 

Black character: r-value and P-value of t-test calculated excluding an outlier, FAE-2013-003 

(blue plot). 
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Figure 4-10. Examples of plastics in the stomach of white-chinned petrels. 
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Figure 4-11. PBDE concentrations and congener compositions in (A) abdominal adipose, 
(B) plastics in stomach of white-chinned petrels and shy albatrosses. 
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Table 4-1. Amount and Number of ingested plastics and breeding status of adult northern fulmar. �

ID Number Amount (g) Breeding status 

FAE-2011-687 23 0.18 NB 

FAE-2011-688 10 0.10 B 

FAE-2012-014 19 0.06 NB 

FAE-2012-015 - - B 

FAE-2012-016 - - B 

FAE-2012-017 8 0.17 B 

FAE-2012-018 - - B 

FAE-2012-019 - - B 

FAE-2012-020 - - B 

FAE-2012-021 - - B 

FAE-2012-022 6 0.11 B 

FAE-2012-023 - - B 

FAE-2012-024 2 0.02 B 

FAE-2012-025 - - B 

FAE-2012-026 1 0.01 B 

FAE-2012-027 5 0.03 B 

FAE-2012-028 2 0.02 B 

FAE-2012-029 - - B 

FAE-2012-030 - - B 

FAE-2012-031 2 0.01 B 

Average 3.9 0.03 �  

 NB: non-breeding,  B: breeding 
� �  
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Table 4-2. Amount and Number of ingested plastics in chicks of northern fulmar.  

ID Number Amount (g) 

FAE-2013-001 10 0.14 

FAE-2013-002 11 0.16 

FAE-2013-003 5 0.02 

FAE-2013-004 7 0.05 

FAE-2013-005 32 0.62 

FAE-2013-006 16 0.33 

FAE-2013-007 27 0.50 

FAE-2013-008 19 0.12 

FAE-2013-009 20 0.51 

FAE-2013-010 15 0.15 

FAE-2013-011 12 0.20 

FAE-2013-012 21 0.07 

FAE-2013-013 23 0.40 

FAE-2013-014 20 0.34 

FAE-2013-015 33 0.21 

FAE-2013-016 2 0.08 

FAE-2013-017 9 0.40 

FAE-2013-018 35 0.35 
Average 17.6 0.26 
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Table 4-3. PBDE concentrations in abdominal adipose of adult northern fulmars (ng/g-lipid weight).
FAE-
2011-
687

FAE-
2011-
688

FAE-
2012-
014

FAE-
2012-
015

FAE-
2012-
016

FAE-
2012-
017

FAE-
2012-
018

FAE-
2012-
019

FAE-
2012-
020

FAE-
2012-
021

FAE-
2012-
022

FAE-
2012-
023

FAE-
2012-
024

FAE-
2012-
025

FAE-
2012-
026

FAE-
2012-
027

FAE-
2012-
028

FAE-
2012-
029

FAE-
2012-
030

FAE-
2012-
031

1Br 1
2
3

2Br 10
7
11
8
12/13 0.03
15 0.08 0.03 0.08 0.01

3Br 30 0.01
32 0.01 0.01
17/25 0.01 0.01 0.01
33/28 0.05 0.01 0.89 0.08 2.16 0.52 0.17 0.31 0.05 0.03 0.13 1.24 0.03 1.09 0.63 0.09 0.02 3.38 0.19
35 0.40
37 0.07 0.06 0.04

4Br 75 0.02 0.02 0.01 0.03
49 0.40 0.27 1.46 1.02 2.16 3.12 1.54 1.40 0.10 0.23 0.70 0.92 0.16 1.51 0.84 0.13 0.15 1.72 0.42 0.42
71 0.01 0.02 0.01 0.03 0.01 0.01
47 8.16 4.93 27.7 29.0 41.6 48.4 23.2 17.3 2.61 3.01 9.06 17.0 2.07 18.5 13.01 2.42 2.64 33.6 7.25 5.13
66 0.09 0.03 0.05 0.24 0.06 0.22 0.21 0.18 0.02 0.08 0.03 0.04 0.05 0.07 0.05
77 0.04 0.02 0.08 0.13 0.04 0.03 0.04 0.02 0.02 0.11

5Br 100 1.80 1.63 6.20 4.30 4.98 4.53 3.56 2.24 0.81 1.55 4.94 4.87 0.87 5.97 3.93 1.34 1.01 8.21 2.77 1.76
119 0.07 0.40 1.20 1.71 0.59 1.28 2.38 0.79 0.13 0.56 1.22 0.86 0.24 1.11 0.59 0.29 0.52 1.05 0.77 1.02
99 3.50 1.90 19.6 4.58 0.78 2.59 5.45 1.68 1.89 3.28 2.73 0.89 1.08 2.02 0.35 5.02 2.57 1.12 1.74 5.60
116 0.15 0.04 0.05 0.07
118 0.16 0.16 0.03 0.04 0.08 0.05 0.06 0.31 0.22 0.28 0.09
85 0.03 0.02 0.02
126 0.21 0.17 0.11 0.24 0.16 0.10 0.08 0.31 0.04 0.14 0.34 0.08

6Br 155 0.27 0.56 1.88 2.10 1.93 2.70 2.30 1.35 0.38 0.64 1.39 1.56 0.50 1.36 1.15 0.51 0.36 1.89 0.66 0.60
154 1.56 2.54 17.1 23.8 9.42 12.8 21.5 7.69 3.51 7.89 9.15 9.10 4.03 8.29 4.67 4.33 4.07 16.2 3.12 5.44
153 0.52 6.57 14.9 29.8 2.44 8.81 22.5 12.2 6.09 14.5 6.17 7.14 3.71 6.13 1.60 9.78 5.23 12.8 8.44 8.92
138 0.10 0.08
166 0.01 0.01

7Br 183 0.04 0.17 0.72 1.01 0.05 0.17 0.74 0.31 0.12 0.22 0.15 0.22 0.20 0.04 0.03 0.17 0.38 0.59 0.26 0.27
181 0.02
190
188
179

8Br 202
197 0.05 0.35 0.28 0.06 0.07 0.02
203
196 0.01 0.02 0.61 0.01 0.06 0.33 0.09 0.09 0.01 0.02 0.27

9Br 208 0.001 0.01 2.91 0.02 5.35 0.06 2.08 0.01 0.005
207 0.001 0.01 0.04 7.86 0.01 0.02 0.07 12.9 0.19 0.12 0.10 0.04 0.005 0.01 6.15 0.02 0.03 0.02 0.01
206 0.003 0.02 4.41 0.01 0.03 4.98 0.05 0.05 0.03 0.005 0.004 4.37 0.01 0.02 0.01 0.004

10Br 209 0.01 0.02 0.19 150 0.05 0.09 0.41 316 1.17 0.70 0.96 0.10 0.02 0.03 0.09 165 0.10 0.20 0.04
total 16.5 19.1 92.9 264 66.9 85.7 84.5 386 17.4 32.8 37.0 44.2 12.9 46.6 27.4 202 17.2 81.6 25.9 29.4
  Blank cells mean "not detected" (no peak was detected on chromatogram).
  Italics in gray-highlighted cells show the values < LOQ.
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Table 4-4. PBDE concentrations in liver of adult northern fulmars (ng/g-lipid weight).
FAE-
2011-
687

FAE-
2011-
688

FAE-
2012-
014

FAE-
2012-
015

FAE-
2012-
016

FAE-
2012-
017

FAE-
2012-
018

FAE-
2012-
019

FAE-
2012-
020

FAE-
2012-
021

FAE-
2012-
022

FAE-
2012-
023

FAE-
2012-
024

FAE-
2012-
025

FAE-
2012-
026

FAE-
2012-
027

FAE-
2012-
028

FAE-
2012-
029

FAE-
2012-
030

FAE-
2012-
031

1Br 1
2
3

2Br 10
7
11
8
12/13
15 0.04

3Br 30
32
17/25
33/28 0.70 1.11 0.25 0.05 0.32 0.10 0.34 1.51 0.41 0.63 0.68 0.08
35
37

4Br 75 0.07
49 0.52 0.09 0.33 0.31 0.31 0.21 0.49 0.87 0.11 0.19 0.10 0.50 0.05 0.08 0.45 0.08
71
47 17.8 2.54 9.60 11.3 10.4 10.9 8.09 16.6 3.05 6.86 4.10 12.0 1.90 7.52 16.7 2.99 0.99 7.17 4.34 3.48
66 0.09 0.06 0.10 0.08 0.07 0.06
77

5Br 100 4.48 0.39 2.12 2.95 1.60 1.57 2.22 4.58 0.75 1.14 0.75 2.49 0.33 1.27 6.92 0.15 0.18 1.48 1.12 0.47
119 0.45 0.05 0.40 0.83 0.08 0.25 0.72 0.59 0.11 0.21 0.57 0.08 0.28 0.47
99 12.3 0.74 3.99 2.51 0.31 1.30 2.61 1.66 0.85 1.56 0.57 0.38 0.36 0.59 0.68 1.36 0.24 0.56 0.66
116 0.13
118 0.14 0.09
85
126 0.12 0.07 0.10

6Br 155 1.13 0.04 0.57 0.22 0.37 0.31 0.31 1.18 0.10 0.29 0.03 0.55 0.19 0.83 0.28 0.14 0.13
154 9.15 1.02 4.84 8.79 4.51 5.42 7.34 7.99 2.02 2.87 2.12 9.32 2.08 4.51 14.0 2.06 1.70 4.50 2.28 2.06
153 6.58 3.34 6.11 11.7 1.93 4.62 8.64 7.80 3.14 3.71 2.25 8.55 1.56 5.03 4.50 6.75 3.74 7.61 3.42 7.31
138
166

