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Abstract

The theme of this thesis is detection, automatic definition and application
of anatomical landmarks. Firstly, I propose a detection method for 197
anatomical landmarks in clinical CT datasets. Secondly, I propose a
method to define anatomically meaningful landmarks automatically from a
large number of CT datasets. Thirdly, a segmentation method for the
vertebra and the pelvic bones in CT volumes is presented. Fourthly, I report
an automatic detection method of cerebral aneurysms using a novel HoTPiG
image feature set.

In Chapter 1, the definition and classification of anatomical landmarks are
discussed.  Then, basic methods for landmark detection and major
applications of them are described.

In Chapter 2, I propose a method to detect 187 anatomical landmarks
simultaneously.  Firstly, candidate points for each landmark are detected by
a corresponding detector. Each detector outputs 100 candidates for each
landmark. Then, the final output is generated by solving a combinatorial
optimization problem in which the algorithm chooses one candidate from
each candidate list. This problem is formulated using landmark point
distribution model and maximum a posteriori estimation, and is solved using
Markov chain Monte Carlo method and simulated annealing.  The proposed
method was evaluated with 109 CT datasets and 96.5% of landmarks were
successfully detected within 20 mm from the ground truth points.

In Chapter 3, I try to define anatomically meaningful landmarks
automatically. A new triangular consistency criterion (TCC) is introduced

to evaluate each point in the human body. TCC is calculated based on
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mconsistency of registration results among three volumes. The proposed
method was evaluated with 50 CT volumes and 48 new landmarks were
successfully defined.

In Chapter 4, I propose a segmentation method for the vertebrae and the
pelvis which utilizes my landmark detection system. 1 modified
diffeomorphic demons algorithm so that it can utilize landmark position
information as well as grayscale volume information. This landmark-
guided diffeomorphic demons algorithm is coupled with the multiatlas
method to segment the spinal and pelvic bone regions. The proposed
method was evaluated with 50 whole torso CT datasets and showed a
segmentation accuracy which is comparable to other state-of-the-art methods.

In Chapter 5, I proposed a novel graph structure-based image feature
named HoTPiG. HoTPiG is a feature set which can be calculated at each
foreground voxel in an arbitrary binary volume. HoTPiG is defined as a
three-dimensional histogram of graph distances among three points in the
graph structure. Using this feature set, an automatic detection system for
cerebral aneurysms in MR angiography (MRA) images was developed.
The proposed system was evaluated with 300 MRA datasets and showed
81.8% of sensitivity when the number of false positives was three per case.

In Chapter 6, I conclude this thesis.
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Chapter 1 Introduction

Chapter 1 Introduction

From the discovery of X-ray by Roentgen in 1895, the research field of
medical imaging has been rapidly developed. Today, computed
tomography (CT) and magnetic resonance imaging (MRI) are indispensable
diagnostic tools for physicians who must know what is going on in the bodies
of patients. A single CT or MRI examination can generate huge data ofthe
order of gigabytes. It is not an easy task for medical doctors to interpret
such a huge amount of data in their daily work. That is why assistance by
computer is desired in modern medical image interpretation. In a practical
sense, the goal of medical image analysis is to help physicians to interpret

medical images.

Physicians interpret images using their anatomical knowledge on the
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human body. Likewise, when a certain medical image analysis process has
to handle a particular organ, the computer program may have to know
anatomical knowledge of the target organ, e.g. the position, pose, shape,
appearance, and their statistical variations. In this sense, a methodology to

migrate knowledge of physicians to computers is required.

Landmarks are one of the most primitive type of anatomical knowledge
representation. In an anatomical sense, a landmark is a point with its own
name. Owing to its primitiveness, landmarks can easily be handled by a
computer application.  On the other hand, landmark position information is
frequently used to determine initial condition of more complicated medical
image analysis processes such as segmentation and registration. That is
why landmarks are important in medical image analysis.  Automatic
detection of anatomical landmarks and its application are the main issues of

this thesis.

In the rest of this chapter, I firstly discuss the definition and categorization
of landmarks. Secondly, classical detection methods for landmarks are
described. Thirdly, the applications ofanatomical landmark detection tasks

are shown. Finally, the purposeand structure of this thesis are described.
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1.1 Definition and categorization of anatomical

landmarks

In the anatomical sense, “landmarks” are defined at points, curves, etc.,
with specific features that are commonly found in every individual with a
certain correspondence in location and topology. In addition, unique names
or labels are often given to these anatomical landmarks to distinguish them
from each other. In the terminology for shape representation such as in
statistical shape models (SSMs) [1], however, ‘landmark’ is often only used
for points included in shape models even if they have no characteristic
geometric and anatomical features.

2

In this thesis, I use the term “anatomical landmark™ as landmarks which
have characteristic anatomical features. It is expected to have a
characteristic (but not always unique) appearance, can be given a unique

name, and exists in most of human bodies.

An anatomical landmark can be defined by several ways, including
topological, morphological, curvature-based, or manipulative manner.
Sometimes it may be defned on a surface of an organ or a tissue, but
sometimes it can be inside or even outside of the organ (e.g. the center of a
hole of a bone). In the morphometric definition by Bookstein [2],

landmarks including anatomical ones are classified into the following three



Chapter 1 Introduction

types depending on their degree of homology.

Type 1. Discrete juxtapositions of tissues
Type 2. Maxima of curvature or other local morphogenetic processes
Type 3. Extremal points

Type 1 landmarks include branching points for tree structures, such as blood
vessels, and the centers/centroids of sufficiently small structures such as
vertebrate eyes. These appearto be the most easily defined and reproduced
landmarks.  For this reason, names or labels are given to most major
anatomical structures. The points with maximum curvature on the profiles
of structures are assigned as type 2 landmarks. For example, the tips of
teeth and spinous processes of vertebra are categorized as this type. The
third type of landmarks is constructed geometrically for the sake of
convenience in measurement and includes the end-points of diameters and
centroids, and so forth. Type 3 landmarks are often categorized as
pseudo/semi-landmarks such as regularly sampled points on curves and

surfaces used in shape models.

Masutani [3] proposed another categorization of anatomical landmarks in
the viewpoint of automatic detection based on local image features. The

categorization 1s as follows:

Class 1. Landmarks with salient feature, and uniquely detectable. In

addition, there is no similar structure in other part of body. This
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type of landmark is thought to be a key in medical image

understanding.

Class 2-a. Ones with salient feature but there exist similar patterns around

the landmark within a structure group. Forinstance, landmark at
each spinous process of vertebra in the spimnal column belongs to
this category.  Within such structures, those landmarks are
virtually homologous and therefore are difficult to distinguish each

other.

Class 2-b. There exist similar patterns in a few different structures. In

Class 3.

other word, they are smmilar i image features but never
homologous. For example, iliac crest has a ridge feature similar

to ones at shoulder blade.

Landmarks with few features, and therefore too many similar
structures are found all over the data. This class includes points
on flat part of liver surface. These are detected only via group-
wise matching procedure such as registration.  This kind of

landmarks 1s sometimes called as semi-landmarks.

In Masutani’s categorization, the class 1 landmarks are easiest to be detected

and the class 3 landmarks are most difficult. Comparing class 2-a and 2-b,

probably class 2-a landmarks are more difficult to detect. This is because

when a series of class 2-a landmarks (e.g. processes of vertebrac) are

detected, the identification of their numbers must be performed (e.g. as the
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3rd cervical, 4th thoracic or 5th lumbar ones).

Fig. 1. Example of class 1 landmarks (the atlantoaxial joint). AX=axial,

COR=coronal, SAG=sagittal cross-sections.
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SAG|

Fig. 2. Example of class 2-a landmarks (tip of the spmous process ofthe 4th

cervical vertebra).
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SAG

Fig. 3. Example of class 2-b landmarks (the root of the superior mesenteric

artery).
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Fig. 4. Example of class 3 landmarks (the superior margin of the liver

surface).
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Anatomical landmarks can also be categorized by their importance in
academic or clinical applications. Note that clinically important landmarks
are not necessarily categorized mto class 1. An mmportant example is
landmarks defined on the vertebrae and the ribs. These are anatomically
important class 2-a landmarks. It is also possible that an important
landmark is class 3, or extremely, not visible in the given modality (e.g., CT
or MRI). In other words, both Bookstein’s and Masutani’s classifications

are modality-dependent.

All of Masutani’s class 1, 2 and 3 landmarks are target of this thesis.
Naturally, class 3 landmarks cannot be defined or detected unless a proper
spatial context (for example, the positions of other landmarks) is given.
This is because there are many points which have similar appearances to each
class 3 landmark. On the other hand, the human body includes a large
number of possible class 3 landmarks compared to class 1 or 2 landmarks.
It can be possible to fill the human body with suchclass 3 landmarks.  Such
a large landmark set can be regarded as a kind of computational
representation of anatomical knowledge and has a wide variety of
applications as written below. Filling the human body with well-defined

landmarks is an ultimate goal of my study.

Note that not all points in the human body can be a class 3 landmark;
point-to-point correspondence among human subjects is a critical property

of landmarks. FEach landmark should be determined at one point in any
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human body. A class 3 landmark canonly be determined by a manipulative
way; for example, the border pomt of the jejunum and the ileum can be
determined as the 2:3 internally dividing point of the total small intestine.
This can be a class 3 landmark because it can be determined with point-to-
point correspondence among human subjects. On the other hand, the
appendix can be used as a class 1 landmark. However, it is possible that
the appendix is resected by a surgery. Generally speaking, a landmark can
be lost or even duplicated due to anatomical variants or a surgery. A

landmark detection system should also handle sucha situation.

A lot of anatomically definable landmarks already have their own names.
However, it is probable that there are nameless but anatomically definable
landmarks which can be detected easily (e.g. being class 1) and thus useful
in medical image analysis. In Chapter 3 I will describe a method to

automatically determine such ‘nameless but useful’ landmarks.

1.2 Landmark detection and image features

The most classic and popular method for landmark detection is a sliding
window method [4] [5]. In a sliding window method, a window with a
certain size is placed on the given image. Then, the likelihood of existence

of the target landmark at the center of the window is calculated, using the
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intensity information of the pixels/voxels in the window. This likelihood
calculation 1s repeated at every possible position, and the place with the

largest likelithood is outputted as the estimated landmark position.

For calculating the likelihood, the simplest method is a template matching
[6]. Here, a template is a typical partial image around the target landmark.
In a template matching method, it is assumed that the partial images around
the target landmark have a sufficiently small variation of intensity patterns
among subjects. Under this assumption, a template matching method
simply calculate the distance (e.g., sum of squared error) between the partial

image of the window and the given template.

Obviously, template matching will not work well if the variation of the
partial image around the landmark is large. To overcome this limitation,
machine learning-based methods are frequently used. In a machine
learning-based method, a large amount of training datasets are used to learn
the intensity distribution of the partial images around the target landmark.
When an unseen image is mputted, the likelihood of each wmdow is
estimated by the trained machine learning algorithm.  Although mmage
mtensities of the given partial image can be directly used as the input of the
machine learning, usually landmark-dedicated image features are extracted
from the partial image, e.g., the curvature of the image contour at the center
ofthe window. Other image features frequently used include Haar-like and

DoG features [7]. In Chapter 5, I will introduce a novel HoTPiG image
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feature set which can detect vessel bifurcations or aneurysmal objects.

Recently, a landmark detection method other than sliding windows has
beenreported [8]. It is based onregression, instead of likelhood estimation.
When a window is given, a regression tree (a kind of machine learning
method) estimates the dislocation between the center of the window and the
landmark. This dislocation estimation is performed at every position in the

image, and the final landmark position is estimated by voting.

The detection algorithm described above is about detecting one landmark.
Detection of multiple landmarks is more complicated because spatial
relationship among landmarks should be considered. One possible
approach is a sequential approach in which landmarks are detected one by
one [9]. However, it is not easy to detect many class 2 or 3 landmarks by
the sequential approach. That is because, in the sequential approach, one
detection miss can be crucial in the following process. Especially it is
difficult to detect many class 2-a landmarks (i.e., landmarks on the spine and
ribs) by the sequential approach when the imaging range does not include
the entire spme. So forth, few study have been reported in which many

class 2-a or 3 landmarks are simultaneously detected.

In Chapter 2 I wil discuss how to detect multiple landmarks
simultaneously.  Each single landmark detection can fail due to absence of
the target tissue (e.g. after a surgery), being out of imaging range, or

mnsufficient sensitivity of the detector. 1 will build a stochastic detector



14
Chapter 1 Introduction

model which can handle these possibilities. Furthermore, I will introduce
a landmark point distribution model (L-PDM) which is a stochastic model of
spatial distribution of landmarks. Using these two models, [ will formulate

the multiple landmark detection problem as a maximum a posteriori problem.

1.3 Medical image analysis and anatomical
landmarks

The automatic detection of anatomical landmark positions has a wide
range of applications in medical image processing. For example,
predetected landmark positions are frequently used in determining the initial
condition of statistical shape models (SSMs) for the region segmentation of
various organs [1] or the image registration of two human bodies [10]. In
both segmentation and registration, landmark detection is frequently used to

set the nitial condition of the energy optimization problem.

1.3.1 Registration

Registration is a process to align two or more images spatially.
Registration may be done between different modality images of the same
patient or the same modality images of different patients. It is known that
registration problem is an mverse problem which requires a sound

regularization and the use of proper models [10]. Landmarks can be used
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in registration by fitting corresponding landmark positions between two
images. Deformation and warping of the positions other than landmarks
can be calculated using interpolation.  Otherwise, when registration
problem is formulated as an energy optimization problem, landmarks can be
used to set the initial condition of the problem solver. In Chapter 4, I will
show a landmark-based registration algorithm in which landmark position

fitting is integrated to the image fitting and deformation.

1.3.2 Segmentation

Segmentation is a process to determine the region of a target organ such
as brain or a target tissue such as vessels. Segmentation can be done by
either data-driven or model-based manner. A frequently used model-based
method is a statistical shape model (SSM). Fitting a SSMto a given image
is usually formularized as an energy optimization problem, so landmarks can
be used to set the initial condition (i.e., position, pose and shape) ofthe SSM.
Moreover, when SSM is represented as a point distribution model (PDM),
the points can be landmarks themselves; otherwise, these points can be
semilandmarks (i.e., Masutani’s class 3 landmarks). In Chapter 2, I will
describe a landmark point distribution model (L-PDM) which can represent
landmark positions in the whole body. And In Chapter 4, I will show a
registration-based segmentation method for the spine and the pelvis region

m CT volumes.
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1.4 Purpose of this thesis

The purpose of this thesis is to describe the methods for automatic
detection of landmarks, automatic definition of landmarks, and application

of detected landmarks to segmentation and registration problems.
In the rest of this thesis, I will describe:

How to define a L-PDM and how to detect over 100 landmarks

simultaneously (Chapter 2)

- How to automatically define anatomically meaningful landmarks from a

given large dataset of CT volumes (Chapter 3)

- A landmark-guided image registration method and its application to
multiatlas-based segmentation of the spinal and pelvic bones n CT

volumes (Chapter 4)

- A novel graph-based image feature set named HoTPiG and its
application to an automatic arterial aneurysm detection in magnetic

resonance angiography images (Chapter 5)

Finally, I conclude the thesis in Chapter 6.
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Chapter 2 Automatic detection of

landmarks

An automatic detection method for 197 anatomically defined landmarks
in computed tomography (CT) volumes is presented. The proposed method
can handle missed landmarks caused by detection failure, a limited imaging
range and other problems using a novel combinatorial optimization
framework with a two-stage sampling algorithm.  After a list of candidates
is generated by each landmark detector, the best combination of candidates
is searched for by a combinatorial optimization algorithm using a landmark
point distribution model (L-PDM) to provide prior knowledge.
Optimization is performed by simulated annealing and iterative Gibbs
sampling.  Prior to each cycle of Gibbs sampling, another sampling
algorithm is processed to estimate the spatial distribution of each target
landmark, so that landmark positions without any correct detector-derived

candidates can be estimated. The proposed method was evaluated using
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104 CT volumes with various imaging ranges. The overall average
detection distance error was 6.6 mm, and 83.8, 93.2 and 96.5% oflandmarks
were detected within 10, 15 and 20 mm from the ground truth, respectively.
The proposed method worked even when most of the landmarks were outside
of the imaging range. The identification accuracy of the vertebral centroid
was also evaluated using public datasets and the proposed method could
identify 70% of vertebrae including severely diseased ones. From these
results, the feasibility of my framework in detecting multiple landmarks in

various CT datasets was validated.

2.1 Introduction

2.1.1 Two major problems

There are two major difficulties in detecting an anatomical landmark on
the basis of its shape properties: (1) nter-individual variation and (2)
msufficient mtra-individual uniqueness of the shape. Firstly, landmark
shape differences between individuals can be very large. A smmple
template-matching technique has been frequently used in practice under the
assumption that the target landmark has sufficiently small inter-individual
variations in its local appearance (i.e., the intensities ofthe voxels around the
landmark point). = However, many practically important anatomical
landmarks in the human body, such as the tips of bone structures or vessel
bifurcations, have large inter-individual variations i their appearance (Fig.
1). Furthermore, the human body includes many points whose local
appearance is similar to the target landmark (e.g., the tip of another bony
process or another blood vessel bifurcation). The most extreme example of

this problem is the class of landmarks defined on repetitive body segment
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structures, that is, the vertebrae and ribs (Fig. 2). To avoid these difficulties,
it is necessary to utilize prior knowledge of the positions of landmarks in the
human body. Since the positions of landmarks vary among individuals, a

statistical model for the spatial distribution of the landmarks is required.

Subject A

l. e I.
L |
g L
oy
nra d
e R

Sagitta I'

Fig. 1. Example of a landmark with large mter-individual variation (the root

of'the celiac artery).
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Axial Sagittal Axial Coronal

Fig. 2. Examples of landmarks with repetitive shapes. (Left from top) Tips
of the spinal processes of the 4th, 5th and 6th thoracic vertebrae. (Right
from top) Tips of the transverse processes of the 1st, 2nd and 3rd lumbar

vertebrae.

2.1.2 Two strategies

To overcome these difficulties, two strategies for detecting multiple
landmarks can be considered, a sequential strategy and a simultaneous
strategy. The former involves the detection of landmarks one by one. In
this approach, the order of landmark detection is critical and a suitable order
must be determined. For example, the order of landmark detection

reliabilities can be used. One of the benefits of this approach is that each
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detector can utilize the positions of landmarks that have already been
detected. In this approach, however, a single detection failure may affect
all of the subsequent landmark detections. Thus, the detection rehability
for each landmark must be tolerably high. This becomes more problematic
as the number of landmarks is increased. The latter strategy involves the
detection of all landmarks independently.  Typically, each detector is
designed to detect only one landmark and outputs several candidate positions.
After the candidates are enumerated for all landmarks, the best combination
of candidates is searched for. This approach is advantageous when the
detection reliability for each landmark is relatively low and not sufficient for
the sequential approach. This is because a single detection error only has a
limited affect compared with the sequential approach. One of the
difficulties of this approach is how to solve the combinatorial optimization
problem. Because each landmark may have multiple candidates, a large
number of landmarks will lead to a combinatorial explosion. Another
difficulty is how to handle landmarks outside of the imaging range in the

combinatorial optimization process.

2.1.3 Previous works

Thus far, a number of automatic detection methods for anatomical
landmarks in computed tomography (CT) images have been itroduced

(Table 1). First ofall, two typical studies are introduced below.

A simultaneous and optimization-based method for detecting 22
landmarks in the body trunk was proposed by Potesil et al. [1]. They used
a pictorial structure model in which the spatial distribution of land marks is
represented by a graph structure whose edges connect selected pairs of

landmarks. The entire problem was formulated as an energy minimization
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problem and solved by a belief propagation method. Recently, Criminisi et
al. reported a method of determming bounding boxes for 26 organs including
the lungs, kidneys and liver [2]. A single random regression forest that can

detect all 26 organs simultaneously was tramed and used in their method.

As a sequential strategy-based approach, Liu and Zhou [3,4] have reported
a method for detecting 63 landmarks in the body trunk, in which the search
ranges of landmarks yet to be detected are limited using the already detected
landmark positions. The process begins with a certain landmark, namely,
an “anchor landmark.” If the anchor landmark detection fails, another
landmark is chosen as a new anchor. In this approach, prior knowledge of
the spatial landmark distribution is used to localize the search space and
reduce the number of false positive (FP) detection results. Recently, they
improved their method [4] by providing an nitial estimate of landmark
positions by propagating the landmark positions of the most similar volume

in their database found by a nearest-neighbor search.

In the context of spinal landmarks, vertebral landmark detection is
equivalent to vertebral identification, in which each vertebra is localized and
identified with its number (such as the 3rd cervical, 4th thoracic or 5th
lumbar). In this research field, Klinder et al. first reported a whole-spine
vertebral bone identification and segmentation method [5]. Recently, a
couple of other recent studies have used Markov random field (MRF)
optimization to solve combinatorial optimization problems involving
vertebral disks [6] and whole-body landmarks [7]. Glocker et al. [§]
utilized a hidden Markov model (HMM) to detect all 24 vertebral bone
centroids in CT volumes with various imaging ranges. Therr model
includes a global scale factor as a hidden variable and is solved via dynamic

linear programming. Recently, Glocker et al. reported another vertebral
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centroid detection method using discriminative random classification forests
[9] with better detection results. Kelm et al. [10] also reported a study in
which iterative margnal space learning (MSL) was used to detect the

position, orientation and scale of the intervertebral disks.

2.1.4 Proposedapproach

In this study, a framework for detecting 197 landmarks simultancously
from CT datasets is presented. @~ Compared with the previous works
mtroduced above, the main contributions and advantages of my framework

are as follows:

® The development of a novel Gibbs-sampling- and importance-
sampling-based combinatory optimization framework. This
framework can stochastically handle missing landmarks (Fig. 3) caused
by limited detector sensitivity, a limited imaging range or a
surgical/anatomical defect. The framework can also estimate the
positions of missing landmarks (i.e., the most appropriate positions for
defective, out-of-range or non-detected landmarks) using the other
landmark positions. To thebest of my knowledge, this is the first study
on medical images in which the positions of such missed landmarks are

systematically estimated.

® A stochastic model of a general landmark detector. In the model, the
failure to detect a target landmark is regarded as a random event.
Using Bayesian estimation, the algorithm can handle detectors with low
rehability and utilize them optimally. =~ This stochastic model is
optimally integrated with the combinatorial optimization framework to
detect or estimate difficult landmarks (e.g. the landmarks shown in Figs.

I and 2). This integration is also critical to handling as many as 197
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landmarks concurrently.

® An experimental validation in which the proposed framework reliably
detected multiple landmarks, including vertebral bone landmarks, to
identify all 24 vertebrae. The algorithm can identify and label the
vertebrae even if the given CT volume includes only a short part of the
spinal column. This is the first report of the simultaneous detection of

multiple landmarks on each of all 24 vertebrae in CT datasets.

® A novel method that can estimate the positions of landmarks outside the
imaging range. Through such estimation of landmark positions out of
the imaging range, the alignment of an SSM can be improved greatly

for datasets in which the segmentation target organ is partially included.

