
Operator-based nonlinear control using

extended robust right coprime

factorization

March, 2017

Fazhan Tao

The Graduate School of Engineering

(Doctor’s Course)

TOKYO UNIVERSITY OF

AGRICULTURE AND TECHNOLOGY



i

Acknowledgements

The pursuit of the Ph.D. degree was one of the most challenging and

also one of the most rewarding experiences in my life. The guidance and

support of the following people was invaluable. Without their advice and

encouragement, a successful outcome would be unimaginable. I sincerely

appreciate their priceless help and support.

My deepest gratitude goes first and foremost to Professor Mingcong Deng,

my supervisor, for his constant encouragement and guidance. His important

guidance has been keeping me moving in the right direction, which highly

improves my research ability. Without his consistent and illuminating in-

struction, this dissertation could not have reached its present form.

I would like to express my gratitude to my supervisors Professor Shinji

Wakui, Professor Hitoshi Kitazawa, Professor Toshiaki Iwai and Professor

Yasuhiro Takaki for their instructive advices and useful suggestions on my

research, especially in writing this dissertation. I am deeply grateful of their

help in the completion of this dissertation.

Thanks to my colleagues at Tokyo University of Agriculture and Tech-

nology who have supported me and offered help in various ways. Especially

thanks go to Ph. D. students, Mr. Tomohito Hanawa, Mr. Yanfeng Wu, Miss

Mengyang Li, Mr. Guang Jin and Mr. Xudong Gao, and other members of

laboratory.

Last my thanks would go to my beloved family for loving considerations

and great confidence all through these years. I am deeply indebted to my

parents and sisters, who have provided much moral and material support on

every aspect of my life, especially the long years of my education, as well as

kept me away from family responsibilities and encouraged me to concentrate

on my research.





Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Developments of coprime factorization . . . . . . . . . . . . . 3

1.3 Motivations of the dissertation . . . . . . . . . . . . . . . . . . 7

1.4 Contributions of the dissertation . . . . . . . . . . . . . . . . . 8

1.5 Organization of the dissertation . . . . . . . . . . . . . . . . . 10

2 Mathematical preliminaries and problem statement 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Mathematical preliminaries . . . . . . . . . . . . . . . . . . . 14

2.2.1 Definitions of spaces . . . . . . . . . . . . . . . . . . . 14

2.2.2 Definitions of operators . . . . . . . . . . . . . . . . . . 16

2.2.3 Operator-based right coprime factorization . . . . . . . 21

2.3 Problem setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Extended right coprime factorization and robust control us-

ing Lα operator 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Extended right coprime factorization with Lα operator . . . . 29

3.2.1 Lα operator . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.2 An example to explain Lα operator . . . . . . . . . . . 32

iii



iv CONTENTS

3.2.3 Extended right coprime factorization . . . . . . . . . . 33

3.3 Robust control using extended robust right coprime factoriza-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 Problem statement . . . . . . . . . . . . . . . . . . . . 36

3.3.2 Mathematical preliminaries . . . . . . . . . . . . . . . 38

3.3.3 Robust stability . . . . . . . . . . . . . . . . . . . . . . 41

3.3.4 Simulation example . . . . . . . . . . . . . . . . . . . . 44

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Extended right coprime factorization and robust control us-

ing adjoint operator 53

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Right coprime factorization with adjoint operator . . . . . . . 55

4.2.1 Problem statement . . . . . . . . . . . . . . . . . . . . 55

4.2.2 Adjoint operator . . . . . . . . . . . . . . . . . . . . . 55

4.2.3 Factorization method based on adjoint operator . . . . 57

4.2.4 Existence of two controllers A and B . . . . . . . . . . 61

4.3 Robust control for perturbed nonlinear systems . . . . . . . . 62

4.3.1 An example showing the necessity of proposed method 62

4.3.2 Rational boundedness for robust control condition . . . 63

4.3.3 Simulation example . . . . . . . . . . . . . . . . . . . . 66

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Left coprime factorization realization based on right factor-

ization and issues on robust stability of MIMO nonlinear

systems 71

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Internal-output stability and left coprime factoriztion . . . . . 74

5.2.1 Problem statement . . . . . . . . . . . . . . . . . . . . 74

5.2.2 Mathematical preliminaries . . . . . . . . . . . . . . . 75



CONTENTS v

5.2.3 Internal-output stability and left coprime factorization 76

5.2.4 Simulation example . . . . . . . . . . . . . . . . . . . . 81

5.3 Robust stability of MIMO nonlinear systems . . . . . . . . . . 85

5.3.1 Problem statement . . . . . . . . . . . . . . . . . . . . 85

5.3.2 Robust stability of MIMO nonlinear systems . . . . . . 85

5.3.3 Simulation example . . . . . . . . . . . . . . . . . . . . 91

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Conclusions 97

Bibliography 101

A Proof 117

A.1 Proof of Lemma 2.1 . . . . . . . . . . . . . . . . . . . . . . . . 117

A.2 Proof of Lemma 2.2 . . . . . . . . . . . . . . . . . . . . . . . . 118

A.3 Proof of Lemma 2.4 . . . . . . . . . . . . . . . . . . . . . . . . 118

A.4 Proof of Lemma 2.5 . . . . . . . . . . . . . . . . . . . . . . . . 118

B Publications 121





List of Figures

2.1 An operator diagram . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 A nonlinear system with right coprime factorization . . . . . . 22

2.3 A nonlinear system with bounded perturbations . . . . . . . . 23

3.1 An example to explain the Lα operator . . . . . . . . . . . . . 32

3.2 The proposed deisgn scheme based on Lα operator . . . . . . . 35

3.3 The equivalent of P . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 The perturbed nonlinear system . . . . . . . . . . . . . . . . . 37

3.5 A nonlinear system satisfying Lα condition . . . . . . . . . . . 45

3.6 Reference input r . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7 The effectiveness of (3.11) . . . . . . . . . . . . . . . . . . . . 48

3.8 The effectiveness of (3.12) . . . . . . . . . . . . . . . . . . . . 49

3.9 Plant output y . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 The proposed system with the compensator S−1 . . . . . . . . 58

4.2 The nonlinear system with perturbations by isomorphism . . . 59

4.3 New proposed nonlinear system with perturbations by isomor-

phism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Plant output y & reference input r . . . . . . . . . . . . . . . 69

5.1 A nonlinear system with left factorization . . . . . . . . . . . 75

5.2 Feedback system with the compensator S . . . . . . . . . . . . 77

vii



viii LIST OF FIGURES

5.3 The whole equivalent system with the compensator S . . . . . 78

5.4 The designed scheme for the nonlinear system . . . . . . . . . 79

5.5 Equivalent system of Figure 5.4 . . . . . . . . . . . . . . . . . 80

5.6 Reference input . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.7 Plant output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.8 MIMO nonlinear systems with coupling effect. . . . . . . . . . 87

5.9 Decoupling design scheme for MIMO nonlinear systems. . . . . 88

5.10 MIMO nonlinear systems with uncertainties. . . . . . . . . . . 88

5.11 Effectiveness (5.9) of P1. . . . . . . . . . . . . . . . . . . . . . 92

5.12 Effectiveness (5.10) of P1. . . . . . . . . . . . . . . . . . . . . 92

5.13 Effectiveness (5.9) of P2. . . . . . . . . . . . . . . . . . . . . . 93

5.14 Effectiveness (5.10) of P2. . . . . . . . . . . . . . . . . . . . . 93

5.15 Effectiveness (5.9) of P3. . . . . . . . . . . . . . . . . . . . . . 94

5.16 Effectiveness (5.10) of P3. . . . . . . . . . . . . . . . . . . . . 94

5.17 Reference input r1. . . . . . . . . . . . . . . . . . . . . . . . . 95

5.18 Plant Output y1. . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.19 Reference input r2. . . . . . . . . . . . . . . . . . . . . . . . . 95

5.20 Plant Output y2. . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.21 Reference input r3. . . . . . . . . . . . . . . . . . . . . . . . . 96

5.22 Plant Output y3. . . . . . . . . . . . . . . . . . . . . . . . . . 96



Chapter 1

Introduction

1.1 Background

With the development of modern control engineering and the requirement

on the precise, reliable and safe control for systems, effective design scheme

and accurate control aiming on guaranteeing perfect performance of systems

and meeting the demand of real application have received much attentions

from engineers and researchers [1],−, [18].

