
A semi-incremental recognition method for online
handwritten text

 by

Cuong Tuan NGUYEN

A thesis submitted in conformity with the requirements
for the degree of

Doctor of Philosophy

in

Electronic and Information Engineering

Graduate School of Engineering

Tokyo University of Agriculture and Technology

Under supervision of Prof. Dr. Masaki NAKAGAWA

2016

ii

A semi-incremental recognition method for online handwritten

text

Cuong Tuan NGUYEN

Department of Computer and Information Sciences
Tokyo University of Agriculture and Technology

2016

Abstract

This thesis presents approaches for reducing waiting time and improve recognition accuracy in

online handwritten text recognition. For explicit segmentation methods, the whole process of

generating segmentation hypothesis, character/word recognition and searching for the best path

of the candidate lattice incurs substantial waiting time as the length of the handwritten text

increases. We employ local processing strategy which focuses on a recent sequence of strokes

defined as “scope” to build and update a segmentation and recognition candidate lattice then

advance the best-path search incrementally. Therefore, the method produces recognition results

without noticeable waiting time while maintaining recognition rate. To reduce waiting time of

segmentation free methods, we reduce the states in the decoding of handwritten text by

modeling the decoding states as a state machine then applying reduction on it. Moreover,

applying N-best states decoding method significantly reduces the waiting time and applying

merging of recognition paths improves recognition accuracy of the system.

The methods are successfully applied in online handwritten recognition of Japanese and

English text with explicit segmentation methods and the recognition of English text with

segmentation free approach.

iii

Acknowledgments

First of all, I would like to thank my supervisor: Prof. Masaki Nakagawa for his guidance

and support. Next, I also would like to thank Dr. Bilan Zhu for providing me the recognition

engine as well as technical support. Thanks my senior Dr. Truyen Van Phan for his guidance,

my friends Anh Duc Le, Khanh Minh Phan, Hung Tuan Nguyen and all other members of

Nakagawa laboratory for their assistances and help making a special place to work as well as

enjoy the precious time here with me. Finally, I would like to thank my family for their constant

encouragement and support.

iv

Table of Contents

Acknowledgments... iii
Table of Contents .. iv
List of Tables .. vi
List of Figures .. vii
Chapter 1 Introduction .. 1

1.1 Contributions.. 2
1.2 Overview of Thesis .. 3

Chapter 2 Online handwritten text recognition .. 4
2.1 Overview of on-line text recognition system ... 4
2.2 Explicit segmentation approach ... 4

2.2.1 Soft decision... 4
2.2.2 Combination of online and offline recognizer ... 5

2.3 Segmentation free approach ... 6
2.3.1 Sequence to sequence learning .. 6
2.3.2 Decoding .. 7

Chapter 3 Semi-incremental recognition method for Japanese text 8
3.1 Introduction .. 8
3.2 Batch recognition method .. 11

3.2.1 Segmentation.. 12
3.2.2 Candidate lattice construction .. 14
3.2.3 Best-path search and recognition ... 15

3.3 Semi-incremental recognition method ... 18
3.3.1 Resuming strategy .. 18
3.3.2 Processing flow .. 19
3.3.3 Resumption of segmentation.. 20
3.3.4 Fixation of SP off-strokes from UP off-strokes ... 20
3.3.5 Determination of scope .. 21
3.3.6 Bounded waiting time .. 21
3.3.7 An example of the processes .. 21
3.3.8 Update of src-lattice ... 23
3.3.9 Skipping partial patterns .. 24
3.3.10 Handling of delayed strokes... 25
3.3.11 Resuming best-path search and recognition .. 25

3.4 Experiments ... 26
3.4.1 Measures for evaluation ... 26
3.4.2 Setup for experiments .. 27
3.4.3 Character recognition rate .. 28
3.4.4 Waiting time... 29
3.4.5 CPU time .. 31
3.4.6 Effect of resuming segmentation and UP fixation 31

3.5 Conclusion ... 34
Chapter 4 Semi-incremental online handwriting recognition method for

English text ... 35
4.1 Introduction .. 35
4.2 Recognition system overview .. 36

4.2.1 Segmentation.. 37
4.2.2 English word recognition ... 39

4.3 Semi-incremental recognition for English ... 39

v

4.3.1 Determination of scope .. 39
4.3.2 Time synchronous creation and update of src-lattice 40
4.3.3 Time synchronous best-path search and recognition 41
4.3.4 UP fixation and PP skip ... 41

4.4 Experiments ... 42
4.4.1 Setup for experiments .. 42
4.4.2 Word recognition rate .. 43
4.4.3 Waiting time... 44
4.4.4 CPU time .. 46

4.5 Conclusion ... 47
Chapter 5 Improving Segmentation of Online English Handwritten Text Using

Recurrent Neural Networks... 48
5.1 Introduction .. 48
5.2 Segmentation of online handwritten text ... 49

5.2.1 Features for segmentation .. 49
5.2.2 Segmentation by a SVM classifier ... 49
5.2.3 Segmentation by a BLSTM classifier .. 50

5.3 Experiments ... 52
5.3.1 Experiment setup ... 52
5.3.2 Over-segmentation ... 52
5.3.3 Recognition rate ... 53
5.3.4 Waiting time... 53
5.3.5 CPU time .. 54

5.4 Discussion .. 55
5.5 Conclusion ... 55

Chapter 6 Decoding of Handwritten Text Using Recurrent Neural Networks 56
6.1 Introduction .. 56
6.2 Related works... 57

6.2.1 Sequence to sequence learning with RNN ... 57
6.2.2 Constrained decoding ... 59
6.2.3 CTC token passing ... 60

6.3 Finite state machine token passing .. 63
6.3.1 Decoding word sequence with Lexicon State Machine 63
6.3.2 Reduction of states ... 64
6.3.3 Merging of same paths ... 67
6.3.4 N-best state LSM decoding .. 67

6.4 Experiments ... 68
6.5 Conclusions and Future works ... 70

Chapter 7 Conclusion and Future works .. 71
References .. 72
Author publications .. 77
Joint work publications .. 78

vi

List of Tables

Table 3.1 Terms of features ... 13

Table 3.2 Geometric features for character segmentation ... 13

Table 3.3 Processing time per stroke (ms) ... 31

Table 3.4 F-measures of over-segmentation (%) ... 32

Table 4.1 CPU time evaluation (sec) ... 47

Table 5.1 Features for English word segmentation ... 50

Table 5.2 Terms of Features representation. .. 50

Table 5.3 Over-segmentation Results .. 52

Table 6.1 Performance of LSM token passing as compared with CTC token passing 69

vii

List of Figures

Figure 3.1 Flow of batch recognition ... 11

Figure 3.2 Segmentation process ... 12

Figure 3.3 Segmentation-recognition candidate lattice ... 14

Figure 3.4 Candidate character blocks ... 15

Figure 3.5 Flow of semi-incremental recognition .. 19

Figure 3.6 An example of determining scope .. 23

Figure 3.7 Reuse of candidate character patterns .. 24

Figure 3.8 Recognition rate with respect to Nseg .. 28

Figure 3.9 Waiting time with respect to Nseg ... 29

Figure 3.10 Average waiting time by semi-incremental recognition 30

Figure 3.11 Waiting time of recognizing strokes as they increases ... 31

Figure 3.12 Detection rate of over-segmentation .. 32

Figure 3.13 Final segmentation measure. .. 33

Figure 4.1 English text recognition system .. 37

Figure 4.2 ASL feature. ... 39

Figure 4.3 Reuse of candidate word patterns. .. 40

Figure 4.4 Recognition rate with respect to Nseg . .. 43

Figure 4.5 Waiting time with respect to Nseg. .. 44

Figure 4.6 Waiting time with respect to Ns. ... 45

Figure 4.7 Waiting time of recognizing a sample text line .. 46

Figure 5.1 Over-segmentation using BLSTM. .. 51

Figure 5.2 Recognition rate of the two systems. .. 53

Figure 5.3 Average waiting time of the two systems... 54

Figure 5.4 CPU time of the two systems. .. 54

Figure 6.1 Example of calculating the probability of the word ‘feel’ in CTC. 60

Figure 6.2 Decoding a word sequence with CTC token passing ... 62

Figure 6.3 A FSM for decoding a word ‘feel’. .. 63

Figure 6.4 LSM for decoding the whole string. ... 64

Figure 6.5 An example of determinizing and minimizing LSM. ... 65

Figure 6.6 Merging of token paths ... 67

1

Chapter 1

Introduction

In recent years, due to the development of pen-based and touch-based devices such as tablets,

digital pens (like the Anoto pen) and touch-based smart phones, on-line handwritten text

recognition as an input method has been given considerable attention after a long period of research

(Liu, Jaeger, and Nakagawa 2004; Plamondon and Srihari 2000; Graves et al. 2008). Since hand-

held devices have relatively smaller CPU performance for less power consumption compared with

desktop PCs and they are interactive devices, however, handwriting recognition on these devices

must respond to user’s input with high recognition rates but without incurring much CPU time.

As the use of context in the whole input sequence (e.g. geometric context, linguistic context)

is important for online handwritten text recognition (Nakagawa, Zhu, and Onuma 2005; Graves et

al. 2008), it is straightforward to recognize on-line handwritten text after the whole text is

completed. Although, this strategy could achieve high recognition rates, waiting time of

recognizing whole text takes time as the amount of characters increases. The problem of waiting

time could be solved with the use of incremental recognition methods which recognize handwriting

while users are writing. Incremental recognition does not incur long waiting time but it may

degrade the recognition rate due to local processing of every stroke. Due to repeated processing

after receiving every stroke, it also extend the total CPU time required for recognition.

Recognizing a whole input sequence without segmenting it into small parts takes advantage

of recognition accuracy due to avoiding the errors in segmentation. The method, however, need to

find the best solution path through a large amount of temporal input from the input sequence and

the number of internal states that needs to be processed grows fast unless having a good constraint.

As the number of internal states grows, processing time and memory consumption also increases,

makes the recognition process infeasible to deal with long input sequence. Heuristic reduction of

internal states tends to be too local and leads to drop recognition accuracy for dealing with the long

input sequence which requires a more global solution.

Chapter 1: Introduction

2

1.1 Contributions

In this study, we focus on when incremental recognition processes are triggered. If a system

triggers them whenever a new stroke is given, we classify it as pure incremental recognition. So

far, all the published incremental recognition systems are classified in this group. However, we

may trigger the processes by a little larger unit, i.e., several strokes so that we can exploit a little

larger context. We classify this strategy as semi-incremental recognition. This thesis presents a

semi-incremental recognition method of on-line handwritten text, which is useful for both the busy

and the lazy recognition interfaces. Whenever the number of newly written strokes reaches the

fixed number named the window size, the new strokes are added to the previous strokes, character

patterns are segmented, candidate character patterns are recognized, a lattice representing

segmentation and recognition candidates is updated, and search is processed, while writing

continues. This process is repeated on recent strokes rather than on full text, so that text recognition

result is shown immediately after writing is finished without noticeable waiting time while keeping

a high recognition rate.

Although batch recognition achieves a high recognition rate with low total CPU time, it costs

large waiting time as the amount of characters increases. On the contrary, pure incremental

recognition incurs little waiting time but the recognition rate may drop due to local processing of

every stroke and the total CPU time is extended due to repeated processing after receiving every

stroke. Semi-incremental recognition with appropriate value of the window size may maintain high

recognition rate as batch recognition, incur little waiting time and decrease the total CPU time

compared with the pure incremental recognition.

In this work, we also present the improvement of segmentation which leads to the

improvement of recognition accuracy and speed for online handwriting recognition system using

recurrent neural networks (RNN).

For English text recognition, we also study the segmentation-free recognition method using

the state of the art Long Short term Memory (LSTM), a type of RNN. We present a Finite State

Machine based decoding method for LSTM, which does not only reduce the waiting time of

recognition but also improves the recognition accuracy of the recognition system.

Chapter 1: Introduction

3

1.2 Overview of Thesis

This thesis presents about applying semi-incremental recognition method for online

handwriting Japanese text and English text recognition, improvements for segmentation of English

text recognition, decoding speed for segmentation-free English text recognition. Chapter 2 makes

an overview about online handwriting recognition system and the recognition methods. Chapter 3

and Chapter 4 present the detail of semi-incremental recognition method and applying it to

Japanese text recognition and English text recognition. Chapter 5 and Chapter 6 present the

improvements of segmentation and recognition methods. Chapter 7 gives the conclusion and future

works.

4

Chapter 2

Online handwritten text recognition

2.1 Overview of on-line text recognition system

In online handwriting recognition problem, trajectories of pen tip movement are recorded and

analyzed to identify the linguistic information expressed (Liu, Jaeger, and Nakagawa 2004).

Online handwriting recognition deals with the spatio-temporal representation of the input, whereas

the offline case involves analysis of the spatio-luminance of an image (Plamondon and Srihari

2000).

Online handwriting text recognition deals with the problem of recognizing handwritten text

including many text lines. For this problem, there are two approaches: explicit segmentation and

implicit segmentation. In explicit segmentation method, the handwritten text is divided into text

lines, then each text line is divided into smaller units (words or characters). The separated units

are recognized and being combined to produce the text recognition result. In another hand, implicit

segmentation approach does not require further segmentation.

2.2 Explicit segmentation approach

2.2.1 Soft decision

In recognition of on-line handwritten text with the explicit segmentation approach, there are

two main tasks. First, an input sequence of strokes is segmented into smaller units as lines, words

and characters. Second, the segmented units are recognized and the best path is searched to

maximize the total score of segmentation and recognition.

Character segmentation is done based on geometric layout features. Due to the instability and

ambiguity of these features in actual handwriting, however, it is difficult to determine

segmentation without using recognition cues and linguistic context. Therefore, soft-decision is

employed for segmentation and recognition. Then, the best path search is applied to perform

segmentation and recognition. Namely, the following process is applied. Handwritten text is

Chapter 2: Online handwritten text recognition

5

segmented into text lines and each text line is over-segmented into primitive segments such that

each segment is composed of a single character or a part of a character. A segment or a sequence

of a few consecutive segments is assumed as a candidate character pattern, which is recognized by

a character recognizer with a list of candidate categories and scores. Multiple ways of segmentation

into candidate character patterns and multiple ways of recognition into character classes are

represented in a segmentation-recognition candidate lattice (src-lattice in short) (Zhu et al. 2010).

Text recognition result is produced by searching into the lattice for the path with the highest total

score of geometric context, linguistic context and character recognition scores. Explicit

segmentation approach with soft decision method is the state of the art in recognition of online

handwritten Japanese text (Zhu et al. 2010), online handwritten Chinese text (Wang, Liu, and Zhou

2012). The method is also applied for online handwritten English text recognition (C. T. Nguyen,

Zhu, and Nakagawa 2014).