7Br 183 0.48 0.11 0.07 0.51 0.06 0.17 0.51 0.13 0.13 0.15 0.17
181
190
188
179

8Br 202 0.25
197 0.14
203
196 0.06 0.10 0.06

9Br 208 0.35 0.61 0.01 0.04 0.70
207 0.01 0.02 0.85 0.01 1.38 0.02 0.01 0.08 1.37
206 0.32 0.34 0.01 0.03 0.38

10Br 209 0.03 0.03 71.6 0.32 130 0.45 0.11 0.05 4.91
total 53.3 8.38 28.9 112 20.6 25.1 31.1 175 10.4 17.3 10.4 36.0 6.59 19.3 45.6 20.1 7.96 22.0 12.0 14.1
  Blank cells mean "not detected" (no peak was detected on chromatogram).
  Italics in gray-highlighted cells show the values < LOQ.
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Table 4-5. PCB concentrations in  abdominal adipose of adult northern fulmars (ng/g-lipid weight).
FAE-
2011-
687

FAE-
2011-
688

FAE-
2012-
014

FAE-
2012-
015

FAE-
2012-
016

FAE-
2012-
017

FAE-
2012-
018

FAE-
2012-
019

FAE-
2012-
020

FAE-
2012-
021

FAE-
2012-
022

FAE-
2012-
023

FAE-
2012-
024

FAE-
2012-
025

FAE-
2012-
026

FAE-
2012-
027

FAE-
2012-
028

FAE-
2012-
029

FAE-
2012-
030

FAE-
2012-
031

2Cl 8 0.05
3Cl 18

28 18.2 27.7 44.5 56.1 57.0 68.0 54.9 29.2 25.9 35.5 44.0 47.2 15.6 57.3 27.5 25.5 36.0 61.3 18.8 49.2
4Cl 52 5.33 0.61 7.73 4.19 3.76 1.37 2.72 0.25 5.29 6.60 1.98 0.56 0.64 2.69

49 1.36 2.92 0.88 0.43 58.8 1.16 2.88 0.82 0.88
44
74 36.5 207 190 251 168 158 149 105 76.6 150 170 180 98.1 234 164 208 150 412 160 231
66 30.1 85.2 124 101 70.2 93.6 64.7 43.8 39.8 70.4 102 126 28.5 162 93.0 95.6 101 295 51.2 117

5Cl 101 19.9 3.94 26.8 7.22 33.4 27.6 14.2 12.5 1.84 1.10 12.4 26.3 0.91 35.8 18.3 1.58 1.06 32.3 5.74 4.35
99 146 791 913 1460 830 797 915 380 318 557 610 828 676 599 572 730 499 2190 529 562
87 13.1 32.6 44.9 58.8 26.2 43.9 40.2 13.3 13.5 15.5 32.5 46.9 14.2 36.1 21.4 23.5 21.6 57.4 9.8 22.7
110 8.11 2.00 8.87 3.59 7.98 16.4 5.05 5.39 0.56 4.18 10.7 0.65 12.6 5.99 0.37 0.99 7.75 1.01 3.28
118 301 3100 1840 4070 2190 2370 2860 1230 939 1910 1860 2500 1930 1510 1700 1690 1270 5580 2150 1490
105 59.8 441 410 868 452 421 537 222 216 387 375 516 405 382 368 324 264 1280 437 275

6Cl 151 1.68 0.40 5.72 0.86 4.66 3.16 1.60 1.68 3.88 3.06 3.34
149 10.2 4.46 27.2 14.4 12.5 19.1 9.9 5.10 0.48 0.90 7.16 10.1 1.30 10.4 8.82 5.76 1.76 22.0 4.26 4.84
146 12.5 5.17 79.5 34.7 25.6 38.0 28.8 14.0 3.09 4.79 13.6 15.8 5.85 25.1 11.1 12.4 7.40 38.5 7.77 22.0
153 476 5460 7850 26800 7050 12700 12000 6430 2870 8040 8070 7730 4000 7130 6630 8620 7780 28500 9170 8730
138 447 1980 3150 6860 2070 3120 3390 1340 1010 2120 2450 2720 1290 2800 2070 2580 1840 8630 2300 2340
158 16.1 51.7 110 220 90.1 79.9 131 70.8 29.3 45.9 68.9 53.6 38.3 97.1 68.8 75.7 63.8 165 51.7 84.3
128 33.6 191 479 1020 447 604 612 262 109 220 228 264 72.1 524 350 272 345 1120 357 425
167 11.9 123 113 659 106 278 159 138 88 205 207 205 74.7 160 126 124 158 432 213 166
156 20.1 214 187 1171 158 450 337 245 135 309 318 329 134 229 202 263 253 724 78.7 305
157 5.52 48.1 47.5 222 64.2 87.9 95.2 65.9 35.1 71.3 67.8 58.7 36.2 62.4 60.7 50.6 58.9 127 77.3 76.2

7Cl 178 5.74 0.94 1.58 0.94 1.32 0.83 1.52 0.85
187 11.3 4.07 90.8 18.9 22.9 22.3 21.4 9.8 1.13 2.89 11.9 16.1 4.56 22.8 11.2 13.1 4.01 26.5 6.81 15.2
183 23.6 274 412 1857 375 650 776 457 181 464 494 385 357 445 307 645 491 958 472 483
177 1.78
172 0.87 12.5 0.72 1.21 2.53 2.17 0.31 0.65 1.01 2.34
180 116 2430 2450 19600 2980 6260 7300 4440 1220 4340 4800 2670 2130 3370 2610 4340 4700 13200 4240 3720
170 51.1 885 987 6610 1130 2000 2140 1400 416 1280 1510 975 980 1280 985 1650 1480 5470 1670 1370
189 0.90 20.8 18.5 156 27.0 49.0 51.3 39.6 10.7 36.9 31.3 24.0 17.5 29.6 19.3 32.3 33.2 50.0 33.8 28.7

8Cl 199 0.97 17.8 1.69 1.72 2.59 2.61 0.36 1.28 1.19 0.43 3.10 0.64 1.41 0.78 1.09
196/203 4.60 114 118 1010 80.4 326 316 300 66.3 233 289 132 112 142 118 237 267 554 131 195
195 1.13 38.7 47.1 258 55.7 91.3 120 101 22.1 58.3 65.4 42.7 36.9 50.5 40.3 76.3 80.7 110 54.5 59.2
194 7.26 220 131 2640 234 817 901 779 135 534 663 249 286 377 146 377 549 1060 294 383

9Cl 206 1.09 76.6 56.7 946 75.9 213 358 277 49.8 280 270 126 86.5 127 98.6 187 325 337 125 189
10Cl 209 0.62 33.3 39.1 459 70.9 130 195 152 25.8 147 98.2 76.9 32.3 71.1 57.4 47.8 115 222 54.2 80.7
total 1890 16900 20100 77400 18900 32000 33700 18600 8030 21500 22900 20400 12900 20000 16900 22700 20900 71700 22700 21400
  Blank cells mean "not detected" (no peak was detected on chromatogram).
  Italics in gray-highlighted cells show the values < LOQ.
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Table 4-6. PCB concentrations in liver of adult northern fulmars (ng/g-lipid weight).
FAE-
2011-
687

FAE-
2011-
688

FAE-
2012-
014

FAE-
2012-
015

FAE-
2012-
016

FAE-
2012-
017

FAE-
2012-
018

FAE-
2012-
019

FAE-
2012-
020

FAE-
2012-
021

FAE-
2012-
022

FAE-
2012-
023

FAE-
2012-
024

FAE-
2012-
025

FAE-
2012-
026

FAE-
2012-
027

FAE-
2012-
028

FAE-
2012-
029

FAE-
2012-
030

FAE-
2012-
031

2Cl 8 0.03
3Cl 18

28 14.3 15.7 18.5 34.7 29.9 33.6 26.9 16.8 12.0 30.2 27.6 21.5 7.37 22.4 13.3 13.1 16.3 28.9 8.52 22.5
4Cl 52 6.58 1.59 0.47 1.91 0.90 2.43 0.31 0.32

49 3.52 0.97 0.74 0.92
44
74 31.6 115 127 309 143 132 112 101 45.1 106 93.8 126 55.4 82.5 85.8 103 72.8 190 64.2 78.9
66 26.2 50.8 86.3 163 84.1 94.3 75.8 50.6 24.9 53.8 61.3 88.6 17.6 56.0 48.1 51.3 42.3 116 21.4 43.7

5Cl 101 30.6 0.74 15.6 4.44 8.17 7.55 4.34 15.8 1.31 5.07 2.15 10.0 1.00 6.41 18.4 0.81 0.61 5.99 4.29 1.55
99 108 381 466 1020 450 511 463 367 166 337 358 501 167 305 429 380 298 772 213 298
87 16.0 21.5 33.6 41.7 21.6 26.8 25.5 28.5 6.15 14.7 18.6 27.6 9.25 15.2 20.3 17.7 9.51 34.3 7.29 18.2
110 36.8 2.28 10.8 5.04 8.72 16.4 7.38 13.0 2.31 3.43 4.45 8.88 3.16 8.41 14.2 1.48 1.28 4.61 3.32 4.68
118 208 1150 992 3430 1300 1410 1390 1280 518 1080 1020 1550 485 850 1220 947 905 2300 715 811
105 55.5 348 302 824 384 500 428 315 142 288 291 475 140 262 391 233 245 605 226 257

