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Abstract 

This paper describes a recognition system for on-line handwritten Japanese text free from 

line direction and character orientation constraints.  

Due to the increasing size of writing surface on a PDA, and the advent of a tablet PC or an 

electronic whiteboard, people can write text more freely as on a piece of paper. Thus, the 

demand to remove writing constrains from on-line handwriting recognition is getting higher. A 

new type of pen interfaces like E-pen and paper interface by Anotopen and paper are also 

raising this demand even higher. Such freely handwritten text brings new challenges to remove 

writing constraint from on-line handwriting recognition. Asian people whose languages are 

Chinese origin often write text horizontally, vertically or even slantingly in a mixed way. 

The recognition system separates handwritten text of arbitrary character orientation and 

line direction into text line elements, estimates and normalizes character orientation and line 

direction, applies two-stage over-segmentation, constructs a segmentation-recognition candidate 

lattice and evaluates the likelihood of candidate segmentation-recognition paths by combining 

the scores of character recognition, geometric features and linguistic context.  

Due to the text lines are free from line direction and character orientation, the unstable line 

direction and character orientation it is a challenging research work to segment text line 

correctly and segment characters correctly for every line direction before recognition as human 

for machine. To solve the problem, at text line segmentation step, we segment text lines 

compose of horizontal, vertical and slanted lines of text with arbitrary character orientation into 

text line elements. At over segmentation step, we decide segmentation points and 

non-segmentation points in quantized 4 directions using the two-stage classification scheme. 

And then evaluate the likelihood of candidate segmentation paths, train and decide the weight of 

each factor automatically by genetic algorithm. Finally optimal path can be found by the Viterbi 

search. 

The results of experiments on text from the HANDS-Kondate_t_bf-2001-11 database 

demonstrate significant improvements in the character recognition rate compared with the 

previous systems.  

Its recognition rate on text of arbitrary character orientation and line direction is now 

comparable with that possible on horizontal text with normal character orientation. Moreover, 

its recognition speed and memory requirement do not limit the platforms or applications that 

employ the recognition system. This is a common research with the company iLabo, and as 
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product for customer.  

There remain several works to improve the performance. We need to try other methods to 

get a more robust classification result, such as Convolutional Neural Network (CNN) 

architecture, which are able to effectively utilize the contextual information. 

In chapter 1, we briefly describe the background and the objective of this study. Then, we 

introduce the organization of this thesis. 

In chapter 2, we mainly give a survey on the state-of-the-art methods for on-line 

handwritten text recognition, and the orientation free handwritten text recognition. 

In chapter 3, we briefly describe the character recognition system combining on-line and 

off-line character recognizers, for each candidate character pattern in the candidate lattice. 

In chapter 4, we describe the recognition methods for character-orientation-free and 

line-direction-free on-line handwritten Japanese text recognition. 

In chapter 5, we describe the linguistic context and geometric context for the path 

evaluation criterion to improve the text recognition accuracy. 

In chapter 6, we describe the experiments. We compare the results of the proposed methods 

with the Onuma et al. system [11], and give some analyses of recognition performance. 

In chapter 7, we conclude this research and give several directions for the future work. 
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論文要旨 

本論文では，文字方向および行方向に依存しないオンライン手書き文字列認識につ

いて述べる。  近年，タッチベースのスマートフォンやタブレット，電子ボード，そして，Anoto ペンや
e-penなどのペン入力インタフェースの発展に伴い，直接指示・直接入力のインタフェースが普通になってきている。さらに，これらの筆記面は大型化し，人々は大きい記入面に自由に書けるようになってきており，少ない筆記制限で自由に筆記された手書き文字列認識に関心が移行しつつある。このような記入平面の環境において，日本や中国の人々はよく水平，垂直，そして斜めに文字列を記入する。 文字ごとに課された記入枠のある単独文字認識だけではなく，自由に記入された記入枠のない手書き文字列認識が必要とされる。そして，大きい記入平面に記入される手書き文字列を高い精度で認識するための要求が高まってきている。 オンライン枠なし手書き文字列認識における既存の研究では，左から右への方向の横書き文字列を対象としたものがほとんどである。一方，日本や中国では，左から右への横書きと上から下への縦書きはよく利用され，混在も相当ある。また，斜め書きの文字列さえ出現して

いる。研究としては，どのような文字方向でも，また，どのような行方向でも認識できる方法を確立しておく必要がある。 

本研究では，ブロックグループ手法を使って文字列構成要素に分割し，各文字列構

成要素に対して文字方向推定して正規化し，文字方向正規化された文字列を文字列方向

量子化し，オンライン手書き文字列のストロークから多次元の特徴値を抽出し，そして，

仮分割をして仮切り出しポイントを生成し，仮切り出しポイントをさらに多次元の特徴

値にSVMの手法を適用することで，文字列の切り出しポイント候補を生成する。文字

列分割候補が生成された後，正確な認識結果を得るためには，パス評価をする必要があ

る。パス評価には，文字認識エンジンから得た得点，文字列パタンのサイズ，位置関係，

幾何学モデル，文脈などの情報を統合して，Viterbi 探索を行って，最適な文字列分割

結果及び認識結果を判定する。  

上記の手法をオンライン手書き文字パタンデータベース（HANDS- Kondate 

_t_bf-2001_11）に適用した結果，右向き文字列の認識率は92.22%であり，左向き文字列

の認識率は92.93%，下向き文字列の認識率は91.60%，上向き文字列の認識率は91.52%

になった。 横書き，縦書き，斜め書きが混在する文字列を横書きに近い率で認識できるようになった。結果として，文字方向および行方向に依存しないオンライン手書き枠なし文字列認識について大幅な認識率向上を達成し，実用レベルになった。これは，タブレットPCや対話型
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電子白板などでの自由な筆記認識に有効である。研究結果としてはアイラボ株式会社と

の共同研究である。 
将来の課題として，最近の機械学習手法を取り入れてパターン処理・認識技術，畳

み込みニューラルネットワーク(CNN)によるより良い精度の文字列認識を目指す。 

第１章「緒論」では、本研究の研究背景と研究目的について述べる。そして、本論

文の構成について述べる。 

第２章「最新動向」では、本研究に関連する最新動向について述べる．つまり，従

来のオンライン手書き文字列認識技術，オンライン文字方向および行方向自由の文字列

認識技術，及び文字方向および行方向自由文字列認識の各研究分野について先行研究を

紹介し，本研究の位置づけを明らかにする。 

第３章「文字認識システム」では、デジタルペンなどから入力された時間情報を有

するオンライン手書き文字パタンを処理する手書き文字認識システムについて述べる。

ここでは，オンライン文字認識手法とオフライン文字認識手法を統合している。まず，

多字種文字認識の高速化のために大分類についての概要を述べる。次に，オンライン手

書き文字認識とオフライン手書き文字認識についてぞれぞれの概要，及びそれを構築す

る各構成要素を述べる。そして，統合手法を述べる。 

第４章「文字方向自由オンライン手書き文字列認識」では、文字方向の推定と仮定、

行方向の推定、仮分割切出し手法に基づく文字方向自由オンライン手書き文字列認識手

法について述べる。 ここでは，文字列パタンに対するサポートベクトルマシン（SVM）

を用いたストロークの分類方法，候補ラティスの生成方法，及び確率モデルによる文字

列候補パスの評価基準とパラメーターの最適化について述べる。 

第５章「言語の文脈処理と幾何学的な文脈処理」では、文字列認識精度を向上する

ために重要な評価要素技術である言語の文脈と幾何学的な文脈処理について述べる。 

第６章「実験」では、評価実験の設定と実験結果，実験結果の分析について述べる。  

第７章「結言」では、本論文の成果をまとめた上で，今後の課題について述べる。 
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1. Introduction 

1.1 Background 

Due to the wide spread of tablets, electronic whiteboards, and digital pens as well as the 

expansion of touch-based smart phones, users can write more freely as on a piece of paper and 

input handwriting into computers. Such freely handwritten text brings new challenges to remove 

writing constraint from on-line handwriting recognition. Asian people whose languages are 

Chinese origin often write text horizontally, vertically or even slantingly in a mixed way. 

Moreover, users may draw figures and write text along slanted lines in figures. Separation of 

text and non-text is treated in other papers [1, 2] and this paper focuses on the recognition of 

text of arbitrary line direction and character orientation. 

Most of the previous publications and systems for on-line handwritten text recognition 

assume either horizontal or vertical lines of text [3-9], while we are trying to erase all writing 

constraint from on-line text input. We proposed a model to recognize mixtures of horizontal, 

vertical and slanting lines of text with arbitrary character orientation [10] and implemented a 

system [11]. Then, we improved segmentation by SVM for arbitrary line direction but normal 

character orientation [12]. We call it the segmentation-updated system.  Unfortunately, its 

performance was inadequate for real use. Jin et al. proposed a line-direction free method for 

on-line unconstrained cursive handwritten Chinese word recognition while assuming normal 

character orientation [13]. It was designed for short handwritten text line recognition and the 

gravity center information of characters was used to detect the line direction. For both 

line-direction-free and character-orientation-free recognition, however, the gravity centers are 

not adequate to detect the both. 

Unlike isolated character recognition, handwritten string recognition faces the difficulty of 

character segmentation because characters cannot be reliably segmented before they are 

recognized. Moreover, characters tend to be written more cursively. On top of the segmentation 

problem, handwritten text recognition of arbitrary line direction and character orientation must 

assure high recognition rate for any line direction and character orientation, and it must perform 

smoothly even where line direction and character orientation change. Moreover, its recognition 

speed must be quick enough on a usual platform and its memory requirement must be not too 

large compared from recognizers of horizontally handwritten text. 

This paper we present an updated system for on-line handwritten Japanese text of arbitrary 

line direction and character orientation. We follow the over-segmentation-based approach due to 
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its advantages against the segmentation-free approach as discussed in [14]. The 

over-segmentation approach is to segment wherever characters must be segmented but may 

segment individual characters, which can be merged when they are recognized. 

1.2 Objective 

 The research objective is to develop a handwriting recognizer based on the existing 

system [10, 11], which can recognize line direction free and character orientation free 

handwritten Japanese text.  

The Japanese is a large character set language, which includes thousands of ideographic 

characters of Kanji, two sets of phonetic characters (Hiragana and Katakana), alphanumeric, and 

symbols. Most Kanji character patterns are composed of multiple sub patterns called radicals, 

which are shared among many Kanji character patterns. 

Due to the text lines are free from line direction and character orientation, the unstable line 

direction and character orientation it is a challenging research work to segment text line 

correctly and segment characters correctly for every line direction before recognition as human 

for machine. To solve the problem, we attempt to: 

� Text line segmentation 

 Segment text lines compose of horizontal, vertical and slanted lines of text with 

arbitrary character orientation into text line elements. 

� Over-segmentation 

 Decide segmentation points and non-segmentation points in quantized 4 directions 

using the two-stage classification scheme. 

� Evaluate the likelihood of candidate segmentation paths. 

� Train and decide the weight of each factor automatically by a genetic algorithm. 

� Optimal path can be found by the Viterbi search. 
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2. State Of The Art 

In this chapter, we mainly review the state-of-the-art recognition methods for on-line 

handwritten text recognition, and on-line handwriting line direction free and character 

orientation free text recognition  

2.1 On-line Handwritten Text Recognition 

With the development of pen-based or touch-based devices, such as tablet PCs, digital pens 

and electric whiteboards and so on, the writing area of these devices becomes larger than before. 

People tend to write text continuously with little constraints. The demand for improving the 

handwriting text recognition is still increasing to meet potential many applications. On-line 

handwritten text recognition has been receiving larger attention, especially for unconstrained 

text recognition. 

In general, handwritten text pattern recognition methods divided into on-line recognition 

and off-line recognition [15]. On-line recognition recognizes text patterns captured from a 

pen-based or touch-based input device where a series of trajectories of pen-tip or finger-tip 

movements are recorded, while off-line recognition recognizes text patterns captured from a 

scanner or a camera device as two dimensional images. Due to the on-line handwritten text 

pattern includes both temporal information of pen-tip or finger-tip movements and spatial shape 

information, the on-line handwriting recognition can yield higher recognition accuracy than 

off-line recognition. Moreover, on-line handwriting recognition provides friendly interaction 

and adaptation capability for users, such as the recognition result is showed and updated at the 

same time while writing, user can respond to the recognition result to correct misrecognition. 

The research on on-line handwriting recognition started in the 1960s and has been 

receiving intensive interest from the 1980s. Tappert et al. [16] made a comprehensive survey 

before the 1990s. Nakagawa gave a survey focused on on-line handwritten Japanese characters 

recognition [17]. Since the 1990s, the research efforts have been aiming at the relaxation of 

constraints to ensure successful recognition, such as writing in boxes and the compliance with 

standard shapes. In recent survey papers, Plamondon et al. [15] mainly reviewed the advances 

of western handwriting recognition. Liu et al. [18] reviewed the advances in on-line Chinese and 

Japanese handwriting recognition from the 1990s.Recently, Zhu et al. [19] reviewed the on-line 

handwriting Japanese character recognition and its practical applications. 

The handwritten Japanese/Chinese text recognition is more challenging than western 
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language due to the large character set. Japanese character set consists of various characters: 

symbols, numerals, hiragana and katakana (called Kana), and Kanji characters of Chinese origin. 

Hiragana and katakana are phonetic characters. Kanji characters are ideographic characters, 

which have divided into two classes: JIS (Japanese Industrial Standard) first level set and JIS 

second level. The JIS first level set contains 2,965common use characters, which are necessary 

for reading the newspaper, and the JIS second level set contains 3,390 characters less common 

and special characters for naming. 

Chinese characters sets consist of traditional Chinese characters mainly used in Taiwan, 

and simplified Chinese characters used in the mainland of China. The simplified Chinese 

characters includes two character sets, one contains 3,755 characters and the other contains 

6,763 characters, where the first set is a subset of the second one, were announced as the 

National Standard GB2312-80. The traditional Chinese set includes 5,401 characters. In both 

simplified and traditional Chinese, about 5,000 characters are frequently used [18]. 

Moreover, most Kanji/Chinese character patterns are composed of multiple sub patterns, 

called radicals, which are shared among many Kanji character patterns. In Kanji character 

patterns, some are simple consisting of a single radical, while others are complex with multiple 

radicals. 

In addition, the various writing styles also obstruct handwritten text recognition. The 

handwritten scripts are generally classified into three typical styles: regular style, fluent style 

and cursive style. The regular style is also referred to as block style or hand-printed style, which 

is written carefully with keeping fairly strict proper stroke number and order. The fluent style is 

often called “cursive” style, which is close to peoples’ practical writing and is written faster 

with fewer strokes, and some characters are connected together. The current recognition systems 

can recognize regular script with high accuracy, whereas the recognition of fluent or cursive 

style still remains unsolved and requires more intensive research efforts. The fluent or cursive 

script is the target of most recognition systems, which features greater variability of stroke-order 

and stroke-number within character and occurs frequently in practical writing. 

Therefore, it is impossible to segment characters unambiguously in handwritten text 

recognition. Many works have focused on resolving the segmentation problem. These proposed 

methods can be roughly classified into the following categories: segmentation-based method, 

and integrated segmentation and recognition method. 

2.1.1 Segmentation-based method 

The segmentation-based method attempts to segment characters before character 
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recognition solely according to geometric layout features, such as character size, position, and 

inter-relationship. 

Tseng et al. [20] proposed a segmentation method based on merging strokes and dynamic 

programming for the off-line handwritten Chinese characters recognition. It firstly extracts the 

strokes of the off-line characters to build the stroke bounding boxes. Then, the stroke bounding 

boxes are heuristically merged as a candidate character or a part of candidate character pattern 

using knowledge-based merging operations. Finally, the best segmentation boundaries are found 

by dynamic programming method. This method, however, is feasible only for neatly 

handwritten text. The segmentation performance mainly relies on the extracting stroke 

algorithm from characters. 

Lu et al. [21] proposed a method to segment handwritten Chinese destination addresses of 

mail pieces. It merges subassemblies of Chinese characters based on the structural features of 

Chinese characters and the topological relations of subassemblies, namely, left-right, 

upper-lower and inside-outside relations. This pure structure-based segmentation method, 

however, is only suitable for handwritten text patterns without connected characters. 

Zhao et al. [22] presented a two-stage approach to segment unconstrained off-line 

handwritten Chinese characters. In the first segmentation stage, according to the vertical 

projection and background skeleton, a horizontal handwritten Chinese character text is coarsely 

segmented into several blocks, and the blocks of connected characters are identified. The 

candidate segmentation points are found. In the second stage, connected characters are separated 

using geometric features of strokes, then the fine segmentation paths are extracted using fuzzy 

decision rules, which classify the candidate segmentation points. This segmentation method can 

resolve parts of connected characters. The segmentation accuracy of characters, however, is 

81.6% on 1,000 unconstrained handwritten Chinese character texts. Wei et al. [23] proposed a 

new approach for connected Chinese characters, where the best segmentation path can be found 

by genetic algorithm. 

Liang et al. [24] proposed a met a synthetic method to segment off-line handwritten 

Chinese character texts. For non-touching characters, it firstly applies the Viterbi algorithm to 

obtain the candidate segmentation paths, then a dynamic programming algorithm is applied to 

merge components. For touching characters, it firstly extracts candidate segmentation paths 

according to background and foreground information, and extracts peripheral features for each 

candidate segmentation path. Then the best segmentation path is found by the mixture 

probabilistic density function whose parameters are obtained by the EM algorithm. 

Furukawa et al. [25] proposed a segmentation method for online unconstrained handwritten 
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Japanese texts using off-stroke (between strokes) features. In this method, the handwritten text 

is pre-segmented into basic segments, and a segmentation graph is constructed, where a node 

stands for a candidate segmentation point, an edge stands for a candidate character pattern, 

which is created by merging one or more basic segments. Then, it extracts the features of each 

candidate character pattern, which include temporal and geometric features, and proposed 

off-stroke features within candidate character patterns and between candidate character patterns. 

Based on the assumption that each feature distribution fits a normal distribution, the candidate 

segmentation pattern likelihood can be calculated from these extracted features using a 

probabilistic model. Finally, an optimal segmentation path on the segmentation graph is found 

by dynamic programming (DP).The character segmentation rates, however, is 75.6% of all 

characters. 

