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Abstract 
 

The theme of this thesis is detection, automatic definition and application 

of anatomical landmarks.  Firstly, I propose a detection method for 197 

anatomical landmarks in clinical CT datasets.  Secondly, I propose a 

method to define anatomically meaningful landmarks automatically from a 

large number of CT datasets.  Thirdly, a segmentation method for the 

vertebra and the pelvic bones in CT volumes is presented.  Fourthly, I report 

an automatic detection method of cerebral aneurysms using a novel HoTPiG 

image feature set. 

In Chapter 1, the definition and classification of anatomical landmarks are 

discussed.  Then, basic methods for landmark detection and major 

applications of them are described. 

In Chapter 2, I propose a method to detect 187 anatomical landmarks 

simultaneously.  Firstly, candidate points for each landmark are detected by 

a corresponding detector.  Each detector outputs 100 candidates for each 

landmark.  Then, the final output is generated by solving a combinatorial 

optimization problem in which the algorithm chooses one candidate from 

each candidate list.  This problem is formulated using landmark point 

distribution model and maximum a posteriori estimation, and is solved using 

Markov chain Monte Carlo method and simulated annealing.  The proposed 

method was evaluated with 109 CT datasets and 96.5% of landmarks were 

successfully detected within 20 mm from the ground truth points. 

In Chapter 3, I try to define anatomically meaningful landmarks 

automatically.  A new triangular consistency criterion (TCC) is introduced 

to evaluate each point in the human body.  TCC is calculated based on 
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inconsistency of registration results among three volumes.  The proposed 

method was evaluated with 50 CT volumes and 48 new landmarks were 

successfully defined. 

In Chapter 4, I propose a segmentation method for the vertebrae and the 

pelvis which utilizes my landmark detection system.  I modified 

diffeomorphic demons algorithm so that it can utilize landmark position 

information as well as grayscale volume information.  This landmark-

guided diffeomorphic demons algorithm is coupled with the multiatlas 

method to segment the spinal and pelvic bone regions.  The proposed 

method was evaluated with 50 whole torso CT datasets and showed a 

segmentation accuracy which is comparable to other state-of-the-art methods. 

In Chapter 5, I proposed a novel graph structure-based image feature 

named HoTPiG.  HoTPiG is a feature set which can be calculated at each 

foreground voxel in an arbitrary binary volume.  HoTPiG is defined as a 

three-dimensional histogram of graph distances among three points in the 

graph structure.  Using this feature set, an automatic detection system for 

cerebral aneurysms in MR angiography (MRA) images was developed.  

The proposed system was evaluated with 300 MRA datasets and showed 

81.8% of sensitivity when the number of false positives was three per case. 

In Chapter 6, I conclude this thesis. 
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 Chapter 1 Introduction 

 

 

 

  From the discovery of X-ray by Röentgen in 1895, the research field of 

medical imaging has been rapidly developed.  Today, computed 

tomography (CT) and magnetic resonance imaging (MRI) are indispensable 

diagnostic tools for physicians who must know what is going on in the bodies 

of patients.  A single CT or MRI examination can generate huge data of the 

order of gigabytes.  It is not an easy task for medical doctors to interpret 

such a huge amount of data in their daily work.  That is why assistance by 

computer is desired in modern medical image interpretation.  In a practical 

sense, the goal of medical image analysis is to help physicians to interpret 

medical images. 

  Physicians interpret images using their anatomical knowledge on the 
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human body.  Likewise, when a certain medical image analysis process has 

to handle a particular organ, the computer program may have to know 

anatomical knowledge of the target organ, e.g. the position, pose, shape, 

appearance, and their statistical variations.  In this sense, a methodology to 

migrate knowledge of physicians to computers is required. 

  Landmarks are one of the most primitive type of anatomical knowledge 

representation.  In an anatomical sense, a landmark is a point with its own 

name.  Owing to its primitiveness, landmarks can easily be handled by a 

computer application.  On the other hand, landmark position information is 

frequently used to determine initial condition of more complicated medical 

image analysis processes such as segmentation and registration.  That is 

why landmarks are important in medical image analysis.  Automatic 

detection of anatomical landmarks and its application are the main issues of 

this thesis. 

  In the rest of this chapter, I firstly discuss the definition and categorizatio n 

of landmarks.  Secondly, classical detection methods for landmarks are 

described.  Thirdly, the applications of anatomical landmark detection tasks 

are shown.  Finally, the purpose and structure of this thesis are described. 
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1.1  Definition and categorization of anatomical 

landmarks 

 

  In the anatomical sense, “landmarks” are defined at points, curves, etc., 

with specific features that are commonly found in every individual with a 

certain correspondence in location and topology. In addition, unique names 

or labels are often given to these anatomical landmarks to distinguish them 

from each other.  In the terminology for shape representation such as in 

statistical shape models (SSMs) [1], however, ‘landmark’ is often only used 

for points included in shape models even if they have no characteristic 

geometric and anatomical features. 

  In this thesis, I use the term “anatomical landmark” as landmarks which 

have characteristic anatomical features.  It is expected to have a 

characteristic (but not always unique) appearance, can be given a unique 

name, and exists in most of human bodies. 

  An anatomical landmark can be defined by several ways, including 

topological, morphological, curvature-based, or manipulative manner.  

Sometimes it may be defined on a surface of an organ or a tissue, but 

sometimes it can be inside or even outside of the organ (e.g. the center of a 

hole of a bone).  In the morphometric definition by Bookstein [2], 

landmarks including anatomical ones are classified into the following three 
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types depending on their degree of homology. 

Type 1. Discrete juxtapositions of tissues 

Type 2. Maxima of curvature or other local morphogenetic processes 

Type 3. Extremal points 

Type 1 landmarks include branching points for tree structures, such as blood 

vessels, and the centers/centroids of sufficiently small structures such as 

vertebrate eyes.  These appear to be the most easily defined and reproduced 

landmarks.  For this reason, names or labels are given to most major 

anatomical structures.  The points with maximum curvature on the profiles 

of structures are assigned as type 2 landmarks.  For example, the tips of 

teeth and spinous processes of vertebra are categorized as this type.  The 

third type of landmarks is constructed geometrically for the sake of 

convenience in measurement and includes the end-points of diameters and 

centroids, and so forth.  Type 3 landmarks are often categorized as 

pseudo/semi-landmarks such as regularly sampled points on curves and 

surfaces used in shape models. 

  Masutani [3] proposed another categorization of anatomical landmarks in 

the viewpoint of automatic detection based on local image features.  The 

categorization is as follows: 

Class 1.  Landmarks with salient feature, and uniquely detectable.  In 

addition, there is no similar structure in other part of body.  This 
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type of landmark is thought to be a key in medical image 

understanding. 

Class 2-a.  Ones with salient feature but there exist similar patterns around 

the landmark within a structure group.  For instance, landmark at 

each spinous process of vertebra in the spinal column belongs to 

this category.  Within such structures, those landmarks are 

virtually homologous and therefore are difficult to distinguish each 

other. 

Class 2-b.  There exist similar patterns in a few different structures.  In 

other word, they are similar in image features but never 

homologous.  For example, iliac crest has a ridge feature similar 

to ones at shoulder blade. 

Class 3.  Landmarks with few features, and therefore too many similar 

structures are found all over the data.  This class includes points 

on flat part of liver surface.  These are detected only via group-

wise matching procedure such as registration.  This kind of 

landmarks is sometimes called as semi-landmarks. 

In Masutani’s categorization, the class 1 landmarks are easiest to be detected 

and the class 3 landmarks are most difficult.  Comparing class 2-a and 2-b, 

probably class 2-a landmarks are more difficult to detect.  This is because 

when a series of class 2-a landmarks (e.g. processes of vertebrae) are 

detected, the identification of their numbers must be performed (e.g. as the 
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3rd cervical, 4th thoracic or 5th lumbar ones). 

 

Fig. 1. Example of class 1 landmarks (the atlantoaxial joint).  AX=axial, 

COR=coronal, SAG=sagittal cross-sections. 

 



 7 
Chapter 1 Introduction 

 

Fig. 2. Example of class 2-a landmarks (tip of the spinous process of the 4th 

cervical vertebra). 
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Fig. 3. Example of class 2-b landmarks (the root of the superior mesenteric 

artery). 
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Fig. 4. Example of class 3 landmarks (the superior margin of the liver 

surface). 
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  Anatomical landmarks can also be categorized by their importance in 

academic or clinical applications.  Note that clinically important landmarks 

are not necessarily categorized into class 1.  An important example is 

landmarks defined on the vertebrae and the ribs.  These are anatomically 

important class 2-a landmarks.  It is also possible that an important 

landmark is class 3, or extremely, not visible in the given modality (e.g., CT 

or MRI).  In other words, both Bookstein’s and Masutani’s classifications 

are modality-dependent. 

  All of Masutani’s class 1, 2 and 3 landmarks are target of this thesis.  

Naturally, class 3 landmarks cannot be defined or detected unless a proper 

spatial context (for example, the positions of other landmarks) is given.  

This is because there are many points which have similar appearances to each 

class 3 landmark.  On the other hand, the human body includes a large 

number of possible class 3 landmarks compared to class 1 or 2 landmarks.  

It can be possible to fill the human body with such class 3 landmarks.  Such 

a large landmark set can be regarded as a kind of computational 

representation of anatomical knowledge and has a wide variety of 

applications as written below.  Filling the human body with well-defined 

landmarks is an ultimate goal of my study. 

  Note that not all points in the human body can be a class 3 landmark; 

point-to-point correspondence among human subjects is a critical property 

of landmarks.  Each landmark should be determined at one point in any 
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human body.  A class 3 landmark can only be determined by a manipulative 

way; for example, the border point of the jejunum and the ileum can be 

determined as the 2:3 internally dividing point of the total small intestine.  

This can be a class 3 landmark because it can be determined with point-to-

point correspondence among human subjects.  On the other hand, the 

appendix can be used as a class 1 landmark.  However, it is  possible that 

the appendix is resected by a surgery.  Generally speaking, a landmark can 

be lost or even duplicated due to anatomical variants or a surgery.  A 

landmark detection system should also handle such a situation. 

  A lot of anatomically definable landmarks already have their own names.  

However, it is probable that there are nameless but anatomically definable 

landmarks which can be detected easily (e.g. being class 1) and thus useful 

in medical image analysis.  In Chapter 3 I will describe a method to 

automatically determine such ‘nameless but useful’ landmarks. 

 

1.2 Landmark detection and image features 

 

  The most classic and popular method for landmark detection is a sliding 

window method [4] [5].   In a sliding window method, a window with a 

certain size is placed on the given image.  Then, the likelihood of existence 

of the target landmark at the center of the window is calculated, using the 
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intensity information of the pixels/voxels in the window.  This likelihood 

calculation is repeated at every possible position, and the place with the 

largest likelihood is outputted as the estimated landmark position. 

  For calculating the likelihood, the simplest method is a template matching 

[6].  Here, a template is a typical partial image around the target landmark.  

In a template matching method, it is assumed that the partial images around 

the target landmark have a sufficiently small variation of intensity patterns 

among subjects.  Under this assumption, a template matching method 

simply calculate the distance (e.g., sum of squared error) between the partial 

image of the window and the given template. 

  Obviously, template matching will not work well if the variation of the 

partial image around the landmark is large.  To overcome this limitation, 

machine learning-based methods are frequently used.  In a machine 

learning-based method, a large amount of training datasets are used to learn 

the intensity distribution of the partial images around the target landmark.  

When an unseen image is inputted, the likelihood of each window is 

estimated by the trained machine learning algorithm.  Although image 

intensities of the given partial image can be directly used as the input of the 

machine learning, usually landmark-dedicated image features are extracted 

from the partial image, e.g., the curvature of the image contour at the center 

of the window.  Other image features frequently used include Haar-like and 

DoG features [7].  In Chapter 5, I will introduce a novel HoTPiG image 
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feature set which can detect vessel bifurcations or aneurysmal objects. 

  Recently, a landmark detection method other than sliding windows has 

been reported [8].  It is based on regression, instead of likelihood estimation.  

When a window is given, a regression tree (a kind of machine learning 

method) estimates the dislocation between the center of the window and the 

landmark.  This dislocation estimation is performed at every position in the 

image, and the final landmark position is estimated by voting. 

  The detection algorithm described above is about detecting one landmark.  

Detection of multiple landmarks is more complicated because spatial 

relationship among landmarks should be considered.  One possible 

approach is a sequential approach in which landmarks are detected one by 

one [9].  However, it is not easy to detect many class 2 or 3 landmarks by 

the sequential approach.  That is because, in the sequential approach, one 

detection miss can be crucial in the following process.  Especially it is 

difficult to detect many class 2-a landmarks (i.e., landmarks on the spine and 

ribs) by the sequential approach when the imaging range does not include 

the entire spine.  So forth, few study have been reported in which many 

class 2-a or 3 landmarks are simultaneously detected. 

  In Chapter 2 I will discuss how to detect multiple landmarks 

simultaneously.  Each single landmark detection can fail due to absence of 

the target tissue (e.g. after a surgery), being out of imaging range, or 

insufficient sensitivity of the detector.  I will build a stochastic detector 
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model which can handle these possibilities.  Furthermore, I will introduce 

a landmark point distribution model (L-PDM) which is a stochastic model of 

spatial distribution of landmarks.  Using these two models, I will formulate 

the multiple landmark detection problem as a maximum a posteriori problem. 

 

1.3  Medical image analysis and anatomical 

landmarks 

  The automatic detection of anatomical landmark positions has a wide 

range of applications in medical image processing.  For example, 

predetected landmark positions are frequently used in determining the initial 

condition of statistical shape models (SSMs) for the region segmentation of 

various organs [1] or the image registration of two human bodies [10].  In 

both segmentation and registration, landmark detection is frequently used to 

set the initial condition of the energy optimization problem. 

 

1.3.1 Registration 

  Registration is a process to align two or more images spatially.  

Registration may be done between different modality images of the same 

patient or the same modality images of different patients.  It is known that 

registration problem is an inverse problem which requires a sound 

regularization and the use of proper models [10].  Landmarks can be used 
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in registration by fitting corresponding landmark positions between two 

images.  Deformation and warping of the positions other than landmarks 

can be calculated using interpolation.  Otherwise, when registration 

problem is formulated as an energy optimization problem, landmarks can be 

used to set the initial condition of the problem solver.  In Chapter 4, I will 

show a landmark-based registration algorithm in which landmark position 

fitting is integrated to the image fitting and deformation. 

 

1.3.2 Segmentation 

  Segmentation is a process to determine the region of a target organ such 

as brain or a target tissue such as vessels.  Segmentation can be done by 

either data-driven or model-based manner.  A frequently used model-based 

method is a statistical shape model (SSM).  Fitting a SSM to a given image 

is usually formularized as an energy optimization problem, so landmarks can 

be used to set the initial condition (i.e., position, pose and shape) of the SSM.  

Moreover, when SSM is represented as a point distribution model (PDM), 

the points can be landmarks themselves; otherwise, these points can be 

semilandmarks (i.e., Masutani’s class 3 landmarks).  In Chapter 2, I will 

describe a landmark point distribution model (L-PDM) which can represent 

landmark positions in the whole body.  And In Chapter 4, I will show a 

registration-based segmentation method for the spine and the pelvis region 

in CT volumes. 
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1.4 Purpose of this thesis 

  The purpose of this thesis is to describe the methods for automatic 

detection of landmarks, automatic definition of landmarks, and application 

of detected landmarks to segmentation and registration problems. 

  In the rest of this thesis, I will describe: 

- How to define a L-PDM and how to detect over 100 landmarks 

simultaneously (Chapter 2) 

- How to automatically define anatomically meaningful landmarks from a 

given large dataset of CT volumes (Chapter 3) 

- A landmark-guided image registration method and its application to 

multiatlas-based segmentation of the spinal and pelvic bones in CT 

volumes (Chapter 4) 

- A novel graph-based image feature set named HoTPiG and its 

application to an automatic arterial aneurysm detection in magnetic 

resonance angiography images (Chapter 5)  

  Finally, I conclude the thesis in Chapter 6.  
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 Chapter 2 Automatic detection of 

landmarks 

 

 

 

An automatic detection method for 197 anatomically defined landmarks 

in computed tomography (CT) volumes is presented.  The proposed method 

can handle missed landmarks caused by detection failure, a limited imaging 

range and other problems using a novel combinatorial optimization 

framework with a two-stage sampling algorithm.  After a list of candidates 

is generated by each landmark detector, the best combination of candidates 

is searched for by a combinatorial optimization algorithm using a landmark 

point distribution model (L-PDM) to provide prior knowledge.   

Optimization is performed by simulated annealing and iterative Gibbs 

sampling.  Prior to each cycle of Gibbs sampling, another sampling 

algorithm is processed to estimate the spatial distribution of each target 

landmark, so that landmark positions without any correct detector-derived 

candidates can be estimated.  The proposed method was evaluated using 
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104 CT volumes with various imaging ranges.   The overall average 

detection distance error was 6.6 mm, and 83.8, 93.2 and 96.5% of landmarks 

were detected within 10, 15 and 20 mm from the ground truth, respectively.  

The proposed method worked even when most of the landmarks were outside 

of the imaging range.  The identification accuracy of the vertebral centroid 

was also evaluated using public datasets and the proposed method could 

identify 70% of vertebrae including severely diseased ones.  From these 

results, the feasibility of my framework in detecting multiple landmarks in 

various CT datasets was validated.   

 

2.1 Introduction 

2.1.1 Two major problems 

  There are two major difficulties in detecting an anatomical landmark on 

the basis of its shape properties: (1) inter-individual variation and (2) 

insufficient intra-individual uniqueness of the shape.  Firstly, landmark 

shape differences between individuals can be very large.  A simple 

template-matching technique has been frequently used in practice under the 

assumption that the target landmark has sufficiently small inter-individual 

variations in its local appearance (i.e., the intensities of the voxels around the 

landmark point).  However, many practically important anatomical 

landmarks in the human body, such as the tips of bone structures or vessel 

bifurcations, have large inter-individual variations in their appearance (Fig. 

1).  Furthermore, the human body includes many points whose local 

appearance is similar to the target landmark (e.g., the tip of another bony 

process or another blood vessel bifurcation).  The most extreme example of 

this problem is the class of landmarks defined on repetitive body segment 
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structures, that is, the vertebrae and ribs (Fig. 2).  To avoid these difficulties, 

it is necessary to utilize prior knowledge of the positions of landmarks in the 

human body.  Since the positions of landmarks vary among individuals, a 

statistical model for the spatial distribution of the landmarks is required. 

 

Fig. 1. Example of a landmark with large inter-individual variation (the root 

of the celiac artery). 
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Fig. 2. Examples of landmarks with repetitive shapes.  (Left from top) Tips 

of the spinal processes of the 4th, 5th and 6th thoracic vertebrae.  (Right 

from top) Tips of the transverse processes of the 1st, 2nd and 3rd lumbar 

vertebrae. 

 

2.1.2 Two strategies 

To overcome these difficulties, two strategies for detecting multiple 

landmarks can be considered, a sequential strategy and a simultaneous 

strategy.  The former involves the detection of landmarks one by one.  In 

this approach, the order of landmark detection is critical and a suitable order 

must be determined.  For example, the order of landmark detection 

reliabilities can be used.  One of the benefits of this approach is that each 

Axial Sagittal Axial Coronal
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detector can utilize the positions of landmarks that have already been 

detected.  In this approach, however, a single detection failure may affect 

all of the subsequent landmark detections.  Thus, the detection reliability 

for each landmark must be tolerably high.  This becomes more problematic 

as the number of landmarks is increased.  The latter strategy involves the 

detection of all landmarks independently.  Typically, each detector is 

designed to detect only one landmark and outputs several candidate positions.  

After the candidates are enumerated for all landmarks, the best combination 

of candidates is searched for.  This approach is advantageous when the 

detection reliability for each landmark is relatively low and not sufficient for 

the sequential approach.  This is because a single detection error only has a 

limited affect compared with the sequential approach.  One of the 

difficulties of this approach is how to solve the combinatorial optimization 

problem.  Because each landmark may have multiple candidates, a large 

number of landmarks will lead to a combinatorial explosion.  Another 

difficulty is how to handle landmarks outside of the imaging range in the 

combinatorial optimization process.  

2.1.3 Previous works 

Thus far, a number of automatic detection methods for anatomical 

landmarks in computed tomography (CT) images have been introduced 

(Table 1).  First of all, two typical studies are introduced below. 

A simultaneous and optimization-based method for detecting 22 

landmarks in the body trunk was proposed by Potesil et al. [1].  They used 

a pictorial structure model in which the spatial distribution of landmarks is 

represented by a graph structure whose edges connect selected pairs of 

landmarks.  The entire problem was formulated as an energy minimization 
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problem and solved by a belief propagation method.  Recently, Criminisi et 

al. reported a method of determining bounding boxes for 26 organs including 

the lungs, kidneys and liver [2].  A single random regression forest that can 

detect all 26 organs simultaneously was trained and used in their method. 

As a sequential strategy-based approach, Liu and Zhou [3,4] have reported 

a method for detecting 63 landmarks in the body trunk, in which the search 

ranges of landmarks yet to be detected are limited using the already detected 

landmark positions.  The process begins with a certain landmark, namely, 

an “anchor landmark.”  If the anchor landmark detection fails, another 

landmark is chosen as a new anchor.  In this approach, prior knowledge of 

the spatial landmark distribution is used to localize the search space and 

reduce the number of false positive (FP) detection results.  Recently, they 

improved their method [4] by providing an initial estimate of landmark 

positions by propagating the landmark positions of the most similar volume 

in their database found by a nearest-neighbor search. 

  In the context of spinal landmarks, vertebral landmark detection is 

equivalent to vertebral identification, in which each vertebra is localized and 

identified with its number (such as the 3rd cervical, 4th thoracic or 5th 

lumbar).  In this research field, Klinder et al. first reported a whole-spine 

vertebral bone identification and segmentation method [5].  Recently, a 

couple of other recent studies have used Markov random field (MRF) 

optimization to solve combinatorial optimization problems involving 

vertebral disks [6] and whole-body landmarks [7].  Glocker et al. [8] 

utilized a hidden Markov model (HMM) to detect all 24 vertebral bone 

centroids in CT volumes with various imaging ranges.  Their model 

includes a global scale factor as a hidden variable and is solved via dynamic 

linear programming.  Recently, Glocker et al. reported another vertebral 
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centroid detection method using discriminative random classification forests 

[9] with better detection results.  Kelm et al. [10] also reported a study in 

which iterative marginal space learning (MSL) was used to detect the 

position, orientation and scale of the intervertebral disks. 

2.1.4 Proposed approach 

  In this study, a framework for detecting 197 landmarks simultaneously 

from CT datasets is presented.  Compared with the previous works 

introduced above, the main contributions and advantages of my framework 

are as follows: 

 The development of a novel Gibbs-sampling- and importance-

sampling-based combinatory optimization framework.  This 

framework can stochastically handle missing landmarks (Fig. 3) caused 

by limited detector sensitivity, a limited imaging range or a 

surgical/anatomical defect.  The framework can also estimate the 

positions of missing landmarks (i.e., the most appropriate positions for 

defective, out-of-range or non-detected landmarks) using the other 

landmark positions.  To the best of my knowledge, this is the first study 

on medical images in which the positions of such missed landmarks are 

systematically estimated. 

 A stochastic model of a general landmark detector.  In the model, the 

failure to detect a target landmark is regarded as a random event.  

Using Bayesian estimation, the algorithm can handle detectors with low 

reliability and utilize them optimally.  This stochastic model is 

optimally integrated with the combinatorial optimization framework to 

detect or estimate difficult landmarks (e.g. the landmarks shown in Figs. 

1 and 2).  This integration is also critical to handling as many as 197 
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landmarks concurrently. 

 An experimental validation in which the proposed framework reliably 

detected multiple landmarks, including vertebral bone landmarks, to 

identify all 24 vertebrae.  The algorithm can identify and label the 

vertebrae even if the given CT volume includes only a short part of the 

spinal column.  This is the first report of the simultaneous detection of 

multiple landmarks on each of all 24 vertebrae in CT datasets. 

 A novel method that can estimate the positions of landmarks outside the 

imaging range.  Through such estimation of landmark positions out of 

the imaging range, the alignment of an SSM can be improved greatly 

for datasets in which the segmentation target organ is partially included.  

  As illustrated in Fig. 4, the proposed framework begins by enumerating 

candidates for each landmark position using the corresponding single-

landmark detector.  Then, a Gibbs-sampling-based combinatorial 

optimization algorithm [11] searches for the combination of candidates that 

best fits the given landmark point distribution model (L-PDM).  The L-

PDM is used to provide prior knowledge of the variation in the spatial 

distribution of landmarks in the human body.  Here, some landmarks may 

not be detected owing to detector failure, the absence of anatomical 

structures, or their being outside the imaging range (Fig. 3).  In particular, 

a single detection failure of a spinal landmark may cause a shift in vertebral 

bone identification, leading to multiple landmark detection failures in the 

optimization phase.  To solve this problem, a novel two-stage sampling 

algorithm is introduced (Fig. 5).  In this algorithm, Gibbs sampling is 

combined with another artificial-candidate sampling algorithm that can 

estimate the spatial distribution of each missed landmark.  Since this 
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estimation of the spatial distribution only uses information on other landmark 

positions and does not use local appearance information, it works even if a 

landmark exists outside the imaging range.  From the estimated spatial 

distribution, several artificial candidates are sampled and merged with 

detector-derived candidates. After this artificial-candidate sampling, the 

Gibbs sampling algorithm samples one candidate from the merged candidate 

set and then proceeds to sample the next landmark.  The artificial 

candidates are repeatedly updated before each cycle of Gibbs sampling.  

Through this two-stage sampling, the framework can handle CT volumes 

with an insufficient imaging range, in which many target landmarks are out 

of view (Fig. 3(b)).  The framework can also work correctly even if many 

single-landmark detectors fail to detect their targets (Fig. 3(c)). 

 

 

Fig. 3. Definitions of missing landmarks in this study.  The proposed 

algorithm can estimate the most probable landmark position even in such 

situations.  (a) Surgical or anatomical defect.  The corresponding 

anatomical structure is defective owing to an anatomical anomaly or 

postsurgical state.  (b) Being out of imaging range.  The target landmark 

Imaging range

Detector

Detection miss

(a) (b) (c)
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is out of the imaging range.  (c) Detection failure.  Although the 

corresponding anatomical structure is within the imaging range, the true 

landmark position is not detected by the detector responsible for the target 

landmark.  Such a detection failure is automatically diagnosed by the two-

stage sampling algorithm and the algorithm estimates the most probable 

position for the landmark using other landmark positions. 

 

 

Fig. 4. Outline of the landmark detection system. 
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Fig. 5. Outline of the proposed two-stage sampling. 

 

In this paper, I describe the results of testing the proposed method using 

104 human torso CT datasets with various imaging ranges with or without 

intravenous contrast agent injection.  A total of 197 landmarks were 

detected, and their detection accuracies were evaluated. 
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Table 1. Comparison of landmark detection approaches. 

 Landmarks Strategy Region Methodology 

(Potesil et al., 

2011) [1] 

22 simultaneous torso pictorial 

structure 

(Liu and Zhou, 

2012) [4] 

63 sequential torso submodular 

optimization 

(Major et al., 

2013) [6] 

23 simultaneous spine MRF 

(Donner et al., 

2013) [7] 

57 simultaneous whole body MRF 

(Glocker et al., 

2012) [8] 

24 simultaneous vertebral 

body 

HMM 

(Glocker et al., 

2013) [9] 

24 simultaneous vertebral 

body 

random 

forest 

proposed 197 simultaneous whole body Gibbs 

sampling, 

importance 

sampling 

 

2.2. Methods 

  An outline of the proposed method is shown in Fig. 4.  The method is 

composed of two phases: the independent landmark candidate detection 

phase and the combinatorial optimization phase.  In the former, each 

landmark is independently searched for by a corresponding detector.  Each 



 31 
Chapter 2 Automatic detection of landmarks 

detector is trained for and optimized to the target landmark and outputs a list 

of candidate points.  Then, the combinatorial optimization algorithm 

determines the final result.  The final detection result of each landmark may 

be one of the candidate points, or it may be the point with the maximal 

posterior probability estimated by the probability distribution estimator. 

  I formulated the entire process of multiple landmark detection as a 

Bayesian estimation problem.  Firstly, each landmark detector is modeled 

using a parametric stochastic model.  This model can estimate not only the 

probability of each generated candidate being true positive (TP) but also the 

probability of all candidates being FPs.  Secondly, the probability 

distribution of the spatial configuration of all landmarks in the human body 

(L-PDM) is also modeled and learned using training datasets.  Thirdly, 

using detector models for all landmarks and the L-PDM together, the final 

combinatory optimization process is formulated as a maximum a posteriori 

(MAP) estimation problem and is solved by Markov chain Monte Carlo 

(MCMC) and simulated annealing algorithms.  In the solving process, a 

two-stage sampling approach is used to efficiently estimate the positions of 

landmarks that are not detected by the corresponding detectors (owing to 

limited detector sensitivity, being out of the imaging range or an anatomical 

or surgical defect of the target landmark).  In this approach, a number of 

artificial candidates are presampled from an estimated continuous 

probability distribution in each MCMC sampling cycle (Fig. 5).  This pre-

sampling process enables the proposed algorithm to estimate missing 

landmark positions even when the missing landmarks are outside the 

imaging range.  Details of the detector model, L-PDM and the combinatory 

optimization solving process are described in the rest of this section. 
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2.2.1 Single-landmark detector 

  In the first stage, each landmark is independently searched for by a 

landmark-dedicated detector.  Each detector searches for its target 

landmark from the entire CT volume and outputs a list of candidate positions.  

The detector used in this study is described in this section.  The general 

stochastic model of an arbitrary detector will be described later. 

Each detector consists of two components: A) an initial detector that 

functions by the sliding window method and B) a Madaboost-based [12] 

classifier for estimating the probabilities of detected candidates being TPs 

and for eliminating FPs.  In B), a total of 482 image features are used (Table 

2).   

   The detector used in this study is based on the work of [13] and [14].  