In terms of the development in control for systems, both linear systems

and nonlinear systems have been developing greatly in the last three decades

from many viewpoints. The traditional approaches of linear systems are still

the most dominating due to its simple structure and mature theoretical sup-

port. Whereas, as a matter of fact, most of the real dynamic systems in

application have nonlinear property, due to the intrinsic complexity in struc-

tures and the nonlinear dynamics in application. Therefore, considering the

fact that linear controllers and design method cannot be satisfied with this

demand, research and development of an effective approach for nonlinear

systems control and design have always been top topic for improving perfor-

mance and decreasing cost of systems to meet the needs in real application

[4], [17], [19],−, [90] and [92],−, [105].
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2 CHAPTER 1. INTRODUCTION

Among the nonlinear researches, uncertainties study for nonlinear systems

has been attracting a lot of attention due to that robust phenomenons always

exist broadly in nonlinear systems leading to many unavoidable problems in

real application [21],−, [29]. Generally, the uncertainties include parametric

uncertainties, general uncertainties coming from modeling errors and exter-

nal disturbances, which are always referred to uncertain nonlinearities or

unknown nonlinear functions.

The existing uncertainties in the real systems usually have a great ad-

verse effect on stability of the overall systems which could result in a serious

damage to the systems. Thus, from the viewpoint of accuracy, reliability

and safety for systems, it is necessary and important to eliminate or even

remove the adverse effect resulted from uncertainties of the systems. One of

the promising directions for soling this issue is to guarantee robust stability

of the overall systems including uncertainties such that the overall systems

can still works well in a normal way. Thus, robust researches have been ob-

taining much more attention from various areas, which have become one of

main concerns in the modern control and design.

Over the past decades, for dealing with the family of issues on robust-

ness due to the existing uncertainties in systems, a great number of meth-

ods for nonlinear systems are proposed, such as Lyapunov-based method,

gain scheduling method, feedback linearization method, backstepping tech-

nique, sliding mode control theory, right coprime factorization method ,adap-

tive control approach and so on [41],−, [49]. Among these above mentioned

methods, operator-based right coprime factorization has been proved to be a

promising and effective method on robust control and system design since this

method provides a convenient framework for nonlinear systems from the view

of point of input-output relationship based on operator theory [50],−, [90].
In terms of the right coprime factorization method, there exist the compara-

tive and main merits even though every appearing nonlinear control method
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has its own merits and limitations on dealing with nonlinear systems. First,

operator-based right coprime factorization is focused on the general case, only

require the input-output relationship, which can be obtained relatively easy

to take experimental data. Compared to other most of the techniques for

control and design of nonlinear systems, there is no need to measure all the

states of systems, which provides a relative convenient framework to study

robustness of the nonlinear systems. Second, the usability of right coprime

factorization is prominent, which just requires to build a Bezout identity for

guaranteeing bounded input bounded output stability of nonlinear systems.

Third, in terms of robustness study of the nonlinear systems, the right co-

prime factorization has a intrinsic advantage that it has a simple description

for the uncertain nonlinear systems which reduce the difficulties in getting

effect dependence on the uncertainties. This merit could lead to a direct

analysis for control of the uncertain nonlinear systems.

In the following section, a detailed summary on the development of operator-

based right coprime factorization is outlined [50],−, [90].

1.2 Developments of coprime factorization

The development of coprime factorization and its application in analysis,

control and design for systems are fairly well understood for both linear and

nonlinear systems by now. The origin of the idea leading to the coprime

factorization method can be traced to the work of Rosenbrock [7], who con-

siders polynomial matrix expression for linear time invariant (LTI) systems

described by a family of ordinary differential equations. Based on polynomial

matrix fraction description for multivariable transfer functions, parameteri-

zation of all stabilizing controllers for finite-dimensional linear time-invariant

(FDLTI) systems is studied in the context of obtaining optimization for con-

trollers [8]. Callier , F. M. and Desoer, C. A. extend the definition of coprime
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factorization to distributed LTI systems. In the case of distributed LTI sys-

tems, attention is focused on the class of systems which form a Bezout do-

main and for which the existence of coprime fractional representations can be

demonstrate. [9] proposes some sufficient conditions for existence of a dou-

bly coprime factorization of a large class of infinite-dimensional systems well

known as regular linear systems. Coprime factorization and well posed linear

systems are discussed based on appropriate stabilizability and detectability,

obtaining that every function with doubly coprime factorization in H∞ is

the transfer function of a jointly stabilizable and detectable well posed linear

system. Besides these results on linear systems based on the notation of co-

prime factorization, the idea of coprime factorization also has made a great

effect on nonlinear systems for provide a convenient framework to research

the nonlinear systems from a view of point of the input-output stability.

In [82], the authors extend the case from FDLTI systems to nonlinear

systems represented by the set of all stable input-output pairs based on

right coprime factorization. Meanwhile, coprimeness property is proved to be

equivalent to that of FDLTI systems. [83] considers the relationship between

factorization representation and stability of time-invariant and discrete-time

nonlinear systems, giving some mild necessary and sufficient conditions for

existence of a factorization of recursive systems, where the factorization are

stable recursive systems. Besides, the detailed construction of such a fac-

torization is discussed. After that, the author of [84] considers a theory

of coprimeness developed for a class of nonlinear systems, with the inten-

tion of constructing analytic tools for the solution of stabilizing a nonlinear

system by using the additive nonlinear feedback technique. In addition,

besides the viewpoint from the input-output of systems, many researchers

consider coprime factorization from state-space equation view of point. In

[69], the author shows that right coprime factorizations exist for the input-

to-state mapping of a continuous time nonlinear system under the condition
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of existing the smooth feedback stabilization solution for the system, and

it shows that smooth stabilization implies smooth input-to-state stabiliza-

tion. The authors of [70] first study the normalized right and left coprime

factorizations of a nonlinear system from a state-space point of view and

make use of the proposed normalized coprime factorization to give a method

to balance the unstable nonlinear system based on a smooth solution of a

Hamilton-Jacobi equation. Moreover, in [71], the Youla parameterization

method is generalized from linear systems to nonlinear system, stabilizing a

nonlinear system by using a unstable compensator and a stable compensator,

and parameterizing a class of stabilizers in the context of a bounded-input

bounded-output (BIBO) stable. Later, the state-space characterization con-

cerned with Youla-Kucera parameterization is studied as well for a class of

nonlinear systems via kernel representations, proposing a fair natural gen-

eralization of Youla-Kucera parameterization through observer based kernel

representations. Besides right coprime factorization, left coprime factoriza-

tion for nonlinear systems is also considered in [84],−, [86]. In detail, in

[84], the authors construct a left coprime factorization for stabilization of

nonlinear systems. That is, constructing a class of all controllers stabilize

the given system, and the class of systems is stabilized by the given con-

troller. Furthermore, necessary and sufficient conditions for the stabilization

of the system are considered. The authors [85] study a class of nonlinear

systems represented by both left and right coprime factorization. According

to coprime factorization, the class of all stabilizing controllers of a particular

structure for the considered systems is characterized. The results specialize

to the Youla-Kucera parametrization in the linear cases.

Since 1980s, robust control and robust stabilization of the nonlinear un-

certain system are researched by Chen and Han [74] in the context of operator-

based right coprime factorization of a nonlinear system, which is considered

in a general operator-based setting [57]. Roughly speaking, main idea of right
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coprime factorization for nonlinear systems consists of two design steps: first,

factorize a given plant P as a composition of two stable operators N and D

such that P = ND−1, where D is invertible , second, propose two stable

controllers A, B such that Bezout identity AN +BD =M is satisfied, where

M is an unimodular operator. Then, the considered plant is said to have

a right coprime factorization [4]. Based on the right coprime factorization

approach, in [4], [59], [74] and [76] , robustness and tracking performance

for the nonlinear system with bounded perturbations are considered. In [74],

the concept of robust right coprime factorization for nonlinear systems is

introduced firstly. Moreover, based on the proposed concept, some sufficient

conditions for robust stability of the nonlinear system with bounded pertur-

bations are proposed. As for the conditions in [74], null set of perturbations is

considered as main idea. That is, assume the perturbations in the null set of

A in the form of A(N+∆N)−AN = 0, where ∆N is bounded perturbations.

In [59], a generalized condition is considered for robustness of nonlinear sys-

tem with bounded perturbations, whose merits compared to [74] is that the

proposed condition in [59] can handle with a broader classes of nonlinear sys-

tems by using an inequality ∥ [A(N +∆N)−AN ]M−1 ∥< 1. In [76], robust

stability and output tracking is discussed under some sufficient conditions

even though the bounded perturbations exists. Moreover, the robust right

coprime factorization method has been attracting an increasing attention

and many important results for the real systems have been obtained [4], [17],

[55], [61],[64] and [65], such as vibration control on an aircraft vertical tail

with piezoelectric elements for guaranteeing robust stability [17] networked

nonlinear control for an aluminum plate thermal process using robust co-

prime factorization [61], and an adaptive nonlinear sensorless control for an

uncertain miniature pneumatic curling rubber actuator using passivity and

the robust right coprime factorization approach [64]. Besides these, right co-

prime factorization for MIMO nonlinear systems is also studied in [106] and
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[107]. In [107], some sufficient conditions for the MIMO nonlinear perturbed

systems are derived. The proposed sufficient conditions are established by

using Taylor expansion of a controller. In [106], for dealing with coupling ef-

fect and guaranteeing robust stability of MIMO nonlinear systems, internal

operators of coupling effect are supposed to be satisfied with right factoriza-

tion, which means the internal signal of the coupling effect could be observed

for obtaining right factorization.