2.2.2 Combination of online and offline recognizer

There are mainly two types of methods for recognizing a character or word pattern. An on-

line method treats each pattern as a temporal feature sequence of pen movements while an off-line

method processes each pattern as a two-dimensional image. An on-line method is robust against

stroke connection and deformation but sensitive to stroke order variations or stroke duplications,

while an off-line method is insensitive to the latter but weak for the former. The combination of

the on-line and off-line recognition methods improves the recognition accuracy because they

compensate for their disadvantages reciprocally (Oda et al. 2006; Zhu, Gao, and Nakagawa 2011;

Liwicki et al. 2011).

The combination has also been made in the level of features. On-line recognition methods,

which incorporate off-line features, and off-line methods, which include on-line features, also

solve the problem of using on-line or off-line features alone, as shown in previous studies ((Zhu

et al. 2013) and (Jaeger et al. 2001), respectively).

Although a combination of recognition methods or features improves the recognition rate, it

requires more computation, incurring longer waiting time when it is used for batch recognition,

especially for Japanese and Chinese with a large set of character categories.

Chapter 2: Online handwritten text recognition

6

For Japanese character recognition, Zhu et al. used the combination of an online recognition

method based on Markov Random Fields (MRF) model with an offline recognition method using

pseudo 2D bi-moment normalization (P2DBMN) and modified quadratic discriminant function

(MQDF) (Zhu, Gao, and Nakagawa 2011).

The MRF online recognizer firstly extracts the feature points along the pen-tip trace from pen-

down to pen-up of handwritten strokes. Then, it uses the feature point coordinates as unary features

and the differences in coordinates between the neighboring feature points as binary features (Zhu

and Nakagawa 2014). Each character class is modeled as a MRF model.

The MQDF recognizer extracts directional features from the normalized offline image of

handwritten strokes. The normalization method of P2DBMN make recognition system more robust

to difference handwriting styles or devices. Then, each character class is modeled using the

parameters of mean and covariance matrix calculate from the training set. Recognition score is

obtained by calculate the discriminant score with the learned parameters (Zhu, Gao, and Nakagawa

2011).

For recognizing on-line handwriting cursive word with segmentation-free approach, MRFs

are constructed by concatenating character MRFs according to a trie lexicon of words during

recognition. The system expands the search space using a character-synchronous beam search

strategy to search the segmentation and recognition paths. With restricting of the search paths from

the trie lexicon of words and preceding paths, as well as the lengths of feature points during path

search. The evaluation function employing the recognition scores of both MRF character

recognizer and P2DBMN-MQDF character recognizer yields a significant improvement in the

recognition accuracy of English handwriting word recognition as compared with using only the

recognition score of MRF recognizer (Zhu et al. 2013).

2.3 Segmentation free approach

2.3.1 Sequence to sequence learning

Segmentation free approach apply a connectionist system to handle the whole sequence of

input directly. Time delayed neural network (TDNN) (Schenkel, Guyon, and Henderson 1995),

Chapter 2: Online handwritten text recognition

7

Hidden Markov Model (HMM) (Liwicki and Bunke 2006) and recently Long Short term Memory

(LSTM) (Graves et al. 2009) are used for recognizing handwritten text. The method train the

connectionist system to learn the temporal classification at each time step directly (TDNN, LSTM)

or via the state transition (HMM). Learning process employs alignment methods to align the

temporal output for each input time step as the use of forward backward algorithm for training

HMM or Connectionist Temporal Classification (CTC) forward backward algorithm (Graves et al.

2006) for training LSTM.

2.3.2 Decoding

Decoding is a process of finding the most probable path from an input sequence. For state

machine models, e.g. HMMs, it is straight forward to use Viterbi algorithm for decoding, it retains

the best path reached to each state for each time step. Then the retained paths of the states are used

for calculating in the next time step, the process is repeated until reaching the end of the time step

(Viterbi 1967). The state machine models implicit the lexicon constraint while creating the word

model or string model from character model. For decoding in RNN and LSTM, lexicon-free and

lexicon-driven method can be applied. Lexicon-free decoding only use recognition probability to

determine the most probable path, as it can be done trivially by selecting the most probable class

label at each time step (best path decoding) or by calculating the total probability for each label

sequence (prefix search decoding). Lexicon-driven applies constraint on output vocabulary as well

as language model context for determine the best path, it can be done by a token passing algorithm.

A token passing algorithm run on CTC called CTC token passing algorithm decodes the whole

string with constraint of lexicon and linguistic context (Graves et al. 2009).

8

Chapter 3

Semi-incremental recognition method for Japanese text

This chapter presents a semi-incremental recognition method for on-line handwritten Japanese

text and its evaluation. As text becomes longer, recognition time and waiting time become large if

it is recognized after it is written (batch recognition). Thus, incremental methods have been

proposed with recognition triggered by every stroke but the recognition rates are damaged and

more CPU time is incurred. We propose semi-incremental recognition and employ a local

processing strategy by focusing on a recent sequence of strokes defined as “scope” rather than

every new stroke. For the latest scope, we build and update a segmentation and recognition

candidate lattice and advance the best-path search incrementally. We utilize the result of the best-

path search in the previous scope to exclude unnecessary segmentation candidates. This reduces

the number of candidate character recognition with the result of reduced processing time. We also

reuse the segmentation and recognition candidate lattice in the previous scope for the latest scope.

Moreover, triggering recognition processes every several strokes saves CPU time. Experiments

made on TUAT-Kondate database show the effectiveness of the proposed semi-incremental

recognition method not only in reduced processing time and waiting time, but also in recognition

accuracy.

The chapter is organized as follows: Section 3.1 is Introduction, Section 3.2 gives an overview

of the baseline batch recognition method. Section 3.3 describes the semi-incremental recognition

method. Section 3.4 presents experimental results of the semi-incremental recognition method.

Section 3.5 draws our conclusion.

3.1 Introduction

As introduced in Chapter 1, the development of pen-based and touch-based devices makes

research of on-line handwritten text recognition getting more attention recently. Along with the

motivation of increasing recognition accuracy, the requirement of recognition speed and CPU

burden in hand-held devices also induces the research for reduce waiting time and CPU time for

recognition process.

Chapter 3: Semi-incremental recognition method for Japanese text

9

For on-line handwritten text recognition, utilizing full context of the whole input sequence is

important. Nakagawa et al. (Nakagawa, Zhu, and Onuma 2005) shows the effect of integrating

linguistic context, character structure context along with recognition score to improve on-line

handwritten Japanese text recognition. Graves et al. (Graves et al. 2009) shows the state-of-the-art

on-line English handwriting recognition with the bi-directional recurrent neural networks which

integrate context from both forward and backward directions.

To implement these methods, it is straightforward to recognize on-line handwritten text after

the whole text is completed. We call this strategy as batch recognition (Zhu et al. 2010). Batch

recognition is appropriate for the user interfaces where users are writing while thinking. In this

case, users do not need recognition result when writing and they only need recognized text when

they suspend writing. We call this user interface as lazy recognition interface (Nakagawa et al.

1993) while we call on-the-fly recognition user interfaces after every character or stroke is written

as busy recognition interfaces. Here, a stroke is a sequence of finger-tip or pen-tip coordinates

from finger/pen-down to finger/pen-up.

Although the batch recognition strategy can easily use the full context to achieve high

recognition rates, waiting time to recognize the whole text input sequence at once takes time as

the amount of characters increases. To reduce waiting time, incremental recognition method as in

(Tanaka, Akiyama, and Ishigaki 2002) for Japanese text and (Wang, Liu, and Zhou 2012) for

Chinese text, triggers recognition process after every new stroke is written. Each incremental

recognition process a small portion of input stroke sequence and complete within small amount of

time. Therefore, the result is feedback to the user with small amount of waiting time. Incremental

recognition does not incur long waiting time after the user has finished writing, however, it may

degrade the recognition rate due to local processing of every stroke. In fact, the recognition rate

by incremental recognition decreased by about 0.3 point as compared with batch recognition

(Tanaka, Akiyama, and Ishigaki 2002). Incremental recognition also extend the total CPU time

due to repeated processing after receiving every stroke. Wang et al. report additional CPU time for

each incremental recognition. Not only repetitive processes of triggering recognition are incurred,

but also incomplete patterns are sought to be recognized at every stroke. Therefore, it takes a

substantial total CPU time for recognizing a long input stroke sequence.

Chapter 3: Semi-incremental recognition method for Japanese text

10

There are also two alternatives in the user interface of handwritten text recognition: busy or

on-the-fly recognition and lazy or delayed recognition (Nakagawa et al. 1993) . A busy recognition

interface shows the recognition result while a user is writing. It produces immediate feedback to

the user but the user might be bothered by confirmation or correction of recognition. A predictive

input interface (Matic, Platt, and Wang 2002), which predicts a character or word from a few

beginning strokes, may be categorized as a busy recognition interface. On the other hand, a lazy

recognition interface delays the output of the recognition result until needed. It is suitable for a

user who is writing while thinking. The user does not need a recognition result when writing and

only needs recognized text after he/she stops writing.

A lazy recognition interface can be implemented straightforwardly with the batch recognition

method. Due to the problem of waiting time, however, the incremental recognition method in the

background when a user is writing should be sought even for a lazy recognition interface when the

problem of waiting time is serious.

As stated above, it is effective to use the full context for text recognition, i.e., from forward

and backward directions. The backward context, which is the context caused by the succeeding

strokes easy to obtain in the batch recognition method but not with the incremental recognition

method, since succeeding strokes are unavailable. To use backward context, we should provide a

way in which backward context affects the recognition of previous strokes.

In this work, we aim to solve the drawbacks and exploit the advantages of the batch

recognition method and the incremental recognition method. We focus on maintaining the global

context in incremental recognition and triggering recognition for a little larger unit called “scope”.

We named this solution the semi-incremental recognition method while calling the method of

triggering recognition at every stroke a pure incremental method. So far, all current incremental

recognition systems are classified as pure. This chapter presents a semi-incremental recognition

method of on-line handwritten Japanese text, which is useful for both the busy and the lazy

recognition interfaces. Whenever the number of newly written strokes reaches the fixed number

named the window size, the new strokes are added to the previous strokes, character patterns are

segmented, candidate character patterns are recognized, a lattice representing segmentation and

recognition candidates is updated, and search is processed, while writing continues. This process

Chapter 3: Semi-incremental recognition method for Japanese text

11

is repeated on recent strokes rather than on full text, so that text recognition result is shown

immediately after writing is finished without noticeable waiting time while keeping a high

recognition rate.

Although batch recognition achieves a high recognition rate with low total CPU time, it costs

large waiting time as the amount of characters increases. On the contrary, pure incremental

recognition incurs little waiting time but the recognition rate may drop due to local processing of

every stroke and the total CPU time is extended due to repeated processing after receiving every

stroke. Semi-incremental recognition with appropriate value of the window size may maintain high

recognition rate as batch recognition, incurs little waiting time and decreases the total CPU time

compared with the pure incremental recognition.

3.2 Batch recognition method

This section describes the batch recognition method for on-line handwritten Japanese text. It

processes the whole on-line handwritten text at once after all the strokes are added, it applies

segmentation then constructs a candidate segmentation lattice, recognizes each candidate segment

of strokes to build a segmentation recognition candidate lattice and finally employs context

information to find the best recognition of handwritten text. Figure 3.1 shows the flow of the batch

recognition method.

Figure 3.1 Flow of batch recognition

Chapter 3: Semi-incremental recognition method for Japanese text

12

3.2.1 Segmentation

Using the technique presented in (Zhou, Wang, and Liu 2009), we first separate an input

sequence of strokes into text lines. Then, we segment each text line into candidate character

patterns as shown in Fig. 3.2. For over-segmentation, we apply the support vector machine (SVM)

to classify each off-stroke into three classes, segmentation point (SP), non-segmentation point

(NSP) and undecided point (UP) according to geometric features (Zhu et al. 2010). A segmentation

point SP separates two characters at the off-stroke while a non-segmentation point NSP indicates

the off-stroke is within a character. Off-strokes with low confidence are classified as UP. An off-

stroke between two text lines is treated as SP. A sub-sequence of strokes delimited by SP or UP

off-strokes is called a primitive segment. A primitive segment and consecutive primitive segments

beside UP form candidate character patterns. Concatenation of consequent primitive segments is

limited by their total lengths.

Figure 3.2 Segmentation process

Table 3.1 and Table 3.2 show terms to derive geometric features and geometric features

derived, respectively. Since the entire input sequence of strokes is available, batch recognition can

use both the contexts in forward and backward directions for segmentation. The features for

determining segmentation at the current off-stroke are not only extracted from its immediate

Chapter 3: Semi-incremental recognition method for Japanese text

13

preceding stroke and succeeding stroke but also from all the preceding strokes and succeeding

strokes, which are highlighted in Tab. 3.2. A segmentation feature analysis in (Zhu and Nakagawa

2008) shows that the feature extracted from both the forward and backward contexts are useful for

character segmentation.

Table 3.1 Terms of features

Feature Definition
Sp Immediate preceding stroke
Ss Immediate succeeding stroke
Bp Bounding box of Sp
Bs Bounding box of Ss
Bp_all Bounding box of all preceding strokes
Bs_all Bounding box of all succeeding strokes
Db_x Distance between Bp and Bs in x-axis
Db_y Distance between Bp and Bs in y-axis
DB_x Distance between Bp_all and Bp_all in x-axis
Ob Overlap area between Bp and Bs
OB Overlap area between Bp_all and Bs_all
Dc_y Distance between centers of Bs and Bp in y-

axis
Dc_a Absolute distance of centers of Bp and Bs
acs Average character size of text line
Dt_y Distance between top of Bp_all and top of Bs

in y-axis
P Pattern of all strokes
Psub Sub-pattern of Sp and Ss

Table 3.2 Geometric features for character segmentation

F1 Passing time for off-stroke
F2 DB_x / acs
F3 Db_x / width of Bp
F4 Db_x / width of Bs
F5 Db_x / acs
F6 Db_y / height of Bp
F7 Db_y / height of Bs
F8 Db_y / acs
F9 OB / (acs)2
F10 Ob / (width of Bs * height of Bs)
F11 Ob / (acs)2
F12 Dc_y / acs
F13 Dc_a / acs
F14 Dt_y / acs
F15 Length of off-stroke / acs
F16 Sine value of off-stroke
F17 Cosine value of off-stroke
F18 F2 / maximum F2 in text

Chapter 3: Semi-incremental recognition method for Japanese text

14

3.2.2 Candidate lattice construction

Employing the combination of on-line and off-line recognition methods for character

recognition (Zhu, Gao, and Nakagawa 2011), each candidate character pattern is associated with

a number of candidate classes with confidence scores. All the possible segmentations and

recognition candidate classes are represented by a src-lattice as shown in Fig. 3.3, where each node

denotes a candidate segmentation point and each arc denotes a character class assigned to a

candidate character pattern.

Figure 3.3 Segmentation-recognition candidate lattice

For implementation, we employ candidate character blocks and each of them represents a set

of all the candidate character patterns separated by two adjacent SP off-strokes. Figure 3.4 shows

them for the src-lattice with two SP off-strokes and three candidate character blocks.