2.1.2 Integrated segmentation and recognition method 

Handwritten Japanese/Chinese text recognition is challenging problem due to the fact that 

spaces between characters are not obvious, and many Kanji characters comprise radicals with 

internal gaps, as well as character touching. Without character recognition cues and linguistic 

context, characters in handwritten text patterns cannot be segmented unambiguously. A feasible 

solution to overcome the ambiguity of character segmentation is called the integrated 

segmentation and recognition method. Liu et al. [26] evaluated several common pattern 

classifiers based on this integrated segmentation and recognition framework, which includes 

neural classifiers, discriminative density models, and support vector classifiers, on handwritten 

numeral texts recognition. They demonstrate that superior text recognition performance can be 

achieved with appropriately designed classifiers even with simple pre-segmentation and without 

using geometric context in post-processing. 

The integrated segmentation and recognition method is classified into segmentation-free 

and over-segmentation-based methods [27], [28]. The two methods are also called implicit 

segmentation and explicit segmentation methods, respectively. Segmentation-free methods will 

be introduced in the next section. 

Over-segmentation-based methods [8], [10], [29], [30], [31], [32], [33], [34], attempt to 

split character patterns at their true boundaries and classify the split character patterns. 

Character patterns may also be split within them, but they are merged later. This is called 

over-segmentation. The over-segmentation-based method is mainly accomplished in two steps: 

over-segmentation and path search. The handwritten text pattern is firstly over-segmented into 

primitive segments, and each segment composes a single character or part of a character. The 

primitive segments are combined to generate candidate character patterns, and then a 
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segmentation lattice is constructed as shown in Figure 2-1, where a node stands for a candidate 

segmentation point and an edge stands for a candidate character pattern. Each candidate 

character pattern can obtain several similar character classes with the corresponding class scores 

by character recognition, and then segmentation-recognition candidate lattice is constructed, 

where each path in the lattice corresponds to segmentation-recognition paths (hypothesis), 

which is evaluated by combining the character recognition, linguistic context and geometric 

context. Finally, the optimal recognition result text is found by searching for the optimal 

segmentation-recognition path with maximum score or minimum cost. 

 

Figure2- 1 SegmentatioFigure2-1 Segmentation lattice. (SP is segmentation point and UP is undecided point.)  

(1) Path evaluation 

The key issue in over-segmentation-based text recognition is how to evaluate of candidate 

segmentation-recognition paths (segmentation hypotheses) in the candidate lattice. A desirable 

criterion should make the path of correct segmentation have the maximum score. Probabilistic 

model based on the maximum a posteriori (MAP) criterion [35] is one of the frequently used 

methods for segmentation hypothesis evaluation [8], [36], [37]. 

An early text class probability model can be found in [38].Assume that a handwritten text 

pattern X is segmented into a sequence of segments � = �1�2, ⋯, �� (note that there are many 

segmentation candidates even with the same text length), where �� stands for a candidate 

character pattern, and is assigned to a text class � = �1�2, ⋯,��, where character �� is assigned to 
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�� by a character recognition. The a posteriori probability of the text class is defined as: 

���|�� = �	(�, 
|�)

�

 (2-1) 

The segmentation candidate is constrained to have the same length of C, that is |�|=|�|=�. 

The candidate character patterns are represented by the feature vectors �=�1�2, ⋯, ��. To avoid 

summing over multiple segmentation candidates in Eq. (2-1), the optimal text class can be 

decided by 

 

�∗ = arg max� max� �(�, 
|�)  

 

 

This is to find for the optimal segmentation candidate S for each text class. Using the 

Bayesian law, � (�, 
|�) is decomposed into 

���, 
|�� =
���|�, 
��(�, 
)�(�)

=
���|�, 
���
|���(�)�(�)

 (2-3) 

Assuming context independence of character shapes, it can be approximated as: 

���, 
|�� ≈ ��������|�� , �������|��������
�

���

 

=����∏ 	
��,��|��

	
��

�
���  

=�(�)∏ �
��|��,��	(��|��)

	(��)

�
���  

 

(2-4) 

where �(��|��) stands for the probability of geometric context, the priori probability of text class 
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�(�) stands for the linguistic context. It is often approximated by a bigram language model for 

an open vocabulary: 

���� = �(��)�(��|����)

�

���

 (2-5) 

Assume that the character recognition is not related into the geometric context, �(��|��,��) 

can be replaced by �(��|��). Ignoring the geometric context, � (��|��) can be viewed as a 

constant, and the text class probability in Eq. (2-4) is approximately 

���, 
|�� ≈ �(�)�(��|��)�(��)
�

���

 (2-6) 

where �(��|��) stands for the posterior probability of the candidate character pattern �� being 

recognized as ��. In literature [38], � (��|��) is approximated by the output of a multi-player 

percept on (MLP) classifier.  

In handwritten Japanese text recognition, Nakagawa et al. [10] proposed a text class 

probability model incorporating the geometry of inter-character gap. The candidate pattern 

sequence is denoted by 
=�1�1�2�2,⋯,����, where �� represents the geometric features of the i-th 

character pattern, which includes the width and height of bounding box, and�� represents the 

geometric features between adjacent two character patterns. In the Eq. (2-3), �(�) is omitted 

because it is independent of text class. �(�) is estimated by a bigram model. Hence, �(�,
|�) is 

approximated by 

���, 
|�� = ���|�, 
���
|������ 

≈ �(��|��) × �(��|��)
�

���

�(��|������) × �(��|����)

�

���

�

���

 

 

(2-7) 

where �(��|��) is the likelihood of pattern �� with respect to class ��, which is estimated by a 

character classifier. �(��|��) and �(��|����+1) can be seen as character likeliness and 
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between-character compatibility, respectively. Finally, by taking log of the both sides in Eq. 

(2-7), the all score of a path is the summation of product of probabilistic likelihood in the 

right-hand side. The literature [31], [39], [40], [41] have used the similar evaluation criterion.  

If the character classifier is trained to be resistant to non-characters, namely, all defined 

classes are assigned low confidence values on non-character patterns. Without geometric 

context score, it can still give high text recognition accuracy [18]. The text pattern is classified 

to 

�∗ = arg max������(�|�) = arg max������(�|�)�(��|��)
�

���

 (2-8) 

By assuming P(C) is equal, the classification criterion is further simplified to 

�∗ = arg max��(�|�) = arg max��(��|��)
�

���

 (2-9) 

A text pattern can be segmented into variable lengths of character pattern sequences. 

However, since the likelihood measure is usually smaller than one, the summation criterion is 

often biased to paths with fewer characters, namely short path. This will raise the segmentation 

error of merging multiple characters into one candidate pattern. To overcome this bias, Tulyakov 

et al. [42] proposed a normalized text probability score as follows: 

�∗ = arg max� ��(��|��)
�

���

�
�/�

 (2-10) 

The normalized criterion, obtained by dividing the summation criterion by the number of 

segmented characters (segmentation length), tends to over-split characters.  

To solve the problems, Zhu et al. [8] proposed a robust context integration model for 

on-line handwritten Japanese text recognition. By labeling primitive segments, the proposed 

path evaluation criterion can not only integrate the character shape information into recognition 

by introducing some adjustable parameters, but also is insensitive to the number of segmented 

character patterns because the summation is over the primitive segments. The path evaluation 
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criterion is expressed as follows: 

���,�� = �{����� + ������ − 1��log�� + ���log������
��
�

���

�

���

+ ��� � log	�(��|�
�)

�������

������

} + �� 

(2-11) 

where �1, �2, �3 ,�4,�5, and �6 stands for the probabilities of trigram (�(��|��−2��−1)), character 

pattern sizes (�(��|��)), inner gaps (�(��|��)), single-character positions (�( 	�� |��)), 

pair-character positions (�(	��|��−1��)) and character recognition (�(��|��)), respectively. �� is the 

number of primitive segments contained in the candidate character pattern ��. �ℎ1,�ℎ2 (ℎ=1~7) 

and � are the weighting parameters. �� is the between-segment gap feature vector. If the adjacent 

two segments is within a true character, the label is NSP (non-segmentation point), otherwise is 

SP (segmentation point). Due to the character recognition is estimated by the combination score 

of on-line and off-line isolated character recognizers, Zhu et al. [43] divided the character 

recognition into two parts � (���� |��) and � (����� |��), where ���� denotes the on-line features of 

��, �����
 denotes the off-line features of ��. � (���� |��) and � (���� |��) are estimated by the score 

of the on-line recognizer and off-line recognizer, respectively. Then the path evaluation criterion 

in Eq. (2-11) is changed as follows: 

���,�� = �{����� + ������ − 1��log�� + ���log������
��
�

���

�

���

+ ��� � log	�(��|�
�)

�������

������

} + �� 

(2-12) 

Under this same path evaluation criterion, Gao et al. [44], [45] reduced the text recognizer 

size for hand-held devices by compressing each component in this text recognition system. It 

compresses MQDF2 based off-line character recognizer by linear discriminant analysis (LDA), 

vector quantization and data type transformation, and selects an elastic matching based on-line 

recognizer. This recognition method has been successfully applied in smart phones and tablets. 



 

21 

 

In handwritten Chinese text recognition, to overcome the problem of sensitivity of the path 

length, Wang et al. [46] used the similar path evaluation criterion for real-time recognition of 

on-line handwritten sentences. The path evaluation is the combination of multiple contexts as 

follows: 

���,�� = �{��log����|��� + ��� �����|����� + ��log����|�����
�

���

+ �� log P�!�� = 1������ + ��log�(�����, ��������
+ � log P�!�! = 1������} 

(2-13) 

where �(��|��) is given by the character classifier, �(��|��−1) is a bigram language model, 

�(��| ���� ) and �( !�! =1| ���� ) stand for the unary class-dependent (uc) and unary 

class-independent (ui) geometric score, respectively. �(��−1,��|����) and �(!�!=1|����) stand for 

binary class-dependent (bc) and binary class-independent geometric score (bi), respectively. 

Compared to literature [33], they added unary and binary class-independent geometric 

information to evaluate the path.  

Wang et al. [32] also used the similar path evaluation criterion [46] for off-line 

unconstrained handwritten Chinese text recognition. Paths are evaluated from the Bayesian 

decision view by combing character recognition scores, class-dependent and class-independent 

geometric contexts, and linguistic context. The recognition performance on the HIW-MW test 

set [47] achieved the character-level accurate rate of 91.86% and correct rate of 92.72%using 

word class bigram. 

Li et al. [34] proposed a new probabilistic model for off-line unconstrained handwritten 

text recognition to evaluate possible segmentation hypotheses. The path evaluation criterion as 

shown in Eq. (2-13)can be implemented in a simply way that follows Bayesian rules using just 

two classifiers, one is MQDF based isolated character recognizer, which has been trained by a 

linear discriminant analysis (LDA) –based negative training strategy using non-character 

patterns, the other is a the character verifier to check whether a candidate character pattern is 

true character or not, which can be transformed to posterior probability of a five-class MQDF 

classifier, including Chinese class, digit class, punctuation class and two classes of 

non-characters. The proposed method achieved the character-level recognition rates of 80.15% 

with a bigram language model on HIT-MW test set. 
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Zhou et al. [9] proposed a new method for on-line handwritten Chinese/Japanese text 

recognition by defining the high-order semi-Markov conditional random fields (CRF) on the 

candidate lattice to directly estimate the posterior probability of segmentation-recognition paths. 

In this semi-CRF model, it fuses the scores of character recognition, geometric and linguistic 

contexts in a principled MAP framework. This method has yielded superior text recognition 

performance compared to the state-of-the-art methods on the test sets of CASIA-OLHWDB 

(Chinese) [48], TUAT Kondate (Japanese) and ICDAR 2011 Chinese handwriting recognition 

competition. 

The weighting parameters in the path evaluation criterion were sometimes determined by 

trial and error to yield higher text recognition performance. In recent years, some works have 

applied the supervised text-level learning approach to estimate the weighting parameters by 

minimizing the text recognition error. Zhu et al. [8] optimized the weighting parameters for 

on-line handwritten Japanese text recognition using genetic algorithm (GA). They also 

compared with the minimum classification error (MCE) criterion [49] optimized by stochastic 

gradient decent [50], and showed that GA-based optimization method yields better text 

recognition performance than MCE. Wang et al. [46] optimized the combing weights by MCE 

learning for on-line handwritten Chinese text recognition. The parameters in MCE learning are 

learned by stochastic gradient decent. Zhou et al. [36] proposed learning the weights by 

minimizing the negative log-likelihood (NLL) loss under the framework of CRF, and compared 

its performance with MCE criterion. Zhou et al. [9] modified NLL loss by adding a margin term 

to improve the generalization performance of parameter learning in semi-CRF. 

(2) Path search 

The search of optimal path for handwritten Japanese/Chinese text recognition is not trivial 

due to the large number of candidate segmentation-recognition paths in the candidate lattice. 

Moreover, the search is complicated when using word-level language models because the word 

segmentation is again a combinatorial problem [32].The exhaustive search strategy that 

computes the scores of all segmentation-recognition paths and then selects the optimal one is 

computationally expensive. 

Heuristic search algorithms that evaluate only a portion of segmentation-recognition paths 

have been commonly used in handwritten text recognition. The speech recognition field has 

contributed many efficient search algorithms based on dynamic programming (DP) and beam 

search [51]. 

If the segmentation-recognition path is scored by the accumulated cost form, the optimal 
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path can be easily found by dynamic programming algorithm [8], [10], [39], [40], [41]. Under 

the normalized criterion, however, DP algorithm does not guarantee finding the optimal path. 

Beam search strategy has been employed. Among the partial paths ending at an intermediate 

node in the candidate lattice, beam search retains multiple partial paths with high scores for 

extension, the retained partial paths are also called beam width. All the retained partial paths of 

the parent nodes are extended to each child, where several high-score partial paths are again 

retained. At the terminal node, the path of highest score in the retained paths is as the optimal 

path. Liu et al. [26] used the beam search to find the optimal result for handwritten numeral text 

recognition.  

On the other hand, according to the order of node generation in the heuristic research, the 

search algorithms can be divided into character-synchronous and frame-synchronous search [27]. 

The frame-synchronous is also called time-synchronous search. Liu et al. [52] proposed 

lexicon-driven text recognition approach for Japanese mail address reading using 

character-synchronous beam search strategy. The all address phrases are stored in a tri structure 

lexicon. Due to the beam search is used to expand all the nodes of same depth in the search 

space synchronously and proceeds by depth until there is no open node to expand, the 

character-synchronous beam search is appropriate for lexicon-driven text recognition. Zhu et al. 

[53] proposed lexicon-driven approach for on-line handwritten Japanese disease names 

recognition using frame-synchronous beam search. It restricts the character categories of 

recognizing each candidate character pattern from the tri lexicon of disease names and 

preceding paths during path search, as well as the length of disease names. The beam search is 

used to expand all the nodes of same segment in the search space. 

2.2 On-line Orientation Free Handwriting Text Recognition 

Onuma et al. [11] proposed an on-line handwritten Japanese text recognition system that is 

liberated not only from writing boxes or rules lines but also from constraints on line direction 

and character orientation. This system first separates freely written text into text line elements, 

second estimates the line direction and character orientation, third hypothetically segment it into 

characters, fourth apply character recognition and finally select the most plausible interpretation 

by evaluating the likelihood, the method is working for a mixture of vertical, horizontal and 

skewed lines with arbitrary character orientations. But the recognition rate is not enough for the 

real use. 

Jin et al. [13] proposed a method for on-line unconstrained cursive handwritten Chinese 

word recognition. By a novel gravity center balancing method, the orientation ranging from 0°
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to 360°of handwritten words can be detected. After stroke extraction and breaking the strokes 

which may belong to two characters, over-segmentation is performed by a heuristic merging of 

strokes. By searching the paths generated from the over-segmentation result, considering both 

recognition and lexicon information, the handwritten word with characters even connected or 

partially overlapped can be recognized.  

Jin et al. [13] proposed a line-direction free method for on-line unconstrained cursive 

handwritten Chinese word recognition while assuming normal character orientation [13]. It was 

designed for short handwritten text line recognition and the gravity center information of 

characters was used to detect the line direction. For both line-direction-free and 

character-orientation free recognition, however, the gravity centers are not good enough to 

detect the both. 

Chiang et al. [54] present a general text recognition technique to handle non-homogeneous 

text by exploiting dynamic character grouping criteria based on the character sizes and 

maximum desired string curvature. This technique can be easily integrated with classic OCR 

approaches to recognize non-homogeneous text. In our experiments, we compared our approach 

to a commercial OCR product using a variety of raster maps that contain multi-oriented, curved 

and straight text labels of multi-sized characters. Their evaluation showed that their approach 

produced accurate text recognition results and outperformed the commercial product at both the 

word and character level accuracy. Text recognition is difficult from documents that contain 

multi-oriented, curved text lines of various character sizes. This is because layout analysis 

techniques, which most optical character recognition (OCR) approaches rely on, do not work 

well on unstructured documents with non-homogeneous text. Previous work on recognizing 

non-homogeneous text typically handles specific cases, such as horizontal and/or straight text 

lines and single-sized characters.  
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3. Architecture of Japanese Text Recognizer 

3.1 On-line Character Recognition 

In this chapter, we describe the on-line character recognition, composed of pre-processing, 

feature points extraction and two types of on-line recognizer LTM and MRF. To guide the 

selection of on-line recognizer in compression of handwritten text recognizer, we further 

evaluate both on-line recognizer in recognition rate, memory cost and time cost. 

3.1.1 Introduction 

The study of on-line character recognition started in the 1960s and has been receiving 

intensive concerns from the 1980s. Early works of on-line Japanese character recognition have 

been reviewed in [17] [18]. The newest survey described in [55]. The comprehensive survey of 

applying handwritten character recognition to PDA and Tablet begun before 1990 [56].  

On-line character recognition mainly focus recognizing pen-based and touch-based input 

handwritten character patterns, often with writing box limitation for character pattern input. The 

on-line pattern is sequence of coordinates of pen-tip which sample the coordinates along the 

path from pen-down to pen-up.   

The on-line handwriting recognition has a number of distinguishing features, which can be 

exploited to get more accurate results: 

1. It is a real time process. It captures the temporal and dynamic information of the pen 

trajectory. This information consists of the number and order of pen-strokes, the direction of the 

writing for each pen-stroke and the speed of the writing within each pen stroke.  

2. Very little pre-processing is required. The operations, such as smoothing, de-slanting, 

de-skewing, detection of line orientations, corners, loop and cusps are easier and faster with the 

pen trajectory data than on pixel images.  

Since the each coordinate point of character patterns is extracted in real-time, it includes 

not only the location information and time cost of each stroke but also the order of stokes. 