For further details I referred readers to these two publications.  Note that 

my MCMC-based method can handle any arbitrary detector that outputs a 

series of landmark candidate points and their likelihood values (as described 

later).   
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Table 2. Appearance-derived features used in Madaboost-based candidate 

likelihood score determination. 

60 local-appearance-model-derived features: 

 ( Principal-component score, residual L2 norm, Mahalanobis distance from the mean) 

 × Number of eigenvectors used to compose the model subspace (min. 1 to max. 20) 

342 Haar features (Tu et al., 2006) 

 19 types of rectangular solid mask combination 

 × 9 ROI cube sizes 

 × 2 preprocessing (original volume or top-hat-filtered with 4 mm kernel radius) 

40 Hu-moment features (Prokop and Reeves, 1992) 

 5 types of moments 

 × 4 sizes of spherical ROI (2, 4, 6, 8 mm) 
 × 2 preprocessing (original volume or top-hat-filtered with 4 mm kernel radius) 

32 Hessian matrix-derived features 

 4 types (mean and Gaussian curvatures, shape index, curvedness) 

 × 4 sizes of Gaussian smoothing σ (2, 4, 6, 8 mm) 
 × 2 preprocessing (original volume or top-hat-filtered with 4 mm kernel radius) 

8 DoG features (Lowe, 2004) 

 4 pairs of Gaussian smoothers σ: (2,4), (4,6), (6,8), (8, 10) mm 
 × 2 preprocessing (original volume or top-hat-filtered with 4 mm kernel radius) 

Total = 482 

 

 

2.2.2 General stochastic model of landmark detector  

  I generally defined a landmark detector as a function whose input is a 

certain 3-D volume 𝑉: ℝ3 →ℝ and whose output is a set 𝑆 = {𝜃𝑖} where 

each element 𝜃𝑖 = (𝐜𝑖 , 𝑢𝑖), 𝑖 = 1,2,… , |𝑆|  is a pair of the 𝑖 th candidate 

position 𝐜𝑖 ∈ ℝ
3  and its detector-outputted likelihood score 𝑢𝑖 ∈ ℝ .  A 

detector can output an arbitrary number of candidates for the given volume. 

2.2.2.1  Single-candidate model 

First of all, a single candidate generated from a landmark detector is 

statistically modeled.  Suppose that the tolerance of the detection distance 

error is 𝑑𝑡𝑜𝑙.  Then, each candidate is judged as TP if and only if 𝐜𝑖  is 

within the sphere whose center is the true landmark position and whose 

radius is 𝑑𝑡𝑜𝑙 .  Let this sphere be 𝑅𝑡𝑟𝑢𝑒   (Fig. 6).  Additionally, let 

𝑝𝑡𝑟𝑢𝑒(𝑢) ≡ 𝑝(𝐜𝑖 ∈ 𝑅𝑡𝑟𝑢𝑒 |𝑢𝑖 = 𝑢)  be the conditional probability of any 
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candidate being TP when its corresponding likelihood score is 𝑢 .  The 

conditional probability of it being FP (i.e., anywhere outside 𝑅𝑡𝑟𝑢𝑒 ) must be 

𝑝𝑓𝑎𝑙𝑠𝑒(𝑢) = 1− 𝑝𝑡𝑟𝑢𝑒(𝑢). 

  Then two categories of FPs are introduced in this study; pseudo-TPs and 

other FPs (Fig. 6).  The reason for this categorization is to distinguish failed 

detections from inevitable detections of anatomical structures with virtually 

the same shape as the target landmark.  In particular, the spinal column and 

ribs have a couple of such indistinguishable features.  Thus, I divide the FPs 

into pseudo-TPs and other FPs and define their conditional probabilities as 

𝑝𝑝𝑠𝑒𝑢𝑑𝑜 (𝑢)  and 𝑝𝑜𝑡ℎ𝑒𝑟(𝑢) , respectively.  These satisfy 𝑝𝑓𝑎𝑙𝑠𝑒(𝑢) =

𝑝𝑝𝑠𝑒𝑢𝑑𝑜 (𝑢) + 𝑝𝑜𝑡ℎ𝑒𝑟(𝑢). 

 

Fig. 6. Example of the TP region and pseudo-TP regions.  The pseudo-TP 

regions are regions around any confusing structures (i.e., the 1st, 3rd and 4th 

lumbar intervertebral disks), that can hardly be distinguished from the true 

landmark (i.e., the 2nd lumbar intervertebral disk). 

 

To establish a statistical model for a detector, two assumptions are made:  

(a), the log odds ratio of TPs + pseudo-TPs to other FPs can be represented 

Rtrue

Rpseudo

Rpseudo

Rpseudo



 35 
Chapter 2 Automatic detection of landmarks 

as a linear function of 𝑢: 

𝑝𝑡𝑟𝑢𝑒(𝑢) + 𝑝𝑝𝑠𝑒𝑢𝑑𝑜 (𝑢)

𝑝𝑜𝑡ℎ𝑒𝑟(𝑢)
= exp(𝑎0 + 𝑎1𝑢), (1) 

and (b) the odds ratio of TPs to pseudo-TPs is a constant: 

𝑝𝑡𝑟𝑢𝑒(𝑢)

𝑝𝑝𝑠𝑒𝑢𝑑𝑜(𝑢)
= 𝑎2 , (2) 

where 𝐚 = (𝑎0,𝑎1 ,𝑎2) is a model parameter.  The first assumption means 

that the detector TP/FP odds can be parametrized using a logistic model (i.e., 

log-odds ratio is modeled as a linear function of the variable, that is, the 

detector-generated likelihood 𝑢 ).  The second assumption is that each 

detector cannot distinguish TPs from pseudo-TPs and the detection ratio of 

them are independent of the detector-generated likelihood 𝑢.  Using this 

model, 𝑝𝑡𝑟𝑢𝑒(𝑢) can be modeled as 

𝑝𝑡𝑟𝑢𝑒(𝑢) =
𝑎2

1+ 𝑎2
⋅

exp(𝑎0 + 𝑎1𝑢)

1+ exp(𝑎0+ 𝑎1𝑢)
. 

(3) 

  Practically, the model parameter 𝐚 has to be estimated in advance.  In 

this study, 𝐚  is estimated from training datasets.  After each detector is 

trained using the training datasets, the detector is in turn applied to all the 

training datasets themselves.  Then the detection results from all datasets 

are added up to compose a pair of score sets 𝐮𝑇𝑃
𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

 and 𝐮𝐹𝑃
𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

.  The 

elements of 𝐮𝑇𝑃
𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

 and 𝐮𝐹𝑃
𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

 are the detector likelihood scores of 

TP and FP candidates (judged using ground-truth landmark positions), 

respectively.  Then, the optimal parameter 𝐚̂  can be estimated by a 

maximal likelihood (ML) method as follows: 
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𝐚̂ = argmax
𝐚
{ ∑ log𝑝𝑡𝑟𝑢𝑒(𝑢)

𝑢∈𝐮𝑇𝑃
𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

+ ∑ log(1− 𝑝𝑡𝑟𝑢𝑒(𝑢))

𝑢∈𝐮𝐹𝑃
𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

}. 

(4) 

An example of the estimated log odds log
𝑝𝑡𝑟𝑢𝑒(𝑢)

1−𝑝𝑡𝑟𝑢𝑒(𝑢)
 for a spinal landmark 

is shown in Fig. 7. 

 

Fig. 7. Example of model-estimated TP/FP log odds curve (sky blue).  A 

real log odds curve (green), which is calculated from a real detector output 

histogram, is also shown.  Note that the estimated curve closely fits well to 

the real curve. 

 

2.2.2.2  Multiple-candidate model 

  On the basis of the single-candidate detector model described above, 
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another multiple-candidate detector model is built.  Using the single 

candidate model, 𝑝𝑡𝑟𝑢𝑒(𝑢) = 𝑝(𝐜𝑖 ∈ 𝑅𝑡𝑟𝑢𝑒 |𝑢𝑖)  was calculated in the 

previous section.  This means that the probability of each candidate without 

any knowledge of the other candidates was calculated.  Here I calculate the 

probability of each candidate considering all the candidates generated by the 

detector. 

  The details of the calculation are provided in Appendix 1.  It was found 

that the probability of each candidate 𝐜𝑖  being TP when considering all the 

candidate likelihoods 𝐮 = (𝑢1,𝑢2 ,… , 𝑢|𝑆|) can be calculated as follows: 

𝑝(𝐜𝑘 ∈ 𝑅𝑡𝑟𝑢𝑒|𝐮) =
1

𝐶
⋅
1 − 𝑝0
|𝑆|

⋅ 𝑟𝑝𝑟𝑖𝑜𝑟
−1  ⋅

𝑝𝑡𝑟𝑢𝑒(𝑢𝑘)

1− 𝑝𝑡𝑟𝑢𝑒(𝑢𝑘)
 

(5) 

Here, the constants 𝑝0  and 𝑟𝑝𝑟𝑖𝑜𝑟  are parameters (determining certain 

prior probabilities) and have to be determined in advance.  In this study 

𝑝0 = 0.02  and 𝑟𝑝𝑟𝑖𝑜𝑟 = 0.01  are used.  𝐶  is a regularization term that 

makes the sum of the probabilities equal to 1. 

  On the other hand, the probability that all the candidate positions are false 

is also calculated using the model.  That is, 

𝑝(𝐜𝑖 ∉ 𝑅𝑡𝑟𝑢𝑒 , ∀𝑖|𝐮) =
1

𝐶
⋅ 𝑝0  (6) 

where 𝐶 = 𝑝0 +∑
1−𝑝0
|𝑆|

⋅ 𝑟𝑝𝑟𝑖𝑜𝑟
−1  ⋅

𝑝𝑡𝑟𝑢𝑒(𝑢𝑘)

1−𝑝𝑡𝑟𝑢𝑒(𝑢𝑘)

|𝑆|

𝑘=1   is the same 

regularization term. 

 

2.2.3 Landmark point distribution model 

  The reliable detection of multiple landmarks cannot be achieved only 

using the single detector models described above.  Therefore, the spatial 
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configuration of all landmarks must be considered.  In this section, I 

introduced two types of landmark point distribution model (L-PDM) for this 

purpose. 

  Consider the set of all landmark points as a random variable set 𝐗 =

(𝐱1, 𝐱2 ,… , 𝐱𝐿) .  Here, 𝐿  is the number of landmarks, 𝐱𝑙  is a column 

vector of the coordinates of the 𝑙th landmark and column vector 𝐗 is the 

concatenated form of all 𝐱𝑙 .  Thus, 𝐗  represents one particular spatial 

configuration of all landmarks in the human body.  When 𝐗 is regarded as 

a random variable set, its probability distribution 𝑝(𝐗)  can be estimated 

from a finite number of training datasets.  I define this distribution using an 

L-PDM.  This L-PDM is defined as the function 𝑝: ℝ3𝐿 → ℝ , which 

represents the probability distribution of 𝐗. 

In this study, two different types of L-PDM were constructed from training 

datasets and their performances were compared.  One is defined by a 

coordinate-based multivariate Gaussian distribution similar to that used in 

[15].  The other is my proposed L-PDM defined using a multivariate 

Gaussian distribution whose variables are inter-landmark logarithmic 

distances. 

2.2.3.1 Coordinate-based L-PDM 

  Firstly, I constructed a PDM by simply estimating the probability 

distribution of 𝐗 as a Gaussian distribution with 3𝐿 variables.  Suppose 

that the ground-truth landmark points in the training datasets are manually 

inputted and rigidly registered in advance.  Then, the sample average 𝐗 

and sample covariance matrix Cov(𝐗) are calculated from these datasets.  

From Cov(𝐗), the precision matrix (the inverse of the covariance matrix) 

𝚯𝑐𝑜𝑜𝑟𝑑 is estimated using Tikhonov regularization [16] as 
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𝚯𝑐𝑜𝑜𝑟𝑑 = (Cov(𝐗)+ λ𝑐𝑜𝑜𝑟𝑑𝐈)
−1 , 

 (7) 

where λ𝑐𝑜𝑜𝑟𝑑 is a constant used to control the strength of regularization.  

Using 𝐗 and 𝚯𝑐𝑜𝑜𝑟𝑑, the PDF of the coordinate-based L-PDM 𝑝𝑐𝑜𝑜𝑟𝑑(𝐗) 

is defined as 

𝑝𝑐𝑜𝑜𝑟𝑑(𝐗) =
1

𝑍𝑐
exp (−

1

2
(𝐗 − 𝐗)𝑡𝚯𝑐𝑜𝑜𝑟𝑑(𝐗− 𝐗̅)) ,  (8) 

where 𝑍𝑐  is a regularization coefficient. 

2.2.3.2 Distance-based L-PDM 

  The other L-PDM is defined as a Gaussian distribution whose variables 

are logarithmic distances between pairs of landmarks.  Let 

𝑑𝑙,𝑙′ = ln(max{|𝐱𝑙 − 𝐱𝑙′|,𝑑𝑚𝑖𝑛 }) 
(9) 

be the logarithmic distance between the 𝑙th and 𝑙′th candidate landmark 

points.  Here, 𝑑𝑚𝑖𝑛   is a constant used to suppress large negative 

logarithmic value.  In this study 𝑑𝑚𝑖𝑛 =
1

2
𝑑𝑡𝑜𝑙  was used.  Then, each 

distance is normalized by its average 𝐸(𝑑𝑙,𝑙′) and variance 𝑉(𝑑𝑙,𝑙′), which 

are estimated from the training datasets.  The normalized distance 𝑔𝑙,𝑙′ is 

given by 

𝑔𝑙,𝑙′ =
𝑑𝑙,𝑙′ −𝐸(𝑑𝑙,𝑙′)

√𝑉(𝑑𝑙,𝑙′)
. (10) 

  Let the vector 𝐆 = (𝑔1,2 𝑔1,3…𝑔1,𝐿 𝑔2,3…𝑔𝑙,𝑙′ …𝑔(𝐿−1),𝐿)
t
  be a 

concatenated form of the normalized logarithmic distances between all the 

landmark pairs.  Note that 𝐆  is a function of 𝐗  and that it has 

𝐿(𝐿 − 1)/2 elements.  Suppose that the sample covariance matrix of 𝐆, 
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namely, Cov(𝐆) , is calculated from the training datasets.  Then, the 

precision matrix of 𝐆  can be estimated by Tikhonov regularization as 

𝚯𝑑𝑖𝑠𝑡 = (Cov(𝑮)+ 𝜆𝑑𝑖𝑠𝑡𝐈)
−1 (𝜆𝑑𝑖𝑠𝑡 is a constant).  Then, the PDF of the 

distance-based L-PDM 𝑝𝑑𝑖𝑠𝑡(𝐗) is defined as 

𝑝𝑑𝑖𝑠𝑡(𝐗) =
1

𝑍𝑑
exp (−

1

2
𝐆𝑡𝚯𝑑𝑖𝑠𝑡𝐆) .  (11) 

2.2.4 Maximum a posteriori estimation 

  In the next stage, the best combination of all detector-generated candidates 

is searched for.  Supposing that a total of 197 landmarks are to be detected 

and each detector outputs 100 candidates with their estimated likelihoods.  

Then the number of possible combinations becomes 100197.  To solve this 

large combinatorial optimization problem, I use an approximate method in 

which Gibbs sampling and simulated annealing are combined [11].   

Let 𝐼𝑙 = (𝐜𝑙
1 , 𝐜𝑙

2 ,… , 𝐜𝑙
|𝑆𝑙|, 𝑝𝑙

1 ,𝑝𝑙
2 ,… , 𝑝𝑙

|𝑆𝑙| ,𝑝𝑙
×)  be the 𝑙 th landmark-

detector-derived information set (not only the detector output 𝑆𝑙 but also 

the probabilities 𝑝𝑙
1 ,𝑝𝑙

2 ,… which are calculated using the stochastic detector 

model).  Here, 𝐜𝑙
𝑖  is the 𝑖th candidate for the 𝑙th landmark and 𝑝𝑙

𝑖  is its 

corresponding posterior probability estimated as 𝑝(𝐜𝑖 ∈ 𝑅𝑡𝑟𝑢𝑒 |𝐮)  by Eq. 

(5).  On the other hand, 𝑝𝑙
× is the posterior probability of all candidates 

being FP, which can be estimated as 𝑝(𝐜𝑖 ∉ 𝑅𝑡𝑟𝑢𝑒 , ∀𝑖|𝐮) by Eq. (6).  That 

is, 

𝑝𝑙
𝑖 =

1

𝐶𝑙
⋅
1 − 𝑝0
|𝑆𝑙|

⋅ 𝑟𝑝𝑟𝑖𝑜𝑟
−1  ⋅

𝑝𝑡𝑟𝑢𝑒;𝑙(𝑢𝑖;𝑙)

1− 𝑝𝑡𝑟𝑢𝑒;𝑙(𝑢𝑖;𝑙)
 (12) 

𝑝𝑙
× =

1

𝐶𝑙
⋅ 𝑝0 , (13) 
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where |𝑆𝑙|  is the number of candidates, 𝑢𝑖;𝑙  is the detector-generated 

likelihood for the 𝑖 th candidate, 𝑝𝑡𝑟𝑢𝑒;𝑙(⋅)  is the detector-model-derived 

probability function (Eq. (3)), and 𝐶𝑙 is the regularization term for the 𝑙th 

landmark. 

Given the entire detector-derived information set 𝐼 = (𝐼1 , 𝐼2 ,… , 𝐼𝐿), the 

proposed algorithm searches for the best candidate using an L-PDM.  The 

L-PDM is a statistical model of the spatial distribution of landmarks in the 

human body and is trained using training datasets.  My combinatory 

optimization framework searches for the most probable landmark position 

set 𝐗̂ under the condition of the given detector information 𝐼.  In other 

words, it solves the MAP problem 𝐗̂ = argmax
𝐗
𝑝(𝐗|𝐼). 

  Applying Bayes’ theorem to the posterior probability 𝑝(𝐗|𝐼), 

𝑝(𝐗|𝐼) =
𝑝(𝐼|𝐗) ⋅ 𝑝(𝐗)

𝑝(𝐼)
 

∝ 𝑝(𝐼|𝐗) ⋅ 𝑝(𝐗) 

(14) 

is satisfied.  Note that the denominator 𝑝(𝐼) is independent of X and can 

be ignored when maximizing 𝑝(𝐗|𝐼) in terms of 𝐗. 

  In this study, one of the L-PDMs (defined in Section 2.3) is used as 𝑝(𝐗).  

To balance the weight of each L-PDM with the weight of the candidate 

probabilities, the L-PDMs are modified by a constant 𝑐𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟  to give 

𝑝(𝐗) = 𝑝𝑐𝑜𝑜𝑟𝑑(𝐗)
1

𝑐𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟  or 𝑝(𝐗) = 𝑝𝑑𝑖𝑠𝑡(𝐗)
1

𝑐𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 .  Here, 𝑐𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 

is a constant to be determined in advance. 

  I assume that all detector outputs 𝐼1 , 𝐼2 , … , 𝐼𝐿  are independent of each 

other.  Furthermore, I also assume that, when the target landmark position 

is given as a condition, the corresponding detector output is conditionally 
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independent of the other landmark positions.  This means that each detector 

output is only dependent on the position of the target landmark.  Under this 

assumption, the term 𝑝(𝐼|𝐗)  can be factorized as ∏ 𝑝(𝐼𝑙|𝐱𝑙)
𝐿
𝑙=1  .  

Applying Bayes’ theorem again,  

𝑝(𝐼|𝐗) =∏𝑝(𝐼𝑙|𝐱𝑙)

𝐿

𝑙=1

 

=∏
𝑝(𝐱𝑙|𝐼𝑙) ⋅ 𝑝(𝐼𝑙)

𝑝(𝐱𝑙)

𝐿

𝑙=1

 

(15) 

is satisfied.  Here, 𝑝(𝐼𝑙) is independent of 𝐗 and can be ignored.  The 

term 𝑝(𝐱𝑙) is the probability distribution of the 𝑙th landmark without any 

prior knowledge and is assumed to be uniform in the entire space in this study.  

Therefore, using Eqs. (14) and (15), the MAP estimation problem can be 

formulated as 

𝐗̂ = argmax
𝐗
𝑝(𝐗|𝐼) 

= argmax
𝐗
𝑝(𝐗) ⋅ 𝑝(𝐼|𝐗) 

= argmax
𝐗
𝑝(𝐗) ⋅∏𝑝(𝐼𝑙|𝐱𝑙)

𝐿

𝑙=1

 

= argmax
𝐗
𝑝(𝐗) ⋅∏𝑝(𝐱𝑙|𝐼𝑙)

𝐿

𝑙=1

. 

(16) 

The purpose of this formulation is to factorize the MAP problem into the L-

PDM 𝑝(𝐗)  and the single landmark terms 𝑝(𝐱𝑙|𝐼𝑙) .  Note that 𝑝(𝐗|𝐼) 

cannot be directly factorized as 𝑝(𝐗|𝐼) = ∏ 𝑝(𝐱𝑙|𝐼𝑙)
𝐿
𝑙=1   because the 

landmark positions 𝐱𝑙  are not independent of each other.  Instead, the 

correlations among the landmark positions are modeled by the L-PDM 𝑝(𝐗) 
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itself. 

  In Eq. (16), the term 𝑝(𝐱𝑙|𝐼𝑙)  represents the PDF of the landmark 

position 𝐱𝑙  when the detector output 𝐼𝑙  is given.  Here, suppose that 

𝑝𝑙
× = 0 for the purpose of illustration.  This means that one of the detector-

generated candidate points {𝐜𝑙
1, 𝐜𝑙

2 , … } must be the true answer.  Note that 

the assumption 𝑝𝑙
× = 0 cannot be satisfied in the real problem, because in 

my stochastic detector model each detector has a nonzero probability of 

missing landmark (owing to being out of the imaging range, limited detection 

sensitivity or an anatomical/surgical defect).  Under the assumption of 

𝑝𝑙
× = 0, the term 𝑝(𝐱𝑙|𝐼𝑙) can be computed from Eq. (12) as 

𝑝(𝐱𝑙|𝐼𝑙) = {
 𝑝𝑙
𝑖 ,  if  𝐱𝑙 = 𝐜𝑙

𝑖   for any  𝑖

  0, if  𝐱𝑙 ≠ 𝐜𝑙
𝑖   for all  𝑖

  .  (17) 

Therefore, the posterior probability in Eq. (16) becomes nonzero only at the 

candidate points 𝐱𝑙 ∈ {𝐜𝑙
1 ,𝐜𝑙

2 , … }.  This means that this MAP estimation is 

formulated as a simple combinatorial optimization problem if 𝑝𝑙
× = 0.   

  Our goal is to estimate the target landmark position even when the detector 

output does not include the true candidate.  When 𝑝𝑙
× > 0, it is possible 

that no candidate point 𝐜𝑙
𝑖  corresponds to the true landmark point 𝐱𝑙.  If 

this is the case, 𝑝(𝐱𝑙|𝐼𝑙)  will be nonzero even if 𝐱𝑙 ≠ 𝐜𝑙
𝑖   for all  𝑖 .  

Therefore, I need to define 𝑝(𝐱𝑙|𝐼𝑙) at any point in the domain 𝐱𝑙 ∈ ℝ
3.  

One possible way is to define 𝑝(𝐱𝑙|𝐼𝑙) as a distribution that is uniform at 

any point other than the candidate points {𝐜𝑙
1 , 𝐜𝑙

2 ,… } (Fig. 8(b)).  Consider 

a probability space Ω that is sufficiently larger than both the subject human 

body and the CT volume.  Additionally, suppose that the probability 

𝑝(𝐱𝑙|𝐼𝑙)  is constant everywhere in Ω  except for the candidate points 

{𝐜𝑙
1 , 𝐜𝑙

2 ,… }.  Then, the probability distribution 𝑝(𝐱𝑙|𝐼𝑙) can be represented 
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as 

𝑝(𝐱𝑙|𝐼𝑙) =
1

|Ω|
𝑝𝑙
× +∑𝛿(𝐱𝑙 − 𝐜𝑙

𝑖) ⋅ 𝑝𝑙
𝑖

|𝑆𝑙 |

𝑖=1

 
(18) 

where δ(⋅) is the Dirac delta function and |Ω| is the volume of Ω. 

  Since the PDF in Eq. (18) is not discrete, the MAP estimation cannot be 

formulated as a combinatorial optimization problem.  To reduce this 

problem to a combinatory optimization one, I discretize and replace the 

domain Ω with a large number of 𝐽 artificial candidates {𝐬𝑙
1 ,… , 𝐬𝑙

𝐽} (Fig. 

8(c)).  That is, 

𝑝(𝐱𝑙|𝐼𝑙) =∑
1

𝐽
⋅ 𝛿(𝐱𝑙 − 𝐬𝑙

𝑗
) ⋅ 𝑝𝑙

×

𝐽

𝑗=1

+∑𝛿(𝐱𝑙 − 𝐜𝑙
𝑖) ⋅ 𝑝𝑙

𝑖

|𝑆𝑙|

𝑖=1

, (19) 

or, in the discretized form, 

𝑝(𝐱𝑙|𝐼𝑙) =

{
 

 
𝑝𝑙
𝑖 ,           if 𝐱𝑙 = 𝐜𝑙

𝑖   for any  𝑖
1

𝐽
⋅ 𝑝𝑙

×,           if 𝐱𝑙 = 𝐬𝑙
𝑗
  for any  𝑗

0,           otherwise

  . 
(20) 

In this study, the artificial candidates {𝐬𝑙
1 ,… , 𝐬𝑙

𝐽}  are iteratively sampled 

from the estimated distribution of 𝐱𝑙 by the two-stage sampling framework 

(Fig. 5).  This will be described in detail in Section 2.6. 
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Fig. 8. Schemas for explaining the probability distributions.  (a) When 

𝑝𝑙
× = 0, the probability function 𝑝(𝐱𝑙|𝐼𝑙) is discrete and becomes nonzero 

only at 𝐱𝑙 = 𝐜𝑙
𝑖  .  (b) When 𝑝𝑙

× > 0 , the distribution 𝑝(𝐱𝑙|𝐼𝑙)  is 

represented by the sum of a constant function and a series of delta functions.  

(c) Discretized probability distribution with randomly sampled artificial 

candidates {𝐬𝑙
1 ,… , 𝐬𝑙

𝐽} (Eq. (25)).  In reality, the artificial candidates are 

sampled from an estimated multivariate Gaussian distribution, not from a 

uniform distribution (as described in Section 2.2.6). 

 

2.2.5 Combinatory optimization with Gibbs sampling and simulated 

annealing 

  In this study, I used a Gibbs-sampling and simulated-annealing-based 

method [11] to solve the MAP estimation problem (Eq. (16)) and find the 

best combination of 𝐗 = (𝐱1 , 𝐱2 ,… , 𝐱𝐿) , where 𝐱𝑙 ∈

{𝐜𝑙
1 , 𝐜𝑙

2…, 𝐜𝑙
|𝑆𝑙 |, 𝐬𝑙

1 ,𝐬𝑙
2 ,… ,𝐬𝑙

𝐽}, 1 ≤ 𝑙 ≤ 𝐿.  I chose this method because it 

can handle the huge extent of the problem domain in which my algorithm 

(a) (b) (c)

p
ro

b
ab

ili
ty
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has to search.  

  Gibbs sampling [17] is a simple algorithm for selecting samples from a 

given distribution.  Let the initial condition of the algorithm be 𝐗(0) =

(𝐱1
(0)
, 𝐱2

(0)
,… , 𝐱𝑙

(0) ,… , 𝐱𝐿
(0)
)  and the condition after 𝑛  iterations be 𝐗(𝑛) .  

Then, the current estimate of the landmark point 𝐱𝑙
(𝑛)

 is updated by random 

sampling from the conditional distribution of the given PDF for 𝑙 =

1,2, 3, . . . , 𝐿, 1,2,3, . . . , 𝐿, . . ., in a sequential manner. 

  Suppose that the 𝑙th landmark position 𝐱𝑙 is being sampled in the 𝑛th 

iteration.  Before the sampling, the current mode set of the landmark 

positions is 𝐱1 = 𝐱1
(𝑛) , … , 𝐱𝑙−1 = 𝐱𝑙−1

(𝑛) , 𝐱𝑙 = 𝐱𝑙
(𝑛−1), 𝐱𝑙+1 =

𝐱𝑙+1
(𝑛−1), … , 𝐱𝐿 = 𝐱𝐿

(𝑛−1)
 .  Then 𝐱𝑙  is sampled from the PDF 𝑝(𝐗) ⋅

∏ 𝑝(𝐱𝑙|𝐼𝑙)
𝐿
𝑙=1   (Eq. (16)) under the condition of 𝐱1 = 𝐱1

(𝑛) ,… ,𝐱𝑙−1 =

𝐱𝑙−1
(𝑛) , 𝐱𝑙+1 = 𝐱𝑙+1

(𝑛−1) ,… ,𝐱𝐿 = 𝐱𝐿
(𝑛−1)

.  That is, 

𝑝𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 (𝐱𝑙)

=  𝑝(𝐗)

⋅∏𝑝(𝐱𝑙|𝐼𝑙)

𝐿

𝑙=1

|

𝐱1=𝐱1
(𝑛)
,…,𝐱𝑙−1=𝐱𝑙−1

(𝑛)
,𝐱𝑙+1=𝐱𝑙+1

(𝑛−1)
,…,𝐱𝐿=𝐱𝐿

(𝑛−1)

 

   ∝ 𝑝 (𝐱1
(𝑛) ,… ,𝐱𝑙−1

(𝑛) , 𝐱𝑙 , 𝐱𝑙+1
(𝑛−1), … , 𝐱𝐿

(𝑛−1)) ⋅ 𝑝(𝐱𝑙|𝐼𝑙). 