Chapter 3: Semi-incremental recognition method for Japanese text

15

Figure 3.4 Candidate character blocks

3.2.3 Best-path search and recognition

From an src-lattice, paths are evaluated by combining the scores of character/word recognition,

geometric features, and linguistic context (Zhu et al. 2010). We apply the Viterbi algorithm to

search for the optimal path that has the highest evaluation score and obtain the text recognition

result.

For evaluating a path through a sequence of m primitive segments 1 2, ,..., mS s s s of an input

sequence X , forming a sequence of n candidate character/word patterns 1 2, ,..., nZ z z z which

is assigned as 1 2, ,..., nC c c c , we have the posterior probability as follows:

(, , |) ()
(| , ,)

(, ,)

(| , ,) (, |) ()

(, ,)

P X S Z C P C
P C X S Z

P X S Z

P S X Z C P X Z C P C

P X S Z




 (3.1)

Chapter 3: Semi-incremental recognition method for Japanese text

16

We omit the class-independent denominator to obtain the following formula:

 (| , ,) (| , ,) (, |) ()P C X S Z P S X Z C P X Z C P C (3.2)

From the posterior probability, we obtain the evaluation function as:

 (, , ,) log (| , ,) log (, |) log ()f X S Z C P S X Z C P X Z C P C   (3.3)

The probability (, |)P X Z C is approximated using the following features extracted from

candidate character/word patterns of an input sequence X :

- Geometric features: Width and height of bounding boxes 1 2, ,..., nB b b b , inner gap

1 2, ,..., nQ q q q , unary position 1 2, ,...,U u u u
nP p p p and binary position 1 2, ,...,B b b b

nP p p p .

- Shape features 1 2, ,..., nR r r r

Since the probabilities of the features are conditionally independent, we obtain the following

formula:

(, |) (, , , , |)

(|) (|) (|) (|) (|)

U B

U B

P X Z C P B Q P P R C

P B C P Q C P P C P P C P R C




 (3.4)

Assuming the independence of the features for each character/word pattern or for two

consecutive character/word patterns, we obtain the formula:

 

   1 1

(|) (|) |
(, |)

| |

u
n i i i i i i

b
i i i i i i

P b c P q c P p c
P X G C

P p c c P r c 

 
 
  

 (3.5)

where , , ,u b
i i i ib q p p are the values of geometric features derived from a candidate

character/word pattern. The likelihood probabilities (|)i iP b c , (|)i iP q c ,  |u
i iP p c and

 1|b
i i iP p c c are obtained from the features using quadratic discriminant (QDF) classifiers. The

likelihood probability  |i iP r c of a class ic with respect to a candidate character/word pattern

ig is calculated using the recognizer presented in Sect. 2.2.2.

Chapter 3: Semi-incremental recognition method for Japanese text

17

The linguistic context probability ()P C is estimated using a tri-gram language model with

back-off weight:

 2 1
1

() (|)
n

i i i
i

P C P c c c 


 (3.6)

The segmentation probability (| , ,)P S X G C actually does not depend on character/word

classes C and therefore it is approximated by the score from a segmentation classifier at each

candidate segmentation point jd (SP or UP) between two primitive segments js and 1js  :

1

1

(| , ,) (| ,)
m

j
j

P S X G C P d X G




 (3.7)

Each candidate segmentation point jd could be an off-stroke between character/word

patterns or an off-stroke within a character/word pattern. We denote T the labeling function

outputting the type of off-stroke (B: between, W: within) for a candidate segmentation point.

1, 1; () 1, 1; ()

(| , ,) () ()
j j

sp j nsp j
j m T d B j m T d W

P S X G C P d P d
     

   (3.8)

with ()sp jP d and ()nsp jP d are the classification probabilities of an off-stroke being

classified as SP and NSP, respectively.

The evaluation function is expressed as:

 
6

1 2
1 1

71
1, 1; ()

72
1, 1; ()

(, , ,) 1 log

log ()

log ()

j

j

n

h h i h
i h

sp j
j m T d B

nsp j
j m T d W

f X S G C k P

P d

P d n

 



 

 

  

  

 
      



 

 





 (3.9)

 where  1,...,6hP h  denote the probabilities of  12|  iii cccP ,  ii cbP | ,  ii cqP | ,  iu
i cpP | ,  ii

b
i ccpP 1|  ,

and  |r i iP r c , respectively, ik denotes the number of primitive segments contained in the candidate

character pattern
ig . The weighting parameters 1 2, (1,7)h h h   and  are selected using genetic

algorithm to optimize the text recognition performance on a training dataset.

Chapter 3: Semi-incremental recognition method for Japanese text

18

3.3 Semi-incremental recognition method

The main objective to develop the semi-incremental recognition method is to perform possible

computation as much as possible while a user is writing. Moreover, it should keep the recognition

rate as high as possible compared with the batch recognition method. In the batch recognition, the

majority of computing time is spent for the recognition of candidate character patterns. If those

can be processed in the background of user’s handwriting, text recognition result will be displayed

without any noticeable waiting time.

Both of the methods in (Tanaka, Akiyama, and Ishigaki 2002) and (Wang, Liu, and Zhou

2012) proposed incremental segmentation and recognition of handwritten text. For incremental

segmentation, they determine the segmentation of the latest stroke based on the previously

segmented sequence of strokes. This is unrecoverable, however, if wrong segmentation is made

without knowing strokes coming hereafter. To deal with the problem, we present the resuming

strategy, which allows the change of segmentation and recognition of previously written strokes

due to strokes coming in future.

3.3.1 Resuming strategy

The context at the current time step in incremental recognition presented so far is limited to

forward direction, since the future input is not available. As batch recognition could employ the

context in both forward and backward direction for segmentation and recognition, we need to

develop a method which allows backward context in incremental recognition.

Semi-incremental recognition performs recognition process after receiving Ns newly written

strokes, where Ns denotes the number of strokes to trigger incremental recognition. Ideally, we

only have to process the newly received strokes and update the src-lattice. In fact, the backward

context of the newly added strokes affects the segmentation and recognition of a small number of

strokes previously received. Therefore, to allow the effect of the backward context, we extend the

incremental processing to the section that includes these strokes and the newly received strokes.

We call it “scope”.

Chapter 3: Semi-incremental recognition method for Japanese text

19

We advance segmentation and recognition as new strokes are input by resuming segmentation

from a range of recent input strokes since their segmentation may change due to the newly added

strokes. We proceed with the pointer being slightly behind the latest input stroke up to which the

result of segmentation and character recognition is considered stable and fixed.

Newly added strokes may affect the segmentation and recognition in the current scope.

Change of segmentation leads to change of character recognition. As each change in classification

of an off-stroke induces change in recognition of primitive character segments connecting to that

off-stroke, we must update the scope to include those primitive character segments.

As for the best-path search, it is made from the first stroke to the last stroke in the batch

recognition while it can be made incrementally using scope. Therefore, if the scope is well defined,

the semi-incremental recognition should produce almost the same recognition result without

incurring much waiting time.

3.3.2 Processing flow

From the previously described strategy, Fig. 3.5 shows the processing flow of the semi-

incremental recognition method.

Figure 3.5 Flow of semi-incremental recognition

Chapter 3: Semi-incremental recognition method for Japanese text

20

First, we receive new strokes. Secondly, we resume segmentation. Thirdly, we determine the

scope. Fourthly, we update the src-lattice. Finally, we resume the best-path search from the

beginning in this scope to get text recognition result. The result is used for next processing cycle.

3.3.3 Resumption of segmentation

First, we determine the pointer to resume segmentation named Seg_rp. It must be determined

so that the segmentation and recognition of its preceding strokes is stable. In the result of text

recognition up to the latest scope, i.e., the best-path up to the latest scope in the src-lattice, an off-

stroke between two recognized characters can be considered as an SP with confirmation of the best

path search. Since the effect of backward context of newly added strokes to the segmentation and

recognition of preceding strokes reduces as they are far away from the latest stroke in backward

direction, the segmentation at an off-stroke between two recognized characters far enough from

the latest stroke could be fixed. We determine Seg_rp among those off-strokes based on the number

of characters from each off-stroke to the last character in the recognition result. If this number

equals to a predefined parameter named Nseg, that off-stroke will be determined as a new Seg_rp.

Nseg is defined as a fixed number of characters required to determine a new Seg_rp.

3.3.4 Fixation of SP off-strokes from UP off-strokes

Determination of off-strokes to SP off-strokes has large effect to the recognition rate and

performance of the system. Although SP off-strokes are detected by SVM in the segmentation

process, the performance of SVM for detecting SP off-strokes is still limited. Due to the

uncertainty of segmentation, a large number of outputs from SVM are marked as UP. Each UP

roughly doubles the number of candidate character patterns for which character recognition is

applied. To overcome this problem, we also use the result of text recognition up to the latest scope

to determine UP off-strokes (UPs in short) to SP off-strokes (SPs in short). We call this process

UP fixation. UPs between recognized characters, before the latest Nseg_det characters in the

recognition result are determined as SPs. Here, Nseg_det denotes a predefined constant for the

minimum number of characters that follow an UP off-stroke to make it a stable SP off-stroke.

Generally, Nseg_det is smaller than or equal to Nseg.

Chapter 3: Semi-incremental recognition method for Japanese text

21

3.3.5 Determination of scope

To determine the scope, we use the result from the segmentation process. The segmentations

of the strokes before and after the system has received new strokes are compared with each other.

If classification-changed off-strokes are detected, we consider the strokes before the earliest

classification-changed off-strokes are stably classified while the strokes after that are not classified

stably. Otherwise, the off-stroke before the newly added strokes is considered as the earliest

classification-changed off-stroke. This earliest classification-changed off-stroke may occur within

some candidate character block or between two candidate character blocks. We define the scope

as the sequence of strokes starting from the first stroke of the candidate character block containing

or just preceding the earliest classification-changed off-stroke to the last stroke.

3.3.6 Bounded waiting time

Since we resume segmentation from Seg_rp, segmentation of the off-strokes before Seg_rp

remains unchanged. Thus, we only need to compare the results of segmentation before and after

new strokes are added from Seg_rp to the latest stroke.

Since classification changes of off-strokes occur between Seg_rp and the latest stroke, the

scope extends in backward direction at most one candidate character block from Seg_rp. Thus, by

setting fixed Nseg, the maximum number of characters in the scope is bounded by (Nseg + 1) plus

the number of new characters in the newly added strokes. This is the main factor to bound the

waiting time in each processing. Moreover, changing more UPs to SPs in lattice blocks also

reduces the time cost to rebuild the src-lattice due to shortened block sizes.

3.3.7 An example of the processes

Figure 3.6 shows an example to determine the scope. Assume the latest scope with

segmentation and text recognition result in Fig. 3.6(a). Then, the new strokes marked red are added.

We update Seg_rp and apply segmentation from the updated Seg_rp (Fig. 3.6(b)). Next we change

UPs to SPs by UP fixation and find the earliest classification-changed off-stroke (Fig. 3.6(c)).

Finally, we locate the character block including or just preceding this off-stroke and update the

scope (Fig. 3.6(d)).

Chapter 3: Semi-incremental recognition method for Japanese text

22

Figure 3.6 a). Latest scope with segmentation and text recognition results

Figure 3.6 b). Receiving new strokes, updating Seg_rp and applying segmentation

Figure 3.6 c). Determining UPs to SPs and finding classification-changed off-strokes

Chapter 3: Semi-incremental recognition method for Japanese text

23

Figure 3.6 (d). Locating the character block and updating the scope

Figure 3.6 An example of determining scope

3.3.8 Update of src-lattice

Since each incremental recognition processes a scope of recent strokes, there are overlap

between previous scope and current scope. In this overlap region, there are unchanged candidate

character patterns which can be reused for updating the current scope. To maximize the reuse of

the src-lattice in the previous scope, we use the following method. It takes advantage of previously

built lattice candidates in the previous scope. From the beginning of the scope, the method finds

SPs and splits candidate character blocks by these SPs. Each SP off-stroke divides a candidate

character block into two parts: the preceding part and the succeeding part beside this SP off-stroke.

The src-lattice in these lattice blocks will be checked if a candidate character pattern already exists

in the previous scope. When exists, we get it from the previous scope, otherwise we rebuild it.

Figure 3.7(a) represents the lattice blocks of the previous scope, when new strokes are added

as shown in Fig. 3.7(b), classification of the off-stroke between the two first characters in the

updated scope is changed to SP. From this SP off-stroke, the previously built candidate character

block is divided into three candidate character blocks and the candidate character patterns of the

previous scope is reused for the updated scope. Then, only two candidate character patterns (shown

in gray) are rebuilt due to the new strokes.

Chapter 3: Semi-incremental recognition method for Japanese text

24

(a) Previous scope

(b) Updated scope

Figure 3.7 Reuse of candidate character patterns

3.3.9 Skipping partial patterns

Recognition of partial character patterns can be postponed until the complete character

patterns are received. Therefore, we skip recognizing them to reduce CPU time. We treat candidate

Chapter 3: Semi-incremental recognition method for Japanese text

25

character patterns containing the last primitive segment as partial candidate character patterns

(PPs) until a new primitive segment is detected or the recognition is requested. We call this process

PP skip.

3.3.10 Handling of delayed strokes

The batch recognition system (Zhu et al. 2010) is not designed to handle delayed strokes, since

the segmentation of strokes is based on writing order. To make the segmentation of a text line

including them correctly, however, we first detect delay strokes and ignore them in the

segmentation process. Then, we determine a segmented block for each delayed stroke to merge

the delayed stroke into it. Finally, we rebuild the src-lattice.

Delayed strokes are detected using the previous recognition result. Firstly, we retrieve the

bounding box for each recognized character from the segmentation-recognition result of the

previous scope. Then, we determine each newly added stroke as a delayed stroke if it is close to

the previous bounding boxes rather than the latest bounding box.

When delayed strokes occur, we rebuild the src-lattice in two steps: first we build the src-

lattice without delayed strokes, second we put delayed strokes into appropriate primitive segments

and rebuild the candidate character patterns containing the delayed strokes.

3.3.11 Resuming best-path search and recognition

From the first character lattice block in current scope, we resume the best-path search and get

text recognition result. Resuming the best-path search at each incremental processing sets bounds

to the processing time and waiting time. This solves the drawback of the method in (Tanaka,

Akiyama, and Ishigaki 2002), in which the processing time for the best-path search is prolonged

as the number of characters increases.

Chapter 3: Semi-incremental recognition method for Japanese text

26

3.4 Experiments

3.4.1 Measures for evaluation

First, over-segmentation is applied then segmentation is determined along with character

recognition and best-path search. The over-segmentation process classifies each off-stroke as an

SP, NSP, or UP off-stroke. An UP off-stroke can then be further classified as an SP or NSP in the

text recognition process. Let #SP, #NSP, #UP are the numbers of returned SPs, NSPs and UPs,

respectively. #SPc is the number of correctly classified SPs among the returned SPs. #SPt is the

number of true SPs defined in the ground truth.

The performance of over-segmentation is evaluated with the following measures.