6Cl 151 9.31 2.11 0.58 1.48 1.37 0.91 0.42 0.77 2.00 1.07
149 31.7 2.38 11.5 7.89 6.83 6.03 6.33 7.93 0.77 2.59 2.64 7.68 1.69 4.40 8.16 3.58 2.30 4.01 3.62 5.32
146 53.2 4.59 35.8 18.4 18.6 19.4 15.6 27.5 4.47 4.79 8.64 11.6 5.60 13.6 23.8 6.66 3.54 12.1 7.66 15.1
153 816 3580 2990 15600 5010 6510 6120 6680 1860 3600 3900 6860 2050 3970 5470 4030 4230 9940 3670 3280
138 658 1660 1690 4700 2010 2330 2120 1680 762 1240 1290 2370 759 1650 1960 1600 1600 3850 1220 1250
158 31.4 75.2 91.8 146 60.7 102 102 67.4 22.9 51.1 42.0 95.3 19.9 50.6 105 62.3 63.1 129 39.7 56.2
128 47.5 188 196 600 227 292 291 210 74.4 159 152 293 59.6 167 220 155 183 441 147 157
167 22.9 120 62.8 416 142 203 159 205 52.7 101 115 187 42.9 82.1 145 90.1 133 211 115 81.6
156 32.0 186.4 91.5 662 193 298 247 323 85.3 155 157 277 85.6 127 244 138 190 315 171 144
157 9.94 52.2 26.7 164 53.0 81.7 68.1 77.1 19.4 43.2 42.8 72.3 23.5 37.4 67.5 41.9 52.1 89.9 47.5 38.5

7Cl 178 5.65
187 103 3.37 43.5 14.4 11.4 21.8 15.7 32.1 6.94 7.49 8.35 16.6 4.79 15.8 38.9 10.1 6.18 5.85 8.29 16.1
183 97.7 240 234 981 341 512 471 476 129 260 287 504 153 296 407 324 359 560 251 246
177 5.76
172 9.13 0.93 1.04 1.83
180 477 1630 997 8370 2650 3670 3400 3990 942 1840 2280 3190 974 2020 3120 2090 2660 4480 1710 1560
170 192 790 454 3040 1050 1520 1290 1580 384 722 874 1320 417 872 1310 777 991 1990 754 732
189 5.05 23.6 7.81 99.4 29.0 41.6 36.6 49.7 8.25 17.0 23.4 45.5 10.6 23.5 40.3 19.5 28.1 37.7 16.1 13.4

8Cl 199 9.79 2.69 0.37 0.87 1.72 0.83 2.39
196/203 51.9 90.1 100 456 204 247 277 274 51.2 93.7 150 292 62.9 180 327 155 228 256 107 109
195 13.0 29.1 22.2 152 59.7 83.0 79.8 81.5 13.1 25.8 40.6 99.6 18.1 62.4 109 39.5 62.1 75.2 33.4 32.6
194 85.7 179 141 847 475 580 596 633 104 191 344 580 123 386 612 241 498 510 208 191

9Cl 206 46.6 53.7 85.9 408 164 203 196 256 30.5 63.6 126 236 42.2 121 286 101 228 175 72.1 65.5
10Cl 209 48.7 49.4 59.7 235 134 148 95.1 106 20.1 32.8 70.4 239 27.5 108 204 32.2 97.1 127 41.9 33.2
total 3400 11000 9400 42800 15300 19600 18100 19000 5500 10500 11800 19500 5770 11800 17000 11700 13200 27300 9890 9550
  Blank cells mean "not detected" (no peak was detected on chromatogram).
  Italics in gray-highlighted cells show the values < LOQ.
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Table 4-7. PBDE concentrations in abdominal adipose of juvenile northern fulmars (ng/g-lipid weight).
FAE-
2013-
001

FAE-
2013-
002

FAE-
2013-
003

FAE-
2013-
004

FAE-
2013-
005

FAE-
2013-
006

FAE-
2013-
007

FAE-
2013-
008

FAE-
2013-
009

FAE-
2013-
010

FAE-
2013-
011

FAE-
2013-
012

FAE-
2013-
013

FAE-
2013-
014

FAE-
2013-
015

FAE-
2013-
016

FAE-
2013-
017

FAE-
2013-
018

1Br 1
2
3

2Br 10
7
11
8
12/13
15

3Br 30
32
17/25
33/28 0.02 0.01
35
37

4Br 75
49 0.16 0.07 0.24 0.23 0.10 0.03 0.08 0.14 0.11 0.09 0.11 0.01 0.01 0.02 0.03 0.03 0.07
71
47 1.96 0.68 12.7 1.79 1.47 0.88 1.11 2.61 0.74 1.64 0.83 1.19 0.66 0.95 0.84 0.45 0.75 1.48
66 0.02 0.14 0.02 0.03 0.03 0.03 0.01
77 0.04

5Br 100 0.40 0.23 2.54 0.33 0.22 0.15 0.32 0.33 0.13 0.24 0.17 0.34 0.14 0.25 0.21 0.15 0.10 0.29
119 0.27 0.01 0.07 0.01 0.04 0.04 0.01 0.05 0.01 0.06 0.03 0.02 0.01
99 0.46 0.27 4.54 0.31 0.05 0.31 0.36 0.37 0.21 0.31 0.24 0.90 0.22 0.43 0.35 0.34 0.19 0.51
116
118 0.05
85
126

6Br 155 0.08 0.01 0.40 0.06 0.08 0.03 0.08 0.14 0.05 0.08 0.05 0.07 0.04 0.06 0.06 0.05 0.04 0.02
154 0.57 0.44 3.66 0.55 0.53 0.33 0.48 0.88 0.27 0.42 0.29 0.48 0.27 0.39 0.33 0.37 0.31 0.41
153 0.07 0.09 1.72 0.09 0.20 0.10 0.09 0.18 0.10 0.21 0.10 0.19 0.11 0.14 0.17 0.18 0.06 0.11
138
166

7Br 183 0.01 0.03
181
190
188
179

8Br 202 0.003
197
203 0.02 0.04
196 0.03

9Br 208 0.01 0.03
207 0.001 0.001 0.001 0.001 0.001 0.01 0.003 0.02 0.07
206 0.001 0.02

10Br 209 0.01 0.002 0.005 0.002 0.004 0.004 0.004 0.01 0.004 0.001 0.002 0.07 0.002 0.003 0.004 0.01 0.05 0.46
total 3.74 1.79 26.3 3.41 2.73 1.85 2.59 4.71 1.50 3.06 1.79 3.42 1.46 2.29 2.01 1.61 1.62 3.56
  Blank cells mean "not detected" (no peak was detected on chromatogram).
  Italics in gray-highlighted cells show the values < LOQ.
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Table 4-8. PBDE concentrations in stomach oil in stomach of juvenile northern fulmars (ng/g-lipid weight).
FAE-
2013-
001

FAE-
2013-
002

FAE-
2013-
003

FAE-
2013-
004

FAE-
2013-
005

FAE-
2013-
006

FAE-
2013-
007

FAE-
2013-
008*

FAE-
2013-
009

FAE-
2013-
010

FAE-
2013-
011

FAE-
2013-
012

FAE-
2013-
013

FAE-
2013-
014

FAE-
2013-
015

FAE-
2013-
016

FAE-
2013-
017

FAE-
2013-
018

1Br 1 -
2 -
3 -

2Br 10 -
7 -
11 -
8 -
12/13 -
15 -

3Br 30 -
32 -
17/25 0.02 0.03 - 0.02 0.01
33/28 0.12 0.08 0.15 0.24 0.16 0.13 - 0.06 0.03 0.02 0.03 0.03 0.06 0.05 0.09
35 0.05 -
37 -

4Br 75 0.01 -
49 0.57 0.29 0.38 1.04 0.48 0.44 0.47 - 0.25 0.49 0.26 0.36 0.29 0.32 0.48 0.37 0.35 0.49
71 0.01 - 0.01 0.01
47 3.15 1.43 3.16 4.74 3.29 2.37 1.73 - 1.70 1.60 1.75 1.44 2.00 1.41 1.82 1.47 1.72 2.27
66 0.08 0.04 0.10 0.14 0.02 0.07 0.09 - 0.10 0.04 0.03 0.05 0.11 0.02 0.20
77 0.01 - 0.02

5Br 100 0.82 0.33 0.83 1.09 0.61 0.48 0.26 - 0.30 0.30 0.34 0.27 0.36 0.22 0.49 0.32 0.32 0.56
119 0.10 0.01 0.04 0.06 0.02 0.04 - 0.02 0.03 0.02 0.02 0.04
99 0.63 0.27 0.46 0.38 0.17 0.41 0.26 - 0.19 0.16 0.31 0.28 0.32 0.18 0.32 0.33 0.23 0.21
116 0.15 -
118 0.01 -
85 -
126 - 0.02

6Br 155 0.85 0.32 0.40 0.83 0.58 0.42 0.31 - 0.38 0.30 0.53 0.40 0.34 0.30 0.48 0.38 0.50 0.59
154 1.05 0.41 0.51 0.84 0.63 0.52 0.49 - 0.35 0.32 0.69 0.48 0.72 0.34 0.56 0.47 0.58 0.64
153 0.20 0.08 0.13 0.09 0.02 0.12 0.05 - 0.04 0.12 0.02 0.11 0.01 0.09 0.05 0.06 0.06
138 0.01 -
166 -

7Br 183 0.01 0.01 - 0.01
181 -
190 -
188 -
179 -

8Br 202 -
197 -
203 -
196 -

9Br 208 -
207 -
206 -

10Br 209 -
total 7.61 3.36 6.31 9.49 6.01 4.99 3.66 - 3.17 3.28 4.18 3.33 4.13 2.86 4.39 3.59 3.85 5.15
  Blank cells mean "not detected" (no peak was detected on chromatogram).
  Italics in gray-highlighted cells show the values < LOQ.
 * no oil in stomach.
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Table 4-9. PCB concentrations in abdominal adipose of juvenile northern fulmars (ng/g-lipid weight).
FAE-
2013-
001

FAE-
2013-
002

FAE-
2013-
003

FAE-
2013-
004

FAE-
2013-
005

FAE-
2013-
006

FAE-
2013-
007

FAE-
2013-
008

FAE-
2013-
009

FAE-
2013-
010

FAE-
2013-
011

FAE-
2013-
012

FAE-
2013-
013

FAE-
2013-
014

FAE-
2013-
015

FAE-
2013-
016

FAE-
2013-
017

FAE-
2013-
018

2Cl 8 0.01 0.03 0.01 0.01 0.002 0.01 0.00 0.01 0.03 0.01 0.002 0.02 0.06 0.02
3Cl 18