1.3 Motivations of the dissertation

Since it is effective and practical to apply the operator-based robust right

coprime factorization method to the control design for nonlinear systems,

there are a great number of results obtained in many fields, such as stability

analysis, tracking performance, robust stability, passivity study and so on.

However, there exist still some points worth to being researched for enriching

and refining the operator-based robust right coprime factorization method.

Therefore, main concepts that motivate this dissertation are addressed

from the following four aspects. First, as to the operator-based right coprime

factorization approach, the fundamental tool is the Lipschitz operator, which

provides a viewpoint to study the nonlinear system from operator theory to

regard nonlinear systems as Lipschitz operators. However, there exist many

cases where nonlinear systems cannot be satisfied with the Lipschitz require-

ment, leading to the operator-based right coprime factorization approach

unavailable. This issue motivates the idea considering different operators to

relax the restriction on Lipschitz operator. That is, to extend the operator-

based right coprime factorization approach. Therefore, in this dissertation,

Lα operators in Chapter 3 and adjonit operators in Chapter 4 are considered

to address the above issue. Second, the study on how to factorize quan-

titatively nonlinear systems is importance for applying the operator-based
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right coprime factorization approach, which motivates the following idea. In

this dissertation, a systematic factorization for systems is considered using

the proposed definition, inner product, adjoint operators and Hilbert space.

Third, robust control of nonlinear systems plays an important role in the real

application. Motivated by this, this dissertation is focused on the nonlinear

control design for nonlinear systems by using the extended robust right co-

prime factorization approach to guarantee robust stability of the systems.

Fourth, most of existing results for coprime factorization are on right co-

prime factorization for SISO nonlinear systems. There are few researches

giving a study on left coprime factorization and MIMO nonlinear systems.

Therefore, in Chapter 5, on the one hand, left coprime factorization is con-

sidered to guarantee a class of nonlinear system to be stable. Realization of

left coprime factorization is obtained by using the proposed method. On the

other hand, the issues on robust stability of MIMO nonlinear systems are

discussed. By the proposed feasible design scheme, the designed system is

overall stable.

1.4 Contributions of the dissertation

The proposed nonlinear control scheme and the research on extended robust

right coprime factorization of this dissertation enriches the operator-based

coprime factorization theory, which gives a promising direction to study the

coprime factorization from a different view of point. Meanwhile, sufficient

conditions on robust stability of nonlinear systems with perturbations are

discussed, by which the robust control design for the perturbed nonlinear

systems is convenient and feasible. Last, realization of left coprime factoriza-

tion is discussed combining right factorization method, providing a method

to study the internal-output stability of a class of nonlinear systems, and

robust stability of MIMO nonlinear systems is guaranteed by the proposed
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design scheme.

The proposed control design scheme is based on operator theory setting

formulated in the context of extended norm linear space, which is suitable for

nonlinear systems control theory and application in the context of stability,

causality, robustness, uniqueness of internal control signals as well as coprime

factorization. The reasons for considering extended norm linear spaces lie in

that all control signals in engineering are time-limited, but in the study of

a control processing we do not know when the processing will stop. The

extended norm linear space can deal with the practical issue from theory,

and most of the useful techniques and results can be carried over from the

standard Banach space to the extended norm linear space, which is a basic

requirement for a realizable physical control system.

Generally speaking, robust control is necessary and critical for nonlinear

systems’ control and design due to uncertainties usually existing in the real

systems that always make an effect on stability and safety of the nonlinear

systems. The main idea of robust control is to design controllers for the sta-

ble and excellent performance of nonlinear systems even in the cases of the

uncertainties existing in the nominal nonlinear systems. Comparing to gen-

eral methods for nonlinear systems such as, linear matrix inequality, sliding

mode control, adaptive control, robust right coprime factorization method

makes use of Bezout identity which is guaranteed by designing stable con-

trollers while meeting an norm inequality condition in order to guarantee the

robustness and to stabilize the unstable nonlinear system. In a word, the

control and design process for robust stability of nonlinear systems with per-

turbations is more simple and precise. This is one of the merits of operator-

based right coprime factorization. Of course, it is one of the contributions of

the proposed design scheme in this dissertation as well.

This dissertation is mainly focusing on considering the extended right

coprime factorization and nonlinear control of the considered nonlinear sys-
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tems. Specially, by introducing the Lα operator, right coprime factorization

is extended from the case where nonlinear systems are considered from the

Lipschitz operator viewpoint to the case where nonlinear systems are consid-

ered from the Lα operator viewpoint. Then, based on the proposed operator

and obtained extended right coprime factorization, feasible design schemes

are proposed for the nonlinear system with perturbations to guarantee robust

stability. Next, right factorization of a given nonlinear system is discussed

based on a feasible framework by the proposed definition of Hilbert spaces,

which extends the application of the isomorphism technique, meanwhile, suf-

ficient conditions on robust stability are proposed, with which robust design

can avoid drawbacks to use irrational boundedness of robust condition of

former results of some cases and reduce difficulties of calculation in Lipschitz

norm. Besides the above contributions, in this dissertation, left coprime

factorization of a class of nonlinear systems and issues on robust control of

MIMO nonlinear systems are addressed. In terms of lelt coprime factoriza-

tion, its realization is obtained combining right factorization method from

the input-output view of point. As to robust control of MIMO nonlinear

system, decoupling effect and robust stability of the considered systems are

studied, which enriches the coprime factorization methods.

In summary, this dissertation considers extended right coprime factor-

ization and nonlinear control for nonlinear systems, which complements the

theoretical analysis and control design of nonlinear systems.

1.5 Organization of the dissertation

This dissertation is organized as follows.

In Chapter 2, mathematical preliminaries for developing main results of

this dissertation consisting of definitions of important spaces and operators

are introduced. First, the definitions of extended linear space and generalized
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Lipschitz operator are introduced, which serve as foundations for the research

of this dissertation. Then, right factorization, right coprime factorization and

robust right coprime factorization of a nonlinear system in a fairly general

operator setting are introduced, which provide the theoretical basis for this

dissertation.

In Chapter 3, the extended right coprime factorization and corresponding

nonlinear robust control of nonlinear systems with perturbations are consid-

ered and designed by using the proposed operator and methods. Firstly,

a kind of operators is introduced, by which operator-based right coprime

factorization approach is extended for a class of nonlinear systems. By reg-

ulating the exponent of the proposed operator, a broader class of nonlinear

systems can be handled using the extended right coprime factorization ap-

proach. Then, based on the obtained extended right coprime factorization,

a feasible control design scheme is proposed to guarantee robust stability of

the considered nonlinear systems with perturbations. The main idea of the

practical design scheme is to prove a stabilizing operator to be an unimod-

ular operator, so we can utilize the proposed unimodular operator to omit

the complicated calculation in process of control and design for the systems

with perturbations. Finally, a simulation example is involved to illustrate the

proposed design scheme for confirming effectiveness of the proposed method.

In Chapter 4, adjoint-based right coprime factorization and robust stabil-

ity of nonlinear systems with perturbations are considered based on Hilbert

spaces. First, a framework is proposed to study right factorization using

inner product, which provides fundamental for the following study. Second,

a sufficient condition based on adjoint operators is given, based on which a

compensator is designed to eliminate difficulties in obtaining internal signal

of the perturbed systems. After that, a realizable design for robust stability

is proposed based on unimodular property. Rational boundedness of robust

condition is provided. Finally, a simulation is shown for confirming effective-
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ness of proposed methods.

In Chapter 5, a realization approach to left coprime factorization for

the nonlinear system is obtained, which provides an effective framework for

constructing left coprime factorization based on right factorization method.

Meanwhile, internal-output stability of the nonlinear system is guaranteed.

The left coprime factorization from the operator theory view of point is

studied and a simulation example is shown to confirm the validity of proposed

methods in final.

In Chapter 6, the proposed method and nonlinear control for nonlinear

systems are summarized. It is concluded that by using the proposed methods,

extended robust right coprime factorization are studied for nonlinear system

and robust control design schemes of the perturbed nonlinear systems are

also given. Meanwhile, a special class of nonlinear systems are considered

using left factorization combining with right factorization to guarantee input-

output stability.