As illustrated in Fig. 4, the proposed framework begins by enumerating
candidates for each landmark position using the corresponding single-
landmark detector. Then, a Gibbs-sampling-based combinatorial
optimization algorithm [11] searches for the combination of candidates that
best fits the given landmark point distribution model (L-PDM). The L-
PDM is used to provide prior knowledge of the variation in the spatial
distribution of landmarks in the human body. Here, some landmarks may
not be detected owing to detector failure, the absence of anatomical
structures, or their being outside the imaging range (Fig. 3). In particular,
a single detection failure of a spinal landmark may cause a shift in vertebral
bone identification, leading to multiple landmark detection failures in the
optimization phase. To solve this problem, a novel two-stage sampling
algorithm is introduced (Fig. 5). In this algorithm, Gibbs sampling is
combined with another artificial-candidate sampling algorithm that can

estimate the spatial distribution of each missed landmark. Since this
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estimation ofthe spatial distribution only uses information on other landmark
positions and does not use local appearance information, it works even if a
landmark exists outside the imaging range. From the estimated spatial
distribution, several artificial candidates are sampled and merged with
detector-derived candidates. After this artificial-candidate sampling, the
Gibbs sampling algorithm samples one candidate from the merged candidate
set and then proceeds to sample the next landmark.  The artificial
candidates are repeatedly updated before each cycle of Gibbs sampling.
Through this two-stage sampling, the framework can handle CT volumes
with an insufficient imaging range, in which many target landmarks are out
of view (Fig. 3(b)). The framework can also work correctly even if many

single-landmark detectors fail to detect their targets (Fig. 3(c)).

Imaging range

(a) (b) (c)

Fig. 3. Definitions of missing landmarks in this study. The proposed
algorithm can estimate the most probable landmark position even in such
situations.  (a) Surgical or anatomical defect.  The corresponding
anatomical structure is defective owing to an anatomical anomaly or

postsurgical state. (b) Being out of imaging range. The target landmark
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is out of the imaging range. (c) Detection failure.  Although the
corresponding anatomical structure is within the imaging range, the true
landmark position is not detected by the detector responsible for the target
landmark. Such a detection failure is automatically diagnosed by the two-
stage sampling algorithm and the algorithm estimates the most probable

position for the landmark using other landmark positions.
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Fig. 4. Outline of the landmark detection system.
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Fig. 5. Outline of the proposed two-stage sampling.
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In this paper, I describe the results of testing the proposed method using

104 human torso CT datasets with various imaging ranges with or without

A total of 197 landmarks were

intravenous contrast agent injection.

detected, and their detection accuracies were evaluated.
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Table 1. Comparison of landmark detection approaches.

Landmarks Strategy Region | Methodology
(Potesil et al, 22 simultaneous torso pictorial
2011) [1] structure
(Liu and Zhou, 63 sequential torso submodular
2012) [4] optimization
(Major et al, 23 simultaneous spine MRF
2013) [6]
(Donner et al., 57 simultaneous | whole body MRF
2013) [7]
(Glocker et al., 24 simultaneous | vertebral HMM
2012) [8] body
(Glocker et al., 24 simultaneous | vertebral random
2013) [9] body forest
proposed 197 simultaneous | whole body Gibbs
sampling,
importance
sampling
2.2. Methods

An outline of the proposed method is shown in Fig. 4. The method is
composed of two phases: the independent landmark candidate detection
phase and the combinatorial optimization phase. In the former, each

landmark is independently searched for by a corresponding detector. Each
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detectoris trained for and optimized to the target landmark and outputs a list
of candidate points. Then, the combinatorial optimization algorithm
determines the final result. The final detection result of each landmark may
be one of the candidate points, or it may be the point with the maximal

posterior probability estimated by the probability distribution estimator.

I formulated the entire process of multiple landmark detection as a
Bayesian estimation problem. Firstly, each landmark detector is modeled
using a parametric stochastic model. This model can estimate not only the
probability of each generated candidate being true positive (TP) but also the
probability of all candidates being FPs.  Secondly, the probability
distribution of the spatial configuration of all landmarks in the human body
(L-PDM) is also modeled and learned using training datasets. Thirdly,
using detector models for all landmarks and the L-PDM together, the final
combinatory optimization process is formulated as a maximum a posteriori
(MAP) estimation problem and is solved by Markov chain Monte Carlo
(MCMC) and simulated annealing algorithms. In the solving process, a
two-stage sampling approach is used to efficiently estimate the positions of
landmarks that are not detected by the corresponding detectors (owing to
limited detector sensitivity, being out of the imaging range or an anatomical
or surgical defect of the target landmark). In this approach, a number of
artificial candidates are presampled from an estimated continuous
probability distribution in each MCMC sampling cycle (Fig. 5). This pre-
sampling process enables the proposed algorithm to estimate missing
landmark positions even when the missing landmarks are outside the
imaging range. Details of the detector model, L-PDM and the combinatory

optimization solving process are described in the rest of this section.
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2.2.1 Single-landmark detector

In the first stage, each landmark is independently searched for by a
landmark-dedicated detector.  Each detector searches for its target
landmark from the entire CT volume and outputs a list of candidate positions.
The detector used in this study is described in this section. The general

stochastic model of an arbitrary detector will be described later.

Each detector consists of two components: A) an initial detector that
functions by the sliding window method and B) a Madaboost-based [12]
classifier for estimating the probabilities of detected candidates being TPs
and for eliminating FPs. In B), atotal 0f482 image features are used (Table
2).

The detector used in this study is based on the work of [13] and [14].
For further details I referred readers to these two publications. Note that
my MCMC-based method can handle any arbitrary detector that outputs a
series of landmark candidate points and their likelihood values (as described

later).
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Table 2. Appearance-derived features used in Madaboost-based candidate

likelihood score determination.

60 local-appearance-model-derived features:
( Principal-component score, residual L2 norm, M ahalanobis distance from the mean)
x Number of eigenvectors used to compose the model subspace (min. 1 to max. 20)
342 Haar features (Tuet al., 2006)
19 types of rectangular solid mask combination
x 9 ROI cube sizes
x 2 preprocessing (original volume or top-hat-filtered with 4 mm kernel radius)
40 Hu-moment features (Prokop and Reeves, 1992)
5 types of moments
x 4 sizes of spherical ROI (2, 4, 6, 8 mm)
x 2 preprocessing(original volume or top-hat-filtered with 4 mm kernel radius)

32 Hessian matrix-derived features

4 types (mean and Gaussian curvatures, shapeindex, curvedness)

x 4 sizes of Gaussian smoothing o (2, 4, 6, 8 mm)

x 2 preprocessing(original volume or top-hat-filtered with 4 mm kernel radius)
8 DoG features (Lowe, 2004)

4 pairs of Gaussian smoothers o: (2,4), (4,6), (6,8), (8, 10) mm

x 2 preprocessing (original volume or top-hat-filtered with 4 mm kernel radius)

Total= 482

2.2.2 General stochastic model of landmark detector

I generally defined a landmark detector as a function whose input is a
certain 3-D volume V: R3> - R and whose outputis a set S = {6;} where
each element 6; = (c;,u;),i =1,2,...,|S| is a pair of the ith candidate
position ¢; € R® and its detector-outputted likelihood score u; € R. A

detector can output an arbitrary number of candidates for the given volume.

2.2.2.1 Single-candidate model

First of all, a single candidate generated from a landmark detector is
statistically modeled. Suppose that the tolerance of the detection distance
error is d;,;. Then, each candidate is judged as TP if and only if c; is
within the sphere whose center is the true landmark position and whose
radius is d;,;. Let this sphere be R, (Fig. 6). Additionally, let
Perue W) = p(c; € Rppye lu; = u) be the conditional probability of any
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candidate being TP when its corresponding likelihood scoreis u. The

conditional probability of it being FP (i.e., anywhere outside R;,,,) must be
Praise (w=1- Ptrue (w).

Then two categories of FPs are introduced in this study; pseudo-TPs and
other FPs (Fig. 6). The reason for this categorization is to distinguish failed
detections from inevitable detections of anatomical structures with virtually
the same shape as the target landmark. In particular, the spinal column and
ribs have a couple of such indistinguishable features. Thus, I divide the FPs

into pseudo-TPs and other FPs and define their conditional probabilities as

ppseudo (u) and Pother (u) , ICSp eCtiVGIY- These SatiSfy p false (u) =

ppseudo (u) + Pother (u) .

R pseudo
R

R
R

true
pseudo

pseudo

Fig. 6. Example of the TP region and pseudo-TP regions. The pseudo-TP
regions are regions around any confusing structures (i.e., the 1st, 3rd and 4th
lumbar intervertebral disks), that can hardly be distinguished from the true

landmark (i.e., the 2nd lumbar intervertebral disk).

To establish a statistical model for a detector, two assumptions are made:

(a), the log odds ratio of TPs + pseudo-TPs to other FPs can be represented
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as a linear function of u:

Ptrue (u) + ppseudo (u)
Pother (u)

= exp(a, + a,u), (1)

and (b) the odds ratio of TPs to pseudo-TPs s a constant:

Perue (1) — 4
Ppseudo (W) 2 (2)

where a = (ay,a,,a,) is amodel parameter.  The first assumption means
that the detector TP/FP odds can be parametrized using a logistic model (i.e.,
log-odds ratio is modeled as a linear function of the variable, that is, the
detector-generated likelihood wu). The second assumption is that each
detector cannot distinguish TPs from pseudo-TPs and the detection ratio of
them are independent of the detector-generated likelihood u. Using this
model, p;.(1) can be modeled as

_a exp(a, + a,;u)
“1+4+a, 1+exp(ay+au) 3)

Derue (1)

Practically, the model parameter a has to be estimated n advance. In
this study, a is estimated from training datasets. After each detector is
traned using the training datasets, the detector is in turn applied to all the

training datasets themselves. Then the detection results from all datasets

training d u training The

are added up to compose apair of scoresets U, Fp

trainin trainin . .
P 9 and u,, 9 are the detector likelihood scores of

elements of u
TP and FP candidates (judged using ground-truth landmark positions),
respectively.  Then, the optimal parameter a can be estimated by a

maximal likelihood (ML) method as follows:
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a = argmax 2 log pirue (W)
a

training
U€Urp

(4)
+ 2 log(l — Ptrue (u)) -

training
U€urpp

Ptrue (w)

An example of the estimated log odds log P— for a spinal landmark
“Ptrue

1s shown in Fig. 7.

estimated & real log odds
(T6 intervertebral disk posterior)

detector output score u
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Fig. 7. Example of model-estimated TP/FP log odds curve (sky blue). A
real log odds curve (green), which is calculated from a real detector output
histogram, is also shown. Note that the estimated curve closely fits well to

the real curve.

2.2.2.2 Multiple-candidate model
On the basis of the single-candidate detector model described above,
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another multiple-candidate detector model is built.  Using the single
candidate model, Py, (W) = p(c; € Ryppelu;) was calculated in the
previous section.  This means that the probability of each candidate without
any knowledge of the other candidates was calculated. Here I calculate the
probability of each candidate considering all the candidates generated by the

detector.

The details of the calculation are provided in Appendix 1. It was found
that the probability of each candidate ¢; being TP when considering all the

candidate likelthoods u = (ul,uz, ...,u|5|) can be calculated as follows:

1 1-p, Perue (U)
€R === Torior
p(ck true |ll) Tprior 1-—- Ptrue (uk) (5)

N
Here, the constants p, and 7,,,, are parameters (determining certain

prior probabilities) and have to be determined in advance. In this study
Po = 0.02 and 75,50, = 0.01 are used. C is a regularization term that

makes the sum of the probabilities equal to 1.

On the other hand, the probability that all the candidate positions are false

is also calculated using the model. That is,

(¢; & Ripye, Vilu) = -
pL¢; true, VW) = C Po (6)
_ sl 1-pg . -1, Perue(Uk) :
where C=p,+X,_, o Torior ey B the  same

regularization term.

2.2.3 Landmark point distribution model

The reliable detection of multiple landmarks cannot be achieved only

using the single detector models described above. Therefore, the spatial
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configuration of all landmarks must be considered. In this section, I
introduced two types of landmark point distribution model (L-PDM) for this
purpose.

Consider the set of all landmark points as a random variable set X =
(X{,X,,...,X;). Here, L is the number of landmarks, X; is a column
vector of the coordinates of the [th landmark and column vector X is the
concatenated form of all x;. Thus, X represents one particular spatial
configuration of all landmarks in the human body. When X is regarded as
a random variable set, its probability distribution p(X) can be estimated
from a finite number of training datasets. I define this distribution using an
L-PDM. This L-PDM is defined as the function p: R3f - R, which
represents the probability distribution of X.

In this study, two different types of L-PDM were constructed from training
datasets and their performances were compared. One is defined by a
coordinate-based multivariate Gaussian distribution similar to that used in
[15]. The other is my proposed L-PDM defined using a multivariate
Gaussian distribution whose variables are inter-landmark logarithmic

distances.

2.2.3.1 Coordinate-based L-PDM
Firstly, I constructed a PDM by simply estimating the probability

distribution of X as a Gaussian distribution with 3L variables. Suppose
that the ground-truth landmark pomts in the training datasets are manually
inputted and rigidly registered in advance. Then, the sample average X
and sample covariance matrix Cov(X) are calculated from these datasets.
From Cov(X), the precision matrix (the inverse of the covariance matrix)

0O.00ra 1S estimated using Tikhonov regularization [16] as
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Ocoora = (COV(X) + }\coordl)_l; (7)

where A.,,-q 1S @ constant used to control the strength of regularization.

Using X and @,,,,4, the PDF of the coordinate-based L-PDM p,,,,-q(X)

1s defined as

1

1
Pcoora (X) =S €Xp <
c

7 - E (X - )_()t(:-')coord(x - )_()>’ (8)

where Z. is a regularization coefficient.

2.2.3.2 Distance-based L-PDM
The other L-PDM is defined as a Gaussian distribution whose variables

are logarithmic distances between pairs of landmarks. Let

d;; = In(max{|x; — x|, dpmin })

)
be the logarithmic distance between the [th and ['th candidate landmark

poimnts.  Here, d,;, 1s a constant used to suppress large negative
logarithmic value. In this study d,,;, = %dtol was used. Then, each

distance is normalized by its average E(d;;’) and variance V(d;;), which
are estimated from the training datasets. The normalized distance g,/ is

given by

(10)

t
Let the vector G:(gL2 913911 923911 ...g(L_l)'L) be a

concatenated form of the normalized logarithmic distances between all the
landmark pairs. Note that G is a function of X and that it has
L(L —1)/2 elements. Suppose that the sample covariance matrix of G,
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namely, Cov(G), is calculated from the training datasets. Then, the
precision matrix of G can be estimated by Tikhonov regularization as
0 it = (Cov(G) + Ag4i5: 1)1 (A4 is a constant). Then, the PDF of the
distance-based L-PDM p,; (X) is defined as

1 1,
Paist X) = 7, &P (— G GdistG) : (11)

2.2.4 Maximum a posteriori estimation

In the next stage, the best combination of all detector-generated candidates
is searched for. Supposing that a total of 197 landmarks are to be detected
and each detector outputs 100 candidates with theirr estimated likelihoods.

0197, To solve this

Then the number of possible combinations becomes 10
large combinatorial optimization problem, I use an approximate method in
which Gibbs sampling and simulated annealing are combined [11].

Let Il=(cll,clz,...,cllsll,pll,plz,...,pllsll,p{‘) be the [ th landmark-

detector-derived information set (not only the detector output S; but also
the probabilities pj,p?, ... which are calculated using the stochastic detector
model). Here, ¢! is the ith candidate for the lth landmark and p! is its
corresponding posterior probability estimated as p(c; € R |1) by Eq.
(5). On the other hand, p; is the posterior probability of all candidates
being FP, which can be estimated as p(c; & Ry, Vilu) byEq. (6). That
1S,
pi = 1 1-p, Forior ™ - Ptrue;1 (Uiz)

R N 1= Prruea(Uiz)

(12)

1
Pl = ¢ Po (13)
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where |S;| is the number of candidates, u;, is the detector-generated
likelihood for the ith candidate, p;yye.;(+) is the detector-model-derived
probability function (Eq. (3)), and C; is the regularization term for the [th

landmark.

Given the entire detector-derived information set I = (Iy,1,,...,1;), the
proposed algorithm searches for the best candidate using an L-PDM. The
L-PDM is a statistical model of the spatial distribution of landmarks in the
human body and is tramed using traning datasets. My combinatory

optimization framework searches for the most probable landmark position
set X under the condition of the given detector information I. In other

words, it solves the MAP problem X = arg m)?xp(Xll).

Applying Bayes’ theorem to the posterior probability p(X|I),

p1X) - p(X)
p( )p (14)

< p1X) - p(X)

p(X|I) =

is satisfied. Note that the denominator p(I) is independent of X and can

be ignored when maximizing p(X|I) in terms of X.

In this study, one of the L-PDMSs (defined in Section 2.3) is used as p(X).
To balance the weight of each L-PDM with the weight of the candidate
probabilities, the L-PDMs are modified by a constant Cg.ipcr0r 10 giVE

1 1
p(X) = pcoord(X)Cdetector or p(X) = Daist (X)Cdetector . HCI’C, Cdetector

1s a constant to be determined in advance.

I assume that all detector outputs I;,1l,, ..., I, are independent of each
other. Furthermore, I also assume that, when the target landmark position

1s given as a condition, the corresponding detector output is conditionally
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independent of the other landmark positions. This means that each detector
output is only dependent on the position of the target landmark. Under this
assumption, the term p(I|X) can be factorized as [[I_,p{1x,) .
Applying Bayes’ theorem again,

L

pUIX) = [ |plx) (15)

=1

r~

p(x,[1) - p()
p(x;)

=1
is satisfied. Here, p(I;) is independent of X and can be ignored. The
term p(x;) is the probability distribution of the [th landmark without any
prior knowledge and is assumed to be uniform in the entire space in this study.
Therefore, using Egs. (14) and (15), the MAP estimation problem can be

formulated as

X = argmaxp(X|I
gme p(XI|D) (16)

= argmaxp(X) - p(I|X)

L
= argmaxp(0) - | [pClx)
=1

L
= argmaxp(X) - np(lelz)-
=1

The purpose of this formulation is to factorize the MAP problem into the L-
PDM p(X) and the single landmark terms p(x;|I;). Note that p(X]|I)
cannot be directly factorized as p(X|I) =[[}; p(x,;|],) because the
landmark positions X; are not independent of each other. Instead, the

correlations among the landmark positions are modeled by the L-PDM p(X)
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itself.

In Eq. (16), the term p(x;|I;) represents the PDF of the landmark
position X; when the detector output [; is given. Here, suppose that
p; = 0 for the purposeofillustration. ~ This means that one of the detector-
generated candidate points {cll, clz, ...} must be the true answer. Note that
the assumption p;* = 0 cannot be satisfied in the real problem, because in
my stochastic detector model each detector has a nonzero probability of
missing landmark (owing to being out ofthe imaging range, limited detection
sensitivity or an anatomical/surgical defect). Under the assumption of
p; = 0, the term p(x,;|I;) canbe computed from Eq. (12) as
pl, if x, =c¢} forany i

0, if x, #¢} forall i (17)

p(x|1) ={

Therefore, the posterior probability in Eq. (16) becomes nonzero only at the
candidate points x; € {c}',c¢7,...}. This means that this MAP estimation is

formulated as a simple combinatorial optimization problem if p;* = 0.

Our goal 1s to estimate the target landmark position even when the detector
output does not include the true candidate. When p; > 0, it is possible
that no candidate point ¢} corresponds to the true landmark point x;. If
this is the case, p(x;|l;) will be nonzero even if x; #¢/ forall i.
Therefore, I need to define p(x,|I;) at any point in the domain x; € R3.
One possible way is to define p(x;|I;) as a distribution that is uniform at
any point other than the candidate points {c},c/,...} (Fig. 8(b)). Consider
a probability space () that is sufficiently larger than boththe subject human
body and the CT volume. Additionally, suppose that the probability
p(x;|I;) is constant everywhere in ) except for the candidate points

{c},c?,..}. Then,the probability distribution p(x;|I;) can berepresented



44
Chapter 2 Automatic detection of landmarks

as

1Sy

1 . .
pGaill) = v+ ) 6(x —<f) 7l (1)
i=1

where 6(-) is the Dirac delta function and |Q| is the volume of (.

Since the PDF in Eq. (18) is not discrete, the MAP estimation cannot be
formulated as a combinatorial optimization problem. To reduce this
problem to a combinatory optimization one, I discretize and replace the
domamn ) with a large number of ] artificial candidates {sll,...,sl] } (Fig.
8(c)). Thatis,

] [S;1
1 ; . . 19
pGali) = ) 5 8xi—si)-pi+ ) s(u—c)-pl, @9
j=1 i=1
or, in the discretized form,
( vl if x, =c¢/ forany i 20)
1 .
p(x,|I) = {7 p ifx; = Sz] forany j
k 0, otherwise

In this study, the artificial candidates {sll, e, S l] } are iteratively sampled
from the estimated distribution of X; by the two-stage sampling framework

(Fig. 5). This will be described in detail in Section 2.6.
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1
; 6(XZ—C1) pll
=
©
O
o
o 1 X
TA1 Pl
12 L {sh.s]
+ 4\ R A L
cl/] ¢t ¢} Q X

(a) (b) (c)

Fig. 8. Schemas for explaining the probability distributions. (a) When
p;¢ = 0, the probability function p(x;|[;) is discrete and becomes nonzero
only at x,=c¢/. (b) When p >0, the distribution p(x,|I}) is
represented by the sum of a constant function and a series of delta functions.
(c) Discretized probability distribution with randomly sampled artificial
candidates {sll,...,sl] } (Eq. (25)). In reality, the artificial candidates are
sampled from an estimated multivariate Gaussian distribution, not from a

uniform distribution (as described in Section 2.2.6).

2.2.5 Combinatory optimization with Gibbs sampling and simulated

annealing

In this study, I used a Gibbs-sampling and simulated-annealing-based
method [11] to solve the MAP estimation problem (Eq. (16)) and find the

best  combination of X=(x{,X,,...,X;) , where X;E€E
{cll,cl2 ...,cllsll,sll,slz, ...,sl]}, 1<l <L. 1 chosethis method because it

can handle the huge extent of the problem domain in which my algorithm
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has to search.

Gibbs sampling [17] is a simple algorithm for selecting samples from a
given distribution. Let the initial condition of the algorithm be X© =

(xgo),xgo),...,X%O),...,XEO)) and the condition after n iterations be X™.

Then, the current estimate of'the landmark point Xgn) is updated by random

sampling from the conditional distribution of the given PDF for [ =

1,2,3,...,L,1,2,3,...,L,..., in asequential manner.

Suppose that the [th landmark position Xx; is being sampled in the nth

iteration.  Before the sampling, the current mode set of the landmark

o . . _1
positions is X, = xg"), v Xplq = xf’f)l,xl = xgn ) Xppy =

xfﬁ[l), ...,xszgn_l). Then x; is sampled from the PDF p(X)-
(n)

L .p&x L) (Eq. (16)) under the condition of x; =X;",..,X;_1 =

xg’f)l,xl+1 = x?ﬂl), v, Xy, = xgn_l). That is,
Pconditional (Xl) (21)
= pX)

) np(xl 1)
1=1

X p (xi"), aox™ x, x0T ...,xgn_l)) -p(x,|L).

_,( —(m _(n-1) (n-1)
X1—X1 ""'Xl—l_xl—l'xl+1_xl+1 ..... XL_XL

r-17 1+1

For the sake of convenience, let X\, = (xg"), ...,ng)l,xg’ﬁl),xgn_l))

be the current landmark mode set other than x;. Then, let

W (-1) (1)
p(xln,...,xlfl,xl,xl’ll o X, )

(22)
= PL-pDM (Xlix(n)\xl)
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be the value of L-PDM p(X) forthe condition of X™\, . Using Eq. (22),

l.
Eq. (21) can be rewritten as

1
Pconditional (Xl) = Z " PL-pPDM (Xl; X(n)\xl) ) P(XzUz), (23)

where Z is a regularization factor. Note that calculation of the real value
of Z is not necessary in the Gibbs sampling algorithm. Using Eqgs. (23)
and (19), the posterior probabilty of each candidate in ¢ =

|S; 1 .
{cll,...,cl ! ,sll,...,sl]} is calculated as

. 1 . .
Pconditional (Xl = cll) = Z ) pL—PDM(clL; X(n) \xl) ) pll

Pconditional (Xl = Sl]) (24)

1 ; 1
= 7 PL-ppMm (Sl]; X(n)\xl) j Pl

From p.onaitionar (), xgn) is randomly sampled from c¢;" in accordance

with this discrete posterior probability function. After all [ updates are

finished, n is incremented and the entire update process is iterated.
The algorithm can be described in a pseudocode as follows:

for n=1to total iteration number

forl=1to L

sample Xgn) from the conditional probability distribution in

Eq. (24)
end for

end for

This algorithm outputs a sequence of values X, which are randomly
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sampled from the target distribution p(X|I).