Precision (p):

#

#
cSP

p
SP

 (3.10)

Recall (r):

#

#
c

t

SP UP
r

SP


 (3.11)

Inclusion of #UP in the dividend is typical for over-segmentation since UPs maintain the

possibility that they will be classified correctly.

F-measure (f) is calculated as follows:

2 * *

()

p r
f

p r


 (3.12)

Although UPs maintain the possibility that they will be classified correctly, thus increase

recall, leaving many UPs instead of SPs or NSPs, however, incurs more waiting time as analyzed

in Sect. 3.4. Therefore, we evaluate the detection rate (d) of over-segmentation as ability of

determining more SPs instead of UPs by the following formula:

Chapter 3: Semi-incremental recognition method for Japanese text

27

#

(# #)

SP
d

SP UP


 (3.13)

As final segmentation is determined from the result of the best-path search, we get SPs as off-

strokes between two recognized characters and the remaining are NSPs. Let #SPf , #SPfc and #SPft

are the number of returned SPs in final segmentation, the number of correctly classified SPs among

those returned SPs and the number of true SPs in the ground truth, respectively. The F-measure of

final segmentation denoted as the segmentation measure is evaluated as follows:

2 * *

()

P R
F

P R


 (3.14)

where P and R are the precision and recall of final segmentation, respectively. They are defined as

follows:

#

#
fc

f

SP
P

SP


 (3.15)

#

#
fc

ft

SP
R

SP


 (3.16)

3.4.2 Setup for experiments

We trained the character recognizer and geometric scoring functions using Japanese on-line

handwriting database Nakayosi (Nakagawa and Matsumoto 2004). We employed a trigram table

extracted from the year 1993 volume of the Asahi newspaper and the year 2002 volume of the

Nikkei newspaper to model linguistic context. For training the weight parameters of the evaluation

function (1) and evaluating the performance of text recognition, we used horizontally written text

line patterns extracted from the TUAT-Kondate database collected from 100 people (Matsushita

and Nakagawa 2014). We separated the text lines into 4 sets by writers and then used 3 sets (10,174

text lines written by 75 people) for training and 1 set (3,511 text lines written by 25 people) for

testing. We changed the role four times and took the average. We used this separation to assure

writer independence and conducted cross validation to evaluate the effect unbiased to data sets.

Chapter 3: Semi-incremental recognition method for Japanese text

28

Figure 3.8 Recognition rate with respect to Nseg

The parameters of the evaluation function in Eq. (3.9) have been trained using each training

set, but Ns and Nseg are not trained since Ns and Nseg are control variables rather than parameters.

We implemented a handwritten Japanese text recognition system using our semi-incremental

recognition method. We used the batch recognition system for Japanese (Zhu et al. 2010) without

modification. We ran all the systems on an Intel(R) Core(TM) i7 CPU 870@ 2.6Ghz with 4-GB

memory.

3.4.3 Character recognition rate

Figure 3.8 shows the character recognition rate (i.e., the number of correctly recognized

characters over that of all the characters in handwritten text) by the semi-incremental recognition

method, including the case of pure-incremental recognition (Ns = 1) in comparison with the batch

recognition method. To evaluate the effect of resuming segmentation to the character recognition

rate, we made experiments with respect to Ns (from 1 to 10) and Nseg (from 4 to 25). For each Nseg,

the character recognition rate increases as Ns increases from 1 to 10. With larger Nseg, the average

character recognition rate increases, since the segmentation and recognition are resumed from a

more stable Seg_rp. As Nseg approaches 20 and 25, the recognition rate reaches the performance

Chapter 3: Semi-incremental recognition method for Japanese text

29

of batch recognition without large dependence on Ns (rates with Ns = 10 and those with Ns = 1 are

nearly the same). The maximum recognition rate is 93.26% with Nseg = 20, which is nearly the

same as that of the batch recognition method, i.e., 93.27%. The case of pure-incremental

recognition (Ns = 1) degrades the recognition rate seriously with small values for Nseg (0.8 point

when Nseg=4), but decreases the degradation as Nseg is set larger (0.01 point with Nseg >= 20). For

Nseg > 20, the recognition rate does not increases but the waiting time increases as discussed in

Sect. 4.4.

3.4.4 Waiting time

The evaluation was done on five different pages of handwritten text captured from touch

screen devices with the number of strokes for each page being 347, 398, 590, 262, or 554,

respectively. We evaluate the waiting time by the semi-incremental recognition method from two

points, dependency on Nseg and that on Ns.

As for the first point, Figure 3.9 shows the average waiting time of semi-incremental

recognition with respect to Nseg when Ns=1 and Ns=10. The waiting time increases as Nseg increases

regardless of Ns. As mentioned above, the recognition rate saturates for Nseg > 20. Therefore,

hereafter we consider Nseg up to 20.

Figure 3.9 Waiting time with respect to Nseg

Chapter 3: Semi-incremental recognition method for Japanese text

30

As for the second point, we measured the average waiting time with respect to Ns, while Nseg

was fixed to 20 including the case of pure-incremental recognition (Ns = 1). We evaluated the

effectiveness of reusing the src-lattice as well as applying UP fixation and PP skip.

Figure 3.10 shows the average waiting time of recognizing the five pages of Japanese text in

comparison with the batch recognition method which takes 1,479ms in average for the waiting

time. By reusing the src-lattice, the average waiting time is significantly reduced from roughly

150ms to 30ms. Applying UP fixation and PP skip further reduces the waiting time. The waiting

time by the semi-incremental method with applying all three methods is less than 50 milliseconds,

which is small enough to be unnoticeable by users. Pure-incremental recognition (Ns = 1) incurs

the smallest waiting time since there is only one new stroke at each incremental processing.

Figure 3.10 Average waiting time by semi-incremental recognition

Although the waiting time by the batch recognition method increases as text becomes longer,

that by the semi-incremental recognition method is bounded, regardless of the length of the text.

Figure 3.11 shows the waiting time of recognizing the first sample page (with 347 strokes) by the

semi-incremental recognition method (Ns =1, 5, 10 while Nseg is fixed to 20) and the batch

recognition method, while the number of strokes increases from 1 to 100.The case of Ns = 1 denotes

pure-incremental recognition. As the number of strokes increases, the waiting time of the batch

Chapter 3: Semi-incremental recognition method for Japanese text

31

recognition method gradually increases to 310ms, while those of semi-incremental and pure-

incremental recognition are bounded to less than 150ms.

Figure 3.11 Waiting time of recognizing strokes as they increases

3.4.5 CPU time

To evaluate processing time, average CPU time per stroke is shown in Tab. 3. Compared with

pure incremental recognition (Ns = 1), the semi-incremental recognition method with Ns > 2 save

up to 53% of CPU time. Although the semi-incremental recognition method incurs more CPU time

than the batch recognition method, it requires less CPU time as Ns increases. As for Ns >= 7, CPU

time of the semi-incremental method approaches to CPU time of the batch recognition method.

Table 3.3 Processing time per stroke (ms)

Semi-incremental - Ns Batch

1 (pure-
incremental)

2 3 4 5 6 7 8 9 10
3.04

8.07 6.23 5.01 4.91 4.28 4.12 3.89 4.00 3.94 3.78

3.4.6 Effect of resuming segmentation and UP fixation

While the batch recognition method applies segmentation for the entire handwritten text, the

semi-incremental recognition method resumes segmentation from the Seg_rp. The first experiment

was to confirm that the resumption of segmentation does not degrade the segmentation

Chapter 3: Semi-incremental recognition method for Japanese text

32

performance if we set appropriate values for the parameters. Moreover, the performance of the

semi-incremental method depends on whether we apply UP fixation or not.

Table 3.4 lists the F-measures of over-segmentation. The semi-incremental method without

applying UP fixation performs the same as the batch recognition method. Applying UP fixation,

however, decreases the F-measure by a small amount.

Table 3.4 F-measures of over-segmentation (%)

Semi-incremental recognition Batch
recognition Without UP fixation UP fixation

99.79 ± 0.02 99.41 ± 0.05 99.80

On the other hand, UP fixation improves the detection rate of over-segmentation since more

SPs are correctly determined. By applying UP fixation, the detection rate is improved from 2.92%

to 37.49% as shown in Fig. 3.12. Moreover, applying UP fixation prevents the decrease in the

detection rate when dealing with a long scope (i.e., when Nseg is large), although the detection rate

decreases when Nseg < 14. In batch recognition, over-segmentation by using an SVM produces

many UPs instead of SPs, the detection rate is as low as 3.00%. Therefore, applying UP fixation

greatly improves the detection rate.

Figure 3.12 Detection rate of over-segmentation

Chapter 3: Semi-incremental recognition method for Japanese text

33

We then evaluated the segmentation measure of final segmentation defined by Eq. (3.6).

Figure 3.13 shows the segmentation measure with and without applying UP fixation with respect

to Nseg. We set Ns from 1 to 10 and take the average segmentation measure. Compared with the

batch recognition method, which yields the segmentation measure of 99.09%, the semi-

incremental method with UP fixation outperforms the batch recognition method when Nseg >= 14.

Comparison of the semi-incremental method with and without applying UP fixation shows

maximum improvement of 0.13 point at Nseg = 19. The improvement increases as Nseg is set larger,

since the number of correctly determined SPs using UP fixation increases in a longer scope.

Moreover, applying UP fixation maintains a high segmentation measure in dealing with a long

scope.

Figure 3.13 Final segmentation measure.

Chapter 3: Semi-incremental recognition method for Japanese text

34

3.5 Conclusion

We presented a semi-incremental recognition method for on-line handwritten Japanese text.

By resuming the segmentation and recognition in a local scope, the method reduces the waiting

time to be small enough to be unnoticeable by users. Moreover, determining SP off-strokes based

on recognition result shortens block lengths and bounds the waiting time. Skipping the recognition

of partial patterns and reusing recognized character patterns in the src-lattice are also shown to be

effective in reducing the waiting time.

The control variables Ns and Nseg should be set according to the environments. As far as they

are set as shown in the experiments, the semi-incremental recognition method is clearly superior

to the batch recognition method in the waiting time while maintaining the recognition rate. It also

excels pure incremental recognition in the character recognition rate and the total CPU time.

35

Chapter 4

Semi-incremental online handwriting recognition method

for English text

This chapter presents a semi-incremental online handwriting recognition method for English

text. It extends the local context for recognition to a range of recent strokes called ‘scope’, triggers

recognition at several recent strokes, updates the candidate word lattice and searches over the

lattice for the best result incrementally. To reduce the waiting time, our method reuses previously

recognized candidate word patterns, if they exist in the previous stage of the lattice. It also fixes

undecided segmentation points if they are stable between word patterns. Moreover, it skips

recognition of partial candidate word patterns. The semi-incremental method includes the case of

triggering recognition at every new stroke with the above-mentioned techniques. We evaluate our

method using the IAM-OnDB database and show that it generates results without noticeable delay

while keeping high recognition rate. It also decreases CPU time.

The chapter is organized as follows. Section 4.1 is the Introduction. Section 4.2 describes the

method for English with detailed descriptions of generalization and modification. Section 4.4

presents our experiments and the results. The conclusions are presented in Sect. 4.5.

4.1 Introduction

As previously introduced, the development of pen-based and touch-based devices makes

research of on-line handwritten text recognition getting more attention recently. Along with the

motivation of increasing recognition accuracy, the requirement of recognition speed and CPU

burden in hand-held devices also induces the research for reduce waiting time and CPU time for

recognition process.

In order to satisfy these requirements, we proposed a semi-incremental recognition method

and applied it for Japanese text recognition (C. T. Nguyen, Zhu, and Nakagawa 2013). The batch-

recognition method, which recognizes online handwritten text after it is written, produces high

recognition rate owing to the full context, but incurs large waiting time. Pure incremental

Chapter 4: Semi-incremental online handwriting recognition method for English text

36

recognition, triggering recognition at every stroke, where a stroke is a sequence of pen-tip

coordinates from pen-down to pen-up, decreases the waiting time but increases the CPU time and

lowers the recognition rate (Wang, Liu, and Zhou 2012; Tanaka 2002). The semi-incremental

method triggers recognition at every few recent strokes, including the case of every new stroke so

that it produces recognition output without noticeable delay as compared with batch recognition.

It saves CPU time in comparison with the pure incremental recognition due to processing a

sequence of few strokes rather than every new stroke. Moreover, we propose a local but larger

context to maintain high recognition rate, and introduce three techniques to save CPU time and

decrease waiting time even for pure incremental recognition.

After preliminary reports for Japanese (C. T. Nguyen, Zhu, and Nakagawa 2013) and for

English (C. T. Nguyen, Zhu, and Nakagawa 2014), we revised segmentation and introduced time

synchronous update of the candidate lattice for handwritten text, and skipping recognition of

partial patterns (C.-T. Nguyen, Zhu, and Nakagawa 2016). This chapter focuses on a generalization

of this method to cope with online handwritten English text, and presents a comprehensive

evaluation using the IAM-OnDB database.

4.2 Recognition system overview

The recognition system for English first introduced in (C. T. Nguyen, Zhu, and Nakagawa

2014), we follow the approach of explicit segmentation with soft decision method as presented in

Section 2.2.1. The flow of recognition system is shows in Fig. 4.1. From an input sequences of

strokes, segmentation step produces segmentation candidates for segmenting words. Next, the

word segmentation candidates are used for creating word candidate lattice, which includes word

recognition as well as context information in each path of words. Finally, those paths are evaluated

to find the best path, which represents the recognition result.

Chapter 4: Semi-incremental online handwriting recognition method for English text

37

Figure 4.1 English text recognition system

4.2.1 Segmentation

For line segmentation, we apply a linear regression method to estimate the latest text line from

the centroids of its strokes, and judge incrementally whether the latest stroke belongs to the latest

text line or creates a new line. To make the text line estimation more precise, we use the weighted

linear regression method, with the weight for each stroke centroid being the number of points in

that stroke.

Here is the detail of the line segmentation method. First, we get the centroids of previous

strokes, then use weighted linear regression to approximate the closest line of all those centroids.

Next to determine if a stroke belongs to the current line or not, we calculate distance from this

stroke and its neighbor strokes to the current line, a threshold is used.

The formulae of weighted linear regression method is shown in the following:

 Y X   (4.1)

Then, to determine β and α:

 2 2

xy x y

x x
y x



 





 

 (4.2)

Chapter 4: Semi-incremental online handwriting recognition method for English text

38

With the following notations:

ݔ̅ ൌ ෍ݓ௜ݔ௜
௜

, തݕ ൌ෍ݓ௜ݕ௜
௜

, ଶതതതݔ ൌ෍ݓ௜ݔ௜ଶ

௜

, തതതݕݔ ൌ෍ݓ௜ݔ௜ݕ௜
௜

We apply segmentation in both forward and backward directions for the latest text line to

make line segmentation robust, even when it is composed of a small number of strokes. If it is

segmented by either forward or backward segmentation, it is segmented.

For word segmentation, we employ Bidirectional Long Short-Term Memory (BLSTM)

network (Graves and Schmidhuber 2005) for word segmentation. BLSTM consists of recurrent

neural networks, and works by accessing long-range context in both forward and backward

directions to obtain segmentation probabilities. Based on off-stroke classification score obtained

from BLSTM networks we determine an off-stroke as SP, NSP or UP.