(21) 

For the sake of convenience, let 𝐗(𝑛)∖𝐱𝑙 = (𝐱1
(𝑛) , … , 𝐱𝑙−1

(𝑛) , 𝐱𝑙+1
(𝑛−1), 𝐱𝐿

(𝑛−1)) 

be the current landmark mode set other than 𝐱𝑙.  Then, let 

𝑝 (𝐱1
(𝑛) , … , 𝐱𝑙−1

(𝑛) , 𝐱𝑙 , 𝐱𝑙+1
(𝑛−1), … , 𝐱𝐿

(𝑛−1))

≡ 𝑝𝐿−𝑃𝐷𝑀 (𝐱𝑙;𝐗
(𝑛)

∖𝐱𝑙
) 

(22) 
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be the value of L-PDM 𝑝(𝐗) for the condition of 𝐗(𝑛)∖𝐱𝑙.  Using Eq. (22), 

Eq. (21) can be rewritten as 

𝑝𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙(𝐱𝑙) =
1

𝑍
⋅ 𝑝𝐿−𝑃𝐷𝑀 (𝐱𝑙; 𝐗

(𝑛)
∖𝐱𝑙
) ⋅ 𝑝(𝐱𝑙|𝐼𝑙), (23) 

where 𝑍 is a regularization factor.  Note that calculation of the real value 

of 𝑍 is not necessary in the Gibbs sampling algorithm.  Using Eqs. (23) 

and (19), the posterior probability of each candidate in 𝑐𝑙
+ =

{𝐜𝑙
1 ,… , 𝐜𝑙

|𝑆𝑙 |, 𝐬𝑙
1,… , 𝐬𝑙

𝐽} is calculated as 

𝑝𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 (𝐱𝑙 = 𝐜𝑙
𝑖) =

1

𝑍
⋅ 𝑝𝐿−𝑃𝐷𝑀(𝐜𝑙

𝑖; 𝐗(𝑛)∖𝐱𝑙) ⋅ 𝑝𝑙
𝑖
 

𝑝𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙(𝐱𝑙 = 𝐬𝑙
𝑗
)

=
1

𝑍
⋅ 𝑝𝐿−𝑃𝐷𝑀 (𝐬𝑙

𝑗
; 𝐗(𝑛)∖𝐱𝑙) ⋅

1

𝐽
⋅ 𝑝𝑙

×  . 

(24) 

From 𝑝𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 (⋅), 𝐱𝑙
(𝑛)

 is randomly sampled from 𝑐𝑙
+ in accordance 

with this discrete posterior probability function.  After all 𝑙  updates are 

finished, 𝑛 is incremented and the entire update process is iterated.  

The algorithm can be described in a pseudocode as follows: 

for n=1 to total_iteration_number 

 for l=1 to L 

  sample 𝐱𝑙
(𝑛)

 from the conditional probability distribution in 

Eq. (24) 

 end for 

end for 

This algorithm outputs a sequence of values 𝐗(𝑛) , which are randomly 
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sampled from the target distribution 𝑝(𝐗|𝐼).   

Additionally, a simulated annealing method is combined with Gibbs 

sampling to make the sampling sequence converge to the optimal point.  In 

the annealing, a positive variable 𝑇 is introduced as a temperature.  𝑇 is 

first set at a very high value and then gradually lowered during Gibbs 

sampling.  Before each sampling, the distribution 𝑝𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙(𝐱𝑙) in Eq. 

(24) is modified using 𝑇 to 

𝑝𝑎𝑛𝑛𝑒𝑎𝑙𝑒𝑑 (𝐱𝑙 = 𝐜𝑙
𝑖;𝑇)

=
1

𝑍′
⋅ {𝑝𝐿−𝑃𝐷𝑀 (𝐜𝑙

𝑖;𝐗(𝑛)∖𝐱𝑙) ⋅ 𝑝𝑙
𝑖}
1
𝑇  

𝑝𝑎𝑛𝑛𝑒𝑎𝑙𝑒𝑑 (𝐱𝑙 = 𝐬𝑙
𝑗
; 𝑇)

=
1

𝑍′
⋅
1

𝐽
⋅ {𝑝𝐿−𝑃𝐷𝑀 (𝐬𝑙

𝑗
; 𝐗(𝑛)∖𝐱𝑙) ⋅ 𝑝𝑙

×}
1
𝑇 , 

(25) 

where 𝑍′  is another regularization term (dependent on 𝑇 ).  The factor 

1/𝐽  is not modified to avoid an excessive effect when 𝑇 is very high or 

low.   

  

  In the simulated annealing, each 𝐱𝑙
(𝑛)

  is sequentially and repeatedly 

sampled from the modified distribution (Eq. (25)) by a Gibbs sampler.  The 

sampling begins with a very high 𝑇, which decreases gradually and finally 

becomes so low that the system converges to the maximum point.  After the 

annealing, the final 𝐗(𝑛)   is outputted as the combinatorial optimization 

result. 

2.2.6 Proposed two-stage sampling 

  The key to the proposed method is how to sample missing landmarks 
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during the iterative Gibbs sampling.  Each Gibbs sampling of 𝐱𝑙
(𝑛)

 from 

the distribution 𝑝𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙(𝐱𝑙)  (Eq. (23)) requires a set of pre-sampled 

artificial candidates {𝐬𝑙
1 ,… , 𝐬𝑙

𝐽} .  Therefore, sampling of {𝐬𝑙
1,… ,𝐬𝑙

𝐽}  is 

required prior to each Gibbs sampling.  The sample  {𝐬𝑙
1 ,… , 𝐬𝑙

𝐽} 

represents the missing landmarks (being out of imaging range, defect due to 

surgical/pathological changes, limited detector sensitivity, etc.).  Therefore, 

the sampling points {𝐬𝑙
1,… , 𝐬𝑙

𝐽} can spread outside the imaging range border.   

It also means that the sampling of {𝐬𝑙
1,… , 𝐬𝑙

𝐽} cannot depend on any image 

appearance information.  Although it is theoretically possible to sample 

{𝐬𝑙
1 ,… , 𝐬𝑙

𝐽}  from a constant distribution whose domain is Ω , this is 

extremely ineffective because a sampled point 𝐬𝑙
𝑖  for which 

𝑝𝐿−𝑃𝐷𝑀 (𝐬𝑙
𝑗
; 𝐗(𝑛)∖𝐱𝑙)  is small has little chance of being selected in the 

following Gibbs sampling.  Thus, a more effective way to sample 

{𝐬𝑙
1 ,… , 𝐬𝑙

𝐽}  is vital to the missing landmark handling property of the 

proposed method. 

  Here, I sample {𝐬𝑙
1,… , 𝐬𝑙

𝐽}  from the target PDF 𝑝𝐿−𝑃𝐷𝑀 (𝐱𝑙;𝐗
(𝑛)

∖𝐱𝑙
) 

itself.  However, sampling directly from a complex PDF is too costly to 

perform iteratively.  In this study, a novel two-stage sampling strategy is 

introduced, in which the sampling point {𝐬𝑙
1 ,… , 𝐬𝑙

𝐽} is repeatedly sampled 

from a probability distribution 𝑞𝑙(𝐱𝑙) that is similar to, but not equal to, the 

target PDF.  Simultaneously, the distribution 𝑞𝑙(𝐱𝑙)  is repeatedly re-

estimated using the calculated values of the target PDF at the sampling points, 

that is, 𝑝𝐿−𝑃𝐷𝑀 (𝐬𝑙
𝑗
; 𝐗(𝑛)∖𝐱𝑙), 𝑗 = 1,2,… 𝐽 [17]. 

  The details of the importance sampling algorithm used in this study are 
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described in Appendix 2.  In brief, the algorithm samples {𝐬𝑙
1,… , 𝐬𝑙

𝐽} from 

a three-dimensional Gaussian distribution 𝑞𝑙(⋅) whose mean vector E and 

covariance matrix Cov are calculated as follows: 

E =

∑ 𝐬𝑙
𝑗
⋅
𝑝𝐿−𝑃𝐷𝑀 (𝐬𝑙

𝑗
; 𝐗(𝑛)∖𝐱𝑙)

1/𝑇

𝑞𝑙(𝐬𝑙
𝑗
)

𝐽
𝑗=1

∑
𝑝𝐿−𝑃𝐷𝑀(𝐬𝑙

𝑗
; 𝐗(𝑛)∖𝐱𝑙)

1/𝑇

𝑞𝑙(𝐬𝑙
𝑗
)

𝐽
𝑗=1

 

Cov = 𝛼 ⋅

∑ (𝐬𝑙
𝑗
− E)(𝐬𝑙

𝑗
− E)

𝑡
⋅
𝑝𝐿−𝑃𝐷𝑀 (𝐬𝑙

𝑗
; 𝐗(𝑛)∖𝐱𝑙)

1
𝑇

𝑞𝑙(𝐬𝑙
𝑗
)

𝐽
𝑗=1

∑
𝑝𝐿−𝑃𝐷𝑀(𝐬𝑙

𝑗
; 𝐗(𝑛)∖𝐱𝑙)

1
𝑇

𝑞𝑙(𝐬𝑙
𝑗
)

𝐽
𝑗=1

. 

(26) 

Here 𝛼 is a parameter to be determined in advance.  Note that the right 

side of Eq. (26) includes the sampled points {𝐬𝑙
1 ,… , 𝐬𝑙

𝐽}  themselves and 

𝑞𝑙(⋅) itself.  This means that the sampling of {𝐬𝑙
1,… ,𝐬𝑙

𝐽} from 𝑞𝑙(⋅) and 

the recalculation of E and Cov are iteratively performed (Fig. 9).  At the 

end of each Gibbs sampling cycle, E and Cov are recalculated using the 

current {𝐬𝑙
1 ,… , 𝐬𝑙

𝐽}  and 𝑞𝑙(⋅) , and then the distribution 𝑞𝑙(⋅)  is updated 

using E and Cov.  This updated distribution 𝑞𝑙(⋅) is used in the next cycle 

to sample the points {𝐬𝑙
1 ,… , 𝐬𝑙

𝐽}. 

  The pseudocode of the entire combinatorial optimization process is shown 

in Fig. 10. 
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Fig. 9. Flowchart of the proposed two-stage sampling.  
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Fig. 10. Pseudocode of the proposed combinatorial optimization algorithm. 

 

 

Input:  

𝐼𝑙 = (𝑁𝑙 , 𝐜𝑙
1, … , 𝐜𝑙

𝑁𝑙 , 𝑝𝑙
1, … , 𝑝𝑙

𝑁𝑙 , 𝑝𝑙
𝑐 𝑙̅)   (𝑙 = 1,2,… , 𝐿) , Detector inputs  

𝑝(𝐗), L-PDM  

𝑇0, initial temperature and 𝑟𝑇, cooling ratio  

𝐠, coordinates of volume center  

𝛽, sufficiently large initialization parameter 

Output:  

The estimated landmark position set 𝐗̂ 

1. 𝐗(0) = (𝐱1
(0)

, 𝐱2
(0)

, … , 𝐱𝑙
(0)

, … , 𝐱𝐿
(0)
) ← (𝐜1

1, 𝐜2
1, … , 𝐜𝑙

1, … 𝐜𝐿
1). 

𝑞𝑙(⋅) ← 𝒩(𝐠, 𝛽𝐈),   𝑙 = 1,… , 𝐿. 

T ← T0. 

2.  For 𝑛 = 1,… ,𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 : 

For 𝑙 = 1,… , 𝐿: 

Sample 𝐬𝑙
𝑗
 ~ 𝑞𝑙(⋅),   𝑗 = 1,2,… , 𝐽. 

Calculate posterior likelihood of each candidate by 

𝑝𝑎𝑛𝑛𝑒𝑎𝑙𝑒𝑑 (𝐜𝑙
𝑖) =

1

𝑍𝑝
⋅ { 𝑝𝐿−𝑃𝐷𝑀(𝐜𝑙

𝑖 ;   𝐗(𝑛)∖𝐱𝑙) ⋅ 𝑝𝑙
𝑖}

1
𝑇 

𝑝𝑎𝑛𝑛𝑒𝑎𝑙𝑒𝑑 (𝐬𝑙
𝑗
) =

1

𝑍𝑝
⋅

1

𝐽
⋅ { 𝑝𝐿−𝑃𝐷𝑀(𝐬𝑙

𝑗
;   𝐗(𝑛)∖𝐱𝑙) ⋅ 𝑝𝑙

×}
1
𝑇 , 

where 𝑍𝑝 = ∑ { 𝑝𝐿−𝑃𝐷𝑀(𝐜𝑙
𝑖 ;  𝐗(𝑛)∖𝐱𝑙) ⋅ 𝑝𝑙

𝑖}
1

𝑇𝑁𝑙
𝑖=1 + ∑

1

𝐽
⋅ {𝑝𝐿−𝑃𝐷𝑀(𝐬𝑙

𝑗
;  𝐗(𝑛)∖𝐱𝑙) ⋅

𝐽
𝑗=1

𝑝𝑙
×}

1

𝑇. 

Sample 𝐱𝑙
(𝑛)

~ 𝑝𝑎𝑛𝑛𝑒𝑎𝑙𝑒𝑑 (⋅). 

Update 𝑞𝑙(⋅) ← 

𝒩 
1

𝑍𝑞
⋅ ∑ 𝐬𝑙

𝑗
⋅
𝑝𝐿−𝑃𝐷𝑀 (𝐬𝑙

𝑗
;  𝐗(𝑛)∖𝐱𝑙)

1
𝑇  

𝑞𝑙(𝐬𝑙
𝑗
)

𝐽
𝑗=1 ,   

𝛼

𝑍𝑞
⋅ ∑ (𝐬𝑙

𝑗
− E(𝐱𝑙)) (𝐬𝑙

𝑗
− E(𝐱𝑙))

𝑡
⋅𝐽

𝑗=1

𝑝𝐿−𝑃𝐷𝑀 (𝐬𝑙
𝑗
;  𝐗(𝑛)∖𝐱𝑙)

1
𝑇  

𝑞𝑙(𝐬𝑙
𝑗
)

 ,  

where 𝑍𝑞 = ∑
𝑝𝐿−𝑃𝐷𝑀 (𝐬𝑙

𝑗
;  𝐗(𝑛)∖𝐱𝑙)

1
𝑇

𝑞𝑙(𝐬𝑙
𝑗
)

𝐽
𝑗=1 . 

End for 

𝑇 ← 𝑇 ⋅ 𝑟𝑇  

End for 

3. Output 𝐗̂ ← 𝐗(𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ). 
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2.2.7 Evaluation 

  This study was approved by the Ethical Review Board of The University 

of Tokyo Hospital. 

  Dataset A.  A total of 120 CT datasets were randomly collected from my 

CT examination database.  Among them, 16 datasets showed an anomaly 

in the number of spinal bones and were thus excluded from this study.  Thus, 

104 CT datasets (Dataset A) were used in the following experiments.  

Among them, 50 were from healthy subjects without intravenous contrast 

agent injection with the neck-to-pelvis imaging range.  The other 54 

datasets were from diseased subjects with or without contrast agent injection, 

and the imaging range varied from the chest-to-pelvis region to the upper 

abdomen only.  The voxel size was within the range from 0.625×0.625×

1.00 mm to 1.148×1.148×1.25 mm.  The positions of a total of 197 

anatomically defined landmarks were manually inputted by medical experts.  

After that, a radiologist checked and modified (if necessary) all of them.  

These modified landmark positions were used as ground-truth positions.  

The landmarks were defined on soft tissue structures (25), the spinal column 

(120), pelvic bones (34) or other bones (18). 

  The experiments were performed using twofold cross-validation.  Before 

training the detectors and L-PDMs, parameter optimization was performed.  

Both the training and parameter tuning of each detector and each L-PDM 

were performed using training datasets.  Details of parameter optimization 

for the detectors are given in [13].  For the L-PDMs, two parameters were 

optimized: λ𝑐𝑜𝑜𝑟𝑑  or 𝜆𝑑𝑖𝑠𝑡  (constants that determine the weight of the 

Tikhonov normalization term) and 𝑐𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟   (the extent to which the 

optimization algorithm considers the likelihoods of candidates generated by 
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detectors).  From the results, (λ𝑐𝑜𝑜𝑟𝑑 = 100,𝑐𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 = 40)  and 

(𝜆𝑑𝑖𝑠𝑡 = 0.25,𝑐𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 = 100)  were selected and used in the actual 

training of the coordinate-based and distance-based L-PDMs, respectively.  

The number of sample points in the importance sampling was set at 𝐽 = 100 

in this study.  In the simulated annealing, the initial temperature 𝑇0 =

1000 , the cooling ratio 𝛾𝑇 = 1000
−1/1000  and the iteration number 

𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 1000 were used.  The tolerance of the distance error was set 

at 𝑑𝑡𝑜𝑙 = 10.0 (mm).  These parameters were determined empirically. 

  In the evaluation experiment with the distance-based L-PDM, my 

landmark detection framework attempted to detect all 197 landmarks without 

any prior knowledge of the imaging range, contrast agent injection status and 

so forth.  On the other hand, in the experiment with the coordinate-based 

L-PDM, the ground truth was used to determine the gravity center and 

rotation angle (i.e., pose) of the target body in the unseen volume by rigidly 

registering the ground-truth landmark points to the L-PDM.  Then, all the 

detector outputs were relocated in advance to fit those of the L-PDM.  Note 

that this intentionally unfair initialization was used for only the coordinate-

based L-PDM and was not used for the distance-based L-PDM. 

The detection framework outputs one of the following statuses for each 

landmark position: (a) detected, (b) not detected but estimated (i.e., as an 

artificial candidate) in the imaging range or (c) not detected and estimated to 

be outside the imaging range.  Then, each detection result was classified 

into one of the following four categories (Fig. 11):  

 True Inside (TIn).  The target landmark is within the imaging range 

and its position is detected or estimated.  Each TIn is subcategorized 

into one of the following: 
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 True Positive (TP).  TIn within 𝑑  mm from the ground-truth 

position (i.e., detected or estimated correctly). 

 False Positive (FP).  TIn whose distance error is no less than 𝑑 

mm (i.e., detected or estimated wrongly). 

 True Outside (TOut).  The target landmark is outside the imaging 

range and is correctly estimated to be outside the imaging range. 

 False Inside (FIn).  The target landmark is detected but the position is 

not correct or the target landmark is detected but the true landmark does 

not exist in the imaging range. 

 False Outside (FOut).  The target landmark is estimated to be at a point 

outside the imaging range, despite the landmark existing in the imaging 

range. 
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Fig. 11. Definition of detection result criteria.  (Left) TP, FP and FOut are 

defined when the ground-truth landmark point (L1/2 intervertebral disk 

posterior margin) is within the imaging range.  (Right) TOut and FIn are 

defined when the ground-truth landmark point is outside of the imaging 

range. 

 

  The number of TPs (#TP) was evaluated using the criterion 𝑑 =

 10 (mm).  The TP ratio and TOut ratio were defined as 

𝑇𝑃%=
#𝑇𝑃

#𝑇𝑃 + #𝐹𝑃+ #𝐹𝑂𝑢𝑡
 

𝑇𝑂𝑢𝑡%=
#𝑇𝑂𝑢𝑡

#𝑇𝑂𝑢𝑡 + #𝐹𝐼𝑛
  , 

imaging range

TP

FP

FOut

imaging range

FIn

TOut
true landmark 

point (tolerance 
area)
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where #TP is the total number of TPs, and so forth. 

  Dataset B.  To compare the vertebral identification performance of my 

method with other methods, I tested my method with a publicly available 

spinal CT dataset [9] (http://research.microsoft.com/en-us/projects/spine).  

The dataset (Dataset B) includes 242 scans of partial or whole spinal columns 

with manual annotation of each vertebral centroid.  Here, my method is 

designed to detect the anterior or posterior mid-center point of intervertebral 

disks, not the centroid of the vertebra.  To apply my method to their centroid 

detection problem, I assumed each centroid position to be the gravity center 

of four points; anterior and posterior mid-center points of the disks above 

and below the target vertebra.  Vertebral centroid detection was judged as 

successful if its estimated centroid (i.e., the gravity center) was within 2 cm 

of the true center, and the closest centroid was the correct one (the same 

criteria as Glocker et al.).  Since my method is optimized to detect multiple 

landmark points per vertebra rather than vertebral centroids, I did not retrain 

my system; instead, I simply trained my system with my datasets and then 

applied it to their dataset. 

  My implementation of the proposed method took approximately 12 min 

and 5 min for the initial landmark detection and the subsequent combinatory 

optimization for one subject, respectively, using a workstation with an 8-core 

Intel i7-5960X CPU and an NVIDIA Tesla C2050 GPGPU. 
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2.2 Results 

2.3.1 Detection accuracy 

  The detection performance results of Dataset A are shown in Fig. 12 and 

examples of landmark detection results are shown in Fig. 13.  As shown, 

the TP% values were 83.8% and 74.6% for the distance-based and 

coordinate-based L-PDMs, respectively, with the criterion of 𝑑 = 10 mm.  

The averages and standard deviations of the distance errors (between the 

detected position and the ground truth) were 6.6±6.4 and 8.1±7.9 mm for the 

distance-based and coordinate-based L-PDMs, respectively.  TOut% was 

greater for the distance-based L-PDM than for the coordinate-based L-PDM 

(92.1 and 82.4%, respectively).  Therefore, I concluded that the distance-

based L-PDM surpassed the coordinate-based one in all aspects, even though 

pose information on the target body was given to the latter L-PDM in 

advance.  Therefore, the results of the distance-based L-PDM are described 

in detail in the rest of this section. 

  Figure 14 shows the detection accuracies (distance errors) of all 197 

landmarks.  The detection accuracies tended to be better for bony 

landmarks, especially the spinal and pelvic ones.  The distance errors and 

standard deviations for the soft-tissue landmarks were relatively large.   

Figure 15 shows a histogram of detection distance errors for a total of 

18,674 landmarks determined to be TIn (i.e., correctly determined to be 

within the imaging range).  From Fig. 15, 83.8, 93.2 and 96.5% of 

landmarks were detected within 10, 15 and 20 mm from the ground truth, 

respectively.  Detection accuracies for soft tissue landmarks and part of the 

bony landmarks (e.g., the tips of 11th and 12th ribs) tend to be lower than 



 59 
Chapter 2 Automatic detection of landmarks 

those for spinal and pelvic landmarks, probably due to their large shape 

variations. 

  In Table 3, my landmark detection accuracies are compared with those 

reported by Liu and Zhou (Liu and Zhou, 2012) for landmarks suitable for 

comparison.  Additionally, my result was also compared with the organ 

detection and localization method reported by Criminisi et al. [2].  As 

shown in Table 3, my results were less accurate than those in [4] for most of 

the comparable soft-tissue landmarks, especially for landmarks whose 

distance errors are relatively small.  However, my results appear to be 

comparable for renal landmarks and the inferior tip of the liver when 

evaluated by 95 percentile values.  Note that the proposed method can 

determine the tolerance of the distance error 𝑑𝑡𝑜𝑙, which was set as 𝑑𝑡𝑜𝑙 =

10 mm in this study.  Therefore, it is natural that the distance errors of my 

method are approximately 10 mm for a large number of landmarks.  

Although direct comparison was impossible due to the the difference in 

criteria, the detection error distance of my method was lower than that of 

Criminisi et al. [2] for all comparable organs. 
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Fig. 12. Box plots of (left) TP% and (right) TOut% rate.  The distance-

based model surpassed the coordinate-based model in both two criteria.  

The differences between the two models were statistically significant for 

both criteria (𝑝 < 0.001, Student’s paired t-test). 

TP% TOut% 
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Fig. 13. Examples of landmark detection results.  (Top left) Subject with 

neck-to-pelvis imaging range, anterior and lateral views. (Top right) 

Subject with chest-to-abdomen imaging range.  (Bottom) Subject with 

upper abdomen imaging range.  Note that the landmark positions out of 

the imaging range are estimated with reasonable accuracy. 
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Fig. 14.  Average distance errors and standard deviations of detected 

landmarks using the distance-based L-PDM.  Green: spine, yellow: soft 

tissue, blue: pelvis, pink: other bones. 
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Fig. 15. Histogram of distance errors of all detection results from all 

subjects. 
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Table 3. Comparison of detection accuracies between my method and those 

in [4] and [2].  

 

 

 

 

  

proposed Criminisi et al.* Liu et al. proposed Liu et al.

bifurcation of trachea 5.2 2.5 12.3 4.5

1st bifurcation of rt. bronchus 9.3 12.3

1st bifurcation of lt. bronchus 5.1 17.6

rt. lung 10.1*

rt. lung apex 9.9 3.2 21.4 8.5

rt. lung base lateral margin 11.1 21.8

lt. lung 12.9*

lt. lung apex 8.5 2.6 15.8 6.0

lt. lung base lateral margin 9.0 22.7

liver 15.7*

superior margin of liver 12.7 2.5 30.3 4.0

inferior tip of liver 16.3 6.4 38.4 30.5

root of celiac artery 11.0 22.1

rt.kidney 16
*

6.4
†

39.2
†

superior tip 8.8 22.2

inferior tip 9.2 24.9

root of rt. renal artety 11.5 26.3

lt.kidney 13.6
*

8.4
†

50.7
†

superior tip of lt. kidney 7.5 17.1

inferior tip of lt. kidney 12.7 31.1

root of lt. renal artety 11.6 27.0

all 120 spinal landmarks 4.8 10.2

all 25 soft tissue landmarks 11.1 29.3

all 33 pelvic landmarks 7.0 16.4

all 19 other bony landmarks 11.1 31.2

all 197 landmarks 6.6 17.0

* (bounding box localization errors) † center of the organ

Landmark

airway

lung

liver

kidney

average distance error (mm) 95 percentile (mm)
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2.3.2 Correlation between performance of each single-landmark 

detector and overall detection accuracy 

  Since the proposed Gibbs-sampling-based combinatory optimization 

framework can select the best detector candidate or can even estimate 

landmark positions by itself, the correlation between the detector 

performance and the overall accuracy of the framework for each landmark is 

analyzed.  Figure 16 is a scatter plot of the detector performance (area under 

the receiver operating characteristic curve) and the detection accuracy of the 

proposed framework (for all 197 landmarks).  The vertical axis shows the 

optimizer TP% of a certain landmark and the horizontal axis shows detector 

AUC of the same landmark, where all landmarks are used by the optimizer.  

As shown, the framework can successfully detect spinal landmarks even 

when the AUC of the detector is no more than 0.6.  It means that that my 

optimization system can find an optimal point for spinal landmarks even if 

the corresponding detector has very poor performance.  Therefore, I 

strongly believe that my framework is suitable for detecting spinal landmarks 

with the highest possible reliability.  On the other hand, the detection 

reliability for most of the soft-tissue landmarks seems to be lower than that 

for spinal and pelvic landmarks.  The probable reason for this is the high 

deformability and large position variance of these soft tissue landmarks in 

the human body.  
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Fig. 16. Scatter plot showing relationship between the landmark detector 

performance and TP% in the final optimization result.  The AUC was 

calculated assuming that each single-landmark detector outputs 100 FPs.  

Note that TP% of over 90% can be achieved even when the AUC is lower 

than 0.6. 
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2.3.3 Accuracy of vertebra detection and identification using Dataset 

A 

  Since my application can detect five landmarks per vertebra, it can detect 

and identify each vertebra in the given CT datasets.  Figure 17 summarizes 

the vertebra detection and identification accuracy using my dataset.  As 

shown, a total of 2285/2317 (98.6%) of intervertebral disk (posterior mid-

center) positions were correctly detected within 10 mm from the 

corresponding ground-truth positions.  The average distance error and 

standard deviation were 3.9 ± 2.4 mm, which is comparable to the result of 

Kelm et al. [10], in which the distance error was 3.22 mm.  The disks can 

be correctly detected and identified even if the imaging range includes only 

7 or 8 vertebrae.  Additionally, the proposed method showed no 

cranial/caudal shifts, which were reported in the two related studies by Major 

et al. [6] and Kelm et al. [10]. 

  I assume that the reliable suppression of cranial/caudal shifts shown in my 

result was achieved by multiple spinal and non-spinal landmark detection.  

To prove this, I intentionally removed some of the five landmarks from each 

vertebra and compared the disk detection / identification accuracy.  Instead 

of all five landmarks per vertebra, only one, two or three landmarks per 

vertebra (together with all non-spinal landmarks) were used and detected by 

the proposed landmark detection framework.  The result is illustrated in Fig. 

18.  Most of the disks showed improved detection accuracy as the number 

of landmarks per vertebra increased.  Therefore, I concluded that my 

“multiple landmarks per vertebra” approach was effective for improving the 

spinal landmark detection accuracy. 
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Fig. 17. (Top) Result of vertebra position detection.  Red: >20 mm distance 

error, yellow: >10 mm distance error.  A white blank means the 

corresponding vertebra is out of the imaging range. (Bottom) Detection 

accuracy (average distance error and TP ratio) of vertebrae at each level. 
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Fig. 18. Detection accuracies of vertebrae when the number of vertebral 

landmarks was changed.  Note that the detection accuracy improves as 

more landmarks per vertebra are detected simultaneously.  (Top) Average 

distance errors.  (Middle) TP ratio when the successful detection criterion 

was <10 mm from the ground-truth mid-center posterior point of the 

intervertebral disk.  (Bottom) Five landmarks used in this experiment.  

thoracic lumbarcervical



70 
Chapter 2 Automatic detection of landmarks 

The anterior/posterior margins of the intervertebral disks, spinal process, 

transverse foramina (only for cervical vertebrae), costovertebral angles (only 

for thoracic) and transverse processes (only for lumbar) were used.  The 

colors of the arrows correspond to those in the above graphs. 

 

2.3.4 Accuracy of vertebra detection and identification using Dataset 

B 

  I also tested my method using the public dataset provided by [9].  It 

consists of 242 partial or whole spinal CT images.  I applied my method to 

all 242 CT volumes and evaluated the results using the same criteria as [9].  

  The results are summarized in Table 4.  As shown, the overall successful 

identification rate was 70%, which is the same as that of [9].  Therefore, I 

concluded that my method has comparable performance to their state-of-the-

art method.  Although the proposed method had a slightly smaller median 

of localization errors, it had larger standard deviations especially in the 

lumbar region.  That is because my proposed algorithm sometimes failed to 

converge when the image only included a pathological lumbar spine with 

severe metal artifacts.  

  Examples of identification results are shown in Fig. 19. 
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Table 4. Localization errors (mm) and successful vertebral centroid 

identification rates (%) of the proposed method and the method in [9]. 