Chapter 2

Mathematical preliminaries and
problem statement

2.1 Introduction

The mathematical preliminaries and problems statement are given in this

chapter.

In Section 2.2, firstly, the definitions of spaces such as linear space, normed

space, Banach space, Hilbert space, extended linear space associated with

Banach space are recalled. Secondly, the definition of operator and some im-

portant operators are given including linear and nonlinear operator, invert-

ible operator, stable operator, unimodular operator, Lipschitz operator and

generalized Lipschitz operator. After that, the relationship between general-

ized Lipschitz operator and causality is discussed. Meanwhile, the definitions

of bounded input bounded output (BIBO) stability and well-posedness are

provided.

In Section 2.3, operator-based right coprime factorization is given for

nonlinear systems at first. Then, a sufficient condition is given to show the

relationship between the coprimeness and stability of nonlinear feed-back

systems. According to this relationship, universal conditions are proposed

13
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to guarantee the coprimeness of the factorization for the nonlinear systems.

Meanwhile, a sufficient robust condition is provided to guarantee robust sta-

bility of the nonlinear systems with perturbations.

In Section 2.4, the main problems of this dissertation are given for de-

veloping the main results of this dissertation. That is, the extended right

coprime factorization for a broader class of nonlinear systems and robust

control for the nonlinear system with perturbation are described. Mean-

while, left coprime factorization is considered combining right factorization

to guarantee a special class of nonlinear system to be internal-output stabil-

ity.

2.2 Mathematical preliminaries

In this section, the related definitions and notations on kinds of spaces and

operators are recalled. Moreover, some important results are listed.

2.2.1 Definitions of spaces

In mathematics analysis, the definition of space plays a fundamental role,

whose definition can be described as a set with added structures. In this

dissertation, the used spaces are linear space that is also named vector spaces.

Linear spaces

A space over F that is an arbitrary field, like the field R of real numbers or

the field C of complex numbers is a set V endowed with structure by the

prescription of

(1) an addition operation V : V × V −→ V ,

(2) an scalar multiplication in V : F× V −→ V

(3) an element 0 ∈ V called the zero of V
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(4) a mapping opposition in V : V → V provided that the following

axioms are satisfied for all u, v, w ∈ V and all α, β ∈ F:

A(1) u+ (v + w) = (u+ v) + w

A(2) u+ v = v + u

A(3) u+ 0 = u

A(4) u− u = 0

A(5) α(βu) = (αβ)u

A(6) (α+ β)u = αu+ βu

A(7) α(u+ v) = αu+ βv

A(8) 1u = u

Thus, note that a linear space is a commutative group endowed with

additional structure by the prescription of a scalar multiplication subject to

the conditions A(5),−, A(8).

Subspace of linear spaces

A nonempty subset U of a linear space V is called a subspace of V if it is

stable under the addition and scalar multiplication in V .

Normed linear spaces

Considering a linear space V of time functions, the linear space V is said to

be normed if each element v in V is endowed with norm ∥ · ∥, which can be

defined in any way so long as the following three properties are fulfilled:

(1)∥ v ∥≥ 0; with equality only when x = 0;

(2)∥ av ∥=| a |∥ v ∥;

(3)∥ v+w ∥≤∥ v ∥ + ∥ w ∥ (the triangle inequality), whenever v, w ∈ U ,

and a ∈ R,
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Banach space

Banach space is defined as a complete normed linear space. This means that

a Banach space is a normed linear space V over the real or complex numbers

with a norm ∥ · ∥ such that every Cauchy sequence (with respect to the

metric) in V has a limit in V . Many spaces of sequences or functions are

infinite dimensional Banach spaces, like Lp the set of all measurable complex-

valued functions, for which
∫
| f(t) |p dt is finite.

Extended linear space

Let M be the class of real-valued measurable functions defined on [0, ∞).

As to every constant T ∈ [0, ∞), suppose PT be the projection operator

mapping from M to other space, MT , of measurable function such that

fT (t) := PT (f)(t) =

{
f(t), t ≤ T
0, t > T

fT (t) ∈MT is said to truncation of f(t) with respect to T . Then, for a given

Banach space X of measurable functions, set

Xe = {f ∈M :∥ fT ∥<∞ for all T <∞} (2.1)

Obviously, Xe is a linear subspace of X.

2.2.2 Definitions of operators

Let U and Y be linear spaces and Us and Ys be two normed linear spaces,

respectively. Define two suitable certain norm denoted Us = {u ∈ U :∥ u ∥<
∞} and Ys = {y ∈ Y :∥ y ∥<∞}. Moreover, Us and Ys are called the stable

subspaces of U and Y .

Operator

An operator Q : U → Y is a mapping from U to Y . The operator Q can be

described as shown in Figure 2.1 and its mathematical expression form can
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be written as

y(t) = Q(u)(t)

where u(t) and y(t) are the element of U and Y , respectively.

Note that in the rest dissertation, denote D(Q) and R(Q) as the domain

and range of the operator Q.

Linear and nonlinear operator

Let Q : U → Y be an operator defined from input space U to the output

space Y . Provided that Q is satisfied with the following condition

Q : au1 + bu2 → aQ(u1) + bQ(u2)

for all u1, u2 ∈ U and all a, b are real numbers, then Q is called to be

linear; otherwise, it is called to be nonlinear. According to the definition of

linear operator, it can be founded a linear operator is satisfied with addition

rule and multiplication rule for different elements. Note that linearity is a

special case of nonlinearity. In what follows, nonlinear will always mean not

necessarily linear unless otherwise indicated.

Bounded input bounded output (BIBO) stability

Let Q be a nonlinear operator with its domain D(Q) ⊆ U e and rangeR(Q) ⊆
Y e. Provided that Q(U) ⊆ Y , Q is said to be input output stable. If Q maps

all input functions from Usinto the output space Ys, that is Q(Us) ⊆ Ys, then

operator Q is said to be bounded input bounded output (BIBO) stable or

simply, stable. Otherwise, namely, if Q maps some inputs from Us to the set

Y e\Ys(if not empty), then Q is said to be unstable. For any stable operators

defined here and later in this dissertation, they always mean BIBO stable.
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Invertible

An operator Q is said to be invertible if there exists an operator P such that

Q ◦ P = P ◦Q = I

where, P is called inverse of Q and is denoted by Q−1, where I is identity

operator and ◦ denotes the operation defined in the operator theory which

can be simple presented as Q ◦ P .

Unimodular operator

Let S(U, Y ) be the set of stable operators from U to Y . Then S(U, Y )

contains a subset defined by

U(U, Y ) = {Q : Q ∈ S(U, Y )Q is invertible withQ−1 ∈ S(U, Y )}.

Each element of U(U, Y ) is called unimodular operator.

Lipschitz operator

Let Q : U −→ Y be an operator mapping from U to Y and denote N (U, Y )

be the family of operators from U to Y . A semi-norm on N (U, Y ) is denoted

by

∥ Q ∥:= sup
u1,u2∈U
u1 ̸=u2

∥ Q(u1)−Q(u2) ∥
∥ u1 − u2 ∥

,

if ∥ Q ∥ is finite. In general, it is a semi-norm in the sense that ∥ Q ∥= 0

does not necessarily imply Q = 0.

Note that an element Q of N (U, Y ) is in Lip(U, Y ) if and only if there is

a number L ≥ 0 such that

∥ Q(u1)−Q(u2) ∥≤ L ∥ u1 − u2 ∥

for all u1, u2 ∈ U . Moreover, ∥ A ∥ is the least such numbers L.
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Generalized Lipschitz operator

Let U e and Y e be two extended linear spaces which are associated respectively

with two given Banach spaces U and Y of measurable functions defined on

the time domain [0, ∞). Let De a subset of U e. An operator Q : De −→ Y e

is called a generalized Lipschitz operator on De if there exists a constant L

such that

∥ [Q(u1)]T − [Q(u2)]T ∥≤ L ∥ [u1]T − [u2]T ∥

for all u1, u2 ∈ De and for all T ∈ [0,∞).

Note that the least such constant L is given by

∥ Q ∥:= sup
T∈[0,∞)

sup
u1,u2∈De

u1 ̸=u2

∥ [Q(u1)]T − [Q(u2)]T ∥
∥ [u1]T − [u2]T ∥

(2.2)

which is a semi-norm for general nonlinear operators and is the actual norm

for linear Q. The actual norm for a nonlinear operator Q is given by

∥ Q ∥Lip =∥ Q(u0) ∥

+ sup
T∈[0,∞)

sup
u1,u2∈De

u1 ̸=u2

∥ [Q(u1)]T − [Q(u2)]T ∥
∥ [u1]T − [u2]T ∥

for any fixed u0 ∈ De. This can be easily verified by the definition of norm.