Additionally, a simulated annealing method is combined with Gibbs
sampling to make the sampling sequence converge to the optimal point. In
the annealing, a positive variable T is introduced as a temperature. T is
first set at a very high value and then gradually lowered during Gibbs
sampling. Before each sampling, the distribution p.onaitiona(X;) i Eq.
(24) 1s modified using T to

Pannealed (Xl = Cli; T) 1 (25)
1 , L E
=z {Propom (e5X™ ) - DI}
Panneated (Xl = Slj; T)
1 1 . 1
7T {Pr-rom (51 XW ) - 22,
where Z' is another regularization term (dependent on T). The factor
1/] 1s not modified to avoid an excessive effect when T is very high or

low.

In the simulated annealing, each Xgn) is sequentially and repeatedly

sampled from the modified distribution (Eq. (25)) by a Gibbs sampler. The
sampling begins with a very high T, which decreases gradually and finally
becomes so low that the system converges to the maximum point.  After the
annealing, the final X® s outputted as the combinatorial optimization

result.

2.2.6 Proposedtwo-stage sampling

The key to the proposed method is how to sample missing landmarks
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during the iterative Gibbs sampling. Each Gibbs sampling of xgn) from
the distribution p.ongitionas (X1) (Eq. (23)) requires a set of pre-sampled
artificial candidates {sll,...,sl]}. Therefore, sampling of {sll,...,sl]} is
required prior to each Gibbs sampling. The sample {sll,...,sl]}
represents the missing landmarks (being out of imaging range, defect due to

surgical/pathological changes, limited detectorsensitivity, etc.). Therefore,
the sampling points {sll,...,sl] } can spread outside the imaging range border.
It also means that the sampling of {sll, ...,sl]} cannot depend on any image
appearance information.  Although it is theoretically possible to sample
{Sll,...,sl]} from a constant distribution whose domamn is €, this is
extremely ineffective because a sampled point s} for which
PL_pPDM (slj;X(n)\Xl) is small has little chance of being selected in the
following Gibbs sampling.  Thus, a more effective way to sample
{s},...,sl] } is vital to the missing landmark handling property of the
proposed method.

Here, I sample {sll,...,sl]} from the target PDF p;_ppy (xl;X(”)\xl)
itself. However, sampling directly from a complex PDF is too costly to
perform iteratively.  In this study, a novel two-stage sampling strategy is
introduced, in which the sampling point {sll, s s{ } is repeatedly sampled
from a probability distribution q;(X;) that is similar to, but not equal to, the
target PDF.  Simultaneously, the distribution ¢q;(X;) is repeatedly re-
estimated using the calculated values of the target PDF at the sampling points,

that is, p_ppu (51:X™\y,), j = 1,2,..7 [17].

The details of the importance sampling algorithm used in this study are
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described in Appendix 2. In brief, the algorithm samples {sll, s sl] } from
a three-dimensional Gaussian distribution ¢;(-) whose mean vector E and

covariance matrix Cov are calculated as follows:

- 1/T
51 o Proron (55X )
E = " a.(s) /
- 1/T
] pL—PDM(Sl];X(n)\Xl)

2= ql(szj)

1 (26)

, , f.X(n) )F
sl (sl -y P
1

s pL—PDM(Slj;X(n)\xl)T
)

Here « is a parameter to be determined in advance. Note that the right

Cov=aq-

side of Eq. (26) includes the sampled points {sll,...,sl] } themselves and

q;(-) itself. This means that the sampling of {Sll,...,sl]} from q;(-) and
the recalculation of E and Cov are iteratively performed (Fig. 9). At the
end of each Gibbs sampling cycle, E and Cov are recalculated using the
current {s},..,s/} and q;(-), and then the distribution q,(-) is updated

using Eand Cov. This updated distribution g,;(-) is used in the next cycle

to sample the points {sll, -, Sz]}

The pseudocode of the entire combinatorial optimization process is shown

in Fig. 10.
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[-th landmark

(n — 1)-th cycle

q:(Xy)

X \Xy

Detector-derived
candidates ¢}

cli with f \

Sampling
A/

A 4

Artificial
candidates s;

Calculate posterior probabirities

[ 17

probabilities

Augmented
candidate set ¢

s} with
probabilities

Estimate
mean & cov

Update q;(x;)

(n 4+ 1)-th cycle

Fig. 9. Flowchart of the proposed two-stage sampling.

o1
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Input:
I, = (Nl,cll, ...,cfvl,pll, ...,plN’,plF’) (1=1,2,..,L) , Detector inputs
p(X), L-PDM
Ty, initial temperature and 17, cooling ratio
g, coordinates of volume center
B, sufficiently large initialization parameter
Output:
The estimated landmark position set X

1. XO= (xio),xgo), o x, ...,XEO)) « (cl,c}, e, c}).

q¢)«N(gpD, L=1,..,L.

T <—T0.
2. For n=1,.., Nieration +
For I =1,..,L:

Sample s} ~q,(), j=12,..,].
Calculate posterior likelihood of each candidate by

) 1 ) 1
Pannealed (CIL) = Z_ : {pL—PDM (Cll; x(n)\xl) : plL}T
p

1
A pr—rou(s); X(n)\xl) oY,

~| =

; 1
Pannealed (S{) = Z :
1 .
where Z, = % { pr_pom (cf; X\y) - P} + 2§=1/l ApL-pom(s); X™\s,)-
1
i}

Sample Xgn)'vpannealed ()
Update ¢;() «

1
j PL-ppm (Sf X(")\xl)T

N é'zﬁ:l S qz(S{) ) Za—q'Zle (S; —E(xl)) (s{ —E(Xl))t .

1
PL-PDM (5{2 X(")\XI)T

ai(st) '

=

PL-PDM (S{: X(")\xl)

_vJ/
where Z, =%, ey
End for
T<T-rp
End for

3. Output X «— X(Niteratiun )

Fig. 10. Pseudocode ofthe proposed combinatorial optimization algorithm.
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2.2.7 Evaluation

This study was approved by the Ethical Review Board of The University
of Tokyo Hospital.

Dataset A. Atotal of 120 CT datasets were randomly collected from my
CT examination database. Among them, 16 datasets showed an anomaly
in the number of spinal bones and were thus excluded from this study. Thus,
104 CT datasets (Dataset A) were used in the following experiments.
Among them, 50 were from healthy subjects without intravenous contrast
agent injection with the neck-to-pelvis imaging range. The other 54
datasets were from diseased subjects with or without contrast agent injection,
and the imaging range varied from the chest-to-pelvis region to the upper

abdomen only. The voxel size was within the range from 0.625 X< 0.625 X
1.00 mm to 1.148 X 1.148 X 1.25 mm. The positions of a total of 197

anatomically defined landmarks were manually inputted by medical experts.
After that, a radiologist checked and modified (if necessary) all of them.
These modified landmark positions were used as ground-truth positions.

The landmarks were defined on softtissue structures (25), the spinal column

(120), pelvic bones (34) or other bones (18).

The experiments were performed using twofold cross-validation. Before
training the detectors and L-PDMSs, parameter optimization was performed.
Both the training and parameter tuning of each detector and each L-PDM
were performed using training datasets. Details of parameter optimization
for the detectors are given in [13]. Forthe L-PDMs, two parameters were
optimized: A.pprq OF Agis: (constants that determine the weight of the
Tikhonov normalization term) and Cgerecror (the extent to which the

optimization algorithm considers the likelihoods of candidates generated by
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detectors). From the results, (Apora = 100,Chetector = 40) and
(Agist = 0.25,C0t0ct0r = 100) were selected and used in the actual
training of the coordinate-based and distance-based L-PDMs, respectively.
The number of sample points in the importance sampling was setat / = 100
mn this study. In the simulated annealing, the initial temperature T, =
1000, the cooling ratio y, = 100071/1%00 and the iteration number
Niteration = 1000 were used. The tolerance of the distance error was set

at d;,; = 10.0 (mm). Theseparameters were determined empirically.

In the evaluation experiment with the distance-based L-PDM, my
landmark detection framework attempted to detectall 197 landmarks without
any prior knowledge ofthe imaging range, contrast agent injection status and
so forth. On the other hand, in the experiment with the coordnate-based
L-PDM, the ground truth was used to determine the gravity center and
rotation angle (i.e., pose) of the target bodyin the unseen volume by rigidly
registering the ground-truth landmark points to the L-PDM. Then, all the
detector outputs were relocated in advance to fit those of the L-PDM. Note
that this intentionally unfair initialization was used for only the coordinate-

based L-PDM and was not used for the distance-based L-PDM.

The detection framework outputs one of the following statuses for each
landmark position: (a) detected, (b) not detected but estimated (i.e., as an
artificial candidate) in the imaging range or (¢) not detected and estimated to
be outside the imaging range. Then, each detection result was classified

into one of the following four categories (Fig. 11):

True Inside (TIn). The target landmark is within the imaging range
and its position is detected or estimated. Each TIn is subcategorized

into one of the following:
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» True Positive (TP). TIn within d mm from the ground-truth

position (1., detected or estimated correctly).

» False Positive (FP). TIn whose distance error is no less than d

mm (i.e., detected or estimated wrongly).

True Outside (TOut). The target landmark is outside the imaging

range and is correctly estimated to be outside the imaging range.

False Inside (FIn). The target landmark is detected but the position is
not corrector the target landmark is detected but the true landmark does
not exist in the imaging range.

False Outside (FOut). The target landmark is estimated to be at a point
outside the imaging range, despite the landmark existing in the imaging

range.
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y I E true landmark : i
S point (tolerance ¢
* area)

FP FIn
X

imaging range imaging range

% * FOut
X

Fig. 11. Definition of detection result criteria.  (Left) TP, FP and FOut are
defined when the ground-truth landmark point (L1/2 intervertebral disk
posterior margin) is within the imaging range. (Right) TOut and Fln are
defined when the ground-truth landmark point is outside of the imaging

range.

The number of TPs (#TP) was evaluated using the criterion d =

10 (mm). The TPratio and TOutratio were defined as

#TP
TP% =
#TP + #FP + #FOut
#TOut
TOut% = )

#TOut + #FIn
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where #TPis the total number of TPs, and so forth.

Dataset B. To compare the vertebral identification performance of my
method with other methods, I tested my method with a publicly available
spinal CT dataset [9] (http://research.microsoft.com/en-us/projects/spine).
The dataset (Dataset B) includes 242 scans of partial or whole spinal columns
with manual annotation of each vertebral centroid. Here, my method is
designed to detect the anterior or posterior mid-center point of intervertebral
disks, not the centroid ofthe vertebra. To apply my method to their centroid
detection problem, I assumed each centroid position to be the gravity center
of four points; anterior and posterior mid-center points of the disks above
and below the target vertebra. Vertebral centroid detection was judged as
successful if its estimated centroid (i.e., the gravity center) was within 2 cm
of the true center, and the closest centroid was the correct one (the same
criteria as Glocker etal.). Since my method is optimized to detect multiple
landmark points per vertebra rather than vertebral centroids, I did not retrain
my system; instead, I simply trained my system with my datasets and then

applied it to their dataset.

My mmplementation of the proposed method took approximately 12 min
and 5 min for the mitial landmark detection and the subsequent combinatory
optimization for one subject, respectively, using a workstation with an 8-core

Intel 17-5960X CPU and an NVIDIA Tesla C2050 GPGPU.
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2.2 Results

2.3.1 Detectionaccuracy

The detection performance results of Dataset A are shown i Fig. 12 and
examples of landmark detection results are shown in Fig. 13. As shown,
the TP% values were 83.8% and 74.6% for the distance-based and
coordinate-based L-PDMs, respectively, with the criterion of d = 10 mm.
The averages and standard deviations of the distance errors (between the
detected position and the ground truth) were 6.6+6.4 and 8.1£7.9 mm for the
distance-based and coordinate-based L-PDMs, respectively. TOut% was
greater for the distance-based L-PDM than for the coordinate-based L-PDM
(92.1 and 82.4%, respectively). Therefore, I concluded that the distance-
based L-PDM surpassed the coordinate-based one in all aspects, even though
pose information on the target body was given to the latter L-PDM in
advance. Therefore, the results of the distance-based L-PDM are described

in detail in the rest of this section.

Figure 14 shows the detection accuracies (distance errors) of all 197
landmarks. ~ The detection accuracies tended to be better for bony
landmarks, especially the spinal and pelvic ones. The distance errors and

standard deviations for the soft-tissue landmarks were relatively large.

Figure 15 shows a histogram of detection distance errors for a total of
18,674 landmarks determined to be TIn (i.e., correctly determined to be
within the imaging range). From Fig. 15, 83.8, 93.2 and 96.5% of
landmarks were detected within 10, 15 and 20 mm from the ground truth,
respectively.  Detection accuracies for soft tissue landmarks and part of the

bony landmarks (e.g., the tips of 11th and 12th ribs) tend to be lower than
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those for spinal and pelvic landmarks, probably due to their large shape

variations.

In Table 3, my landmark detection accuracies are compared with those
reported by Liu and Zhou (Liu and Zhou, 2012) for landmarks suitable for
comparison. Additionally, my result was also compared with the organ
detection and localization method reported by Criminisi et al. [2]. As
shown in Table 3, my results were less accurate than those in [4] for most of
the comparable soft-tissue landmarks, especially for landmarks whose
distance errors are relatively small. However, my results appear to be
comparable for renal landmarks and the inferior tip of the liver when
evaluated by 95 percentile values. Note that the proposed method can
determine the tolerance of the distance error d;,;, which was setas d;,; =
10 mm in this study. Therefore, it is natural that the distance errors of my
method are approximately 10 mm for a large number of landmarks.
Although direct comparison was impossible due to the the difference in
criteria, the detection error distance of my method was lower than that of

Criminisi et al. [2] for all comparable organs.
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TP% TOut%
1.0 - - 1.0 T +
: ] |
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09+ e = 1 0.9} s
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Fig. 12. Box plots of (left) TP% and (right) TOut%rate. The distance-
based model surpassed the coordinate-based model in both two criteria.
The differences between the two models were statistically significant for
both criteria (p < 0.001, Student’s paired t-test).
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Fig. 13. Examples of landmark detection results. (Top left) Subject with
neck-to-pelvis imaging range, anterior and lateral views. (Top right)
Subject with chest-to-abdomen imaging range. (Bottom) Subject with
upper abdomen imaging range. Note that the landmark positions out of

the imaging range are estimated with reasonable accuracy.
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Histogram of error distances
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Fig. 15. Histogram of distance errors of all detection results from all

subjects.
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Table 3. Comparison of detection accuracies between my method and those

in [4] and [2].

average distance error (mm) 95 percentile (mm)
Landmark proposed  |Criminisi et al.*| Liuet al. proposed Liuet al.
airway
bifurcation of trachea 5.2 | 2.5 12.3 4.5
1st bifurcation of rt. bronchus 9.3 12.3
1st bifurcation of 1t. bronchus 5.1 17.6
lung
rt. lung 10.1%
rt. lung apex 9.9 3.2 214 8.5
rt. lung base lateral margin 11.1 21.8
1t. lung 12.9%
1t. lung apex 8.5 2.6 15.8 6.0
1t. lung base lateral margin 9.0 22.7
liver
liver 15.7*
superior margin of liver 12.7 2.5 30.3 4.0
inferior tip of liver 16.3 6.4 38.4 30.5
root of celiac artery 11.0 22.1
kidney
rt.kidney 16" 6.4" 39.2"
superior tip 8.8 22.2
inferior tip 9.2 24.9
root of rt. renal artety 11.5 26.3
1t kidney 13.6" 8.4" 50.7"
superior tip of It. kidney 7.5 17.1
inferior tip of 1t. kidney 12.7 31.1
root of 1t. renal artety 11.6 27.0
all 120 spinal landmarks 4.8 10.2
all 25 soft tissue landmarks 11.1 29.3
all 33 pelvic landmarks 7.0 16.4
all 19 other bony landmarks 11.1 31.2
all 197 landmarks 6.6 17.0

* (bounding box localization errors) T center of the organ
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2.3.2 Correlation between performance of each single-landmark

detectorand overall detectionaccuracy

Since the proposed Gibbs-sampling-based combinatory optimization
framework can select the best detector candidate or can even estimate
landmark positions by itself, the correlation between the detector
performance and the overall accuracy of the framework for each landmark is
analyzed. Figure 16 1s a scatter plot ofthe detector performance (area under
the receiver operating characteristic curve) and the detection accuracy of the
proposed framework (for all 197 landmarks). The vertical axis shows the
optimizer TP% of a certain landmark and the horizontal axis shows detector
AUC of the same landmark, where all landmarks are used by the optimizer.
As shown, the framework can successfully detect spinal landmarks even
when the AUC of the detector is no more than 0.6. It means that that my
optimization system can find an optimal point for spimnal landmarks even if
the corresponding detector has very poor performance. Therefore, |
strongly believe that my framework is suitable for detecting spinal landmarks
with the highest possible reliability.  On the other hand, the detection
reliability for most of the soft-tissue landmarks seems to be lower than that
for spinal and pelvic landmarks. The probable reason for this is the high
deformability and large position variance of these soft tissue landmarks n

the human body.
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Fig. 16. Scatter plot showing relationship between the landmark detector
performance and TP% in the final optimization result. The AUC was
calculated assuming that each single-landmark detector outputs 100 FPs.
Note that TP% of over 90% can be achieved even when the AUC is lower
than 0.6.
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2.3.3 Accuracy of vertebra detection and identification using Dataset
A

Since my application can detect five landmarks per vertebra, it can detect
and identify each vertebra in the given CT datasets. Figure 17 summarizes
the vertebra detection and identification accuracy using my dataset. As
shown, a total of 2285/2317 (98.6%) of intervertebral disk (posterior mid-
center) positions were correctly detected within 10 mm from the
corresponding ground-truth positions. The average distance error and
standard deviation were 3.9 + 2.4 mm, which is comparable to the result of
Kelm et al. [10], in which the distance error was 3.22 mm. The disks can
be correctly detected and identified even if the imaging range includes only
7 or 8 vertebrac.  Additionally, the proposed method showed no
cranial/caudal shifts, which were reported in the two related studies by Major
et al. [6] and Kelm et al. [10].

[ assume that the reliable suppression of cranial/caudal shifts shown in my
result was achieved by multiple spinal and non-spinal landmark detection.
To prove this, I intentionally removed some of the five landmarks from each
vertebra and compared the disk detection / identification accuracy. Instead
of all five landmarks per vertebra, only one, two or three landmarks per
vertebra (together with all non-spimnal landmarks) were used and detected by
the proposed landmark detection framework. The result is illustrated in Fig.
18. Most of the disks showed improved detection accuracy as the number
of landmarks per vertebra increased. Therefore, I concluded that my
“multiple landmarks per vertebra” approach was effective for improving the

spinal landmark detection accuracy.
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Fig. 17. (Top) Result of vertebra position detection. Red:>20 mm distance
error, yellow: >10 mm distance error. A white blank means the
corresponding vertebra is out of the imaging range. (Bottom) Detection

accuracy (average distance error and TP ratio) of vertebrae at each level.
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Fig. 18. Detection accuracies of vertebrae when the number of vertebral
landmarks was changed. Note that the detection accuracy improves as
more landmarks per vertebra are detected simultaneously. (Top) Average
distance errors. (Middle) TP ratio when the successful detection criterion
was <10 mm from the ground-truth mid-center posterior point of the

intervertebral disk. (Bottom) Five landmarks used m this experiment.
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The anterior/posterior margins of the mtervertebral disks, spmal process,
transverse foramina (only for cervical vertebrae), costovertebral angles (only
for thoracic) and transverse processes (only for lumbar) were used. The

colors of the arrows correspond to those in the above graphs.

2.3.4 Accuracy of vertebra detection and identification using Dataset
B

I also tested my method using the public dataset provided by [9]. It
consists of 242 partial or whole spinal CT images. I applied my method to

all 242 CT volumes and evaluated the results using the same criteria as [9].

The results are summarized in Table 4. As shown, the overall successful
identification rate was 70%, which is the same as that of [9]. Therefore, |
concluded that my method has comparable performance to their state-of-the-
art method. Although the proposed method had a slightly smaller median
of localization errors, it had larger standard deviations especially in the
lumbar region. That is because my proposed algorithm sometimes failed to
converge when the image only included a pathological lumbar spine with

severe metal artifacts.

Examples ofidentification results are shown in Fig. 19.
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Table 4. Localization errors (mm) and successful vertebral centroid

identification rates (%) of the proposed method and the method in [9].
Glocker et al. Proposed

Median Mean Std. Id.% Median Mean Std. Id. %

All 8.8 124 11.2 70 7.5 146 288 70

Cervical 5.9 7.0 4.7 80 5.6 6.8 4.7 81

Thoracic 98 13.8 11.8 62 7.8 13.8 16.7 66

Lumbar 10.2 143 123 75 104 244 52.0 69
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Fig. 19. (Left) An example ofidentification result for whole-spine vertebral
centroids. (Right) Another example with metal screw implants.
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2.3.5 Position estimation of landmarks outside the imaging range

As already shown in Fig. 13, my method can successfully estimate
landmark positions that are not included in the given CT volume. In this
section, the accuracy of such estimation is analyzed using artificial volumes

in which the imaging range is intentionally truncated.

Figure 20 illustrates the intentionally truncated volumes and their
landmark detection/estimation results. ~ The truncated volumes were
artificially created using 60 datasets with neck-to-pelvis imaging ranges and
used as test datasets (30 cases per fold). The training datasets were the
same as in the other experiments (60 cases per fold). Although the
estimation accuracy of each landmark decreased as the landmark became
further from the imaging range, the body structure were recovered with a
reasonable shape. The estimation accuracy was lower in the cervical area,
owing to the difficulty in estimating the pose information ofthe neck. The
estimation accuracy improved when both the head-neck and pelvic regions

were inside the imaging range and the other regions were estimated.
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Fig. 20. (Top) Average distance errors of estimated landmark positions
inside (dotted line) and outside (solid line) the intentionally truncated
imaging range. (Bottom) Examples of estimation results with various
truncated imaging ranges. Red pins indicate a distance error of over 10
mm (the head and tail of each pin indicate the estimated/detected and

ground-truth landmark points, respectively).
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2.3.6 Landmark position ambiguity analysis using interobserver

errors among human experts

Most of anatomical landmarks cannot be strictly determined at one point.
Otherwise, each landmark has particular amount of positional ambiguity due
to the size and shape of the structure on which the landmark is defined. To
estimate these ambiguities, interobserver errors among human experts were
evaluated. Four human experts inputted landmark positions for three CT
datasets. Then, for each landmark, the mterobserver error distance (i.e.,
root mean square error (RMSE) of coordinates) among inputted points was
calculated. The average and standard deviation of the interobserver errors
of all 197 landmarks were 3.83 =5.29 mm. A scatter plot between the
mterobserver errors and detection errors is shown in Fig. 21.  Although
most of landmarks had less than 5 mm of interobserver errors, 11 landmarks
had mterobserver errors larger than 10 mm. In 10 of these 11 landmarks
(including the anterior and posterior bottom tips of the lungs and the lateral
tips of the iliac crests), the interobserver errors were larger than the detection
errors. It may suggest that these points were not suitable as manually-
defined landmarks. On the other hand, the detection errors were larger than
mterobserver errors for most of landmarks. Here, I defined an ambiguity-
subtracted error distance as (detection error distance) — (interobserver error
distance). Then, for 40 out of 197 landmarks (20.0%), the ambiguity-
subtracted error distances were larger than Smm. In other words, 80% of
landmarks were successfully determined within Smm of error distances

when the positional ambiguities were subtracted.
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Fig. 21. Scatter plot between the detection error distances of the proposed

system and interobserver error distances of human experts.