Although more information of character pattern stored in on-line pattern, the off-line character 

recognition obtain the better recognition results in the character recognition literature. 

Nevertheless, now, Liu etc. have proposed novel method of directly extracting off-line feature 

vector from an on-line pattern, which ensure the off-line recognition method can be employed to 

enhance the on-line character recognition, together with on-line character recognizer. Therefore, 
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in this paper, we use on-line and off-line combined character to character recognition for text 

recognition. The off-line recognition methods will described in Chapters 3. 

3.1.2  Linear normalization 

Linear normalization is considered to be the most important pre-processing factor for 

on-line character recognition. In fact, linear normalization is linearly mapped the character 

pattern onto a standard plane by interpolation or extrapolation. The size and position of 

character is controlled such that normalized plane in x and y dimension is filled. The 

implementation of interpolation/extrapolation is influential to the recognition performance [56, 

57]. After linear mapping, the character pattern is not deformed except the aspect ratio changes. 

For ease of feature extraction and classification, it is better to fill both dimensions of 

normalized pattern (standard pattern). However, in this case, the deformation is enlarged. In 

aspect ratio adaptive normalization (ARAN), however, the dimensions of the standard plane are 

not necessarily filled [58]. Depending on the aspect ratio, the normalized image is centered in 

the plane with one dimension filled. Assume the standard plane is square and the side length is 

denoted by L. Denote the width and height of the normalized character image as W2 and H2, the 

aspect ratio is defined by 

�� = ��� ��⁄ ,													if		�� < 	���� ��⁄ ,															otherwise
										 (3-1) 

The normalized pattern is filled one dimension by max (W2, H2) = L. That is, to keep the 

aspect ratio unchanged, the normalized image does not necessarily fill both dimensions. 

According direction of mapping, the linear normalization can be divided into the forward 

mapping and backward mapping. Table 3-1 lists the coordinates mapping of linear 

normalization. "	and # are computed by Eq. (3-2). 

Table3- 1 Mapping of linear normalization. 

Method Forward mapping Backward mapping 

Linear 
$ ′ = "$ $ = $ ′ "⁄  

& ′ = #& & ′ = y #⁄  
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'" = (� (�⁄# = )� )�⁄ 									 (3-2) 

3.1.3   Feature points extraction 

To reduce the computation complexity and discard repeated sampled coordinates, for 

on-line character recognition, using the feature points to express the on-line pattern rather than 

original coordinate sequence of the pattern is proved effective and efficient. Before feature 

extraction, the input pattern is normalized to 128 ×128 pixels by linear normalization described 

as section 3.1.2. For each stroke, first, the start and end points are picked up as feature points; 

then, the point farthest from the straight line through adjacent feature points is selected as a 

feature point while the distance is greater than a threshold. This process continues recursively 

until no more feature points are selected [59]. The process of feature extraction is shown by Fig. 

3-1. 

 

Figure3- 1 Process of feature points extraction 
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3.1.4  MRF for character recognition 

MRFs can effectively integrate the information between neighboring pen-points such as 

binary features and triple features [60] and they have been successfully applied to Off-line 

handwritten character recognition [61] and on-line stroke classification [62]. However, MRFs 

have not been applied to on-line handwritten character recognition; current on-line handwritten 

character recognition tends to use HMM-based models (note that HMMs can be viewed as a 

specific case of MRFs). 

Cho et al. [63] propose a Bayesian network (BN) based framework for on-line handwriting 

recognition. BNs share similarities with MRFs. BNs are directional acyclic graphs and model 

the relationships between the neighboring pen points as conditional probability distributions, 

while MRFs are undirected graphs and model the relationships between the neighboring 

pen-points as probability distributions of binary or triple features. Introducing weighting 

parameters to MRFs and optimizing them based on CRFs [64] or MCE [65] may bring even 

higher recognition accuracy; CRF has been successfully applied to on-line string and off-line 

word recognition [66, 67].  

(1) Overall process of character recognition by MRF 

The process of using MRF to on-line character recognition is described as follows. The 

input pattern is linearly normalized to standard size with aspect ratio unchanged. Then, we 

extract feature points by the algorithm proposed by Rammer, described in Section 3.3. Using the 

extracted feature points to express the structure of an input pattern is effective and efficient than 

using all pen-tip coordinate points sampled along the pen moving trace. Since in such case, it 

can not only improve the accuracy but also low the time cost of recognition [68] [69]. At last, 

we employ MRF model to match the feature points of input unknown character pattern with the 

states of each character class and obtain a similarity between input character pattern and each 

character class. Finally, we consider the character class with the largest similarity as the 

recognition result. 

(2) MRF for character recognition 

We note feature points from an input pattern as sites 
 = *��, ��, ⋯ , �"+ and states of a 

character class C as labels, = -��, ��, ⋯ , �#..  The mapping form S to L during character 

recognition notes as / = {�� = �� , �� = �� ⋯ , �� = ��} called as a configuration.  

The feature vector extracted from feature points of an input pattern is considered as the 

observation set O. According to Bayesian theorem, the recognized character class is given by 
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Eq. (3-3). 

�∗ = arg max
�

�	�|
� = arg max
�

�	���	
|��				 (3-3) 

Since exist more than one configuration F, P�0|C� can be further given by Eq. (3-4). 

�	
|�� = ��	
,|��					
���	�

 (3-4) 

Making the matching under all Fs is intractable, so we just consider the best figuration 

obtained by Viterbi algorithm. That is 

�	
|�� = �	
,��	
|�� = �	|���	
|��	
,��		 (3-5) 

The Hammersley-Clifford theorem establishes the equivalence between the Markov 

random fields [28]. 

�	|�� =
1� exp�−�	|���						 (3-6) 

where 1�/|�� = ∑ 3�$%�$ (/|�) is called the prior energy function and 3�$%(/|�) is called prior 

clique potential function defined on the corresponding�� . 4 = ∑ exp	(−1(/|�))%  is the 

normalization factor called partition function. 

Taking �(5,/|�) into consideration, we can obtain the global likelihood energy function 

given by Eq. (3-7). E (5|/&'(),�) is computed by Eq. (3-8) where 3�$*(5|/,�) is called the 

likelihood clique potential function. 

�	|���	�|��	
,�� =
1� exp�−�	|�� − �	�|��	
,���	 (3-7) 

 

�	�|,�� = ����(�|,�)

��

		 (3-8) 
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For simplicity, we consider only single-site cliques ��� = {��}  and pair-site cliques 

��� = {�� , ��} to construct linear chain MRF. From above two equations, we can obtain Eq. 

(3-9), where ���  is the label of a class C assigned to�� . 6��  is the unary feature vector 

composed of x and y coordinates of site �� ,6���� is the binary feature vector composed of 

differences of x and y between sites �� and ��, extracted from the combination of �� and ��. 

�	|�� + �	�|��	
,�� = �����	�|,�� + �����
��

	|���
��

													
= � ����� �������� ,�� + ����� ��������
��∈���

+ � ����� ������������ ,�� + ����� ����������
{��,��}∈���

 

(3-9) 

To derive the likelihood clique potentials from the negative logarithm of the conditional 

probabilities, we get the Eq. (3-10) from Eq. (3-9).  

���� �������� ,�� = −log��������� ,��		 (3-10) 

 

���� ������������ ,�� = −log� ������������ ,�� (3-11) 

Moreover, since a label just interacts with only the neighboring labels, the state transition 

probability can be employed to evaluate the prior energy function instead of the prior clique 

potential. 

�	|�� = �−� !���������� ,��	�

���

 (3-12) 

Therefore, the energy function is as follows: 
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�	�,|�� = �	|�� + �	�|����,��
= ��−� !��������� ,�� − � !� ������������ ,�� − � !����������� ,����

���

 (3-13) 

��������� ,��  and � ������������ ,��  are evaluated by Gaussian functions. ����������� ,��  is 

calculated as follows. 

����������� ,�� =
Number	of	transitions	from	�����to	��� 	

Number	of	sites	assigned	����� 	 							 (3-14) 

 

��������� ,�� =
Number	of	"�	to	��� 	

Number	of	"�	  (3-15) 

To train the MRF of each character class, we first initialize the feature points of an 

arbitrary character pattern among the training patterns of the character class as states of the 

MRF, set each unary feature vector of each feature point as the mean of the Gaussian function 

for each single-state, and set each binary feature vector between two adjacent feature points as 

the mean of the Gaussian function for each pair-state, and initialize the variances of those 

Gaussian functions and the state transition probabilities with 1. Then we use the Viterbi 

algorithm or the Baum-Welch algorithm to train the parameters of the MRF (the means and 

variances of Gaussian functions and the state transition probabilities). We repeat the training 

until the optimal parameters are obtained. 

3.2 Off-line Character Recognition 

3.2.1 Introduction 

Off-line character recognition is known as Optical Character Recognition (OCR), because 

the image of handwriting pattern is converted into bit map pattern by an optically digitizing 

device such as optical scanner or camera. The recognition is done on this bit map pattern data 

for machine-printed or hand-written text. The research and development is well progressed for 

the recognition of the machine-printed documents. In recent years, the focus of attention is 
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shifted towards the recognition of hand-written script. 

The major advantage of the off-line recognizers is to allow applying the electronic image 

process technology, including non-linear normalization and off-line feature. In recent years, 

nonlinear normalization (NLN) based on line density equalization, moment normalization (MN), 

bi-moment normalization (BMN), modified centroid-boundary alignment (MCBA), and their 

pseudo-two-dimensional (pseudo 2D) extensions all obtained good accuracy in handwritten 

character recognition. Moreover, as to off-line feature, the directional density feature and 

gradient feature extracted from character pattern also show more robust than feature points 

extracted directly from on-line pattern. 

3.2.2 Non-linear normalization 

Normalization regulates the size, position, and shape of character pattern, to reduce the 

shape variation between character patterns of the same class. Some strategies were proposed to 

deform the character shape with aim to reduce the within-class variation. The perspective 

transformation attempts to correct the imbalance of character width [70], the moment 

normalization attempts to rectify the rotation or slant [71], and the nonlinear normalization aims 

to equalize the line density [72, 73]. For slant normalization, the slant can also be estimated 

from character field context instead of moments [74]. In this thesis, we mainly focus on pseudo 

2D bi-moment normalization 

For the normalization of patterns, we employ the pseudo 2D normalization method. The 

coordinate mapping functions � '��,	&�		  and &'��,&�are obtained by linearly combining 

one-dimensional functions with the weight depending on another dimension as given by Eq. 

(3-16). The one-dimensional functions are obtained by applying 1D normalization to the 

projection functions of partial images (for on-line pattern, it can be considered as a imaginary 

image on a plane). 

#$�	$,%� = � &�	%�$�(
�

$)

%�	$,%� = � &�

�
(%)$�($)�

 (3-16) 

For an on-line pattern which is considered as imaginary image f(x, y) is partitioned into 

three horizontal soft strips by the weight function in y-axis: 

'��	$,%� = &�	%�'	$,%�, ( = 1,2,3. (3-17) 
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where 7+�&� are weight functions as given by Eq. (3-18) and H1 and yc are boundary and 

coordinate in y-axis of centroid for the character pattern. W0 is constant. Similarly, we obtain the 

three vertical soft strips.'��	$,%� = &�	$�'	$,%�, ( = 1,2,3. 

)*+
*, &�	%� = &� %� − %%� ,% < %�&�	%� = 1 − &�	%�,% ≥ %�&�	%� = &� %� − %�� − %� ,% ≥ %� .						 (3-18) 

The three horizontal strips �����,&�8 = 1, 2,3	project onto the x-axis as in Eq. (3-19).  

���	$� = �'��
�

	$,%�, ( = 1,2,3. (3-19) 

The projection functions of the three strips on x-axis, �,+($) 9 = 1,2,3, are used to 

compute three coordinate functions	�-(+)�$�, by using the bi-moment normalization (BMN). 

The three 1-dimensional coordinate functions are then combined into a 2D coordinate function 

as given by Eq. (3-20). The normalization composed of above two steps is commonly called 

P2DBMN. 

$�	$,%� = -&�	%�$���	$� + &�	%�$���	$�,% < %�&�	%�$���	$� + &�	%�$���	$�,% ≥ %� (3-20) 

To obtain	�-(�)�$�, 8 = 1,2,3. by BMN, the second-order moments are split into two parts 

at the centroid:	:�.�� and :�.�� in x-axis, :.���	and :.��� in y-axis. The bi-moments are computed 

from the projection of each strip as given by Eq. (3-21). The centroid of each strip is computed 

by Eq. (3-22). The boundaries of the input pattern are re-set to ;��� − 2<:�.��		, ��� + 2<:�.��=and 

;&�� − 2<:.���	,&�� + 2<:.���=. For the x-axis, a quadratic function  :��� = >�� + �� + �	 lings 

three points ?��� − 2<:�.��	, ��		� , ��� + 2<:�.��@to normalized coordinate (0, 0.5, 1), and similarly, 

a quadratic function A(&)works for the y-axis. Finally, the coordinate functions are given by Eq. 

(3-23).  
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)**
***
+
***
**,.���� =

∑ �$ − $�������	$�����
�∑ ���	$�����

�

.��� =
∑ �$ − $�������	$��!��

�∑ ���	$��!��
�

.���� =
∑ �% − %�������	%�����

�∑ ���	%�����
�

.��� =
∑ �% − %�������	%��!��

�∑ ���	%��!��
�

 (3-21) 

 

)*+
*,$�� =

∑ $���($)�∑ ���($)�%�� =
∑ %���(%)�∑ ���(%)�

						 (3-22) 

 

-$����	$� = .	$�$���($)%����	$� = 0(%)%���(%)
 (3-23) 

3.2.3 Directional feature extraction 

In the on-line character recognition, most of recognition methods are based on some sort of 

stroke matching technique. This usually involves finding which stroke of the input pattern 

corresponds to which stroke of the reference pattern, calculating the similarities between the 

input pattern and the reference pattern using stroke similarities. Recognition is accomplished by 

selecting the reference pattern having the greatest similarity to the input pattern. To keep high 

accuracy, input character pattern is required written with correct stroke numbers and by correct 

stroke orders. However, Japanese characters consist of many strokes and are written with 

varying stroke numbers and in varying stroke orders. So, these constraint make most systems 

inconvenient. Nowadays, methods permitting users to write characters with varying stroke 

numbers and in varying stroke orders have been developed. In recent years, the directional 

feature is extensively used in OCR and obtained better recognition rate than by on-line 

matching methods. 
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The implementation of direction feature extraction is various depending on the directional 

element decomposition, the sampling of feature values, the resolution of direction and feature 

plane, etc. Considering that the stroke segments of Japanese characters can be approximated 

into four orientations: horizontal, vertical, left-diagonal and right-diagonal, early works used to 

decompose the stroke (or contour) segments into these four orientations. Further, Liu etc 

proposed to decompose the stroke into eight, even 12 and 36 directions. Generally speaking, 

four and eight directional feature is widely used. Of course, decomposing the contour pixels into 

eight directions instead of four orientations (a pair of opposite directions merged into one 

orientation) significantly improved the recognition accuracy [75]. This is because separating the 

two sides of a stroke edge can better discriminate the parallel strokes.  

3.2.4 Blurring and sampling 

Each direction plane, with the standard size as the normalized image, need to be reduced to 

extract feature values of moderate dimensionality. A simple way is to partition the direction 

plane into a number of block zones and take the total or average value of each zone as a feature 

value. Partition of variable-size zones was proposed to overcome the non-uniform distribution 

of stroke density [76]. Overlapping blocks alleviate the effect of stroke-position variation on the 

boundary of blocks [77], yet a more effective way involves partitioning the plane into soft zones, 

which follows the principle of low-pass spatial filtering and sampling [78].  

In implementation of blurring, the impulse response function (IRF) of spatial filter is 

approximated into a weighted window, also called a blurring mask. The IRF is often a Gaussian 

function given by Eq. (3-24): 

ℎ	$,%� =
1

212�� exp3−
$� + %�

22�� 4	 (3-24) 

According to the Sampling Theorem, the variance parameter σ0 relates to the sampling 

frequency (the reciprocal of sampling interval). On truncating the band-width of Gaussian filter, 

an empirical formula was given in [77]: 

2� =
√26�1 			 (3-25) 

where B� is the sampling interval. At a location (x0, y0) of image f(x, y), the convolution gives a 

sampled feature value 
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	$�,%�� = ��'	$,%�ℎ	$ − $�,% − %��							
��

 (3-26) 

For ease of implementation, partition a direction plane into a mesh of equal-size blocks and 

set the sampling points to the center of each block. Assume to extract K ×K values from a 

plane, the size of plane is set to KB� × KB�. From Nd direction planes, the total number of 

extracted feature values is Nd × K2. 

The extracted feature values are causal variables. Power transformation can make the 

density function of causal variables closer to Gaussian [79]. This helps improve the 

classification performance of statistical classifiers. Power transformation is also called variable 

transformation [80] or Box-Cox transformation [81]. Power 0.5 is employed to transform the 

variables or feature vector. 

3.2.5 Dimensionality reduction 

In order to reduce the computation complexity, we use fisher discriminant analysis (FDA) 

to reduce the dimensionality of feature vectors. In the process of FDA, we need between-class 

scatter covariance 
� and within-class scatter covariance 
7 of training samples. Suppose there 

are C character classes (�1, �2, ⋯, ��) and the j-th class with �� training samples. The total 

training samples is N. Then, 
� and 
� are defined as: 

7" = ���$�� − $̅���$�� − $̅��#$�

���

�

���

 (3-27) 

 

7� = �9�($̅� − $̅)($̅� − $̅)#
�

���

 (3-28) 

where X={�12} ( j=1,2,…, C, i =1,2,…, Nj is set of samples with n-dimensions. �3C =
�

4�

∑ ���4�

���
 

and X5
C =

�

6
∑ ∑ x1

26�

2��
7
2��  are the mean vector of the j-th class and all classes, respectively. 
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Based on the Fisher discriminant criterion [101], the process of working out the 

transformation matrix is to find out the optimal ratio which makes the 
� as large as possible 

while making the 
� as small as possible, which is described as 

�%&� = arg max'|
�#7���#7"� | = [���� …�(] (3-29) 

where {(�|8=1,2,..,�} are m n-dimensional eigenvectors of 
8��
� corresponding to the � 

largest eigenvalues. (��� is the �×� matrix composed of the m n-dimensions eigenvectors. By 

the transformation matrix (���, we can reduce the dimensionality of feature vectors from 

n-dimensions to m-dimensions. 