Note that according to different domains and ranges of standard Lips-

chitz operator and generalized Lipschitz operator, they are not comparable.

Generalized Lipschitz operator has been proved more useful than standard

Lipschitz operator for nonlinear system control design and engineering under

stability, robustness, uniqueness of internal control signals. In addition, in

this dissertation, denote Lip(De) = Lip(De, De). In the following, causal-

ity will be introduced, which is a basic requirement for realizing a physical

system.
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Causality for generalized Lipschitz operator

Let U e be the extended linear space associated with a given Banach space U ,

and let Q : U e → U ebe a nonlinear operator describing a nonlinear control

system. Then, Q is said to be causal if and only if

PTQPT = PTQ

for all T ∈ [0,∞), where PT is a projection operator.

The physical meaning behind the definition of causality is addressed as

follows. If the system outputs depend only on the present and past values

of the corresponding system inputs, then we have QPT (u) = Q(u) for all

input signals u in the domain of Q, so that PTQPT = PTQ. Conversely,

if PTQPT = PTQ for all T ∈ [0, ∞), then we have PTQ(I − PT )(u) = 0

for all input u in the domain of Q, which implies that any future value of

a system input, (I − PT )(u), does not affect the present and past values of

the corresponding system output given by PTQ(·), or in other words, system

outputs depend only on the present and past values of the corresponding

system inputs.

Lemma 2.1 A nonlinear operator Q : U e → U e is causal if and only if

for any x, y ∈ U e and T ∈ [0,∞) , xT = yT implies [Q(x)]T = [Q(y)]T .

Proof . The proof is given in Appendix A.1 [57].

Lemma 2.2 If Q : U e → U e is a generalized Lipschitz operator, then Q

is causal.

Proof . The proof is given in Appendix A.2 [57].

Lemma 2.2 and the following Lemma 2.3 imply that the uniqueness

requirement can be guaranteed by introducing the generalized Lipschitz op-

erator, which means that in real systems, the internal signals of the systems

are required to be unique.

Lemma 2.3 A nonlinear generalized Lipschitz operator produces a unique

output from an input in the sense that if the input x and output y are related
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by a generalized Lipschitz operator Q such that y = Q(x), then xT = x̃T

implies that yT = ỹT for all T ∈ [0, ∞).

2.2.3 Operator-based right coprime factorization

A nominal operator based nonlinear control system is shown in Figure 2.1,

where the given system P : U → Y is from the input space U to the output

space Y . Let control input and system output be u and y, respectively.

Right factorization

Figure 2.1: An operator diagram

Then the given system operator P as shown in Figure 2.1 is said to have

a right factorization if there are a linear spaceW and two stable operators D

and N such that P = ND−1 on U , where D is invertible. The linear space

W is called a quasi-state space of P .

Right coprime factorization

Provided that P exists a right factorization (N, D), there are two stable

operators A : Y → U and B : U → U and B is invertible, satisfying Bezout

identity

AN +BD =M, for M ∈ U(W, U),
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Figure 2.2: A nonlinear system with right coprime factorization

then the right factorization of P is said to be coprime.

It is worth mentioning that the initial state is supposed to be considered,

that is, AN(w0, t0) + BD(w0, t0) = M(w0, t0) should be satisfied. In this

dissertation, the initial condition is chosen as t0 = 0 and w0 = 0.

Well-posedness

The nonlinear system shown in Figure 2.2 is well-posed, if as to each input

signal r ∈ U , all signals in the system are uniquely determined.

Overall stable

The nonlinear system shown in Figure 2.2 is said to be overall stable, if

r ∈ Us, implies that u ∈ Us, y ∈ Ys, w ∈ Ws, e ∈ Us and b ∈ Us.

Lemma 2.4 Suppose the system shown in Figure 2.2 is well-posed and

the system has a right factorization P = ND−1, then the system is overall

stable if and only if the operator M is unimodula.

Proof. The proof is given in Appendix A.3 [57].
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Figure 2.3: A nonlinear system with bounded perturbations

Robust right coprime factorization

Consider the nonlinear perturbed system shown in Figure 2.3, where the

nominal system and the perturbed system are given as P and P , where

P = P + ∆P , ∆P is denoted as the bounded perturbations. The right

factorization of the nominal system P and the overall system P are

P = ND−1

and

P +∆P = (N +∆N)D−1

respectively, where N and D are stable operators, D is invertible and ∆N is

denoted as the bounded perturbations.

According to the definition of null set, in [74], the following condition is

proposed to guarantee the nonlinear system with unknown bounded pertur-

bations to be robustly stable,
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A(N +∆N)− AN = 0. (2.3)

under the condition of satisfaction of R(∆N) ⊆ N(A), where N(A) is the

null set defined by

N(A) = {x : x ∈ D(A) and A(x+ y) = A(y) for all y ∈ D(A)}

Based on the proposed sufficient condition, the fact that

A(N +∆N) +BD = AN +BD =M

is obtained, which guarantee the robust stability of the nonlinear systems

with unknown bounded perturbations.

However, the proposed design scheme for the nonlinear systems with un-

known bounded perturbations in [74] is restrictive for some case due to the

condition is difficult to satisfy. Therefore, a generalized sufficient condition

compared to [74] is proposed in [59] in order to improve and extend the

condition.

Lemma 2.5 Let De be a linear subspace of the extended linear space U e

associated with a given Banach space U , and let (A(N +∆N)−AN)M−1 ∈
Lip(De). Let the Bezout identity of the nominal system and the exact system

be AN +BD =M,A(N +∆N) + BD = M̃ , respectively. If

∥ (A(N +∆N)− AN)M−1 ∥< 1

then the system shown in Figure 2.3 is robust stable.

Proof. The proof is given in Appendix A.4 [57].

Lemma 2.6 Assume right factorization of the system shown in Figure

2.3 is given as P +∆P = (N +∆N)D−1, where N +∆N is an unimodular

operator. If two designed operators A and B is satisfied with the Bezout

identity A(N+∆N)+BD =M+∆M , moreover, (N+∆N)(M+∆M)−1 = I,

then output can track to reference input while the nonlinear system is overall

stable.



2.4. CONCLUSION 25

2.3 Problem setup

Operator-based right coprime factorization method has attached much atten-

tion on analysis, stabilization, design and control for the nonlinear systems.

Most of the existing results are obtained based on the assumption that the

given nonlinear system is satisfied with Lipschitz condition. The fundamen-

tal tool is the Lipschitz operator, which provides a viewpoint to study the

nonlinear system from operator theory to regard nonlinear systems as Lip-

schitz operators. However, there exist many cases where nonlinear systems

cannot be satisfied with the Lipschitz requirement, leading to the operator-

based right coprime factorization approach unavailable. In order to solve this

fundamental and critical problem, the extended right coprime factorization

method using Lα operator for dealing with a broader class of given nonlinear

systems is proposed and robust control for this kind of nonlinear systems is

considered as well.

In terms of operator-based right coprime factorization, in most cases,

right factorization cannot be directly obtained, whose role is of importance

for studying the nonlinear systems. That is, how to quantitatively factor-

ize a given nonlinear systems. Therefore, in this dissertation, a systematic

factorization for systems is considered using the proposed definition, inner

product, adjoint operators, Hilbert space to extend right coprime factoriza-

tion. Meanwhile,rational boundedness of robust condition is also proposed

to avoid the practical difficulties in real application. Considering that most

of existing results for coprime factorization are on right coprime factoriza-

tion. There are few researches giving a study on left coprime factorization.

Therefore, for extending the application of operator-based coprime factoriza-

tion, left coprime factorization is considered combining right factorization to

guarantee a class of nonlinear system to be internal-output stable.
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2.4 Conclusion

In this chapter, the mathematical preliminaries including the basic defini-

tions and notations are introduced. In detail, the definitions like extended

linear spaces and generalized Lipschitz operators are introduced, which serve

as foundation for this dissertation. For nonlinear systems, the concept of

right coprime factorization and robust right coprime factorization condition

are described. Moreover, two sufficient conditions of guaranteeing robust sta-

bility of the nonlinear perturbed system are given in a fairly general operator

setting, which provide the theoretical basis for developing the main results

of this dissertation. Finally, the concerned problems are also summarized in

this chapter.



Chapter 3

Extended right coprime
factorization and robust control
using Lα operator

3.1 Introduction

Nonlinear control and design for nonlinear systems are always important and

challenging considering the fact that most of real systems exists more or less

nonlinearity dynamics property and complex structures. Among the stud-

ied aspects, robust control design for nonlinear systems with perturbations

plays a significant role in control engineering owing to robust phenomenon

always happening in nonlinear systems resulting from unnoticeable and un-

avoidable factors in real systems. Therefore, many researchers have devoted

themselves to studying some methods to deal with the robust issue for the

nonlinear uncertain systems. Among the proposed methods, operator-based

right coprime factorization has been regarded as an effective and practical

method in dealing with nonlinear systems, including stability analysis, con-

trol design scheme, output tracking and so on.