2.4 Discussion

In this study, a framework for multiple-landmark detection in CT volumes
with various imaging ranges was presented. It gave true positive detection
ratios of 84.3 and 96.5% when the tolerances of the detection distance error
were 10 and 20 mm, respectively. Furthermore, 92.1% of the landmarks
outside the imaging range were classified correctly into TOut (i.e., estimated
as being out of the imaging range). Therefore, I believe that the feasibility

of my approach in detecting over 100 landmarks simultaneously mn CT
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datasets with various imaging ranges has been validated. To the best ofmy
knowledge, this is the first study in which over 100 anatomical landmarks
have been automatically detected and their accuracies evaluated using CT

datasets with various imaging ranges.

In the evaluation, the detection performance of the distance-based L-PDM
is superior to that of the coordinate-based one, despite the unfair evaluation
settings in which pose information was given to the coordinate-based L-
PDM in advance. Several possible reasons for this can be considered.
Firstly, my L-PDMs are defined as multiple Gaussian distributions of
variables.  In the coordinate-based L-PDM, the probability is defined as the
exponential of a sum of terms (as in Eq. (14)), and each term is dependent
on only one or two landmark positions. Thus, this L-PDM can be regarded
as a Markov random field (MRF) with a complete graph, where each node
corresponds to a landmark. On the other hand, in the distance-based L-
PDM, the probability is also defined as the exponential of a sum of terms.
However, each term is not determmed from two landmarks but two inter-
landmark distances, which are dependent on at most four landmarks. Thus,
the distance-based L-PDM can be regarded as a fourth-order MREF, i.e., a
higher-order MRF (HOMRF). 1t is possible that this complexity helps to
model the landmark distribution better. Secondly, the logarithmic distance
has some advantages over coordmates. For instance, it has translation and
rotation mvariance. Note that an mter-landmark distance not only has
global nvariance butis also robustto local rotations or translations when the
rotating or translating structure includes both landmarks. Additionally, a
scaling transformation adds a common constant to all the logarithmic

distances; for example, a twofold scale transformation adds In2 to all
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logarithmic distances. I surmise that these properties are beneficial in

constructing the model.

In the comparison of landmark detection accuracies, the distance errors of
my algorithm tended to be greater than those reported by Liu and Zhou [4]
(Table 3). Because they used relatively large training datasets of 500 cases,
it is possible that my training datasets (52 for each fold) were too small to
represent the variety of landmark appearances. It will be my future work
to survey the impact of the training dataset size on the detection accuracy
using a larger dataset. Note that a precise comparison is not possible
because the number of landmarks in [4] was 60, and detection accuracies
were reported for only 13 of them. I am currently attempting to improve
the detection accuracy by postprocessing, which can fine-tune the detected

landmark positions [18].

One of the applications expected for my landmark detection framework is
the identification of each vertebra (such as the 1st cervical, 6th thoracic or
S5th lumbar vertebra) in CT datasets. This is the first study in which
multiple landmarks on all 24 vertebrae have been simultaneously detected in
clinical CT volumes. In my results, the average distance error and
successful identification rate were 3.9 mm and 98.6%, respectively.
Recently, Glocker et al. [8] reported a study in which all 24 vertebral
centroids were detected automatically from CT datasets with mostly healthy
spinal columns. Their target landmarks were the 26 vertebrae from C1 to
S2, and their overall localization error and successfulidentification rate were
6.10 mm and 81%, respectively. Although different datasets were used in
their study and my study, my results surpass both their localization and
identification results. Furthermore, I performed another comparison study

using the same dataset as that in [9] which includes spines with severe
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pathological changes. My successfulidentification rate was 70%, which is
the same as that of [9]. Therefore, I believe that my method has a

comparable performance to other state-of-the-art methods.

Among the 197 landmarks detected, 120 were spinal ones. One of the
purposes of this choice of landmarks n my study was to validate the ability
of my combinatorial optimization framework to identify and distinguish a
series of very similar landmarks. It is not an easy task to determine the
index of each vertebra in CT images. For example, Klinder et al. [5]
reported an automatic segmentation method for all 24 vertebrae, and their
segmentation results were excellent with an average distance error of 1.12
mm. However, prior to segmentation, their vertebral identification process
failed in three out of 59 cases owing to a unit shift in the vertebral index, and
these three cases were excluded from their evaluation of segmentation
accuracy. Note that the incorrect determination of vertebral levels in
clinical interventions such as surgery can have a hazardous effect [19].
This means that a vertebral identification failure m computer-assisted
surgery may be harmful to the patient, which is why I need a reliable
identification method for vertebral indices. In this study, no cranial or
caudal shifts in the vertebral number were observed in 104 subjects. Thus,
I conclude that the ability of my framework to identify vertebraec was
validated. 1 am now planning to develop segmentation and registration

methods for spinal bones utilizing the method presented in this study.

The identification of each vertebra becomes more difficult when only part
of the spinal column is included in the given volume. Nevertheless, in my
results the detection accuracy did not markedly decrease as the imaging
range became narrower (Fig. 19). In particular, no deterioration in

detection accuracy occurred even when the neck and pelvic regions were
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outside the imaging range. This suggests that my framework can estimate
the indices of vertebrae from nonspinal landmarks. Recently Connor et al.
[20] reported that the determination of vertebral indices from a single
nonspinal landmark is notreliable.  In their study, the only reliable method
was to count the vertebrae from the 2nd cervical vertebra. However, n this
study, the indices of vertebraec were successfully estimated even in datasets
that did not include the neck region, and thus did not include the 2nd cervical
vertebra.  Therefore, I consider that multiple landmark mnformation is
necessary to reliably estimate the vertebral indices when the whole spine is
not included in the volume. My simultaneous landmark detection approach

can respond flexibly to such a situation.

This work has some limitations.  Firstly, subjects with anomalous
numbers of vertebrae were excluded from the evaluation.  Such anatomical
anomalies are quite common. For example, an occurrence of 10.8% was
reported in [21]. 1 am attempting to solve this problem by virtually
converting the landmark configurations of anomalous spines to those of
normal ones [22]. However, it is almost impossible to determine the
existence or nonexistence of such anomalies when the imaging range is
limited and does not include the whole spine. It is probable that only an

application-dependent answer can be defined in such a case.

Another problem 1is the Ilong calculation time. My current
implementation takes approximately 17 min per subject. Although this
may not be problematic when it is used for preprocessing before other very
time-consuming tasks such as precise nonrigid registration, it may not be
affordable for many medical image analysis applications. One possible
way to reduce the execution time is to apply one of the more efficient

HOMREF optimization algorithms, such as that proposed in [23], to my
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optimization framework. However, it will be challenging to apply an
HOMRF optimization algorithm to my framework, which has to handle

missing landmarks caused by detection failure and a limited imaging range.

2.5 Conclusion

A framework for simultaneously detecting 197 anatomical landmarks was
presented. In the framework, a novel two-stage sampling algorithm was
introduced to appropriately handle missing landmarks due to limited detector
sensitivity, a partial imaging range and surgical/anatomical defects of
landmarks. Each landmark detector was parametrically modeled, and the
landmark configuration in the human body was also statistically modeled as
an L-PDM. The two-stage sampling algorithm optimally utilizes these
stochastic models and all detector-derived information to detect or estimate
all the landmark positions, even if a significant number of landmarks are
missed by the detector or outside of the imaging range. Its feasibility was
validated through experiments with various CT datasets and an overall mean
detection error of 6.6 mm was achieved. The feasibility of the estimation
algorithm for out-of-range landmark positions was validated via experiments
with intentionally cropped volumes. The detection accuracy of all 24
vertebrae via my “multiple landmarks per vertebra” approach was also
confirmed since the identification and detection accuracies were comparable

to those of another state-of-the-art method.

My future works may include improving the detection accuracy, the
handling of vertebral number anomalies and the implementation of a more

efficient solver for HOMRF optimization.
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Appendix 1. Calculation of the multiple candidate
model

Here, 1 make the assumption that the candidate set c;, i € {1,2,...,|S|}
does not include more than one TP candidate. Therefore, the total number
of possible probability events is (|S|+ 1) : one of the ¢;, i=
1,2,3,....,|S| is correct or none of the c¢; are correct. Let p, = p(c; &
R;ryue, Vi) be the prior probability that none ofthe ¢; are TP. Here, p, is
a parameter to be determined in advance. In this study p, = 0.02 is used.
Then, the prior probability that the ith candidate is TP can be estimated as

— Po
S|

1
p(ci € Rtrue) = (1 < L < ISD;

(27)

so that the sum of the probabilities p, + Ziillp(ci € Ripye) is 1. Note
that the prior probabilities of all candidates are regarded as being uniform
because these are prior probabilities without any prior knowledge of the

likelihood scores (a so-called uninformative prior).

Let the simultaneous distribution of all likelihood scores u =
(u1 U, ...u|5|) be p(u). Becauseofthe assumption that no more than one
candidate can be correct, the elements of u are not independent of each
other. Forexample, it is expected that a certain candidate will have a large
score if all the other candidates are known to be FPs. Therefore, only one
element of u tends to have a much larger value than the others. However,
this tendency vanishes when I know which candidate is correct. Because
all other candidates are known to be incorrect, their likelihood scores become
much less dependent on each other.  On the basis of this reasoning, I assume

that u;, i €{1,2,...,N;} are independent of each other under the condition
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that the correctcandidate ¢, is fixed. Thus, the conditional simultaneous
distribution of p(u) with the condition of ¢, € R, can be represented

as follows:

p(ulcy € Rypye)
= p(uklck € Rt‘r'ue)

N
|| pwte € Roed
i=1,i#k
_ p(uklck € Rtrue)

a p(uklck e Rtrue)
ISl

) np(uilci ¢ Rtrue)-
i=1

On the other hand, the detector candidates can also be regarded as

(28)

independent of each other when all the candidates are known to be FPs (i.e.,
C; € Riyye, Vi). Thatis,
S|

p(ulci ¢ RtrueJVi) = np(uilci ¢ Rtrue)- (29)
i=1

Now we are able to calculate the posterior probability of each candidate,

ie., p(cy € Rpprye ), as follows:
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p(ulck € Rtrue) : p(ck € Rtrue)
(c, ER,p ) =
p k true p(u)
1 1-p, _p(uk|ck € Rirye)

Tp) ISI pQglce € Reue)
|S|

] [paule: € Rerue)
i=1

-1
_ 1- Po ] <p(ck € Rtrue))
|S| p(ck e Rtrue)
ISl

(30)

. ptrue(uk) . 1
1_ptrue(uk) p(u) =1

p(uilci e Rtrue)-

In the same way, the probability of all candidates being FP becomes

p(lllCi ¢ Rtrue’Vi) ) p(ci ¢ Rtrue'Vi)
p(w)

p(ci ¢ RtrueIVilu) =

||

1 1—[
= . dc. R .
Po p(u) » p(ullcl$ true)

Because of the assumption that no more than one candidate can be correct,

(31)

lefl:l p(c, € Rppyelt) + p(c; & Rypye, Vilu) = 1 must be satisfied to make
the sum of the probabilities of all events equal to 1. Thus,

p(ck € Rtrue |u)

-1
_ 1 1- Po ] <p(ck € Rtrue))
C |S| p(ck $ Rtrue)

(32
. Ptrue (uk)
1- Ptrue (uk)

_ 1
P(C; & Rirye, ViIU) = = po (33)
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IS a

1
are satisfied. Here, C = p, + 17Po (p(CkERtrue)) . Z'SI Perue(ti)

N p(ck&Rrye) k=1 1-Derue(Ur)

regularization term.  Note that, although Egs. (30) and (31) are not
calculable because we have not modeled the probability density function

(PDF) of p(u), Egs. (32) and (33) are calculable using only the odds ratios

_ D (Ck eRtrue)

Ny Perue(Uk)
Yoy . The constant 7o, = S ER )
true

1 : is the ratio of prior
~ 1-Drrue(uk)

probabilities, which must be determined in advance. Inthis study 75,0, =
0.01 s used. Note that this problem formulation is a sort of
semiparametric approach in which p(u) is ‘erased’ in the calculation and
only the odds ratios are left. Thanks to this approach, we do not have to
parametrize the detector output histogram p(u) explicitly.

Appendix 2. Importance sampling of the artificial

candidates {s},..,s/}.

In this study, the artificial candidates {sll, .., S l] } are sampled from a 3-D

Gaussian distribution g;(-) whose mean vector and covariance matrix are

determined via importance sampling.

The principle of importance sampling is as follows. Consider a three-

dimensional random variable vector z and its probability distribution p(z).
Suppose that d; ( j =1,2,...,]) are sampled from a different distribution
q(z). Then, the expectation value of an arbitrary function f(z) can be

approximated by importance sampling as
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B = [ f@) - pydz

ZER3
1 rea).Pld) (34)
3s(a) 4
B (d)
Z]: pLd;
= q(d))
Recall that X(")\Xlz(xgn),...,xgr_l)l,xg’ﬂl),xgn_l)) comprises the

recently sampled positions of landmarks other than the [th landmark (whose
positionis X;). Thus,to sample the artificial candidates {sll,...,sl] } from
DL—pDM (XI;X(")\XZ) , 1t 1s necessary to (1) first estimate the spatial
probability distribution of X; using the other recently sampled landmark

positions X™ and then (2) sample {sll,...,sl] } from the estimated

\x; >
distribution.  In other words, it is necessary to sample {Sll, e Sl] } from the
L-PDM p(X) while fixing the landmark positions other than x; to the

recent sample set X(")\X If the modification by the temperature is taken

-
into account, p;_ppum (XZ;X(n)\Xl)l/T is the target distribution to be
sampled. However, this distribution is complicated and sampling directly
from it is a difficult process. Instead, {sll,...,sl]} are sampled from
another distribution, q;(X;). Here, g;(X;) is not the same as, but must be

o . 1/T
similar to, the target distribution p;_ppy (xl;X(")\xl) :

The question is how to determine the sampling distribution q;(X;).

C e yr
Because the target distribution p;_ppy (XZ;X(") \Xz)

changes at every
nth Gibbs sampling cycle, q;(x;) should also be updated at each cycle. In

this study, a three-dimensional Gaussian distribution is used as q;(X;) to
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: I 1/T
approximate the target distribution p;_ppy (XZ;X(”)\XI) . Both the

mean vector and the covariance matrix of q;(X;) are updated at each cycle.

This update is performed by estimating the mean vector and covariance

1/T
matrix of pL_PDM(Xl;X(")\Xl) / by importance sampling.

) L. . j _ v 1/T
Using Eq. (34) and substituting z < x;, d; «s;, p(-) < p( , X \Xl)

and q(-) < q,(), the mean vector E(X;) and covariance matrix Cov(x;)

e 1/T .
of the distribution p; _ppy, (x ¥ x® \x l) can be estimated as follows:

1/T
E(x)) = f Xz‘pL—PDM(Xli \xl) dx,

XlER3

; 1T
s PL-pPpM (S{F X(n)\xl)

Z; =15 ql(Sj)

Z] Pr- PDM(Sl:Xn) \X;

ql(sz])
Cov(x) = E ((x, — E&))(x, — E(x)" ) (35)

/T
)1

1/T
)

J(Xl E(Xl))(xl_E(Xl)) "PL- PDM(le \xl dx,

XZER?’
1

. . t D_pom Sj;X(n) “ T
e L) R 1

>, Pu—rpou (5] X n)\Xz)T

ql(s{)

These estimation results are stored and used in the subsequent (n + 1)th

iteration to determine q;(x;) as q;(x;) ~ V(E(x,),a - Cov(x,)) (Fig. 11).
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Here, a is a parameter used to enlarge the distribution to avoid too early
shrinkage. In this study @ = 4 is used. The initial state of q,(X;) is
given as V' (g, B1), where g is the geometrical center of a given CT volume
and [ is a very large constant set to cover the entire human body. [ =
1000 mm is used in this study. Note that g and [ are only used in the
first iteration of the Gibbs sampling and have little effect on the optimization

result.
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Chapter 3 Automatic definition of

landmarks

A fully automatic method to define anatomically meaningful landmarks is
presented. Firstly, [ assume that possible anatomical landmark points must be
registered correctly and consistently in most of volume triplets by a given
image registration algorithm. Under this assumption, a novel landmark-ness
criterion named triangular consistency criterion (TCC) is ntroduced.
Landmarks are determined as points with sufficiently small TCCs in most of
volume triplets. The proposed method was evaluated with 50 whole torso CT

volumes and 50 landmarks were automatically defined.

3.1 Introduction

Anatomical landmarks in medical imaging have a wide variety of
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applications. For example, automatic detection of landmarks is frequently
used in inttialization of statistical shape model (SSM)-based segmentation
process for organs [1]. However, it is very time-consuming to define
anatomical landmarks manually, as well as putting anatomical landmark

positions in medical images (e.g. for machine learning).

On the other hand, we can also use non-anatomically defined landmarks such
as SIFT-based ones [2]. However, using SIFT-like landmarks is sometimes
difficult due to its limited inter-modality and inter-individual correspondence
and also its limited reproducibility among datasets. Especially, SIFT-based
landmark definition is hard to be used n SSM-based methods, because SSM
requires a predetermined set of landmarks which are embedded into the model
itself. Therefore, a new methodology will be needed in which new landmarks

with anatomical background can be defined automatically.

Similarly, more and more landmarks are demanded in registration [3].
Especially, if a large number of landmarks are accurately detected in the given
volume pair, the following registration task may become far easier. The more
landmarks, the better. In this sense, automatic landmark definition can play a

key role in registration.

In this study, a registration-based method is presented i which new
landmarks are defined based on a novel triangular consistency criterion (TCC).
TCC can estimate how the target anatomical structure is determined as one
point in all of the given training datasets. The proposed method is validated
with 50 whole torso CT datasets and the automatically defined landmarks are
illustrated. I also analyze each defined landmark and evaluate whether each

landmark is defined on any anatomically meaningful structure.
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3.2 Methods

The proposed method can basically use any arbitrary registration method.
In this study, I utilized my domestic landmark-guided registration method
based on diffeomorphic demons algorithm [4]. (The details ofthe registration
method are described in Chapter 4.) This registration method can utilize both

grayscale image information and the manually-inputted landmark positions.

3.2.1 Datasets and registration

Total N = 50 whole-torso CT datasets without intravenous contrast agent
were included in this study. Their voxel size was 0.977 X 0.977 x 1.250
mm. Total 197 landmark positions were nputted for each volume. These
landmarks were worked as guides for registering a couple of CT datasets
precisely. Note that automatically-defined landmarks will be determined at

points at least 20 mm away from these predefined landmarks.

Registration was processed by one-to-one manner; all pairs of datasets were
registered using manually-inputted landmarks and grayscale images. In the

result, total N X (N — 1) = 2450 registration results were given.

3.2.2 Triangular consistency criterion calculation

Each registration result has its mapping vector field. Let the mapping
vector field which deforms ith dataset to fit to jth dataset be M;;(x). That
means, the point X in the ith image corresponds to the point M;;(X) in the

jth image.

Then, the triangular consistency criterion is introduced (Fig. 1). For each
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triplet of datasets i, j and k, the TCC value is defined as TCC;jy (x) =

x — My (Mjk (Mi j(x))) | That means, the TCC value evaluates the

inconsistency of the given three mapping vector fields. Small TCC means
that the corresponding points are conserved during registration and thus I
regard it as a possible landmark point detected on some anatomically prominent
structure. In this study, the registration result is regarded as consistent if and

only if the TCC is lesser than a threshold, d =5 mm (Figs. 2 and 3).
3.2.3 Automatic landmark definition

Forone fixed dataset i, the sum of counts where TCC is lesser than d was

1
calculated as S;(x) = mZ,IQLU-#(Z}":L#j_j;tkl(TCCijk x)<d) .

Here, function I is 1 if TCC;;(X) <d or 0 otherwise. An example of
S;(x) is shown in Fig. 2(b).

In S;(x), the algorithm searched for new landmarks by a sequential manner.
Firstly, all the local maxima in S;(X) are extracted. The local maxima within
deiim = 20 mm from any ofalready-defined landmarks are eliminated. ~ Also,
local minima with §;(X) < 0.3 are also eliminated. Then, the local maximum
with the largest S;(X) value is newly defined as a landmark. This process is

repeated until no residual local maxima meet the criterion (Fig. 3).
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Mki(

Fig.1. The definition of the TCC. It is defined using three images and

deformation fields between them. In this example, the distance between the

original point X and the threefold-moved point M,; (M]k (Ml-j(x))) is

defined as the TCC;j, (X). Note that TCC;j (y) is less than TCC;j (X) in

this example, that means y is a better landmark candidate than x.
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Fig. 2. (Left) A coronal CT slice and (Right) the corresponding mean TCC

value image.
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Fig. 3. Calculation of'the TCC volumes.

3.3 Results

An exemplar result of the automatic landmark definition is shown in Figs. 4
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to 9. Total 48 landmarks were defined. @ The automatically-defined
landmarks include the posterior margin of bilateral kidneys, the inferior wall of
center of the aortic arch, nasopharyngeal, interior sides of the bilateral femoral
heads, bilateral sides of vocal cords, and so on. On the other hand, some
landmarks were defined not bilaterally symmetric, which may reflect the fact
that my method did not stably detect symmetric anatomical structures.
Nevertheless, most of defined landmarks can be interpreted as anatomically

meaningful points.

At least 27/48 landmarks can be regarded as a salient position and can be
given an anatomical name (e.g., as the angle between the inferior vena cava and
the bottom surface ofthe liver; Fig 7). Many landmarks were defined on bony

surfaces, but some landmarks were defined on soft tissues such as the liver.

(b) (c) (d)

Fig. 4. (a) An example of original CT volume, a coronal cross-section. (b)
The corresponding S; values. (c) Automatically defined landmarks, frontal

view. (d) Lateral view.
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Fig. 5. An example of automatically defined landmark (rt. Cardiophrenic angle).
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Fig. 6. An example of automatically defined landmark (the proximal point of
the aorta and the left pulmonary artery).
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Fig. 7. An example of automatically defined landmark (the angle between the

inferior vena cava and the bottom surface of the liver).
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Fig. 8. An example of automatically defined landmark. This landmarks was
difficult to interpret as a salient anatomical entity, but can possibly be named

as the posterior margin of the left thoracic cavity.

Fig. 9. Examples of automatically defined landmarks (the angles between the

shoulders and the neck).
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3.4 Discussion

A novel method to define landmarks from a large CT dataset was presented.
In the method, stably registered positions in the given images are extracted as
landmarks, using TCC criterion. Therefore, the landmark definition results
are largely affected by the registration method used. Although in this study
landmark-guided demon’s algorithm worked well, it will be my future work to
test other registration methods. On the other hand, if the registration method
used can handle different modalities (e.g. CT and MRI), the algorithm can
handle mixture of datasets with multiple modalities.  Therefore, it will also be

my future work to test the method with multiple modalities.

This study has several limitations. First, any quantitative analysis of the
results has been performed. It is difficult to validate the results because the
automatically defined landmarks do not have manually inputted “ground truth”
positions. One possible way is to mput ground truth landmark points
manually, so that I can compare the ground truth positions and automatically
defined positions. Furthermore, I can compose detectors for the newly
defined landmarks, train the detectors as shown in Chapter 2, and evaluate their
accuracy. It is expected that good detection accuracies are shown for well-
defined landmarks, and vice versa.  Another possible way to evaluate
meaningfulness of each defined landmark is to use it in other applications.
Forexample, I canadd newly defined landmarks to my landmark-guided image
registration system. It is probable that the registration accuracy will be

improved by adding automatically defined landmarks.