We use a set of geometric features including: (1) gap between the preceding and succeeding

strokes of the current off-stroke, (2) average stroke length on horizontal direction of the whole

pattern, of sub-pattern containing adjacent strokes, (3) overlapping of distance between two

adjacent strokes of the current off-stroke, (4) minimum point distance between the two adjacent

strokes of the current off-stroke, (5) the direction of the centroids of the two adjacent strokes of

the current off-stroke, (6) the ratio of the two bounding box of the preceding stroke and succeeding

stroke of the current off-stroke.

We use a new type of feature: average stroke length on horizontal direction (ASL) feature (Fig.

4.2). This feature on an on-line pattern could be considered as the vertical histogram on an off-line

pattern. In factor (2) we use the feature of both the whole pattern and the sub-pattern containing

two adjacent strokes of the current off-stroke. For a sub-pattern containing a segmentation off-

stroke, the ASL of it would be small due to the gap between the two adjacent strokes, therefore,

ASL is a good feature to determine segmentation off-stroke. On the other hand, the ASL of the

whole pattern provides a perspective of handwriting style, make the classifier robust with various

handwriting styles.

Chapter 4: Semi-incremental online handwriting recognition method for English text

39

Figure 4.2 ASL feature.

4.2.2 English word recognition

Semi-incremental recognition presented here is not restricted to a particular recognizer. Any

recognizer can be employed as long as it can recognize English words with confidence scores.

Here, we employ an English word recognizer that combines Markov Random Fields (MRF) and

Modified Quadratic Discriminant Functions (MQDF) to incorporate both online and offline

information for character recognition (Zhu et al. 2013).

4.3 Semi-incremental recognition for English

We basically follow the semi-incremental recognition method summarized in Chapter 3 to

recognize online handwritten English text. Here, English words correspond to Japanese characters.

In this section, we describe adaptation and modification of the method to English.

4.3.1 Determination of scope

For English text recognition, the scope is determined in the same way as in Sect. 3.3.3, except

that a candidate word block (a sequence of strokes between two consecutive SPs) is used instead

of a candidate character block.

Chapter 4: Semi-incremental online handwriting recognition method for English text

40

4.3.2 Time synchronous creation and update of src-lattice

In the current scope, we create the src-lattice incrementally in the time-synchronous order of

the candidate segmentation points. For each candidate segmentation point, we build all of the

candidate word patterns that end at that candidate segmentation point.

 (a) Previous scope.

(b) Latest scope.

Figure 4.3 Reuse of candidate word patterns.

We reuse previously recognized candidate word patterns if they exist in the previous scope.

Figure 4.3(a) shows candidate word patterns (bounded by blue rounded rectangles) in the src-

lattice for the previous scope. When new strokes are added (shown in red) as in Fig. 4.3(b), we

Chapter 4: Semi-incremental online handwriting recognition method for English text

41

update the src-lattice from the beginning of the latest scope, which triggers to build three candidate

word patterns. Among them, two candidate word patterns bounded by red rounded rectangles have

to be newly built. One candidate word pattern bounded by blue rounded rectangle are reused from

the previous scope.

4.3.3 Time synchronous best-path search and recognition

The recognition result is produced incrementally from the latest src-lattice by the best-path

search. For each time step, we apply the Viterbi search incrementally to find the best path reaching

to that time step. Paths are evaluated by combining scores of word recognition, segmentation and

linguistic context. For evaluating a path through a sequence of m primitive segments

1 2, ,..., mS s s s of an input sequence X , forming a sequence of n candidate character/word

patterns 1 2, ,..., nZ z z z which is assigned as 1 2, ,..., nC c c c , we have the posterior probability

as follows:

 1 1 2 1

2
1, 1; () 1, 1; ()

log (|)
(, , ,)

log |

log () log ()
j j

n
i i

i i i i

sp j nsp j
j m T d B j m T d W

P r c
f X S G C

P c c c

P d P d





  

     

      
    
  



 
 (4.3)

with ()sp jP d and ()nsp jP d are the classification probabilities of an off-stroke being

classified as SP and NSP, respectively. The labeling function T output the type of off-stroke (B:

between, W: within) for a candidate segmentation point.  2 1|i i iP c c c  is the tri-gram language

probability. The likelihood probability  |i iP r c of a class ic with respect to a candidate word

pattern ir is calculated using the word recognizer presented in Sect. 4.4.2. The parameters 1 and

2 are optimized by the Minimum Classification Error (MCE) algorithm (McDermott et al. 2007).

4.3.4 UP fixation and PP skip

We employ UP fixation and PP skip for online handwritten English text in the same way as

for Japanese text, except that English words are employed rather than Japanese characters. In other

Chapter 4: Semi-incremental online handwriting recognition method for English text

42

words, UPs between recognized characters before the latest Nseg_det words in the result of text

recognition are fixed as SPs in UP fixation, and candidate word patterns containing the latest

primitive segment are skipped without recognition until a new primitive segment is detected, or

the recognition is requested in PP skip.

4.4 Experiments

This section presents experiments and evaluation of our proposed method for online handwritten

English text.

4.4.1 Setup for experiments

To evaluate the recognition method, we used the IAM online database (IAM-OnDB) (Marti

and Bunke 2003), which consists of pen trajectories collected from 221 different writers using an

electronic whiteboard. We followed the handwritten text recognition task IAM-OnDB-t2, in which

the database is divided into a training set, two validation sets, and a test set containing 5364, 1438,

1518, and 3859 written lines, respectively.

For our purpose, however, IAM-OnDB provides the ground truth only for the sentence level,

and not for the word level. Therefore, we prepared the word-segmentation ground truth for IAM-

OnDB by making a tool to detect segmentation candidates, and employing human inspection to

verify the candidates (C. T. Nguyen, Zhu, and Nakagawa 2014).

We trained a BLSTM classifier consisting of 20 LSTM blocks with one cell in each block for

classifying the segmentation of off-strokes. We also trained the word recognizer combining MRF

and MQDF by IAM-OnDB with word-level ground truth. For language modeling, we employed a

trigram table extracted from the Lancaster-Oslo-Bergen (LOB) text corpus (Johansson 1978).

We compared the semi-incremental recognition system and the batch recognition system in

(C. T. Nguyen, Zhu, and Nakagawa 2014), where BLSTM was used for over-segmentation instead

of SVM. We ran all the experiments on an Intel® Core™ i7-4770 (3.4Ghz) with 8GB memory.

Chapter 4: Semi-incremental online handwriting recognition method for English text

43

4.4.2 Word recognition rate

Figure 4.4 shows the word recognition rate (i.e. the percentage of correctly recognized words

over all the handwritten words) by the semi-incremental method, including the case of pure-

incremental recognition (Ns = 1) in comparison with the batch recognition method. In the

experiments we varied Ns (from 1 to 10) and Nseg (from 1 to 15) to evaluate the effect of resuming

segmentation to the word recognition rate. Figure 4.4(a) shows the recognition rate for 1 <= Nseg

<= 15 while Fig. 4.4(b) shows the rate for 3 <= Nseg <= 15 with larger resolution.

(a) 1 <= Nseg <= 15.

(b) 3 <= Nseg <= 15.

Figure 4.4 Recognition rate with respect to Nseg .

Chapter 4: Semi-incremental online handwriting recognition method for English text

44

As Nseg increases up to 5, the recognition rate of the semi-incremental recognition method

rises without dependence on Ns (the maximum and minimum recognition rates are nearly the same),

since the segmentation and recognition are resumed from a more stable Seg_rp. From Nseg > 6,

however, the recognition rate drops and converges to that of batch recognition. The maximum

recognition rate is 77.83% with Nseg = 5, which is a little better than 77.61% by the batch

recognition method.

The pure incremental recognition (Ns = 1) performs slightly better than the semi-incremental

recognition when 4 <= Nseg <= 8. Note that this pure incremental recognition is different from the

ones proposed in (Tanaka, Akiyama, and Ishigaki 2002; Wang, Liu, and Zhou 2012), since the

scope is introduced and segmentation is resumed from several strokes behind the latest stroke with

Nseg > 1 even if Ns = 1.

4.4.3 Waiting time

In this experiment, we evaluated the waiting time from two points, dependency on Nseg and

on Ns. We measured it on thirteen sample text lines from IAM-OnDB with each containing 36

strokes on average.

As for the dependency on Nseg, Fig. 4.5 shows the average waiting time of semi-incremental

recognition including the case of pure incremental recognition (Ns = 1) with respect to Nseg while

1 <= Ns <= 10. The waiting time is slightly extended as Nseg increases regardless of value of Ns.

Figure 4.5 Waiting time with respect to Nseg.

Chapter 4: Semi-incremental online handwriting recognition method for English text

45

As for the second point, Fig. 4.6 shows the average waiting time with respect to Ns, while Nseg

is fixed to 5, which produces the best recognition rate. It is shown for the baseline without all of

RP reuse, UP fixation and PP-skip, and for the system that adds them gradually. Semi-incremental

recognition with RC reuse takes the average waiting time from 1.20s to 5.01s when Ns increases

from 1 to 10, which is a significant reduction of the waiting time as compared with batch

recognition taking 14.80s on average. UP fixation is more effective when Ns is large (Ns > 7). On

the other hand, PP skip is somewhat more effective when Ns is smaller (Ns < 5). By applying all

the three newly devised techniques, the waiting time of the semi-incremental recognition method

is around 1s when Ns < 3, which is small enough to not distract the users. Pure incremental

recognition (Ns = 1) incurs the smallest waiting time: applying all the three techniques shorten it

from 1.98s to 0.58s.

Figure 4.6 Waiting time with respect to Ns.

Chapter 4: Semi-incremental online handwriting recognition method for English text

46

Figure 4.7 shows the waiting time of recognizing a sample text line (with 43 strokes) by semi-

incremental method (Ns = 1, 5, 10, with Nseg fixed to 5) when the number of strokes increases from

1 to 43. Although the waiting time of batch recognition gradually increases to 14s as the text

becomes longer, that of semi-incremental recognition is generally bounded within 2s regardless of

the length of the text, but sometimes goes up to 8s. The anomalous cases occur for long handwritten

words.

Figure 4.7 Waiting time of recognizing a sample text line

4.4.4 CPU time

Average CPU time per stroke is shown in Tab. 4.1. It is again shown for the baseline without

the three techniques and for the system that adds them gradually. When all the three techniques

are incorporated, semi-incremental recognition with Ns >= 2 saves up to 31.63% of the CPU time,

i.e. from 0.59s of pure incremental recognition (Ns = 1) to 0.40s when Ns = 9. Pure incremental

method triggers the recognition process at every input stroke received, therefore requires more

CPU time. RP reuse reduces the CPU time from 1.98s to 1.20s, UP fixation reduces it to 1.14s and

PP skip further reduces it to 0.59s with the total effect of 70.2%. Although the semi-incremental

recognition method incurs more CPU time than the batch recognition method, it requires less CPU

time as Ns increases. As for Ns >= 6, the CPU time of the semi-incremental method approaches to

that of the batch recognition method.

Chapter 4: Semi-incremental online handwriting recognition method for English text

47

Table 4.1 CPU time evaluation (sec)

Method

CPU time

Semi-incremental - Ns
Batch 1 (pure-

incremental)
2 3 4 5 6 7 8 9 10

baseline 1.98 1.20 0.96 0.82 0.78 0.63 0.60 0.61 0.52 0.61

0.40
RP reuse added 1.20 0.88 0.71 0.67 0.62 0.56 0.52 0.53 0.48 0.50
UP fixation
added

1.14 0.79 0.66 0.60 0.57 0.52 0.48 0.49 0.45 0.46

PP skip added 0.59 0.51 0.46 0.46 0.49 0.42 0.41 0.43 0.40 0.44

4.5 Conclusion

We applied the semi-incremental online handwriting recognition method for English text and

evaluated it using the IAM-OnDB database. The method shortened waiting time to unnoticeable

level, decreased CPU time to almost half without degrading recognition rate. The scope and our

three newly-devised techniques decrease waiting time and CPU time not only for the semi-

incremental recognition but also for the pure-incremental recognition.

There are still problems when long English words are encountered. To increase the recognition

rate and shorten the waiting time for these cases is left for future research.

48

Chapter 5

Improving Segmentation of Online English Handwritten

Text Using Recurrent Neural Networks

Segmentation of online handwritten text recognition is better to employ the dependency on

context of strokes written before and after it. This paper shows an application of Bidirectional

Long Short-term Memory recurrent neural networks for segmentation of on-line handwritten

English text. The networks allow incorporating long-range context from both forward and

backward directions to improve the confident of segmentation over uncertainty. We show that

applying the method in the semi-incremental recognition of online handwritten English text

reduces up to 62% of waiting time, 50% of processing time. Moreover, recognition rate of the

system also improves remarkably by 3 points from 71.7%.

The chapter is organized as follows: Section 5.1 is Introduction, Section 5.2 presents the

segmentation methods for online handwritten text, Section 5.3 presents experimental results,

Section 5.4 gives a discussion and finally Section 5.5 draws our conclusion.

5.1 Introduction

In online handwritten text recognition, explicit segmentation approaches face the difficulty of

word segmentation and character segmentation due to the ambiguity in segmentation. Moreover,

in continuous handwriting, characters tend to be written more cursively.

To deal with the problem, applying context for segmentation is crucial. The typical approach

is using over-segmentation in combination with recognition results and linguistic context (Zhu et

al. 2010). Based on geometric features, all the potential segmentation positions are determined to

build up hypothetical segmentation paths. Then, recognition results and linguistic context is

combined to evaluate and find the best path.

The SVM method, which has been widely applied to numerous classification tasks achieves

good performance on segmentation of on-line handwritten text (Zhu and Nakagawa 2008). The

segmentation task, however, can be further improved by incorporating context from both the

Chapter 5: Improving Segmentation of Online English Handwritten Text Using Recurrent Neural Networks

49

forward and backward directions. An improved version of bidirectional recurrent neural network:

Bidirectional Long Short-term Memory BLSTM (Graves and Schmidhuber 2005) allows the

network to access long-range context. BLSTM shows its effective in many sequence classification

tasks.

In this work, we apply BLSTM for improving segmentation and evaluate its effect on the

semi-incremental English recognition method.

5.2 Segmentation of online handwritten text

To recognize online handwritten text, there are two main streams: the segmentation free

method and the dissection method. In this work, we focus on the dissection method since it is better

for Chinese and Japanese text recognition (Wang, Liu, and Zhou 2012; Zhu et al. 2010) and it

could produce better results even for western handwriting recognition for which the segmentation

free method has been dominant.

5.2.1 Features for segmentation

For each off-stroke of the input stroke sequence, we extract the set of local and global features

originally described in (C. T. Nguyen, Zhu, and Nakagawa 2014) and extend it into set of nine

geometrical features. The features are listed in Tab. 5.1, the term are defined in Tab. 5.2. The

features is based on geometric properties of the stroke pair preceding and succeeding the off-stroke

(local geometrical features) and the geometric properties of the whole strokes correlating with

current off-stroke (global geometrical features). Applying the both the global and local geometric

features makes the segmentation more robust with various handwriting styles.