Although there are a vase amount of general results available in the liter-

atures on the existence, uniqueness, characterization and construction of the

27
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right coprime factorization approach for the nonlinear systems [50],−, [82],
however, there is yet a promising direction which seems to be relatively ig-

nored by researchers: the application range of the right coprime factorization

approach. In terms of the right coprime factorization approach, the funda-

mental tool is the Lipschitz operator,which provides a viewpoint to study the

nonlinear system from operator theory. However, there are some nonlinear

systems that cannot be satisfied with the Lipschitz condition, resulting in

the right coprime factorization approach unavailable.

Thus, in this chapter, main concepts that motivate the present research

are the observation that the Lipschitz operator has a restriction on dealing

with the nonlinear systems and the former methods for guaranteeing robust

stability of the nonlinear system with bounded perturbations. Specially, by

introducing the Lα operator, right coprime factorization is extended from

the case where nonlinear systems are considered from the Lipschitz operator

viewpoint to the case where nonlinear systems are considered from the Lα

operator viewpoint. Then, based on the proposed operator, feasible design

schemes are proposed for the nonlinear system with bounded perturbations

to guarantee robust stability.

In Section 3.2, extended right coprime factorization of a nonlinear system

is considered by using the proposed Lα operator. At first, the definition of Lα

operator is introduced for extending right coprime factorization for nonlinear

systems. Meanwhile, some properties of Lα operators are proposed. Then,

in order to explain the proposed operator, an example is given to show the

merit of Lα operators, which serves as proof that Lα operator can deal with

a broader class of nonlinear systems. Further, according to the obtained

results, a fundamental theorem is obtained and the effectiveness on applying

the proposed operator to the robust right coprime factorization approach is

discussed. Then, extended right coprime factorization of a nonlinear system

is given to guarantee stability of the considered system.
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In Section 3.3, nonlinear robust control design for the nonlinear system

with bounded perturbations is considered. In detail, first, an inequality on

generalized Lα norm is proposed for developing the sufficient condition for

robust stability of nonlinear systems with bounded perturbations. Second,

a new unimodular operator based on the proposed extended right coprime

factorization is given. Third, the practical robust control design scheme for

the nonlinear system with bounded perturbations is proposed to guaranteeing

robust stability of the considered systems. The given numerical example

illustrates the effectiveness of the proposed methods in final.

In Section 3.4, the extended right coprime factorization and robust control

using Lα operator for the considered nonlinear systems are summarized.

3.2 Extended right coprime factorization with

Lα operator

3.2.1 Lα operator

In this section, firstly, Lα operators are proposed. According to the proposed

operator, fundamental theorems are discussed for applying the proposed op-

erator to extend right coprime factorization approach.

Definition 3.1 Let U and Y be two Banach spaces, denoting as input

space and output space of the considered systems, respectively. Let T : U →
Y be an operator mapping from U to Y . If the operator T satisfies that

∥ T ∥α:= sup
u1,u2∈U
u1 ̸=u2

∥ T (u1)− T (u2) ∥
∥ u1 − u2 ∥α

(3.1)

is finite, for all u1, u2 ∈ U and where the parameter α > 0, then T is said to

be a Lα operator.

The ∥ · ∥α is a semi-norm for the Lα operator in the sense that ∥ T ∥α= 0

does not necessarily imply T = 0. We can find a case where T ̸= 0, but
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∥ T ∥α is 0, for example a constant operator which maps any input to a fixed

output.

Note that, the proposed Lα has fnite incremental gain to guarantee stabil-

ity of nonlinear feedback systems. A real plant is regarded as an Lα operator,

whose domain and range are input space and output spaces of the real plant,

respectively. The considered plant should be satisfied with the Lα condition

such that the finite gain exists. In terms of the proposed operators, the pa-

rameter α can be considered as one freedom for guaranteeing existence of

finite gain issue by designing the suitable value in order to adjust input of

the real plant.

It is noted that when α equals to 1, the Lα operator is reduced to the

Lipschitz operator. The main merit of the Lα operator lies in that the Lα

operator can include a broader class of nonlinear systems than Lipschitz

operators. This fact provides a framework to deal with these nonlinear system

that cannot be coped with the Lipschitz operator based on the right coprime

factorization approach.

Corollary 3.1 The class Lipα(U, Y ) of the all Lα operators form U to

Y defined as Definition 3.1 is a linear space over the real number field R.

Moreover, if T1, T2 ∈ Lipα(U, Y ) and a ∈ R, then the following results are

obtained:

(1) ∥ T1 ∥α= 0 only if T1 is a constant operator;

(2) ∥ T1 + T2 ∥α≤∥ T1 ∥α + ∥ T2 ∥α;
(3) ∥ aT1 ∥α≤| a |∥ T1 ∥α .
Note that Lipα(U, Y ) be the subset ofN (U, Y ) (the family of all nonlinear

operators mapping from U to Y ) with each element T with ∥ T ∥α<∞. It is

clear that an element T of N (U, Y ) is in Lipα(U, Y ) if and only if there is a

number L ≥ 0 such that ∥ T (u1)−T (u2) ∥≤ L ∥ u1−u2 ∥α for all u1, u2 ∈ U .

After that, the norm of the Lα operator is considered, which is the funda-

mental premises using the definition of the Lα operator for the robust right
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coprime factorization approach. For any fixed u0 ∈ U , define a norm for all

T ∈ Lipα(U, Y ) as follows,

∥ T ∥αLip:=∥ T (u0) ∥ + ∥ T ∥α

where ∥ T ∥α is defined as (3.1). ∥ T ∥αLip is called the Lα norm of the Lα

operator T .

A convenient choice for u0 is u0 = 0, where note that T (0) is not zero in

general if T is nonlinear. To prove ∥ T ∥αLip to be a norm of the Lα operator,

T , it amounts to showing that ∥ T ∥αLip= 0 implies T = 0, where 0 is the

zero operator. This, however, is an immediate consequence of result (1) of

Corollary 3.1.

Definition 3.2 Let U e and Y e be two extended linear spaces, which

are associated respectively with two given Banach spaces U and Y , where

a Banach space is a complete vector space with a norm. An operator D :

U e −→ Y e is called a generalized Lα operator on U e if there exists a constant

L ≥ 0 such that

∥ [D(u1)]T − [D(u2)]T ∥≤ L ∥ [u1]T − [u2]T ∥α

for all u1, u2 ∈ U e and for all T ∈ [0,∞).

Note that the least such constant L is given by

L := sup
T∈[0,∞)

sup
u1,u2∈Ue

u1 ̸=u2

∥ [D(u1)]T − [D(u2)]T ∥
∥ [u1]T − [u2]T ∥α

(3.2)

which is a semi-norm for the generalized Lα operator. The actual norm for

a generalized Lα operator D is given by

∥ D ∥αGlip= ∥ D(u0) ∥

+ sup
T∈[0,∞)

sup
u1,u2∈Ue

u1 ̸=u2

∥ [D(u1)]T − [D(u2)]T ∥
∥ [u1]T − [u2]T ∥α



32 CHAPTER 3. Lα OPERATOR-BASED RCF & ROBUST CONTROL

for any fixed u0 ∈ U e.

For simplicity, throughout the following chapter, by a Lα operator we

always mean one defined in this generalized sense. The reason for consid-

ering the extended linear space is that all control signals in real application

are time-limited, but in the control processing, we sometimes do not know

when the processing will stop. Hence, because of the finite time duration of

practice, the function f(t) = et + t2, t ≥ 0 and the like should be considered

under the underlying spaces.

3.2.2 An example to explain Lα operator

Figure 3.1: An example to explain the Lα operator

The nonlinear system P (u)(t) =| u(t) | 12 defined on [−1, 1]. It is not a
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Lipschitz operator, because this nonlinear system becomes infinitely steep

as u approaches 0 as shown in Figure 3.1 based on fact that derivation of

the nonlinear system trends to infinite as u approaches 0. That is, there

is no constant finite number to satisfy the Lipschitz condition. However, it

is a Lα operator by choosing the parameter such that 0 < α <
1

2
. Thus,

the proposed Lα operator can deal with a broader class of nonlinear systems

based on the proposed example than the Lipschitz operator.

Note that as to the design of the proposed operator exponent, that while

considering the nonlinear system, there are some points in some case like the

example shown, which leads to the norm tending to infinitely. For dealing

with these systems, the exponent should be designed to be satisfied with the

norm requirement according to the whole infinitely points.