28 2.24 2.37 7.81 3.38 2.39 1.83 2.32 3.14 2.06 2.72 1.97 2.48 2.53 1.87 2.70 2.29 3.14 1.72
4Cl 52 0.54 0.08 1.60 0.41 0.35 0.18 0.21 0.82 0.18 0.29 0.36 0.22 0.20 0.31 0.11 0.14 0.28 0.21

49 0.35 0.07 0.97 0.47 0.12 0.09 0.11 0.40 0.07 0.18 0.08 0.09 0.02 0.22 0.08 0.07 0.12 0.13
44 0.08 0.03 0.04 0.04 0.04 0.02 0.04
74 3.17 4.70 33.2 6.33 4.36 2.87 3.24 7.16 2.81 3.85 3.38 6.32 2.97 5.21 4.39 5.30 3.68 4.86
66 3.09 3.43 24.6 4.76 3.93 2.83 2.94 5.93 2.47 3.88 2.94 5.13 2.90 3.27 4.03 3.67 3.45 3.35

5Cl 101 2.68 0.74 13.3 2.60 1.47 1.02 1.16 4.24 0.93 1.43 1.10 1.50 0.98 2.64 0.92 0.74 1.45 2.03
99 12.6 14.2 159 20.1 17.4 10.6 10.7 29.8 8.37 12.9 12.3 29.1 12.3 24.5 15.8 20.7 12.3 20.9
87 1.33 0.87 10.5 2.07 0.93 0.96 0.97 2.31 0.70 0.98 0.84 2.38 0.97 2.30 0.96 0.94 0.86 1.83
110 1.24 0.32 2.24 1.13 0.52 0.49 0.40 1.61 0.40 0.52 0.55 0.60 0.54 1.08 0.38 0.35 0.59 0.92
118 27.3 46.4 207 54.4 39.5 23.4 27.4 64.1 18.4 27.1 31.0 58.9 24.4 50.3 36.2 59.1 28.3 44.0
105 7.16 10.6 84.1 12.3 10.3 5.62 6.77 16.5 4.51 7.15 8.14 15.4 6.44 11.2 9.00 12.8 7.29 10.6

6Cl 151 0.16 0.06 3.38 0.41 0.13 0.34 0.78 0.09 0.29 0.09 0.13 0.11 0.72 0.19 0.07 0.23 0.22
149 1.07 0.41 10.3 1.06 0.85 0.48 0.71 1.50 0.37 0.93 0.74 7.46 0.60 2.25 0.92 0.37 0.77 1.13
146 1.74 1.09 29.4 2.08 1.88 1.31 1.65 3.88 1.00 2.24 1.25 3.17 1.31 5.30 2.25 1.54 1.27 2.93
153 54.7 93.8 506 106 111 39.0 53.2 130 32.5 56.6 65.7 101 48.7 118 76.7 135 62.9 85.2
138 21.1 26.1 317 38.0 32.2 17.4 18.0 54.3 13.2 24.6 20.6 48.9 18.9 52.0 30.4 37.1 21.0 37.8
158 1.05 1.08 12.8 1.68 1.57 0.99 1.04 2.39 0.85 1.41 1.07 3.07 0.82 2.57 1.84 1.50 0.93 2.36
128 2.98 4.04 29.0 4.68 4.21 2.34 2.24 6.65 1.86 3.19 2.70 6.16 2.43 5.73 4.60 4.68 3.03 4.28
167 1.05 2.22 8.27 2.27 1.72 0.83 1.18 2.66 0.69 1.03 1.27 2.31 0.96 2.44 1.74 2.90 1.36 1.76
156 1.83 3.81 13.4 3.68 2.98 1.22 1.68 4.02 1.10 1.90 2.25 3.77 1.46 4.79 3.15 5.19 2.04 3.32
157 0.48 0.92 4.28 0.85 0.07 0.39 0.52 1.06 0.20 0.54 0.56 0.97 0.40 1.10 0.82 1.30 0.46 0.67

7Cl 178 2.17 0.06 0.06 0.23 0.06
187 1.11 0.68 26.7 1.44 1.06 0.77 0.96 3.00 0.78 1.23 0.60 1.62 0.64 4.22 1.16 0.92 0.59 1.79
183 2.48 4.37 40.6 5.13 5.39 2.05 2.67 6.55 1.50 2.75 2.80 5.12 2.01 7.65 3.20 6.63 2.53 5.15
177 1.48
172 3.94 0.05 0.20 0.04 0.05 0.06
180 14.0 33.4 187 34.4 35.3 12.0 18.4 35.5 12.3 14.1 18.0 28.3 13.1 44.8 21.1 48.8 15.7 29.9
170 5.40 12.2 70.0 13.6 13.6 4.84 6.78 15.3 3.35 6.04 7.62 12.1 5.32 17.6 8.73 18.5 6.84 11.2
189 0.08 0.29 2.40 0.22 0.29 0.05 0.06 0.30 0.04 0.03 0.06 0.26 0.04 0.39 0.23 0.43 0.06 0.15

8Cl 199 0.01 3.29 0.02 0.02 0.10 0.02 0.06 0.38 0.02
196/203 0.50 1.03 11.3 1.31 1.53 0.40 0.44 1.58 0.25 0.53 0.65 1.13 0.37 1.98 0.74 1.83 0.59 1.34
195 0.14 0.35 3.49 0.35 0.49 0.07 0.06 0.35 0.08 0.21 0.28 0.04 0.53 0.17 0.58 0.08 0.19
194 1.08 2.44 16.9 2.85 3.09 1.17 0.81 2.38 0.47 1.04 1.51 2.14 0.59 3.22 1.55 3.76 0.94 2.63

9Cl 206 0.29 0.55 7.41 0.65 0.79 0.18 0.28 0.56 0.08 0.27 0.28 0.53 0.19 1.02 0.40 1.02 0.25 0.61
10Cl 209 0.17 0.20 2.49 0.33 0.32 0.08 0.13 0.34 0.07 0.09 0.18 0.27 0.08 0.29 0.22 0.36 0.14 0.22
total 173 273 1860 329 300 136 167 409 112 180 191 351 152 380 235 379 183 284
  Blank cells mean "not detected" (no peak was detected on chromatogram).
  Italics in gray-highlighted cells show the values < LOQ.
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Table 4-10. PCB concentrations in stomach oil in stomach of juvenile northern fulmars (ng/g-lipid weight).
FAE-
2013-
001

FAE-
2013-
002

FAE-
2013-
003

FAE-
2013-
004

FAE-
2013-
005

FAE-
2013-
006

FAE-
2013-
007

FAE-
2013-
008*

FAE-
2013-
009

FAE-
2013-
010

FAE-
2013-
011

FAE-
2013-
012

FAE-
2013-
013

FAE-
2013-
014

FAE-
2013-
015

FAE-
2013-
016

FAE-
2013-
017

FAE-
2013-
018

2Cl 8 0.01 0.03 0.01 0.02 0.03 0.06 0.05 - 0.04 0.03 0.02 0.05 0.04 0.04 0.04 0.05 0.05 0.03
3Cl 18 0.04 0.54 0.20 0.16 0.33 0.22 - 0.27 0.17 0.28 0.30 0.45 0.37 0.26 0.44 0.34

28 3.32 0.01 3.37 3.91 3.14 3.29 2.73 - 2.80 2.13 2.32 1.70 3.01 2.45 3.15 3.01 2.57 2.07
4Cl 52 7.43 2.54 5.97 8.36 4.15 3.78 3.09 - 3.33 2.71 3.19 2.42 4.04 3.13 4.07 3.19 3.70 3.04

49 2.10 0.65 1.39 2.76 1.29 0.99 0.84 - 1.04 0.84 0.88 0.70 1.19 0.86 1.31 0.74 1.08 0.90
44 1.44 0.87 0.99 2.52 1.17 1.28 0.82 - 1.40 0.95 1.02 0.81 0.58 1.18 1.02 1.02 1.12 0.96
74 4.16 1.65 5.48 4.83 1.74 1.96 1.89 - 1.73 1.25 1.65 1.59 2.05 1.51 2.87 1.89 1.62 1.68
66 4.76 1.76 4.57 4.56 2.13 2.22 2.17 - 2.03 1.50 2.03 1.90 2.50 1.92 2.71 1.99 1.97 1.92

5Cl 101 17.3 3.29 9.27 19.1 6.72 6.32 5.90 - 4.90 5.04 6.18 4.81 9.71 4.84 7.48 6.14 7.81 6.91
99 15.0 3.18 14.4 16.3 6.87 5.81 5.52 - 4.06 3.73 4.26 5.51 7.58 4.60 7.09 6.38 5.22 5.39
87 5.89 1.41 3.08 7.73 2.82 2.03 1.99 - 1.81 1.39 1.42 1.75 3.06 1.83 3.14 1.93 2.39 2.19
110 9.91 1.69 3.39 8.11 3.33 3.51 3.06 - 2.43 2.66 2.59 2.33 4.63 2.64 3.44 3.17 3.85 3.46
118 29.2 7.88 23.1 33.1 13.7 10.4 11.3 - 7.67 7.08 9.46 10.4 14.3 8.45 16.0 11.7 9.30 9.39
105 7.81 2.16 6.70 8.89 3.61 2.86 3.01 - 2.26 2.00 2.27 2.97 3.91 2.25 4.31 2.92 2.78 2.39