The second limitation is that the defined landmarks are mainly located onthe

bony or skin structures and not on the guts or the pancreas. Generally
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speaking, landmarks on the deformable soft tissue structures such as the guts
and the pancreas have more impact in applications than bony landmarks. In
my result, the landmark definition framework avoided such soft tissue organs,
because the registration method used cannot accurately register such organs and
thus the TCC values became large. It is a dilemma that such difficult organs
were avoided whereas many easy bony landmarks were automatically defined.
As described above, the proposed method relies upon the registration method
used, and it is very difficult even for modern registration techniques to register
such soft-tissue organs. On the other hand, it is even difficult for medical
experts to manually define intestinal or pancreatic landmarks because of their
deformability and wide variety of shapes. In this sense, it is not surprising

that the proposed method avoided such difficult organs.

3.5 Conclusion

A novel method to automatically define landmarks was presented. In
evaluation with 50 whole torso CT datasets, total 48 landmarks were

automatically and successfully defined.
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Chapter 4 Multiatlas-based
segmentation of the vertebral and pelvic

bones

A fully automatic multiatlas-based method for segmentation of the spine and
pelvis in a torso CT volume is proposed. A novel landmark-guided
diffeomorphic demons algorithm is used to register a given CT image to
multiple atlas volumes. This algorithm can utilize both grayscale image

information and given landmark coordinate information optimally.

The segmentation has four steps. Firstly, 170 bony landmarks are detected
in the given volume. Using these landmark positions, an atlas selection
procedure is performed to reduce the computational cost of the following
registration. Then the chosen atlas volumes are registered to the given CT

image. Finally, voxelwise label voting is performed to determine the final
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segmentation result.

The proposed method was evaluated using 50 torso CT datasets as well as
the public SpineWeb dataset. In the result, a mean distance error 0 0.59+0.14
mm and a mean Dice coefficient of 0.90+0.02 were achieved for the whole
spine and the pelvic bones, which are competitive with other state-of-the-art

methods.

From the experimental results, the usefulness of the proposed segmentation

method was validated.

4.1 Introduction

Automatic segmentation of the spinal bones in computed tomography (CT)
images has various applications, such as automatic detection of bone metastasis
[1], radiation planning [2] and surgical planning [3]. Forthese applications, a
highly reliable and precise segmentation method for the whole spine is desired.
However, automatic segmentation of all 24 vertebrae is still an open problem

for which many new methods have been reported [4-9].

One of the reasons for the difficulty of segmenting vertebral bones is the high
complexity of vertebral shapes and topologies.  For example, lumbar
vertebrae have long and thin bony processes of various lengths and angles.
All the vertebrae have at least one hole (through which the spinal cord passes),
but most of the cervical vertebrae have two more holes (for vertebral arteries).
To accurately segment these fine and complex structures using a statistical
shape model (SSM), a large number of degrees of freedom (DOFs) of the model

may be required. However, more DOFs result in more local minima
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(supposing that the model-fitting problem is nonconvex) and may increase the
probability of faillure i model fitting.  To tackle this problem, some
researchers have improved SSMs by making them adaptable to large

morphological variation [4,5].

Another difficulty is the repetitiveness of vertebral shapes.  Since
neighboring vertebrae have similar shapes, it is not easy to identify each
vertebra (e.g., the 4th cervical, 6th thoracic or 3rd lumbar). Identification of
the vertebra is required prior to most state-of-the-art segmentation procedures
suchas SSMfitting, and a failure to identify them will cause a cranial or caudal
shift of the identification result. A cranial/caudal shift leads to large errors in
the final segmentation result. Such a shift can also occur when applying
automatic image registration algorithms such as free-form deformation (FFD)
or demons algorithms to spatially fit a pair of spinal bone structures. The
difficulty of registering the spme is a major reason why multiatlas-based
segmentation approaches [10], which are widely used for other human organs
[11] [12], have seldom been applied to multiple spinal bone segmentation

problems.

A multiatlas method is a registration-based segmentation method introduced
m [13] and [14]. In a multiatlas method, all training datasets (manually
labeled by an expert) are registered to a given unseen image and then the labels
of the training datasets are propagated to the target image. The fmnal
segmentation result is built through integration (e.g., voting) of all the
registered label images. The multiatlas approach has the flexibility to better
capture anatomical variation and thus has superior segmentation accuracy to

other methods [10]. One of the disadvantages of a multiatlas method is its
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high computational cost; the most naive implementation has a computational
cost proportional to the number of training datasets. To avoid this problem,
atlas selection is preferred. This is a technique to select and reduce the
number of atlases used according to the reliability of each atlas.
Simultaneously, the weight of each atlas in the following decision fusion phase
may be decided. Atlas selection can be performed before or after registration,
and the weights of atlases can be determined globally orlocally. Note that if
the weights of some atlases become zero globally, these atlases can be omitted
in the following registration process. Thus, a global approachis preferred to
reduce the computational cost. On the other hand, applying different weights
to local regions leads to better segmentation accuracy instead of a
nonsignificant reduction in the computational cost. Inparticular, to reduce the
computational cost of the registration, it is sometimes effective to roughly
preregister all atlases and then perform atlas selection using these preregistered
images [10]. After atlas selection, the high-cost precise registration algorithm
is applied to the small number of selected atlases. The most frequently used
atlas selection criterion is the image similarity between two volumes.
Recently, however, several sophisticated atlas selection techniques based on
machine learning (e.g., random forests) have been reported [15-17]. For
example, n [15] the final labeling performance itself is estimated by an

algorithm and used as the atlas selection criterion.

A registration method used in the multiatlas framework must have sufficient
accuracy as well as computational speed. Forexample, it should be able to
correctly register a wide variety of fine and thin tubelike structures (such as
spinal processes) and thin platelike structures (such as endplates and other

cortical bones). To register such thin structures, the deformation field
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calculated in the registration process musthave a high number of DOFs.

Demons algorithms are voxelwise registration algorithms and were
introduced by Thirion [18]. A diffeomorphic version ofthe demons algorithm
was also presented by Vercauteren et al. [19]. In demons algorithms, all the
voxels in a given volume have an independent deformation field vector, which
is iteratively updated using the local intensity difference and Jacobian matrices.
Since the value of the deformation vector field is determined at every voxel,
the demons algorithm has an extremely high number of DOFs that is
proportional to the total number of voxels. On the other hand, one of the
disadvantages of demons algorithms 1s that the registration problem is solved
in a steepest-descent manner; thus, the algorithms may be affected by local
minima of the cost function. Because of its weakness against local minima,
the quality of the given initial condition greatly affects the registration result.
In other words, the algorithms are not well suited for a problem in which a large
deformation is needed to register the two images. The algorithms also do not
work well for repetitive spinal shapes, which cause a sequence oflocal minima.
This problem may be partially solved by using a multiresolutional approachin
which a pair of images are first roughly registered in a coarser scale and then
precisely registered in a finer scale. However, in my experience, it is very
difficult for a conventional demons algorithm to precisely register the spmal

columns of different subjects.

Among the related spinal segmentation studies, Klinder et al. [6] first
reported an SSM-based method in which all 24 vertebrae are identified and
segmented automatically from 3-D CT volumes. Other SSM-based methods
for thoracolumbar vertebrae have been reported [4,5,7,8]. Among them,
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Kadoury et al. reported a method in which the vertebral identification and
segmentation problems are formulated as a single higher-order Markov random
field (HOMRF) problem [5]. The method was successfully applied to
scoliotic spines and achieved an interlandmark distance error of 1.6 £ 0.6 mm
for CT images. Forsberg et al. reported a multiatlas-based thoracolumbar
spine segmentation method [20].  After the vertebral positions and poses were
estimated, the spine was divided into four subregions (L5-L1, L1-T9, T9-T5
and T5-T1) and each atlas was registered to them. Because they used a
relatively small set of 10 atlases, atlas selection was not performed. They
achieved a mean Dice index of 0.94 = 0.03. Recently, Wang et al. [21]
reported a novel method for thoracolumbar vertebral bone segmentation in
which a multidimensional supportvector regressoris used for direct regression
from image features to the target object boundary. Other state-of-the-art
methods and their segmentation performances using a publicly available
thoracolumbar CT dataset (SpineWeb;
http://spineweb.digitalimaginggroup.ca/) have been reported in [22].
However, to the best of my knowledge, no method that can simultaneously

segment all the structures of the spinal and pelvic bones has been reported.

So far, a few landmark-guided registration methods have been reported [23-
26]. Among them, a method for registering a pair of landmark sets distributed
on a lumbar vertebral bone surface was reported in [26]. Using the fact that a
lumbar spine has a hole, the task was formulated as a registration between two
genus-one surfaces (Le., tori). On the other hand, a demons algorithm using
automatically generated landmarks was presented in [24]. After landmarks
were automatically generated on the bone or skin borders, a landmark-

stabilized demons image registration was performed.
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In this study, a new method for segmentation of all the vertebral and pelvic
bones n a CT volume is presented. In the method, multiple atlases are
registered to the target unseen volume by a novel landmark-guided
diffeomorphic demons algorithm.  Given a set of vertebral and pelvic
landmark positions (such as those obtained by my previously developed
landmark detection method [27,28], which can detect 170 anatomically
annotated landmarks, as described in Chapter 2), the algorithm can register two
volumes using both grayscale image information and the landmark position
information simultaneously. In each iteration, not only the diffeomorphic
deformation field but also the trajectory of each landmark is calculated using a
“speed image”. Each trajectory moves a landmark position in one ofthe given
images to the corresponding landmark position in the other image. From
these landmark trajectories, a landmark-derived update vector field is
calculated to fit the two landmark positions. Then, the landmark-derived
update field and the grayscale-image-derived update field are summed and used
to update the speed image, from which the diffeomorphic deformation field is
iteratively updated. Using this landmark-guided method, optimally selected
multiple atlases are registered to the target image, which is followed by

voxelwise voting to calculate the final segmentation result.
The contributions of this study are as follows:

® A novel landmark-guided demons registration approach is presented.
Using the coordinates of corresponding landmark pairs, it can register two

shapes with large deformations.

® The proposed method is evaluated using 50 whole-torso CT datasets.

Using the proposed method with my automatic landmark detection system,
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the spinal and pelvic bones are automatically segmented. To the best of
my knowledge, this is the first study in which a segmentation method for

the whole spine and the pelvic bones has been evaluated.

In the rest of this paper, the proposed landmark-guided diffeomorphic demons
algorithm 1s described, followed by the atlas selection method used in this study.
Then the hyperparameter optimization method and evaluation method are
described and the results of the evaluation are given.  Finally, the
characteristics, advantages and disadvantages of the proposed segmentation

framework are discussed.

4.2 Methods

4.2.1 Landmark-guided diffeomorphic demons algorithm

My registration algorithm is based on the log-domain demons algorithm [19].
In the log-domain demons algorithm, the diffeomorphism is ensured by
deriving the deformation field from a speed image that represents an
infinitesimal deformation. The speed image is iteratively updated using the
given grayscale volumes and their Jacobians. The log-domain demons
algorithm 1s described in detail in the following section, which is followed by
details of the proposed landmark-guided demons algorithm.

4.2.1.1 Log-domain demons algorithm
In the log-domain demons algorithm, the deformation vector field is

represented as the exponential of another vector field, namely, the speed vector
field, so that the diffeomorphism ofthe deformation field is guaranteed. Here,

the exponential calculation is derived from Lie group theory and can be
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calculated efficiently as described in [29]. Thus, we need to calculate the

speed vector field to determine and update the deformation field.

Consider three-dimensional image I, and let I(p) € R be the grayscale
voxel value atapoint p € R® in I. A deformation s: R® - R? is defined
by the corresponding deformation vector field A (-) € R3 such that point p
is warped to point p’ =s(p) =p + A,(p) (see Fig. 1). Then image I o s,
which is image [ after being deformed by s, can be calculated using the

1 is defined as

formula (I os)(p’) =I(p). Suppose that a deformation s~
the inverse deformation of s (ie, sos™ =Id, the identity mapping).

Then, using the corresponding deformation vector field Ag-1, the coordinates

of p in image I can be calculated from p’ by p =s"1(p") def p'+
A.-1(p"). Thus, foran arbitrary point p’,

(Ios)(pH)=1(p + A (p) (1)

is satisfied. This means that the mverted dislocation vector field Ag-1 is
required to calculate the deformed grayscale image I os from the original
image I. On the other hand, the original dislocation field A is required to
calculate the destination point p’ = p + A,(p) from the original point p.
Thus, to warp both the landmark positions and the grayscale image, we require
both A; and Ag-1. However, calculating the mnverted dislocation vector

field Ag-1 from A is not atrivial problem.
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p=s"(p)

) 18- )
A;(p) p' = s(p)

I [os

Fig. 1. Definition of deformations and deformation vector fields.

/

a

’ r‘ T speed vector field v
[ ] |

Fig. 2. Speed vector field and trajectory of the moving point p(t).

To solve this duality problem and to ensure the invertibility of the

deformation field, a stationary speed vector field v(-) € R® is introduced.
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The vector v(p) represents the infinitesimal movement, or moving speed, of
point p. Thevectorfield v canbe regarded as a flow; at any moment in time,
point p moves in the direction of vector v(p) and with speed |[v(p)|.
Because the speed vector field is stationary, it does not change with time. On
the other hand, point p moves along the speed vector field. Suppose that
point p = p(0) at time 0 is moved to position p(t) attime t. Then,

p®) =p(O) + | v(p@)de’, ©
0
or, in the differentiated form,
ap(t)
T = V(p(t)) (3)

is satisfied. Then p(1), the position of point p = p(0) after one unit of
time, is redefined as s(p) (Fig. 2). Thatis,

() p(1) = p(0) + j v(p(0)dt. @

Note that Eq. (4) redefines the deformation field s for an arbitrary pomt p

f
using the speed vector field v .  Because S(p)dé p+A;(p), the
deformation vector field A, can also be calculated from the speed field v as

follows:

1

A, (p) = j v(p(®))dt. 5)

Note that the inverted deformation field s~1 can be calculated from the
mverted speed field —v. Because inversion of the deformation means

mverting the temporal progress, it is equivalent to inverting the speed vector
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field. Suppose that another point p’ = p’(0) at time 0 is moved to position

p'(t) attime t along the inverted vector field —v. In other words, suppose
that p’' =p’(0) and p’'(t) = p’'(0) + fot —v(p’(t))dt’. Then, s1(p") =

p'(1)=p'(0)+ fol —v(p’(t))dt is satisfied. This means that both s and

s~ can be directly calculated from v.

Using a term in Lie group theory, the mapping v s is called the
exponential of the speed vector field. Therefore, in the description below,

1

.. def . . .
the definition s = exp Vv is used. Note that s~ = exp(—v) is satisfied as

described above (Fig. 3).

I los
f VA A f VA A
p 1Y
f e S

(p) = (expv)(p)

F1@) £ exp L0y
)
' %
[

A i A A i
f t 1 speed vector field v f t ' speed vector field v
] | L} ]

:

> —— e
i
:\
o .
—_——
N
N o

Fig. 3. Speed vector field and its exponential.

It is known that the exponential calculation v ~ exp(Vv) can be performed
efficiently as a sequence of compositions of finite transformations [29]. Note

that halving the speed and doubling the moving time will lead to the same result.
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Thus,

1 1
(exp > V) ° (exp > V) = expVv (6)

is satisfied. Here, o denotes the composition of the deformations. Thus,

expVv can be calculated as

1 1 1
expv = (epo—Nv) ° (epo—Nv) 00 (epo—Nv). %

2N

Under the assumption that LNV is sufficiently small, the approximation
2
expzl—Nv = Id + ;—Nv can be used. That means that (exp;—N v) (p=p+

;—Nv(p) at any pont p. Then, exp v canbe calculated using a sequence of
compositions of deformation fields:

1 1 1
epoN_lv = (epo—NV) ° (epo—Nv)

1
N2 v = (exp N1 V)o (expzN_1 V)

exp

(®)

1 1
expv = (expiv) ° (expiv).

Using this exponential operation, the log domain demons algorithm used in

this study i1s described as follows:
Algorithm 1. Symmetric log-domain demons algorithm

Input: two images I, and I,
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0

Iterate:

Calculate forward and backward deformation fields exp %v and
1

exp ——v

Calculate deformed images [Z =1, o (exp%v) and If=1,0

(e —3v)

Compute the demons forces u(p) = — =

”]p”2+(AI)2 : ]p Whel‘e AI =

14(p) — I¢(p) and J, = = (VI&(p) + VIZ(p))
For fluid-like regularization let u < K¢),;4 * 1

For diffusion-like regularization let v « Ky;rr * (Vv + u)

Here, the operators Ky, * and Ky;¢r * denotes the application of Gaussian

smoothing filters with appropriate kernel sizes. Upon convergence, the pair

of deformed images I and I8 become spatially fitted, that is, IZ(p) =

I13(p).

Furthermore, I, o (expv) = [, and I, o (exp—Vv) =1, are also

satisfied (Fig. 4).
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Fig. 4. Fitting of two objects in the symmetrical log-domain demons algorithm.

4.2.1.2 Proposed landmark-guided demons algorithm
In my proposed landmark-guided demons algorithm, not only grayscale

image information but also landmark position information is used to update the
speed vector field. Suppose that a total of L landmarks to be fitted are

determined in each image. Let the positions of the [th landmark in images

I, and I, be xg) and Xg), respectively. Then, as described in (2.1.1), we

can calculate and draw the trajectory of each landmark along the speed vector

field v (Fig. 5 left).



124

Chapter4  Multiatlas-based segmentation of the vertebral and pelvic bones

Fig. 5. Fitting of two landmarks in the symmetrical log-domain demons
algorithm with K = 4 as an example.

Here, our aim is to fit the warped [th landmark point in image I,, or

exp(v) (xg)), to the corresponding landmark point xg) in image [,. That

is, exp(v) (XS)) ~ xl()l). Note that, from the invertibility of'the deformation

a

field, exp(—v) (xl()l)) ~ x¥ is satisfied at the same time. Additionally, in

this study, the trajectories of the pair of landmarks are also fitted (Fig. 5 right).

Consider a set of points at regular intervals exp (gv) (X,(ll)) k=

0]
a -

points at regular intervals exp (—gv) (xl(f)) ,k=20,12,3,..,K along the

0,1,2,3,...,K along the trajectories of x Also consider another set of

trajectories of Xg). Then, as illustrated in the right of Fig. 5, the
corresponding pairs of points exp (% V) (XS)) and

exp (—KT_kv) (x,(f)) ,k=0,1,23,...,K, are also fitted to the same position.
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Then wu,,,, the update vector field (i.e. demons forces) from landmark position

information, 1s calculated as follows:

upy (%)
K-k
( Kk I if X:exp(——K V) (Xgl))
o (-2 0) (1) - exp () )
K b K @ k )
= or x:exp(Ev) (xa ),EIkEIl ’
0
0 otherwise 9)
\ 0
uLM’(X) if Iu’LM (X)l = Umax
U m(X) =§_Ymax

‘ur (X)) if u < |ul (X
Iu’LM(X)l LM( ) max | LM( )l

where u,,,, 1s a parameter used to prevent update vectors from having a too
large norm. In this study u,,,, =5 was used. Using this landmark-based

update field, the landmark-guided demons algorithms is composed as follows:
Algorithm 2. Landmark-guided symmetric log-domain demons algorithm

o | =

Input: two images I, and I, and landmark positions x? and X,

a
1,23,...,L

0
Set the initial speed image v(p) « <0>,Vp
0

Iterate:

Calculate forward and backward deformation fields exp%v and

1
EXp—EV
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Calculate deformed images I¢ =1, 0 (exp%v) and I8 =1,0

(o2

Compute the grayscale demons forces ugs(p) = =

TR

-JP,
where Al = I¢(p) — I{(p) and J, = —2 (VI(p) + VI{(p))

For fluid-like regularization let ugs < K465 * Ugs

Compute the landmark demons forces uy(X) using Eq. (9)

For fluid-like regularization let wupy < Kppyig.m * Upm

For diffusion-like regularization let v & Ky;rp % (V+Ugs + apy -
upm)

Note that although the landmark update field wuy(X) is only non-zero at
discrete positions, its effect is diffused to its neighborhoods by convolving
Krpyiam and  Kgiep The parameters of the Gaussian filtering
Ofiuid;Lm Oftuia;es: Oairs ~ and  the  weight  coefficient — ap,  are

hyperparameters to be determined in advance.

4.2.2 Multiatlas segmentation framework

On the basis of the landmark-guided demons algorithm described above, I
developed a novel framework to segment the whole spine and the pelvic bones.
The framework has several advantageous features. Firstly, cranial or caudal
shifts in the spinal registration process are effectively suppressed by using the
preceding landmark detection result. Secondly, an extremely fast atlas
selection method is utilized to reduce the computational cost of the following

series of registrations. Thirdly, a local histogram matching method is also
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applied to compensate for a wide variety of local bone mineral densities among

datasets.

Figure 6 shows a flowchart of the proposed segmentation framework.
Firstly, total a 170 of bony landmarks are detected by my landmark detection
system. Before registration, as a preprocess, the voxel values of images are
modified by a sigmoid function to emphasize bony structure. Additionally, a
feature vector is extracted from voxels near each landmark to perform atlas
selection.  After atlas selection, the selected atlases are registered to the given
unseen target image using the proposed landmark-guided demons algorithm.
Then, local histogram matching and additional fine registration are performed.
Finally, label propagation is performed by voxelwise voting and the final

segmentation result is given.
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Fig. 6. Outline of the proposed method.
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4.2.2.1 Landmark detection system
Figure 7 shows an outline of my landmark detection system. Details of the

system are given in [18,19]. In brief, the detection system has two steps.
Firstly, each landmark is detected independently and in parallel by the
corresponding landmark-dedicated detector. Each landmark detector outputs
multiple candidate positions for its target landmark. Then, in the following
final combinatorial optimization step, one landmark point set is determined for
all landmarks using an mterlandmark-distance-based spatial landmark
distribution model. As the result, the most probable positions of 170 bony
landmarks are outputted. All the landmarks are labeled (for example, as the
spinal process of the 11th thoracic vertebra or as the right transverse foramen
of the 5th cervical vertebra) by the detection system. The landmark detection
system can handle CT volumes with various imaging ranges and field of view
(FOV) sizes.

LM-1 LM-1
Detector cands.

LM-2
Detector

o
0
©

£

=
=
a

5

° c
—
£
g
S ©
e
5 £
g*é'.
UO

LM-M
Detector

Detection result

Fig. 7. Outline of the landmark detection system.
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4.2.2.2 Preprocessing
As a preprocess, every voxel value in the mput CT volume is processedbya

sigmoid function to emphasize the bony structure as follows:
1000
Iin - b '
1+ exp (—a )

Loyt = (10)
In this study, a =120 and b =300 are used. These values were
determined experimentally.  Additionally, all volumes are rescaled so that the

voxel size becomes 2 mm/voxel.

4.2.2.3 Atlas selection
In the proposed method, atlas selection is performed using global image

information before registration mstead of local image information after
registration. Both approaches have advantages and disadvantages; the latter
may provide more precise segmentation results at the cost of heavier
computational burden. In this study I perform global image information
before registration because I have relatively large (~40) atlas datasets.
Although my demons-based registration algorithm 1is reasonably fast,
registering all the atlases is too costly in many practical applications. Global

atlas selection can greatly reduce the computational cost(as described later).