 Glocker et al. Proposed 

 Median Mean Std.  Id. % Median Mean Std.  Id. % 

All 8.8 12.4 11.2 70 7.5 14.6 28.8 70 

Cervical 5.9 7.0 4.7 80 5.6 6.8 4.7 81 

Thoracic 9.8 13.8 11.8 62 7.8 13.8 16.7 66 

Lumbar 10.2 14.3 12.3 75 10.4 24.4 52.0 69 
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Fig. 19. (Left) An example of identification result for whole-spine vertebral 

centroids.  (Right) Another example with metal screw implants. 
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2.3.5 Position estimation of landmarks outside the imaging range 

  As already shown in Fig. 13, my method can successfully estimate 

landmark positions that are not included in the given CT volume.  In this 

section, the accuracy of such estimation is analyzed using artificial volumes 

in which the imaging range is intentionally truncated. 

  Figure 20 illustrates the intentionally truncated volumes and their 

landmark detection/estimation results.  The truncated volumes were 

artificially created using 60 datasets with neck-to-pelvis imaging ranges and 

used as test datasets (30 cases per fold).  The training datasets were the 

same as in the other experiments (60 cases per fold).  Although the 

estimation accuracy of each landmark decreased as the landmark became 

further from the imaging range, the body structure were recovered with a 

reasonable shape.  The estimation accuracy was lower in the cervical area, 

owing to the difficulty in estimating the pose information of the neck.  The 

estimation accuracy improved when both the head-neck and pelvic regions 

were inside the imaging range and the other regions were estimated. 
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Fig. 20. (Top) Average distance errors of estimated landmark positions 

inside (dotted line) and outside (solid line) the intentionally truncated 

imaging range.  (Bottom) Examples of estimation results with various 

truncated imaging ranges.  Red pins indicate a distance error of over 10 

mm (the head and tail of each pin indicate the estimated/detected and 

ground-truth landmark points, respectively). 
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2.3.6 Landmark position ambiguity analysis using interobserver 

errors among human experts 

  Most of anatomical landmarks cannot be strictly determined at one point.  

Otherwise, each landmark has particular amount of positional ambiguity due 

to the size and shape of the structure on which the landmark is defined.  To 

estimate these ambiguities, interobserver errors among human experts were 

evaluated.  Four human experts inputted landmark positions for three CT 

datasets.  Then, for each landmark, the interobserver error distance (i.e., 

root mean square error (RMSE) of coordinates) among inputted points was 

calculated.  The average and standard deviation of the interobserver errors 

of all 197 landmarks were 3.83±5.29 mm.  A scatter plot between the 

interobserver errors and detection errors is shown in Fig. 21.  Although 

most of landmarks had less than 5 mm of interobserver errors, 11 landmarks 

had interobserver errors larger than 10 mm.  In 10 of these 11 landmarks 

(including the anterior and posterior bottom tips of the lungs and the lateral 

tips of the iliac crests), the interobserver errors were larger than the detection 

errors.  It may suggest that these points were not suitable as manually-

defined landmarks.  On the other hand, the detection errors were larger than 

interobserver errors for most of landmarks.  Here, I defined an ambiguity-

subtracted error distance as (detection error distance) – (interobserver error 

distance).  Then, for 40 out of 197 landmarks (20.0%), the ambiguity-

subtracted error distances were larger than 5mm.  In other words, 80% of 

landmarks were successfully determined within 5mm of error distances 

when the positional ambiguities were subtracted. 
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Fig. 21. Scatter plot between the detection error distances of the proposed 

system and interobserver error distances of human experts. 

 

 

 

2.4 Discussion 

  In this study, a framework for multiple-landmark detection in CT volumes 

with various imaging ranges was presented.  It gave true positive detection 

ratios of 84.3 and 96.5% when the tolerances of the detection distance error 

were 10 and 20 mm, respectively.  Furthermore, 92.1% of the landmarks 

outside the imaging range were classified correctly into TOut (i.e., estimated 

as being out of the imaging range).  Therefore, I believe that the feasibility 

of my approach in detecting over 100 landmarks simultaneously in CT 
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datasets with various imaging ranges has been validated.  To the best of my 

knowledge, this is the first study in which over 100 anatomical landmarks 

have been automatically detected and their accuracies evaluated using CT 

datasets with various imaging ranges.  

In the evaluation, the detection performance of the distance-based L-PDM 

is superior to that of the coordinate-based one, despite the unfair evaluation 

settings in which pose information was given to the coordinate-based L-

PDM in advance.  Several possible reasons for this can be considered.  

Firstly, my L-PDMs are defined as multiple Gaussian distributions of 

variables.  In the coordinate-based L-PDM, the probability is defined as the 

exponential of a sum of terms (as in Eq. (14)), and each term is dependent 

on only one or two landmark positions.  Thus, this L-PDM can be regarded 

as a Markov random field (MRF) with a complete graph, where each node 

corresponds to a landmark.  On the other hand, in the distance-based L-

PDM, the probability is also defined as the exponential of a sum of terms.  

However, each term is not determined from two landmarks but two inter-

landmark distances, which are dependent on at most four landmarks.  Thus, 

the distance-based L-PDM can be regarded as a fourth-order MRF, i.e., a 

higher-order MRF (HOMRF).  It is possible that this complexity helps to 

model the landmark distribution better.  Secondly, the logarithmic distance 

has some advantages over coordinates.  For instance, it has translation and 

rotation invariance.  Note that an inter-landmark distance not only has 

global invariance but is also robust to local rotations or translations when the 

rotating or translating structure includes both landmarks.  Additionally, a 

scaling transformation adds a common constant to all the logarithmic 

distances; for example, a twofold scale transformation adds ln2  to all 
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logarithmic distances.  I surmise that these properties are beneficial in 

constructing the model. 

In the comparison of landmark detection accuracies, the distance errors of 

my algorithm tended to be greater than those reported by Liu and Zhou [4] 

(Table 3).  Because they used relatively large training datasets of 500 cases, 

it is possible that my training datasets (52 for each fold) were too small to 

represent the variety of landmark appearances.  It will be my future work 

to survey the impact of the training dataset size on the detection accuracy 

using a larger dataset.  Note that a precise comparison is not possible 

because the number of landmarks in [4] was 60, and detection accuracies 

were reported for only 13 of them.  I am currently attempting to improve 

the detection accuracy by postprocessing, which can fine-tune the detected 

landmark positions [18]. 

One of the applications expected for my landmark detection framework is 

the identification of each vertebra (such as the 1st cervical, 6th thoracic or 

5th lumbar vertebra) in CT datasets.  This is the first study in which 

multiple landmarks on all 24 vertebrae have been simultaneously detected in 

clinical CT volumes.  In my results, the average distance error and 

successful identification rate were 3.9 mm and 98.6%, respectively.  

Recently, Glocker et al. [8] reported a study in which all 24 vertebral 

centroids were detected automatically from CT datasets with mostly healthy 

spinal columns.  Their target landmarks were the 26 vertebrae from C1 to 

S2, and their overall localization error and successful identification rate were 

6.10 mm and 81%, respectively.  Although different datasets were used in 

their study and my study, my results surpass both their localization and 

identification results.  Furthermore, I performed another comparison study 

using the same dataset as that in [9] which includes spines with severe 
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pathological changes.  My successful identification rate was 70%, which is 

the same as that of [9].  Therefore, I believe that my method has a 

comparable performance to other state-of-the-art methods. 

Among the 197 landmarks detected, 120 were spinal ones.  One of the 

purposes of this choice of landmarks in my study was to validate the ability 

of my combinatorial optimization framework to identify and distinguish a 

series of very similar landmarks.  It is not an easy task to determine the 

index of each vertebra in CT images.  For example, Klinder et al. [5] 

reported an automatic segmentation method for all 24 vertebrae, and their 

segmentation results were excellent with an average distance error of 1.12 

mm.  However, prior to segmentation, their vertebral identification process 

failed in three out of 59 cases owing to a unit shift in the vertebral index, and 

these three cases were excluded from their evaluation of segmentation 

accuracy.  Note that the incorrect determination of vertebral levels in 

clinical interventions such as surgery can have a hazardous effect [19].  

This means that a vertebral identification failure in computer-assisted 

surgery may be harmful to the patient, which is why I need a reliable 

identification method for vertebral indices.  In this study, no cranial or 

caudal shifts in the vertebral number were observed in 104 subjects.  Thus, 

I conclude that the ability of my framework to identify vertebrae was 

validated.  I am now planning to develop segmentation and registration 

methods for spinal bones utilizing the method presented in this study. 

The identification of each vertebra becomes more difficult when only part 

of the spinal column is included in the given volume.  Nevertheless, in my 

results the detection accuracy did not markedly decrease as the imaging 

range became narrower (Fig. 19).  In particular, no deterioration in 

detection accuracy occurred even when the neck and pelvic regions were 
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outside the imaging range.  This suggests that my framework can estimate 

the indices of vertebrae from nonspinal landmarks.  Recently Connor et al. 

[20] reported that the determination of vertebral indices from a single 

nonspinal landmark is not reliable.  In their study, the only reliable method 

was to count the vertebrae from the 2nd cervical vertebra.  However, in this 

study, the indices of vertebrae were successfully estimated even in datasets 

that did not include the neck region, and thus did not include the 2nd cervical 

vertebra.  Therefore, I consider that multiple landmark information is 

necessary to reliably estimate the vertebral indices when the whole spine is 

not included in the volume.  My simultaneous landmark detection approach 

can respond flexibly to such a situation. 

This work has some limitations.  Firstly, subjects with anomalous 

numbers of vertebrae were excluded from the evaluation.  Such anatomical 

anomalies are quite common.  For example, an occurrence of 10.8% was 

reported in [21].  I am attempting to solve this problem by virtually 

converting the landmark configurations of anomalous spines to those of 

normal ones [22].  However, it is almost impossible to determine the 

existence or nonexistence of such anomalies when the imaging range is 

limited and does not include the whole spine.  It is probable that only an 

application-dependent answer can be defined in such a case. 

Another problem is the long calculation time.  My current 

implementation takes approximately 17 min per subject.  Although this 

may not be problematic when it is used for preprocessing before other very 

time-consuming tasks such as precise nonrigid registration, it may not be 

affordable for many medical image analysis applications.  One possible 

way to reduce the execution time is to apply one of the more efficient 

HOMRF optimization algorithms, such as that proposed in [23], to my 
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optimization framework.  However, it will be challenging to apply an 

HOMRF optimization algorithm to my framework, which has to handle 

missing landmarks caused by detection failure and a limited imaging range. 

 

2.5 Conclusion 

A framework for simultaneously detecting 197 anatomical landmarks was 

presented.  In the framework, a novel two-stage sampling algorithm was 

introduced to appropriately handle missing landmarks due to limited detector 

sensitivity, a partial imaging range and surgical/anatomical defects of 

landmarks.  Each landmark detector was parametrically modeled, and the 

landmark configuration in the human body was also statistically modeled as 

an L-PDM.  The two-stage sampling algorithm optimally utilizes these 

stochastic models and all detector-derived information to detect or estimate 

all the landmark positions, even if a significant number of landmarks are 

missed by the detector or outside of the imaging range.  Its feasibility was 

validated through experiments with various CT datasets and an overall mean 

detection error of 6.6 mm was achieved.  The feasibility of the estimation 

algorithm for out-of-range landmark positions was validated via experiments 

with intentionally cropped volumes.  The detection accuracy of all 24 

vertebrae via my “multiple landmarks per vertebra” approach was also 

confirmed since the identification and detection accuracies were comparable 

to those of another state-of-the-art method.   

My future works may include improving the detection accuracy, the 

handling of vertebral number anomalies and the implementation of a more 

efficient solver for HOMRF optimization. 
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Appendix 1. Calculation of the multiple candidate 

model 

  Here, I make the assumption that the candidate set 𝐜𝑖 , 𝑖 ∈ {1, 2,… , |𝑆|} 

does not include more than one TP candidate.  Therefore, the total number 

of possible probability events is (|𝑆| + 1)  : one of the 𝐜𝑖  , 𝑖 =

1,2,3,… . , |𝑆|  is correct or none of the 𝐜𝑖   are correct.  Let 𝑝0 ≡ 𝑝(𝐜𝑖 ∉

𝑅𝑡𝑟𝑢𝑒 , ∀𝑖) be the prior probability that none of the 𝐜𝑖  are TP.  Here, 𝑝0 is 

a parameter to be determined in advance.  In this study 𝑝0 = 0.02 is used.  

Then, the prior probability that the 𝑖th candidate is TP can be estimated as 

𝑝(𝐜𝑖 ∈ 𝑅𝑡𝑟𝑢𝑒) =
1− 𝑝0
|𝑆|

       (1 ≤ 𝑖 ≤ |𝑆|), 
(27) 

so that the sum of the probabilities 𝑝0 +∑ 𝑝(𝐜𝑖 ∈ 𝑅𝑡𝑟𝑢𝑒)
|𝑆|
𝑖=1   is 1.  Note 

that the prior probabilities of all candidates are regarded as being uniform 

because these are prior probabilities without any prior knowledge of the 

likelihood scores (a so-called uninformative prior). 

  Let the simultaneous distribution of all likelihood scores 𝐮 =

(𝑢1 𝑢2…𝑢|𝑆|) be 𝑝(𝐮).  Because of the assumption that no more than one 

candidate can be correct, the elements of 𝐮 are not independent of each 

other.  For example, it is expected that a certain candidate will have a large 

score if all the other candidates are known to be FPs.  Therefore, only one 

element of 𝐮 tends to have a much larger value than the others.  However, 

this tendency vanishes when I know which candidate is correct.  Because 

all other candidates are known to be incorrect, their likelihood scores become 

much less dependent on each other.  On the basis of this reasoning, I assume 

that 𝑢𝑖 , 𝑖 ∈ {1, 2,… ,𝑁𝑙} are independent of each other under the condition 
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that the correct candidate 𝐜𝑘 is fixed.  Thus, the conditional simultaneous 

distribution of 𝑝(𝐮) with the condition of 𝐜𝑘 ∈ 𝑅𝑡𝑟𝑢𝑒  can be represented 

as follows: 

𝑝(𝐮|𝐜𝑘 ∈ 𝑅𝑡𝑟𝑢𝑒)

= 𝑝(𝑢𝑘|𝐜𝑘 ∈ 𝑅𝑡𝑟𝑢𝑒)

⋅ ∏ 𝑝(𝑢𝑖|𝐜𝑖 ∉ 𝑅𝑡𝑟𝑢𝑒)

|𝑆|

𝑖=1,𝑖≠𝑘

 

=
𝑝(𝑢𝑘|𝐜𝑘 ∈ 𝑅𝑡𝑟𝑢𝑒)

𝑝(𝑢𝑘|𝐜𝑘 ∉ 𝑅𝑡𝑟𝑢𝑒)

⋅∏𝑝(𝑢𝑖|𝐜𝑖 ∉ 𝑅𝑡𝑟𝑢𝑒)

|𝑆|

𝑖=1

. 

(28) 

  On the other hand, the detector candidates can also be regarded as 

independent of each other when all the candidates are known to be FPs (i.e., 

𝐜𝑖 ∉ 𝑅𝑡𝑟𝑢𝑒 , ∀𝑖).  That is, 

𝑝(𝐮|𝐜𝑖 ∉ 𝑅𝑡𝑟𝑢𝑒 , ∀𝑖) =∏𝑝(𝑢𝑖|𝐜𝑖 ∉ 𝑅𝑡𝑟𝑢𝑒)

|𝑆|

𝑖=1

. (29) 

Now we are able to calculate the posterior probability of each candidate, 

i.e., 𝑝(𝐜𝑘 ∈ 𝑅𝑡𝑟𝑢𝑒 |𝐮), as follows: 
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𝑝(𝐜𝑘 ∈ 𝑅𝑡𝑟𝑢𝑒 |𝐮) =
𝑝(𝐮|𝐜𝑘 ∈ 𝑅𝑡𝑟𝑢𝑒) ⋅ 𝑝(𝐜𝑘 ∈ 𝑅𝑡𝑟𝑢𝑒)

𝑝(𝐮)
 

=
1

𝑝(𝐮)
⋅
1 − 𝑝0
|𝑆|

⋅
𝑝(𝑢𝑘|𝐜𝑘 ∈ 𝑅𝑡𝑟𝑢𝑒)

𝑝(𝑢𝑘|𝐜𝑘 ∉ 𝑅𝑡𝑟𝑢𝑒)

⋅∏𝑝(𝑢𝑖|𝐜𝑖 ∉ 𝑅𝑡𝑟𝑢𝑒)

|𝑆|

𝑖=1

 

=
1 − 𝑝0
|𝑆|

⋅ (
𝑝(𝐜𝑘 ∈ 𝑅𝑡𝑟𝑢𝑒)

𝑝(𝐜𝑘 ∉ 𝑅𝑡𝑟𝑢𝑒)
)

−1

⋅
𝑝𝑡𝑟𝑢𝑒(𝑢𝑘)

1 − 𝑝𝑡𝑟𝑢𝑒(𝑢𝑘)
⋅
1

𝑝(𝐮)
∏𝑝(𝑢𝑖|𝐜𝑖 ∉ 𝑅𝑡𝑟𝑢𝑒)

|𝑆|

𝑖=1

. 

(30) 

In the same way, the probability of all candidates being FP becomes 

𝑝(𝐜𝑖 ∉ 𝑅𝑡𝑟𝑢𝑒, ∀𝑖|𝐮) =
𝑝(𝐮|𝐜𝑖 ∉ 𝑅𝑡𝑟𝑢𝑒 ,∀𝑖) ⋅ 𝑝(𝐜𝑖 ∉ 𝑅𝑡𝑟𝑢𝑒, ∀𝑖)

𝑝(𝐮)
 

= 𝑝0 ⋅
1

𝑝(𝐮)
⋅∏𝑝(𝑢𝑖|𝐜𝑖 ∉ 𝑅𝑡𝑟𝑢𝑒)

|𝑆|

𝑖=1

. 
(31) 

 Because of the assumption that no more than one candidate can be correct, 

∑ 𝑝(𝐜𝑘 ∈ 𝑅𝑡𝑟𝑢𝑒|𝐮)
|𝑆|

𝑘=1 + 𝑝(𝐜𝑖 ∉ 𝑅𝑡𝑟𝑢𝑒 , ∀𝑖|𝐮) = 1 must be satisfied to make 

the sum of the probabilities of all events equal to 1.  Thus, 

𝑝(𝐜𝑘 ∈ 𝑅𝑡𝑟𝑢𝑒 |𝐮)

=
1

𝐶
⋅
1 − 𝑝0
|𝑆|

⋅ (
𝑝(𝐜𝑘 ∈ 𝑅𝑡𝑟𝑢𝑒)

𝑝(𝐜𝑘 ∉ 𝑅𝑡𝑟𝑢𝑒)
)

−1

 

⋅
𝑝𝑡𝑟𝑢𝑒(𝑢𝑘)

1− 𝑝𝑡𝑟𝑢𝑒(𝑢𝑘)
 

(32) 

𝑝(𝐜𝑖 ∉ 𝑅𝑡𝑟𝑢𝑒 , ∀𝑖|𝐮) =
1

𝐶
⋅ 𝑝0  

(33) 
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are satisfied.  Here, 𝐶 = 𝑝0 +
1−𝑝0
|𝑆|

⋅ (
𝑝(𝐜𝑘∈𝑅𝑡𝑟𝑢𝑒)

𝑝(𝐜𝑘∉𝑅𝑡𝑟𝑢𝑒)
)
−1

⋅ ∑
𝑝𝑡𝑟𝑢𝑒(𝑢𝑘)

1−𝑝𝑡𝑟𝑢𝑒(𝑢𝑘)

|𝑆|

𝑘=1  is a 

regularization term.  Note that, although Eqs. (30) and (31) are not 

calculable because we have not modeled the probability density function 

(PDF) of 𝑝(𝐮), Eqs. (32) and (33) are calculable using only the odds ratios 

∑
𝑝𝑡𝑟𝑢𝑒(𝑢𝑘)

1−𝑝𝑡𝑟𝑢𝑒(𝑢𝑘)

|𝑆|

𝑘=1  .  The constant 𝑟𝑝𝑟𝑖𝑜𝑟 =
𝑝(𝐜𝑘∈𝑅𝑡𝑟𝑢𝑒)

𝑝(𝐜𝑘∉𝑅𝑡𝑟𝑢𝑒)
  is the ratio of prior 

probabilities, which must be determined in advance.  In this study 𝑟𝑝𝑟𝑖𝑜𝑟 =

0.01  is used.  Note that this problem formulation is a sort of 

semiparametric approach in which 𝑝(𝐮) is ‘erased’ in the calculation and 

only the odds ratios are left.  Thanks to this approach, we do not have to 

parametrize the detector output histogram 𝑝(𝐮)  explicitly.   

 

 

Appendix 2. Importance sampling of the artificial 

candidates {𝐬𝑙
1,… , 𝐬𝑙

𝐽}. 

  In this study, the artificial candidates {𝐬𝑙
1,… , 𝐬𝑙

𝐽} are sampled from a 3-D 

Gaussian distribution 𝑞𝑙(⋅) whose mean vector and covariance matrix are 

determined via importance sampling. 

  The principle of importance sampling is as follows.  Consider a three-

dimensional random variable vector 𝐳 and its probability distribution 𝑝(𝐳).  

Suppose that 𝐝𝑗  ( 𝑗 = 1,2,… , 𝐽) are sampled from a different distribution 

𝑞(𝐳).  Then, the expectation value of an arbitrary function 𝑓(𝐳) can be 

approximated by importance sampling as  
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𝔼(𝑓) = ∫ 𝑓(𝐳) ⋅ 𝑝(𝐳)𝑑𝐳

𝐳∈ℝ3

 

≅

∑ 𝑓(𝐝𝑗) ⋅
𝑝(𝐝𝑗)

𝑞(𝐝𝑗)
𝐽
𝑗=1

∑
𝑝(𝐝𝑗)

𝑞(𝐝𝑗)
𝐽
𝐽=1

. 

(34) 

  Recall that 𝐗(𝑛)∖𝐱𝑙 = (𝐱1
(𝑛) , … , 𝐱𝑙−1

(𝑛) , 𝐱𝑙+1
(𝑛−1), 𝐱𝐿

(𝑛−1))  comprises the 

recently sampled positions of landmarks other than the 𝑙th landmark (whose 

position is 𝐱𝑙).  Thus, to sample the artificial candidates {𝐬𝑙
1,… , 𝐬𝑙

𝐽} from 

𝑝𝐿−𝑃𝐷𝑀 (𝐱𝑙;𝐗
(𝑛)

∖𝐱𝑙
) , it is necessary to (1) first estimate the spatial 

probability distribution of 𝐱𝑙  using the other recently sampled landmark 

positions 𝐗(𝑛)∖𝐱𝑙 , and then (2) sample {𝐬𝑙
1,… , 𝐬𝑙

𝐽}  from the estimated 

distribution.  In other words, it is necessary to sample {𝐬𝑙
1,… , 𝐬𝑙

𝐽} from the 

L-PDM 𝑝(𝐗)  while fixing the landmark positions other than 𝐱𝑙  to the 

recent sample set 𝐗(𝑛)∖𝐱𝑙.  If the modification by the temperature is taken 

into account, 𝑝𝐿−𝑃𝐷𝑀 (𝐱𝑙; 𝐗
(𝑛)

∖𝐱𝑙
)
1/𝑇

  is the target distribution to be 

sampled.  However, this distribution is complicated and sampling directly 

from it is a difficult process.  Instead, {𝐬𝑙
1,… , 𝐬𝑙

𝐽}  are sampled from 

another distribution, 𝑞𝑙(𝐱𝑙).  Here, 𝑞𝑙(𝐱𝑙) is not the same as, but must be 

similar to, the target distribution 𝑝𝐿−𝑃𝐷𝑀 (𝐱𝑙;𝐗
(𝑛)

∖𝐱𝑙
)
1/𝑇

. 

  The question is how to determine the sampling distribution 𝑞𝑙(𝐱𝑙) .  

Because the target distribution 𝑝𝐿−𝑃𝐷𝑀 (𝐱𝑙;𝐗
(𝑛)

∖𝐱𝑙
)
1/𝑇

  changes at every 

𝑛th Gibbs sampling cycle, 𝑞𝑙(𝐱𝑙) should also be updated at each cycle.  In 

this study, a three-dimensional Gaussian distribution is used as 𝑞𝑙(𝐱𝑙) to 
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approximate the target distribution 𝑝𝐿−𝑃𝐷𝑀 (𝐱𝑙; 𝐗
(𝑛)

∖𝐱𝑙
)
1/𝑇

 .  Both the 

mean vector and the covariance matrix of 𝑞𝑙(𝐱𝑙) are updated at each cycle.  

This update is performed by estimating the mean vector and covariance 

matrix of 𝑝𝐿−𝑃𝐷𝑀(𝐱𝑙;𝐗
(𝑛)

∖𝐱𝑙
)
1/𝑇

 by importance sampling. 

Using Eq. (34) and substituting 𝐳 ← 𝐱𝑙 , 𝐝𝑗 ← 𝐬𝑙
𝑗
, 𝑝(⋅) ← 𝑝(⋅,𝐗(𝑛) ∖𝐱𝑙)

1/𝑇
  

and 𝑞(⋅) ← 𝑞𝑙(⋅), the mean vector E(𝐱𝑙) and covariance matrix Cov(𝐱𝑙) 

of the distribution 𝑝𝐿−𝑃𝐷𝑀 (𝐱𝑙;𝐗
(𝑛)

∖𝐱𝑙
)
1/𝑇

 can be estimated as follows: 

E(𝐱𝑙) = ∫ 𝐱𝑙 ⋅ 𝑝𝐿−𝑃𝐷𝑀 (𝐱𝑙; 𝐗
(𝑛)

∖𝐱𝑙
)
1/𝑇
𝑑𝐱𝑙

𝐱𝑙∈ℝ
3

 

≅

∑ 𝐬𝑙
𝑗
⋅
𝑝𝐿−𝑃𝐷𝑀 (𝐬𝑙

𝑗
; 𝐗(𝑛)∖𝐱𝑙)

1/𝑇

𝑞𝑙(𝐬𝑙
𝑗
)

𝐽
𝑗=1

∑
𝑝𝐿−𝑃𝐷𝑀 (𝐬𝑙

𝑗
; 𝐗(𝑛)∖𝐱𝑙)

1/𝑇

𝑞𝑙(𝐬𝑙
𝑗
)

𝐽
𝑗=1

 

Cov(𝐱𝑙) = E ((𝐱𝑙 − E(𝐱𝑙))(𝐱𝑙 − E(𝐱𝑙))
𝑡
 ) 

= ∫ (𝐱𝑙 − E(𝐱𝑙))(𝐱𝑙 − E(𝐱𝑙))
𝑡
⋅ 𝑝𝐿−𝑃𝐷𝑀 (𝐱𝑙;𝐗

(𝑛)
∖𝐱𝑙
)
1/𝑇
𝑑𝐱𝑙

𝐱𝑙∈ℝ
3

 

≅

∑ (𝐬𝑙
𝑗
− E(𝐱𝑙))(𝐬𝑙

𝑗
− E(𝐱𝑙))

𝑡

⋅
𝑝𝐿−𝑃𝐷𝑀 (𝐬𝑙

𝑗
; 𝐗(𝑛)∖𝐱𝑙)

1
𝑇

𝑞𝑙(𝐬𝑙
𝑗
)

𝐽
𝑗=1

∑
𝑝𝐿−𝑃𝐷𝑀 (𝐬𝑙

𝑗
; 𝐗(𝑛)∖𝐱𝑙)

1
𝑇

𝑞𝑙(𝐬𝑙
𝑗
)

𝐽
𝑗=1

. 

(35) 

These estimation results are stored and used in the subsequent (𝑛 + 1)th 

iteration to determine 𝑞𝑙(𝐱𝑙) as 𝑞𝑙(𝐱𝑙) ∼ 𝒩(E(𝐱𝑙),𝛼 ⋅ Cov(𝐱𝑙)) (Fig. 11).  
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Here, α is a parameter used to enlarge the distribution to avoid too early 

shrinkage.  In this study 𝛼 = 4  is used.  The initial state of 𝑞𝑙(𝐱𝑖)  is 

given as 𝒩(𝐠, 𝛽𝐈), where 𝐠 is the geometrical center of a given CT volume 

and 𝛽 is a very large constant set to cover the entire human body.  𝛽 =

1000 mm is used in this study.  Note that 𝐠 and 𝛽 are only used in the 

first iteration of the Gibbs sampling and have little effect on the optimization 

result. 
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  A fully automatic method to define anatomically meaningful landmarks is 

presented.  Firstly, I assume that possible anatomical landmark points must be 

registered correctly and consistently in most of volume triplets by a given 

image registration algorithm.  Under this assumption, a novel landmark-ness 

criterion named triangular consistency criterion (TCC) is introduced.  

Landmarks are determined as points with sufficiently small TCCs in most of 

volume triplets.  The proposed method was evaluated with 50 whole torso CT 

volumes and 50 landmarks were automatically defined. 

 

3.1 Introduction 

  Anatomical landmarks in medical imaging have a wide variety of 
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applications.  For example, automatic detection of landmarks is frequently 

used in initialization of statistical shape model (SSM)-based segmentation 

process for organs [1].  However, it is very time-consuming to define 

anatomical landmarks manually, as well as inputting anatomical landmark 

positions in medical images (e.g. for machine learning). 

  On the other hand, we can also use non-anatomically defined landmarks such 

as SIFT-based ones [2].  However, using SIFT-like landmarks is sometimes 

difficult due to its limited inter-modality and inter-individual correspondence 

and also its limited reproducibility among datasets.  Especially, SIFT-based 

landmark definition is hard to be used in SSM-based methods, because SSM 

requires a predetermined set of landmarks which are embedded into the model 

itself.  Therefore, a new methodology will be needed in which new landmarks 

with anatomical background can be defined automatically. 

  Similarly, more and more landmarks are demanded in registration [3].  

Especially, if a large number of landmarks are accurately detected in the given 

volume pair, the following registration task may become far easier.  The more 

landmarks, the better.  In this sense, automatic landmark definition can play a 

key role in registration. 

  In this study, a registration-based method is presented in which new 

landmarks are defined based on a novel triangular consistency criterion (TCC).  