3.2.6 MQDF-based off-line character recognizer 

The MQDF is the smoothed version of QDF, which performs Bayesian classification under 

the assumptions of multivariate Gaussian density for each class and equal a priori probabilities 

for all class. On an input pattern	� = (��, … 	 , ��)9, the QDF for class ωi(i=1,....,M), has the 

form 

!�:	(X,&�))� 	; − .�� + log	|∑
i
|

 �

�
			 (3-30) 

where .�and ∑+ denote the mean vector and the covariance matrix of class ω+, respectively. 

The QDF is actually a distance metric in the sense that the class of minimum distance is 

assigned to the input pattern. 

The QDF can be re-written in the form of eigenvectors and eigenvalues: 

!�	;,&�� = � 1<��*

���
�=��(; − .�))�� + � log

*

���
<�� (3-31) 

where	<�� , > = 1,2, … ,?,denote the eigenvalues of class wi sorted in decreasing order, and =��, 
j=1,2, … ,?, are the corresponding eigenvectors. Replacing the minor eigen values with a larger 

constant, the modified quadratic discriminant function (MQDF2) is obtained as 
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!�	;,&�� = 	� 1<��+

���
�=��(; − .�))�� +

1@� A�	;� + � log<�� + (B − C)
+

���
log<�� (3-32) 

where <�� and =��, j = 1,2,…,k denote the eigenvalue of class D+ sorted in decreasing order 

and the corresponding eigenvectors respectively, �  denotes the number of principal 

components and E:��� is the square Euclidean distance in the complement subspace shown in 

Eq. (3-33), the parameter F+ can be set as a class-independent constant as proposed by Kimura 

et al. [82] and  tr�∑+� denotes the trace of covariance. 

A�	;� = 	 ‖; − .�‖� − ��=��(; − .�))��+

���

 (3-33) 

 

@�:	 6E(∑i − ∑ λij
k
j=1 )

(B − C)
	=	

1B − C 	 � <��,

��+��

 (3-34) 

Then, the size of the off-line prototype dictionary G is dependent on the data type of the 

parametersui,	λij,H��,	δ+ which are noted as Tu,	Tλ,	Tφ,	Tδ, respectively. In our system,Tu,	Tλ  

and	Tφ are integers with 16 bits;	Tδ is a long integer with 32 bits. We can have the total size of 

the prototype dictionary given in Eq. (3-35), and N is the number of the character categories. 

S	:	N		×{n×(F-+k×F.)+k×F/+F0}		 (3-35) 

3.3 Recognizer Combination 

The on-line and off-line character recognizers are combined by a linear function [33]. 

Suppose a character pattern�� is recognized as a character class �� by the on-line recognizer and 

off-line one with their similarity scores ���1�  and����1� , respectively. Then, the confidence of the 

combined recognizer '�%(��  by the sum rule with class-independent linear combining parameters 

is given by the following formula: 

'�%(�� = �1�
��

�� + �2�
�;;

��  (3-36) 
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where �1 and �2 are parameters. We use the minimum classification error (MCE) criterion to 

optimize the parameters, which will be described in chapter 5. 
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4. Orientation Free On-line Handwritten Text 

Recognition System 

4.1 Introduction 

This chapter describes an on-line handwritten Japanese text recognition system that is 

liberated from constraints on line direction and character orientation. The recognition system 

first separates freely written text into text line elements, second estimates the line direction and 

character orientation using the time sequence information of pen-tip coordinates, third 

hypothetically segment it into characters using geometric features and apply character 

recognition. The final step is to select the most plausible interpretation by evaluating the 

likelihood composed of character segmentation, character recognition, character pattern 

structure and context. The method can cope with a mixture of vertical, horizontal and skewed 

text lines with arbitrary character orientations. It is expected useful for tablet PC’s, interactive 

electronic whiteboards and so on. 

4.2  Line Direction and Character Orientation 

Here, we define some terminologies. A stroke denotes a sequence of pen-tip coordinates 

sampled from pen down to pen up. An off-stoke is a vector from a preceding stroke to a 

succeeding stroke. Character orientation is used to specify the direction of character pattern 

from its top to bottom while line direction is used to designate the writing direction of a 

sequence of character patterns until it changes as shown in Fig.4-1. Although the line direction 

is the same as common sense, the character orientation might be the opposite from it. We define 

them in this way since they are consistent with pen-tip movement direction to write Japanese 

characters.  
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Figure4- 1 Character orientation and line direction. 

An on-line handwritten document, or often called (digital) ink document is formed by text 

lines and line drawings, and all of them are formed by a sequence of strokes. In this paper, we 

focus on text but it is made of arbitrary line direction and character orientation. 

A text line is a piece of text separated by new-line and large space and it is further divided 

into text line elements at the changing points of writing direction. Each text line element has its 

line direction as shown in Fig. 4-2. The line direction and the character orientation are 

independent. 

 

Figure4- 2 Text line element, Character orientation and line direction. 

4.3  Flow of Recognition Process 

The line-direction-free and character-orientation-free on-line handwritten Japanese text 

recognition system is composed of the steps shown in Fig. 4-3.  
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two consecutive text lines based on a heuristic cost function that takes different criteria into 

account. [86] Over-segments the stroke sequence by DP with a cost function reflecting the 

confidence that a given set of strokes belongs to one word, and the text lines are grouped by 

merging pairs of stroke clusters in aggressive steps. In [87], an efficient text line segmentation 

method, is proposed and demonstrated to be more effective than most of existing methods. 

The main idea of the method is employed for both temporal and spatial merge. 

 

Figure4- 4 Flow chart of text line segmentation process(figture from [87]). 

4.4.1 Line segmentation algorithm 

Inspired by the work in [87], in this study, we propose a four steps algorithm for text line 

segmentation: (1) Block grouping. (2) Pre-segmentation. (3) Temporal segmentation. (4) 

Temporal merge. 

(1) Block grouping 

In order to alleviate the computation cost, consecutive strokes with small off-stroke 

distance are merged as blocks. The off-stroke distance feature has been used in [12]. 

It is calculated from the ending point of the preceding stroke to the starting point of the 

succeeding stroke. An off-stroke distance (OD) is defined as 

�A =
G($� − $���)� + (%� − %���)�HI" ∗ 0.3

	 (4-1) 

where acs is the average character size, which is estimated by measuring the longer side length 



 

44 

 

of the bounding box of each stroke, sorting the lengths of all the strokes and taking the average 

of the larger 1/3 of them. (xi , yi) and (xi+1, yi+1) are the coordinate of the ending point of the 

preceding stroke and the starting point of the succeeding stroke, respectively. If the off-stroke 

distance between two successive strokes is smaller than a threshold, they are marked as 

belonging to the same block. 

 

Figure4- 5 Line segmentation - block grouping. 

(2) Pre-segmentation 

For pre-segmentation, we first define the off-stroke between two consecutive blocks as the 

off-stroke between the last stroke of the preceding block and the first stroke of the succeeding 

block. Off-strokes within a text line are usually shorter than those between text lines. If the 

off-stroke between two consecutive text blocks is longer than a threshold, this off-stroke is 

regarded as a segmentation position. The threshold is empirically set as five times the average 

character size in our experiments to guarantee merging within-line blocks but risk over-merging 

multiple text lines with short off- strokes between them. On splitting the sequence of blocks at 

segmentation positions, each sub-sequence is to be split into text lines in succeeding temporal 

segmentation considering the linearity of stroke blocks. 
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Figure4- 6 Line segementation - pre-segmentation. 

(3) Temporal segmentation 

After pre-segmentation, each subsequence of stroke blocks (also called a text line) can be 

split into multiple text lines at internal off-strokes (candidate separation points). Since local 

information in the block sequence is not reliable enough to segment the sequence, we adopt a 

classification based method with text-level training which can evaluate the segmentation with a 

global objective function. To segment the sequence, each off-stroke between blocks can be 

taken as a candidate separation point, and the combination of all the candidate separation points 

form a candidate lattice, where each edge represents a candidate text line and a path from the 

start to the end represents a partitioning of text lines. The paths are evaluated using a trained 

discriminant function with the global features of the segmentation as inputs and the optimal path 

is obtained by beam search. At the end of this step, the text lines that have very small size and 

do not overlap with other lines. 

 

Figure4- 7 Line segmentation - temporal segmentation. 



 

46 

 

 

Segmentation point and segmentation candidate lattice 

 

Temporal segmentation choose the best path 

Figure4- 8 Segmentation candidate lattice of a text line string with six blocks(six straight edges). Each internal 

node corresponds to an off-stroke between blocks. The curved edges denote text lines comprising multiple blocks. 

(4) Temporal merge 

After stroke classification (prior to text line grouping), some text strokes are misclassified, 

which will split a text line into multiple ones. The temporal merge module is designed to correct 

such stroke classification errors and merge the over-segmented text lines. For this stage, an 

SVM classifier is trained to make the merge/non-merge decision for each hypothesis. 

(5) Spatial merge 

In on-line handwritten text, strokes are mostly written in character order, but there are still 

some delayed strokes, which are added to a former character after a later character of the text 

line is written. In temporal grouping of text lines, such delayed strokes cause two types of 

segmentation errors: the block (or short text line) of delayed strokes is embraced by a long text 

line. And the ends of two collinear text lines are close to each other but are temporally separated 

by delayed strokes. The spatial merge module is intended to merge such over-segmented text 

lines. 
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4.5  Estimation and Normalization of Character 

Orientation 

This is made by the two steps as shown in Fig. 4-11. It produces multiple hypotheses and 

the succeeding recognition stages determine the best estimation. 

 

Figure4- 11 Flow processing of character orientation 

4.5.1 Estimation of character orientation 

When Japanese characters are written, principal pen movement within real strokes as 

shown in Fig. 4-12 is the same as the character orientation or π/2 counter clockwise to it. This is 

because Japanese characters, especially Kanji characters, are composed of downward and 

rightward strokes. Because of this, if we take the histogram of displacement direction of pen tip 

coordinates, we will see two peaks as shown in Fig.4-14. These peaks are not so stable if 

characters are few in a text line element, but they become more stable as the number of 

characters increases. Therefore, we can estimate the character orientation from the histogram of 

displacement direction for a text line element. Once, the character orientation is estimated,  the 

text line element can be recognized by rotating characters until their orientation become 

downward. Let us assume the intensity of the histogram at the angle θ as f (θ). Then, compute f 

(θ)∗ f (θ+π/2). This is to find the overlap between f (θ) and f (θ+π/2). If we can find a single and 

strong peak, this implies that the peak at θ and that of θ + π/2 are notable and θ is the character 

orientation. In order to make the peak detection more robust, we take convolution of f (θ) and 

the Gauss function g(δ) = exp(−δ2/σ2) to blur the peak as shown in Fig. 4-13,4-14 so that it 

works for slanted characters that have rightward strokes with slightly upward inclination. 

The system estimates the character orientation as 0, 30, 60 and so on, namely being 

quantized by 30 degrees, since is a tolerance of our character recognizer. 
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Figure4- 12 Pen movement 

 

 

 

 

 

 

 

Figure4- 13 Two main peaks in pen movement direction. 
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where u is the mean vector of all samples. We can obtain the optimal matrix Wopt, according to 

the following formula: 
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where {Wi i=1, 2,...,m} are m n-dimensional eigenvectors of ST corresponding to the m largest 

eigenvalues. Then we can reduce the extracted 21 geometric features according to the following 

formula: 
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4.7.3 SVM classification   

A handwritten text pattern is composed of many characters with a sequence of strokes, In 

Japanese, different kinds and complexities of characters: Kanji, Hiragana, Katakana, numeric 

characters and others are mixed. An input text pattern should be correctly segmented into each 

character as far as possible. It is difficult, however, due to the facts that spaces between 

characters are not obvious, many characters include multiple radicals with internal gaps and 

some characters are connected in writing. To solve these problems, a text pattern is 

over-segmented into a sequence of primitive segments so as to segment true segmentation 

points surely but may segment single character patterns into pieces, which could be combined in 

the later text recognition stage. Zhu et al. employ two-stage segmentation scheme [8]. In the 

first stage, each off-stroke (a vector from the last point of a previous stroke to the first point of 

the next stroke) is classified into non-segmentation point (NSP) and hypothetical one based on 

geometric features. Then, in the second stage, each hypothetical point is classified into 

segmentation point (SP) and undecided point (UP) using SVM model according to 

20-dimensional features extracted from an off-stroke, where a SP separates two characters at the 

off-stroke, an NSP indicates the off-stroke is within a character and a UP is interpreted either as 

a SP or an NSP. When it is interpreted as a SP, it is used to extract candidate character patterns 

beside it with nearest neighbor SPs or UPs interpreted as SPs. When it is interpreted as an NSP, 

it is considered within a character pattern and does not play a role for segmentation. We call a 
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sequence of strokes delimited by SP or UP as a primitive segment. 

In a character-position-free handwritten text pattern, however, spaces between characters 

are very unstable. We can't directly use the conventional handwritten text recognition model. 

The first stage in the above-mentioned recognizer may combine two characters since the space 

between them disappears. Therefore, we remove the first stage and only employ the second 

stage. 

The next concern is the classification of off-strokes into NSP, SP or UP. We may follow 

this scheme or change the scheme. In this paper, we compare two segmentation methods. The 

first one is the conventional method to classify off-strokes into NSP, SP or UP although all the 

parameters and thresholds are retrained according to the new training patterns. We call this 

method “candidate segmentation method”. On the other hand, we set every off-stroke as UP in 

the alternative method although we employ the output of SVM model in the text recognition 

stage. We call it “undecided segmentation method”. 

Namely, the first method classifies off-strokes into NSP, SP or UP, but the second method 

treats every off-stroke as UP. Both of the two methods, however, transform the output of SVM 

to segmentation probability value. Moreover, the segmentation probability value is combined 

into the optimal path evaluation in candidate segmentation-recognition paths. 

In segmentation methods, we need to extract more geometric features from an off-stroke in 

order to enhance the reliability of over-segmentation. Through investigation into related 

literatures, we employ all the useful geometric features proposed so far, i.e.56-dimensional 

features, to train SVM model. The detail will be described in the next subsection. 

SVM Model 

Support vector machines (SVMs) developed from statistical learning theory [90] for 

pattern recognition, have been successful applied to the handwriting segmentation task. Sun et 

al. [84] compared different supervised classifiers for classifying gaps between pieces of 

handwritten text to inter-word and intra-word classes, and found that SVMs outperform the 

other classifiers. Zhu et al. [12] employed SVM to determine segmentation point candidates for 

improving on-line freely written Japanese text recognition. Moreover, they showed that the 

character recognition rate by SVM-based segmentation are better than that by the three-layers 

neural network, although SVM method takes more training time than the neural network. Harbi 

et al. [91] also employed a linear kernel-based SVM classifier with temporal and spatial features 

for clock drawing segmentation, and showed this method outperforms the current 

state-of-the-art method on two collected datasets. 
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As for the character-position-free on-line handwritten text segmentation, we continue 

employ SVM classifier to segment each off-stroke with more geometric features. 

Support Vector Machine (SVM) 

Suppose we are given a training set��={(��,��)|�=1,⋯,�}�(�×�)�, where ����=	� stands for 

the feature vector of a training pattern i, and ����
��1,1�	 is an associated class label of a 

training pattern i, N is the number of training patterns, respectively. 

Then, by mapping from the space of Rn to the high dimension space H: 

�:�→���(�)�
��	�→
  (4-5) 

�� is mapped as: 

��� = ��� ,��|� = 1, …�� = {(����,�)|� = �, …�} (4-6) 

The key idea of SVM is to learn the parameters of the hyper plane in space H that has 

maximum margin to classify two classes on training set. 

To find the hyper plane w��+� = 0, it can be translated into the following optimization 

problem: 

� min:
1

2
�|�|�+ ����

��

s. t: � ≥ 0,�(�� + � ≥ 1 − �) (4-7) 

where ‖w‖ stands for the maximum margin, �� is the learning error of a training pattern i, C is 

the trade-off between learning error and maximum margin, respectively. 

Then, the feature vectors are mapped into an alternative space choosing kernel function ��� , ��� = �(�)�(��) for nonlinear discrimination. Consequently, it leads to the following 

quadratic optimization problem: 
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where α is a vector of N variables and each element %� corresponds to a training pattern (��,��). 

The solution of the optimization problem as shown in Eq. (4-8) is to find a vector %∗ to let 

W(α) is the minimum and the constraints are fulfilled. The classification of an unknown pattern 

xi made based on the sign of the following function '(�), where SV stands for support vector as 

shown in Fig. 4-22. 

'��� = �%∗
:��

�&��, ��+ �∗ (4-9) 

In this thesis, we set the target value of segmentation points as 1, and that of 

non-segmentation points as -1.We use SVMlight[92] to obtain the separating hyper plane by 

solving this optimization problem as shown in Eq. (4-9) on training patterns. This software 

efficiently solves classification problem with many thousand support vectors, and converge with 

fast optimization algorithm. 

 

Figure4- 22 Example of Support vectors (figture from [92] ). 

 

Features for SVM 

An off-stroke is evaluated by SVM model. We cover all the useful geometric features from 

the literature [54] and [12], and extract 56 features from each off-stroke. Table4-1 shows the 
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features and table 2 shows terms to derive the 56 features. Most of the features are normalized 

by an average character size (acs). The average character size is estimated by measuring the 

length of the longer side of the bounding box for each stroke, sorting the lengths from all the 

strokes and taking the average of the larger 1/3 of them. 

We just use order information for the on-line character recognition engine, but we do not 

use time information. Time information can be used to separate characters intentionally, but it 

causes mis-segmentation when a user stops writing in a character pattern. In automobile 

environment and even in ordinary environment, a user may stop writing or resume writing. 

Table4- 1 Terms to obtain 21 features. 