6Cl 151 3.66 1.33 2.77 5.20 2.16 2.12 1.14 - 1.45 0.76 1.69 1.00 1.62 1.39 1.59 1.57 1.77 2.15
149 10.3 4.04 11.2 18.4 5.55 6.37 3.96 - 4.06 3.79 4.62 3.18 6.69 3.98 5.12 5.57 6.08 6.00
146 5.77 1.18 6.09 7.46 3.36 2.83 1.56 - 1.33 1.41 2.13 1.57 2.58 1.50 2.04 1.94 2.42 3.34
153 73.1 23.4 68.9 91.4 41.5 24.8 21.5 - 15.5 14.1 18.2 22.4 27.4 15.6 27.6 29.8 19.8 22.9
138 85.4 21.6 74.6 88.1 33.3 26.5 17.9 - 16.0 14.6 22.3 20.9 31.4 18.4 30.9 22.4 18.3 42.2
158 2.55 0.49 3.78 3.20 1.08 1.22 0.70 - 0.46 0.55 0.70 0.60 0.77 0.58 0.94 0.67 0.77 1.13
128 5.80 1.78 5.27 5.41 3.02 2.13 1.30 - 1.15 0.99 1.39 1.98 2.26 1.21 2.93 1.20 1.36 3.03
167 2.02 0.64 1.54 2.30 0.90 0.75 0.63 - 0.30 0.34 0.43 0.46 0.72 0.46 0.89 0.72 0.39 0.76
156 2.66 1.32 3.75 4.04 1.75 1.17 0.99 - 0.63 0.54 0.23 0.85 1.26 0.74 1.62 0.81 0.65 1.19
157 0.91 0.19 1.04 0.84 0.56 0.31 0.26 - 0.13 0.15 1.20 0.25 0.25 0.21 0.57 0.09 0.13 0.23

7Cl 178 0.67 0.26 0.81 0.48 0.65 0.25 0.06 - 0.20 0.06 0.34 0.12 0.09 0.16 0.16 0.49
187 10.4 2.68 11.1 8.63 5.29 4.90 1.89 - 2.60 2.14 5.79 2.40 3.54 2.33 2.88 2.26 2.58 5.67
183 3.66 1.37 5.23 3.44 3.05 1.67 0.81 - 0.77 0.77 1.72 1.33 1.43 1.00 1.47 1.08 0.90 1.61
177 0.47 0.69 0.30 0.62 - 0.21 0.37 0.54 0.19 0.29 0.34 0.50 0.17 0.26 0.97
172 0.31 0.46 0.16 - 0.09
180 25.5 7.56 24.9 22.7 17.4 8.46 5.62 - 4.25 4.18 9.65 7.52 6.82 5.35 7.79 7.02 4.43 7.84
170 8.08 3.28 10.6 8.92 8.04 4.52 2.24 - 1.75 1.46 3.15 3.84 3.39 2.57 3.68 2.14 1.91 3.51
189 0.02 0.10 0.05 0.06 0.05 - 0.03 0.02 0.04 0.02

8Cl 199 0.46 0.16 2.33 0.68 0.53 0.50 0.10 - 0.09 0.16 1.56 0.12 0.10 0.19 0.14 0.11 0.14 0.23
196/203 0.52 0.19 1.46 0.43 0.67 0.28 0.10 - 0.12 0.11 0.41 0.15 0.15 0.15 0.17 0.10 0.09 0.15
195 0.15 0.24 0.04 - 0.03 0.03 0.03 0.08
194 0.60 0.39 1.52 1.22 0.21 0.43 0.22 - 0.15 0.13 0.65 0.35 0.27 0.30 0.28 0.07 0.09 0.43

9Cl 206 0.37 0.07 0.87 0.24 0.27 0.10 0.08 - 0.08 0.04 0.38 0.14 0.13 0.07 0.12 0.05 0.04 0.11
10Cl 209 0.34 0.10 0.58 0.25 0.23 0.12 0.15 - 0.07 0.06 0.20 0.18 0.12 0.09 0.15 0.09 0.07 0.13
total 351 100 322 394 181 135 104 - 87 78 115 107 148 93 148 122 106 145
  Blank cells mean "not detected" (no peak was detected on chromatogram).
  Italics in gray-highlighted cells show the values < LOQ.
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FAE-
2011-
687

FAE-
2011-
688

FAE-
2012-
014

FAE-
2012-
017

FAE-
2012-
022

FAE-
2012-
024

FAE-
2012-
026

FAE-
2012-
027

FAE-
2012-
028

FAE-
2012-
031

1Br 1
2
3

2Br 10
7
11
8
12/13
15

3Br 30
32
17/25
33/28
35
37

4Br 75
49
71
47 0.74
66
77

5Br 100
119
99
116
118
85
126

6Br 155
154 0.11
153
138
166

7Br 183
181
190
188
179

8Br 202
197
203
196

9Br 208
207 0.01 0.01
206

10Br 209 0.01 0.01
total 0.85 0.02 0.02
  Blank cells mean "not detected" (no peak was detected on chromatogram).
  Italics in gray-highlighted cells show the values < LOQ.

     fulmars (ng/individual).
Table 4-11. PBDE concentrations in plastics in stomach of adult northern
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Table 4-12. PBDE concentrations in plastics in stomach of juvenile northern fulmars (ng/individual).
FAE-
2013-
001

FAE-
2013-
002

FAE-
2013-
003

FAE-
2013-
004

FAE-
2013-
005

FAE-
2013-
006

FAE-
2013-
007

FAE-
2013-
008

FAE-
2013-
009

FAE-
2013-
010

FAE-
2013-
011

FAE-
2013-
012

FAE-
2013-
013

FAE-
2013-
014

FAE-
2013-
015

FAE-
2013-
016

FAE-
2013-
017

FAE-
2013-
018

1Br 1
2
3

2Br 10
7
11
8
12/13
15 0.16

3Br 30
32
17/25 1.07
33/28 3.60
35
37

4Br 75 0.48
49 12.5
71 1.24
47 0.11 0.17 730 0.31
66 27.1
77 1.07

5Br 100 91.1
119 1.92
99 498 0.12 0.11
116
118 3.61
85 16.9
126 0.84

6Br 155 0.08 2.47
154 49.0
153 33.6
138 3.55
166

7Br 183 1.12
181
190
188
179

8Br 202
197
203
196

9Br 208 0.02 0.02 0.18 0.02 0.04 0.06
207 0.12 0.03 0.12 0.02 0.24 0.02 0.03 0.10 0.15 0.01 0.01 0.01 0.01 0.01 0.04
206 0.09 0.06 0.11 0.005 0.06

10Br 209 0.23 0.11 0.33 0.08 0.06 0.08 1.22 0.03 0.08 0.26 0.03 0.02 0.06 0.05 0.05 0.06 0.21
total 0.46 0.14 0.53 0.10 0.26 0.08 1.92 1480 0.15 0.49 0.49 0.16 0.12 0.07 0.05 0.06 0.06 0.26
  Blank cells mean "not detected" (no peak was detected on chromatogram).
  Italics in gray-highlighted cells show the values < LOQ.
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FAE-
2011-
687

FAE-
2011-
688

FAE-
2012-
014

FAE-
2012-
017

FAE-
2012-
022

FAE-
2012-
024

FAE-
2012-
026

FAE-
2012-
027

FAE-
2012-
028

FAE-
2012-
031

2Cl 8 0.004 0.01 0.005 0.002
3Cl 18 0.04

28 0.23 0.05 0.05 0.33 0.01
4Cl 52 1.16 0.11 0.23

49 0.42 0.04
44 0.08 0.02
74 0.55 0.05 0.06 0.39 0.01 0.005
66 0.33 0.01 0.07 0.32

5Cl 101 3.73 0.34 0.57 0.03
99 2.31 0.26 0.33 1.04 0.05
87 0.98 0.18
110 1.32 0.04 0.14
118 3.55 0.57 0.75 2.81 0.12 0.32 0.01
105 0.68 0.04 0.05 0.49 0.02

6Cl 151 0.63 0.11 0.16
149 3.04 0.16 0.39
146 0.93 0.31
153 10.1 1.46 2.03 7.36 0.21 0.78 0.02
138 9.76 0.41 1.38 3.00 0.04 0.16
158 0.35 0.07
128 0.12 0.03 0.04 0.24
167 0.07 0.02 0.10
156 0.14 0.20
157 0.05 0.02

7Cl 178
187 1.80 0.06 0.29
183 0.52 0.02 0.33
177 0.07 0.07
172 0.14
180 3.19 0.26 0.40 2.50 0.13 0.09
170 0.85 0.04 0.10 0.76 0.05
189

8Cl 199 0.28
196/203 0.06 0.05
195
194 0.11

9Cl 206 0.02 0.04
10Cl 209 0.01 0.02
total 47.4 3.21 6.16 22.5 0.50 1.54 0.05
  Blank cells mean "not detected" (no peak was detected on chromatogram).
  Italics in gray-highlighted cells show the values < LOQ.

Table 4-13. PCB concentrations in plastics in stomach of adult northern
      fulmars (ng/individual).
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Table 4-14. PCB concentrations in plastics in stomach of juvenile northern fulmars (ng/individual).
FAE-
2013-
001

FAE-
2013-
002

FAE-
2013-
003

FAE-
2013-
004

FAE-
2013-
005

FAE-
2013-
006

FAE-
2013-
007

FAE-
2013-
008

FAE-
2013-
009

FAE-
2013-
010

FAE-
2013-
011

FAE-
2013-
012

FAE-
2013-
013

FAE-
2013-
014

FAE-
2013-
015

FAE-
2013-
016

FAE-
2013-
017

FAE-
2013-
018

2Cl 8 0.03 0.004 0.003 0.004
3Cl 18 0.15

28 1.15 0.07 0.05 0.02 0.05 0.06 0.02 0.05 0.09 0.06 0.02
4Cl 52 0.33 0.03 0.01 0.02 0.06 0.35

49 0.17 0.09
44 0.02 0.06
74 0.20 0.02 0.01 0.01
66 0.31 0.01 0.01 0.01

5Cl 101 0.03 0.14 0.02 0.12 0.08 0.06 0.02 0.05 1.73 0.03 0.06
99 0.03 0.27 0.06 0.12 0.17 0.01 0.03 0.06 0.17 0.03 0.03
87 0.06 0.17
110 0.15 0.01 0.02 0.05 0.06 0.04 0.94
118 0.04 0.49 0.18 0.16 0.23 0.20 0.04 0.08 0.28 0.27 0.02 0.08 0.14 0.13
105 0.02 0.03 0.02 0.02 0.02

6Cl 151 0.09
149 0.05 0.03 0.13 0.05 1.59 0.04
146 0.33
153 0.14 0.23 0.03 0.06 1.28 0.53 0.64 0.67 0.61 0.21 0.46 0.24 0.62 2.78 0.03 0.13 0.52 0.71
138 0.12 0.73 0.32 0.23 0.38 0.38 0.07 0.25 0.17 0.38 2.74 0.07 0.23 0.34
158 0.13
128 0.14 0.06
167
156 0.02
157

7Cl 178
187 0.02 0.03 0.11 0.03
183 0.01 0.04 0.02 0.02
177 0.09
172
180 0.03 0.42 0.17 0.10 0.13 0.10 0.11 0.05 0.11 0.39 0.03 0.03 0.12
170 0.03 0.06 0.04 0.06 0.26
189 0.02

8Cl 199
196/203
195
194

9Cl 206
10Cl 209
total 0.18 0.46 0.03 0.06 6.17 1.41 1.53 1.81 1.59 0.39 1.14 0.49 1.71 12.5 0.09 0.31 1.13 1.47
  Blank cells mean "not detected" (no peak was detected on chromatogram).
  Italics in gray-highlighted cells show the values < LOQ.
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Table 4-15. Number (pieces) and mass (g) of 

plastic found in white-chinned petrels. 