3.2.3 Extended right coprime factorization

In this subsection, after introducing the definition of the generalized Lα op-

erator of the extended linear space, the extended right coprime factorization

approach will be discussed under the framework of the proposed operator

for stabilizing the nonlinear system. Firstly, as the Lipschitz operator, the

following lemma are proposed for guaranteeing the fundamental of factorized

operators.

Lemma 3.1 it The set Lipα(U, Y ) of all Lα operators from the normed

space U to Y is a Banach space under the Lα norm.

Proof. Based on Corollary 3.1, Lipα(U, Y ) is a linear space since Y is a

linear space. Hence, it suffices to verify its completeness under the Lα norm.

Let Tn be a Cauchy sequence in Lipα(U, Y ) such that ∥ Tm − Tn ∥αLip→ 0
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as m,n→ ∞. Then, for any u ∈ U ,

∥ Tm(u)− Tn(u) ∥ ≤∥ (Tm − Tn)(u)− (Tm − Tn)(u0) ∥

+ ∥ Tm(u0)− Tn(u0) ∥

≤∥ (Tm − Tn) ∥αLip∥ u− u0 ∥

+ ∥ Tm(u0)− Tn(u0) ∥

which shows that the sequence Tn is in fact uniformly Cauchy on each

bounded subset of U . Since Y is complete, T (u) exists and so is unique.

Moreover, since Tn is a Cauchy sequence, limn→∞ ∥ Tn ∥αLip= c, where c is a

constant number, so that

∥ T (u1)− T (u2) ∥ = lim
n→∞

∥ Tn(u1)− Tn(u2)

≤ lim
n→∞

∥ Tn ∥αLip∥ u1 − u2 ∥

= c ∥ u1 − u2 ∥

for all u1, u2 ∈ U . This shows that T ∈ Lipα(U, Y ) with

∥ T ∥αLip≤ c+ ∥ T (u0) ∥

We finally verify that ∥ Tn − T ∥αLip→ 0 as n → ∞. Since the above also

proves ∥ Tn(u0) − T (u0) ∥→ 0 as n → ∞, for ε > 0, we can let N be such

that ∥ Tm − Tn ∥αLip≤ ε
2
and ∥ (Tm − T )(u0) ∥≤ ε

2
for m,n ≥ N . Then, for

any u1, u2 ∈ U , it follows that

∥ (T − Tn)(u1)− (T − Tn)(u2) ∥

= lim
n→∞

∥ (Tm − Tn)(u1)− (Tm − Tn)(u2) ∥

≤ lim
n→∞

∥ Tm − Tn ∥αLip∥ u1 − u2 ∥

≤ ε

2
∥ u1 − u2 ∥

So that ∥ Tn − T ∥αLip≤ ε for n ≥ N . This implies that ∥ Tn − T ∥αLip≤ ε

as n→ ∞, completing the proof of the lemma.
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Next the extended right coprime factorization will be discussed based

on the proposed Lα operators. The extended right coprime factorization is

mainly built by the framework of Lα operators, whose parameter is supposed

to be determined using off-line method. In order to formulate a nonlinear

analogue of the extended right coprime factorization, a commonly used input-

output stability principle is employed.

Theorem 3.1 Suppose that P : U → Y be a causal, well-posedness

and stabilizable nonlinear systems satisfied with the Lα condition defined as

Corollary 3.1, and P has a right factorization P = ND−1 on U , where

N and D are stable, causal and satisfied with Lα condition. Provided that

there exist two controllers A, B, such that both of them are stable, causal

and satisfied with the following Bezout identity:

AN(w)(t) + BD(w)(t) =M(w)(t)

whereM is unimodular from U to U , then P is bounded input bounded output

stable.

Proof. First, based on the condition, the following diagram can be ob-

tained in the context of Lα operator.

Figure 3.2: The proposed deisgn scheme based on Lα operator
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From Figure 3.2, we can obtained

AN(w)(t) +BD(w)(t) = A(y)(t) + B(u)(t)

= b(t) + e(t)

= r(t) (3.3)

According to AN(w)(t) +BD(w)(t) =M(w)(t),

w(t) =M−1r(t).

Thus, Figure 3.2 can be rewritten as Figure 3.3 and combining with the

stable property of N , the nonlinear system P are bounded input bounded

output stable.

Figure 3.3: The equivalent of P

The proof is completed.

Based on Theorem 3.1 , the P is said to have a extended right co-

prime factorization under the Lα condition. In the following section, we will

apply it to consider robust control for the nonlinear systems with bounded

perturbations.

3.3 Robust control using extended robust right

coprime factorization

3.3.1 Problem statement

As to the nonlinear system with bounded perturbations shown in Figure

3.4, the overall system ∆P is denoted as ∆P = P + ∆P . Assume that the
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right factorization of P and ∆P are denoted as P = ND−1 and P +∆P =

(N+∆N)D−1, respectively, where N is stable; D is stable and invertible, and

∆N is bounded perturbations of the nonlinear system. Note that, P, P+∆P

are in the context of Lα operators.

Figure 3.4: The perturbed nonlinear system

For the right coprime factorization, there are some results on robust sta-

bility for nonlinear system satisfied with Lipschitz operator. In [74], robust

stability of the nonlinear system with bounded perturbations shown in Figure

3.4 can be guaranteed provided that

A(N +∆N)− AN = 0. (3.4)

In [59], authors propose the following condition to guarantee robust stability

of the perturbed nonlinear system

∥ [A(N +∆N)− AN ]M−1 ∥< 1. (3.5)

Under condition (3.5), the operator A(N +∆N)+BD can be guaranteed to

be unimodular.
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Note that when the right coprime factorization approach is applied to

consider a nonlinear system, the property of the nonlinear system would be

explicit, verifying whether the nonlinear system is satisfied with the Lipschitz

condition. If not, the right coprime factorization approach cannot be used

to establish the Bezout identity for guaranteeing stability of the nonlinear

system.

In this dissertation, in order to consider the issues mentioned above, a

practical design scheme is proposed for stabilizing the perturbed nonlinear

systems using a new unimodular operator instead ofM in [59], which relaxes

the restriction of the previous methods, at least for the mathematical aspects

of the perturbed nonlinear systems. That is, in the following subsection, the

robustness of the nonlinear system with bounded perturbations is consid-

ered based on the Lα operator. Practical design schemes for dealing with

the bounded perturbations is proposed to guarantee robust stability of the

perturbed nonlinear system.

3.3.2 Mathematical preliminaries

The following preparatory results which are used throughout this subsection

for developing the sufficient conditions for guaranteeing robust stability for

the nonlinear system with bounded perturbations. Throughout this section,

the whole operators are considered in the context of the definition of the Lα

operator.

Lemma 3.2 Provided that a Lα operator H ∈ Lipα(Us), where Us is the

stable space of U which is a Banach space, is satisfied with ∥ H ∥αLip< 1, then

I −H is invertible, in Lipα(Us, Us) and

∥ (I −H)−1 ∥αLip≤ (1− ∥ H ∥αLip)−1 (3.6)
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Proof. In fact, for each u1, u2 ∈ Us,

∥ (I −H)u1 − (I −H)u2 ∥ ≥∥ u1 − u2 ∥ − ∥ Hu1 −Hu2 ∥

≥ (1− ∥ H ∥αLip) ∥ u1 − u2 ∥

Thus, the operator I −H is injective.

After that, the fact that I −H is surjective is verified as follows.

Define that K0 := I and Kn := I +HKn−1,∀n = 1, 2, · · · , for each u ∈ U

∥ Kn+1(u)−Kn(u) ∥≤
[
∥ H ∥αLip

]n ∥ H(u) ∥ n = 1, 2, ...

Then for any positive integer m, obtain

∥ Kn+m(u)−Kn(u) ∥ =∥
m−1∑
k=0

(Kn+k+1(u)−Kn+k(u)) ∥

≤
m−1∑
k=0

[
∥ H ∥αLip

]n+k ∥ H(u) ∥

≤
[
∥ H ∥αLip

]n ∥ H(u) ∥
1− ∥ H ∥αLip

(3.7)

Since ∥ H ∥αLip< 1 and U is a Banach space, then

S(u) = lim
n→∞

Kn(u)

exists and

∥ S(u)−Kn(u) ∥ = lim
n→∞

∥ Kn+m(u)−Kn(u) ∥

≤
[
∥ H ∥αLip

]n ∥ H(u) ∥
1− ∥ H ∥αLip

(3.8)

Since H is a Lα operator and thus is continuous, we have

S(u) = lim
n→∞

Kn(u) = lim
n→∞

(I +HKn−1)u = I(u) +HS(u)
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that is,

S = I +HS

namely, (I − H)S = I, which implies that I − J is surjective in Lipα(Us).