Symbol The definition of the symbol 

Bbp Bounding box of the immediately preceding stroke 

Bbs Bounding box of the immediately succeeding stroke 

Dbx Distance between Bbp and Bbs to x-axis 

If(line direction = L)Dbx = X coordinate of the left position of Bbp - 
X coordinate of the right position of Bbs 

else Dbx = X coordinate of the left position of Bbs - X coordinate of 
the right position of Bbp 

Dby Distance between Bbp and Bbs to y-axis  

If (line direction = D) Dby = Y coordinate of the top position of Bbp - 
Y coordinate of the bottom position of Bbs 

else Dby = Y coordinate of the top position of Bbs - Y coordinate of 
the bottom position of Bbp 

Ob Overlap area between Bbp and Bbs 

Dbsx Distance between centers of Bbp and Bbs to x-axis Dbsx = X 
coordinate of the center of Bbs – X coordinate of the center of Bbp 

Dbsy Distance between centers of Bbp and Bbs to y-axis Dbsy = Y 
coordinate of the center of Bbs – Y coordinate of the center of Bbp 

Dbs Absolute distance of centers of Bbp and Bbs 

Dfb Difference between Bbp_all  and Bbs   

If (Line direction = R or L ) Dfb = abs(Y coordinate of the top 
position of Bbp_all- Y coordinate of the top position of Bbs ) 

else Dfb = abs(X coordinate of the top position of Bbp_all- X 
coordinate of the top position of Bbs ) 
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Table4- 2 21 features for over-segmentation extracted from each off-stroke. 

Symbol The definition of the symbol 

f1 Time lapse of the off-stroke 

f2 Dbx/acs 

f3 Dby/acs 

f4 Overlap area between Bbp_all and Bbp_all/(acs)2 

f5 Dbx / width of Bbp 

f6 Dbx / width of Bbs 

f7 Dby / acs 

f8 Ob / (width * height of Bbp) 

f9 Ob / (width * height of Bbs) 

f10 Dbsx / acs 

f11 Ob / (width * height of Bbp) 

f12 Ob / (width * height of Bbs) 

f13 Ob / (acs)2 

f14 Dbsx / acs 

f15 Dbsy / acs 

f16 Dbs / acs 

f17 Dfb / acs 

f18 Length of the off-stroke / acs 

f19 Sine value of the off-stroke 

f20 Cosine value of the off-stroke 

f21 If(Line direction=R or L) (DBx / acs) / the maximum  (DBx / acs) in text 
else (DBy / acs) / the maximum(DBy / acs)in text 

4.8  Construction of SR-Lattice 

Each candidate character pattern is associated with a number of candidate classes with 
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confidence scores by character recognition. All possible segmentations and recognition 

candidate classes are represented by a sr-lattice as shown in Fig. 4-23, where each arc denotes a 

candidate segmentation point and each node denotes a character class assigned to a candidate 

character pattern. 

 

Figure4- 23 Segmentation-recognition candidate lattice. 

4.9  Search and Recognition 

We evaluates the lattice paths according to the path evaluation criterion first proposed by 

Zhu et al. [8] and formulated by Gao et al. [93] that combines the scores of character pattern 

size, inner gap, character recognition, single-character position, pair-character position, 

candidate segmentation point and linguistic context with weighting parameters estimated by GA. 

The optimal path can be found by the Viterbi search. 

Denote X = x1…xm as the successive candidate character patterns of one path, and every 

candidate character pattern xi is assigned candidate class Ci. Then, f(X,C) is the score of the path 

(X,C) where C = C1…Cm. The criterion for path evaluation is expressed as: 
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where bi, qi, xi, 4�, 4� , gji and gi are geometric features extracted whose details are explained 

below. The coefficients, λh1, λh2 (h= 1,…,7) and λ are weighting parameters, which are adjusted 

using GA to optimize the string recognition performance on a training dataset. 

We start from describing 4� and 4� since they are extended for line-direction-free and 

character- orientation-free recognition. We compute the center line of each text line using a 

linear regression line that approximates the centers of the bounding boxes of the primitive 

segments for the text line. The term 4� consists of two values. For line direction R or L, it is 

composed of vertical distances from the center line to the top and bottom of the bounding box. 

For line direction U or D, it is composed of horizontal distances to the left and right of the 

bounding box. They are shown in Fig. 4-24. 

The term 4� is composed of two values. For line direction R or L, it is composed of a 

vertical distance between the upper bounds and another vertical distance between the lower 

bounds of two adjacent candidate character patterns in a text line. For line direction U or D, it is 

composed of a horizontal distance between the left bounds and another horizontal distance 

between the right bounds of two adjacent candidate character patterns in a text line. They are 

shown in Fig. 4-24. 
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The term gji and the term gi comprise multiple features measuring the relationship between 

two primitive segments adjacent to a candidate segmentation point [93]. 

The values of geometric features bi, qi,	4�,	4�, gji and gi are normalized with respect to the 

average character size acs for scaling invariance. Several geometric features are shown in Fig. 

4-24, 4-25.  

The term xi denotes features for a candidate character pattern xi.  

Then, the probabilities are as follows. P(Ci|Ci-1,Ci-2) is the tri-gram context probability. The 

probabilities P(bi|Ci), P(qi|Ci), P(4�|Ci) and P(4�|Ci-1,Ci) are assumed to be normal distributions 

and model their logarithms by a quadratic discriminant function (QDF), which can be trained by 

training patterns. P(xi|Ci) is evaluated by the character recognizer that combining the scores of 

the on-line and off-line recognizers [18]. P(gji |Sb) is the probability that spacing between 

character patterns (Sb) appears as gji and P(gj|Sw) is the probability that spacing within a 

character pattern (Sw) appears as gj. As the result of over-segmentation in 3.4, UP is interpreted 

as either Sb or Sw in a sr-lattice. It is treated as Sb when it is between character patterns and Sw 

otherwise. SP is always treated as Sb and NSP is always treated as Sw. The probabilities P(gi |Sb) 

and P(gi |Sw) are approximated by the SVM classifier[93]. 

4.10 Optimization of Parameters 

We train all the weighting parameters λh1,λh 2 (h=1~7) and λ in Eq. (5-7). by the 

minimum classification error (MCE) criterion [40] or the genetic algorithm (GA), using training 

data of character-position-free text patterns to maximize the recognition rate on this training 

data. 

4.10.1 MCE  

Liu et al. [94] have applied this criterion on handwritten numeral string recognition to 

improve recognition performance. 

In the character-position-free handwritten text recognition, the weighting parameters Λ are 

trained on a training set �={��,��|�=1,⋯,�}, where �� denotes the ground-truth text class label 

of a training sample ��, and Nis the number of training samples. Each class � is assigned a 

discriminant score .(��,�,Λ). Following Juang et al. [49], the misclassification measure on a 

training sample from class �� is given by: 
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5�� ,� ,6� = −.�� ,� ,6�+ 78.	( 1� − 1
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where : is a positive number. When :→∞, 

5�� ,� ,6� = −.�� ,� ,6�+ .�� ,�̅ ,6� (4-12) 

where �̅� is the class label with the highest discriminant score in the closest rival class, namely, 

.�� ,�̅ ,6� = <=�#$#�.(� ,�,6) (4-13) 

The loss of misclassification using sigmoid function is computed by, 

7�� ,� ,6� =
1

1 + 9�%&(��,!�,")
 (4-14) 

where � is a parameter. Then, the loss of misclassification based on training set is defined as: 

>�6,�� =
1��7(� ,� ,6)

�

��

 (4-15) 

We use the stochastic gradient descent [50] to learn the optimal parameters in Eq. (4-15). 

The parameters are updated on each training sample by 

6�? + 1� = 6�?�− �(?) ∪ @7(� ,� ,6)|6 = 6(?) (4-16) 

where Λ(?) denotes the parameters on time t, �(?) is the learning step, U is related to the inverse 

of Hessian matrix and is usually approximated to be diagonal. 

As for the character-position-free handwritten text recognition, MCE is to find the optimal 

parameters in Eq. (4-15) by minimizing difference between the scores of the most confusing 

text class and that of the correct one. The discriminant function is the path evaluation criterion 

defined in Eq. (4-9). The rival segmentation-recognition path, which is the most confusable one 

with the correct one, is obtained by beam search. Assume the discriminant functions'� and'� for 

the correct path and rival one, respectively. The parameters are updated iteratively by: 
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6�? + 1� = 6�?�− ��?��7 A� ,� ,6�?�B (1 − 7(� ,� ,6�?�)('' − '#) (4-17) 

4.10.2 GA 

Zhu et al. [8] have reported that the GA-based parameter optimization method yields better 

recognition performance than MCE-based method for on-line handwritten Japanese text 

recognition. The GA-based method, however, takes more training times than MCE. 

The parameters are estimated by a GA on the training text patterns as follows: 

Step1 (initialization): Initialize N chromosomes with random values from 0 to 1, average 

fitness of the N chromosomes fold as 0 and time t as 1. 

Step2 (crossover): Select two chromosomes at random from N chromosomes. Cross the 

elements between two random positions to produce two new chromosomes. Repeat until 

obtaining M new chromosomes. 

Step3 (mutation): Change each element of N+M chromosomes with a random value from 

−1 to 1 at a probability Pmut. 

Step4 (fitness evaluation): Evaluate fitness in terms of the recognition rate on training 

data with the weight values encoded in each chromosome.  

Step5 (selection): Decide the roulette probability of each chromosome according to its 

fitness. First select two chromosomes with the highest fitness, and then select chromosomes 

using the roulette until obtaining N new chromosomes. Replace the old N chromosomes with 

the new ones. 

Step6 (iteration): Obtain the average fitness of the new N chromosomes fnew. If (fnew 

–fold<threshold) occurs nstop times or t > T, return the chromosome of the highest fitness. 

Otherwise, set fnew to fold, increment t, and go to step 2. 

For evaluating the fitness of a chromosome, each training sample is searched for the 

optimal path evaluated using the weight values in the chromosome. To save computation, we 

first set each weight value as 1 and select the top 100 recognition candidates 

(segmentation-recognition paths) for each training sample.  
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5. Linguistic Context and Geometric Context 
In this chapter, we describe the linguistic context and geometric context, both of them play 

an important role in the path evaluation criterion for character-position-free on-line handwritten 

Japanese and Chinese text recognition. 

Due to the characters in a handwritten text cannot be segmented unambiguously before 

recognition, over-segmentation-based method is commonly employed to solve this problem. 

Therefore, this method may produce many candidate character patterns in the candidate lattice. 

For each candidate pattern, the character recognizer usually provides not only a unique similar 

class with the corresponding score, but also top N (�≥1) candidate classes with scores. The 

linguistic context can provide valuable information for selecting the optimal class from the top 

N candidate ones. Moreover, combining the linguistic knowledge, the geometric context and 

character recognition results, it can verify the candidate patterns, and so improve the text 

recognition rate. 

5.1 Linguistic Context  

In handwritten text recognition, the linguistic processing of character recognition results 

after character segmentation is usually referred to as post processing[16].Due to the character 

recognizer provides several candidate classes for a candidate character pattern, the selection of 

the optimal class from the set of candidate classes is based on the linguistic knowledge model. 

The linguistic knowledge models are usually represented in word dictionaries and statistical 

language models, such as character-based n-gram [95], and word-based n-gram [32], [96], 

[97].The word-based n-gram language model is generally based on the syntactic/semantic 

classes (e.g., parts of speech) of words. Its use in linguistic processing involves the 

segmentation of text into words, usually by morphological analysis using a lexicon [96], 

[97].Moreover, the adaptation of writer-specific linguistic dictionaries is beneficial for writer 

dependent handwritten character recognition [98].Using the linguistic processing, the error rate 

of off-line handwritten English text is reduced by about 50 percent for single writer data and by 

about 25 percent for multiple writer data [99]. 

Recently, the unsupervised language model adaption is proposed for unconstrained off-line 

handwritten Chinese text patterns, and improves the recognition performance impressively, 

especially for the ancient domain documents [100].Li et al. [101] applied the recurrent neural 

network language model (RNNLM), which is superior to the n-gram language models due to its 

capability to capture long-span history by discriminative leaning using the recurrent neural 

network, to improve the recognition of off-line handwritten Arabic documents. 
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Due to the word-based n-gram language models need an additional word segmentation 

tasks, the simple and effective character-based n-gram model is widely used for handwritten 

Japanese and Chinese text recognition[8], [9]. Fig.5-1gives an example to shown 

character-based and word-based unigram (n = 1), bigram (n = 2) and trigram (n = 3) language 

model. 

 

Figure5- 1 Examples of character-based (a) and word-based (b) unigram, bigram and trigram model. 

Statistical language modeling involves attempts to capture regularities of natural language 

in order to improve the performance of various natural language applications, such as machine 

translations. N-gram models as the most successful statistical language mode have been applied 

in handwriting recognition, since it can be easily integrated with the character recognition. We 

will introduce it in the next section. 
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5.1.1 N-gram language model 

The most widely used language models is n-gram language models, where n is called the 

order of the model. Such model estimates the statistical dependency between n characters or 

words. Considering the complexity of language models, the order n usually takes1, 2 or 3, 

namely unigram, bigram and trigram language model, respectively. 

Given a handwritten Japanese/Chinese text or sentence with l characters �=�1�2⋯��, 

based on the statistical language model, the priori probability of this sentence,(�) can be 

decomposed as follows: 

P(W)=P(w1)P(w2|w1)P(w3|w1w2)…P(wl|w1…wl-1) 

=∏ p(�|���� …���)(
)��  

(5-1) 

Here, we assume that the probability of character �� being written depends only on the 

previous characters (�1⋯��−1) of the sentence. 

In n-gram language models, Eq. (5-1) is transformed into the Eq. (5-2) with changing the 

probability of character �� being written depends only on the previous (�−1) characters of the 

sentence.  

P(W)=	∏ 4(�|���� …���)*
�� = ∏ ,(�|������� )*

��  (5-2) 

where n is called the order of the model. ��+ denotes the characters sequence��⋯�+. Even for 

low orders, the number of equivalence classes becomes quickly intractable. In practice, the 

unigrams, bigrams and trigrams are commonly used. They are shown in Eq. (5-3), Eq. (5-4), and 

Eq. (5-5), respectively. 

P(W)	≈ ∏ 4(�)*
��  (5-3) 

P(W)	≈ ∏ 4(�|���)*
��  (5-4) 

P(W)	≈ ∏ 4(�|������)*
��  (5-5) 

The probabilities ,���������� � are estimated from a corpus of training texts using 

Maximum Likelihood (ML) estimation, namely, by counting the number of times a certain 

sequence of n. 
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Characters appears in the corpus of training texts, given by 

,���������� � =
count(������� )

count(������� )
=
�(������� )�(������� )

 (5-6) 

where � (∙) denotes the number of times the argument is counted from the given training corpus. 

The model resulting from Eq. (5-6) maximizes the likelihood of the training corpus, which used 

to obtain the language models. The n-gram statistics language models have several advantages, 

such as the quick speed due to probabilities of n-gram are stored in pre-computed tables, simple 

calculation, and generality due to models can be applied to any domain or language, as long as 

there exists some training corpus. 

For the character-position-free on-line handwritten text recognition, we choose the trigram 

language model which combined not only trigram, but also bigram and unigram models, with 

considering the computation complexity and effectiveness. 

Following the ML estimation, however, the n-gram models face an important problem due 

to no corpus is large or wide enough to contain all possible n-grams, namely, all the texts of n 

characters not appearing in the training corpus have zero probability. Moreover, many n-grams 

appear too few times to allow a good statistical estimation of their probability	,���������� �. In 

order to solve this problem, the smoothing technique is applied. We will introduce it in the next 

section. 

5.1.2 Smoothing algorithm 

As many of n-gram probability estimates are going to be zero due to it is impossible that all 

words are seen in the training text corpus. Whenever a character string $ with , ($) =0 during 

a text recognition task, that is, the character string should not occur, which is too hard 

discrimination for handwritten text recognition, a recognition error will be made. It helps 

prevent errors to assign all character strings in non-zero probabilities for handwritten text 

recognition. 

Smoothing technique is used to overcome this problem, i.e. zero probabilities of the unseen 

n-grams in the given text corpus by redistributing probabilities between seen and unseen events. 

Smoothing techniques produce more accurate probabilities by adjusting the maximum 

likelihood estimate of probabilities. Typically, smoothing methods prevent any probability from 

being zero, but they also attempt to improve the accuracy of the model as a whole. The name 

smoothing comes from the fact that these techniques tend to make distribution more uniform, 
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which can be viewed as making them smoother. Especially for the very low probabilities such 

as zero probabilities are adjusted upward, and high probabilities are adjusted downward. 

One simple way of smoothing technique used in practice is the additive smoothing [102], 

also called Laplace smoothing, which is to pretend each n-gram occurs slightly more often than 

it actually does for avoiding zero probabilities. Eq. (5-7) is then transformed by following this 

additive smoothing as follows: 

,,--���������� � ==
��������� �+ D��������� �+ D|V|

 (5-7) 

where D is a constant, and subjected to 0<D≤1. E is the vocabulary, or set of all characters 

considered. 

The D is generally considered as 1, and called add-one smoothing. Let us consider the 

application of add-one smoothing to bigram probabilities, Eq. (5-8) is simplified as follows: 

,������|�� =
�������+ 1∑ [�������+ 1].

=
�������+ 1∑ �������+ |E|.

 (5-8) 

where D is a constant, and subjected to 0<D≤1. E is the vocabulary, or set of all characters 

considered. 

The D is generally considered as 1, and called add-one smoothing. Let us consider the 

application of add-one smoothing to bigram probabilities, Eq. (5-9) is simplified as follows: 

,����|���� =
�������+ 1������+ |E|

 (5-9) 

Many other smoothing techniques have been introduced in the literature [102]. Such as the 

simple interpolation, Katz smoothing, back off Kneser-Ney smoothing and Interpolated 

Kneser-Ney smoothing. We will describe the simple interpolation algorithm. 

The simple interpolation is a combine technique in language modeling to simply 

interpolate them together. For instance, if one has a trigram model, a bigram model, and a 

unigram model, then 

,/012345(,1)50��|������� = +�,��|�������+ +�,��|����+ +�,���			 (5-10) 



 

72 

 

where λ1, λ2 and λ3 are parameters with constraint that 0≤ λ1, λ2 and λ3 ≤ 1. In practice, to 

ensure no word is assigned zero probability, we commonly interpolate with the uniform 

distribution, (��) =1F�G9 8' H8I=�J7=K�, we also need to deal with the case when, for 

instance, the trigram context I�−2I�−1I� has never been seen, namely� (��−2��−1��) =0. In this case, 

we use an interpolated bigram model, etc. Given its simplicity, simple interpolation works 

surprisingly well, but other techniques, such as Katz smoothing, work even better, but need 

much more training corpus. 

In our study, we use this smooth method for trigram language model, which combines the 

unigram, bigram and trigram with parameters, where the parameters subject to λ1+λ2+λ3=1.It 

is reduced to unigram or bigram when �� is the first or second character of a sentence. Moreover, 

to reduce the model size, we set empirically a threshold to prune the low trigrams probabilities. 