ID Total number Total mass (g) 

#3477 1 2.02 

#3478 4 0.08 

#3479 1 0.06 

#3480 2 0.04 

#3481 3 0.10 

#3482  –  – 

#3483 10 0.27 

#3484 1 0.01 

#3488 1 0.01 

#3489 5 0.12 

#3490 2 0.07 

#3491 1 0.12 

#3492 5 0.10 

#3495 11 0.06 

#3499 7 0.16 

#3500 1 0.02 

#3501 2 0.03 

#3504 6 0.09 

#3505 9 0.11 

#3516 2 0.04 

#3519 4 0.10 

#3727 12 0.11 

#3731 14 1.51 

Average 4.5 0.2 
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Table 4-16. PBDE concentrations in abdominal adipose of white-chinned petrels and
shy albatrosses (ng/g-lipid weight).

#3477 #3479 #3480 #3481 #3482 #3484 #3488 #3478 #3483 #3489 #3490 #3491 #3492 #3495 #3499 #3500

1Br 1
2
3

2Br 10
7
11
8
12/13
15

3Br 30
32
17/25
33/28 0.05
35
37 0.14 0.18 0.04 0.04 0.02 0.45 0.08 0.04 0.47

4Br 75
49 0.17 0.28 0.96 0.72 0.03 0.03 0.36 0.20 0.13 0.07 0.06 0.27 0.25 0.18 0.23
71
47 0.57 3.20 0.20 4.18 2.77 0.42 0.42 1.03 2.07 0.59 0.26 0.58 2.95 0.75 0.74 2.56
66
77

5Br 100 0.46 1.48 0.11 2.61 1.74 0.54 0.54 0.99 1.91 0.51 0.37 0.35 0.99 0.81 0.48 2.86
119 0.26 0.07 0.21 0.88 0.93 0.21 0.21 0.34 2.33 0.43 0.13 0.21 0.13 1.49 0.71 1.02
99 0.63 0.83 0.47 1.56 0.83 0.21 0.21 0.62 0.99 0.30 0.28 0.24 0.38 0.83 0.38 1.38
116
118
85
126

6Br 155 0.34 0.33 0.03 1.09 0.58 0.35 0.35 0.52 0.91 0.17 0.17 0.43 0.28 0.59 0.30 2.73
154 1.50 1.38 0.51 4.31 2.92 1.61 1.61 2.32 4.36 0.94 0.94 2.24 1.09 2.46 1.47 10.6
153 1.04 0.54 1.19 2.63 2.14 0.82 0.82 0.58 6.72 1.02 1.55 1.17 0.65 1.68 4.33 1.47
138
166

7Br 183 0.34 0.04 0.07 0.07 0.04 0.34 0.01 0.04 0.11 0.19 0.06
181 0.02
190
188
179

8Br 202
197
203 0.86 0.01 0.18
196 0.87 0.27

9Br 208 0.17 0.02 0.01 0.40
207 0.19 0.05 0.02 0.71 0.01 0.03 0.03 0.02 0.01 0.003 0.02
206 0.03 0.01 0.02 0.02

10Br 209 0.03 0.37 0.35 0.59 0.03 0.08 0.03 0.02 0.04 0.01 0.02
total 7.44 8.13 2.71 18.8 13.3 6.47 4.34 6.83 20.4 4.23 3.84 5.30 6.84 9.00 8.86 23.4
  Blank cells mean "not detected" (no peak was detected on chromatogram).
  Italics in gray-highlighted cells show the values < LOQ.

 white-chinned petrel
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(continued)

#3501 #3504 #3505 #3516 #3519 #3731 #3727 #3485 #3486 #3487 #3507 #3508

1Br 1
2
3

2Br 10
7
11
8
12/13
15

3Br 30
32 0.01
17/25
33/28 0.01
35
37 0.004 0.03 0.13 0.08 0.09 0.03 0.06 0.02 0.02

4Br 75
49 0.21 0.29 0.33 0.06 0.25 0.16 0.36 0.06 0.09 0.02 0.02 0.04
71
47 0.97 1.54 1.72 0.93 1.12 0.61 1.73 1.13 0.99 0.41 0.89 0.87
66 0.01
77

5Br 100 0.48 0.93 1.17 0.57 0.49 0.20 0.72 0.34 0.39 0.08 0.31 0.21
119 0.05 0.68 1.18 0.31 0.23 0.03 0.04 0.21 0.09 0.04 0.15 0.10
99 0.36 0.73 1.15 0.56 0.14 0.16 0.17 0.16 0.17 0.07 0.67 0.03
116
118
85
126

6Br 155 0.09 0.29 0.84 0.10 0.18 0.08 0.22 0.09 0.18 0.02 0.06
154 0.51 1.38 4.91 0.78 0.66 0.24 0.66 0.21 0.80 0.39 0.32 0.25
153 0.17 1.75 4.93 1.94 0.35 0.25 0.21 5.15 1.49 1.05 2.93 0.69
138
166

7Br 183 0.04 0.10 0.02 0.33 0.03 0.01
181
190
188
179

8Br 202
197
203 0.02
196 0.02

9Br 208 0.01 0.08
207 0.002 0.04 0.002 0.001 0.004 0.001 0.004 0.04 0.11 0.005 0.003
206 0.01 0.03

10Br 209 0.04 0.004 0.001 0.01 0.12 0.16 0.002
total 2.86 7.65 16.4 5.40 3.50 1.84 4.10 7.72 4.48 2.49 5.36 2.29

white-chinned petrel shy albatross
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Table 4-17. PBDE concentrations in plastics in the stomach of white-chinned petrels and
shy albatrosses (ng/individual).

#3477 #3479 #3480 #3481 #3482 #3484 #3488 #3478 #3483 #3489 #3490 #3491 #3492 #3495 #3499 #3500

1Br 1
2
3

2Br 10
7
11
8
12/13
15

3Br 30
32
17/25
33/28
35
37

4Br 75
49
71
47 0.15 0.06
66
77

5Br 100
119
99 0.03
116
118
85
126

6Br 155
154
153
138
166

7Br 183
181
190
188
179

8Br 202
197
203
196

9Br 208
207
206

10Br 209 0.05 0.04
total 0.15 0.11 0.06
  Blank cells mean "not detected" (no peak was detected on chromatogram).
  Italics in gray-highlighted cells show the values < LOQ.

 white-chinned petrel
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(continued)

#3501 #3504 #3505 #3516 #3519 #3731 #3727 #3485 #3486 #3487 #3507 #3508

1Br 1
2
3

2Br 10
7
11
8
12/13
15

3Br 30
32
17/25
33/28
35
37

4Br 75
49
71
47 0.02 0.14
66
77

5Br 100
119
99
116 0.08
118
85
126

6Br 155
154 0.02
153 0.08
138
166

7Br 183
181
190
188
179

8Br 202
197
203
196

9Br 208 0.07 0.04 0.03
207 0.15 0.10 0.21
206 0.08

10Br 209 0.03 0.59 0.18 0.13 0.06
total 0.03 1.00 0.40 0.62 0.06

white-chinned petrel shy albatross
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Chapter 5.  
General discussion 
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5.1. Behavior of plastic derived PBDEs in the tissues and toxicity on seabirds 
 

5.1.1. Distribution of PBDEs in liver and adipose of seabirds  

The ratios of lipid-normalized concentration of PBDEs in liver to those in adipose tissue (L/A 

ratio) of major congeners were calculated for each individual of short-tailed shearwaters and adult 

northern fulmars (Figs 5-1 and 5-2). L/A ratio values of BDE47, 99, 100, 153, and 154 in most of the 

birds are between 0.1 and 1. On the other hand, one individual of short-tailed shearwater (OS10-008) 

and one northern fulmar (FAE2012-027) show remarkably deviated values of L/A ratio of BDE209 

from the others (L/A ratio of 1000 and 0.02, respectively) (Figs 5-1 and 5-2).   