TCC can estimate how the target anatomical structure is determined as one 

point in all of the given training datasets.  The proposed method is validated 

with 50 whole torso CT datasets and the automatically defined landmarks are 

illustrated.  I also analyze each defined landmark and evaluate whether each 

landmark is defined on any anatomically meaningful structure. 
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3.2 Methods 

  The proposed method can basically use any arbitrary registration method.  

In this study, I utilized my domestic landmark-guided registration method 

based on diffeomorphic demons algorithm [4].  (The details of the registration 

method are described in Chapter 4.)  This registration method can utilize both 

grayscale image information and the manually-inputted landmark positions. 

3.2.1 Datasets and registration 

  Total 𝑁 = 50 whole-torso CT datasets without intravenous contrast agent 

were included in this study.  Their voxel size was 0.977× 0.977× 1.250 

mm.  Total 197 landmark positions were inputted for each volume.  These 

landmarks were worked as guides for registering a couple of CT datasets 

precisely.  Note that automatically-defined landmarks will be determined at 

points at least 20 mm away from these predefined landmarks. 

  Registration was processed by one-to-one manner; all pairs of datasets were 

registered using manually-inputted landmarks and grayscale images.  In the 

result, total 𝑁 × (𝑁 − 1) = 2450 registration results were given. 

3.2.2 Triangular consistency criterion calculation 

  Each registration result has its mapping vector field.  Let the mapping 

vector field which deforms 𝑖th dataset to fit to 𝑗th dataset be 𝐌𝑖𝑗(𝐱).  That 

means, the point 𝐱 in the 𝑖th image corresponds to the point 𝐌𝑖𝑗(𝐱) in the 

𝑗th image. 

  Then, the triangular consistency criterion is introduced (Fig. 1).  For each 
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triplet of datasets 𝑖 , 𝑗  and 𝑘 , the TCC value is defined as 𝑇𝐶𝐶𝑖𝑗𝑘(𝐱) =

 | 𝐱 − 𝐌𝑘𝑖 (𝐌𝑗𝑘 (𝐌𝑖𝑗(𝐱))) |.  That means, the TCC value evaluates the 

inconsistency of the given three mapping vector fields.  Small TCC means 

that the corresponding points are conserved during registration and thus I 

regard it as a possible landmark point detected on some anatomically prominent 

structure.  In this study, the registration result is regarded as consistent if and 

only if the TCC is lesser than a threshold, 𝑑 = 5 mm (Figs. 2 and 3). 

3.2.3 Automatic landmark definition 

  For one fixed dataset 𝑖, the sum of counts where TCC is lesser than 𝑑 was 

calculated as 𝑆𝑖(𝐱) =
1

(𝑁−1)(𝑁−2)
Σ𝑘=1,𝑖≠𝑘
𝑁 Σ𝑗=1,𝑖≠𝑗.𝑗≠𝑘

𝑁 𝐼(𝑇𝐶𝐶𝑖𝑗𝑘(𝐱) < 𝑑) .  

Here, function 𝐼  is 1 if 𝑇𝐶𝐶𝑖𝑗𝑘(𝐱) < 𝑑  or 0 otherwise.  An example of 

𝑆𝑖(𝐱) is shown in Fig. 2(b). 

  In 𝑆𝑖(𝐱), the algorithm searched for new landmarks by a sequential manner.  

Firstly, all the local maxima in 𝑆𝑖(𝐱) are extracted.  The local maxima within 

𝑑𝑒𝑙𝑖𝑚 = 20 mm from any of already-defined landmarks are eliminated.  Also, 

local minima with 𝑆𝑖(𝐱) < 0.3 are also eliminated. Then, the local maximum 

with the largest 𝑆𝑖(𝐱) value is newly defined as a landmark.  This process is 

repeated until no residual local maxima meet the criterion (Fig. 3). 
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Fig.1. The definition of the TCC.  It is defined using three images and 

deformation fields between them.  In this example, the distance between the 

original point 𝐱  and the threefold-moved point  𝑀𝑘𝑖 (𝑀𝑗𝑘 (𝑀𝑖𝑗(𝐱)))  is 

defined as the 𝑇𝐶𝐶𝑖𝑗𝑘(𝐱).  Note that 𝑇𝐶𝐶𝑖𝑗𝑘(𝐲) is less than 𝑇𝐶𝐶𝑖𝑗𝑘(𝐱) in 

this example, that means 𝐲 is a better landmark candidate than 𝐱.  
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Fig. 2. (Left) A coronal CT slice and (Right) the corresponding mean TCC 

value image. 
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Fig. 3. Calculation of the TCC volumes. 

 

3.3 Results 

  An exemplar result of the automatic landmark definition is shown in Figs. 4 
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to 9.  Total 48 landmarks were defined.  The automatically-defined 

landmarks include the posterior margin of bilateral kidneys, the inferior wall of 

center of the aortic arch, nasopharyngeal, interior sides of the bilateral femoral 

heads, bilateral sides of vocal cords, and so on.  On the other hand, some 

landmarks were defined not bilaterally symmetric, which may reflect the fact 

that my method did not stably detect symmetric anatomical structures.  

Nevertheless, most of defined landmarks can be interpreted as anatomically 

meaningful points. 

  At least 27/48 landmarks can be regarded as a salient position and can be 

given an anatomical name (e.g., as the angle between the inferior vena cava and 

the bottom surface of the liver; Fig 7).  Many landmarks were defined on bony 

surfaces, but some landmarks were defined on soft tissues such as the liver. 

 

 

Fig. 4. (a) An example of original CT volume, a coronal cross-section.  (b) 

The corresponding 𝑆𝑖  values.  (c) Automatically defined landmarks, frontal 

view. (d) Lateral view.  
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Fig. 5. An example of automatically defined landmark (rt. Cardiophrenic angle). 
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Fig. 6. An example of automatically defined landmark (the proximal point of 

the aorta and the left pulmonary artery). 
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Fig. 7. An example of automatically defined landmark (the angle between the 

inferior vena cava and the bottom surface of the liver). 
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Fig. 8. An example of automatically defined landmark.  This landmarks was 

difficult to interpret as a salient anatomical entity, but can possibly be named 

as the posterior margin of the left thoracic cavity. 

 

 

Fig. 9. Examples of automatically defined landmarks (the angles between the 

shoulders and the neck). 
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3.4 Discussion 

  A novel method to define landmarks from a large CT dataset was presented.  

In the method, stably registered positions in the given images are extracted as 

landmarks, using TCC criterion.  Therefore, the landmark definition results 

are largely affected by the registration method used.  Although in this study 

landmark-guided demon’s algorithm worked well, it will be my future work to 

test other registration methods.  On the other hand, if the registration method 

used can handle different modalities (e.g. CT and MRI), the algorithm can 

handle mixture of datasets with multiple modalities.  Therefore, it will also be 

my future work to test the method with multiple modalities. 

  This study has several limitations.  First, any quantitative analysis of the 

results has been performed.  It is difficult to validate the results because the 

automatically defined landmarks do not have manually inputted “ground truth” 

positions.  One possible way is to input ground truth landmark points 

manually, so that I can compare the ground truth positions and automatically 

defined positions.  Furthermore, I can compose detectors for the newly 

defined landmarks, train the detectors as shown in Chapter 2, and evaluate their 

accuracy.  It is expected that good detection accuracies are shown for well-

defined landmarks, and vice versa.  Another possible way to evaluate 

meaningfulness of each defined landmark is to use it in other applications.  

For example, I can add newly defined landmarks to my landmark-guided image 

registration system.  It is probable that the registration accuracy will be 

improved by adding automatically defined landmarks.   

  The second limitation is that the defined landmarks are mainly located on the 

bony or skin structures and not on the guts or the pancreas.  Generally 
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speaking, landmarks on the deformable soft tissue structures such as the guts 

and the pancreas have more impact in applications than bony landmarks.  In 

my result, the landmark definition framework avoided such soft tissue organs, 

because the registration method used cannot accurately register such organs and 

thus the TCC values became large.  It is a dilemma that such difficult organs 

were avoided whereas many easy bony landmarks were automatically defined.  

As described above, the proposed method relies upon the registration method 

used, and it is very difficult even for modern registration techniques to register 

such soft-tissue organs.  On the other hand, it is even difficult for medical 

experts to manually define intestinal or pancreatic landmarks because of their 

deformability and wide variety of shapes.  In this sense, it is not surprising 

that the proposed method avoided such difficult organs. 

 

3.5 Conclusion 

  A novel method to automatically define landmarks was presented.  In 

evaluation with 50 whole torso CT datasets, total 48 landmarks were 

automatically and successfully defined.  
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A fully automatic multiatlas-based method for segmentation of the spine and 

pelvis in a torso CT volume is proposed.  A novel landmark-guided 

diffeomorphic demons algorithm is used to register a given CT image to 

multiple atlas volumes.  This algorithm can utilize both grayscale image 

information and given landmark coordinate information optimally. 

  The segmentation has four steps.  Firstly, 170 bony landmarks are detected 

in the given volume.  Using these landmark positions, an atlas selection 

procedure is performed to reduce the computational cost of the following 

registration.  Then the chosen atlas volumes are registered to the given CT 

image.  Finally, voxelwise label voting is performed to determine the final 
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segmentation result. 

  The proposed method was evaluated using 50 torso CT datasets as well as 

the public SpineWeb dataset.  In the result, a mean distance error of 0.59±0.14 

mm and a mean Dice coefficient of 0.90±0.02 were achieved for the whole 

spine and the pelvic bones, which are competitive with other state-of-the-art 

methods. 

  From the experimental results, the usefulness of the proposed segmentation 

method was validated. 

 

4.1 Introduction 

  Automatic segmentation of the spinal bones in computed tomography (CT) 

images has various applications, such as automatic detection of bone metastasis 

[1], radiation planning [2] and surgical planning [3].  For these applications, a 

highly reliable and precise segmentation method for the whole spine is desired.  

However, automatic segmentation of all 24 vertebrae is still an open problem 

for which many new methods have been reported [4-9]. 

  One of the reasons for the difficulty of segmenting vertebral bones is the high 

complexity of vertebral shapes and topologies.  For example, lumbar 

vertebrae have long and thin bony processes of various lengths and angles.  

All the vertebrae have at least one hole (through which the spinal cord passes), 

but most of the cervical vertebrae have two more holes (for vertebral arteries).  

To accurately segment these fine and complex structures using a statistical 

shape model (SSM), a large number of degrees of freedom (DOFs) of the model 

may be required.  However, more DOFs result in more local minima 
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(supposing that the model-fitting problem is nonconvex) and may increase the 

probability of failure in model fitting.  To tackle this problem, some 

researchers have improved SSMs by making them adaptable to large 

morphological variation [4,5].  

  Another difficulty is the repetitiveness of vertebral shapes.  Since 

neighboring vertebrae have similar shapes, it is not easy to identify each 

vertebra (e.g., the 4th cervical, 6th thoracic or 3rd lumbar).  Identification of 

the vertebra is required prior to most state-of-the-art segmentation procedures 

such as SSM fitting, and a failure to identify them will cause a cranial or caudal 

shift of the identification result.  A cranial/caudal shift leads to large errors in 

the final segmentation result.  Such a shift can also occur when applying 

automatic image registration algorithms such as free-form deformation (FFD) 

or demons algorithms to spatially fit a pair of spinal bone structures.  The 

difficulty of registering the spine is a major reason why multiatlas-based 

segmentation approaches [10], which are widely used for other human organs 

[11] [12], have seldom been applied to multiple spinal bone segmentation 

problems. 

  A multiatlas method is a registration-based segmentation method introduced 

in [13] and [14].  In a multiatlas method, all training datasets (manually 

labeled by an expert) are registered to a given unseen image and then the labels 

of the training datasets are propagated to the target image.  The final 

segmentation result is built through integration (e.g., voting) of all the 

registered label images.  The multiatlas approach has the flexibility to better 

capture anatomical variation and thus has superior segmentation accuracy to 

other methods [10].  One of the disadvantages of a multiatlas method is its 
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high computational cost; the most naïve implementation has a computational 

cost proportional to the number of training datasets.  To avoid this problem, 

atlas selection is preferred.  This is a technique to select and reduce the 

number of atlases used according to the reliability of each atlas.  

Simultaneously, the weight of each atlas in the following decision fusion phase 

may be decided.  Atlas selection can be performed before or after registration, 

and the weights of atlases can be determined globally or locally.  Note that if 

the weights of some atlases become zero globally, these atlases can be omitted 

in the following registration process.  Thus, a global approach is preferred to 

reduce the computational cost.  On the other hand, applying different weights 

to local regions leads to better segmentation accuracy instead of a 

nonsignificant reduction in the computational cost.  In particular, to reduce the 

computational cost of the registration, it is sometimes effective to roughly 

preregister all atlases and then perform atlas selection using these preregistered 

images [10].  After atlas selection, the high-cost precise registration algorithm 

is applied to the small number of selected atlases.  The most frequently used 

atlas selection criterion is the image similarity between two volumes.  

Recently, however, several sophisticated atlas selection techniques based on 

machine learning (e.g., random forests) have been reported [15-17].  For 

example, in [15] the final labeling performance itself is estimated by an 

algorithm and used as the atlas selection criterion. 

  A registration method used in the multiatlas framework must have sufficient 

accuracy as well as computational speed.  For example, it should be able to 

correctly register a wide variety of fine and thin tubelike structures (such as 

spinal processes) and thin platelike structures (such as endplates and other 

cortical bones).  To register such thin structures, the deformation field 
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calculated in the registration process must have a high number of DOFs. 

  Demons algorithms are voxelwise registration algorithms and were 

introduced by Thirion [18].  A diffeomorphic version of the demons algorithm 

was also presented by Vercauteren et al. [19].  In demons algorithms, all the 

voxels in a given volume have an independent deformation field vector, which 

is iteratively updated using the local intensity difference and Jacobian matrices.   

Since the value of the deformation vector field is determined at every voxel, 

the demons algorithm has an extremely high number of DOFs that is 

proportional to the total number of voxels.  On the other hand, one of the 

disadvantages of demons algorithms is that the registration problem is solved 

in a steepest-descent manner; thus, the algorithms may be affected by local 

minima of the cost function.  Because of its weakness against local minima, 

the quality of the given initial condition greatly affects the registration result.  

In other words, the algorithms are not well suited for a problem in which a large 

deformation is needed to register the two images.  The algorithms also do not 

work well for repetitive spinal shapes, which cause a sequence of local minima.  

This problem may be partially solved by using a multiresolutional approach in 

which a pair of images are first roughly registered in a coarser scale and then 

precisely registered in a finer scale.  However, in my experience, it is very 

difficult for a conventional demons algorithm to precisely register the spinal 

columns of different subjects. 

  Among the related spinal segmentation studies, Klinder et al. [6] first 

reported an SSM-based method in which all 24 vertebrae are identified and 

segmented automatically from 3-D CT volumes.  Other SSM-based methods 

for thoracolumbar vertebrae have been reported [4,5,7,8].  Among them, 
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Kadoury et al. reported a method in which the vertebral identification and 

segmentation problems are formulated as a single higher-order Markov random 

field (HOMRF) problem [5].  The method was successfully applied to 

scoliotic spines and achieved an interlandmark distance error of 1.6 ± 0.6 mm 

for CT images.  Forsberg et al. reported a multiatlas-based thoracolumbar 

spine segmentation method [20].  After the vertebral positions and poses were 

estimated, the spine was divided into four subregions (L5-L1, L1-T9, T9-T5 

and T5-T1) and each atlas was registered to them.  Because they used a 

relatively small set of 10 atlases, atlas selection was not performed.  They 

achieved a mean Dice index of 0.94± 0.03.  Recently, Wang et al. [21] 

reported a novel method for thoracolumbar vertebral bone segmentation in 

which a multidimensional support vector regressor is used for direct regression 

from image features to the target object boundary.  Other state-of-the-art 

methods and their segmentation performances using a publicly available 

thoracolumbar CT dataset (SpineWeb; 

http://spineweb.digitalimaginggroup.ca/) have been reported in [22].  

However, to the best of my knowledge, no method that can simultaneously 

segment all the structures of the spinal and pelvic bones has been reported. 

  So far, a few landmark-guided registration methods have been reported [23-

26].  Among them, a method for registering a pair of landmark sets distributed 

on a lumbar vertebral bone surface was reported in [26].  Using the fact that a 

lumbar spine has a hole, the task was formulated as a registration between two 

genus-one surfaces (i.e., tori).  On the other hand, a demons algorithm using 

automatically generated landmarks was presented in [24].  After landmarks 

were automatically generated on the bone or skin borders, a landmark-

stabilized demons image registration was performed. 
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  In this study, a new method for segmentation of all the vertebral and pelvic 

bones in a CT volume is presented.  In the method, multiple atlases are 

registered to the target unseen volume by a novel landmark-guided 

diffeomorphic demons algorithm.  Given a set of vertebral and pelvic 

landmark positions (such as those obtained by my previously developed 

landmark detection method [27,28], which can detect 170 anatomically 

annotated landmarks, as described in Chapter 2), the algorithm can register two 

volumes using both grayscale image information and the landmark position 

information simultaneously.  In each iteration, not only the diffeomorphic 

deformation field but also the trajectory of each landmark is calculated using a 

“speed image”.  Each trajectory moves a landmark position in one of the given 

images to the corresponding landmark position in the other image.  From 

these landmark trajectories, a landmark-derived update vector field is 

calculated to fit the two landmark positions.  Then, the landmark-derived 

update field and the grayscale-image-derived update field are summed and used 

to update the speed image, from which the diffeomorphic deformation field is 

iteratively updated.  Using this landmark-guided method, optimally selected 

multiple atlases are registered to the target image, which is followed by 

voxelwise voting to calculate the final segmentation result. 

  The contributions of this study are as follows: 

 A novel landmark-guided demons registration approach is presented.  

Using the coordinates of corresponding landmark pairs, it can register two 

shapes with large deformations. 

 The proposed method is evaluated using 50 whole-torso CT datasets.  

Using the proposed method with my automatic landmark detection system, 
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the spinal and pelvic bones are automatically segmented.  To the best of 

my knowledge, this is the first study in which a segmentation method for 

the whole spine and the pelvic bones has been evaluated. 

In the rest of this paper, the proposed landmark-guided diffeomorphic demons 

algorithm is described, followed by the atlas selection method used in this study.  

Then the hyperparameter optimization method and evaluation method are 

described and the results of the evaluation are given.  Finally, the 

characteristics, advantages and disadvantages of the proposed segmentation 

framework are discussed. 

 

4.2 Methods 

4.2.1 Landmark-guided diffeomorphic demons algorithm 

  My registration algorithm is based on the log-domain demons algorithm [19].  

In the log-domain demons algorithm, the diffeomorphism is ensured by 

deriving the deformation field from a speed image that represents an 

infinitesimal deformation.  The speed image is iteratively updated using the 

given grayscale volumes and their Jacobians.  The log-domain demons 

algorithm is described in detail in the following section, which is followed by 

details of the proposed landmark-guided demons algorithm. 

4.2.1.1 Log-domain demons algorithm 

  In the log-domain demons algorithm, the deformation vector field is 

represented as the exponential of another vector field, namely, the speed vector 

field, so that the diffeomorphism of the deformation field is guaranteed.  Here, 

the exponential calculation is derived from Lie group theory and can be 
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calculated efficiently as described in [29].  Thus, we need to calculate the 

speed vector field to determine and update the deformation field. 

Consider three-dimensional image 𝐼 , and let 𝐼(𝐩) ∈ ℝ  be the grayscale 

voxel value at a point 𝐩 ∈ ℝ3  in 𝐼.  A deformation 𝑠: ℝ3 →ℝ3  is defined 

by the corresponding deformation vector field 𝚫𝑠(⋅) ∈ ℝ
3 such that point 𝐩 

is warped to point 𝐩′ = 𝑠(𝐩) = 𝐩 + 𝚫𝑠(𝐩) (see Fig. 1).  Then image 𝐼 ∘ 𝑠, 

which is image 𝐼  after being deformed by 𝑠 , can be calculated using the 

formula (𝐼 ∘ 𝑠)(𝐩′) = 𝐼(𝐩).  Suppose that a deformation 𝑠−1  is defined as 

the inverse deformation of 𝑠  (i.e., 𝑠 ∘ 𝑠−1 = 𝐼𝑑 , the identity mapping).  

Then, using the corresponding deformation vector field 𝚫𝑠−1, the coordinates 

of 𝐩  in image 𝐼  can be calculated from 𝐩′  by 𝐩 = 𝑠−1(𝐩′) =
def

𝐩′+

𝚫𝑠−1 (𝐩′).  Thus, for an arbitrary point 𝐩′, 

(𝐼 ∘ 𝑠)(𝐩′) = 𝐼(𝐩′ +𝚫𝑠−1 (𝐩
′)) (1) 

is satisfied.  This means that the inverted dislocation vector field 𝚫𝑠−1  is 

required to calculate the deformed grayscale image 𝐼 ∘ 𝑠  from the original 

image 𝐼.  On the other hand, the original dislocation field 𝚫𝑠  is required to 

calculate the destination point 𝐩′ = 𝐩 +𝚫𝑠(𝐩)  from the original point 𝐩 .  

Thus, to warp both the landmark positions and the grayscale image, we require 

both 𝚫𝑠   and 𝚫𝑠−1  .  However, calculating the inverted dislocation vector 

field 𝚫𝑠−1  from 𝚫𝑠  is not a trivial problem.  
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Fig. 1. Definition of deformations and deformation vector fields. 

 

Fig. 2. Speed vector field and trajectory of the moving point 𝐩(𝑡). 

 

  To solve this duality problem and to ensure the invertibility of the 

deformation field, a stationary speed vector field 𝐯(⋅) ∈ ℝ3   is introduced.  



 119 
Chapter 4  Multiatlas-based segmentation of the vertebral and pelvic bones 

The vector 𝐯(𝐩) represents the infinitesimal movement, or moving speed, of 

point 𝐩.  The vector field 𝐯 can be regarded as a flow; at any moment in time, 

point 𝐩  moves in the direction of vector 𝐯(𝐩)  and with speed |𝐯(𝐩)| .  

Because the speed vector field is stationary, it does not change with time.  On 

the other hand, point 𝐩 moves along the speed vector field.  Suppose that 

point 𝐩 ≡ 𝐩(0) at time 0 is moved to position 𝐩(𝑡) at time 𝑡.  Then,  

𝐩(𝑡) = 𝐩(0)+∫ 𝐯(𝐩(𝑡′))𝑑𝑡 ′
𝑡

0

, (2) 

or, in the differentiated form, 

𝜕𝐩(𝑡)

𝜕𝑡
= 𝐯(𝐩(𝑡)) (3) 

is satisfied.  Then 𝐩(1) , the position of point 𝐩 ≡ 𝐩(0)  after one unit of 

time, is redefined as 𝑠(𝐩) (Fig. 2).  That is, 

𝑠(𝐩) =
def

𝐩(1)= 𝐩(0)+∫ 𝐯(𝐩(𝑡))𝑑𝑡
1

0

. (4) 

Note that Eq. (4) redefines the deformation field 𝑠 for an arbitrary point 𝐩 

using the speed vector field 𝐯 .  Because 𝑠(𝐩) =
def
𝐩 + 𝚫𝑠(𝐩) , the 

deformation vector field 𝚫𝑠  can also be calculated from the speed field 𝐯 as 

follows: 

𝚫𝑠(𝐩) = ∫ 𝐯(𝐩(𝑡))𝑑𝑡
1

0

. (5) 

Note that the inverted deformation field 𝑠−𝟏  can be calculated from the 

inverted speed field −𝐯 .  Because inversion of the deformation means 

inverting the temporal progress, it is equivalent to inverting the speed vector 
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field.  Suppose that another point 𝐩′ ≡ 𝐩′(0) at time 0 is moved to position 

𝐩′(𝑡) at time 𝑡 along the inverted vector field −𝐯.  In other words, suppose 

that 𝐩′ ≡ 𝐩′(0)  and 𝐩′(t) = 𝐩′(0)+ ∫ −𝐯(𝐩′(𝑡 ′))𝑑𝑡′
𝑡

0
 .  Then, 𝑠−1(𝐩′) =

𝐩′(1) = 𝐩′(0)+ ∫ −𝐯(𝐩′(𝑡))𝑑𝑡
1

0
 is satisfied.  This means that both 𝑠 and 

𝑠−1  can be directly calculated from 𝐯. 

  Using a term in Lie group theory, the mapping 𝐯 ↦ 𝑠  is called the 

exponential of the speed vector field.  Therefore, in the description below, 

the definition 𝑠 =
def
exp 𝐯 is used.  Note that 𝑠−1 = exp(−𝐯) is satisfied as 

described above (Fig. 3). 

 

Fig. 3. Speed vector field and its exponential. 

 

  It is known that the exponential calculation 𝐯 ↦ exp(𝐯) can be performed 

efficiently as a sequence of compositions of finite transformations [29].  Note 

that halving the speed and doubling the moving time will lead to the same result.  
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Thus, 

(exp
1

2
𝐯) ∘ (exp

1

2
𝐯) = exp𝐯 (6) 

is satisfied.  Here, ∘  denotes the composition of the deformations.  Thus, 

exp𝐯 can be calculated as 

exp𝐯 = (exp
1

2𝑁
𝐯) ∘ (exp

1

2𝑁
𝐯) ∘⋯∘ (exp

1

2𝑁
𝐯)

⏟                          
2𝑁

. (7) 

Under the assumption that 
1

2𝑁
𝐯  is sufficiently small, the approximation 

exp
1

2𝑁
𝐯 ≅ 𝐼𝑑 +

1

2𝑁
𝐯  can be used.  That means that (exp

1

2𝑁
𝐯) (𝐩) ≅ 𝐩 +

1

2𝑁
𝐯(𝐩) at any point 𝐩.  Then, exp 𝐯 can be calculated using a sequence of 

compositions of deformation fields: 

exp
1

2𝑁−1
𝐯 = (exp

1

2𝑁
𝐯) ∘ (exp

1

2𝑁
𝐯) 

exp
1

2𝑁−2
𝐯 = (exp

1

2𝑁−1
𝐯) ∘ (exp

1

2𝑁−1
𝐯) 

⋮ 

exp𝐯 = (exp
1

2
𝐯) ∘ (exp

1

2
𝐯). 

 

(8) 

  Using this exponential operation, the log domain demons algorithm used in 

this study is described as follows: 

Algorithm 1. Symmetric log-domain demons algorithm 

- Input: two images 𝐼𝑎 and 𝐼𝑏 
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- Set the initial speed image 𝐯(𝐩) ← (
0
0
0
) ,∀𝐩  

- Iterate: 

- Calculate forward and backward deformation fields exp
1

2
𝐯  and 

exp−
1

2
𝐯 

- Calculate deformed images 𝐼𝑎
𝑑 = 𝐼𝑎 ∘ (exp

1

2
𝐯)  and 𝐼𝑏

𝑑 = 𝐼𝑏 ∘

(exp−
1

2
𝐯) 

- Compute the demons forces 𝐮(𝐩) = −
Δ𝐼

‖𝐉𝐩‖2+(Δ𝐼)2
⋅ 𝐉𝐩  where Δ𝐼 =

𝐼𝑎
𝑑(𝐩)− 𝐼𝑏

𝑑(𝐩) and 𝐉𝐩 = −
1

2
(∇𝐼𝑎

𝑑(𝐩)+ ∇𝐼𝑏
𝑑(𝐩)) 

- For fluid-like regularization let 𝐮 ← 𝐾𝑓𝑙𝑢𝑖𝑑 ⋆ 𝐮 

- For diffusion-like regularization let 𝐯 ← 𝐾𝑑𝑖𝑓𝑓 ⋆ (𝐯 + 𝐮) 

Here, the operators 𝐾𝑓𝑙𝑢𝑖𝑑 ⋆ and 𝐾𝑑𝑖𝑓𝑓 ⋆ denotes the application of Gaussian 

smoothing filters with appropriate kernel sizes.  Upon convergence, the pair 

of deformed images 𝐼𝑎
𝑑  and 𝐼𝑏

𝑑  become spatially fitted, that is, 𝐼𝑎
𝑑(𝐩) ≈

𝐼𝑏
𝑑(𝐩) .  Furthermore, 𝐼𝑎 ∘ (exp𝐯) ≈ 𝐼𝑏  and 𝐼𝑏 ∘ (exp−𝐯) ≈ 𝐼𝑎   are also 

satisfied (Fig. 4). 
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Fig. 4. Fitting of two objects in the symmetrical log-domain demons algorithm. 

 

4.2.1.2 Proposed landmark-guided demons algorithm 

  In my proposed landmark-guided demons algorithm, not only grayscale 

image information but also landmark position information is used to update the 

speed vector field.  Suppose that a total of 𝐿  landmarks to be fitted are 

determined in each image.  Let the positions of the 𝑙th landmark in images 

𝐼𝑎 and 𝐼𝑏 be 𝐱𝑎
(𝑙)

 and 𝐱𝑏
(𝑙)

, respectively.  Then, as described in (2.1.1), we 

can calculate and draw the trajectory of each landmark along the speed vector 

field 𝐯 (Fig. 5 left).   
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Fig. 5. Fitting of two landmarks in the symmetrical log-domain demons 

algorithm with 𝐾 = 4 as an example. 

 

  Here, our aim is to fit the warped 𝑙 th landmark point in image 𝐼𝑎 , or 

exp(𝐯) (𝐱𝑎
(𝑙)), to the corresponding landmark point 𝐱𝑏

(𝑙)
 in image 𝐼𝑏.  That 

is, exp(𝐯)(𝐱𝑎
(𝑙)) ≈ 𝐱𝑏

(𝑙)
.  Note that, from the invertibility of the deformation 

field, exp(−𝐯) (𝐱𝑏
(𝑙)) ≈ 𝐱𝑎

(𝑙)
 is satisfied at the same time.  Additionally, in 

this study, the trajectories of the pair of landmarks are also fitted (Fig. 5 right).  