5.2 Geometric Context 

In handwritten Japanese/Chinese text recognition, over-segmentation-based method is 

commonly employed to overcome the character segmentation problem, due to it is infeasible to 

segment character reliably prior to recognition. The geometric context, which includes the 

compatibility of character size, position and between-character relationship with respect to the 

text layout, can help disambiguate the uncertainty in character segmentation. Especially in 

Japanese language, the position of the small Kana such as “tsu” is obviously different with the 

normal Kanji. Furthermore, the recognition accuracy will be improved by incorporating the 

geometric context with character recognition and linguistic context in the candidate 

segmentation and recognition path evaluation. 

In on-line handwritten Japanese text recognition, Nakagawa et al. [10] incorporated the 

likelihood of geometric features into the path scores, but only simple features are used, such as 

character size, inter-character and between-character gap. Zhou et al. [37] incorporated the 

geometric context with character recognition and linguistic context into a united framework to 

overcome the effect of string length variability and improve the recognition performance. Here, 

the geometric context models are made by a statistical method, including class-dependent unary 

and binary geometric features with more features. Recently, Zhu et al. [8] combined the more 

geometric context with the character recognition, linguistic context and character segmentation 

to improve recognition accuracy. The geometric features include the size feature, character 

inner-gap feature, and class-dependent unary and binary position features. 

In on-line handwritten Chinese text recognition, the employed geometric context including 

more features (class-dependent unary and binary geometric features, and class-independent 
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unary and binary geometric features)[46], [9]. Compared to [8], the mainly difference is that it 

uses class-independent unary and binary geometric features, using simple SVM model. Yin et al. 

[103] integrated the geometric features to improve the performance of text alignment in Chinese 

annotation system. Wu et al. [104] proposed an improved binary geometric model that combines 

single-character and between-character features to improve significantly the numeral string 

recognition performance on the NIST special database [105]. 

We will introduce the geometric features used in the character-position-free handwritten 

text recognition system, including the character size feature, character inner-gap feature, and 

unary position feature of a candidate character pattern, and binary position feature between 

candidate character patterns. 

The character size feature (or shape feature), namely the term �� in Eq. (5-7), is composed 

of the height and width of the bounding box of a candidate character pattern. Fig.5-2 shows an 

example of size features of candidate character patterns. 

The character inner-gap feature of a candidate pattern, namely the term qi in Eq. (5-7), is 

obtained by projecting the candidate character pattern into the vertical and horizontal directions, 

splitting each of their histograms into 3 slices, finding a gap or gaps in each slice, and summing 

total lengths of gaps. Hence, the inner-gap feature vector includes 6 values. Fig.5-2 shows an 

example of the inner-gap feature of a character pattern. 

The class-dependent unary position feature, namely the term 4�in Eq. (5-7), consists of 

two vertical distances from the horizontal center of a text line to the top and bottom of the 

bounding box of a candidate character pattern, as shown in Fig. 5-2. 

The class-dependent binary position feature, namely the term 4�in Eq. (5-7), is composed 

of a vertical distance between the top edges of the bounding boxes of two adjacent candidate 

character patterns in a text line and that between the bottom edges of the bounding boxes, as 

shown in Fig.5-3. 

Due to Japanese and Chinese language are large characters set including thousands of 

character classes, it is almost impossible to get sufficient training samples covering every class 

pair. A feasible method is that using cluster method to reduce the number of classes. The 

character classes are then clustered into six super-classes by grouping the mean vectors of the 

unary geometric features of all character classes on a training text set using the k-means 

algorithm. Hence, a pair of successive characters belongs to one of 36 binary super-classes. The 

training text character samples, re-labeled to six unary super-classes, are used to estimate the 

Gaussian probability density functions of 36 binary super-classes. Then, the binary geometric 
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6. Experiments 

In this chapter, we describe several experiments on character-orientation-free and 

line-direction-free on-line handwritten Japanese text datasets.   

① Evaluation of Dimensionality Reduction  

② Evaluation of Parameter Optimization by GA 

③ Comparison with the Segmentation-updated System  

④ Performance on Arbitrary Line Direction and Character Orientation 

⑤ Performance on Artificially Rotated Text lines 

⑥ Performance on Time Cost and Memory Requirement for Dictionaries  

6.1 Kondate Database 

Kondate [69] is a database of on-line handwritten patterns mixed of texts, figures, tables, 

maps, diagrams and so on. In this research, we only use the part of on-line handwritten texts, 

which initially has been collected in Japanese from 100 people at Tokyo University of 

Agriculture and Technology (TUAT) in Japan. 

As for on-line handwritten Japanese texts in Kondate, the most text patterns were collected 

by writing natural sentences taken from a Japanese newspaper on display integrated tablets. The 

writing style was not constrained so that most of the characters were written fluently although 

some people write in regular style due to their writing habit. Moreover, the writers write freely 

without any writing grids and even without guidelines. 

Therefore, Kondate database covers any direction text patterns, such as horizontal, vertical, 

diagonal, horizontal and vertical mixed text and so on. As shown in Table6-1. From Table 6-1, 

we can see that two categories: “copy writing” to cover the categories and “free writing” to 

collect casually and naturally written patterns as described below. 

Copy writing : In order to the categories, we present a participant with sample patterns, 

Then, a participant writes the identical contents. Since, we do not specify the writing order, the 

writing order may be different although the result looks similar. For the copy writing, we 

prepared our own sample patterns based on our experiences. Although, we employed sample 

sentences from a newspaper for fairness in Kuchibue and Nakayosi[105]. The copy right issue 

with the newspaper caused a problem for distribution. 
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Free writing:  In order to get natural patterns, we ask a participant to write about a topic. 

For instance, we ask “Please write (draw) a map of your way from your home to your school or 

office”, “Solve the following equation” and so on, 

The copy writing is effective to cover the categories and easy to get the ground truth but 

has the problem to collect real patterns. On the other hand, the free writing affords participants 

to write or draw real patterns, but coverage is not assured and ground-truthing is not 

straightforward.  

Table6- 1  Pages in HANDS-Kondate_t_bf-2001-11 (100 people). 

Page Text Line direction Character 

orientation 

Content 

1-11 copy right down horizontal writing 

12-22 copy down down vertical writing 

23 free vertical, horizontal and slanting unspecified route 

24 free vertical, horizontal and slanting unspecified Comments about news 

25 free vertical, horizontal and slanting unspecified Comments about the 

collection 

26 copy mixture of vertical and horizontal  down Information about menu 

27 copy mixture of horizontal and slanting slanting Information about product 

28 copy mixture of vertical and horizontal down, up, left and right Lay out of “mah-jong” 

6.2 Datasets 

We employ a Japanese on-line handwriting database Nakayosi [19], which stores 1,695,689  

patterns for 4,438 categories of Kanji of Chinese origin, two sets of Kana (Hiragana and 

Katakana) of phonetic characters, English upper case and lower case letters, numerals, and so on 

to train the character recognizer and geometric scoring functions. The character recognizer 

combines off-line and on-line recognition methods by normalizing the recognition scores to 

conditional probabilities P(xi|Ci) [20]. Four QDF classifiers are trained for the geometric scores 

P(bi|Ci), P(qi|Ci), P(��
�|Ci) and P(��

�|Ci-1,Ci).  

We prepare the tri-gram table for the linguistic context from the year 1993 volume of the 

ASAHI newspaper and the year 2002 volume of the NIKKEI newspaper. The data size of the 

tri-gram is reduced to 10MB by suppressing non-occurring terms, neglecting a small number of 

occurrences, and quantizing the logarithm values of tri-gram probabilities. In order to train text 

recognition parameter and test performance, we employ the database of character-orientation 
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and line-direction free handwritten on-line text HANDS-Kondate_t_bf-2001-11 collected from 

100 people, as shown in Table 6-1. Pages 1 through 11 are just horizontal handwritings and 

pages 12 through 22 are just vertical lines. Pages 23 through 28 are mixture of horizontal, 

vertical and slanting text lines with various character orientations. Especially, pages 24 and 25 

have freely handwritten patterns under certain topics as shown in Fig. 6-1.  

We prepare sample patterns by separating handwritten text in all the pages in the database 

into text line elements, normalizing their character orientations and classifying them into 4 line 

directions (R, L, U and D).  

For each line direction, we employ 4-fold cross validation where we use 75 persons’ text 

for training and the remaining 25 persons’ text for testing. We select one group among the 4 

groups as the testing set i (i =1 to 4) and merge all the remaining groups (75 persons’ patterns) 

as the training set i. We employ the training set i to train the SVM classifier for 

over-segmentation and a set of weighting parameters, because 21 over-segmentation features 

and geometric features for path evaluation are different for each line direction. Then, we 

evaluate the performance for the testing set i. We turn the role of training and testing sets and 

take the average of the 4 turns. Table 6-3, 6-4, 6-5, 6-6 are the data sets. 

The statistics of the training sample (Train.) and testing samples (Test.) for the extracted 

text line elements are listed in Table 6-2, where Nsp is the number of true segmentation points, 

Nnsp is that of true non-segmentation points, Nac is the average number of characters in a text 

line element and Nal is the average number of characters written by one person, respectively. 
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Page23 Page24 Page25 

 
  

Page26 Page27 Page28 

   

Figure6- 1 Examples in  HANDS-Kondate_t_bf-2001-11 database from Page23 to Page28. 

Table6- 2 Number of samples in training and testing sets for each direction 

Method 

Line direction 

R L D U 

 Train Test Train Test Train Test Train Test 
Text lines 42423 14141 498 166 26604 8868 267 89 
English letters 17973 5991 18 6 12672 4224 12 4 
Numeral 68295 22765 177 59 31053 10351 15 5 
Kana 163287 54429 2253 751 126609 42203 921 307 
Kanji 151443 50481 1335 445 106230 35410 537 179 
Others 46824 15608 231 77 29682 9894 99 33 
Nsp 405399 207894 3516 1172 279642 93214 1317 439 
Nnsp 1223712 335143 11859 3953 860442 286814 4485 1498 
Nac(average) 10.6 10.6 8.1 8.0 11.5 11.5 5.9 5.8 
Nal(average) 1492.7 1492.7 13.4 13.4 1020.8 1020.8 5.3 5.3 
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Table6- 3 Number of samples in training and testing sets for each direction (dataset1) 

Method 

Line direction 

Data type Text lines Nsp Nnsp 

R 
Train  10552 50737 98775 
Test 3635 16721 33509 

L 
Train  123 14 653 
Test 35 2 223 

D 
Train  6811 20973 68409 
Test 2031 6754 22582 

U 
Train  71 23 301 
Test 16 4 46 

Table6- 4 Number of samples in training and testing sets for each direction (dataset2) 

Table6- 5 Number of samples in training and testing sets for each direction (dataset3) 

 

 

 

 

Method 

Line direction 

Data type Text lines Nsp Nnsp 

R 
Train  11068 51822 101134 
Test 3119 15636 31150 

L 
Train  103 8 530 
Test 55 8 346 

D  
Train  6478 20355 67957 
Test 2364 7372 23034 

U 
Train  57 17 217 
Test 30 10 130 
Test 3016 4 46 

Method 

Line direction 

Data type Text lines Nsp Nnsp 

R 
Train  10494 49798 98507 
Test 3693 17660 33777 

L 
Train  123 11 722 
Test 30 5 154 

D  
Train  6526 20620 67461 
Test 2316 7107 23530 

U 
Train  55 16 203 
Test 32 11 144 
Test 16 4 46 
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Table6- 6 Number of samples in training and testing sets for each direction (dataset4) 

The following subsections report the effects of dimensionality reduction, parameter 

optimization by GA, comparison with the segmentation-updated system, performance on 

artificially rotated text lines in comparison with the Onuma et al. system [11] and the time 

complexity and memory requirement for dictionaries of the system. 

The performance is evaluated by the f-measure for segmentation and the character 

recognition rate Cr as shown in Eq. (6-1) where r is recall and p is precision respectively. The 

recall rate measures the tolerance to search errors, while the precision rate measures the 

tolerance to search noises. 

The experiments are implemented on Intel(R) Core(TM) i7-3770S 3.10GHZ with 4.0GB 

memory. 

� = 	
2

1/� + 1/�
 

� = 	
number	of	correctly	detected	segmentation	points

number	of	true	segmentation	points
 

� =
number	of	correctly	detected	segmentation	points

number	of	detected	segmentation	points	(including	false)
 

(6-1) 

6.3 Evaluation of Dimensionality Reduction 

In order to investigate the effect of the feature reduction using PCA to reduce the extracted 

21 geometric features for over-segmentation, we test the results of reducing the 21 geometric 

features. Table 6-7 presents the average performance on the testing sets, where the average 

Method 

Line direction 

Data type Text lines Nsp Nnsp 

R 
Train  10447 50017 98436 
Test 3740 17441 33848 

L 
Train  120 15 723 
Test 38 1 153 

D  
Train  6711 21233 69146 
Test 2131 6494 21845 

U 
Train  78 25 320 
Test 9 2 27 
Test 16 4 46 



 

81 

 

character recognition time T and the memory size of the system are shown as well as the 

f-measure for segmentation and the character recognition rate Cr. 

Table6- 7 Performance on reduced dimensionalities. 

Dimension
 
Line direction 

Reduced dimensionality 

21 19 17 15 13 11 9 7 5 3 1 
Memory (MB) 12.88 11.74 10.79 9.78 8.54 6.98 5.75 4.73 3.81 2.96 1.52 

R 

f 0.986 0.984 0.983 0.983 0.983 0.983 0.984 0.984 0.984 0.983 0.983 
Cr(%) 92.22 92.15 91.87 91.87 91.86 91.87 91.89 91.90 91.89 91.75 91.83 
T (ms) 54.0 53.5 49.3 49.1 48.9 48.9 47.6 47.4 46.1 44.3 39.8 

L 

f 0.980 0.980 0.980 0.980 0.980 0.980 0.980 0.980 0.980 0.972 0.972 
Cr(%) 92.93 92.93 92.93 92.93 92.93 92.93 92.93 92.93 92.93 90.96 90.96 
T (ms) 37.8 37.8 37.8 37.8 37.8 37.8 37.8 37.8 37.8 23.5 23.5 

U 

f 0.962 0.962 0.962 0.962 0.962 0.962 0.962 0.962 0.962 0.962 0.962 
Cr(%) 91.52 91.52 91.52 91.52 91.52 91.52 91.52 91.52 91.52 91.52 91.52 
T (ms) 79.9 79.9 79.9 79.9 79.9 79.9 79.9 79.9 79.9 79.9 58.2 

D 

f 0.991 0.986 0.986 0.988 0.988 0.988 0.988 0.989 0.988 0.989 0.986 
Cr(%) 91.60 91.07 91.07 91.09 91.09 91.10 91.14 91.16 91.10 91.13 91.02 
T (ms) 49.6 49.3 49.3 48.8 48.6 48.6 47.9 47.7 47.3 47.0 45.9 

From the results, we can see that the 21 dimensionality of the original features achieves the 

best recognition and segmentation accuracy while it consumes the largest memory space and 

recognition time although it is not so serious for a common personal PC. Other reduced 

dimensionalities such as 5 can reduce the memory size and recognition time largely without 

losing recognition and segmentation accuracy significantly. In order to keep the high 

recognition rate in the following experiments, we use the 21-dimensional features. 

6.4 Evaluation of Parameter Optimization by GA 

In order to justify weighting parameter optimization by GA, we draw a comparison 

between GA and the minimum classification error (MCE) criterion [21] optimized by stochastic 

gradient decent [22] (MCE-SGD). MCE-SGD is to find the optimal parameter vector λ by 

minimizing the following difference between the scores of the most confusing text class and that 

of the correct one: 
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Table6- 8 Performance optimized by GA and MCE-SGD v.s segmentation-updated system. 

Method 
 

Line direction 

GA MCE-SGD Segmentation-updated 
System[12] 

f Cr(%) f Cr(%) f Cr(%) 
R 0.9864 92.22 0.9855 92.07 0.9660 73.61 
L 0.9809 92.93 0.9748 91.95 0.9838 80.75 
U 0.9624 91.52 0.9703 91.10 0.9897 80.23 
D 0.9710 91.60 0.9874 90.89 0.9647 75.83 

Table 6-8 shows the average performance on the testing sets, from which we can see that 

the optimization GA produces better performance than MCE-SGD. 

6.5 Comparison with the Segmentation-updated System 

We also compare the performance of our proposed system and that by the 

segmentation-updated method in [12], which can be tested since character orientation is already 

normalized. It used an one-stage classification scheme on over-segmentation and applied a 

recognition model that could be viewed as a special case of the model employed in this paper by 

setting λh1 =1, λh2=0 (h = 1,…,7) without using the terms related to ki (number of primitive 

segments composing a character parameter) in Eq.(6-3). 
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(6-3) 

We add the performance by the segmentation-updated system in Table 6-9 and we can see 

that the character recognition rate has been largely improved. 

������,�	 = 	σ�max�Score������	�
	− Score����	�
	 

Score����	�
 = Score	of	the	correct	path	in	a	sr − lattice 

Score������	�
 = Scores	of	the	incorrect	paths	in	a	sr − lattice 

σ�
	 = (1 + ���)�  

(6-2) 
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6.6 Performance on Arbitrary Line Direction and Character 

Orientation 

We test the performance on the 6 pages (23~28). Table 6-9 shows the average performance 

on the testing sets in comparison with the Onuma et al. system, where scores by the Onuma et al. 

system are quoted from [11]. We can see the large improvement from the Onuma et al. system 

due to the update of line-segmentation, over-segmentation and path evaluation, although we do 

not validate the Onuma et al. system by cross validation. 

Table6- 9 Performance on mixture of vertical, horizontal and slanting lines. 

Method 
 

Page No 

Proposed System Onuma et al. System[11] 
f Cr(%) f Cr(%) 

23 0.9878 92.33 0.7523 63.87 
24 0.9792 90.70 0.7368 62.66 
25 0.9767 89.62 0.7118 60.51 
26 0.9763 89.43 0.8698 72.81 
27 0.9675 86.45 0.7245 62.10 
28 0.9933 90.58 0.7538 64.61 

 

P23 (topic about route) The result of recognition 

 

 

P26(topic about menu) The result of recognition 
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P27(topic about product) The result of recognition 

 

 

P28(topic about product with “mah-jong” layout ) The result of recognition 

 

 

Figure6- 2 Page of 23-28 and the result of  recongition 

P23-P25 the recognition errors due to line segmentation and character recognition.  To 

solve this problem, we should to improve the character recognition accuracy. Increasing the 

number of candidate classes can reduce the missing of correct class.  