In the atlas selection, the information on landmark positions is optimally
used to extract feature values of each CT volume. Eight cubic regions are
placed around each landmark, and the average CT values of these eight cubes
are used as features. All the cubes have the same landmark point as one of
their vertices. Each cube has a side 0of 20 mm. A total of 8 X 170 = 1360
features are calculated for each CT volume and are used to compose the feature

vector. Using this vector, the similarity between a given pair of CT volumes



131
Chapter4  Multiatlas-based segmentation of the vertebral and pelvic bones

is estimated using the simple squared Euclidean distance between the two

vectors.

In actual atlas selection, the similarity between each atlas and the given
unseen volume is calculated. Then, the atlases with the largest similarities are
selected and used in the following multiatlas segmentation process. The
number of atlases used 1, 1S a hyperparameter to be determined in
advance, and is used to balance the computational cost and the segmentation

accuracy.

4.2.2.4 Landmark-guided demons
After atlas selection, each atlas is registered to the given unseen volume.

Firstly, the landmark-guided demons algorithm (described n 4.2.1) is
performed using landmark information. All landmark positions in the atlas
datasets are manually mputted by a radiologist in advance. Landmark
positions in the unseen volume are determined by my automatic landmark
detection system (as described in 4.2.2.1). Using two pairs comprising the
landmark information and the grayscale volume, the landmark-guided demons

algorithms is performed to register two bony structures.

I also utilize a multiresolutional approach. The CT volumes are resized
with ratios of 27",n=3,2,1,0. For each resolution, 20 cycles of the
landmark-guided demons algorithm are performed. When the resolution is

changed, the CT volume and speed image are rescaled. Furthermore, all the
dislocation vectors (e.g., exp %V) must be scaled appropriately (i.e., multiplied

by 27") before every image warping. Note that the speed image v cannot
be multiplied simply; halving the speed of the flow does not result in halving

the spatial scale.
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4.2.2.5 Local histogram matching
In practice, demons-based registration of the bony structure is affected by

the variation of the bone mineral density. Osteoporosis, from which many old
women suffer, causes very low CT values in the bony structure, particularly in
vertebrae. Such a difference in CT values can cause large registration errors.
To avoid such errors, a local histogram matching is performed on each local
part of the given volumes, which is followed by an additional, precise demons

registration.  (Fig.8)
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Fig. 8. Example of registration.  (a) Original images after preprocessing. (b)
Result of landmark-guided demons algorithm and histogram matching. (c)
After performing detailed demons algorithm.

After the landmark-guided demons registration, the volumes are divided into
cubes with a side length of 16 mm. The histogram of the voxel intensities of

each cube in the two volumes is calculated. Then all the voxel values in the



133
Chapter4  Multiatlas-based segmentation of the vertebral and pelvic bones

same cube are matched between the two volumes, so that the histograms of the
two cubes become identical. Let q,(c) be the cth percentile of the image
intensities of the given cube A. For example, q,(50) is the median of the
intensities of cube A.  Supposethat the cth percentile of the intensities in the
corresponding cube B in the other image is gz(c). Then, the intensity value

Z, in cube A will be converted to a new value Zp.matcheq as follows:

CIA(C) + CIB(C)
2 (11)

Qmean (C) =

Zp;matched — 9mean (QZl (ZA ))r

where ¢q;'(-) is the inverse function of ¢q,(-).  Additionally, in
implementation, the frequencies of histograms are spatially interpolated

between cubes to avoid noncontinuity of the resulting volume.

4.2.2.6 Detailed demons algorithm
After local histogram matching, precise registration is performed. In this

phase, landmark information is not used to avoid the effects of small landmark
detection errors. The precise registration is performed by the log-domain
demons algorithm (as described in 2.1.1) without a multiresolutional approach.

A total 0f 20 cycles of the demons algorithm are performed.

4.2.2.7 Label propagation and voting
After all the atlases are registered to the unseen image, label propagation and

voting are performed to compose the final segmentation result. Each atlas has
amanually inputted label volume, which includes all 24 vertebral bones as well

as the bilateral iliac bones and the sacrum. In the label propagation, each label
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volume is deformed using the registration result so that it fits to the given
unseen image. Then, voxelwise voting is performed using n,;;,s registered

labels and the majority label is chosen voxel by voxel.
4.2.3 Parameter optimization and evaluation

This study was approved by our institutional ethics review board. For this

type of retrospective study, formal informed consent is not required.

I used a total of 50 whole-torso CT datasets without the administration of
intravenous contrast agent. All subjects had no bone diseases other than
osteopenia. The voxel size was 0.977 X 0.977 X 1.250 mm. Subjects
with abnormal number of vertebrae was excluded from this study beforehand.
For all the datasets, the answer label volumes and landmark positions were
manually mputted. Among the 170 landmarks, 120 were spinal, 39 were
pelvic and 11 were on other bony structures. Answer labels were inputted for
27 bones (the 24 vertebrae, the bilateral iliac bones and the sacrum). Note that
landmark answers were used only for the atlases and were not used in the test

phase (the results of automatic detection were used instead).

My method has many hyperparameters: the parameters of Gaussian filtering
Of1uida.LM» Ofluia;cs: Oaiff » the weight coefficient apy , the number of
resolutions, the parameters of the sigmoid function, and so forth. I used 10
out of the 50 datasets for parameter optimization. The best combination of
parameters was searched for by a grid search. A leave-one-out method was
used, that is, all nine datasets other than the target case were used as atlases
(without atlas selection). The criterion used was the Dice coefficient. In the

result, Oria;im = 4.0, Opiges = 1.0,04i,¢ = 0.5,y = 1.0 were
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selected for the landmark-guided demons algorithm and o514 = 1.0,04;7f =

0.4 were selected for the detailed demons algorithm.

For comparison, I also mmplemented another demons algorithm with
landmark guidance but without diffeomorphism. It was simply performed by
settng N =1 in Egs. (7) and (8). In other words, the rough approximation

1 1
exp_V = Id + SV was used.

The experiment was performed using the other 40 datasets. A leave-one-
out method was also used in the experiment. Variable numbers of atlases
Ngras Were used to evaluate the effects of n,,,.  The segmentation result
was evaluated by three criteria: the Dice coefficient, the (voxel-to-voxel) mean
distance error and the Hausdorff distance error. The definitions of these
criteria are as follows:

2|AN B

Dice coefficient= ————,
|Al + [B|

Hausdorff distance

= max{max min|a — b|, max min|a — bl},

a€edA bedB beodB aedA
mean distance (12)
11 1 z in| bl
=—{— min|a —
2 [|0A] bedB
acdA

acedA

1

+ — inla — by,

3B min| |}
bedB

where A and B are the voxel sets of the answer and the computed label

regions, respectively. JA denotes the border voxels of A.
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I also used the publicly available SpineWeb  dataset
(http://spineweb.digitalimaginggroup.ca/) [22] to evaluate the segmentation
accuracy. The SpineWeb dataset include 20 thoracolumbar spinal small-field -
of-view CT volumes, 10 for training (Dataset 2) and 10 for testing (Dataset 15).
In the latter, five out of the 10 subjects have osteoporosis and compression
fractures. In my experiment, an alternative hyperparameter tuning was
performed in advance by a grid search using 10 training volumes (Dataset 2).
The selected parameters were  Ofpyig.m = 5.0, Ofyiges = 1.5,04irF =
1.0,ay = 1.0 for the landmark-guided demons algorithm and oy;y;q =
0.5,04i¢f = 0.4 for the detailed demons algorithm.  After hyperparameter
optimization, the segmentation accuracies of thoracolumbar vertebrae were

evaluated for each ofthe five healthy and five diseased spines in the test dataset.

3. Result

First, I tested the proposed method using a toy model. Figure 9 shows the
registration results for the toy model comprised of a curved rod. Without
landmark information, the curved rod shape firstly shrinks, and then elongates
to fit the target image. On the other hand, using the proposed method, the

shape of the rod is preserved during the deformation.
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LM-guided

original

conventional

target

Fig. 9. Results for toy model using of the proposed and conventional demon
methods. The yellow circle represents a landmark used mn the proposed

method.
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Fig. 10. Example of segmentation result for the spine and pelvis.
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Fig. 11. Example of segmentation result for the spine and pelvis.
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Figures 10 and 11 illustrate an example of the segmentation result for the
proposed segmentation method. Note that all the vertebral processes and
sacral foramina are correctly segmented. I consider that this correctness is

mainly due to the landmark-preserving nature of the proposed method.

Figures 12-15 show the Dice coefficients, mean distances and Hausdorff
distances of the proposed segmentation method. As shown, the segmentation
accuracy improves as the number of atlases increases. However, this increase
1s almost saturated when the number of atlases reaches 10. Furthermore, the
segmentation results with only one atlas (selected by the atlas selection
algorithm) are significantly better than the average accuracies with a single
atlas without atlas selection. Figure 16 also shows that the segmentation
result with the proposed atlas selection surpassed the result with randomly
selected atlases in all 40 cases (a total of 50 random tests were performed).
Therefore, 1 concluded that my atlas selection method works well and is
effective for reducing the number of required atlases. Even when only five
atlases were used, a mean Dice coefficient of 0.90+0.02, a mean distance error
0f 0.59+0.14 mm and a Hausdorff distance of 5.30+£2.14 mm were achieved.
For vertebral region only, a Dice coefficient of 0.90+0.03, a mean error of
0.59+0.14 mm and a Hausdorff distance of 4.93+2.01 mm were achieved.
Therefore, considering the computational cost, I consider that five atlases is
sufficient for most applications. It took approximately 15 min for one
segmentation task using five atlases, whereas it took approximately 110 min

when 39 atlases were used.  Therefore, the computational cost was
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approximately proportional to the number of atlases used.

Dice coefficient / number of atlases
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Fig. 12. Dice coefficients of the multiatlas and single-atlas segmentation results.
Standard deviations of all single-atlas segmentation results (calculated from a

total of 40 X 39 = 1760 segmentations) are also shown.
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Fig. 13. Mean distances of the multiatlas and single-atlas segmentation results.
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Hausdorff distance / number of atlases
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Fig. 14. Hausdorff (maximal) distances of the multiatlas and single-atlas

segmentation results.
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Dice index (average of 27 bones)
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Fig. 15. Dice index, mean distance and Hausdorff distance for several numbers

of atlases.
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Dice index (average of all 27 bones)
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Fig. 16. Scatter plot of the segmentation accuracies of the proposed atlas
selection vs random atlas selection is shown. The accuracy criterion is the
average of the Dice coefficients among all 27 bone structures. Each dot

represents one test case.
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Figure 17 shows the Dice coefficients of the segmentation results obtained
with the diffeomorphic demons and simulated non-diffeomorphic demons
algorithms when five atlases were used. As shown, the segmentation
accuracies were significantly better with the diffeomorphic demons algorithm

for most of the vertebral and pelvic bones.
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Fig. 17. Dice coefficients for diffeomorphic vs non-diffeomorphic demons
algorithms (with five atlases). Asterisks indicate a significant difference
(p<0.05) between the two algorithms (by paired t-test).

I also used the SpmeWeb dataset [22] to evaluate the segmentation accuracy.
Because the volumes in the dataset only include thoracolumbar spines, the Dice
indices and mean error distances for only thoracic and lumbar vertebrae were
evaluated. Figures 18 and 19 show my segmentation accuracies for healthy
cases and diseased cases with compressed fractures, respectively, compared

with the results of other state-of-the-art methods [20] [30-33]. Figure 20
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illustrates an example of a segmentation result (a case with multiple
compression fractures). As shown, my method resulted in a mean Dice index
0f 0.889 and a mean error distance of 0.69 mm for the healthy subjects. On
the other hand, the performance was slightly degraded for diseased subjects to
a mean Dice index of 0.843 and a mean error distance of 1.30 mm. My

method showed comparable accuracy to the other state-of-the-art methods.

Dice coefficient

0.946 0.947 0.934
o; 0.921 0.868 0.889
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[20] al. [31] et al. [33]
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0.1

0
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Fig. 18. Mean Dice indices of the SpineWeb dataset and results of other state-
of-the-art methods.
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Fig. 19. Mean distance errors ofthe SpineWeb dataset and results of other state-

of-the-art methods.
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Fig. 20. Segmentation result of a SpineWeb subject with multiple compression

fractures.

4. Discussion

A novel method for segmenting the whole spine and the pelvis was presented.
In the evaluation, a mean distance error of 0.59+0.14 mm was achieved for the
whole spine and the pelvic bones. Comparing my results with those in
previous studies, Klinder et al. reported a mean distance error of 1.12 + 1.04

mm [6] for healthy or diseased whole-spine images using their method.
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Recently, Korez et al. [9] reported a method for thoracolumbar vertebrae whose
mean distance error was 0.3 mm and Dice coefficient was 0.946. In another
method for thoracolumbar vertebrae reported by Castro-Mateos et al. [8], the
mean distance error was 0.58 mm. Thus, my method showed comparable
accuracy to these state-of-the-art methods. Additionally, a direct comparison
using the SpineWeb dataset was performed for thoracolumbar vertebrae. In
the comparison, the proposed method also showed comparable performance for
both healthy and diseased thoracolumbar spines. Therefore, I believe that the

accuracy and stability of my method have been confirmed.

The proposed method used a novel landmark-guided log-domamn demons
algorithm for registration. One of the advantages of this algorithm is the
diffeomorphism/invertibility of the deformation field. The mvertibility is
required if it is necessary to warp both image(s) and landmark(s). The
deformation field for warping images is not the same as, and is the mverted
version of, the field for warping landmarks. Additionally, owing to the log-
domain mechanism and the explicit speed vector field v, not only the position
of each landmark but also its trajectory can be traced and fitted. In my
experience, this mechanism greatly improves the stability of my landmark-
guided demons registration, especially when the landmark positions in the two
volumes are distant in the initial setting. [ assume that this trajectory-fitting
strategy is effective in my voxelwise registration algorithm with an extremely
high number of DOFs. 1believe that, owing to both the high number of DOFs
and the stable landmark fitting, the accurate registration of complex shapes of
vertebrae around landmarks (e.g., vertebral processes and holes) was achieved.
My method showed comparable, but not superior, segmentation performance

to that of Forsberg et al. [20] for thoracolumbar vertebrae. In fact, their
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approach and mine are similar in many ways. Both of them utilize a
multiatlas-based approach. Their algorithm estimates the positions and poses
of all vertebrae prior to the main multiatlas segmentation in order to determine
the nitial condition of the registration problems, which corresponds to my
landmark detection phase. In the registration, their morphon-based method
calculates a dense displacement field at every cycle and uses a multiresolutional
approach, in accordance with [34]. However, the deformation field of their
registration method does not have diffeomorphism. Although the benefit of
diffeomorphism has been shown to be significant in my study, it is possible that
diffeomorphism itself is not an indispensable property in registering the spinal

structure.

My multiatlas-based segmentation method has several advantages and
disadvantages compared with the other SSM-based methods. Firstly, it can
simultaneously segment not only the spme but also the pelvis with little
additional computational cost, since in my current implementation whole
bodies are always registered. It is possible that, if correctly mitialized using
additional landmarks, my method can segment other body trunk bones such as
the ribs and sternum. On the other hand, in the SSM-based approach,
individual SSMs will be needed to segment these structures. Secondly, it can
accurately segment fine protuberances or holelike structures such as vertebral
processes and transverse foramina particularly in the cervical region, owing to
high number of DOFs of the demons algorithm.  For example, Klinder et al.
[6] reported mean distance errors for the segmentation of cervical vertebrae of
0.81 to 1.13 mm, whereas my mean distance errors for cervical vertebrae
ranged from 0.55 to 0.67 mm. Thirdly, because my method segments the

spinal-pelvic structure as a whole, it is free from “model instance collision,”
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that is, the overlap of segmented areas between two adjacent bones. This is a
major problem that is due to the complicated shapes of intervertebral and
sacroiliac jonts. Many SSM-based methods have a mechanism dedicated to
avoiding such a collision problem [6] [8]. On the other hand, my multiatlas -

based method is essentially collision-free.

Among the disadvantages of my method compared with SSM-based methods,
seemingly the mostproblematic oneis the high computational cost.  Although
I attempted to reduce the computational cost by utilizing preregistration atlas
selection, it took about 15 min for one subject excluding landmark detection,
which took another 17 min.  Further reduction of the computational time will
be one of my future challenges. Secondly, my method relies on predetected
landmark position information and 1s strongly affected by the landmark
detection accuracy. However, this problem is not specific to my method
because most other SSM-based methods require a preceding vertebral
identification method that can be regarded as vertebral “landmark” detection
method. For example, Korez et al. [9] used an interpolation-based vertebra
identification method, whereas Klinder et al. [6] used another appearance-
model-based identification method. And my vertebra identification accuracy
[28] i1s comparable to those of other state-of-the-art vertebral body/disc
identification methods and I was able to correctly detect most of the vertebrae

in my 40 test cases.

This study has some limitations. My test dataset only includes healthy
spines or those with osteoporosis. Spines with other diseases such as scoliosis,
lordosis, postsurgical changes or bone metastasis were not included. Another

problem is that spines with abnormal numbers of vertebrae were excluded from
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my dataset. Such anatomical anomalies are quite common, for example, an
occurrence of 10.8% was reported in [35]. 1 am now attempting to identify
abnormal numbers of vertebrae by wvirtually converting the landmark
configurations of anomalous spines to those of normal ones [36]. Note that,
once the identification of abnormal vertebrae has been achieved, all vertebrae
can be segmented by the same methodology using “abnormal atlas” datasets
that consist of cases with a specific abnormality. Because my segmentation
results are reasonable even when only one atlas is used, I expect that the use of
only one atlas for each abnormality will be sufficient to correctly segment

abnormal spine.
5. Conclusion

A method for segmentation of the spine and pelvis was presented. The
experimental results showed high accuracy for cervical, thoracic and lumbar
vertebrae as well as for pelvic bones. My future works include evaluation
using datasets of spines with diseases, addressing the problem of abnormal
numbers of vertebrae, and the simultaneous segmentation of other bony

structures such as the rib cage and sternum.
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Chapter 5 HoTPIG: A novel
geometrical feature for vessel
morphometry and its application to

cerebral aneurysm detection

A novel feature set for medical image analysis, named HoTPiG (Histogram
of Triangular Paths in Graph), is presented. The feature set is designed to
detect morphologically abnormal lesions in branching tree-like structures such
as vessels. Given a graph structure extracted from a binarized volume, the
proposed feature extraction algorithm can effectively encode both the
morphological characteristics and the local branching pattern of the structure
around each graph node (e.g., each voxel in the vessel). The features are
derived from a 3-D histogram whose bins represent a triplet of shortest path

distances between the target node and all possible node pairs near the target
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node. The extracted feature set is a vector with a fixed length and is readily
applicable to state-of-the-art machine learning methods. Furthermore, since
my method can handle vessel-like structures without thinning or centerline
extraction processes, it is free from the “short-hair” problem and local features

of vessels such as caliper changes and bumps are also encoded as a whole.

Using the proposed feature set, a cerebral aneurysm detection application for
clinical magnetic resonance angiography (MRA) mimages was implemented.
In an evaluation with 300 datasets, the sensitivities ofaneurysm detection were
81.8% and 89.2% when the numbers of false positives were 3 and 10 per case,

respectively, thus validating the effectiveness of the proposed feature set.

5.1 Introduction

A branching treelike structure is one of the major types of structure in the
human body. Forexample, a wide variety of vessels (blood vessels, bronchi,
bile ducts, etc.) have a treelike structure. Quite a large number of diseases
affect these vascular structures and cause pathological shape changes including
narrowing, occlusion, and dilation.  Vascular diseases, including cerebral
infarction and coronary occlusive disease, are one of the major causes of death
in advanced nations. Since precise evaluation of the shape of vessels is
essential in diagnosing these diseases, computer-assisted detection/diagnosis

(CAD) of'these treelike structures is required.

Among the vascular diseases, cerebral aneurysm has been one of the targets
of CAD applications [1-3]. Although unruptured cerebral aneurysms are

generally asymptomatic, they rupture in approximately 1% of patients per year,



163

Chapter 5 HoTPiG: A novel geometrical feature for vessel morphometry and its
application to cerebral aneurysm detection

leading to high rates of mortality and disability [2]. This is why the early
detection of cerebral aneurysms is needed. In clinical practice, noninvasive
magnetic resonance arteriography (MRA) examination is most frequently used
for screening, in which diagnostic radiologists search for abnormal structures
(ie., saccular protuberances and fusiform dilation). However, it is known that
a normal arterial system may include pseudo-lesions such as infundibular
dilatations. CAD applications for detecting cerebral aneurysm also have to
distinguish abnormal aneurysmal structures from normal ones, including

branching sites of small cerebral arteries and tightly curving carotid siphons.

In previous studies, two approaches to searching for aneurysms have
generally been used: (1) voxel-by-voxel evaluation using Hessian matrix-
derived features, and (2) three-dimensional (3-D) thinning of a presegmented
arterial region and branching pattern analysis. In the first approach, a
Hessian-based filter emphasizes spherical structures with various sizes. For
example, Arimura et al. [3] used a dot enhancement filter that outputs a high
value when all three eigenvalues of the Hessian matrix have large negative
values. Nomura et al. [2] used a similarity index that can distinguish
spherelike aneurisms from ridgelike vessels. Although their approachusually
works well, the detected candidates inevitably include a large number of false
posttives, especially at vessel bifurcations. Therefore, subsequent processes
to eliminate false positives are required, greatly affecting the overall

performance.

The other approachis to find an abnormal arterial branching pattern from the
graph structure of an extracted artery.  After segmentation ofthe artery voxels,
a 3-D thinning algorithm is applied to extract the centerlnes. Then the
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centerlines are analyzed to find any suspicious points, such as end points of
centerlines [4], short branches, or points with a locally maximal vascular radius
[1]. In contrastto the curvature approach, the centerline approach can utilize
branching pattern information to discriminate aneurysms from bifurcations.
On the other hand, the 3-D thinning process has the “short hair” problem, i.e.,
a large number of false short branches where the arterial wall has small “lumps.”
Therefore, a postprocess to remove [5] or classify [1, 3] short hairs is
indispensable. Another problem is how to represent local morphological and
topological changes in the graph in the context of machine learning. A large
number of studies on the analysis of whole graph structures have been
conducted in which the graph structure is embedded into a vector field (graph
embedding) or evaluated by kernel methods (graph kernel) [6].

In this study, I propose a novel feature set named HoTPiG (Histogram of
Triangular Paths in Graph). Itis defined at each node in a given graph based
ona 3-D histogram of shortest path distances between the node of interest and
each of'its neighboring node pairs. The feature vector efficiently encodes the
local graph network pattern around the node. The graph structure can be
determined directly from a binary label volume. Since the thickness of the
vessel is naturally encoded without any centerline extraction process, the “short
hair” problem caused by the thinning algorithm does notoccur. Furthermore,
the proposed feature is essentially robust to nonrigid deformations under the
assumption that the graph structure extracted from the original image is not
significantly changed by the deformation. The proposed feature set is
sufficiently effective for aneurysms in MR A images to be accurately classified
by a support vector machine (SVM) without any complicated pre- or

postprocesses. The contributions of this study are as follows: (1) A novel
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vector representation of a local graph structure for detecting abnormalities is
presented, (2) a CAD application for detecting aneurysms in MRA images is
implemented using the proposed graph feature and a state-of-the-art SVM
classifier with explicit feature mapping, and (3) the usefulness of the proposed
method is experimentally validated using a large dataset with 300 clinical MRA
images, and high performance comparable to that of other state-of-the-art

methods 1s demonstrated.