Consider a set of points at regular intervals exp (
𝑘

𝐾
𝐯)(𝐱𝑎

(𝑙)) ,𝑘 =

0,1,2,3,… , 𝐾  along the trajectories of 𝐱𝑎
(𝑙)

 .  Also consider another set of 

points at regular intervals exp(−
𝑘

𝐾
𝐯) (𝐱𝑏

(𝑙)) , 𝑘 = 0,1,2,3,… , 𝐾  along the 

trajectories of 𝐱𝑏
(𝑙)

 .  Then, as illustrated in the right of Fig. 5, the 

corresponding pairs of points exp(
𝑘

𝐾
𝐯) (𝐱𝑎

(𝑙))  and 

exp(−
𝐾−𝑘

𝐾
𝐯)(𝐱𝑏

(𝑙)) ,𝑘 = 0,1,2,3,… ,𝐾, are also fitted to the same position.  

update fields 
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Then 𝐮𝐿𝑀 , the update vector field (i.e. demons forces) from landmark position 

information, is calculated as follows: 

𝐮LM
′ (𝐱)

=

{
  
 

  
 
 exp (−

𝐾 − 𝑘

𝐾
𝐯)(𝐱𝑏

(𝑙)) − exp (
𝑘

𝐾
𝒗)(𝐱𝑎

(𝑙))
if 𝐱 = exp(−

𝐾− 𝑘

𝐾
𝐯) (𝐱𝑏

(𝑙))

or 𝐱 = exp(
𝑘

𝐾
𝐯)(𝐱𝑎

(𝑙)) , ∃𝑘∃𝑙

 

(
0
0
0
) otherwise

, 

𝐮LM(𝐱) = {
𝐮LM′(𝐱) if |𝐮LM

′ (𝐱)| ≤ 𝑢𝑚𝑎𝑥
𝑢𝑚𝑎𝑥

|𝐮LM
′ (𝐱)|

⋅ 𝐮LM
′ (𝐱) if 𝑢𝑚𝑎𝑥 < |𝐮LM

′ (𝐱)|
 

 

(9) 

where 𝑢𝑚𝑎𝑥  is a parameter used to prevent update vectors from having a too 

large norm.  In this study 𝑢𝑚𝑎𝑥 = 5 was used. Using this landmark-based 

update field, the landmark-guided demons algorithms is composed as follows: 

Algorithm 2. Landmark-guided symmetric log-domain demons algorithm 

- Input: two images 𝐼𝑎 and 𝐼𝑏 and landmark positions 𝐱𝑎
(𝑙)

 and 𝐱𝑏
(𝑙)

, 𝑙 =

1,2,3,… , 𝐿 

- Set the initial speed image 𝐯(𝐩) ← (
0
0
0
) ,∀𝐩  

- Iterate: 

- Calculate forward and backward deformation fields exp
1

2
𝐯  and 

exp−
1

2
𝐯 
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- Calculate deformed images 𝐼𝑎
𝑑 = 𝐼𝑎 ∘ (exp

1

2
𝐯)  and 𝐼𝑏

𝑑 = 𝐼𝑏 ∘

(exp−
1

2
𝐯) 

- Compute the grayscale demons forces 𝐮GS(𝐩) = −
Δ𝐼

‖𝐉𝐩‖2+(Δ𝐼)2
⋅ 𝐉𝐩 , 

where Δ𝐼 = 𝐼𝑎
𝑑(𝐩)− 𝐼𝑏

𝑑(𝐩) and 𝐉𝐩 = −
1

2
(∇𝐼𝑎

𝑑(𝐩)+ ∇𝐼𝑏
𝑑(𝐩)) 

- For fluid-like regularization let 𝐮GS ← 𝐾𝑓𝑙𝑢𝑖𝑑;𝐺𝑆 ⋆ 𝐮GS 

- Compute the landmark demons forces 𝐮LM(𝐱) using Eq. (9) 

- For fluid-like regularization let 𝐮LM ← 𝐾𝑓𝑙𝑢𝑖𝑑;𝐿𝑀 ⋆ 𝐮LM 

- For diffusion-like regularization let 𝐯 ← 𝐾𝑑𝑖𝑓𝑓 ⋆ (𝐯 + 𝐮GS +𝛼LM ⋅

𝐮LM) 

Note that although the landmark update field 𝐮LM(𝐱)  is only non-zero at 

discrete positions, its effect is diffused to its neighborhoods by convolving 

𝐾𝑓𝑙𝑢𝑖𝑑;𝐿𝑀   and 𝐾𝑑𝑖𝑓𝑓 .  The parameters of the Gaussian filtering 

𝜎𝑓𝑙𝑢𝑖𝑑;𝐿𝑀 , 𝜎𝑓𝑙𝑢𝑖𝑑;𝐺𝑆, 𝜎𝑑𝑖𝑓𝑓   and the weight coefficient 𝛼LM  are 

hyperparameters to be determined in advance. 

4.2.2 Multiatlas segmentation framework 

On the basis of the landmark-guided demons algorithm described above, I 

developed a novel framework to segment the whole spine and the pelvic bones.  

The framework has several advantageous features.  Firstly, cranial or caudal 

shifts in the spinal registration process are effectively suppressed by using the 

preceding landmark detection result.  Secondly, an extremely fast atlas 

selection method is utilized to reduce the computational cost of the following 

series of registrations.  Thirdly, a local histogram matching method is also 
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applied to compensate for a wide variety of local bone mineral densities among 

datasets. 

Figure 6 shows a flowchart of the proposed segmentation framework.  

Firstly, total a 170 of bony landmarks are detected by my landmark detection 

system.  Before registration, as a preprocess, the voxel values of images are 

modified by a sigmoid function to emphasize bony structure.  Additionally, a 

feature vector is extracted from voxels near each landmark to perform atlas 

selection.  After atlas selection, the selected atlases are registered to the given 

unseen target image using the proposed landmark-guided demons algorithm.  

Then, local histogram matching and additional fine registration are performed.  

Finally, label propagation is performed by voxelwise voting and the final 

segmentation result is given. 
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Fig. 6. Outline of the proposed method. 
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4.2.2.1 Landmark detection system 

  Figure 7 shows an outline of my landmark detection system.  Details of the 

system are given in [18,19].  In brief, the detection system has two steps.  

Firstly, each landmark is detected independently and in parallel by the 

corresponding landmark-dedicated detector.  Each landmark detector outputs 

multiple candidate positions for its target landmark.  Then, in the following 

final combinatorial optimization step, one landmark point set is determined for 

all landmarks using an interlandmark-distance-based spatial landmark 

distribution model.  As the result, the most probable positions of 170 bony 

landmarks are outputted.  All the landmarks are labeled (for example, as the 

spinal process of the 11th thoracic vertebra or as the right transverse foramen 

of the 5th cervical vertebra) by the detection system.  The landmark detection 

system can handle CT volumes with various imaging ranges and field of view 

(FOV) sizes. 

 

Fig. 7. Outline of the landmark detection system. 
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4.2.2.2 Preprocessing 

  As a preprocess, every voxel value in the input CT volume is processed by a 

sigmoid function to emphasize the bony structure as follows: 

𝐼𝑜𝑢𝑡 =
1000

1 + exp(
𝐼𝑖𝑛 − 𝑏
𝑎

 )
. (10) 

In this study, 𝑎 = 120  and 𝑏 = 300  are used.  These values were 

determined experimentally.  Additionally, all volumes are rescaled so that the 

voxel size becomes 2 mm/voxel. 

4.2.2.3 Atlas selection 

  In the proposed method, atlas selection is performed using global image 

information before registration instead of local image information after 

registration.  Both approaches have advantages and disadvantages; the latter 

may provide more precise segmentation results at the cost of heavier 

computational burden.  In this study I perform global image information 

before registration because I have relatively large (~40) atlas datasets.  

Although my demons-based registration algorithm is reasonably fast, 

registering all the atlases is too costly in many practical applications.  Global 

atlas selection can greatly reduce the computational cost (as described later).  

  In the atlas selection, the information on landmark positions is optimally 

used to extract feature values of each CT volume.  Eight cubic regions are 

placed around each landmark, and the average CT values of these eight cubes 

are used as features.  All the cubes have the same landmark point as one of 

their vertices.  Each cube has a side of 20 mm.  A total of 8 × 170= 1360 

features are calculated for each CT volume and are used to compose the feature 

vector.  Using this vector, the similarity between a given pair of CT volumes 
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is estimated using the simple squared Euclidean distance between the two 

vectors. 

  In actual atlas selection, the similarity between each atlas and the given 

unseen volume is calculated.  Then, the atlases with the largest similarities are 

selected and used in the following multiatlas segmentation process.  The 

number of atlases used  𝑛𝑎𝑡𝑙𝑎𝑠  is a hyperparameter to be determined in 

advance, and is used to balance the computational cost and the segmentation 

accuracy. 

4.2.2.4 Landmark-guided demons 

  After atlas selection, each atlas is registered to the given unseen volume.  

Firstly, the landmark-guided demons algorithm (described in 4.2.1) is 

performed using landmark information.  All landmark positions in the atlas 

datasets are manually inputted by a radiologist in advance.  Landmark 

positions in the unseen volume are determined by my automatic landmark 

detection system (as described in 4.2.2.1).  Using two pairs comprising the 

landmark information and the grayscale volume, the landmark-guided demons 

algorithms is performed to register two bony structures. 

  I also utilize a multiresolutional approach.  The CT volumes are resized 

with ratios of 2−𝑛 , 𝑛 = 3,2,1,0 .  For each resolution, 20 cycles of the 

landmark-guided demons algorithm are performed.  When the resolution is 

changed, the CT volume and speed image are rescaled.  Furthermore, all the 

dislocation vectors (e.g., exp
1

2
𝐯) must be scaled appropriately (i.e., multiplied 

by 2−𝑛) before every image warping.  Note that the speed image 𝐯 cannot 

be multiplied simply; halving the speed of the flow does not result in halving 

the spatial scale. 
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4.2.2.5 Local histogram matching 

  In practice, demons-based registration of the bony structure is affected by 

the variation of the bone mineral density.  Osteoporosis, from which many old 

women suffer, causes very low CT values in the bony structure, particularly in 

vertebrae.  Such a difference in CT values can cause large registration errors.  

To avoid such errors, a local histogram matching is performed on each local 

part of the given volumes, which is followed by an additional, precise demons 

registration.  (Fig.8) 

 

 

Fig. 8. Example of registration.  (a) Original images after preprocessing.  (b) 

Result of landmark-guided demons algorithm and histogram matching.  (c) 

After performing detailed demons algorithm. 

 

  After the landmark-guided demons registration, the volumes are divided into 

cubes with a side length of 16 mm.  The histogram of the voxel intensities of 

each cube in the two volumes is calculated.  Then all the voxel values in the 

(a) (b) (c) 
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same cube are matched between the two volumes, so that the histograms of the 

two cubes become identical.  Let 𝑞𝐴(𝑐) be the 𝑐th percentile of the image 

intensities of the given cube A.  For example, 𝑞𝐴(50) is the median of the 

intensities of cube A.  Suppose that the 𝑐th percentile of the intensities in the 

corresponding cube B in the other image is 𝑞𝐵(𝑐).  Then, the intensity value 

𝑧A in cube A will be converted to a new value 𝑧A;matched  as follows: 

𝑞𝑚𝑒𝑎𝑛(𝑐) =
𝑞𝐴(𝑐)+ 𝑞𝐵(𝑐)

2
, 

𝑧A;matched = 𝑞𝑚𝑒𝑎𝑛(𝑞𝐴
−1(𝑧𝐴)), 

(11) 

  

where 𝑞𝐴
−1(⋅)  is the inverse function of 𝑞𝐴(⋅) .  Additionally, in 

implementation, the frequencies of histograms are spatially interpolated 

between cubes to avoid noncontinuity of the resulting volume.  

4.2.2.6 Detailed demons algorithm 

  After local histogram matching, precise registration is performed.  In this 

phase, landmark information is not used to avoid the effects of small landmark 

detection errors.  The precise registration is performed by the log-domain 

demons algorithm (as described in 2.1.1) without a multiresolutional approach.  

A total of 20 cycles of the demons algorithm are performed. 

4.2.2.7 Label propagation and voting 

  After all the atlases are registered to the unseen image, label propagation and 

voting are performed to compose the final segmentation result.  Each atlas has 

a manually inputted label volume, which includes all 24 vertebral bones as well 

as the bilateral iliac bones and the sacrum.  In the label propagation, each label 
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volume is deformed using the registration result so that it fits to the given 

unseen image.  Then, voxelwise voting is performed using 𝑛𝑎𝑡𝑙𝑎𝑠 registered 

labels and the majority label is chosen voxel by voxel.   

4.2.3 Parameter optimization and evaluation 

  This study was approved by our institutional ethics review board.  For this 

type of retrospective study, formal informed consent is not required. 

I used a total of 50 whole-torso CT datasets without the administration of 

intravenous contrast agent.  All subjects had no bone diseases other than 

osteopenia.  The voxel size was 0.977 × 0.977 × 1.250 mm.  Subjects 

with abnormal number of vertebrae was excluded from this study beforehand.  

For all the datasets, the answer label volumes and landmark positions were 

manually inputted.  Among the 170 landmarks, 120 were spinal, 39 were 

pelvic and 11 were on other bony structures.  Answer labels were inputted for 

27 bones (the 24 vertebrae, the bilateral iliac bones and the sacrum).  Note that 

landmark answers were used only for the atlases and were not used in the test 

phase (the results of automatic detection were used instead). 

  My method has many hyperparameters: the parameters of Gaussian filtering 

𝜎𝑓𝑙𝑢𝑖𝑑;𝐿𝑀 , 𝜎𝑓𝑙𝑢𝑖𝑑;𝐺𝑆, 𝜎𝑑𝑖𝑓𝑓 , the weight coefficient 𝛼LM , the number of 

resolutions, the parameters of the sigmoid function, and so forth.  I used 10 

out of the 50 datasets for parameter optimization.  The best combination of 

parameters was searched for by a grid search.  A leave-one-out method was 

used, that is, all nine datasets other than the target case were used as atlases 

(without atlas selection).  The criterion used was the Dice coefficient.  In the 

result, 𝜎𝑓𝑙𝑢𝑖𝑑;𝐿𝑀 = 4.0, 𝜎𝑓𝑙𝑢𝑖𝑑;𝐺𝑆 = 1.0,𝜎𝑑𝑖𝑓𝑓 = 0.5,𝛼LM = 1.0  were 
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selected for the landmark-guided demons algorithm and 𝜎𝑓𝑙𝑢𝑖𝑑 = 1.0,𝜎𝑑𝑖𝑓𝑓 =

0.4 were selected for the detailed demons algorithm. 

  For comparison, I also implemented another demons algorithm with 

landmark guidance but without diffeomorphism.  It was simply performed by 

setting 𝑁 = 1 in Eqs. (7) and (8).  In other words, the rough approximation 

exp
1

2
𝐯 ≅ 𝐼𝑑 +

1

2
𝐯 was used.  

  The experiment was performed using the other 40 datasets.  A leave-one-

out method was also used in the experiment.  Variable numbers of atlases 

𝑛𝑎𝑡𝑙𝑎𝑠 were used to evaluate the effects of 𝑛𝑎𝑡𝑙𝑎𝑠.  The segmentation result 

was evaluated by three criteria: the Dice coefficient, the (voxel-to-voxel) mean 

distance error and the Hausdorff distance error.  The definitions of these 

criteria are as follows: 

Dice coefficient =  
2|A∩ B|

|A|+ |B|
, 

Hausdorff distance

= max {max
𝒂∈𝜕𝐴

min
𝒃∈𝜕𝐵

|𝒂 − 𝒃| ,max
𝐛∈𝜕B

min
𝐚∈𝜕A

|𝒂 − 𝒃|}, 

mean distance

=
1

2
{
1

|𝜕𝐴|
∑ min

𝒃∈𝜕𝐵
|𝒂 − 𝒃|

𝒂∈𝜕𝐴

+
1

|𝜕B|
∑ min

𝐚∈𝜕A
|𝒂 − 𝒃|

𝐛∈𝜕B

}, 

(12) 

where 𝐴  and 𝐵  are the voxel sets of the answer and the computed label 

regions, respectively.  𝜕𝐴 denotes the border voxels of 𝐴. 
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  I also used the publicly available SpineWeb dataset 

(http://spineweb.digitalimaginggroup.ca/) [22] to evaluate the segmentation 

accuracy.  The SpineWeb dataset include 20 thoracolumbar spinal small-field-

of-view CT volumes, 10 for training (Dataset 2) and 10 for testing (Dataset 15).  

In the latter, five out of the 10 subjects have osteoporosis and compression 

fractures.  In my experiment, an alternative hyperparameter tuning was 

performed in advance by a grid search using 10 training volumes (Dataset 2).  

The selected parameters were 𝜎𝑓𝑙𝑢𝑖𝑑;𝐿𝑀 = 5.0, 𝜎𝑓𝑙𝑢𝑖𝑑;𝐺𝑆 = 1.5,𝜎𝑑𝑖𝑓𝑓 =

1.0,𝛼LM = 1.0  for the landmark-guided demons algorithm and 𝜎𝑓𝑙𝑢𝑖𝑑 =

0.5,𝜎𝑑𝑖𝑓𝑓 = 0.4  for the detailed demons algorithm.  After hyperparameter 

optimization, the segmentation accuracies of thoracolumbar vertebrae were 

evaluated for each of the five healthy and five diseased spines in the test dataset. 

 

3. Result 

  First, I tested the proposed method using a toy model. Figure 9 shows the 

registration results for the toy model comprised of a curved rod.  Without 

landmark information, the curved rod shape firstly shrinks, and then elongates 

to fit the target image.  On the other hand, using the proposed method, the 

shape of the rod is preserved during the deformation. 
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Fig. 9. Results for toy model using of the proposed and conventional demon 

methods.  The yellow circle represents a landmark used in the proposed 

method. 

 

original target

LM-guided

conventional
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Fig. 10. Example of segmentation result for the spine and pelvis. 
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Fig. 11. Example of segmentation result for the spine and pelvis. 
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  Figures 10 and 11 illustrate an example of the segmentation result for the 

proposed segmentation method.  Note that all the vertebral processes and 

sacral foramina are correctly segmented.  I consider that this correctness is 

mainly due to the landmark-preserving nature of the proposed method. 

 

  Figures 12-15 show the Dice coefficients, mean distances and Hausdorff 

distances of the proposed segmentation method.  As shown, the segmentation 

accuracy improves as the number of atlases increases.  However, this increase 

is almost saturated when the number of atlases reaches 10.  Furthermore, the 

segmentation results with only one atlas (selected by the atlas selection 

algorithm) are significantly better than the average accuracies with a single 

atlas without atlas selection.  Figure 16 also shows that the segmentation 

result with the proposed atlas selection surpassed the result with randomly 

selected atlases in all 40 cases (a total of 50 random tests were performed).  

Therefore, I concluded that my atlas selection method works well and is 

effective for reducing the number of required atlases.  Even when only five 

atlases were used, a mean Dice coefficient of 0.90±0.02, a mean distance error 

of 0.59±0.14 mm and a Hausdorff distance of 5.30±2.14 mm were achieved.  

For vertebral region only, a Dice coefficient of 0.90±0.03, a mean error of 

0.59±0.14 mm and a Hausdorff distance of 4.93±2.01 mm were achieved.  

Therefore, considering the computational cost, I consider that five atlases is 

sufficient for most applications.  It took approximately 15 min for one 

segmentation task using five atlases, whereas it took approximately 110 min 

when 39 atlases were used.  Therefore, the computational cost was 
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approximately proportional to the number of atlases used. 

 

Fig. 12. Dice coefficients of the multiatlas and single-atlas segmentation results.  

Standard deviations of all single-atlas segmentation results (calculated from a 

total of 40× 39 = 1760 segmentations) are also shown. 
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Fig. 13. Mean distances of the multiatlas and single-atlas segmentation results. 
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Fig. 14. Hausdorff (maximal) distances of the multiatlas and single-atlas 

segmentation results. 
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Fig. 15. Dice index, mean distance and Hausdorff distance for several numbers 

of atlases. 
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Fig. 16. Scatter plot of the segmentation accuracies of the proposed atlas 

selection vs  random atlas selection is shown.  The accuracy criterion is the 

average of the Dice coefficients among all 27 bone structures.  Each dot 

represents one test case. 
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  Figure 17 shows the Dice coefficients of the segmentation results obtained 

with the diffeomorphic demons and simulated non-diffeomorphic demons 

algorithms when five atlases were used.  As shown, the segmentation 

accuracies were significantly better with the diffeomorphic demons algorithm 

for most of the vertebral and pelvic bones. 

 

Fig. 17. Dice coefficients for diffeomorphic vs non-diffeomorphic demons 

algorithms (with five atlases).  Asterisks indicate a significant difference 

(p<0.05) between the two algorithms (by paired t-test). 

 

  I also used the SpineWeb dataset [22] to evaluate the segmentation accuracy.  

Because the volumes in the dataset only include thoracolumbar spines, the Dice 

indices and mean error distances for only thoracic and lumbar vertebrae were 

evaluated.  Figures 18 and 19 show my segmentation accuracies for healthy 

cases and diseased cases with compressed fractures, respectively, compared 

with the results of other state-of-the-art methods [20] [30-33].  Figure 20 
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illustrates an example of a segmentation result (a case with multiple 

compression fractures).  As shown, my method resulted in a mean Dice index 

of 0.889 and a mean error distance of 0.69 mm for the healthy subjects.  On 

the other hand, the performance was slightly degraded for diseased subjects to 

a mean Dice index of 0.843 and a mean error distance of 1.30 mm.  My 

method showed comparable accuracy to the other state-of-the-art methods. 

 

 

Fig. 18. Mean Dice indices of the SpineWeb dataset and results of other state-

of-the-art methods.  
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Fig. 19. Mean distance errors of the SpineWeb dataset and results of other state-

of-the-art methods.  
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Fig. 20. Segmentation result of a SpineWeb subject with multiple compression 

fractures. 

 

4. Discussion 

  A novel method for segmenting the whole spine and the pelvis was presented.  

In the evaluation, a mean distance error of 0.59±0.14 mm was achieved for the 

whole spine and the pelvic bones.  Comparing my results with those in 

previous studies, Klinder et al. reported a mean distance error of 1.12 ± 1.04 

mm [6] for healthy or diseased whole-spine images using their method.  
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Recently, Korez et al. [9] reported a method for thoracolumbar vertebrae whose 

mean distance error was 0.3 mm and Dice coefficient was 0.946.  In another 

method for thoracolumbar vertebrae reported by Castro-Mateos et al. [8], the 

mean distance error was 0.58 mm.  Thus, my method showed comparable 

accuracy to these state-of-the-art methods.  Additionally, a direct comparison 

using the SpineWeb dataset was performed for thoracolumbar vertebrae.  In 

the comparison, the proposed method also showed comparable performance for 

both healthy and diseased thoracolumbar spines.  Therefore, I believe that the 

accuracy and stability of my method have been confirmed. 

  The proposed method used a novel landmark-guided log-domain demons 

algorithm for registration.  One of the advantages of this algorithm is the 

diffeomorphism/invertibility of the deformation field.  The invertibility is 

required if it is necessary to warp both image(s) and landmark(s).  The 

deformation field for warping images is not the same as, and is the inverted 

version of, the field for warping landmarks.  Additionally, owing to the log-

domain mechanism and the explicit speed vector field 𝐯, not only the position 

of each landmark but also its trajectory can be traced and fitted.  In my 

experience, this mechanism greatly improves the stability of my landmark-

guided demons registration, especially when the landmark positions in the two 

volumes are distant in the initial setting.  I assume that this trajectory-fitting 

strategy is effective in my voxelwise registration algorithm with an extremely 

high number of DOFs.  I believe that, owing to both the high number of DOFs 

and the stable landmark fitting, the accurate registration of complex shapes of 

vertebrae around landmarks (e.g., vertebral processes and holes) was achieved.  

My method showed comparable, but not superior, segmentation performance 

to that of Forsberg et al. [20] for thoracolumbar vertebrae.  In fact, their 
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approach and mine are similar in many ways.  Both of them utilize a 

multiatlas-based approach.  Their algorithm estimates the positions and poses 

of all vertebrae prior to the main multiatlas segmentation in order to determine 

the initial condition of the registration problems, which corresponds to my 

landmark detection phase.  In the registration, their morphon-based method 

calculates a dense displacement field at every cycle and uses a multiresolutional 

approach, in accordance with [34].  However, the deformation field of their 

registration method does not have diffeomorphism.  Although the benefit of 

diffeomorphism has been shown to be significant in my study, it is possible that 

diffeomorphism itself is not an indispensable property in registering the spinal 

structure. 

  My multiatlas-based segmentation method has several advantages and 

disadvantages compared with the other SSM-based methods.  Firstly, it can 

simultaneously segment not only the spine but also the pelvis with little 

additional computational cost, since in my current implementation whole 

bodies are always registered.  It is possible that, if correctly initialized using 

additional landmarks, my method can segment other body trunk bones such as 

the ribs and sternum.  On the other hand, in the SSM-based approach, 

individual SSMs will be needed to segment these structures.  Secondly, it can 

accurately segment fine protuberances or holelike structures such as vertebral 

processes and transverse foramina particularly in the cervical region, owing to 

high number of DOFs of the demons algorithm.  For example, Klinder et al. 

[6] reported mean distance errors for the segmentation of cervical vertebrae of 

0.81 to 1.13 mm, whereas my mean distance errors for cervical vertebrae 

ranged from 0.55 to 0.67 mm.  Thirdly, because my method segments the 

spinal-pelvic structure as a whole, it is free from “model instance collision,” 
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that is, the overlap of segmented areas between two adjacent bones.  This is a 

major problem that is due to the complicated shapes of intervertebral and 

sacroiliac joints.  Many SSM-based methods have a mechanism dedicated to 

avoiding such a collision problem [6] [8].  On the other hand, my multiatlas -

based method is essentially collision-free. 

  Among the disadvantages of my method compared with SSM-based methods, 

seemingly the most problematic one is the high computational cost.  Although 

I attempted to reduce the computational cost by utilizing preregistration atlas 

selection, it took about 15 min for one subject excluding landmark detection, 

which took another 17 min.  Further reduction of the computational time will 

be one of my future challenges.  Secondly, my method relies on predetected 

landmark position information and is strongly affected by the landmark 

detection accuracy.  However, this problem is not specific to my method 

because most other SSM-based methods require a preceding vertebral 

identification method that can be regarded as vertebral “landmark” detection 

method.  For example, Korez et al. [9] used an interpolation-based vertebra 

identification method, whereas Klinder et al. [6] used another appearance-

model-based identification method.  And my vertebra identification accuracy 

[28] is comparable to those of other state-of-the-art vertebral body/disc 

identification methods and I was able to correctly detect most of the vertebrae 

in my 40 test cases. 

  This study has some limitations.  My test dataset only includes healthy 

spines or those with osteoporosis.  Spines with other diseases such as scoliosis, 

lordosis, postsurgical changes or bone metastasis were not included.  Another 

problem is that spines with abnormal numbers of vertebrae were excluded from 
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my dataset.  Such anatomical anomalies are quite common, for example, an 

occurrence of 10.8% was reported in [35].  I am now attempting to identify 

abnormal numbers of vertebrae by virtually converting the landmark 

configurations of anomalous spines to those of normal ones [36].  Note that, 

once the identification of abnormal vertebrae has been achieved, all vertebrae 

can be segmented by the same methodology using “abnormal atlas” datasets 

that consist of cases with a specific abnormality.  Because my segmentation 

results are reasonable even when only one atlas is used, I expect that the use of 

only one atlas for each abnormality will be sufficient to correctly segment 

abnormal spine.  

5. Conclusion 

  A method for segmentation of the spine and pelvis was presented.  The 

experimental results showed high accuracy for cervical, thoracic and lumbar 

vertebrae as well as for pelvic bones.  My future works include evaluation 

using datasets of spines with diseases, addressing the problem of abnormal 

numbers of vertebrae, and the simultaneous segmentation of other bony 

structures such as the rib cage and sternum. 
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  A novel feature set for medical image analysis, named HoTPiG (Histogram 

of Triangular Paths in Graph), is presented.  The feature set is designed to 

detect morphologically abnormal lesions in branching tree-like structures such 

as vessels.  Given a graph structure extracted from a binarized volume, the 

proposed feature extraction algorithm can effectively encode both the 

morphological characteristics and the local branching pattern of the structure 

around each graph node (e.g., each voxel in the vessel).  The features are 

derived from a 3-D histogram whose bins represent a triplet of shortest path 

distances between the target node and all possible node pairs near the target 
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node.  The extracted feature set is a vector with a fixed length and is readily 

applicable to state-of-the-art machine learning methods.  Furthermore, since 

my method can handle vessel-like structures without thinning or centerline 

extraction processes, it is free from the “short-hair” problem and local features 

of vessels such as caliper changes and bumps are also encoded as a whole.  

  Using the proposed feature set, a cerebral aneurysm detection application for 

clinical magnetic resonance angiography (MRA) images was implemented.  

In an evaluation with 300 datasets, the sensitivities of aneurysm detection were 

81.8% and 89.2% when the numbers of false positives were 3 and 10 per case, 

respectively, thus validating the effectiveness of the proposed feature set. 

 

5.1 Introduction 

  A branching treelike structure is one of the major types of structure in the 

human body.  For example, a wide variety of vessels (blood vessels, bronchi, 

bile ducts, etc.) have a treelike structure.  Quite a large number of diseases 

affect these vascular structures and cause pathological shape changes including 

narrowing, occlusion, and dilation.  Vascular diseases, including cerebral 

infarction and coronary occlusive disease, are one of the major causes of death 

in advanced nations.  Since precise evaluation of the shape of vessels is 

essential in diagnosing these diseases, computer-assisted detection/diagnosis 

(CAD) of these treelike structures is required. 

  Among the vascular diseases, cerebral aneurysm has been one of the targets 

of CAD applications [1-3].  Although unruptured cerebral aneurysms are 

generally asymptomatic, they rupture in approximately 1% of patients per year, 
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leading to high rates of mortality and disability [2].  This is why the early 

detection of cerebral aneurysms is needed.  In clinical practice, noninvasive 

magnetic resonance arteriography (MRA) examination is most frequently used 

for screening, in which diagnostic radiologists search for abnormal structures 

(i.e., saccular protuberances and fusiform dilation).  However, it is known that 

a normal arterial system may include pseudo-lesions such as infundibular 

dilatations.  CAD applications for detecting cerebral aneurysm also have to 

distinguish abnormal aneurysmal structures from normal ones, including 

branching sites of small cerebral arteries and tightly curving carotid siphons. 