P26  the recognition errors due to the recognition of parentheses.To solve this problem, 

we should to add the parenthese into the dictionary. 
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P27 the recognition errors due to the recognition of the text lines of characters(ご好評に付 

夏休み 大特価セール), the mis-normalization of the line direcion and character orientation. 

To solve this problem, we should improve the estimation of line direction and character 

orientation. 

P28 the recognition errors due to the recognition of a minus sign.To solve this problem, 

should to add the a minus sign into the dictionary.  

6.7 Performance on Artificially Rotated Text lines 

Since the amount of text lines in the above 6 pages (23~28) is not many, we prepare 

artificially rotated text lines by rotating the original 22 pages (horizontal handwritings in pages 

1 through 11 and vertical lines in pages 12 through 22 by the amount of 30, 90, 130 and 240 

degrees as shown in Fig. 6-3. 

30degree 90degree 

  
130degree 240degree 

  

Figure6- 3 Examples of rotated handwritten text lines. 

Table 6-10 shows the average performance on the testing sets in comparison with the 

Onuma et al. system, where scores by the Onuma et al. system are quoted from [11]. We can see 

that the proposed method works well without any degradation for those artificially rotated text 
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lines and its performance is far better than the Onuma et al. system due to the enhancement in 

line-segmentation, over-segmentation and path evaluation, although we do not validate the 

Onuma et al. system by cross validation. 

Table6- 10 Performance on rotated horizontal/vertical handwritings. 

Method  

Degree 

Proposed System Onuma et al. System[11] 

f Cr(%) f Cr(%) 

Original 0.9899 92.92 0.8386 71.52 

30degree 0.9865 91.78 0.8212 70.25 

90degree 0.9896 92.44 0.8375 71.57 

130degree 0.9884 92.74 0.8232 69.86 

240degree 0.9898 92.76 0.8229 70.16 

6.8  Evaluation of Time Cost and Memory Requirement for 

Dictionaries 

Finally, we present the time and space complexity of the system as shown in Table 6-11, 

6-12.The time and memory requirement of the Onuma et al. system was 16.84 m sec, 7.87MB, 

respectively. 

The time complexity has been doubled and the Memory requirement has been tripled. 

Nevertheless, the recognition speed is quick enough for practical applications and the memory 

requirement is practical, which is almost the same as the recognizer for horizontal. 

Table6- 11 Evaluation of time cost. 

Process Processing time/character(ms) 

Segmentation of handwriting into text line elements 0.61 

Estimation and normalization of character orientation 

Quantization of line direction 

Over-segmentation 3.22 

Construction of sr-lattice 0.10 

Search and recognition 27.32 

Total recognition time 31.25 
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Table6- 12 Memory requirement for dictionaries. 

Dictionaries Memory Size 

Tri-gram 10.67MB 

Geometric features Size P(bi|Ci) and inner gap P(qi|Ci) 542KB 

Unary P(pu
i|Ci) 270KB 

Binary P(pb
i|Ci-1,Ci) 280KB 

Character recognizer 15.25MB 

4 SVM classifiers for over-segmentation 2.39MB 

Total memory requirement size 29.37MB 
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7. Conclusion and Future Work 

 In this chapter, we draw the conclusion of this thesis, and give several directions for the 

future works. 

7.1 Conclusion 

This paper has presented significant improvements in our line-direction-free and 

character-orientation-free on-line handwritten Japanese text recognition system. Through 

updating the text line segmentation and over-segmentation and then integrating them into a 

robust context integration model, the system achieves high recognition rates on on-line 

handwritten text of arbitrary character orientation and line direction comparable with horizontal 

text with normal character orientation.  

The results of experiments on text from the HANDS-Kondate_t_bf-2001-11 database 

demonstrate significant improvements in the character recognition rate compared with the 

previous systems. Rightward 92.22%, leftward 92.93%, upward 91.52% and the downward is 

91.60% respectively. The recognition rate mixture of horizontal, vertical and slanting lines of 

text with arbitrary character orientation is about 90%.  

The time and memory requirement of the Onuma et al. system [11] was 16.84 m sec, 

7.87MB, respectively (29.37MB). The time complexity has been doubled (31.25ms) and the 

Memory requirement has been tripled. Nevertheless, the recognition speed is quick enough for 

practical applications and the memory requirement is practical, which is almost the same as the 

recognizer for horizontal. 

There remain several works to improve the performance. The gravity center information 

[13] might be added for line direction estimation. Module organizations must be refined to 

incorporate the system for ink search and other applications. 

7.2 Future work 

Fig. 7-1 shows some examples of misrecognition and mis-segmentation given by the 

proposed model. For each example, the upper line is the written text, and the lower line is the 

recognition result followed by the correct result where the recognition errors are highlighted by 

underlines. We observed three major sources causing segmentation-recognition errors. 
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The text below each string pattern is the recognition result, followed by correct result 

Figure7- 1 Examples of recognition errors. 

 (1) Problem of character recognition: Figure7-1 (a)-(b) show recognition errors 

due to character recognition, where the correct answers are not within the top 10 candidate 

classes output by the character recognizer for each character pattern. To solve this, we need to 

improve the character recognition accuracy. Increasing the number of candidate classes can 

reduce the missing of correct class, but slows down the recognition speed. 

 (2) Problem of path evaluation: Figure7-1 (c)-(d) show recognition errors due to 

path evaluation. Correct character answers are within the top 10candidate classes but the path 

evaluation fails to find the correct one. To solve this, we should improve the scores of linguistic 

context and geometric features. 

(3) Problem of over-segmentation: Figure7-1 (e)-(f) show recognition errors due 

to over-segmentation. There are mis-segmentations at the over-segmentation stage. To solve this, 

we need to improve the accuracy of over-segmentation. 

For interface research, it is necessary to recognize character strings freely written in 

directions by electronic boards and tablets, and to be able to edit with pen and finger. It should 

be able to change the size and the font of the characters, and the line direction with gestures. 
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For application research, we are considering handwriting freely written on electronic 

boards and tablets, from which we can search from the Web or get the machine translate and 

save the results. If you learn and use handwritten notes in class, you can use it and save it, you 

also can review it at the next class and proceed to the next lesson.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

91 

 

Reference 

[1]  S. Inatani, T. Van Phan, M. Nakagawa, “Comparison of MRF and CRF for Text/Non-text 

classification in Japanese Ink Documents,” Proc. 14th ICFHR, pp. 684-689, 2014. 

[2]  T. Van Phan, M. Nakagawa, “Text/Non-Text Classification in Online Handwritten Documents 

with Recurrent Neural Networks,” Proc. 14th ICFHR, pp. 23-28, 2014.  

[3]  H. Murase, T. Wakahara and M. Umeda, “Online Writing-Box Free Character String 

Recognition by Candidate Character Lattice Method,” (in Japanese) Trans. of IEICE Japan, vol. 

J68-D, no. 4, pp. 765-772, 1985. 

[4]  M. Okamoto, H. Yamamoto, T. Yoshikawa and H. Horii, “Online Character Segmentation 

Method by Means of Physical Features,” (in Japanese) Technical Report of IEICE Japan, vol. 

95, no. 43, pp. 93-99, 1995. 

[5]  H. Aizawa, T. Wakahara and K. Odaka, “Real-Time Handwritten Character String Segmentation 

Using Multiple Stroke Features,” (in Japanese) Trans. of IEICE Japan, vol. J80-D-II, no.5, pp. 

1178-1185, 1997.  

[6]  T. Fukushima and M. Nakagawa, “On-line Writing-box-free Recognition of Handwritten 

Japanese Text Considering Character Size Variations, Proc. 15th ICPR, vol. 2, pp. 359-363, 

2000. 

[7]  S. Senda and K. Yamada, “A Maximum-Likelihood Approach to Segmentation-Based 

Recognition of Unconstrained Handwriting Text,” Proc. 6th ICDAR, pp. 184-188, 2001. 

[8]  B. Zhu, X.-D. Zhou, C.-L. Liu and M. Nakagawa, “A Robust Model for On-line Handwritten 

Japanese Text Recognition,” Int. J. Document Anal Recognition, vol. 13, no. 2, pp. 121-131, 

2010. 

[9]  X.-D.Zhou, D.-H. Wang, F. Tian, C.-L. Liu and M. Nakagawa, “Chinese/Japanese text 

recognition using semi-Markov conditional random fields,” IEEE Trans. on PAMI, vol. 35, no. 

10, pp. 2484-2497, 2013. 

[10]  M. Nakagawa, B. Zhu and M. Onuma, “A Model of On-line Handwritten Japanese Text 

Recognition Free from Line Direction and Writing Format Constraints,” IEICE Trans. Inf. & 

Syst., vol. E88-D, no. 8, pp. 1815-1822, 2005. 

[11]  M. Onuma, A. Kitadai, B. Zhu and M. Nakagawa, “An On-line Handwritten Japanese Text 

Recognition System Free from Line Direction and Character Orientation Constraints,” IEICE 

Trans. Inf. & Syst., vol. E88-D, no. 8, pp. 1823-1830, 2005. 



 

92 

 

[12]  B. Zhu and M. Nakagawa, “Segmentation of on-line freely written Japanese text using 

SVM for improving text recognition,” IEICE Trans. Inf. & Sys., vol. E91-D, no. 1, pp.105-113, 

2008. 

[13]  T. Long and L.-W Jin, “A novel orientation free method for online unconstrained cursive 

handwritten Chinese word recognition,” Proc.19th ICPR, pp.1-4, 2008. 

[14]  B. Zhu and M. Nakagawa, “Online Handwritten Chinese/Japanese Character Recognition,” 

Xiaoqing Ding ed. Advance in Character Recognition, ISBN 978-953-51-0823-8, InTech, 

Chapter 3, pp. 51-68 2012. 

[15]  R. Plamondon and S.N. Srihari, “On-line and off-line handwriting recognition: a 

comprehensive survey,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 1, 

pp. 63-84, 2000. 

[16]  C.C. Tappert, C.Y. Suen and T. Wakahara, “The state of the art in on-line handwriting 

recognition,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 12, no. 8, pp. 

787-808, 1990. 

[17]  M. Nakagawa, “Non-keyboard input of Japanese text on-line recognition of handwritten 

characters as the most hopeful approach,” Journal of Information Processing, vol. 13, no. 1, pp. 

15-34, 1990. 

[18]  C.L. Liu, S. Jaeger and M. Nakagawa, “Online recognition of Chinese characters: the 

state-of-the-art,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 26, no. 2, pp. 

198-213, 2004.  

[19]  B. Zhu and M. Nakagawa, “Recent trends in online handwritten character recognition,” (in 

Japanese) IEICE Trans. Inf. &Sys., vol. J95-D, no. 4, pp. 335-340, 2012.  

[20]  L.Y. Tseng and R.C. Chen, “Segmenting handwritten Chinese characters based on 

heuristic merging of stroke bounding boxes and dynamic programming,” Pattern Recognition 

Letters, vol. 19, no. 10, pp. 963-973, 1998.  

[21]  Y. Lu, C.L. Tan, P.F. Shi, and K.H. Zhang, “Segmentation of handwritten Chinese 

characters from destination addresses of mail pieces,” International Journal of Pattern 

Recognition and Artificial Intelligence, vol. 16, no. 1, pp. 85-96, 2002. 

[22]  S. Zhao, Z. Chi, P. Shi and H. Yan, “Two-stage segmentation of unconstrained 

handwritten Chinese characters,” Pattern Recognition, vol. 36, no. 1, pp. 145-156, 2003.  

[23]  X. Wei, S. Ma, and Y. Jin, “Segmentation of connected Chinese characters based on 

genetic algorithm,” Proceedings of the 8th International Conference on Document Analysis and 



 

93 

 

Recognition, Seoul, Korea, pp. 645-649, 2005.  

[24]  Z. Liang and P. Shi, “A metasynthetic approach for segmenting handwritten Chinese 

character strings,” Pattern Recognition Letters, vol. 26, no. 10, pp. 1498-1511, 2005. 

[25]  N. Furukawa, J. Tokuno and H. Ikeda, “Online character segmentation method for 

unconstrained handwriting strings using off-stroke features”, Proceedings of the 10th  

International Workshop on Frontiers in Handwriting Recognition(IWFHR), La Baule, France, 

2006. 

[26]  C.L. Liu, H. Sako and H. Fujisawa, “Effects of classifier structures and training regimes on 

integrated segmentation and recognition of handwritten numeral strings,” IEEE Trans. Pattern 

Analysis and Machine Intelligence, vol. 26, no. 11, pp. 1395-1407, 2004. 

[27]  M. Cheriet, N. Kharma, C.L. Liu and C.Y. Suen, “Character recognition systems - A guide 

for students and practitioners,” John Wiley & Sons, Inc., Hoboken, New Jersey, 2007. 

[28]  M. Mohamed and P. Gader, “Handwritten word recognition using segmentation-free 

hidden Markov modeling and segmentation-based dynamic programming techniques,” IEEE 

Trans. Pattern Analysis and Machine Intelligence, vol. 18, no. 5, pp. 548-554, 1996.  

[29]  H. Murase, T. Wakahara and M. Umeda, “Online writing-box free character string 

recognition by candidate character lattice method,” (in Japanese) IEICE Trans. Inf. & Sys., vol. 

J68-D, no. 4, pp. 765-772, 1985.  

[30]  X. Gao, P.M. Lallican and C. Viard-Gaudin, “A two-stage online handwritten Chinese 

character segmentation algorithm based on dynamic programming,” Proceedings of the 8th 

International Conference on Document Analysis and Recognition(ICDAR), Seoul, Korea, pp. 

735-739, 2005.  

[31]  Q. Fu, X.Q. Ding, T. Liu, Y. Jiang and Z. Ren, “A novel segmentation and recognition 

algorithm for Chinese handwritten address character strings,” Proceedings of the 18th 

International Conference on Pattern Recognition, pp. 974-977, 2006.  

[32]  Q.F. Wang, F. Yin and C.L. Liu, “Handwritten Chinese text recognition by integrating 

multiple contexts,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 34, no. 8, pp. 

1469-1481, 2012.  

[33]  S. Senda and K. Yamada, “A maximum-likelihood approach to segmentation-based 

recognition of unconstrained handwriting text,” Proceedings of the 6th International Conference 

on Document Analysis and Recognition, Seattle, USA, pp. 184-188, 2001.  

[34]  N.X. Li and L.W. Jin, “A Bayesian-based method of unconstrained handwritten offline 



 

94 

 

Chinese text Line recognition,” International Journal on Document Analysis and Recognition, 

vol. 16, no. 1, pp. 17-31, 2013.  

[35]  R.O. Duda, P.E. Hart and D.G. Stork, “Pattern classification,” John Wiley & Sons, 2012. 

[36]  X.D. Zhou, C.L. Liu, and M. Nakagawa, “Online handwritten Japanese character string 

recognition using conditional random fields,” Proceedings of the 10th International Conference 

on Document Analysis and Recognition, Barcelona, Spain, pp. 521-525, 2009.  

[37]  X.D. Zhou, J.L. Yu, C.L. Liu, T. Nagasaki and K. Marukawa, “Online handwritten 

Japanese character string recognition incorporating geometric context,” Proceedings of the 9th 

International Conference on Document Analysis and Recognition, Curitiba, Brazil, pp. 48-52, 

2007.  

[38]  T.M. Breuel, “A system for the off-line recognition of handwritten text,” Proceedings of 

the12th International Conference on Pattern Recognition, vol. 2, Jerusalem, Israel, pp. 129-134, 

1994. 

[39]  M.S. Kim, S. Ryu, K.T. Cho, T.H. Rhee, H.I. Choi and J.H. Kim, “Recognition-based 

digitalization of Korean historical archives,” Proceedings of the Asia Information Retrieval 

Symposium, Beijing, China, pp. 281-288, 2004.  

[40]  Q. Fu, X.Q. Ding, C.S. Liu, Y. Jiang and Z. Ren, “A hidden Markov model based 

segmentation and recognition algorithm for Chinese handwritten address character strings,” 

Proceedings of the 8th International Conference on Document Analysis and Recognition, Seoul, 

Korea, pp. 590-594, 2005.  

[41]  X.Q. Ding and H.L. Liu, “Segmentation-driven offline handwritten Chinese and Arabic 

script recognition,” Proceedings of the Summit on Arabic and Chinese Handwriting, College 

Park, USA, pp. 61-73, 2006.  

[42]  S. Tulyakov and V. Govindaraju, “Probabilistic model for segmentation based word 

recognition with lexicon,” Proceedings of the 6th International Conference on Document 

Analysis and Recognition, Seattle, USA, pp. 164-167, 2001.  

[43]  B. Zhu, J. Gao and M. Nakagawa, “Objective function design for MCE-based combination 

of on-line and off-line character recognizers for on-line handwritten Japanese text recognition,” 

Proceedings of the 11th International Conference on Document Analysis and Recognition, 

Beijing, China, pp. 594-598, 2011. 

[44]  J. Gao, B. Zhu and M. Nakagawa, “Development of a robust and compact on-line 

handwritten Japanese text recognizer for hand-held devices,” IEICE Trans. Inf. & Sys., vol. 



 

95 

 

E96-D, no. 4, pp. 927-938, 2013.  

[45]  J. Gao, B. Zhu and M. Nakagawa, “Building compact recognizer with recognition rate 

maintained for on-line handwritten Japanese text recognition,” Pattern Recognition Letters, vol. 

35, pp. 169-177, 2014.  

[46]  D.H. Wang, C.L. Liu and X.D. Zhou, “An approach for real-time recognition of online 

Chinese handwritten sentences,” Pattern Recognition, vol. 45, no. 10, pp. 3661-3675, 2012.  

[47]  T.H. Su, T.W. Zhang and D.J. Guan, “Corpus-based HIT-MW database for offline 

recognition of general-purpose Chinese handwritten text,” International Journal of Document 

Analysis and Recognition, vol. 10, no. 1, pp. 27-38, 2007. 

[48]  C.L. Liu, F. Yin, D.H. Wang, and Q.F. Wang, “CASIA Online and Offline Chinese 

Handwriting Databases,” Proceedings of the 11th International Conference on Document 

Analysis and Recognition, Beijing, China, pp. 37-41, 2011.  

[49]  B.H. Juang, W. Hou and C.H. Lee, “Minimum classification error rate methods for speech 

recognition,” IEEE Trans. Speech and Audio Processing, vol. 5, no. 3, pp. 257-265, 1997.  