5.2 HoTPIiG

The proposed HoTPiG feature is defined for any arbitrary undirected graph
based on bin counts of a 3-D histogram of shortest path lengths (Fig. 1). One
feature vector is determined for each nodein the graph and can be readily used
to classify the corresponding node as positive (e.g., aneurysm) or negative.
The 3-D histogram accumulates counts of each triplet of distances between the
target node and its two neighbor nodes as well as between the two neighbor

nodes.
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Fig.2. Example of calculation of HOTPIG features (with d,,,, = 2).

Suppose that the graph includes |U| nodes, and each node in the graph has

an integer index € U={1,2,3,...,|U|}.

Also suppose that the feature

vector ofnode i is to be calculated. First, the shortest path distances from i

to all other nodes are calculated (by a breadth first search).

Here, the shortest
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path distance is the number of steps (edges) along the shortest path between the
pair of nodes. Let the distance between nodes a and b be dist(a,b). 1
define the neighborhood of i, N;, as the set of nodes whose distances from i
are no more than a predefined mteger d,, ., - That means N; =

{l e U0 < dist(i,]) <du }-

Then, for any triplet of distances (di dik,d]-k), the value of the 3-D

jr

histogram Hl-(dl- dik,djk) is defined as the number of node pairs (j,k) that

j'

satisfy the following conditions

j € Ni,k € Nl,dlSt(l,]) = di dlst(l, k) = dik,diSt(i,k) = d]k (1)

J»

In practice, the two bins (di dik,djk) and (dik,dij, djk) are simply those

j
with neighbor nodes j and k swapped. Thus, these two bins are considered
to be the same and only one count is incremented for such pairs of distance

triplets.

The counts of bins in histogram H; are used as the feature vector of node i.
As shown in Fig. 1, the feature vector tends to vary widely among different
nodes and is sensitive to topological changes in the local graph structure.

Note that the extent of the locality can be controlled via the parameter d,,,,, -

The calculation cost for the proposed method is estimated as follows. The
breadth-first search algorithm can calculate all the shortest path distances by
performing O(|U| - E(|N;])) calculations, where E(|N;|) is the mean size of
the neighborhoods. On the other hand, the histogram counting requires
O(|U| - E(JN;])?) count increment calculations.  Therefore, most of the

calculation costis for histogram counting.
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5.3 Computer-assisted detection of aneurysms

As an application of the proposed HoTPiG feature, I have developed CAD
software for aneurysm detection m MRA mmages. The proposed CAD
application is composed of four steps: (1) extraction of the binary label volume
of arteries from MRA images, (2) calculation of graph structure features, (3)
voxel-based classification by SVM, and (4) a thresholding and labeling process.

5.3.1 Artery region extraction and HoTPiG feature calculation

Firstly, the artery region is extracted by a conventional region growing
method. The average I and standard deviation o, of the brain region are
estimated by sampling voxel values from a predefined mid-central subregion,
that is, a horizontal rectangular plane with half the width and height placed at
the center of the volume. Then, the mitial artery region is extracted by region
growing, where the seed threshold and growing threshold are > I + 30, and
> | + 2.50;, respectively.

After the artery region is extracted, an undirected graph is composed. I
choose a simple graph structure whose nodes are all foreground (i.e., intra-
arterial) voxels, and the edges connect all 18-neighbor voxel pairs (Fig. 2).
Here, an 18-neighborhood is chosen because it is more similar to the Euclidean

distance than 6- and 26-neighborhoods.

Using this graph, the HoTPiG feature is calculated at each foreground voxel.
The maximum distance used is d,,,,,, = 11, considering the balance between
the performance and the calculation cost. Two modifications are applied to

the method described in Section2.  Firstly, a 1-D histogram with d,,;,, = 11
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bins whose distances are {1,2,3,...,11} may be too sparse when it is used as
part of a 3-D histogram. To cope with this, some distances are grouped into
one bin and only six bins {1,2,3,[4,5],[6,7],[8,11]} are used. These bins
are determined so that their upper bounds are the geometric series 1.5",n =
1,2,3,4,5,6. Applying this bin set to each of three distances (dl-j, dik,djk),
the entire 3-D histogram has 6 -, C, = 126 bins. However, some bins never
have a count because the corresponding distance triplet does not satisfy the
triangle mnequality.  After removing such bins, a total of 85 bins are included

in the 3-D histogram in this study.

Additionally, a multidimensional approachis added to analyze gross vascular
structures.  After downsampling the artery binary volume to half and a quarter
ofits original size, the graph structure features are extracted in the same manner.
After feature extraction, each feature is upsampled by nearest neighbor
interpolation and all the features of the three scales are merged voxel by voxel.

Therefore, a total of 85 X 3 = 255 features are calculated for each voxel

Prior to the classification process,each feature is normalized by dividing by

the standard deviation estimated from training datasets.

5.3.2 Voxel-based classificationby SVM

Using the extracted features, each voxel is classified as positive (aneurysm)

or negative (normal artery) by a an SVM classifier [7]. The exponential-y?

Y
L9 B00) 18], which s designed

kernel K(X,y) = exp (— ey —
specifically for histogram comparison, is used in this study. The classifier is
trained using manually inputted aneurysm voxels in the training datasets as

positive samples and other arterial voxels as negative samples. Here, one of



170

Chapter 5 HoTPiG: A novel geometrical feature for vessel morphometry and its
application to cerebral aneurysm detection

the difficulties is the huge number (> 108) of training samples, because one
MRA volume has approximately 10° artery voxels. It is known that the
computational cost of kernel SVM is of order 0(dM?)~0(dM3), where d
and M are the data dimensionality and number of samples, respectively. To
solve this problem, I utilized a feature map of the exponential-y? kernel [8] to
reduce the original problem to a linear SVM whose computational cost is
O(dM). The feature map is a function that explicitly maps the original feature
vector of each sample to a higher-dimensional space, in contrast to the
conventional kernel method, in which a vectoris implicitly mapped to a higher-
dimensional space. Using this feature map and the random reduction of
negative samples (to 3% of the original number), the training task was

calculated in approximately 20 min for 2 X 108 original samples.

In addition to the classifier with the HoTPiG feature set only, another
classifier is also trained by adding two sets of Hessian-derived features (the dot
enhancement filter [3] and shape index [2]) to evaluate the cooperativity ofboth
types of features. The two Hessian-derived features are calculated with six
different scales; thus, a total of 12 features are added to the HoTPiG features.

aneurysm 4 A ki g
N

"

HoTPIiG

Fig. 3. (Left) Example of cerebral arteries m a volume. (Middle) HoTPiG

feature calculation for a voxel in an aneurysm. (Right) Result of voxelwise
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clustering of HoTPiG features into 20 clusters (displayed by their colors) by a
k-means method. Note that the vessel thickness and branching pattern can be
clearly distinguished. Furthermore, the mirror symmetry of the clustering
result implies its robustness against local deformations and sensitivity to caliper

changes.

In this study, the parameters of feature mapping are setto m = 5000, n =
2, and L = 0.6, referring to [8]. The parameters of the kernel o and the
linear SVM C are experimentally optimized (as described later in the next

section).

Using the output values of the SVM, candidate aneurysm lesions and their
lesionwise likelihoods are determined as follows. Firstly, the SVM outputs
are thresholded by zero and all nonpositive voxels are discarded. Then, the
positive voxels are labeled by connected component analysis and all connected
components are outputted as candidate lesions. The likelihood of each lesion
is determined as the maximal value of SVM-derived likelihoods ofthe voxels
in the lesion. The representative point of each lesion is defined as this

maximal value point.

5.4 Experimental results

This study was approved by the ethical review board of our mstitution. A
total of 300 time-of-flight cerebral MRA volumes with 333 aneurysms were
used in the experiment.  The voxel size was 0.469%0.469x0.6 mm. Two
board-certified radiologists diagnosed all images and manually inputted

aneurysm regions.
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The proposed method was evaluated using 3-fold cross-validation. Before
the actual traming, a hyperparameter optimization was performed in each fold
using another nested 3-fold cross validation. The optimal values of the two
parameters o and C were searched for from the search space o €
{20,30,40} and C € {10,20,30} by performing a grid search.  After
optimization, the actual training was performed using all training datasets.
The calculation of HoTPiG features took approximately 3 min per case using a

workstation with 2 X 6 core Intel Xeon processers and 72 GB memory.

The overall performance of the method was evaluated using the free receiver
operating characteristic (FROC) curve. Each outputted lesion was
determined as a successful detection if the representative point of the lesion

was no more than 3 mm from the center of gravity of the ground truth region.

Figure 3 shows the FROC curves of the proposed method with and without
additional Hessian features, as well as the one with Hessian features only. The
sensitivities with only HoTPiG features were 76.6% and 86.5% when the
numbers of false positives (FPs)were 3 and 10 per case, respectively.  When
combined with Hessian features, the sensitivities increased to 81.8% and 89.2%
for 3 and 10 FPs/case, respectively. Although a strict comparison cannot be
made owing to the different datasets used, the sensitivity of 81.8% is superior
to that reported by Yang et al. [1], whose detection sensitivity was 80% for 3
FPs/case. Onthe other hand, Nomura et al. [2] reported sensitivities of 81.5%
and 89.5% when the training dataset sizes were 181 and 500 (also for 3
FPs/case), respectively.  Since | used 200 datasets to tram each SVM, I
conclude that the performance of my CAD is comparable to that of Nomura et

al. when the dataset size is equal. Note that Nomura et al. did not use any
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objective criterion (e.g., maximum acceptable error distance) to judge lesions
outputted by CAD as true positives or false positives; instead, radiologists
subjectively decided whether or not each CAD-outputted lesion corresponded

to an aneurysm.

Figure 3 also shows the sensitivity for each aneurysm size (maximized by
using 21 FPs/case). Most detection failures occurred when the size of the
aneurysms was less than 4 mm.  Onthe other hand, my method failed to detect
two large aneurysms whose sizes were 6 mm and 13 mm. This was very likely
to have been due to a shortage oflarge aneurysms (only 19 with sizes > 6 mm)

in my dataset.

FROC Sensitivy / size
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Fig. 4. (Left) FROC curves for the proposed method with and without

additional Hessian-derived features.  (Right) Sensitivities (with Hessian

features) for each aneurysm size.

5.5 Discussion

Among the various vascular diseases that involve the human body,
aneurysms are characterized by their particular protuberant shape. This study

was mspired by the fact that many radiologists rely on 3-D reconstructed
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vascular images to find aneurysms and other diseases in daily image
mterpretation.  This implies that only the shape of the tissue can be sufficient
to detect such abnormalities. The HoTPiG feature is designed to evaluate
only the shape of the tissue and discard all image intensity information
including image gradations and textures. This canbe botha disadvantage and
an advantage of HOTPiG. On the one hand, it can only utilize a small part of
the information provided by the original image. On the other hand, HoTPiG
can reveal image characteristics very different from those collected by most
other image features based on image intensity information. Indeed, HoTPiG
showed cooperativity with existing Hessian-based features which has a
weakness at branching sites of vessels. The effectiveness of HoTPiG shown
in this study may also be owing to the robustness of HoTPiG against local
deformations. Therefore, I believe that HoTPiG will be a powerful alternative

tool for vectorizing shape characteristics of vessel-like organs.
5.6 Conclusion

Anovel HoTPiG feature set for evaluating vessel-like shapes was presented.
It showed high performance for detecting cerebral aneurysms and cooperativity
with existing image features. My future works may include the application of
HoTPiG to other applications such as lung nodule detection, mn which
discrimination between lesions and vascular bifurcations has similar

importance.
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Anatomical landmarks are one of the most primitive representations of
anatomical knowledge. As known, a lot of anatomically salient points have
been defined as landmarks and given their own names in anatomy. They are
used by physicians in their clinical daily works, as well as by many medical
image processing applications. Detecting, defining and using landmarks are

the theme of this thesis.

In Chapter 2, 1 introduced a framework to detect over 100 landmarks
simultaneously. Since landmark detection process is usually used as
preprocessing, its accuracy and robustness are important. The proposed
framework uses an L-PDM which is a statistical model of spatial distribution
of landmarks.  Therefore, the framework can accurately detect many
landmarks which are difficult to be detected individually.  Moreover, the

framework can estimate positions of landmarks which are out of the imaging
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range or undetected by the corresponding detector. Therefore, I believe the
proposed method has sufficient reliability for most of medical image analysis

applications.

In Chapter 3 I attempted to define landmarks automatically. The criterion
named TCC was introduced, under an assumption that anatomical landmark
points must be registered correctly and consistently in most of volume triplets.
The experimental result showed that the proposed method can determine
anatomically salient points in the human body. This is a feasibility study and
it requires many future works including validation with other image modalities,
automatic detection of newly defined landmarks, and applying to medical

image analysis applications.

Since landmarks are one of the most primitive representations of anatomical
knowledge, it has a wide variety of applications in medical image analysis. In
Chapter 4 I introduced an application which performs registration-based
segmentation (a multiatlas method) ofthe bone. The registration method used
is a combination of the diffeomorphic demons algorithm and landmark
trajectory-based guidance. The method was applied to the bony structure of
the spine and the pelvis and the performance was comparable to other state-of-

the-art methods.

In Chapter 5, I introduced a new mmage feature set named HoTPiG.
Although HoTPiG is not directly relevant to landmarks, it is very likely that
HoTPiG can beused to detect landmarks defined on vessel-like structures, such
as branching points of arteries or bronchi. Because a lot of clinically
important landmarks are defined on vessel-like structures, HoTPiG can be used

widely in the landmark detection. Combining HoTPiG and landmark
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detection will be one of my future works.

Among other future works, I would like to attempt to detect anatomical
variant automatically.  Especially I am now focusing upon detecting vertebral
number anomalies. It is a very challenging problem to detect a series of
landmarks where the number oflandmarks can vary among subjects. Another
challenging future work is to detect vessel bifurcation landmarks (e.g. airways

and blood vessels) where the bifurcation pattern can vary.

In conclusion, methods for detection, definition and application of landmarks
were developed and discussed in this thesis.  Itis obvious that both the number
of landmarks and reliability of their detection are not fully satisfactory, thus
more research is desired in this field. It can be a goal of this research field

that the human body is filled with automatically detectable landmarks.
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Domestic conference papers:

1) R iz , B fe, B L, K EKE , B =6, KH
HEXR, TR ZEIT, feddy #h, AED] FH--. 2007 4 PRMU 7 /L= U X
LarvF AL [Py —NRANEFERIEL )~y T 7Tk
D WG -] RS & ZE T LT Y XA, BAE SR RS
B E s PRMU, X% — 58k - AT « 7HEiR 107(384), 125-
136, 2007-12-06.

2) Hanaoka S, Kishimoto R, Obata T, Yanagi T, Tsuji H, Ikehira H, Tanada S,
Tsuju H. Diffusion tensor imaging of body trunk: prelimmary study with
botanic phantom, healthy individual and prostate cancer patients. Present at
The 63th Annual Meeting of Japan Radiological Society, April 2004 (in

Japanese)

3) Hanaoka S, Nomura Y, Nemoto M, Masutani Y, Yoshioka N, Yoshikawa T,
Maeda E, Hayashi N, Ohtomo K. Spine and spinal canal segmentation in
body trunk CT images with elliptic column model. Presented in Annual
Meeting of Japan Society of Computer Aided Diagnosis of Medical Images,
October 2007 (in Japanese)

4) B F5F, ¥R 2, TR T80, ARAR &, ATE EE T, 51
g, RN, T ER, KA . S )HG L 7o 2o A B
CT &7 AT —3a v 55 27 Bl HARE H#ifg T2 K 4. 2008.8.5-
6. IEBIRF/INEIF v /XA L B RHD N TR R 3-7-2
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5) LI A OF, A 4%, BAS T4, IBA K&, sl EE T, H)1
fERE, AR BN, I EAL, KA. REE CT BEBRIZI T D HER
BB D a0 v o — & SARBEHGZ W OWI IR, 55 28 Bl HAKE
g T2 R4 2009.8.4-5. PRURFA R v o824 R
A 1 X\ AT 101-2

6) AL H 7, A FE2%, B AT90, IBA K&, pilH EE T, F1
R, Ak BN, FH EAL, KA . 2O T N~ — 7 (Ll
RS S O O Bl B DR T L 2 X A B RIEE T
S E AR ML, & H B 110(195), 67-74, 2010-08-27.

7) AELE AOE, A 3, B ATIL, B K&, aiHE EE T, H)
RS, AR OEN, T ERL, KA . —BAEMEE T K SHE
HEMEIR OERRE, BE B OB L L EIRE~ » T OERK. &
& WAB(E e . M1, = A Ei% 109(127), 33-38, 2009-07-
08

8) ALl -, BAf 1704, MBRA S, WA EF, AiH EHET
H RS, bk BN, FHR OEAL , R . BFERICKHE L
SHEF O T A LT =2 g 7T XA EBEREE SN
WFIE RS ML, = FH i 108(271), 21-26, 2008-10-23

9) AN H, Wy HFE, BA AT, RA FTE, BTH EHET,
F A, AR BN, R . BT v F~— 7 kiR 2R A

LI HEBE T AT —3 a v OREREOR L, & IEHEES
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SEAIFgeERS . ML, = i 111(199), 11-16, 2011-08-30

10) AfERd FHF, A EZFE L RBAK £E, B TN, =K B—
AS, HEI R, AR BN, KA R B &N T v N~ — 7 ALE
DEHEAEET LTV X L& W= LM B Y A7 A OVERE . &
T1E BB E R EI RS ML, = % MI2011-115, pp.209-214

11)  fER S, WA EZF , BAR £E, BN 1790, =K KR—
BIS , S R AR BN, KA R, RPN 1D A —E
72 R EREED D O FE T > K~ — 27 ZE[ 56T T LV OVERK.
1 B R E R S M, = H g M12011-67, pp.25-30

Thesis (PhD of Medicine)

1) B[ FH - CT M{RICE T HFHEFIBEO a 0 v o — & IR I
B4~ 2 JEREAOAFZE. Rk 22451 H.
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Appendix B Anatomical landmark list
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Appendix B Anatomical landmark list

B il BE i 22 Hhu0s [Atlantoaxial J] (atlantoaxial joint, center of dens)
AX COR

SAG

KIRBRMEOHES N XD AT A AT, WREEOH LR, (BDOT v R~—27 720, #i
NN FRE BICSE & B0 SITHER)
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Appendix B Anatomical landmark list

W5 ¥ [Sternum SupTip] (superior tip of sternum)
AX COR

-t

FARWT ¢, Mg EFRO B, BFOEAIONTHLTE AT hRELE DT L,



196
Appendix B Anatomical landmark list

WaB Tim RIRZSERR <)  [Sternum InfTip] (inferior tip of sternum)

AX COR

FRARWr T, (RMRZERI BRI 1E o> F i,



Appendix B Anatomical landmark list

W B _Fim [R_IhacCrest Sup] (rt. superior margin of iliac crest)

197

COR

"-’.‘.\

e PG

B ED ., KW T2 ED EFDOATA A TERE L& &5, RO EW
AT A2 B 2 CTHEEMET D,



198
Appendix B Anatomical landmark list

e B i [L IhacCrest Sup] (It. superior margin of iliac crest)

AX COR

SAG




Appendix B Anatomical landmark list

Hb/B 5 A [PubicSymphysis]

199

AX

COR

SAG

IEREEOFOMOMR T, (R TROWERBEOEAT D&, BRI IER
RETCEHOBRUIND AT A ATERS, BREDRT BLERITIRNE DICHE,



200
Appendix B Anatomical landmark list

Fe B Yo [Coceyx Tip]

BEHED, CT TRADRY & - &b RBMDF DI,



201
Appendix B Anatomical landmark list

B FALRYE Jes [R_12thRib_Tip]
AX COR

Fi TALIE (e OBOBHR 8 & 556 Th & ML)Oetm D RVE DR, Wrikidy
TP LE LD, EIIEERH o7 LTHANRRNT &,



202

Appendix B Anatomical landmark list

fe e PALIYE Sttm [L_12thRib_Tip]

COR

SAG |




203
Appendix B Anatomical landmark list

% [Umbilicus]

SAG

I, K TFREMIDEHB DR ROES HI2D 2L D2 L, 7272 LEKIRE DR 7 BT
BT D(~Z AT, REIZE L TE VIRV EEZ LS TLYY),



204
Appendix B Anatomical landmark list

A5 1 PrE MAlsE [R_1stRib_LatMargin]
AX COR

KRBT THMANZ A 22> TR T T, BEEDO S - & bAMUD & Z A5 DLRLEM,
%1 IE SRS AT 5 5720,



ek 1 W sMilss [L1stRib_LatMargin]

Appendix B Anatomical landmark list

205

AX

COR

SAG




206
Appendix B Anatomical landmark list

A 5 122 [R_CoracoidP] (it. coracoid process)

AX COR

SAG

SO O T, EEOEE Y TR TIXhLE R D H 0 OFRE E,



Appendix B Anatomical landmark list

7 &5 255 [L_CoracoidP] (lt. coracoid process)

207

AX

COR




208
Appendix B Anatomical landmark list

FJ8 & [R_Acromion]
AX COR

SAG

JRWED Seti, FRARWT TIL(F TR TIR)FIEDIED RN TR L0 &7 5,



e )R

Appendix B Anatomical landmark list

1% [L_Acromion]

209

AX

COR

SAG




210

Appendix B Anatomical landmark list

F 78 & T [R_Scapula InfTip] (inferior tip ofrt. scapula)

COR

SAG

JB W OBCIRFR O i




211
Appendix B Anatomical landmark list

7 J8 H'E Tufm [L_Scapula InfTip] (inferior tip of It. scapula)
AX COR

T

5

\gz

L

SAG|




Appendix B Anatomical landmark list

fili-g w7 [Sacrum AntSupTip] (anteriosuperior tip of sacrum)

AX

COR

WAIER, OEWEBITEGR LTIV, TEORTEREIC—&HT 5 X915,




Appendix B Anatomical landmark list

W B e 4MAN% [R_TliacCrest Lat] (lateral margin of rt. iliac crest)

213

AX

COR

SAG

Wi b D SMAG T #E TR ORI AEEOFREDEL Lo>Tnd &2 A,



214

7e W B MRl [L IliacCrest Lat] (lateral margin oflt. iliac crest)

Appendix B Anatomical landmark list

AX

COR

SAG




Appendix B Anatomical landmark list

A A4 E T [R_Ischium InfMargin] (inferior margin of rt. ischium)

215

COR

SAG

KW A7 a— )L LTz & & DOAE D Tk,



216
Appendix B Anatomical landmark list

e 4B T [L Ischium InfMargin] (inferior margin of It. ischium)

AX COR




Appendix B Anatomical landmark list

A AR [R_Kidney SupTip]

217

AX

COR

SAG

HE D Ef(b - & b EMHND A,



218
Appendix B Anatomical landmark list

72 LA [L_Kidney SupTip]

AX COR

SAG




219
Appendix B Anatomical landmark list

A & THR [R_kidney InfTip]

SAG

FEDOTBOR T EIL,



220

Appendix B Anatomical landmark list

/2% PR [L_Kidney InfTip]

COR

SAG




221
Appendix B Anatomical landmark list

PR /2 A B0 BT [IHPV Bifur] (bifurcation of intrahepatic portal vein)
AX COR

SAG

FFNPIIRD G & R D EERDOX D & Z A, FAICSWE ZILDIRTE 57 HH

R



222

Appendix B Anatomical landmark list

JF 4 %E B [Liver R_Lobe Sup] (superior margin of rt. lobe of tliver)

AX COR

-
-

-~

IFAEIE DR I, MO K — ATHA,




223
Appendix B Anatomical landmark list

[T F ¥ [Liver InfTip]




224
Appendix B Anatomical landmark list

e PEEN R 4558 [CA Root] (root of celiac artery)

AX COR

BB RS RENRZ> 546 L 72 EAR O D Huly,



Appendix B Anatomical landmark list

225

E G RIEER (SMA) AZ4EE [SMA Root] (root of superior mesenteric a.)