  In previous studies, two approaches to searching for aneurysms have 

generally been used: (1) voxel-by-voxel evaluation using Hessian matrix-

derived features, and (2) three-dimensional (3-D) thinning of a presegmented 

arterial region and branching pattern analysis.  In the first approach, a 

Hessian-based filter emphasizes spherical structures with various sizes.  For 

example, Arimura et al. [3] used a dot enhancement filter that outputs a high 

value when all three eigenvalues of the Hessian matrix have large negative 

values.  Nomura et al. [2] used a similarity index that can distinguish 

spherelike aneurisms from ridgelike vessels.  Although their approach usually 

works well, the detected candidates inevitably include a large number of false 

positives, especially at vessel bifurcations.  Therefore, subsequent processes 

to eliminate false positives are required, greatly affecting the overall 

performance. 

  The other approach is to find an abnormal arterial branching pattern from the 

graph structure of an extracted artery.  After segmentation of the artery voxels, 

a 3-D thinning algorithm is applied to extract the centerlines.  Then the 
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centerlines are analyzed to find any suspicious points, such as end points of 

centerlines [4], short branches, or points with a locally maximal vascular radius 

[1].  In contrast to the curvature approach, the centerline approach can utilize 

branching pattern information to discriminate aneurysms from bifurcations.  

On the other hand, the 3-D thinning process has the “short hair” problem, i.e., 

a large number of false short branches where the arterial wall has small “lumps.”  

Therefore, a postprocess to remove [5] or classify [1, 3] short hairs is 

indispensable.  Another problem is how to represent local morphological and 

topological changes in the graph in the context of machine learning.  A large 

number of studies on the analysis of whole graph structures have been 

conducted in which the graph structure is embedded into a vector field (graph 

embedding) or evaluated by kernel methods (graph kernel) [6]. 

  In this study, I propose a novel feature set named HoTPiG (Histogram of 

Triangular Paths in Graph).  It is defined at each node in a given graph based 

on a 3-D histogram of shortest path distances between the node of interest and 

each of its neighboring node pairs.  The feature vector efficiently encodes the 

local graph network pattern around the node.  The graph structure can be 

determined directly from a binary label volume.  Since the thickness of the 

vessel is naturally encoded without any centerline extraction process, the “short 

hair” problem caused by the thinning algorithm does not occur.  Furthermore, 

the proposed feature is essentially robust to nonrigid deformations under the 

assumption that the graph structure extracted from the original image is not 

significantly changed by the deformation.  The proposed feature set is 

sufficiently effective for aneurysms in MRA images to be accurately classified 

by a support vector machine (SVM) without any complicated pre- or 

postprocesses.  The contributions of this study are as follows: (1) A novel 
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vector representation of a local graph structure for detecting abnormalities is 

presented, (2) a CAD application for detecting aneurysms in MRA images is 

implemented using the proposed graph feature and a state-of-the-art SVM 

classifier with explicit feature mapping, and (3) the usefulness of the proposed 

method is experimentally validated using a large dataset with 300 clinical MRA 

images, and high performance comparable to that of other state-of-the-art 

methods is demonstrated. 

 

5.2 HoTPiG 

  The proposed HoTPiG feature is defined for any arbitrary undirected graph 

based on bin counts of a 3-D histogram of shortest path lengths (Fig. 1).  One 

feature vector is determined for each node in the graph and can be readily used 

to classify the corresponding node as positive (e.g., aneurysm) or negative.  

The 3-D histogram accumulates counts of each triplet of distances between the 

target node and its two neighbor nodes as well as between the two neighbor 

nodes. 
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Fig. 2.  Example of calculation of HoTPiG features (with 𝑑𝑚𝑎𝑥 = 2). 

  Suppose that the graph includes |𝑈| nodes, and each node in the graph has 

an integer index 𝑙 ∈ U = {1,2,3,… , |𝑈|} .  Also suppose that the feature 

vector of node 𝑖 is to be calculated.  First, the shortest path distances from 𝑖 

to all other nodes are calculated (by a breadth first search).  Here, the shortest 

or or or

A, A' 1
B 3 3 6 3

C, C' 1 2 2 1
D 3 2 4 1
E 2 1
F 3 3 1 3
G 3 1 2

HoTPiG feature vector

Ex.
Counting all combinations of triplets 

where their shortest path 

distances …
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path distance is the number of steps (edges) along the shortest path between the 

pair of nodes.  Let the distance between nodes 𝑎 and 𝑏 be 𝑑𝑖𝑠𝑡(𝑎,𝑏).  I 

define the neighborhood of 𝑖, 𝑁𝑖 , as the set of nodes whose distances from 𝑖 

are no more than a predefined integer 𝑑𝑚𝑎𝑥  .  That means 𝑁𝑖 =

{𝑙 ∈ 𝑈|0 < 𝑑𝑖𝑠𝑡(𝑖, 𝑙) ≤ 𝑑𝑚𝑎𝑥  }. 

  Then, for any triplet of distances (𝑑𝑖𝑗,𝑑𝑖𝑘 ,𝑑𝑗𝑘) , the value of the 3-D 

histogram 𝐻𝑖(𝑑𝑖𝑗, 𝑑𝑖𝑘,𝑑𝑗𝑘) is defined as the number of node pairs (𝑗,𝑘) that 

satisfy the following conditions 

𝑗 ∈ 𝑁𝑖 , 𝑘 ∈ 𝑁𝑖 , 𝑑𝑖𝑠𝑡(𝑖, 𝑗) = 𝑑𝑖𝑗, 𝑑𝑖𝑠𝑡(𝑖, 𝑘) = 𝑑𝑖𝑘 ,𝑑𝑖𝑠𝑡(𝑗,𝑘) = 𝑑𝑗𝑘 .  (1) 

In practice, the two bins (𝑑𝑖𝑗, 𝑑𝑖𝑘,𝑑𝑗𝑘) and (𝑑𝑖𝑘 ,𝑑𝑖𝑗, 𝑑𝑗𝑘) are simply those 

with neighbor nodes 𝑗 and 𝑘 swapped.  Thus, these two bins are considered 

to be the same and only one count is incremented for such pairs of distance 

triplets. 

The counts of bins in histogram 𝐻𝑖 are used as the feature vector of node 𝑖.  

As shown in Fig. 1, the feature vector tends to vary widely among different 

nodes and is sensitive to topological changes in the local graph structure.  

Note that the extent of the locality can be controlled via the parameter  𝑑𝑚𝑎𝑥 . 

The calculation cost for the proposed method is estimated as follows.  The 

breadth-first search algorithm can calculate all the shortest path distances by 

performing 𝑂(|𝑈| ⋅ 𝐸(|𝑁𝑖|)) calculations, where 𝐸(|𝑁𝑖|) is the mean size of 

the neighborhoods.  On the other hand, the histogram counting requires 

O(|𝑈| ⋅ 𝐸(|𝑁𝑖|)
2)  count increment calculations.  Therefore, most of the 

calculation cost is for histogram counting. 
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5.3 Computer-assisted detection of aneurysms 

  As an application of the proposed HoTPiG feature, I have developed CAD 

software for aneurysm detection in MRA images.  The proposed CAD 

application is composed of four steps: (1) extraction of the binary label volume 

of arteries from MRA images, (2) calculation of graph structure features, (3) 

voxel-based classification by SVM, and (4) a thresholding and labeling process.   

5.3.1 Artery region extraction and HoTPiG feature calculation 

  Firstly, the artery region is extracted by a conventional region growing 

method.  The average 𝐼̅ and standard deviation 𝜎𝐼 of the brain region are 

estimated by sampling voxel values from a predefined mid-central subregion, 

that is, a horizontal rectangular plane with half the width and height placed at 

the center of the volume.  Then, the initial artery region is extracted by region 

growing, where the seed threshold and growing threshold are > 𝐼̅ + 3𝜎𝐼 and 

> 𝐼̅ + 2.5𝜎𝐼, respectively. 

  After the artery region is extracted, an undirected graph is composed.  I 

choose a simple graph structure whose nodes are all foreground (i.e., intra-

arterial) voxels, and the edges connect all 18-neighbor voxel pairs (Fig. 2).  

Here, an 18-neighborhood is chosen because it is more similar to the Euclidean 

distance than 6- and 26-neighborhoods.   

  Using this graph, the HoTPiG feature is calculated at each foreground voxel.  

The maximum distance used is 𝑑𝑚𝑎𝑥 = 11, considering the balance between 

the performance and the calculation cost.  Two modifications are applied to 

the method described in Section 2.  Firstly, a 1-D histogram with 𝑑𝑚𝑎𝑥 = 11 
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bins whose distances are {1,2,3,… ,11} may be too sparse when it is used as 

part of a 3-D histogram.  To cope with this, some distances are grouped into 

one bin and only six bins {1,2,3, [4,5], [6,7], [8,11]} are used.  These bins 

are determined so that their upper bounds are the geometric series 1.5n,n =

1,2,3,4,5,6.  Applying this bin set to each of three distances (𝑑𝑖𝑗, 𝑑𝑖𝑘 ,𝑑𝑗𝑘), 

the entire 3-D histogram has 6 ⋅6 C2 = 126 bins.  However, some bins never 

have a count because the corresponding distance triplet does not satisfy the 

triangle inequality.  After removing such bins, a total of 85 bins are included 

in the 3-D histogram in this study.  

  Additionally, a multidimensional approach is added to analyze gross vascular 

structures.  After downsampling the artery binary volume to half and a quarter 

of its original size, the graph structure features are extracted in the same manner.  

After feature extraction, each feature is upsampled by nearest neighbor 

interpolation and all the features of the three scales are merged voxel by voxel.  

Therefore, a total of 85× 3 = 255 features are calculated for each voxel.   

  Prior to the classification process, each feature is normalized by dividing by 

the standard deviation estimated from training datasets. 

5.3.2 Voxel-based classification by SVM 

  Using the extracted features, each voxel is classified as positive (aneurysm) 

or negative (normal artery) by a an SVM classifier [7].  The exponential-𝜒2 

kernel 𝐾(𝐱,𝐲) = exp (−
1

2𝜎2
⋅
1

2
∑

(𝑥𝑙−𝑦𝑙)
2

𝑥𝑙+𝑦𝑙
𝑙 )  [8], which is designed 

specifically for histogram comparison, is used in this study.  The classifier is 

trained using manually inputted aneurysm voxels in the training datasets as 

positive samples and other arterial voxels as negative samples.  Here, one of 
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the difficulties is the huge number (> 108) of training samples, because one 

MRA volume has approximately 106  artery voxels.  It is known that the 

computational cost of kernel SVM is of order 𝑂(𝑑𝑀2)~𝑂(𝑑𝑀3), where 𝑑 

and 𝑀 are the data dimensionality and number of samples, respectively.  To 

solve this problem, I utilized a feature map of the exponential-𝜒2 kernel [8] to 

reduce the original problem to a linear SVM whose computational cost is 

𝑂(𝑑𝑀).  The feature map is a function that explicitly maps the original feature 

vector of each sample to a higher-dimensional space, in contrast to the 

conventional kernel method, in which a vector is implicitly mapped to a higher-

dimensional space.  Using this feature map and the random reduction of 

negative samples (to 3% of the original number), the training task was 

calculated in approximately 20 min for 2×108 original samples. 

  In addition to the classifier with the HoTPiG feature set only, another 

classifier is also trained by adding two sets of Hessian-derived features (the dot 

enhancement filter [3] and shape index [2]) to evaluate the cooperativity of both 

types of features.  The two Hessian-derived features are calculated with six 

different scales; thus, a total of 12 features are added to the HoTPiG features. 

 

Fig. 3. (Left) Example of cerebral arteries in a volume.  (Middle) HoTPiG 

feature calculation for a voxel in an aneurysm.  (Right) Result of voxelwise 

aneurysm
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clustering of HoTPiG features into 20 clusters (displayed by their colors) by a 

k-means method.  Note that the vessel thickness and branching pattern can be 

clearly distinguished.  Furthermore, the mirror symmetry of the clustering 

result implies its robustness against local deformations and sensitivity to caliper 

changes. 

 

  In this study, the parameters of feature mapping are set to 𝑚 = 5000, 𝑛 =

2 , and 𝐿 = 0.6 , referring to [8].  The parameters of the kernel 𝜎  and the 

linear SVM 𝐶  are experimentally optimized (as described later in the next 

section).   

  Using the output values of the SVM, candidate aneurysm lesions and their 

lesionwise likelihoods are determined as follows.  Firstly, the SVM outputs 

are thresholded by zero and all nonpositive voxels are discarded.  Then, the 

positive voxels are labeled by connected component analysis and all connected 

components are outputted as candidate lesions.  The likelihood of each lesion 

is determined as the maximal value of SVM-derived likelihoods of the voxels 

in the lesion.  The representative point of each lesion is defined as this 

maximal value point. 

5.4 Experimental results 

  This study was approved by the ethical review board of our institution.  A 

total of 300 time-of-flight cerebral MRA volumes with 333 aneurysms were 

used in the experiment.   The voxel size was 0.469×0.469×0.6 mm.  Two 

board-certified radiologists diagnosed all images and manually inputted 

aneurysm regions. 
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  The proposed method was evaluated using 3-fold cross-validation.  Before 

the actual training, a hyperparameter optimization was performed in each fold 

using another nested 3-fold cross validation.  The optimal values of the two 

parameters 𝜎  and 𝐶  were searched for from the search space 𝜎 ∈

{20,30,40}  and 𝐶 ∈ {10,20,30}  by performing a grid search.  After 

optimization, the actual training was performed using all training datasets.  

The calculation of HoTPiG features took approximately 3 min per case using a 

workstation with 2 ×6 core Intel Xeon processers and 72 GB memory. 

  The overall performance of the method was evaluated using the free receiver 

operating characteristic (FROC) curve.  Each outputted lesion was 

determined as a successful detection if the representative point of the lesion 

was no more than 3 mm from the center of gravity of the ground truth region. 

  Figure 3 shows the FROC curves of the proposed method with and without 

additional Hessian features, as well as the one with Hessian features only.  The 

sensitivities with only HoTPiG features were 76.6% and 86.5% when the 

numbers of false positives (FPs) were 3 and 10 per case, respectively.  When 

combined with Hessian features, the sensitivities increased to 81.8% and 89.2% 

for 3 and 10 FPs/case, respectively.  Although a strict comparison cannot be 

made owing to the different datasets used, the sensitivity of 81.8% is superior 

to that reported by Yang et al. [1], whose detection sensitivity was 80% for 3 

FPs/case.  On the other hand, Nomura et al. [2] reported sensitivities of 81.5% 

and 89.5% when the training dataset sizes were 181 and 500 (also for 3 

FPs/case), respectively.  Since I used 200 datasets to train each SVM, I 

conclude that the performance of my CAD is comparable to that of Nomura et 

al. when the dataset size is equal.  Note that Nomura et al. did not use any 
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objective criterion (e.g., maximum acceptable error distance) to judge lesions 

outputted by CAD as true positives or false positives; instead, radiologists 

subjectively decided whether or not each CAD-outputted lesion corresponded 

to an aneurysm.    

  Figure 3 also shows the sensitivity for each aneurysm size (maximized by 

using 21 FPs/case).  Most detection failures occurred when the size of the 

aneurysms was less than 4 mm.  On the other hand, my method failed to detect 

two large aneurysms whose sizes were 6 mm and 13 mm.  This was very likely 

to have been due to a shortage of large aneurysms (only 19 with sizes ≥ 6 mm) 

in my dataset. 

 

Fig. 4. (Left) FROC curves for the proposed method with and without 

additional Hessian-derived features.  (Right) Sensitivities (with Hessian 

features) for each aneurysm size. 

 

5.5 Discussion 

  Among the various vascular diseases that involve the human body, 

aneurysms are characterized by their particular protuberant shape.  This study 

was inspired by the fact that many radiologists rely on 3-D reconstructed 
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vascular images to find aneurysms and other diseases in daily image 

interpretation.  This implies that only the shape of the tissue can be sufficient 

to detect such abnormalities.  The HoTPiG feature is designed to evaluate 

only the shape of the tissue and discard all image intensity informatio n 

including image gradations and textures.  This can be both a disadvantage and 

an advantage of HoTPiG.  On the one hand, it can only utilize a small part of 

the information provided by the original image.  On the other hand, HoTPiG 

can reveal image characteristics very different from those collected by most 

other image features based on image intensity information.  Indeed, HoTPiG 

showed cooperativity with existing Hessian-based features which has a 

weakness at branching sites of vessels.  The effectiveness of HoTPiG shown 

in this study may also be owing to the robustness of HoTPiG against local 

deformations.  Therefore, I believe that HoTPiG will be a powerful alternative 

tool for vectorizing shape characteristics of vessel-like organs. 

5.6 Conclusion 

  A novel HoTPiG feature set for evaluating vessel-like shapes was presented.  

It showed high performance for detecting cerebral aneurysms and cooperativity 

with existing image features.  My future works may include the application of 

HoTPiG to other applications such as lung nodule detection, in which 

discrimination between lesions and vascular bifurcations has similar 

importance. 
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  Anatomical landmarks are one of the most primitive representations of 

anatomical knowledge.  As known, a lot of anatomically salient points have 

been defined as landmarks and given their own names in anatomy.  They are 

used by physicians in their clinical daily works, as well as by many medical 

image processing applications.  Detecting, defining and using landmarks are 

the theme of this thesis. 

  In Chapter 2, I introduced a framework to detect over 100 landmarks 

simultaneously.  Since landmark detection process is usually used as  

preprocessing, its accuracy and robustness are important.  The proposed 

framework uses an L-PDM which is a statistical model of spatial distribution 

of landmarks.  Therefore, the framework can accurately detect many 

landmarks which are difficult to be detected individually.  Moreover, the 

framework can estimate positions of landmarks which are out of the imaging 
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range or undetected by the corresponding detector.  Therefore, I believe the 

proposed method has sufficient reliability for most of medical image analysis 

applications. 

  In Chapter 3 I attempted to define landmarks automatically.  The criterion 

named TCC was introduced, under an assumption that anatomical landmark 

points must be registered correctly and consistently in most of volume triplets.  

The experimental result showed that the proposed method can determine 

anatomically salient points in the human body.  This is a feasibility study and 

it requires many future works including validation with other image modalities, 

automatic detection of newly defined landmarks, and applying to medical 

image analysis applications. 

  Since landmarks are one of the most primitive representations of anatomical 

knowledge, it has a wide variety of applications in medical image analysis.  In 

Chapter 4 I introduced an application which performs registration-based 

segmentation (a multiatlas method) of the bone.  The registration method used 

is a combination of the diffeomorphic demons algorithm and landmark 

trajectory-based guidance.  The method was applied to the bony structure of 

the spine and the pelvis and the performance was comparable to other state-of-

the-art methods. 

  In Chapter 5, I introduced a new image feature set named HoTPiG.  

Although HoTPiG is not directly relevant to landmarks, it is very likely that 

HoTPiG can be used to detect landmarks defined on vessel-like structures, such 

as branching points of arteries or bronchi.  Because a lot of clinically 

important landmarks are defined on vessel-like structures, HoTPiG can be used 

widely in the landmark detection.  Combining HoTPiG and landmark 



 179 
Chapter 6 Conclusion 

detection will be one of my future works. 

  Among other future works, I would like to attempt to detect anatomical 

variant automatically.  Especially I am now focusing upon detecting vertebral 

number anomalies.  It is a very challenging problem to detect a series of 

landmarks where the number of landmarks can vary among subjects.  Another 

challenging future work is to detect vessel bifurcation landmarks (e.g. airways 

and blood vessels) where the bifurcation pattern can vary. 

  In conclusion, methods for detection, definition and application of landmarks 

were developed and discussed in this thesis.  It is obvious that both the number 

of landmarks and reliability of their detection are not fully satisfactory, thus 

more research is desired in this field.  It can be a goal of this research field 

that the human body is filled with automatically detectable landmarks. 
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Appendix B  Anatomical landmark list 

環軸関節歯突起中心 [Atlantoaxial_J] (atlantoaxial joint, center of dens) 

 AX COR 

AX 

  

SAG 

 

 

大体環椎の椎弓が見えるスライスで、歯突起の中心点。(骨のランドマークだが、例

外的に骨皮質上に点をとらないことに注意) 
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Appendix B  Anatomical landmark list 

胸骨上端 [Sternum_SupTip] (superior tip of sternum) 

 AX COR 

AX 

  

SAG 

 

 

矢状断で、胸骨正中の上端。胸骨の厚みについてもできるだけ中央をとること。 
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Appendix B  Anatomical landmark list 

胸骨下端（剣状突起除く） [Sternum_InfTip] (inferior tip of sternum) 

 AX COR 

AX 

  

SAG 

 

 

矢状断で、(剣状突起は除いた)胸骨正中の下端。 
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Appendix B  Anatomical landmark list 

右腸骨稜上端 [R_IliacCrest_Sup] (rt. superior margin of iliac crest) 

 AX COR 

AX 

  

SAG 

 

 

腸骨陵の、水平断でみたときの上縁のスライスで骨皮質上をとる。側彎がひどい場

合は頭側方向を考えて適宜補正する。 
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Appendix B  Anatomical landmark list 

左腸骨稜上端 [L_IliacCrest_Sup] (lt. superior margin of iliac crest) 

 AX COR 

AX 

  

SAG 
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Appendix B  Anatomical landmark list 

恥骨結合 [PubicSymphysis] 

 AX COR 

AX 

  

SAG 

 

 

恥骨結合の骨の間の間隙で、(矢状断で見て)恥骨結合の真ん中の点。典型的には矢

状断で骨の途切れるスライスで選ぶ。骨皮質のボクセルを選ばないように注意。 
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Appendix B  Anatomical landmark list 

尾骨先端 [Coccyx_Tip] 

 AX COR 

AX 

  

SAG 

 

 

尾骨の、CTで見える限りもっとも尾側の骨の先端。 
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Appendix B  Anatomical landmark list 

右最下位肋骨先端 [R_12thRib_Tip] 

 AX COR 

AX 

  

SAG 

 

 

右最下位肋骨(肋骨の数の破格がある場合でも最下位)の先端の皮質上の点。断面方

向では中心をとる。軟骨は(骨化があったとしても)入れないこと。 
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Appendix B  Anatomical landmark list 

左最下位肋骨先端 [L_12thRib_Tip] 

 AX COR 

AX 

  

SAG 

 

 

L_Rib-1_Tip 

 

  



 203 
Appendix B  Anatomical landmark list 

臍 [Umbilicus] 

 AX COR 

AX 

  

SAG 

 

 

臍。皮下脂肪の厚みの中央の深さあたりをとること。ただし空気濃度のボクセルは

避ける(へこんだ臍では、必要に応じてより深い点をとってよい)。 
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Appendix B  Anatomical landmark list 

右第 1肋骨外側端 [R_1stRib_LatMargin] 

 AX COR 

AX 

  

SAG 

 

 

矢状断で外側に向かって見ていって、骨皮質のもっとも外側のところのやや腹側。

第 1 肋骨が比較的急角に折れ曲がるあたり。 
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Appendix B  Anatomical landmark list 

左第 1肋骨外側端 [L_1stRib_LatMargin] 

 AX COR 

AX 

  

SAG 
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Appendix B  Anatomical landmark list 

右烏口突起 [R_CoracoidP] (rt. coracoid process) 

 AX COR 

AX 

  

SAG 

 

 

烏口突起の先端で、突起の輪切り方向では中心となるあたりの骨皮質上。 
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Appendix B  Anatomical landmark list 

左烏口突起 [L_CoracoidP] (lt. coracoid process) 

 AX COR 

AX 

  

SAG 
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Appendix B  Anatomical landmark list 

右肩峰 [R_Acromion] 

 AX COR 

AX 

  

SAG 

 

 

肩峰の先端。矢状断では(手下げ画像では)肩峰の幅のなかでやや前方よりとなる。 
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Appendix B  Anatomical landmark list 

左肩峰 [L_Acromion] 

 AX COR 

AX 

  

SAG 
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Appendix B  Anatomical landmark list 

右肩甲骨下端 [R_Scapula_InfTip] (inferior tip of rt. scapula) 

 AX COR 

AX 

  

SAG 

 

 

肩甲骨の板状部の下端。 
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Appendix B  Anatomical landmark list 

左肩甲骨下端 [L_Scapula_InfTip] (inferior tip of lt. scapula) 

 AX COR 

AX 

  

SAG 
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Appendix B  Anatomical landmark list 

仙骨上前端 [Sacrum_AntSupTip] (anteriosuperior tip of sacrum) 

 AX COR 

AX 

  

SAG 

 

 

岬角正中。ひどい骨棘は無視してよいが、できるだけ骨皮質に一致するように。 
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Appendix B  Anatomical landmark list 

右腸骨稜外側縁 [R_IliacCrest_Lat] (lateral margin of rt. iliac crest) 

 AX COR 

AX 

  

SAG 

 

 

腸骨陵の外側縁で、縫工筋の起始付着部の骨皮質の厚くなっているところ。 
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Appendix B  Anatomical landmark list 

左腸骨稜外側縁 [L_IliacCrest_Lat] (lateral margin of lt. iliac crest) 

 AX COR 

AX 

  

SAG 
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Appendix B  Anatomical landmark list 

右坐骨下端 [R_Ischium_InfMargin] (inferior margin of rt. ischium) 

 AX COR 

AX 

  

SAG 

 

 

水平断でスクロールしたときの坐骨の下端。 
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Appendix B  Anatomical landmark list 

左坐骨下端 [L_Ischium_InfMargin] (inferior margin of lt. ischium) 

 AX COR 

AX 

  

SAG 
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Appendix B  Anatomical landmark list 

右腎上極 [R_Kidney_SupTip] 

 AX COR 

AX 

  

SAG 

  

右腎の上極(もっとも頭側)の点。 
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Appendix B  Anatomical landmark list 

左腎上極 [L_Kidney_SupTip] 

 AX COR 

AX 

  

SAG 
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Appendix B  Anatomical landmark list 

右腎下極 [R_kidney_InfTip] 

 AX COR 

AX 

  

SAG 

 

 

右腎の下極のボクセル。 
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Appendix B  Anatomical landmark list 

左腎下極 [L_Kidney_InfTip] 

 AX COR 

AX 

  

SAG 

 

 

 

  



 221 
Appendix B  Anatomical landmark list 

門脈左右枝分枝部 [IHPV_Bifur] (bifurcation of intrahepatic portal vein) 

 AX COR 

AX 

  

SAG 

 

 

肝内門脈の右枝と左枝の分枝部の又のところ。見えにくいときは心眼でとるか、相

談を。 

  



222 
Appendix B  Anatomical landmark list 

肝右葉上端 [Liver_R_Lobe_Sup] (superior margin of rt. lobe of tliver) 

 AX COR 

AX 

  

SAG 

 

 

肝右葉の最上端、横隔膜のドーム頂点。 
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Appendix B  Anatomical landmark list 

肝下端 [Liver_InfTip] 

 AX COR 

AX 

  

SAG 

 

 

肝右葉後区域の下端。 
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Appendix B  Anatomical landmark list 

腹腔動脈起始部 [CA_Root] (root of celiac artery) 

 AX COR 

AX 

  

SAG 

 

 

腹腔動脈が大動脈から起始した直後のその中心。 
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Appendix B  Anatomical landmark list 

上腸間膜動脈（SMA）起始部 [SMA_Root] (root of superior mesenteric a.) 