5.2.2 Segmentation by a SVM classifier

For word over-segmentation of a text line, the work in (Zhu and Nakagawa 2008) uses a SVM

classifier to classify each off-stroke into two classes: segmentation point (SP) or non-segmentation

point (NSP). A SP off-stroke separates two words while a NSP off-stroke indicates the off-stroke

is within a word. Off-strokes with low confidence are classified as undecided point (UP).

Chapter 5: Improving Segmentation of Online English Handwritten Text Using Recurrent Neural Networks

50

Table 5.1 Features for English word segmentation

Global features
F1 Distance between Bs_all and Bp_all in x-axis
F2 Average stroke length of Pall in x-axis
Local features
F3 Average stroke length of Psub in x-axis
F4 Overlap length between Bp and Bs in x-axis
F5 Overlap length between Bp and Bs in y-axis
F6 Minimum point distance between Ss and Sp
F7 Angle between the vector from the

centroids of Bs and Bp and x-axis
F8 Ratio between Bs width and Bp width
F9 Ratio between Bs height and Bp height

Table 5.2 Terms of Features representation.

Sp Immediate preceding stroke
Ss Immediate succeeding stroke
Bp Bounding box of Sp

Bs Bounding box of Ss

Bp_all Bounding box of all the preceding strokes
in the latest text line

Bs_all Bounding box of all the succeeding strokes
in the latest text line

Pall All the strokes in the latest text line
Psub Sub-pattern of Sp and Ss

In training the SVM, however, due to unbalance between the numbers of positive and negative

training patterns (i.e. the number of SP and that of NSP), we need to adjust the cost of false

positives and false negatives (Morik, Brockhausen, and Joachims 1999). The higher cost of false

positives is set, the higher precision of determining SP is achieved. The same logic applies to false

negatives and precision of determining NSP. We use a combination of two SVMs: one with high

precision for determining SP, the other with high precision for determining NSP.

5.2.3 Segmentation by a BLSTM classifier

One of the key benefits of RNNs is their ability to use previous context. For standard RNN

architectures, however, the range of context that can be accessed in practice is limited due to the

vanishing gradient problem (Hochreiter et al. 2001).

Long Short-Term Memory (LSTM (Hochreiter and Schmidhuber 1997)) is an RNN

architecture designed to address the vanishing gradient problem. A LSTM layer consists of

multiple recurrently connected memory blocks. Each block contains a set of internal units, known

Chapter 5: Improving Segmentation of Online English Handwritten Text Using Recurrent Neural Networks

51

as cells, whose activation are controlled by three multiplicative ‘gate’ units. The effect of the gates

is to allow the cells to store and access information over long periods of time.

For many tasks, it is useful to have access to future as well past context. Bidirectional LSTM

(BLSTM) allows this (Graves and Schmidhuber 2005) by using two separate hidden layers to

present input in forward and backward directions, both of which are connected to the same output

layer to provide access to long-range bidirectional context.

We use BLSTM to employ the context of strokes written before and after an off-stroke for

segmentation of that off-stroke. The training of BLSTM does not suffer the problem of different

in number of class patterns. Therefore, we use BLSTM with two thresholds to make over-

segmentation.

For over segmentation, we need to find all potential segmentation points of off-strokes (which

could be then determined as segmentation or non-segmentation points), the remaining are non-

segmentation points. Thus, we set a threshold TH1 to determine an off-stroke as a potential

segmentation point if the score is above than TH1 and as a non-segmentation point if the score is

below TH1. Likewise, we set another threshold TH2 to determine an off-stroke as a potential non-

segmentation point or a segmentation point. The off-strokes whose score fall between TH1 and

TH2 are classified as UP. Fig. 5.1 illustrates this method.

Figure 5.1 Over-segmentation using BLSTM.

Chapter 5: Improving Segmentation of Online English Handwritten Text Using Recurrent Neural Networks

52

5.3 Experiments

5.3.1 Experiment setup

We employ the IAM online database (IAM-OnDB) (Marti and Bunke 2003) which consists

of pen trajectories collected from 221 different writers using an electronic whiteboard. We follow

the handwritten text recognition task: IAM-OnDB-t1 in which the database is divided into a

training set, two validation sets, and a test set containing 5,364, 1,438, 1,518 and 3,859 written

lines, respectively. We use a trigram table extract from the LOB text corpus for language modeling.

For segmentation, we train both the SVM classifier and BLSTM classifier on segmented

words of IAM-OnDB. The SVM classifiers use the RBF kernel with cost factor of 0.1 for high

precision of SP determination and 7.5 for high precision of NSP determination. The BLSTM

classifier uses a bi-directional layer of 20 LSTM blocks with one cell in each block. After training

the BLSTM classifier, based on the distribution of output scores, we set TH1 = 0.1 and TH2 = 0.9.

We compare the performance of two semi-incremental recognition systems: the first system

uses the SVM classifiers for segmentation (SVM system) and the second uses BLSTM classifier

for segmentation (BLSTM system).

5.3.2 Over-segmentation

The BLSTM system outperforms the SVM system for both recall and detection rates. Recall

rate has improved 1.5 point, while detection has significant improved from 48% to 86% as shown

in Table 5.3.

Table 5.3 Over-segmentation Results

Measures SVM LSTM

Recall 96.91 98.57

Precision 99.25 99.06

F-measure 98.07 98.81

Detection 48.34 86.55

Chapter 5: Improving Segmentation of Online English Handwritten Text Using Recurrent Neural Networks

53

5.3.3 Recognition rate

The recognition rates of the SVM system and the BLSTM system with changing Nseg

parameter are shown in Fig. 5.2. For each Nseg we run with the recognition trigger parameter (Ns)

from 1 to 10 and take the average. The BLSTM system improves recognition rate by about 3 point.

With high detection rate, the BLSTM system reduces a large number of UPs as compared with

SVM. Therefore, the system reduces the ambiguity in best path search and improves recognition

rate.

Figure 5.2 Recognition rate of the two systems.

5.3.4 Waiting time

We measure the average waiting time of the two systems with changing Ns. The BLSTM

system has reduction rate of average waiting time from 36.65% to 62.43% over the SVM system

as shown in Fig. 5.3.

70

71

72

73

74

75

76

3 4 5 6 7 8 9 1 0

R
E

C
O

G
N

IT
IO

N
 R

A
T

E
 (

%
)

NSEG

LSTM

SVM

Chapter 5: Improving Segmentation of Online English Handwritten Text Using Recurrent Neural Networks

54

Figure 5.3 Average waiting time of the two systems.

5.3.5 CPU time

We also compare both of the systems in CPU time per stroke. Fig. 5.4 shows the results of the

BLSTM and SVM systems with changing of Ns. The BLSTM system also reduces about 50% of

CPU time as compared with the SVM system.

Figure 5.4 CPU time of the two systems.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8 9 1 0

A
V

E
R

A
G

E
 W

A
T

IN
G

 T
IM

E
 (

S)

NS

SVM

LSTM

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7 8 9 1 0

C
P

U
 T

IM
E

 P
E

R
 S

T
R

O
K

E
 (

S
)

NS

SVM

LSTM

Chapter 5: Improving Segmentation of Online English Handwritten Text Using Recurrent Neural Networks

55

5.4 Discussion

Detection rate gives the ratio of segmentation points over all potential segmentation points.

For the two systems, as the same recall rate, higher detection rate reduces the number of undecided

points. Since each undecided point doubles the number of candidate word patterns which need to

be recognized, high detection rate reduces processing time and waiting time. Each undecided point

also doubles the number of search paths. Therefore, higher detection rate reduces the number of

search paths, lowers ambiguity, and improves recognition rate.

5.5 Conclusion

We proposed a system using BLSTM recurrent neural network for segmentation of on-line

handwritten English text. By large improvement in the detection rate of over-segmentation,

BLSTM reduces the number of undecided points each of which doubles the number of candidate

character patterns. The reduction of candidate character patterns is vital since character recognition

is applied for each candidate. The BLSTM system reduces up to 62.34% of waiting time and

around 50% of CPU time as compared with the SVM system. Moreover, reducing undecided

points also reduces the number of search paths, and lowers ambiguity of recognition so that

BLSTM improves recognition rate of the system by 3 points from 71.7%

56

Chapter 6

Decoding of Handwritten Text Using Recurrent Neural

Networks

This chapter presents a Finite State Machine (FSM) to reduce user’s waiting time to get the

recognition result after finishing writing in recognition of online handwritten English text. The

lexicon is modeled by a FSM, and then determination and minimization are applied to reduce the

number of states. The reduction of states in the FSM shortens the waiting time without degrading

the recognition accuracy. Moreover, by merging incoming paths to each state, the recognition rate

is improved. The N-best states decoding method also reduces the waiting time significantly with

small degradation in recognition accuracy. Experiments on IAM-OnDB and IBM_UB_1 show the

effectiveness of the method in both reducing waiting and improving recognition accuracy.

6.1 Introduction

The development of pen-based or touch-based devices such as Tablet PCs, smart-phones,

digital pens and so on, makes the problem of online handwriting recognition getting more attention.

By achieving high recognition accuracy with small waiting time and providing natural interface,

online handwritten text recognition has been a practical input method for these devices without

keyboard (Liu, Jaeger, and Nakagawa 2004; Plamondon and Srihari 2000; Graves et al. 2009).

Compared to isolated character or word recognition, handwritten text recognition faces the

difficulty of word segmentation and character segmentation due to the ambiguity in segmentation.

The problem is more challenging while dealing with recognition of unconstrained handwriting, in

which characters tend to be written cursively.

Segmentation-based approach (e.g. in (Zhu et al. 2010; C. T. Nguyen, Zhu, and Nakagawa

2014)) first separates handwritten text into smaller units (characters or words) then recognize them

using a character or word recognizer. This approach not only faces the problem of segmentation,

but the necessity of pre-segmentation of handwriting text for training.

Chapter 6: Decoding of Handwritten Text Using Recurrent Neural Networks

57

Segmentation-free approach avoids the above problem and necessity. Graves et al. (Graves et

al. 2009) introduce a connectionist temporal classification (CTC) layer for recurrent neural

networks (RNN), allowing it learns end-to-end sequence mapping from handwriting input to text

transcript. Not only benefitting from unnecessary pre-segmentation, end-to-end training and

recognition show its effectiveness in recognition accuracy by avoiding errors caused by explicit

segmentation.

Although segmentation-free method by applying end-to-end training and recognition may

realize high recognition accuracy, the decoding (i.e. the task of finding the best label sequence

from an input sequence) incurs large waiting time in large vocabulary recognition tasks. In (Graves

et al. 2009), a decoding method based on token passing algorithm (Young, Russell, and Thornton

1989) is applied to constrain the output label sequence to a vocabulary. The token passing

algorithm processes through the list of internal states in each word at each time step of an input

sequence. As for the large number of words in vocabulary, the number of internal states is enlarged

and therefore waiting time is extended.

In this paper, we focus on reducing waiting time of decoding for handwritten text recognition.

We introduce the use of a Finite State Machine to reduce the number of internal states, which

results in speeding up the recognition process. We also investigate to control the number of active

states at each time step in the trade-off between waiting time and recognition accuracy. Finally,

we show the effectiveness of merging the tokens in improving recognition accuracy of the

decoding method.

6.2 Related works

6.2.1 Sequence to sequence learning with RNN

Graves et al. (Graves et al. 2009) use Long Short Term Memory (LSTM) (Hochreiter and

Schmidhuber 1997), an advanced architecture of RNN designed to overcome the problem of

vanishing or exploding gradients. LSTM could bridge long time delays between relevant input and

target events, thus, it could incorporate long-range context for improving handwriting recognition.

Chapter 6: Decoding of Handwritten Text Using Recurrent Neural Networks

58

CTC is an objective function for RNN designed to make RNN to learn directly from an input

sequence to a target sequence without requiring pre-segmented input. It defines the output of RNN

for each time t of the input sequence as the probability distribution over a fixed set of labels and

an additional “blank” which denotes no label. The output of RNN for each label k (incl. blank) at

time t is the conditional probabilities of observing label k at time t in the input sequence x:

 (, |)t
ky p k t x (6.1)

For an input sequence x of length T, the conditional probability of a path  through the lattice

of output labels over all the time steps is calculated by multiplying the probabilities of labels along

this path:

1

(|)
t

T
t

t

p x y


 (6.2)

where t is the label of path at time t.

We also have the conditional probability of a sub-path of spanning from a time u to time

v:

 :(|)
t

v
t

u v
t u

p x y


 (6.3)

where, for a sequence s , :i js is the subsequence from is to js .

A label sequence is obtained from a path by a reduction process denoted as B, which firstly

removes repeated labels, then removes blanks in this path. The probability of a label sequence l

from an input sequence x is the total probability of all the paths, where each path is reduced into

this label sequence by B. It is shown as follows:

 

 
 | |

B l

p l x xp





  (6.4)

Applying the CTC forward-backward algorithm (Graves et al. 2009), (|)p l x in (6.4) is

obtained efficiently. By minimizing the total negative log likelihood ln (|)p z x over all pairs of





Chapter 6: Decoding of Handwritten Text Using Recurrent Neural Networks

59

an input sequence x and a target label z from training patterns, the network could be trained with

unsegmented patterns.

6.2.2 Constrained decoding

In this section, we focus on the problem of word decoding, i.e. finding the most probable word

from an input sequence, where output words are constrained by a vocabulary.

Let W is a closed vocabulary, the problem is finding a word w in W for which the conditional

probability from an input sequence x is maximum:

  ˆ argmax |
w W

w p w x


 (6.5)

From (5), the probability  |p w x of the word w from the input sequence x in CTC is

calculated by the following steps:

First, w is extended into w’, which contains blank between every pair of consecutive characters

of w and the beginning and end of w. Thus, |w’| = 2|w| + 1.

We define a prefix label sequence as the result of applying a reduction process denoted as B’

for a path. B’ firstly removes repeated labels and then blanks except the blank being the last label

of this path. For example, B’(-,f,-,e,-,-) yields the prefix label sequence (f,e,-).

Secondly, let t
sP is the probability to output the prefix label sub-sequence up to 'sw of 'w at

time t:

1: 1:

1:
: '() '(')

(|)
t s

t
s t

B B w

P p x
 




  (6.6)

Thirdly, the probability is calculated recursively by the following initialization and

recursion:

t
sP

Chapter 6: Decoding of Handwritten Text Using Recurrent Neural Networks

60

1

2

1 1
1 '

1 1
2 '

1

1 1
1 2

' 1 1 1
1 2

0, 2

if ' or ' '

 otherwises

w

w

s

t t
s s s s st t

s w t t t
s s s

P y

P y

P s

P P w blank w w
P y

P P P

 
 

  
 





  

    
 

 (6.7)

Finally, we obtain by:

 | '| | '| 1(|) T T
w wp w x P P   (6.8)

where T is the number of time steps of the input sequence.