AX

COR

ENGRIEEIRDS REIRD D AET 5 & T ADZEDHIL,



226

Appendix B Anatomical landmark list

£ B EIREL 4G5S [R_RenA Root] (root of rt. renal artery)

AX

COR

RIECTE /oW & ZTHERTRIKD & Z A ZEFRIE,




Appendix B Anatomical landmark list

7 B IR AEES [L RenA Root] (root of It. renal artery)

227

AX

COR

SAG




228
Appendix B Anatomical landmark list

A i %S [R_LungApex]

AX COR

IR D b, ZEREEDOREZ & D, LWTOMORSFEL,



Appendix B Anatomical landmark list

%k [L_LungApex]

229

COR

SAG




230
Appendix B Anatomical landmark list

5 i Al [R_LungBase Lat]

AX COR

SAG

LELEE T, RIRr TR bIMUERIOD S % & 5,



Appendix B Anatomical landmark list

7 i JEAMAl [L LungBase Lat]

231

AX

COR

SAG




232
Appendix B Anatomical landmark list

A5 if JEERE A [R._LungBase Ant]

AX COR

SAG

FHET T & D A,



Appendix B Anatomical landmark list

7 i JECHE AN [L LungBase Ant]

233

AX

COR

SAG

= B

'.‘. '1"' <«
! ;‘

-
A s WF TN

FE D UMERBIE A T, 22 DRTHE DM T, — SIZHRDIZ WA, ZEH F R ONLE IR
S 6, ELOHRRIZEEL bW E BEIZRD D,



234

Appendix B Anatomical landmark list

i K5 0% [R_LungBase Post]

COR

SAG | [N

b RO M,




Appendix B Anatomical landmark list

7 it Y ¥ [L LungBase Post]

235

COR

SAG




236
Appendix B Anatomical landmark list

KB 0B [Trachea Bifur] (bifurcation of trachea)
AX COR

SAG

KB SR ORI 872 5 . TIRBICHA T, Y FOY OE/=D L Z A0S
& D, ZERMEEDRY BIVITRET D,



237

Appendix B Anatomical landmark list

FRE X HE 73 EGE [R_Bronchus_Bifur] (bifurcation of rt. main bronchus)

AX

COR

—

&
=
|

SAG

KAIRBr TR 7 m—/L LT A N BER & PRIy
RE & D,

Pivd & 2 ADRRE DO



238
Appendix B Anatomical landmark list

o KB XA 73 EGER [ Bronchus_Bifur] (bifurcation of It. main bronchus)
AX COR

[ U< RARWrTAH T, 2 b« FIERE OBHT O E O,



239
Appendix B Anatomical landmark list

47 ¥L8H [R_Nipple]

AX COR




240
Appendix B Anatomical landmark list

/2 ¥L8H [L Nipple]

AX COR




241
Appendix B Anatomical landmark list

25 1 ZAMERRZSEC S0 [C1_SpinousP] (C1 spinous process)
AX COR

SAG|"

BRMETIIMZSEITIZ & A ERWNWZ ERZ VD ZOGAITHES O IETHE MR & 5
&,



242

Appendix B Anatomical landmark list

55 2 FAMERRZE L Johs [C2 SpinousP]

AX

COR

-
- B
.
3

o
ad

B

.
N

}
[

SAG|TZ




Appendix B Anatomical landmark list

55 3 ZAMERRZE L Soh [C3_SpinousP]

243

COR

RZEEE S RIS T g & X d, T OROIRF O R Z & 5, &b 3%k

Do e & D,



244

Appendix B Anatomical landmark list

55 4 ZAMERZSEC Yol [C4_SpinousP]

COR

SAG|




Appendix B Anatomical landmark list

55 5 ZAMERRZE L Sohm [C5_SpinousP]

245

AX

COR

SAG




246

Appendix B Anatomical landmark list

55 6 FAMERRZE L Jehs [C6_SpinousP]

COR

SAG




Appendix B Anatomical landmark list

55 7 ZEHMEMZS L STl [C7_SpinousP]

247

COR

SAG




248

Appendix B Anatomical landmark list

55 1 i HERRZS L Joi [Thl_SpinousP]

COR

SAG]|




249

Appendix B Anatomical landmark list

55 2 M HEZ2 L S [Th2 SpinousP]

COR




250
Appendix B Anatomical landmark list

55 3 i HERRZS L Joi [Th3_SpinousP]

AX COR

SAG|




Appendix B Anatomical landmark list

55 4 g HERRZS AL Soo [Thd_SpinousP]

251

COR

SAG




252

Appendix B Anatomical landmark list

55 5 i HERRZS L Joi [ThS_SpinousP]

COR




Appendix B Anatomical landmark list

55 6 M HERRZZ AL STi [Thé _SpinousP]

253

COR




254

Appendix B Anatomical landmark list

55 7 W MERRZS L Joi [Th7_SpinousP]

COR




255
Appendix B Anatomical landmark list

55 8 M HEBRZS AL Soi [Th8_SpinousP]
AX COR

Th-6_SpinousP



256
Appendix B Anatomical landmark list

55 9 M MERRZS EL Joi [Th9_SpinousP]

AX COR

Th-5_SpinousP



257
Appendix B Anatomical landmark list

55 10 i} MEBR 29 JE v [Th10_SpinousP]
AX COR

Th-4 SpinousP



258

Appendix B Anatomical landmark list

55 11 g MERRZ2 LS00 [Thll_SpinousP]

COR

Th-3_SpinousP




259
Appendix B Anatomical landmark list

5 12 R HERRZSEL Se v [Th12_SpinousP]
AX COR

Th-2_SpinousP



260
Appendix B Anatomical landmark list

55 13 Mg HERR 2S5 JE i [Th13_SpinousP]

AX COR

SAG

(AR BRF 0D 2



Appendix B Anatomical landmark list

JEHERZS & Sod [L1_ SpinousP]

261

COR

SAG

kT

(CRWHCIR DGR DG &L, AT RHIZ0 2 L 5,



262

Appendix B Anatomical landmark list

55 2 NEHERRZS L Joh [L2 SpinousP]

AX

COR




263
Appendix B Anatomical landmark list

55 3 MEHEMZS L STl [L3_SpinousP]

AX COR

-




264

Appendix B Anatomical landmark list

55 4 NEHERRZE L John [L4 SpinousP]

COR

L-3 SpinousP




Appendix B Anatomical landmark list

55 5 MEHEMZS L STl [LS_SpinousP]

265

COR

SAG|f

L-2 SpinousP



266
Appendix B Anatomical landmark list

55 6 MEHEmZSEC Jois [L6_SpinousP]

AX COR

SAG

(AR BRF 0D 2



Appendix B Anatomical landmark list

FE 1 g B [R_Ribl Prox] (proximal tip ofrt. 1strib)

267

COR

SAG

I DHEF BIZSE DORARIRR L B9 5 L 2 AT, WE-HEEROBE R H D & 25,

P WTWHESR ERILE S TE 5,



268
Appendix B Anatomical landmark list

25 1 prEdrfiism B [L_Ribl Prox] (proximal tip of It. 1strib)

AX COR

SAG




Appendix B Anatomical landmark list

5 2 Whai s ik [R_Rib2_Prox]

269

COR

SAG




270

T2

Appendix B Anatomical landmark list

2 BhEEfiss B [LRib2 Prox]

COR

SAG




F 5 3 hEr s ik [R_Rib3_Prox]

Appendix B Anatomical landmark list

271

AX

COR

SAG




272
Appendix B Anatomical landmark list

£ 3 pEEArss L% [L_Rib3_Prox]

AX COR

SAG




F 5 4 Ihai s ik [R_Rib4 Prox]

Appendix B Anatomical landmark list

273

AX

COR

SAG




274
Appendix B Anatomical landmark list

F2 5 4 B AL B [LRib4 Prox|

AX COR

SAG




275
Appendix B Anatomical landmark list

F 5 5 e v Bk [R_RibS Prox]
AX COR




276

Appendix B Anatomical landmark list

e85 5 har s Bk [L_Rib5_Prox]

AX

COR




Appendix B Anatomical landmark list

F 5 6 Mhairiids ik [R_Rib6 Prox]

277

AX

COR




278
Appendix B Anatomical landmark list

£ 6 BB L% [L_Rib6 Prox]

AX COR

SAG




279
Appendix B Anatomical landmark list

5% 7 E AL Ef% [R_Rib7_Prox]
AX COR

SAG




280
Appendix B Anatomical landmark list

e85 7 Wi iiis Bk [L_Rib7_Prox]

SAG




281
Appendix B Anatomical landmark list

5 8 Mhar i ik [R_Rib8 Prox]
AX COR

e o5

®
¢
[

R Rib-6 Prox



282
Appendix B Anatomical landmark list

5 8 WiE i E#% [L_Rib8 Prox]

L Rib-6 Prox



283
Appendix B Anatomical landmark list

F 59 Mhariids ik [R_Rib9_Prox]

R Rib-5 Prox



284
Appendix B Anatomical landmark list

£ 9 WiE s L% [L_Rib9 Prox]

L Rib-5 Prox



285
Appendix B Anatomical landmark list

5510 BhE s L#% [R_Rib10_Prox]
AX COR

R Rib-4 Prox



286
Appendix B Anatomical landmark list

255 10 WhE irds L% [L_Rib10_Prox]

2
(@)
o
s

SAG

L Rib-4 Prox



5 11 WA E#% [R_Ribl1_Prox]

Appendix B Anatomical landmark list

287

AX

COR

SAG

R Rib-3 Prox



288

725 11 BE Ao B [LRib11_Prox]

Appendix B Anatomical landmark list

AX

L Rib-3 Prox




289
Appendix B Anatomical landmark list

5% 12 g Ef [R_Rib12_Prox]
AX COR

5512 BB IS & ORIRAOME B D, MM ESH,



290

)

Appendix B Anatomical landmark list

5 12 BrE o % [L_Rib12 Prox]

AX

COR

SAG

L Rib-2 Prox




A5 131

Appendix B Anatomical landmark list

T ¥s i [R_Rib13 Prox]

291

AX

COR

SAG

(RBEA& RF 0D 7



292

25 13 e Vs

Appendix B Anatomical landmark list

o B [L_Rib13 Prox]

AX

COR

SAG

(AR BRF 0D 2




Appendix B Anatomical landmark list

F LRI E#E [R_AntSuplliacSp] (rt. anterior superior iliac spine)

293

AX

COR

SAG

ORI TH D Z L bFHNV IR EZRDD Z &,



294

/e B Rl E#E [L_AntSuplliacSp] (It. anterior superior iliac spine)

Appendix B Anatomical landmark list

AX

COR

SAG




Appendix B Anatomical landmark list

A T HiE BB [R_AntInflliacSp] (rt. anterior inferior iliac spine)

295

AX

COR

EO/NSTetEEL LTRIETE 2,



296
Appendix B Anatomical landmark list

2 TR E#E [L_AntInflliacSp] (It. anterior inferior iliac spine)

AX COR




Appendix B Anatomical landmark list

BRI E B [R_PostSuplliacSp] (rt. posterior superior iliac spine)

297

COR

SAG

— L LTRIETH2DEN 0LV, (MRE2SEIT,



298
Appendix B Anatomical landmark list

7 E#& R E R [L_PostSuplliacSp] (It. posterior superior iliac spine)

AX COR

SAG




MR

i

Appendix B Anatomical landmark list

W [R_PostInflliacSp] (rt. posterior inferior iliac spine)

299

AX

COR

SAG|g

AWFFE TGRS O Timd 72 0 2 BHINZED T\ D, RIRWTTORELZSEIZ,



300
Appendix B Anatomical landmark list

& N #& Bk [L_PostInflliacSp] (lt. posterior inferior iliac spine)

AX COR




301
Appendix B Anatomical landmark list

A LB R [R_IschiaticSp] (rt. ischiatic spine)
AX COR

2T, EFICHEENEV NS R RE LTRIEST D, TD%mz & b,



302

Appendix B Anatomical landmark list

e AL B R [L IschiaticSp] (lt. ischiatic spine)

COR




KA EYPE [R_G_SciaticNotch] (rt. greater sciatic notch)

Appendix B Anatomical landmark list

303

AX

COR

SAG

B DYINIAR DRI O TR E A2 D5 &,



304

Appendix B Anatomical landmark list

e RKALFYPE [L_G_SciaticNotch] (lt. greater sciatic notch)

AX

COR

g ==

SAG




i PASEFLAMAIRR [R_Obturator Lat] (rt. obturator lateral margin)

Appendix B Anatomical landmark list

305

AX

COR

ARBFFETIE, EARWT THTHEL ORI, ATEOBERNBET 5 & 252 EHRIC

L oTWn5b,



306
Appendix B Anatomical landmark list

7 PASHFLAMANR [L_Obturator Lat] (lt. obturator lateral margin)

AX COR




307
Appendix B Anatomical landmark list

A5 2 i PACYE SEim [R_11thRib_Tip]
AX COR

hE OBAMFE D D & &1, ZOBHKITIE > TTFD 2 FHOWEOfewm4 &
60
e & BEHERRZERE D XBIA DT 23 T2 & Z TR L TS 72 &0,



308

Appendix B Anatomical landmark list

JE 55 2 3 PACYE SEum [L11thRib_Tip]

COR

SAG

L Rib-2 Tp




309
Appendix B Anatomical landmark list

A5 1 SEMEREZZSL [R_C1_TransvForamem] (rt. C1 transverse foramen)
AX COR

SAG

ML DT % & D, MHEFEIIRMETEZR R ED T DAL 20 & ST D B &
L CRt#i &,



310
Appendix B Anatomical landmark list

e 5 1 SEMEREZSSL [L_C1 TransvForamem] (It. C1 transverse foramen)

AX COR

SAG




Appendix B Anatomical landmark list

A5 2 SHMERRZ2 FL [R_C2_ TransvForamem]

311

COR

SAG




312

Appendix B Anatomical landmark list

FE 5 2 SAMEREZS L [L_C2 TransvForamem]

COR

SAG




Appendix B Anatomical landmark list

F 5 3 SAMEREZSFL [R_C3_TransvForamem]

313

COR

SAG




314

Appendix B Anatomical landmark list

285 3 SAMEREZS L [L_C3 TransvForamem]

COR

SAG |y




Appendix B Anatomical landmark list

A5 4 SHMERRZ2FL [R_C4 TransvForamem]

315

COR

SAG| L.




316

Appendix B Anatomical landmark list

o5 4 SHMERE22 L [L_C4 TransvForamem]

COR

SAG|




F 5 5 SHMERRZSFL [R_C5_TransvForamem]

Appendix B Anatomical landmark list

317

AX

COR

SAG




318

Appendix B Anatomical landmark list

e85 5 SEMEREZSFL [L_CS TransvForamem]

COR

SAG




Appendix B Anatomical landmark list

A5 6 SHMERRZ2FL [R_C6 TransvForamem]

319

COR

SAG




320

Appendix B Anatomical landmark list

255 6 SEMEREZSFL [L_C6 TransvForamem]

COR

SAG




Appendix B Anatomical landmark list

5 7 SEMEREZZ L [R_C7_TransvForamem]

321

COR

SAG

BT SHMEIZIIBRZRAL LIRS RS REEDN RN E BN, R D ITHZERICHTZ 5 &

THMANMEED 2 KEE SN DT TRDOT, TORDORAELS & L 5%,



322
Appendix B Anatomical landmark list

285 7 SEMEREZSFL [L_C7 TransvForamem]

AX COR

SAG




Appendix B Anatomical landmark list

323

A5 1 FEMEREZSESE0m [R_L1 TransverseP] (rt. L1 transverse process tip)

COR

SAG

BEZERE D iR E RE LA L B,



324
Appendix B Anatomical landmark list

e 5 1 EMEREZSESEm [L L1 TransverseP] (lt. L1 transverse process tip)
AX COR

A

>

SAG




325
Appendix B Anatomical landmark list

A5 2 FEMEREZSESE 0 [R_L2 TransverseP)

SAG




326

Appendix B Anatomical landmark list

FE 5 2 HEMERE 2SS Em [L L2 TransverseP]

COR

SAG




327

Appendix B Anatomical landmark list

A5 3 MEMEREZSESE 0 [R_L3 TransverseP)

COR




328
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5 3 FEMERE 2SS Em [L L3 TransverseP]
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A5 4 MEHERRZS ST 0 [R_1L4 TransverseP]

329

COR

SAG

R L-3 TransverseP



330
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255 4 NEMERE 2SBS0 [L L4 TransverseP]

AX COR

SAG

L L-3 TransverseP
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A5 5 MEMERRZS ST [R_LS TransverseP]

331

COR

SAG

R L-2 TransverseP



332

Appendix B Anatomical landmark list

5 5 HEMEREZSESEm [L LS TransverseP]

COR

SAG

L L-2 TransverseP




H 5 6 MEMERZSESEm [R_L6 TransverseP)

Appendix B Anatomical landmark list

333

AX

COR

SAG

(RBEA& RF 0D 7



334
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5 6 NEMEREZSESEm [L L6 TransverseP]

AX

COR

SAG

(AR BRF 0D 2
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Cl1 FHERI#Z#IEH [C1_Intervert Post] (C1/2 intervertebral disk posterior)
AX COR

SAG

C12 HERIE D% iF E R GFAEE ORI IET Z M & LTS, Bl EH 2 2
&



336
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C2 T HERI#& % IEH [C2_Intervert Post]

COR

SAG

C2/3 MERIEt4 f E
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C3 T HEf#&fxIEH [C3_Intervert Post]
AX COR

SAG

C3/4 MERIIZERS % 1E H,



338

Appendix B Anatomical landmark list

C4 T HERHI# /% IEH [C4 Intervert Post]

COR

SAG|

C4/5 MERIIERL 5 1E H,

N
=
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C5 T HEf#&fxIEH [C5_Intervert Post]

339

COR

SAG

C5/6 HEfRIERE fx IE .



340

Appendix B Anatomical landmark list

C6 T HEfIZ#% = [C6_Intervert Post]

COR

SAG|

C6/7 MERI 4 fx




C7 T HER#&fxIEH [C7 _Intervert Post]
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341

AX

COR

SAG

C7/Thl MEREEIL % IE



342
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Thl T HERI## EH [Thl Intervert Post]

AX COR

v

&

Th1/2 MER I % IEH
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Th2 T HERI##% EH [Th2_Intervert Post]
AX COR

Th2/3 MEMIZER fx IE



344

Th3 T #EI#%#% = [Th3_ Intervert Post]

Appendix B Anatomical landmark list

AX

COR

Th3/4 HERIERE fR IE T,
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Th4 T HERI##% EH [Th4 Intervert Post]

345

AX

COR

Tha/5 MERIRZEt4 f ([,



346

Th5 T HERI#%#% EH [ThS Intervert Post]

Appendix B Anatomical landmark list

AX

Th5/6 HERIERE fx IE T,




Thée T HER#4#% EH [Th6_Intervert Post]

Appendix B Anatomical landmark list

347

AX

COR

SAG

The/7 HEFIH

vav
T

BiRIEH,



348

Th7 T HERI#%#% = [Th7 Intervert Post]

Appendix B Anatomical landmark list

AX

Th7/8 HERIERE fx IE .




Th8 T MEf]#4#% IEH [Th8 Intervert Post]

Appendix B Anatomical landmark list

349

AX

COR

SAG

Th8/9 MERI 14 f (E



350
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Th9 T HEfEI#%#% = [Th Intervert Post]

AX COR

Tho/10 HERI TR % IE H,



351
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Th10 T HEf#%#EH [Th10 Intervert Post]
AX COR

Th10/11 HERPEZ % EH,



352
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Thll T HER#&#%EH [Thll Intervert Post]

AX COR

Th11/12 MERTPER 5 IEH,
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Th12 T HE R EH [Th12 Intervert Post]

353

COR

SAG

Thi12/L1, 7272 L Thl3 N{EET 5 & 1% Thi12/13



354
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Th13 T HE I = [Th13_Intervert Post]

AX COR

SAG

(A EF D A)ThI3 DMFET D & DA, Thi3/Ll & & 5,



355
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L1 FHEM#%&IEAH [L1 Intervert Post]

Th12(% L < 1% 13)/L1 HERIEE#% fIE o,



356
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L2 T HEMI#% R IEAH [L2 Intervert Post]

COR

L2/3 HEM R iR =,




357
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L3 T HEM % IEH [L3 Intervert Post]
AX COR

SAG

L3/4 MERIFERE R IEH,

«
=3



358
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L4 T HEI% R IEH [L4 Intervert Post]

COR

SAG

L4/5 HERIZERL 5 1,




359
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L5 T HEM % IEH [L5 Intervert Post]
AX COR

L5/S1 MEfIEt iR ET, L6 23 D & 1% L5/L6,



360
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L6 T HEf]#ifxIEH [L6_Intervert Post]

AX COR

SAG

(RS D Z0)L6/S 1 HERT e #4 fk E 1,
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F LB #EED [R_Pubic_Tubercle]

361

AX

P

~

: -

'y
4
- 4

BRSO h ., ORI FICERE L 2 A, T2 LS T AREEN N2 L
HHY FDLXIIENTWIYEREAELD lemlE MO L ZADFRER & 5,



362
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e BB G HED [L_Pubic_Tubercle]

AX

COR
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A7 KHs¥ [R_Greater Trochanter]

363

COR

FREGEFOBEAGG 2 JFRI E LTl e b, BEABRO RN TEZ 2 L o0k 72 6, 28

e L ThmIZIEWED 2 & 5,



364

Appendix B Anatomical landmark list

/i K#nf- [L_Greater Trochanter]

COR

SAG
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i 7INE5 - [R_Lesser Trochanter]

365

AX

COR

INEETFIT/INE WD T, e L OB RS AR5,



366

/e /N#5f- [L_Lesser Trochanter]
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AX

COR

SAG

y

Iﬁ
)
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fili'f & 1% %% [SacralCanal PostSupTip]

367

COR

%)
WRW L~V ECRANZ TR o7& 2 AXELD,

WEEALEICHENT-, FHEE Lk 21 0%ED LRk, L3TlEERTE
Tl EAICHHELTHDEAEL TR I ELZ VN, T E X IIHH LT



368
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fili& &% E#% [SacralBody PostSupTip]
AX COR

g% oRiEE ik, B ARO% ik, L5/S HERIRZZED S 1FIER— O mER, 2
HHITERE EE LD,
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55 1-2 I HEHERRIACE F AR [Sacrum_IntervertAnt]
AX COR

S172 OHERIM(H L < IFHERRAR OREE) D IEH TR, BEAE LTS ZENE L,
ZOLEIIHFRE LEZ LD, &b ATHERIRATG & 72 D,
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&5 1-2 IIHEHEHE TP $25% [Sacrum Intervert Post]
AX COR

[ U< S1/2 HEMIM (BRI E) D IE R #5% T Al & /i,
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H 5 1-2 (HEHE AR AMARE [R_Sacrum Intervert]

SAG

S1/2 DOHEMIMERAEE) DA %, S1 #RAR D18 2 R FLOSHERIAK &2 245 |2k AT A
HHRARIZW A TWD KR AT A A EBRO, T OLAMREILE S1/2 HERIRK & DOz
lHT b,



372
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7255 1-2 INHEHMERDAR Ml [L_Sacrum Intervert]

AX

COR
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4 SuperiorSacralNotch [R_Sup_Sacral Notch]

AlE OB ARFERIZ B 72 288 57) & ONMIAGREETET ORI T, ikl TH T 23 2
MIZ<IEATND EZAD, ZDRE LD,
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7t SuperiorSacralNotch [L._Sup_Sacral Notch]

AX COR

SAG
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F#5 7+ [R_TrochantericFossa]

375

AX

COR

Fi KEEF &/ NETF- OB DI & 72 D8



376

Appendix B Anatomical landmark list

/e #5175 [L_TrochantericFossa]

COR