[50]  H. Robbins and S. Monro, “A stochastic approximation method,” The Annals of 

Mathematical Statistics, pp. 400-407, 1951. 

[51]  H. Ney and S. Ortmanns, “Progress in dynamic programming search for LVCSR,” 

Proceedings of the IEEE, vol. 88, no. 8, pp. 1224-1240, 2000. 

[52]  C.L. Liu, M. Koga and H. Fujisawa, “Lexicon-driven segmentation and recognition of 

handwritten character strings for Japanese address reading,” IEEE Trans. Pattern Analysis and 

Machine Intelligence, vol. 24, no. 11, pp. 1425-1437, 2002.  

[53]  B. Zhu and M. Nakagawa, “Trie-lexicon-driven recognition for on-Line handwritten 

Japanese disease names using a time-synchronous method,” Proceedings of the 11th 

International Conference on Document Analysis and Recognition, Beijing, China, pp. 

1130-1134, 2011.  

[54]  Y. Chiang and C. Knoblock, “Recognition of Multi-oriented, Multi-sized, and Curved 

Text”, Proc. 11th ICDAR, pp. 18-21, 2011. 

[55]  N. Sun, M. Abe, and Y, Nemoto, “A Handwritten Character Recognition System by Using 

improved Directional Element Feature and Subspace Method (in Japanese),” IEICE Trans. Inf. 

& Sys., vol. J78-D-II, no. 6, pp. 922-930, 1995. 

[56]  G. Srikantan, D.S. Lee and J.T. Favata, “Comparison of normalization methods for 

character recognition, Pro. of the third International Conference on Document Analysis and 



 

96 

 

Recognition,” Montreal, Canada, pp. 719–722, 1995. 

[57]  J.O. Jr, L.R. Veloso, J.M. de Carvalho, “Interpolation/decimation scheme applied to size 

normalization of characters images,” Proc. of the 15th International Conference on Pattern 

Recognition, Barcelona, Spain, vol. 2, pp. 577–580, 2000. 

[58]  C.L. Liu, M. Koga, H. Sako and H. Fujisawa, “Aspect ratio adaptive normalization for 

handwritten character recognition,” Lecture Notes in Computer Science, vol. 1948, pp. 418-425, 

2000.  

[59]  U. Ramer, “An Iterative Procedure for the Polygonal Approximation of Plan Closed 

Curves,” Computer Graphics and Image Processing, vol. 1, pp.244-256, 1972.   

[60]  S. Z.  Li, “Markov Random Field Modeling in Image Analysis,” Springer, ISBN: 

978-1-848000-278-4, 2009.  

[61]  J. Zeng and Z.Q. Liu, “Markov Random Fields for Handwritten Chinese Character 

Recognition,” Proc. 8th International Conference on Document Analysis and Recognition, 

Seoul, pp. 101–105, 2005.  

[62]  X.D. Zhou and C.L. Liu, “Text/non-text Ink Stroke Classification in Japanese Handwriting 

Based on Markov Random Fields,” Proc. of the 9th International Conference on Document 

Analysis and Recognition, Curitiba, Brazil, pp. 377-381, 2007.  

[63]  S.J. Cho, J.H. Kim, “Bayesian Network Modeling of Strokes and their Relationships for 

On-line Handwriting Recognition,” Pattern Recognition, vol. 37, pp.253-264, 2004.  

[64]  J. Lafferty, A. McCallum, and F. Pereira, “Conditional Random Fields: Probabilistic 

Models for Segmenting and Labeling Sequence Data,” Proc. of the 18th ICML, pp. 282-289, 

2001.  

[65]  B.H. Juang and S. Katagiri, “Discriminative Learning for Minimum Error Classification,” 

IEEE Trans. Signal Processing, vol.40, no.12, pp.3043-3054, 1992.  

[66]  S. Shetty, H. Srinivasan and S. Srihari, “Handwritten Word Recognition Using 

Conditional Random Fields,” Proc. of the 9th ICDAR, pp.1098-1102, 2007.  

[67]  X.D. Zhou, C.L. Liu, and M. Nakagawa, “Online Handwritten Japanese Character String 

Recognition Using Conditional Random Fields,” Proc. of the 10th International Conference on 

Document Analysis and Recognition, Barcelona, Spain, 2009.  

[68]  M. Liwicki and H. Bunke, “HMM-based On-line Recognition of Handwritten Whiteboard 

Notes,” Proc. 10th International Workshop on Frontiers in Handwriting Recognition (IWFHR), 

pp. 595-599, 2006.  



 

97 

 

[69]  Y. Katayama, S. Uchida and H. Sakoe, “HMM for On-Line Handwriting Recognition by 

Selective Use of Pen-Coordinate Feature and Pen-Direction Feature (in Japanese),” IEICE 

Trans. Inf. & Sys., vol. J91-D, no.8, pp. 2112-2120, 2008.  

[70]  G. Nagy, N. Tuong, “Normalization techniques for hand printed numerals,” Scientific 

Application, Communication of the ACM 13th, no.8, pp. 475–481, 1970.  

[71]  R.G. Casey, “Moment normalization of Hand-printed character,” IBM J. Res. Dev. 14, 

pp.548–557, 1970.  

[72]  J. Tsukumo, H. Tanaka, “Classification of Hand Printed Chinese Characters Using 

Nonlinear Normalization and Correlation Methods,” Proc. of the 9th International Conference 

on Pattern Recognition," Rome, Italy, pp. 168–171, 1988.  

[73]  H. Yamada, K. Yamamoto and T.  Saito, “A Nonlinear Normalization Method for Hand 

Printed Kanji Character Recognition Based on Line Density Equalization,” Pattern Recognition, 

vol. 23, no.9, pp. 1023–1029, 1990.  

[74]  A.D.S. Britto JR. and R. Sabourin, “Improvement in Handwritten Numeral String 

Recognition by Slant Normalization and Contextual Information,” Proc. of the 7th International 

Workshop on Frontiers of Handwriting Recognition, Amsterdam, Netherlands, pp. 323–332, 

2000.  

[75]  C.L. Liu and K. Nakashima, “Handwritten Digit Recognition: Benchmarking of 

State-of-the-Art Techniques,” Pattern Recognition, vol. 36, no.10, pp. 2271–2285, 2003.  

[76]  Y. Yamashita and K. Higuchi., "Classification of Hand-printed Kanji Characters by the 

Structured Segment Matching Method, Pattern Recognition Letters, vol. 1, pp. 475–479, 1983.  

[77]  C.L. Liu, “Preprocessing and statistical/structural feature extraction for handwritten 

numeral recognition,” Academic Press, London, pp. 161–168, 1997.  

[78]  G. Jun, N. Sun, Y. Nemoto, M. Kimura, H Echigo, “Recognition of Handwritten 

Characters Using Pattern Transformation Method with Cosine Function,” (in Japanese) IEICE 

Trans. Inf. & Sys., vol.J76-D-II, no.4, pp. 835–842, 1993. 

[79]  R. J. Carroll and D. Ruppert, “On prediction and the power transformation family,” 

Academic Press, London , 1997.  

[80]  T. Wakabayashi, “On the Size and Variable Transformation of Feature Vector for 

Handwritten Character Recognition,” IEICE Trans. Inf. & Sys., Japan vol. J76-D-II no.12, pp. 

2495–2503, 1993. 

[81]  Heiden R.Van Der and F.C.A. Groen, “The Box-Cox Metric for Nearest Neighbor 



 

98 

 

Classification Improvement,” Pattern Recognition, vol. 30, no.2, pp. 273–279, 1997.  

[82]  F. Kimura, K. Takashina, S. Tsuruoka and Y. Miyake, “Modified quadratic discriminant 

functions and the application to Chinese character recognition,” IEEE Trans. Pattern Analysis 

and Machine Intelligence, vol. 9, no. 1, pp. 149-153, 1987.  

[83]  M. Nakagawa and M. Onuma, “Online handwritten Japanese text recognition free from 

constrains on line direction and character orientation,” In Proceedings of International 

Conference on Document Analysis and Recognition(ICDAR), pp.519–523, Edinburgh, 

Scotland, 2003. 

[84]  F. Yin and C.L. Liu. “Handwritten Chinese text line segmentation by clustering with 

distance metric learning. Pattern Recognition, vol.42, no.12, pp.3146–3157, 2009.  

[85]  M. Liwicki, E. Indermuhle, and H. Bunke. “On-line handwritten text line detection using 

dynamic programming,” In Proceedings of International Conference on Document Analysis and 

Recognition (ICDAR), vol. 1, pp. 447–451, Curitiba, Brazil, 2007. 

[86]  M. Shilman, Z. Wei, S. Raghupathy, P. Simard, and D. Jones. “Discerning structure from 

freeform handwritten notes,” In Proceedings of International Conference on Document 

Analysis and Recognition (ICDAR), pp. 60–65, Edinburgh, Scotland, 2003. 

[87]  X.D. Zhou, D. H. Wang and C.L. Liu, “A robust approach to text line grouping in online 

handwritten Japanese documents,” Pattern Recognition, vol. 42, no. 9, pp. 2077-2088, 2009. 

[88]  Y. Nievergelt. “Total least squares: State-of-the-art regression in numerical analysis. SIAM 

review,”vol. 36, no.2, pp. 258–264, 1994. 

[89]  V.N. Vapnik, “The Nature of Statistical Learning Theory,” John-Wiley Press, ISBN 

978-1-4419-3160-3,1998.  

[90]  Y. Sun, T.S. Butler, A. Shafarenko, R. Adams, M. Loomes and N. Davey, “Segmenting 

handwritten text using supervised classification techniques,” Proceedings of IEEE International 

Joint Conference on Neural Networks, vol. 1, pp. 657-662, 2004.  

[91]  Z. Harbi, Y. Hicks, R. Setchi and A. Bayer, “Segmentation of Clock Drawings Based on 

Spatial and Temporal Features,” Procedia Computer Science 60, pp. 1640-1648, 2015.  

[92]  T. Joachims, “Making large-scale SVM learning practical”, Universität Dortmund, 1999.  

[93]  J. Gao, B. Zhu and M. Nakagawa, “Development of a Robust and Compact On-Line 

Handwritten Japanese Text Recognizer for Hand-Held Devices,” IEICE Trans. Inf. & Syst., vol. 

E96-D, no.4, pp. 927-938, 2013. 



 

99 

 

[94]  C.L. Liu and K. Marukawa, “Handwritten numeral string recognition: character-level vs. 

string-level classifier training,” Proceedings of the 17th International Conference on Pattern 

Recognition, Cambridge, UK, vol. 1, pp. 405-408, 2004.  

[95]  C.Y. Suen, “N-gram statistics for natural language understanding and text processing,” 

IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 1, no. 2, pp. 164-172, 1979.  

[96]  K. Takeuchi and Y. Matsumoto, “Japanese OCR correction using stochastic morphological 

analyzer and probabilistic N-gram word model,” International Journal of Computer Processing 

of Languages, vol. 13, no. 1, pp. 69-82, 2000. 

[97]  P.K. Wong, and C. Chan, “Post processing statistical language models for handwritten 

Chinese character recognizer,” IEEE Trans. Systems, Man, and Cybernetics, Part B: 

Cybernetics, vol. 29, no. 2, pp. 286-291, 1999. 

[98]  N. Iwayama and K. Ishigaki, “Adaptive context processing in on-line handwritten 

character recognition,” Proceedings of the 7th International Workshop Frontiers in Handwriting 

Recognition, pp. 469-474, 2000. 

[99]  A. Vinciarelli, S. Bengio and H. Bunke, “Offline recognition of unconstrained handwritten 

texts using HMMs and statistical language models,” IEEE Trans. Pattern Analysis and Machine 

Intelligence, vol. 26, no. 6, pp.709-720, 2004. 

[100]  Q.F. Wang, F. Yin and C.L. Liu, “Unsupervised language model adaptation for 

handwritten Chinese text recognition,” Pattern Recognition, vol. 47, no. 3, pp. 1202-1216, 

2014.  

[101]  N. Li, J. Chen, H. Cao, B. Zhang and P. Natarajan, “Applications of Recurrent Neural 

Network Language Model in Offline Handwriting Recognition and Word Spotting,” 

Proceedings of the 14th International Conference on Frontiers in Handwriting, Crete, Greece, 

pp. 134-139, 2014.  

[102]  S.F. Chen and J. Goodman, “An empirical study of smoothing techniques for language 

modeling,” Computer Speech and Language, vol. 13, pp. 359-394, 1999.  

[103]  F. Yin, Q.F. Wang, and C.L. Liu, “Transcript mapping for handwritten Chinese documents 

by integrating character recognition model and geometric context,” Pattern Recognition, vol. 46, 

no. 10, pp. 2807-2818, 2013. 

[104]  Y.C. Wu, F. Yin and C.L. Liu, “Evaluation of Geometric Context Models for Handwritten 

Numeral String Recognition,” Proceedings of the 14th International Conference on Frontiers in 

Handwriting Recognition, Crete, Greece, pp. 193-198, 2014.  



 

100 

 

[105]  M. Nakagawa and K.Matumoto, “Collection of on-line handwritten Japanese character 

pattern database and their analysis,” Int. J. Document Anl Recognition, vol. 7, no. 1, pp. 69-81, 

2004. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

101 

 

Appendix-ⅠⅠⅠⅠ: List of Figure  

Figure2- 1 SegmentatioFigure2-1 Segmentation lattice. (SP is segmentation point and 

UP is undecided point.) ............................................................................................... 16 

 

Figure3- 1 Process of feature points extraction .............................................................. 27 

 

Figure4- 1 Character orientation and line direction. ....................................................... 41 

Figure4- 2 Text line element, Character orientation and line direction. ......................... 41 

Figure4- 3 Recognition steps in the system. ................................................................... 42 

Figure4- 4 Flow chart of text line segmentation process. ............................................... 43 

Figure4- 5 Line segmentation - block grouping. ............................................................ 44 

Figure4- 6 Line segementation - pre-segmentation. ....................................................... 45 

Figure4- 7 Line segmentation - temporal segmentation. ................................................ 45 

Figure4- 8 Segmentation candidate lattice of a text line string with six blocks(six 

straight edges). Each internal node corresponds to an off-stroke between blocks. The 

curved edges denote text lines comprising multiple blocks. ....................................... 46 

Figure4- 9 An example of text line segmentation. ......................................................... 47 

Figure4- 10 Grouping process. The grouping results are bounded with red rectangular 

boxes: (a) stroke classification results,(Blue: text stroke; gray: non-text strokes.) (b) 

pre-segmentation results, (c) temporal segmentation results, and (d)temporal merge 

results. 47 

Figure4- 11 Flow processing of character orientation ...................................................... 48 

Figure4- 12 Pen movement .............................................................................................. 49 

Figure4- 13 Two main peaks in pen movement direction. ............................................... 49 

Figure4- 14 Estimation method of character orientation. ................................................. 50 



 

102 

 

Figure4- 15 Normalization of character orientation. ........................................................ 50 

Figure4- 16 Quantization of line direction. ...................................................................... 51 

Figure4- 17 A quasi-program to obtain the feature fd ...................................................... 52 

Figure4- 18 Distance feature fd for line direction R. ........................................................ 52 

Figure4- 19 A quasi-program to obtain the feature fi ....................................................... 53 

Figure4- 20 Features to obtain fi for line direction R. ...................................................... 53 

Figure4- 21 Setting thresholds for hypothetical segmentation[8]. ................................... 54 

Figure4- 22 Example of Support vectors. ......................................................................... 58 

Figure4- 23 Segmentation-recognition candidate lattice. ................................................. 61 

Figure4- 24 Geometric features. ....................................................................................... 63 

Figure4- 25 Inner gap feature within a character pattern. ................................................ 63 

 

Figure5- 1 Examples of character-based (a) and word-based (b) unigram, bigram and 

trigram model. ............................................................................................................. 68 

Figure5- 2 Geometric features. ....................................................................................... 74 

Figure5- 3 Inner gap feature within a character pattern ................................................. 74 

 

Figure6- 1 Examples in  HANDS-Kondate_t_bf-2001-11 database from Page23 to 

Page29. 78 

Figure6- 2 Page of 23-28 and the result of  recongition ............................................... 84 

Figure6- 3 Examples of rotated handwritten text lines. .................................................. 85 

 

Figure7- 1 Examples of recognition errors.. ................................................................... 89 

 

 



 

103 

 

Appendix-ⅡⅡⅡⅡ: List of Tables 

 

Table3- 1 Mapping of linear normalization. ..................................................................... 26 

 

Table4- 1 Terms to obtain 21 features. ............................................................................. 59 

Table4- 2 21 features for over-segmentation extracted from each off-stroke. .................. 60 

 

Table6- 1  Pages in HANDS-Kondate_t_bf-2001-11 (100 people). ................................. 76 

Table6- 2 Number of samples in training and testing sets for each direction ................... 78 

Table6- 3 Number of samples in training and testing sets for each direction (dataset1) .. 79 

Table6- 4 Number of samples in training and testing sets for each direction (dataset2) .. 79 

Table6- 5 Number of samples in training and testing sets for each direction (dataset3) .. 79 

Table6- 6 Number of samples in training and testing sets for each direction (dataset4) .. 80 

Table6- 7 Performance on reduced dimensionalities. ....................................................... 81 

Table6- 8 Performance optimized by GA and MCE-SGD v.s segmentation-updated 

system. ......................................................................................................................... 82 

Table6- 9 Performance on mixture of vertical, horizontal and slanting lines. .................. 83 

Table6- 10 Performance on rotated horizontal/vertical handwritings. ............................ 86 

Table6- 11 Time complexity. .......................................................................................... 86 

Table6- 12 Memory requirement for dictionaries. .......................................................... 87 

 

 

 



 

104 

 

Appendix-ⅢⅢⅢⅢ: Author’s Publications 
 

Journal Paper 

[1] Yuechan Hao, Bilan Zhu and Masaki Nakagawa, “A Line-direction-free and 

Character-orientation-free On-line Handwritten Japanese Text Recognition System,” IEICE 

Trans. Inf. & Syst. Vol. E99-D, no.1, pp. 197-207, 2016.  

International Conference Paper 

[2] Yuechan Hao, Bilan Zhu and Masaki Nakagawa, “Large Improvement in 

Line-direction-free and Character-orientation-free On-line Handwritten Japanese Text 

Recognition,” Proc. 14th ICFHR, pp. 329-334, 2014. 

 

 

 

 

 

 

 

 

 

 