An example of calculating probability of a word ‘feel’ using CTC is illustrated in Fig. 6.1.

Figure 6.1 Example of calculating the probability of the word ‘feel’ in CTC.

Each node respresents the probability of with t from 1 to T and s from 1 to 9 which is correllated with the extended

word ‘_f_e_e_l_’, where ‘_’ denotes blank. Nodes shown in ‘red’ are the final nodes containing the probability of the

word.

6.2.3 CTC token passing

The probability in (6.4) could be approximated by:

 |p w x

t
sP

(|)p l x

Chapter 6: Decoding of Handwritten Text Using Recurrent Neural Networks

61

, ()

(|) max (|)
B l

p l x p x
 




 (6.9)

CTC token passing (Graves et al. 2009) uses this approximation for decoding words

constrained by the closed vocabulary W. Hence, for the word decoding problem, we could apply

Eq. (5) with (|)p w x being calculated as follows:

 , ()
(|) max (|)

B w
p w x p x

 





 (6.10)

The probability is now defined as:

1: 1:

1:
: '() '(')

(|)
t s

t
s t

B B w

P p x
 




  (6.11)

It is calculated recursively by the following initialization and recursion.

1

2

1 1
1 '

1 1
2 '

1

1 1
1 2

' 1 1 1
1 2

0, 2

max(,) if ' or ' '

max(, ,) otherwises

w

w

s

t t
s s s s st t

s w t t t
s s s

P y

P y

P s

P P w blank w w
P y

P P P

 
 

  
 





  

   


 (6.12)

Then, we obtain the (|)p w x by:

 | '| | '| 1(|) max(,)T T
w wp w x P P  (6.13)

For implementation, each label of the extended word w’ has a single token which holds

the probability at time t. The probability is the probability of the token with the highest

probability reaching to at time t as specified in (6.11). Therefore, the probability in

(6.13) is obtained by the maximum probability of two tokens corresponding to the two last labels

| '| 1' ww  and | '|' ww of w’ at the last time T.

Decoding a word sequence is an extension of decoding a word by employing an input token

and an output token for each word.

t
sP

'sw

t
sP t

sP

'sw (|)p w x

Chapter 6: Decoding of Handwritten Text Using Recurrent Neural Networks

62

At each time t, the output token of an extended word w’ is the most probable token leaving

w’, whose probability is denotes as 1
tP .

 1 | '| | '| 1max(,)t t t
w wP P P  (6.14)

At time t, the input token of an extended word w’ is the most probable output token of the

words arriving at w’ at time t, which its probability is denote as 0
tP . Fig. 6.2 illustrates the CTC

token passing for decoding a word sequence. As input tokens arrive at time t, the same recursive

updating rule of (6.10) is applied to update the other tokens. As for the first two tokens:

1

2

1 1
1 ' 0

1 1
2 ' 0 1max(,)

t t t
w

t t t t
w

P y P

P y P P

 

 



 (6.15)

For decoding a word sequence, each token also records the path of words which are passed

by. Thus, we get the most probable word sequence from the highest probability output token of

words at the last time step T.

Figure 6.2 Decoding a word sequence with CTC token passing

Chapter 6: Decoding of Handwritten Text Using Recurrent Neural Networks

63

6.3 Finite state machine token passing

6.3.1 Decoding word sequence with Lexicon State Machine

Firstly, we construct an equivalent Finite State Machine of CTC token passing for decoding

words. In this state machine, for calculating of a word w, the number of states excepting

the start state is equal to |w’|. At time t, each state sS represents the same probability as in

(6.6) and therefore, it accepts the path 1:t so that 1: 1:'() '(')t sB B w  . At time t, each state sS only

retains the most probable incoming path from the states in (t-1) and multiplies its probability with

the probability of the 'sw to produce the probability of the state at t, as the same with recursive

calculation of in (6.12). Fig. 6.3 shows an example of the state machine for decoding the word

‘feel’. The two final states (in double rounds, Fig. 6.3) at time t represent | '|
t
wP and | '| 1

t
wP  . We

represent the vocabulary W using a state machine called lexicon state machine (LSM) by creating

one state machine for each word in W, where all the word state machines are sharing the same start

state 0S . To find the word with the highest probability from an input sequence of length T, we

pass the tokens through the LSM until time T and find the highest probability token among those

reaching the final states of LSM. We obtain the best word output by applying operator B over the

path recorded by the highest probability token. We call the decoding method as LSM token passing.

Figure 6.3 A FSM for decoding a word ‘feel’.

For decoding a word sequence, we extend the LSM token passing method for decoding word

by making recurrent connections from the final states of each word to the states following the start

state of the LSM. Fig. 6.4 shows the LSM for decoding a word sequence.

 |p w x

t
sP

t
sP

Chapter 6: Decoding of Handwritten Text Using Recurrent Neural Networks

64

Figure 6.4 LSM for decoding the whole string.

Each state machine for W1, W2, .. Wn is sharing the same start state. The recurrent connection (shown in red) connect

the final states to the state following the start state.

6.3.2 Reduction of states

As the number of states is large for large vocabulary recognition tasks, we could reduce it to

speed up the decoding process.

The LSM constructed in section III.A is a non-deterministic finite automaton (NFA). We apply

the determination and minimization to reduce the number of states in the LSM.

According to Theorem 2.1 and Theorem 3.10 in (Ullman and Hopcroft 1979), for a NFA N,

there exists a deterministic automaton (DFA) D where L(D) = L(N) and its minimization into a

unique DFA M where L(M) = L(D). Here, L of an automaton denotes the language accepted by

the automaton.

Therefore, the DFA created by determinization and minimization of the LSM (we called it the

minimized DFA) accepts all the paths as the same as the original LSM. Figure 6.5 shows an

example of determinization and minimizing the LSM into a DFA.

Chapter 6: Decoding of Handwritten Text Using Recurrent Neural Networks

65

Figure 6.5 An example of determinizing and minimizing LSM.

Proposition 1. Applying token passing decoding through the states of the minimized DFA

produce the same recognition accuracy with decoding through the original LSM.

Lemma 1. The best word sequence output of decoding through the original LSM is also the

best word sequence output of decoding through the minimized DFA.

Proof. Let w
 is the best word sequence output of decoding through the original LSM. From the

(6.6) and (6.10) there exists a best path through the lattice of labels where ()w B   .

Since the minimized DFA accepts all the label paths as the same with the original LSM, for

any path  accepted by the original LSM, we obtain the unique path of states  through the states

of the minimized DFA corresponding to  and vice versa. We denote this one-to-one mapping

as operator F. We have the probability of a path  from the start state to a final state of the

minimized DFA with respect to input sequence x.

 (|) (|)p x p x  (6.16)

where 1()F  is the label path accepted by original LSM.

Let 


 = F() is the state path corresponding to  . The path 


 is also the highest probable

path of all the state paths through the minimized DFA according to (6.16).

Chapter 6: Decoding of Handwritten Text Using Recurrent Neural Networks

66

Let 1jS , 2jS , 3jS , ... jmS are the states of 


which are also reached by other paths rather

than . We call the states as junction states. Let 1jt , 2jt , 3jt , ... jmt are the time when


reaches

the junction states. We prove the assertion that the path 


 is not pruned by other paths at any

junction states at the time reaches them.

Assumimg that there exists a path  reaching to a junction state jkS at time jkt

(
jk jkt t jkS  


) and having higher probability than the path by 


 reaching to jkS . We have:

 0: 0:(|) (|)
jk jkt tp x p x 


 (6.17)

Let 1jkS  is the state following jkS in the path 


, from (14):

 0: 1: 0: 1:(|) (|) (|) (|)
jk jk jk jkt t T t t Tp x p x p x p x    

  
 (6.18)

That is:

 0: 1:(|) (|) (|)
jk jkt t Tp x p x p x   

 
 (6.19)

It turns out that the probabilty of the path created by concatenating 0: jkt and 1:jkt T 


 is higher

than that of the best path . This contradicts the above assumption and therefore the assertion is

proved.

Thus, the path 


is not pruned by any other paths and the token passing through


could reach

the final states and become the most probable token. The best word sequence output of decoding

through the minimized DFA is therefore equal to 1(()) ()B F B w   
   . This completes the proof.

Proof of Proposition 1. Since recognition result of an input sequence is obtained from the best

word sequence output of decoding method, from Lemma 1, recognition results by decoding

through the original LSM are the same with those by decoding through the minimized DFA.

Therefore, the recognition accuracy of both the decoding method are the same. This proves the

proposition.










Chapter 6: Decoding of Handwritten Text Using Recurrent Neural Networks

67

6.3.3 Merging of same paths

The token passing algorithm only preserves the path with the highest probability which comes

to a state as shown in the approximation by (6.9). This approximation may reduce recognition

accuracy.

To deal with the problem, before determining the best path for each state, we merge the paths

which produce the same output label sequence by summing the probabilities of the paths. In Fig.

6.6 the path through ‘-‘,‘i’ and the path through ‘i’ produce the same output ‘i’, therefore they are

merged together.

Figure 6.6 Merging of token paths

6.3.4 N-best state LSM decoding

For each time step, the decoding process must go through all the states of the LSM, but this

process is heavily time consumptive. Therefore, we cut down low probability states to speed up

the decoding process. We retain only the N-best states at each time step and use them for the next

time step.

This reduction hence leads to reduction of recognition accuracy. However, with the trace off

between recognition rate and waiting time, we could tune the parameter of N to compromise the

recognition performance with hardware limitation.

Chapter 6: Decoding of Handwritten Text Using Recurrent Neural Networks

68

6.4 Experiments

We implemented the LSM token passing algorithm as well as the original CTC token passing

algorithm. The LSM is modeled, determinized and minimized using the Open-FST library

(Allauzen et al. 2007). We made experiments on both the IAM online handwriting database (IAM-

OnDB) (Marti and Bunke 2003) and the IBM-UB database (IBM_UB_1) (Shivram et al. 2013).

We follow the IAM-OnDB-t2 handwritten text recognition task, in which the database is divided

into a training set, two validation sets and a test set containing 5,364, 1,438, 1,518, and 3,859

written lines, respectively. For IBM_UB_1, the recognition task also use a training set, two

validation sets and a test set with 31,888, 6,519, 6742, and 18,811 words, respectively.

We apply bidirectional LSTM (BLSTM) networks (Graves and Schmidhuber 2005) with CTC

using RNNLIB (Graves 2013) for training on both of the databases. We extract a set of point-based

features including: (1) normalized distance between two consecutive points, (2, 3) sine and cosine

of the angle between the current line segment and the horizontal line, (4) pen-up/pen-down feature.

We use two layers of BLSTM with a sub-sampling layer in the middle with the number of hidden

nodes in each BLSTM layer being 32 and 64, respectively. The number of hidden nodes in sub-

sampling is 48.

For decoding in each database, a closed vocabulary extracted from the test set is used to

constrain the output. The vocabulary of IAM-OnDB and IBM_UB_1 contains 5,597 words and

4,962 words, respectively.

The results is shown in Table 6.1 for experiments on both IAM-OnDB and IBM_UB_1. LSM

token passing through the minimized DFA yields the same recognition rate with the CTC token

passing while the former makes reduction of waiting time over 56% in the experiment of IAM-

OnDB and over 63% in the experiment of IBM_UB_1. Merging token paths yields better

recognition rate than the CTC token passing algorithm even in the case of limiting the number of

active states (N). Improvement of word recognition rate is about 0.06 point and 0.78 point as

experiments on IAM-OnDB and IBM_UB_1, respectively. The best word recognition rate of the

method for IAM-OnDB is 85.82%, which is better than the result in (Graves et al. 2009). Note that

(Graves et al. 2009) use a sophisticated pre-processing and feature extraction method.

Chapter 6: Decoding of Handwritten Text Using Recurrent Neural Networks

69

Limiting the number of active states at each time step (N-best state decoding) speeds up the

recognition. As compared with CTC token passing, N-best state LSM decoding with setting N to

100 makes reduction of waiting time as 95.51% and 94.33% in IAM-OnDB and IBM_UB_1,

respectively. In IBM_UB_1, setting N to 100 slightly degrades the recognition rate by 0.05 point,

while the experiment with IBM_UB_1 shows the degradation of over 0.13 point. Here, we could

see the trade-off between recognition speed and recognition accuracy of setting N in N-best path

LSM decoding. For practical use, we choose N = 200 since the loss on recognition accuracy is not

large and the waiting time acceptable .

Table 6.1 Performance of LSM token passing as compared with CTC token passing

Database Measure
LSM token passing

CTC token
passing

CTC token
passing

(Graves et
al. 2009)

Minimized
DFA

Merging paths – N-best
100 200 1000

IAM-OnDB

Word recognition rate
(%) 85.76 85.69 85.78 85.82 85.76 85.30

Waiting time (s) 26.37 2.71 4.30 24.75 60.42 -

IBM_UB_1

Word recognition rate
(%) 92.70 93.43 93.47 93.48 92.70 -

Waiting time (s) 1.43 0.22 0.35 1.94 3.88 -

Chapter 6: Decoding of Handwritten Text Using Recurrent Neural Networks

70

6.5 Conclusions and Future works

We presented the Finite State Machine based token passing decoding method for online

handwritten English text recognition. In this method, a finite state machine is used to model a

closed vocabulary and the token passing method is applied through the state machine to obtain the

most probable word sequence. Applying determination and minimization to the state machine

reduces the number of states while preserving all the paths corresponding to the words in the

vocabulary. As a result, waiting time for decoding is reduced by over 56% in IAM-OnDB and over

63% in IBM_UB_1 without degrading recognition rate.

Moreover, applying combination of tokens prevents information loss and therefore improves

the recognition rate by 0.78 point in IBM_UB_1 and 0.06 point in IAM-OnDB. Limiting the

number of active states of the state machine for each time step greatly reduces waiting time while

degrading recognition rate slightly. With maintaining recognition rate higher than the original CTC

token passing, the method reduces up to 92.88% and 94.33% of waiting time for IAM-OnDB and

IBM_UB_1, respectively.

For future works, we will extend the method for decoding word sequence constrained by high

level context (such as bi-gram, tri-gram).

71

Chapter 7

Conclusion and Future works

In this thesis, we presented a semi-incremental recognition method for on-line handwritten

text. By employing local processing, average waiting time has been reduced. Moreover,

determining SP off-strokes based on recognition result shortens block lengths, bounds waiting time

and even increases the recognition rate slightly. Skipping the recognition of partial patterns and

reusing recognized character patterns in the src-lattice are also shown to be effective in reducing

the waiting time.

The semi-incremental recognition method is superior to the batch recognition method clearly

in waiting time and even in recognition rate. It also excels the pure incremental recognition method

in recognition rate and total CPU time.

The semi-incremental recognition method has been applied to Japanese text and English text,

the method should also work for other languages by changing the parameters.

We also presented the improvement of segmentation which leads to the improvement of

recognition accuracy and speed for online handwriting recognition system using recurrent neural

networks (RNN).