 AX COR 

AX 

  

SAG 

 

 

上腸間膜動脈が大動脈から起始するところのその中心。 

 

  



226 
Appendix B  Anatomical landmark list 

右腎動脈起始部 [R_RenA_Root] (root of rt. renal artery) 

 AX COR 

AX 

  

SAG 

 

 

同定できないときは推測で大体のところを指定。 
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Appendix B  Anatomical landmark list 

左腎動脈起始部 [L_RenA_Root] (root of lt. renal artery) 

 AX COR 

AX 

  

SAG 
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Appendix B  Anatomical landmark list 

右肺尖 [R_LungApex] 

 AX COR 

AX 

  

SAG 

 

 

肺尖の上端。空気密度の点をとる。以下の肺の点も同じ。 
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Appendix B  Anatomical landmark list 

左肺尖 [L_LungApex] 

 AX COR 

AX 

  

SAG 

 

 

 

  



230 
Appendix B  Anatomical landmark list 

右肺底外側端 [R_LungBase_Lat] 

 AX COR 

AX 

  

SAG 

 

 

空気密度で、矢状断で最も外側尾側の肺の点をとる。 
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Appendix B  Anatomical landmark list 

左肺底外側端 [L_LungBase_Lat] 

 AX COR 

AX 

  

SAG 

 

 

 

  



232 
Appendix B  Anatomical landmark list 

右肺底腹側端 [R_LungBase_Ant] 

 AX COR 

AX 

  

SAG 

 

 

右肺前下縁の点。 
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Appendix B  Anatomical landmark list 

左肺底腹側端 [L_LungBase_Ant] 

 AX COR 

AX 

  

SAG 

 

 

左の心横隔膜角で、左心前面の肺下端。一点に決めにくいが、左右方向の位置に迷

ったら、左心の中央になるくらいを目安に決める。 
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Appendix B  Anatomical landmark list 

右肺底背側端 [R_LungBase_Post] 

 AX COR 

AX 

  

SAG 

 

 

最も尾側の右肺の点。 
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Appendix B  Anatomical landmark list 

左肺底背側端 [L_LungBase_Post] 

 AX COR 

AX 

  

SAG 
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Appendix B  Anatomical landmark list 

気管分枝部 [Trachea_Bifur] (bifurcation of trachea) 

 AX COR 

AX 

  

SAG 

 

 

気管分枝部の股間にあたる点。冠状断でみて、逆 Y 字の Y のまたのところの鞍点

をとる。空気濃度のボクセルは避ける。 
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Appendix B  Anatomical landmark list 

右気管支初回分枝部 [R_Bronchus_Bifur] (bifurcation of rt. main bronchus) 

 AX COR 

AX 

  

SAG 

 

 

矢状断でスクロールして、右気管支が上葉枝と中間幹に分かれるところの股間の鞍

点をとる。 
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Appendix B  Anatomical landmark list 

左気管支初回分枝部 [L_Bronchus_Bifur] (bifurcation of lt. main bronchus) 

 AX COR 

AX 

  

SAG 

 

 

同じく矢状断でみて、左上・下葉気管支分枝部の股間の鞍点。 
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Appendix B  Anatomical landmark list 

右乳頭 [R_Nipple] 

 AX COR 

AX 

  

SAG 
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Appendix B  Anatomical landmark list 

左乳頭 [L_Nipple] 

 AX COR 

AX 

  

SAG 
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Appendix B  Anatomical landmark list 

第 1頚椎棘突起先端 [C1_SpinousP] (C1 spinous process) 

 AX COR 

AX 

  

SAG 

 

 

環椎では棘突起はほとんどないことが多いが、その場合は椎弓の正中背側端をとる

こと。 
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Appendix B  Anatomical landmark list 

第 2頚椎棘突起先端 [C2_SpinousP] 

 AX COR 

AX 

  

SAG 
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Appendix B  Anatomical landmark list 

第 3頚椎棘突起先端 [C3_SpinousP] 

 AX COR 

AX 

  

SAG 

 

 

棘突起が二股に分かれているときは、その股の股間の鞍点をとる。さもなくば突起

の先端をとる。 
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Appendix B  Anatomical landmark list 

第 4頚椎棘突起先端 [C4_SpinousP] 

 AX COR 

AX 

  

SAG 
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Appendix B  Anatomical landmark list 

第 5頚椎棘突起先端 [C5_SpinousP] 

 AX COR 

AX 

  

SAG 
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Appendix B  Anatomical landmark list 

第 6頚椎棘突起先端 [C6_SpinousP] 

 AX COR 

AX 

  

SAG 
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Appendix B  Anatomical landmark list 

第 7頚椎棘突起先端 [C7_SpinousP] 

 AX COR 

AX 

  

SAG 
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Appendix B  Anatomical landmark list 

第 1胸椎棘突起先端 [Th1_SpinousP] 

 AX COR 

AX 

  

SAG 
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Appendix B  Anatomical landmark list 

第 2胸椎棘突起先端 [Th2_SpinousP] 

 AX COR 

AX 

  

SAG 
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Appendix B  Anatomical landmark list 

第 3胸椎棘突起先端 [Th3_SpinousP] 

 AX COR 

AX 

  

SAG 
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Appendix B  Anatomical landmark list 

第 4胸椎棘突起先端 [Th4_SpinousP] 

 AX COR 

AX 

  

SAG 
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Appendix B  Anatomical landmark list 

第 5胸椎棘突起先端 [Th5_SpinousP] 

 AX COR 

AX 

  

SAG 
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Appendix B  Anatomical landmark list 

第 6胸椎棘突起先端 [Th6_SpinousP] 

 AX COR 

AX 

  

SAG 

 

 

 

  



254 
Appendix B  Anatomical landmark list 

第 7胸椎棘突起先端 [Th7_SpinousP] 

 AX COR 

AX 

  

SAG 
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Appendix B  Anatomical landmark list 

第 8胸椎棘突起先端 [Th8_SpinousP] 

 AX COR 

AX 

  

SAG 

 

 

Th-6_SpinousP 
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Appendix B  Anatomical landmark list 

第 9胸椎棘突起先端 [Th9_SpinousP] 

 AX COR 

AX 

  

SAG 

 

 

Th-5_SpinousP 
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Appendix B  Anatomical landmark list 

第 10胸椎棘突起先端 [Th10_SpinousP] 

 AX COR 

AX 

  

SAG 

 

 

Th-4_SpinousP 
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Appendix B  Anatomical landmark list 

第 11胸椎棘突起先端 [Th11_SpinousP] 

 AX COR 

AX 

  

SAG 

 

 

Th-3_SpinousP 
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Appendix B  Anatomical landmark list 

第 12胸椎棘突起先端 [Th12_SpinousP] 

 AX COR 

AX 

  

SAG 

 

 

Th-2_SpinousP 

 

  



260 
Appendix B  Anatomical landmark list 

第 13胸椎棘突起先端 [Th13_SpinousP] 

 AX COR 

AX 

  

SAG 

 

 

(破格時のみ) 
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Appendix B  Anatomical landmark list 

第 1腰椎棘突起先端 [L1_SpinousP] 

 AX COR 

AX 

  

SAG 

 

 

上下に長い板状の棘突起の場合は、極力中央あたりをとる。 
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Appendix B  Anatomical landmark list 

第 2腰椎棘突起先端 [L2_SpinousP] 

 AX COR 

AX 

  

SAG 
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Appendix B  Anatomical landmark list 

第 3腰椎棘突起先端 [L3_SpinousP] 

 AX COR 

AX 

  

SAG 

 

 

 

  



264 
Appendix B  Anatomical landmark list 

第 4腰椎棘突起先端 [L4_SpinousP] 

 AX COR 

AX 

  

SAG 

 

 

L-3_SpinousP 

 

  



 265 
Appendix B  Anatomical landmark list 

第 5腰椎棘突起先端 [L5_SpinousP] 

 AX COR 

AX 

  

SAG 

 

 

L-2_SpinousP 

 

  



266 
Appendix B  Anatomical landmark list 

第 6腰椎棘突起先端 [L6_SpinousP] 

 AX COR 

AX 

  

SAG 

 

 

(破格時のみ) 

 

  



 267 
Appendix B  Anatomical landmark list 

右第 1肋骨近位端上縁 [R_Rib1_Prox] (proximal tip of rt. 1st rib) 

 AX COR 

AX 

  

SAG 

 

 

肋骨が椎骨横突起の根本前縁と接するところで、肋骨-椎骨間の関節があるところ。 

だいたい椎弓根と同じ高さでとる。 

  



268 
Appendix B  Anatomical landmark list 

左第 1肋骨近位端上縁 [L_Rib1_Prox] (proximal tip of lt. 1st rib) 

 AX COR 

AX 

  

SAG 
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Appendix B  Anatomical landmark list 

右第 2肋骨近位端上縁 [R_Rib2_Prox] 

 AX COR 

AX 

  

SAG 

 

 

 

  



270 
Appendix B  Anatomical landmark list 

左第 2肋骨近位端上縁 [L_Rib2_Prox] 

 AX COR 

AX 

  

SAG 

 

 

 

  



 271 
Appendix B  Anatomical landmark list 

右第 3肋骨近位端上縁 [R_Rib3_Prox] 

 AX COR 

AX 

  

SAG 

 

 

 

  



272 
Appendix B  Anatomical landmark list 

左第 3肋骨近位端上縁 [L_Rib3_Prox] 

 AX COR 

AX 

  

SAG 
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Appendix B  Anatomical landmark list 

右第 4肋骨近位端上縁 [R_Rib4_Prox] 

 AX COR 

AX 

  

SAG 

 

 

 

  



274 
Appendix B  Anatomical landmark list 

左第 4肋骨近位端上縁 [L_Rib4_Prox] 

 AX COR 

AX 

  

SAG 

 

 

 

  



 275 
Appendix B  Anatomical landmark list 

右第 5肋骨近位端上縁 [R_Rib5_Prox] 

 AX COR 

AX 

  

SAG 

 

 

 

  



276 
Appendix B  Anatomical landmark list 

左第 5肋骨近位端上縁 [L_Rib5_Prox] 

 AX COR 

AX 

  

SAG 
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Appendix B  Anatomical landmark list 

右第 6肋骨近位端上縁 [R_Rib6_Prox] 

 AX COR 

AX 

  

SAG 

 

 

 

  



278 
Appendix B  Anatomical landmark list 

左第 6肋骨近位端上縁 [L_Rib6_Prox] 

 AX COR 

AX 

  

SAG 

 

 

 

  



 279 
Appendix B  Anatomical landmark list 

右第 7肋骨近位端上縁 [R_Rib7_Prox] 

 AX COR 

AX 

  

SAG 

 

 

 

  



280 
Appendix B  Anatomical landmark list 

左第 7肋骨近位端上縁 [L_Rib7_Prox] 

 AX COR 

AX 

  

SAG 

 

 

 

  



 281 
Appendix B  Anatomical landmark list 

右第 8肋骨近位端上縁 [R_Rib8_Prox] 

 AX COR 

AX 

  

SAG 

 

 

R_Rib-6_Prox 

  



282 
Appendix B  Anatomical landmark list 

左第 8肋骨近位端上縁 [L_Rib8_Prox] 

 AX COR 

AX 

  

SAG 

 

 

L_Rib-6_Prox 

  



 283 
Appendix B  Anatomical landmark list 

右第 9肋骨近位端上縁 [R_Rib9_Prox] 

 AX COR 

AX 

  

SAG 

 

 

R_Rib-5_Prox 

  



284 
Appendix B  Anatomical landmark list 

左第 9肋骨近位端上縁 [L_Rib9_Prox] 

 AX COR 

AX 

  

SAG 

 

 

L_Rib-5_Prox 

  



 285 
Appendix B  Anatomical landmark list 

右第 10肋骨近位端上縁 [R_Rib10_Prox] 

 AX COR 

AX 

  

SAG 

 

 

R_Rib-4_Prox 

  



286 
Appendix B  Anatomical landmark list 

左第 10肋骨近位端上縁 [L_Rib10_Prox] 

 AX COR 

AX 

  

SAG 

 

 

L_Rib-4_Prox 

  



 287 
Appendix B  Anatomical landmark list 

右第 11肋骨近位端上縁 [R_Rib11_Prox] 

 AX COR 

AX 

  

SAG 

 

 

R_Rib-3_Prox 

  



288 
Appendix B  Anatomical landmark list 

左第 11肋骨近位端上縁 [L_Rib11_Prox] 

 AX COR 

AX 

  

SAG 

 

 

L_Rib-3_Prox 

  



 289 
Appendix B  Anatomical landmark list 

右第 12肋骨近位端上縁 [R_Rib12_Prox] 

 AX COR 

AX 

  

SAG 

 

 

第 12 肋骨は横突起との関係がやや他と異なる。付図を参照。 

  



290 
Appendix B  Anatomical landmark list 

左第 12肋骨近位端上縁 [L_Rib12_Prox] 

 AX COR 

AX 

  

SAG 

 

 

L_Rib-2_Prox 
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Appendix B  Anatomical landmark list 

右第 13肋骨近位端上縁 [R_Rib13_Prox] 

 AX COR 

AX 

  

SAG 

 

 

(破格時のみ) 

  



292 
Appendix B  Anatomical landmark list 

左第 13肋骨近位端上縁 [L_Rib13_Prox] 

 AX COR 

AX 

  

SAG 

 

 

(破格時のみ) 

  



 293 
Appendix B  Anatomical landmark list 

右上前腸骨棘 [R_AntSupIliacSp] (rt. anterior superior iliac spine) 

 AX COR 

AX 

  

SAG 

 

 

筋の起始部であることも手掛かりに点を決めること。 

  



294 
Appendix B  Anatomical landmark list 

左上前腸骨棘 [L_AntSupIliacSp] (lt. anterior superior iliac spine) 

 AX COR 

AX 

  

SAG 

 

 

 

  



 295 
Appendix B  Anatomical landmark list 

右下前腸骨棘 [R_AntInfIliacSp] (rt. anterior inferior iliac spine) 

 AX COR 

AX 

  

SAG 

 

 

突起としては微妙なことが多いが、臼蓋直上の小さな構造として同定できる。 

  



296 
Appendix B  Anatomical landmark list 

左下前腸骨棘 [L_AntInfIliacSp] (lt. anterior inferior iliac spine) 

 AX COR 

AX 

  

SAG 

 

 

 

  



 297 
Appendix B  Anatomical landmark list 

右上後腸骨棘 [R_PostSupIliacSp] (rt. posterior superior iliac spine) 

 AX COR 

AX 

  

SAG 

 

 

一点として同定するのはかなり難しい。付図を参考に。 

  



298 
Appendix B  Anatomical landmark list 

左上後腸骨棘 [L_PostSupIliacSp] (lt. posterior superior iliac spine) 

 AX COR 

AX 

  

SAG 

 

 

 

  



 299 
Appendix B  Anatomical landmark list 

右下後腸骨棘 [R_PostInfIliacSp] (rt. posterior inferior iliac spine) 

 AX COR 

AX 

  

SAG 

 

 

本研究では仙腸関節の下端あたりを目印に定めている。矢状断での形態を参考に。 

  



300 
Appendix B  Anatomical landmark list 

左下後腸骨棘 [L_PostInfIliacSp] (lt. posterior inferior iliac spine) 

 AX COR 

AX 

  

SAG 

 

 

 

  



 301 
Appendix B  Anatomical landmark list 

右坐骨棘 [R_IschiaticSp] (rt. ischiatic spine) 

 AX COR 

AX 

  

SAG 

 

 

たいてい、非常に骨皮質が薄い小さな突起として同定される。その先端をとる。 

  



302 
Appendix B  Anatomical landmark list 

左坐骨棘 [L_IschiaticSp] (lt. ischiatic spine) 

 AX COR 

AX 

  

SAG 

 

 

 

  



 303 
Appendix B  Anatomical landmark list 

右大坐骨切痕 [R_G_SciaticNotch] (rt. greater sciatic notch) 

 AX COR 

AX 

  

SAG 

 

 

坐骨の切れ込みの最深部の骨皮質をとること。 

  



304 
Appendix B  Anatomical landmark list 

左大坐骨切痕 [L_G_SciaticNotch] (lt. greater sciatic notch) 

 AX COR 

AX 

  

SAG 

 

 

 

  



 305 
Appendix B  Anatomical landmark list 

右閉鎖孔外側縁 [R_Obturator_Lat] (rt. obturator lateral margin) 

 AX COR 

AX 

  

SAG 

 

 

本研究では、冠状断でみて閉鎖孔の後縁、前後の坐骨枝が合するところを便宜的に

とっている。 

  



306 
Appendix B  Anatomical landmark list 

左閉鎖孔外側縁 [L_Obturator_Lat] (lt. obturator lateral margin) 

 AX COR 

AX 

  

SAG 

 

 

 

  



 307 
Appendix B  Anatomical landmark list 

右第 2最下位肋骨先端 [R_11thRib_Tip] 

 AX COR 

AX 

  

SAG 

 

 

肋骨の数に破格があるときは、その破格に沿って下から 2 番目の肋骨の先端をと

る。 

肋骨と腰椎横突起の区別がつけがたいときは相談してください。 

  



308 
Appendix B  Anatomical landmark list 

左第 2最下位肋骨先端 [L_11thRib_Tip] 

 AX COR 

AX 

  

SAG 

 

 

L_Rib-2_Tip 

  



 309 
Appendix B  Anatomical landmark list 

右第 1頸椎横突孔 [R_C1_TransvForamem] (rt. C1 transverse foramen) 

 AX COR 

AX 

  

SAG 

 

 

横突孔の孔の中心をとる。椎骨動脈低形成などのため孔がないときはその旨破格と

して記載を。 

  



310 
Appendix B  Anatomical landmark list 

左第 1頸椎横突孔 [L_C1_TransvForamem] (lt. C1 transverse foramen) 

 AX COR 

AX 

  

SAG 

 

 

 

  



 311 
Appendix B  Anatomical landmark list 

右第 2頸椎横突孔 [R_C2_TransvForamem] 

 AX COR 

AX 

  

SAG 

 

 

 

  



312 
Appendix B  Anatomical landmark list 

左第 2頸椎横突孔 [L_C2_TransvForamem] 

 AX COR 

AX 

  

SAG 

 

 

 

  



 313 
Appendix B  Anatomical landmark list 

右第 3頸椎横突孔 [R_C3_TransvForamem] 

 AX COR 

AX 

  

SAG 

 

 

 

  



314 
Appendix B  Anatomical landmark list 

左第 3頸椎横突孔 [L_C3_TransvForamem] 

 AX COR 

AX 

  

SAG 

 

 

 

  



 315 
Appendix B  Anatomical landmark list 

右第 4頸椎横突孔 [R_C4_TransvForamem] 

 AX COR 

AX 

  

SAG 

 

 

 

  



316 
Appendix B  Anatomical landmark list 

左第 4頸椎横突孔 [L_C4_TransvForamem] 

 AX COR 

AX 

  

SAG 

 

 

 

  



 317 
Appendix B  Anatomical landmark list 

右第 5頸椎横突孔 [R_C5_TransvForamem] 

 AX COR 

AX 

  

SAG 

 

 

 

  



318 
Appendix B  Anatomical landmark list 

左第 5頸椎横突孔 [L_C5_TransvForamem] 

 AX COR 

AX 

  

SAG 

 

 

 

  



 319 
Appendix B  Anatomical landmark list 

右第 6頸椎横突孔 [R_C6_TransvForamem] 

 AX COR 

AX 

  

SAG 

 

 

 

  



320 
Appendix B  Anatomical landmark list 

左第 6頸椎横突孔 [L_C6_TransvForamem] 

 AX COR 

AX 

  

SAG 

 

 

 

  



 321 
Appendix B  Anatomical landmark list 

右第 7頸椎横突孔 [R_C7_TransvForamem] 

 AX COR 

AX 

  

SAG 

 

 

第 7 頸椎には横突孔と呼ぶべき構造がないことが多い。代わりに横突起にあたると

ても細い構造が 2本同定されるはずなので、その間の根本近くをとる。 

  



322 
Appendix B  Anatomical landmark list 

左第 7頸椎横突孔 [L_C7_TransvForamem] 

 AX COR 

AX 

  

SAG 

 

 

 

  



 323 
Appendix B  Anatomical landmark list 

右第 1腰椎横突起先端 [R_L1_TransverseP] (rt. L1 transverse process tip) 

 AX COR 

AX 

  

SAG 

 

 

横突起の先端の骨皮質上をとる。 

  



324 
Appendix B  Anatomical landmark list 

左第 1腰椎横突起先端 [L_L1_TransverseP] (lt. L1 transverse process tip) 

 AX COR 

AX 

  

SAG 

 

 

 

  



 325 
Appendix B  Anatomical landmark list 

右第 2腰椎横突起先端 [R_L2_TransverseP] 

 AX COR 

AX 

  

SAG 

 

 

 

  



326 
Appendix B  Anatomical landmark list 

左第 2腰椎横突起先端 [L_L2_TransverseP] 

 AX COR 

AX 

  

SAG 

 

 

 

  



 327 
Appendix B  Anatomical landmark list 

右第 3腰椎横突起先端 [R_L3_TransverseP] 

 AX COR 

AX 

  

SAG 

 

 

 

  



328 
Appendix B  Anatomical landmark list 

左第 3腰椎横突起先端 [L_L3_TransverseP] 

 AX COR 

AX 

  

SAG 

 

 

 

  



 329 
Appendix B  Anatomical landmark list 

右第 4腰椎横突起先端 [R_L4_TransverseP] 

 AX COR 

AX 

  

SAG 

 

 

R_L-3_TransverseP 

  



330 
Appendix B  Anatomical landmark list 

左第 4腰椎横突起先端 [L_L4_TransverseP] 

 AX COR 

AX 

  

SAG 

 

 

L_L-3_TransverseP 

  



 331 
Appendix B  Anatomical landmark list 

右第 5腰椎横突起先端 [R_L5_TransverseP] 

 AX COR 

AX 

  

SAG 

 

 

R_L-2_TransverseP 

  



332 
Appendix B  Anatomical landmark list 

左第 5腰椎横突起先端 [L_L5_TransverseP] 

 AX COR 

AX 

  

SAG 

 

 

L_L-2_TransverseP 

  



 333 
Appendix B  Anatomical landmark list 

右第 6腰椎横突起先端 [R_L6_TransverseP] 

 AX COR 

AX 

  

SAG 

 

 

(破格時のみ) 

  



334 
Appendix B  Anatomical landmark list 

左第 6腰椎横突起先端 [L_L6_TransverseP] 

 AX COR 

AX 

  

SAG 

 

 

(破格時のみ) 

  



 335 
Appendix B  Anatomical landmark list 

C1下椎間後縁正中 [C1_Intervert_Post] (C1/2 intervertebral disk posterior) 

 AX COR 

AX 

  

SAG 

 

 

C1/2 椎間腔の後縁正中(脊柱管の前縁正中)を点として取る。骨棘は極力無視するこ

と。 

  



336 
Appendix B  Anatomical landmark list 

C2下椎間後縁正中 [C2_Intervert_Post] 

 AX COR 

AX 

  

SAG 

 

 

C2/3 椎間腔後縁正中。 

  



 337 
Appendix B  Anatomical landmark list 

C3下椎間後縁正中 [C3_Intervert_Post] 

 AX COR 

AX 

  

SAG 

 

 

C3/4 椎間腔後縁正中。 

  



338 
Appendix B  Anatomical landmark list 

C4下椎間後縁正中 [C4_Intervert_Post] 

 AX COR 

AX 

  

SAG 

 

 

C4/5 椎間腔後縁正中。 

  



 339 
Appendix B  Anatomical landmark list 

C5下椎間後縁正中 [C5_Intervert_Post] 

 AX COR 

AX 

  

SAG 

 

 

C5/6 椎間腔後縁正中。 

  



340 
Appendix B  Anatomical landmark list 

C6下椎間後縁正中 [C6_Intervert_Post] 

 AX COR 

AX 

  

SAG 

 

 

C6/7 椎間腔後縁正中。 

  



 341 
Appendix B  Anatomical landmark list 

C7下椎間後縁正中 [C7_Intervert_Post] 

 AX COR 

AX 

  

SAG 

 

 

C7/Th1 椎間腔後縁正中。 

  



342 
Appendix B  Anatomical landmark list 

Th1下椎間後縁正中 [Th1_Intervert_Post] 

 AX COR 

AX 

  

SAG 

 

 

Th1/2 椎間腔後縁正中。 

  



 343 
Appendix B  Anatomical landmark list 

Th2下椎間後縁正中 [Th2_Intervert_Post] 

 AX COR 

AX 

  

SAG 

 

 

Th2/3 椎間腔後縁正中。 

  



344 
Appendix B  Anatomical landmark list 

Th3下椎間後縁正中 [Th3_Intervert_Post] 

 AX COR 

AX 

  

SAG 

 

 

Th3/4 椎間腔後縁正中。 

  



 345 
Appendix B  Anatomical landmark list 

Th4下椎間後縁正中 [Th4_Intervert_Post] 

 AX COR 

AX 

  

SAG 

 

 

Th4/5 椎間腔後縁正中。 

  



346 
Appendix B  Anatomical landmark list 

Th5下椎間後縁正中 [Th5_Intervert_Post] 

 AX COR 

AX 

  

SAG 

 

 

Th5/6 椎間腔後縁正中。 

  



 347 
Appendix B  Anatomical landmark list 

Th6下椎間後縁正中 [Th6_Intervert_Post] 

 AX COR 

AX 

  

SAG 

 

 

Th6/7 椎間腔後縁正中。 

  



348 
Appendix B  Anatomical landmark list 

Th7下椎間後縁正中 [Th7_Intervert_Post] 

 AX COR 

AX 

  

SAG 

 

 

Th7/8 椎間腔後縁正中。 

  



 349 
Appendix B  Anatomical landmark list 

Th8下椎間後縁正中 [Th8_Intervert_Post] 

 AX COR 

AX 

  

SAG 

 

 

Th8/9 椎間腔後縁正中。 

  



350 
Appendix B  Anatomical landmark list 

Th9下椎間後縁正中 [Th9_Intervert_Post] 

 AX COR 

AX 

  

SAG 

 

 

Th9/10 椎間腔後縁正中。 

  



 351 
Appendix B  Anatomical landmark list 

Th10下椎間後縁正中 [Th10_Intervert_Post] 

 AX COR 

AX 

  

SAG 

 

 

Th10/11 椎間腔後縁正中。 

  



352 
Appendix B  Anatomical landmark list 

Th11下椎間後縁正中 [Th11_Intervert_Post] 

 AX COR 

AX 

  

SAG 

 

 

Th11/12 椎間腔後縁正中。 

  



 353 
Appendix B  Anatomical landmark list 

Th12下椎間後縁正中 [Th12_Intervert_Post] 

 AX COR 

AX 

  

SAG 

 

 

Th12/L1、ただし Th13 が存在するときは Th12/13 

  



354 
Appendix B  Anatomical landmark list 

Th13下椎間後縁正中 [Th13_Intervert_Post] 

 AX COR 

AX 

  

SAG 

 

 

(破格時のみ)Th13 が存在するときのみ、Th13/L1 をとる。 

  



 355 
Appendix B  Anatomical landmark list 

L1下椎間後縁正中 [L1_Intervert_Post] 

 AX COR 

AX 

  

SAG 

 

 

Th12(もしくは 13)/L1 椎間腔後縁正中。 

  



356 
Appendix B  Anatomical landmark list 

L2下椎間後縁正中 [L2_Intervert_Post] 

 AX COR 

AX 

  

SAG 

 

 

L2/3 椎間腔後縁正中。 

  



 357 
Appendix B  Anatomical landmark list 

L3下椎間後縁正中 [L3_Intervert_Post] 

 AX COR 

AX 

  

SAG 

  

L3/4 椎間腔後縁正中。 

  



358 
Appendix B  Anatomical landmark list 

L4下椎間後縁正中 [L4_Intervert_Post] 

 AX COR 

AX 

  

SAG 

 

 

L4/5 椎間腔後縁正中。 

  



 359 
Appendix B  Anatomical landmark list 

L5下椎間後縁正中 [L5_Intervert_Post] 

 AX COR 

AX 

  

SAG 

 

 

L5/S1 椎間腔後縁正中。L6 があるときは L5/L6。 

  



360 
Appendix B  Anatomical landmark list 

L6下椎間後縁正中 [L6_Intervert_Post] 

 AX COR 

AX 

  

SAG 

 

 

(破格時のみ)L6/S1 椎間腔後縁正中。 

  



 361 
Appendix B  Anatomical landmark list 

右恥骨結節 [R_Pubic_Tubercle] 

 AX COR 

AX 

  

SAG 

 

 

恥骨結合の右、恥骨がやや前方に隆起したところ。ただし対応する構造がないこと

もあり、そのときはだいたい恥骨結合から 1cmほど外側のところの骨皮質をとる。 

  



362 
Appendix B  Anatomical landmark list 

左恥骨結節 [L_Pubic_Tubercle] 

 AX COR 

AX 

  

SAG 

 

 

 

  



 363 
Appendix B  Anatomical landmark list 

右大転子 [R_Greater_Trochanter] 

 AX COR 

AX 

  

SAG 

 

 

右大転子の頭側端を原則としてはとる。頭側端のなかでどこをとるか迷ったら、突

起として先端に近いほうをとる。 

  



364 
Appendix B  Anatomical landmark list 

左大転子 [L_Greater_Trochanter] 

 AX COR 

AX 

  

SAG 

 

 

 

  



 365 
Appendix B  Anatomical landmark list 

右小転子 [R_Lesser_Trochanter] 

 AX COR 

AX 

  

SAG 

 

 

小転子は小さいので、先端中心の骨皮質を選ぶ。 

  



366 
Appendix B  Anatomical landmark list 

左小転子 [L_Lesser_Trochanter] 

 AX COR 

AX 

  

SAG 

 

 

 

  



 367 
Appendix B  Anatomical landmark list 

仙骨管後上縁 [SacralCanal_PostSupTip] 

 AX COR 

AX 

  

SAG 

 

 

仙骨管(仙骨に囲まれた、脊柱管と連続する腔)の後壁の上前縁。必ず仙骨正中でと

ること。左右に分裂している(癒合していない)ことも多いが、そのときは分裂して

いないレベルまで尾側に下がったところを取る。 

  



368 
Appendix B  Anatomical landmark list 

仙骨体後上縁 [SacralBody_PostSupTip] 

 AX COR 

AX 

  

SAG 

 

 

仙骨管の前壁上縁、仙骨体の後上縁。L5/S 椎間板後縁正中とほぼ同一の点だが、こ

ちらは骨皮質上をとる。 

  



 369 
Appendix B  Anatomical landmark list 

第 1-2仙椎椎間板正中前縁 [Sacrum_Intervert_Ant] 

 AX COR 

AX 

  

SAG 

 

 

S1/2 の椎間板(もしくは椎間板様の構造)の正中前縁。骨癒合していることが多く、

そのときは骨皮質上をとる。さもなくば椎間板前端となる。 

  



370 
Appendix B  Anatomical landmark list 

第 1-2仙椎椎間板正中後縁 [Sacrum_Intervert_Post] 

 AX COR 

AX 

  

SAG 

 

 

同じく S1/2 椎間板(様構造)の正中後縁で、仙骨管前縁。 

  



 371 
Appendix B  Anatomical landmark list 

右第 1-2仙椎椎間板外側縁 [R_Sacrum_Intervert] 

 AX COR 

AX 

  

SAG 

 

 

S1/2 の椎間板(様構造)の右縁。S1 神経根の通る神経孔が椎間板を左右に挟んでメ

ガネ状に並んでいる水平断スライスを選び、その右神経孔と S1/2 椎間板との接点

をとること。 

  



372 
Appendix B  Anatomical landmark list 

左第 1-2仙椎椎間板外側縁 [L_Sacrum_Intervert] 

 AX COR 

AX 

  

SAG 

 

 

 

  



 373 
Appendix B  Anatomical landmark list 

右 SuperiorSacralNotch [R_Sup_Sacral_Notch] 

 AX COR 

AX 

  

SAG 

 

 

仙骨の仙骨体(椎体にあたる部分)と右の仙腸関節部の間で、冠状断でみて仙骨が尾

側にくぼんでいるところの、その鞍点をとる。 

  



374 
Appendix B  Anatomical landmark list 

左 SuperiorSacralNotch [L_Sup_Sacral_Notch] 

 AX COR 

AX 

  

SAG 

 

 

 

  



 375 
Appendix B  Anatomical landmark list 

右転子窩 [R_TrochantericFossa] 

 AX COR 

AX 

  

SAG 

 

 

右大転子と小転子の間の峠となる鞍点。 

  



376 
Appendix B  Anatomical landmark list 

左転子窩 [L_TrochantericFossa] 

 AX COR 

AX 

  

SAG 

 

 

 

 