Lower-brominated congeners, i.e., BDE47, 99, 100, 153, and 154 in seabirds are derived from 

their prey and accumulated by daily exposure. L/A ratio of PCBs, which were also accumulated from 

daily food intake, was in the same value range as the lower-brominated congeners in northern fulmar 

(Fig. 5-3). Moreover, in chickens from an electronic waste recycling area, where the chickens are 

always exposed to high concentration of PBDEs including BDE209, L/A ratio within 0.1 to 1 of 

BDE47, 99, 100, 153, 154 and 209 were observed (Fig. 5-4) [87]. These data indicates that L/A ratio 

of around 0.1 to 1 may be related to the equilibrium state of the chemicals in birds’ body under daily 

exposure. On the other hand, two individuals with greatly deviated L/A values were indicated to be in 

non-equilibrium state. Deviated L/A values can be caused by the difference of accumulation and 

depletion rate between liver and adipose tissue. Both of accumulation and depletion rate of BDE209 

are far more rapid in liver than in adipose tissue [88-90]. BDE209 absorbed in intestine is readily 

transferred to liver and then blood-rich tissues, but slowly distributed to the other tissues such as 

adipose tissue [88,89]. Half-life of BDE209 in liver is much shorter than that in the other tissues [90], 

and adipose seemed to be the last tissue to redistribute stored chemicals [91]. Therefore, high L/A 

ratio value observed in OS10-008 may indicate recent initiation of exposure to high concentration of 

BDE209, and low L/A ratio value observed in FAE2012-027 may indicate recent termination of 

exposure. In fact, OS10-008 ingested plastic with additive BDE209 (deca-BDE), and FAE2012-027 

did not ingested plastics with BDE209. The greatly deviated L/A ratio of BDE209 from equilibrium 

state in the birds can be formed by exposure to BDE209, which are usually not exposed to them, for a 

limited certain period of time with high concentration. This way of exposure is not likely to occur in 

nature, and greatly deviated L/A ratio of BDE209 may be specific to exposure from ingested plastic 

with additive-derived PBDEs.  

The author made a calculation on the elapsed time after excretion of plastic with BDE209 in the 

bird with the lowest L/A ratio (FAE2012-027). In one compartment model [92], elimination of 

chemicals in tissue are represented as follows:  
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!"# = !"!! − !"          (1) 
 

! = !"2
!!/!

           (2) 

where C is concentration at time t, C0 is initial concentration at t =0, K is the elimination rate constant, 

and T1/2 is half-life of chemical. According to equation (1) and equation (2), 

 

! = !" !!! × !!/!!"2           (3) 

Therefore,  

!!"#$%&' = !" !!,!"#$%&'!!"#$%&'
× !!/!,!"#$%&'!"2      (4) 

 

!!"#$% = !" !!,!"#$%!!"#$%
× !!/!,!"#$%!"2        (5) 

 

There were two reports on half-lives of BDE209 in birds; 13 days and 14 days of half-lives in 

plasma were observed in American kestrels (Falco sparverius) and European starlings (Sturnus 

vulgaris), respectively [93,94]. Half-life of BDE209 in liver is few days longer than that in plasma 

[90], therefore, 20 days of half-life in liver of birds was roughly estimated. Mean of L/A value (0.598), 

observed in northern fulmar except BDE209 of FAE2012-027, was used for calculation as L/A value 

in equilibrium state.  

Half-life of BDE209 in adipose seemed to be few months or longer in mammals, in which the 

half-life of BDE209 in blood was between 8.5 and 13 days [91]. In FAE2012-027, assuming that 

BDE209 in adipose hasn’t decreased after the end of BDE209 exposure, as a maximum estimation, 

BDE209 concentration in liver at the end of exposure period was calculated as 98.7 ng/g-lipid weight 

(165 ng/g-lipid weight in adipose (Table 4-3) × 0.598 (L/A ratio in equilibrium state)). When BDE209 

concentration in liver of FAE2012-027 have been decreased from 98.7 ng/g-lipid weight to 4.91 

ng/g-lipid weight (present concentration, Table 4-4), 87 days of elapsed time after the end of BDE209 

exposure was estimated (Cliver = 4.9, C0, liver = 98.7, T1/2, liver = 20 days, were assigned to equation (5)). 

Assuming that the half-life of BDE209 in adipose is twice that in liver (20days), 40 days of 

half-life was obtained as a minimum estimation. In FAE2012-027, when tadipose = tliver, T1/2,adipose = 40 

days, T1/2,liver = 20 days, C0, liver = C0, adipose × 0.598 (L/A ratio in equilibrium state), Cadipose = 165 

ng/g-lipid weight (Table 4-3), Cliver = 4.91 ng/g-lipid weight (Table 4-4), combining Equations (4) and 
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(5) gives rise to 173 days of the elapsed time after the end of BDE209 exposure. Therefore, the 

periods after quitting BDE209 exposure was estimated to be 87 –173 days in FAE2012-027. 

BDE209 was also accumulated in the two other fulmars, FAE2012-015 and FAE2012-019. The 

elapsed time after the end of BDE209 exposure of these birds was estimated by the same way of the 

calculation above. When BDE209 in adipose hasn’t decreased after the end of BDE209 exposure as a 

maximum estimation, the elapsed time after the end of BDE209 exposure in FAE2012-015 and 

FAE2012-019 were calculated as 7 days (Cliver = 71 ng/g-lipid weight (Table 4-4), C0, liver = 150 

ng/g-lipid weight in adipose (Table 4-3) × 0.598 (L/A ratio in equilibrium state), T1/2,liver = 20 days), 

and 11 days (Cliver = 130 ng/g-lipid weight (Table 4-4), C0, liver = 316 ng/g-lipid weight in adipose 

(Table 4-3) × 0.598 (L/A ratio in equilibrium state), T1/2,liver = 20 days), respectively. 

Assuming that the half-life of BDE209 in adipose to be 40 days as a minimum estimation, when 

tadipose = tliver, the elapsed time after the end of BDE209 exposure in FAE2012-015 and FAE2012-019 

were calculated by combining Equations (4) and (5) as 13 days (T1/2,adipose = 40 days, T1/2,liver = 20 days, 

C0, liver = C0, adipose × 0.598 (L/A ratio in equilibrium state), Cadipose = 150 ng/g-lipid weight in adipose 

(Table 4-3), Cliver = 71 ng/g-lipid weight (Table 4-4)) and 22 days (T1/2,adipose = 40 days, T1/2,liver = 20 

days, C0, liver = C0, adipose × 0.598 (L/A ratio in equilibrium state), Cadipose = 316 ng/g-lipid weight in 

adipose (Table 4-3), Cliver = 130 ng/g-lipid weight (Table 4-4)), respectively. Therefore, the periods 

after quitting BDE209 exposure was estimated to be 7 –13 days in FAE2012-015, and 11 –22 days in 

FAE2012-019.  

As a result, it is indicated that FAE2012-027 excreted plastic with BDE209 approximately 3 –6 

months before the death, and FAE2012-015 and FAE2012-019 excreted plastic with BDE209 within 

several weeks. The proportion of BDE209 concentration in liver to adipose can be useful for 

estimation of the time when they excrete plastic with additives. The information on the period in 

which BDE209 remains in the tissue may lead to reveal the frequency of exposure to plastic-derived 

BDE209 by comparing it with detection frequency of BDE209 in seabirds. Although the author made 

an estimation using data from previous studies [93,94], half-lives of PBDEs may differ among species. 

Further study on the difference of metabolic activity or systems, which is also suggested in the next 

section (5.1.2.), is needed for more precise estimation.  

Estimation of the period elapsed after initiation of BDE209 exposure in OS10-008 (with the 

highest L/A ratio of BDE209) or the period after reaching equilibrium between tissues in the other 

birds (with L/A value in equilibrium state) were not able to calculated, because there have been no 

reports on the accumulation rate of BDE209 in tissues of avian species and difficult to estimate.  

 

5.1.2. Debromination of BDE209 in seabird  

In the tissues of five short-tailed shearwaters (OS10-008, WK10-019, WK10-023, WK05-018, 
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and WK05-022) which contained BDE209, all three nona-brominated congeners together with 

BDE209 were detected. BDE207 was dominant over BDE206 and BDE208 in the tissues of each bird 

(Fig. 5-5f–m), but no such pattern was evident in the ingested plastics (Figs 5-5a–e and 5-6). The 

difference in isomeric compositions of nona-BDEs between the tissue and the ingested plastics can be 

explained by biological debromination of BDE209 at the meta-position to selectively generate 

BDE207.  

In the tissues of three northern fulmars (FAE-2012-015, FAE-2012-019 and FAE-2012-027) and 

one white-chinned petrel (#3477), all of nona- to deca- brominated congeners were detected. Because 

all of them did not retained plastics with additive PBDEs, congener profiles of exposed PBDEs were 

unidentified. However, BDE207 was dominant over BDE206 and BDE208 in the tissues of each bird 

(Fig. 5-7), of which profile corresponded to that in short-tailed shearwater. A similar predominance of 

BDE207 in debromination of BDE209 among nona-isomers was found in other birds [93-97]. 

Debromination of BDE209 to BDE207 is generally observed in biological debromination and 

suggested to be catalyzed by deiodinases [98-100]. Deiodinases are membrane-bound enzymes in 

vertebrates, and they remove iodine atom from the meta-positions of thyroid hormones [101]. As other 

debromination processes such as photodegradation do not cause a predominance of BDE207 [102,103], 

this indicates biological debromination of BDE209 in the birds after absorption. 

To compare the results of debromination, the proportion of BDE207 to BDE209 was calculated 

and shown in Figs 5-5 and 5-7. Among short-tailed shearwaters, WK10-019 showed a unique 

predominance of BDE207 over BDE209 in the liver and adipose (Fig. 5-5g, j). This composition may 

be related to the fact that the plastics in this bird did not contain higher-brominated congeners. Birds 

ingesting plastic with deca-BDE are exposed to PBDEs dominated by BDE209, and the accumulation 

of PBDEs and the debromination of BDE209 occur simultaneously in the tissues. This results in a 

higher concentration of BDE209 in the tissues. In contrast, WK10-019 excreted the plastic after the 

PBDEs accumulated in its tissues, and only debromination of BDE209 to BDE207 took place, 

resulting in the higher proportion of BDE207 than BDE209. In addition, among northern fulmars, the 

proportion of BDE207 / BDE209 in FAE-2012-027 (0.28) were higher than that of FAE-2012-015 and 

FAE-2012-019 (0.01 and 0.01, respectively). FAE-2012-027 has the lowest L/A ratio and it is 

expected that the congeners profile in liver of FAE-2012-027 was strongly affected by debromination 

and re-distribution from the other tissue.  