For English text recognition, we also study the segmentation-free recognition method using

the state of the art LSTM, we presented a Finite State Machine based decoding method for LSTM,

which does not only reduce the waiting time of recognition but also improves the recognition

accuracy of the recognition system.

For future works, we will extend the method for decoding word sequence constrained by high

level context (such as bi-gram, tri-gram). Applying BLSTM to improve segmentation of

online/offline Japanese handwriting recognition is also a good topic for future researches.

72

References

Allauzen, C., M. Riley, J. Schalkwyk, W. Skut, and M. Mohri. 2007. “OpenFst: A General

and Efficient Weighted Finite-State Transducer Library.” In 12th International

Conference on Implementation and Application of Automata, 11–23. Prague, Czech.

Graves, Alex. 2013. “RNNLIB: A Recurrent Neural Network Library for Sequence Learning

Problems.” http://sourceforge.net/projects/rnnl/.

Graves, Alex, Santiago Fernandez, Faustino Gomez, and Jurgen Schmidhuber. 2006.

“Connectionist Temporal Classification : Labelling Unsegmented Sequence Data with

Recurrent Neural Networks.” Proceedings of the 23rd International Conference on

Machine Learning, 369–76. doi:10.1145/1143844.1143891.

Graves, Alex, Marcus Liwicki, Horst Bunke, Juergen Schmidhuber, and Santiago Fernández.

2008. “Unconstrained On-Line Handwriting Recognition with Recurrent Neural

Networks.” In Advances in Neural Information Processing Systems, 577–84.

Graves, Alex, Marcus Liwicki, Santiago Fernández, Roman Bertolami, Horst Bunke, and

Jürgen Schmidhuber. 2009. “A Novel Connectionist System for Unconstrained

Handwriting Recognition.” IEEE Transactions on Pattern Analysis and Machine

Intelligence 31 (5): 855–68. doi:10.1109/TPAMI.2008.137.

Graves, Alex, and Jürgen Schmidhuber. 2005. “Framewise Phoneme Classification with

Bidirectional LSTM and Other Neural Network Architectures.” Neural Networks : The

Official Journal of the International Neural Network Society 18 (5–6): 602–10.

doi:10.1016/j.neunet.2005.06.042.

Hochreiter, Sepp, Yoshua Bengio, Paolo Frasconi, and Jürgen Schmidhuber. 2001. “Gradient

Flow in Recurrent Nets: The Difficulty of Learning Long-Term Dependencies.” A Field

Guide to Dynamical Recurrent Neural Networks.

Hochreiter, Sepp, and Jürgen Schmidhuber. 1997. “Long Short-Term Memory.” Neural

Computation 9 (8). MIT Press: 1735–80. doi:10.1162/neco.1997.9.8.1735.

Jaeger, S., S. Manke, J. Reichert, and a. Waibel. 2001. “Online Handwriting Recognition:

The NPen++ Recognizer.” International Journal on Document Analysis and

Recognition 3 (3): 169–80. doi:10.1007/PL00013559.

Johansson, Stig. 1978. Manual of Information to Accompany the Lancaster-Oslo/Bergen

Corpus of British English, for Use with Digital Computers. Oslo: University of Oslo.

73

Liu, Cheng-Lin, Stefan Jaeger, and Masaki Nakagawa. 2004. “Online Recognition of Chinese

Characters: The State-of-the-Art.” IEEE Transactions on Pattern Analysis and Machine

Intelligence 26 (2). IEEE Computer Society: 198–213.

doi:10.1109/TPAMI.2004.1262182.

Liwicki, Marcus, and Horst Bunke. 2006. “HMM-Based On-Line Recognition of

Handwritten Whiteboard Notes.” In Tenth International Workshop on Frontiers in

Handwriting Recognition. La Baule (France).

Liwicki, Marcus, Horst Bunke, James a. Pittman, and Stefan Knerr. 2011. “Combining

Diverse Systems for Handwritten Text Line Recognition.” Machine Vision and

Applications 22 (1): 39–51. doi:10.1007/s00138-009-0208-9.

Marti, U. V., and H. Bunke. 2003. “The IAM-Database: An English Sentence Database for

Offline Handwriting Recognition.” International Journal on Document Analysis and

Recognition 5 (1): 39–46. doi:10.1007/s100320200071.

Matic, N.P., J.C. Platt, and T. Wang. 2002. “QuickStroke: An Incremental on-Line Chinese

Handwriting Recognition System.” Object Recognition Supported by User Interaction

for Service Robots 3. doi:10.1109/ICPR.2002.1047941.

Matsushita, Tomohisa, and Masaki Nakagawa. 2014. “A Database of On-Line Handwritten

Mixed Objects Named Kondate.” 2014 14th International Conference on Frontiers in

Handwriting Recognition, no. 1: 369–74. doi:10.1109/ICFHR.2014.68.

McDermott, Erik, Timothy J. Hazen, Jonathan Le Roux, Atsushi Nakamura, and Shigeru

Katagiri. 2007. “Discriminative Training for Large-Vocabulary Speech Recognition

Using Minimum Classification Error.” IEEE Transactions on Audio, Speech, and

Language Processing 15 (1): 203–23. doi:10.1109/TASL.2006.876778.

Morik, Katharina, Peter Brockhausen, and Thorsten Joachims. 1999. “Combining Statistical

Learning with a Knowledge-Based Approach - A Case Study in Intensive Care

Monitoring.” In The Sixteenth International Conference on Machine Learning , 268–77.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.7528.

Nakagawa, Masaki, Kimiyoshi Machii, Naoki Kato, and Toshio Souya. 1993. “Lazy

Recognition as a Principle of Pen Interfaces.” In INTERACT ’93 and CHI ’93

Conference Companion on Human Factors in Computing Systems - CHI ’93, 89–90.

New York, New York, USA: ACM Press. doi:10.1145/259964.260121.

74

Nakagawa, Masaki, and Kaoru Matsumoto. 2004. “Collection of on-Line Handwritten

Japanese Character Pattern Databases and Their Analyses.” Document Analysis and

Recognition 7 (1). doi:10.1007/s10032-004-0125-4.

Nakagawa, Masaki, Bilan Zhu, and Motoki Onuma. 2005. “A Model of On-Line Handwritten

Japanese Text Recognition Free from Line Direction and Writing Format Constraints.”

IEICE Transactions on Information and Systems 88 (8). The Institute of Electronics,

Information and Communication Engineers: 1815–22.

http://ci.nii.ac.jp/naid/110003214382/en/.

Nguyen, Cuong-Tuan, Bilan Zhu, and Masaki Nakagawa. 2016. “Semi-Incremental

Recognition of On-Line Handwritten Japanese Text.” IEICE Transactions on

Information and Systems E99.D (10). The Institute of Electronics, Information and

Communication Engineers: 2619–28. doi:10.1587/transinf.2016EDP7051.

Nguyen, Cuong Tuan, Bilan Zhu, and Masaki Nakagawa. 2013. “A Semi-Incremental

Recognition Method for On-Line Handwritten Japanese Text.” In 2013 12th

International Conference on Document Analysis and Recognition, 84–88. IEEE.

doi:10.1109/ICDAR.2013.25.

———. 2014. “A Semi-Incremental Recognition Method for On-Line Handwritten English

Text.” 2014 14th International Conference on Frontiers in Handwriting Recognition,

234–39. doi:10.1109/ICFHR.2014.47.

Oda, Hideto, Bilan Zhu, Junko Tokuno, Motoki Onuma, and Akihito Kitadai. 2006. “A

Compact on-Line and off-Line Combined Recognizer.” Icfhr, 133–38.

http://hal.inria.fr/inria-00104438/.

Plamondon, Réjean, and Sargur N. Srihari. 2000. “On-Line and Off-Line Handwriting

Recognition : A Comprehensive Survey.” IEEE Transactions on Pattern Analysis and

Machine Intelligence 22 (1): 63–84. doi:10.1109/34.824821.

Schenkel, M., I. Guyon, and D. Henderson. 1995. “On-Line Cursive Script Recognition

Using Time-Delay Neural Networks and Hidden Markov Models.” Machine Vision and

Applications 8 (4): 215–23. doi:10.1007/BF01219589.

Shivram, Arti, Chetan Ramaiah, Srirangaraj Setlur, and Venu Govindaraju. 2013. “IBM-UB-

1: A Dual Mode Unconstrained English Handwriting Dataset.” Proceedings of the

International Conference on Document Analysis and Recognition, ICDAR, 13–17.

doi:10.1109/ICDAR.2013.12.

75

Tanaka, Hiroshi. 2002. Implementation of real-time box-free online Japanese handwriting

recognition system. 3925247, issued 2002.

Tanaka, Hiroshi, Katsuhiko Akiyama, and Kazushi Ishigaki. 2002. “Realtime Box-Free On-

Line Handwriting String Recognition Using Layer-Delayed Segmentation Method.”

IEICE Technical Report (Institute of Electronics, Information and Communication

Engineers) 101 (712(PRMU2001 244-271)): 155–62.

Ullman, Jeffrey, and John Hopcroft. 1979. Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley.

Viterbi, A. 1967. “Error Bounds for Convolutional Codes and an Asymptotically Optimum

Decoding Algorithm.” IEEE Transactions on Information Theory 13 (2): 260–69.

doi:10.1109/TIT.1967.1054010.

Wang, Da Han, Cheng Lin Liu, and Xiang Dong Zhou. 2012. “An Approach for Real-Time

Recognition of Online Chinese Handwritten Sentences.” Pattern Recognition 45 (10).

Elsevier: 3661–75. doi:10.1016/j.patcog.2012.04.020.

Young, S.J., N.H. Russell, and J.H.S Thornton. 1989. “Token Passing: A Simple Conceptual

Model for Connected Speech Recognition Systems.” Technical Report (Univ. of

Cambridge. Dept. of Engineering) 38.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.7829.

Zhou, Xiang-Dong, Da-Han Wang, and Cheng-Lin Liu. 2009. “A Robust Approach to Text

Line Grouping in Online Handwritten Japanese Documents.” Pattern Recognition 42

(9): 2077–88. doi:10.1016/j.patcog.2008.10.019.

Zhu, Bilan, JinFeng Gao, and Masaki Nakagawa. 2011. “Objective Function Design for

MCE-Based Combination of On-Line and Off-Line Character Recognizers for On-Line

Handwritten Japanese Text Recognition.” In 2011 International Conference on

Document Analysis and Recognition, 594–98. IEEE. doi:10.1109/ICDAR.2011.125.

Zhu, Bilan, and Masaki Nakagawa. 2008. “Segmentation of On-Line Freely Written Japanese

Text Using SVM.” IEICE Transactions on Information and Systems, no. 1: 105–13.

doi:10.1093/ietisy/e91.

———. 2014. “Building a Compact Online MRF Recognizer for Large Character Set by

Structured Dictionary Representation and Vector Quantization Technique.” Pattern

Recognition 47 (3). Elsevier: 982–93.

doi:http://dx.doi.org/10.1016/j.patcog.2013.09.031.

76

Zhu, Bilan, Arti Shivram, Srirangaraj Setlur, Venu Govindaraju, and Masaki Nakagawa.

2013. “Online Handwritten Cursive Word Recognition Using Segmentation-Free MRF

in Combination with P2DBMN-MQDF.” In 2013 12th International Conference on

Document Analysis and Recognition, 349–53. IEEE. doi:10.1109/ICDAR.2013.77.

Zhu, Bilan, Xiang-Dong Zhou, Cheng-Lin Liu, and Masaki Nakagawa. 2010. “A Robust

Model for on-Line Handwritten Japanese Text Recognition.” International Journal on

Document Analysis and Recognition (IJDAR) 13 (2): 121–31. doi:10.1007/s10032-009-

0111-y.

77

Author publications

Journals

 [1] Cuong Tuan Nguyen, Bilan Zhu and Masaki Nakagawa. Semi-Incremental Recognition of On-Line
Handwritten Japanese Text. IEICE Transactions on Information and Systems, Vol. E99.D, No. 10, pp.
2619-2628, (2016)

International Conferences

 [2] Cuong Tuan Nguyen, Bilan Zhu and Masaki Nakagawa: A semi-incremental recognition method for
on-line handwritten Japanese text, Proc. 12th International Conference on Document Analysis and
Recognition (ICDAR2013), Washington D.C., USA, pp.85-88 (2013.8). (Oral)

 [3] Cuong Tuan Nguyen, Bilan Zhu and Masaki Nakagawa. A semi-incremental recognition method for
online handwritten English text, in Proceedings of the 14th International Conference on Frontiers in
Handwriting Recognition (ICFHR2014), Crete, Greece, pp.234-239 (2014.9). (Poster)

 [4] Cuong Tuan Nguyen and Masaki Nakagawa: An Improved Segmentation of Online English
Handwritten Text using Recurrent Neural Networks, in Proc. of the 3rd IAPR Asian Conference on
Pattern Recognition (ACPR), Kuala Lumpur, Malaysia (2015.11). (Poster)

 [5] Cuong Tuan Nguyen and Masaki Nakagawa: Finite State Machine based Decoding of Online
Handwritten Text using Recurrent Neural Networks, in Proceedings of the 15th International
Conference on Frontiers in Handwriting Recognition (ICFHR2016), Shenzhen, China, pp. (2016.10).
(Oral)

Patent

 [6] 中川正樹，朱碧蘭，グェン トアン クーン：プログラム、情報記憶媒体及び文字列認識装置，特願

2013-100118（出願 2013 年 5 月 10 日，出願人：東京農工大学学長），特許第 5807881 号（平成 27
年 9 月 18 日登録）

78

Joint work publications

International Conferences

 [7] Hung Tuan NGUYEN, Cuong Tuan NGUYEN, Pham The BAO, Masaki NAKAGAWA: A Vietnamese
Online Handwriting Database, in Proc. of the 2015 Fourth ICT International Student Project
Conference, Tokyo University of Agriculture and Technology, Tokyo, Japan (2015.5). (Oral)

 [8] Khanh Minh Phan, Cuong Tuan Nguyen, Anh Duc Le and Masaki Nakagawa: An Incremental
Recognition Method for Online Handwritten Mathematical Expressions, in Proc. of the 3rd IAPR
Asian Conference on Pattern Recognition (ACPR), Kuala Lumpur, Malaysia (2015.11). (Poster)

 [9] Hung Tuan Nguyen, Cuong Tuan Nguyen, Pham The Bao and Masaki Nakagawa: Preparation of an
Unconstrained Vietnamese Online Handwriting Database and Recognition Experiments by
Recurrent Neural Networks, Proc. 15th International Conference on Frontiers in Handwriting
Recognition (ICFHR2016), Shenzhen, China, 2016. (2016.10) (Poster)

Domestic Conferences

 [10] Hung Tuan Nguyen，Cuong Tuan Nguyen，Pham The Bao，Masaki Nakagawa: Preparation of an
Unconstrained Vietnamese Online Handwriting Database and Recognition Experiments by
BLSTM, IEICE technical report, Vol. 115, No. 517, pp.59-64 (2016.3). (Oral)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