In most of the birds, BDE207 / BDE209 ratios were higher in adipose tissue than in liver. Similar 

distribution was observed in rainbow trauts (Oncorhynchus mykiss) after exposure to BDE209, and the 

author expected that debromination products generated in liver were not accumulated in liver but 

transported to the other tissues through blood [89]. In addition, preferential accumulation of less 

brominated compounds is possible, which is due to large molecular sizes and/or high plasma protein 
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binding affinities of BDE209 [89]. Slow distribution of BDE209 from blood to lipid-rich tissues was 

also reported in mouse [88]. In the birds in this study, likely explanation of differences of BDE207 / 

BDE209 ratios between liver and adipose is that debromination products are released into blood from 

liver, and/or preferential accumulation of lower-brominated congeners into adipose. 

In comparison between the species, northern fulmar showed lower proportions of octa- and nona- 

brominated congeners to BDE209 in tissues. For example, BDE207 / BDE209 ratios in fulmars were 

ranged from 0.04 to 0.05 in adipose and from 0.01 to 0.28 in liver, and those in the other birds were 

ranged from 0.27 to 1.5 in adipose and from 0.37 to 1.0 in liver (Figs 5-5 and 5-7). The difference of 

proportion between avian species may indicate the difference of metabolisms and/or excretion systems 

of PBDE congeners among them. For example, in northern fulmar, slower debromination of BDE209 

than the other species and/or faster excretion of octa- to nona- brominated congeners than 

debromination rate of BDE209 are expected.  

Although some differences are indicated, there have been no reports on the difference of 

metabolism or excretion systems of PBDEs among avian species. More studies are necessary on them 

for each bird species, for more precise discussion on behavior of PBDEs in birds’ tissue. Moreover, 

studies on metabolisms are important for assessment of toxic risks of plastic-derived PBDEs, because 

the metabolites of BDE209, such as debrominated congeners or further hydroxylated PBDEs generally 

have higher toxic activity than the native compound [104].  

 

5.1.3. Toxicity of PBDEs in seabirds  

PBDEs are generally known to cause disruption of thyroid hormone homeostasis and contribute 

to neurotoxicity in various organisms [105]. There are a limited number of studies examining PBDE 

toxicity in birds. Exposure to lower-brominated PBDEs can induce changes in thyroid, vitamin A, 

glutathione homeostasis, oxidative stress, growth rate, and pipping and hatching success in American 

kestrel [106-109]. European starlings exposed to BDE-209 via silastic implants accumulated it at the 

concentration of 250 ng /g-lipid weight in liver, and body mass was significantly lower in exposure 

group compared to control group [94]. In American kestrels, higher hepatic EROD activity in the 

exposed birds compared to control birds was observed after oral dose of 116,000 ng BDE209 per day, 

at the accumulated concentration of 34071 ng /g-lipid weight in liver and 8943 ng /g-lipid weight in 

adipose tissue. 

In the present study, the highest concentrations of BDE209 were detected in FAE2012-019 at 130 

ng /g-lipid weight in liver and 316 ng /g-lipid weight in adipose (Tables 4-3 and 4-4). The highest 

burden in plastics per a bird were detected in OS10-008 at 5080 ng /individual (Table 2-5). The rate of 

leaching of BDE209 by stomach oil in the leaching experiment was 15% during 15days. Therefore, 

the exposure amount per a day would be 50.8 (ng / kg-body weight / day) of BDE209 (15% of 5080 
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ng per 15 days per 0.5 kg of body weight [52]). The observed concentration in tissues or estimated 

exposure in the present study is lower than the levels in which toxic effect on avian species were 

observed [93,94]. However, higher exposure of PBDEs to seabirds would be occurred when they 

ingest more plastics with additive PBDEs, or they ingest plastics with higher concentration of PBDEs. 

For example, 10% of PBDEs, which is general concentration for application [18], in 0.01g of plastic 

(mean weight of a piece of ingested plastic) result in 1,000,000 ng of PBDEs burden in a bird. 

After absorption, PBDEs are transferred and distributed in the tissues of seabirds. Even after 

excretion of plastics with PBDEs, gradual redistribution from tissues possibly cause for continuous 

toxic effect on seabirds. Exposure concentration from plastics, transfer and accumulation rate, and 

metabolic activity decide the behavior of PBDEs in seabirds. Understanding on them makes it possible 

to assess the toxic effect of plastic derived PBDEs. Studies on the concentration and frequency of 

additive PBDEs in marine plastics, and studies on their behavior in seabirds’ tissue are needed. 

 

5.2.  Conclusion 
In chapter 2 and 4, the author detected sporadic accumulation of higher-brominated congeners in 

tissue of seabird from three oceans, i.e., North Pacific Ocean, North Atlantic Ocean and South African 

waters, which is suggested to be derived from additives retained in ingested plastics. The obtained data 

suggest that chemical exposure to seabirds by plastic ingestion occurs all around the ocean. Moreover, 

some of the short-tailed shearwaters and northern fulmars accumulated much higher concentration of 

plastic-derived PBDEs than that derived from bio-accumulation. Plastic ingestion should be 

recognized as another important and major chemical source to seabirds.   

In chapter 3, leaching experiments were conducted to examine the leaching of PBDEs from 

plastics to simulated digestive fluid. Trace amounts were leached into distilled water, seawater, and 

acidic pepsin solution. In contrast, over 20 times as much materials were leached into stomach oil, and 

over 50 times as much into fish oil (a major component of stomach oil). It is concluded that stomach 

oil, which is present in the digestive tract of birds in the order Procellariiformes, acts as an organic 

solvent, facilitating the leaching of hydrophobic chemicals from ingested plastics. Up to now, it has 

been thought that hydrophobic chemicals in plastics do not leach out to digestive fluid of marine 

organisms. The obtained data in this study indicate that in case of seabirds, especially in the order 

Procellariiformes, the leaching of chemicals from plastics could be greatly facilitated in their stomach 

by oils derived from prey.  

Finally, it was revealed that the comparison of PBDEs concentration in liver to that in adipose 

tissue could give a new insight into the timing of exposure to plastic-derived PBDEs. Debromination 

of BDE209 occurs in seabirds’ organs, and generates lower-brominated congeners. The information 

about exposure periods and metabolisms of chemicals is essential to assess the effects of 
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plastic-derived chemicals on seabirds. The difference of metabolism or excretion rate among seabird 

species were suggested and need for studies on them were underlined.  

As a conclusion, the present study revealed the way of exposure to plastic-derived additive 

chemicals as follows: plastics are transported in the marine environment with retention of additives, 

and after their ingestion by seabirds, additive chemicals in plastics are efficiently leached out to 

digestive fluid, and result in their accumulation in the tissue of seabirds. 

 

5.3.  Future direction 
In this study, sporadic accumulation of higher-brominated PBDE congeners was observed in 

tissues of three seabird species in the order Procellariiformes, ascribing to transfer from ingested 

plastics. Leaching experiments suggested that stomach oil facilitates this transfer. The sporadic 

occurrence of BDE209 was reported in other studies, namely northern fulmar (Fulmarus 

glacialis)[57,79,110,111], but also in other species, i.e., glaucous gull (Larus hyperboreus) [112], and 

African penguin (Spheniscus demersus)[113]. This occurrence might also be due to plastic ingestion 

[12,75,114]. Plastic-mediated bioaccumulation of PBDEs in these species should be investigated. A 

wide range of seabird species, some of which have stomach oil, ingest plastics. Other organic 

digestive fluids such as bile may also facilitate leaching and bio-accumulation of additive-derived 

PBDEs from ingested plastics.  

Marine plastics contain many chemicals. Comprehensive analysis of chemicals in plastics 

ingested by fulmars of Faroe islands revealed that they retain various additives and impurities other 

than PBDEs, such as Hexabromocyclododecane (HBCD) (30ppm), benzotriazole UV absorbers 

(1200ppm), benzophenone UV absorbers (570ppm), and styrene oligomers (260ppm) (Tanaka et al., 

unpublished data). Some of these chemicals are known to be endocrine disruptors [115-119]. These 

additives and impurities in plastics can be exposed to seabirds in the same way as PBDEs. This 

multiple contamination by plastic ingestion can result in toxic effects which have not been expected 

with the exposure through bio-concentration. Further investigations of plastic-mediated multiple 

exposures of additive chemicals are needed and their toxicological effects on seabirds should be studied 

in the future. 



 91 

 
 
Figure 5-1. The ratio of PBDE concentration in liver to that in abdominal adipose (L/A ratio) 

of short-tailed shearwaters (n=18). 

 

 
 

 

 
 
Figure 5-2. The ratio of PBDE concentration in liver to that in abdominal adipose (L/A ratio) 

of adult northern fulmars excluding FAE2011-687 (n=19).  
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Figure 5-3. The ratio of PCB concentration in liver to that in abdominal adipose of adult 

northern fulmars excluding FAE2011-687 (n=19). 
 
 

 

 
Figure 5-4. The ratio of PBDE concentration in liver to that in abdominal adipose of chicken 

from an electronic waste (e-waste) recycling area in southeast China (Qin et al., 2011[87]). 
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Figure 5-5. Congener profiles of octa- to deca-brominated PBDEs in (a−e) plastic in the 
stomach, (f−h) the liver, and (i−m) abdominal adipose of short-tailed shearwaters; n.d. 
indicates not detected. Asterisks indicate <LOQ. 

Figure 5-6. Abundance of octa- and nona-brominated congeners relative to BDE209 in 
ingested plastics which contained BDE209. 
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Figure 5-7. Congener profiles of octa- to deca-brominated PBDEs in (a−c) liver, (d−f) 

abdominal adipose of northern fulmars, and (g) abdominal adipose of white-chinned petrel.  
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