Then for u1, u2 ∈ R(I −H),

∥ (I −H)−1u1 − (I −H)−1u2 ∥≤ (1− ∥ H ∥αLip)−1 ∥ u1 − u2 ∥α

Thus, we can get the conclusion, I −H is invertible and

∥ (I −H)−1 ∥αLip≤ (1− ∥ H ∥αLip)−1

The proof of this lemma is completed.

Lemma 3.3 The nonlinear system satisfied with Lα condition has a right

coprime factorization if and only if the composite operator I + APB−1 is

injective and its inverse is causal, and all the operators A, B, D, N, B−1,

and (I + APB−1) are causally stable.

Proof. Observe that provided that a nonlinear system has a right coprime

factorization, there are two causal operators N : U → U e and D : U → U e

with a causal inverse D−1 such that ND−1 = P and AN + BD =M . Since

B : U → U is one-to-one and is onto R(B), R(B−1) = X ⊂ D(D−1).

Moreover, R(D) = U e.

I + APB−1 = I + AND−1B−1

= [BD + AN ]D−1B−1

=MD−1B−1

which implies that the operator (I + APB−1) : R(B) → U is causal, one-

to-one and onto, and hence is causally invertible, with the inverse equal to

BD.
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Conversely, provided that the operator (I + APB−1) : R(B) → U is

causally invertible, then we can define

D = B−1(I + APB−1)−1M

Due to (I + APB−1)−1 : U → R(B) is onto, R((I + APB−1)−1) =

R(B) = D(B−1). Combining with R(B−1) = U , the operator D defined is

causal, one-to-one and onto. Therefore,

D = [M−1(I + APB−1)B]−1 = [M−1(B + AP )]−1

Consequently, D−1 = M−1(AP + B) : U e → U exists and is causal. If

define N = PD, then N is causal, and obtain both ND−1 = PDD−1 = P

and

AN +BD = (AND−1 +B)D = (AP +B)D =MD−1D =M

Completes the proof of the lemma.

3.3.3 Robust stability

Theorem 3.2 Suppose that U and Y be Banach spaces. Let G, R ∈ Lipα(Us, Ys),

where Us, Ys are the stable spaces of U , Y , respectively, such that G is in-

vertible in Lip(Us, Ys) and satisfied with

∥ G−R ∥αLip∥ G−1 ∥αLip< 1

Then, R is invertible in Lipα(Us, Ys) with

∥ R−1 ∥αLip ≤∥ G−1 ∥αLip∥ R−1(u0) ∥

+
∥ G−1 ∥αLip

1− ∥ G−R ∥αLip∥ G−1 ∥αLip
(3.9)

for any u0 ∈ U.
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Proof. By the Lemma 3.2, show that ∥ G−1R ∥αLip is invertible in

Lipα(Us, Ys), considering

∥ I −RG−1 ∥αLip=∥ G−R ∥αLip∥ G−1 ∥αLip< 1

Also from (3. 6),

∥ (RG−1)−1 ∥αLip ≤
1

1− ∥ I −RG−1 ∥αLip

≤ 1

1− ∥ G−R ∥αLip∥ G−1 ∥αLip
(3.10)

Since R = (RG−1)G, we see that R has an inverse in Lipα(Us, Ys), namely,

R−1 = G−1(RG−1)−1

Hence,

∥ R−1 ∥αLip≤∥ G−1 ∥αLip∥ (RG−1)−1 ∥αLip

The estimate (3.9) follows from the above inequality, (3.10) and the definition

of norm for the generalized Lα operator.

Note that Theorem 3.2 provides a condition on how to guarantee an

operator be invertible. This condition in Theorem 3.2 is sufficient, not

necessary. The reason for this result lies in that Theorem 3.2 is obtained

based on Lemma 3.2, but in the proof of Lemma 3.2, for proving the

surjective property of the operator I − H, the condition ∥ H ∥αLip< 1 is

sufficient, not necessary.

After the preparatory work, we give the design scheme for the nonlinear

system with bounded perturbations.

Theorem 3.3 In terms of the nonlinear feedback system with bounded

perturbations in Figure 3.4, provided that the following condition is guaran-

teed,

∥ (A(N +∆N)−B) ∥αLip∥ B−1 ∥αLip< 1 (3.11)
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then A(N +∆N) is an unimodular operator.

Proof. The fact that B is unimodular implies that B is invertible and

B−1 is also stable.

Therefore, according to Theorem 3.2, we can obtain A(N + ∆N) is

invertible.

∥ A(N +∆N)−1 ∥αLip≤∥ B−1 ∥αLip∥ A(N +∆N)−1(x0) ∥

+
∥ B−1 ∥αLip

1− ∥ B−1 − A(N +∆N) ∥αLip∥ B−1 ∥αLip

Since

A(N +∆N) = B − (B − A(N +∆N))

= [I − (B − A(N +∆N))B−1]B

Thus, I − [B − A(N + ∆N)]B−1 is proved to be invertible.Considering the

inverse of I− (B−A(N +∆N))B−1 is stable, the obtained inverse of A(N +

∆N) is stable. The proof of the theorem is completed.

Based on the Theorem 3.3, we will prove the perturbed Bezout identity

is unimodular as the following theorem. Therefore, the proposed design

scheme can guarantee the nonlinear system with bounded perturbations to

be stable.

Theorem 3.4 For the perturbed nonlinear system as shown in Figure 3.4,

if the following condition

∥ BD ∥αLip∥ [A(N +∆N)]−1 ∥αLip< 1 (3.12)

is satisfied, then the nonlinear system with bounded perturbations is robust

stable, i.e. A(N +∆N) +BD is unimodular.

Proof. Since

∥ BD ∥αLip∥ [A(N +∆N)]−1 ∥αLip< 1
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Thus,

∥ [BD + A(N +∆N)]− A(N +∆N) ∥αLip∥ [A(N +∆N)]−1 ∥αLip< 1

It follows that A(N+∆N)+BD is unimodular by Theorem 3.3. Thus, the

nonlinear system with bounded perturbations is satisfied with robust right

coprime factorization, which results in that the overall system is stable.

Note that Theorem 3.3 and Theorem 3.4 are both sufficient condi-

tions on guaranteeing robust stability of the nonlinear system with bounded

perturbations. From the view of point of guaranteeing the unimodular prop-

erty, the proposed conditions can guarantee it, but the proposed conditions

are not necessary because of the conservativeness of Theorem 3.2 and the

nonlinearity property of the considered operator.

As for the perturbation ∆N existing in the considered nonlinear feedback

system, we consider the perturbation ∆N is unknown, but ∆N has upper

bound and lower bound. That is, there are exist two constants α and β such

that α ≤ ∆N ≤ β. For guaranteeing the two conditions (3. 11) and (3.12)

in general, we should do our best to use the knowledge of the above bounds,

meanwhile, to consider the relationship of ∥ (A(N + ∆N) − B) ∥αLip and ∥
[A(N +∆N)]−1 ∥αLip to design controllers A and B, where the two controllers

can be selected by trial and error so far.

3.3.4 Simulation example

In this section, a numerical example is given to show the effectiveness of the

proposed method. Consider a nonlinear feedback system shown as in Figure

3.5, where reference input, control input and plant output are r, u and y,

respectively. We assume, in this nonlinear feedback system, that X = L∞

is the standard Banach space of real-valued measurable functions defined on

[0,∞), with the associated extended linear space Xe = Le
∞. Suppose that

the plant operator P is given by the following unstable, Lα and time-varying
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Figure 3.5: A nonlinear system satisfying Lα condition

nonlinear operator, where α =
1

4
:

P (u)(t) =

∫ t

0

[u(τ)]
1
4dτ + e

2
15

t[u(t)]
2
5

Based on the proposed plant, the operators D, N are given as follows:

N(w)(t) =

∫ t

0

e−
1
12

τ [w(τ)]
1
10dτ + [w(t)]

4
25

D(w)(t) = e−
1
3
t[w(t)]

2
5

The stability in terms of D, N is verified easily. And we can get the

inverse operator of D is unstable from L∞ to L∞.

Next step for establishing a Bezout identity, we pick a stable controller

A such that the I − AN is invertible as follows,

A(y)(t) = (e−
5
6
t − 1)[

∫ t

0

[u(τ)]
1
4dτ − y(t)]

25
4

Then, we have

AN(w)(t) =(e−
5
6
t − 1)

∫ t

0

[u(τ)]
1
4dτ

− (e−
5
6
t − 1)(

∫ t

0

e−
1
12

τ [w(τ)]
1
10dτ − [w(t)]

4
25 )
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Figure 3.6: Reference input r
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Therefore, the controller B is provided based on the proposed controllers A,

B(u)(t) = (I − AN)D−1(u(t)) = [u(t)]
5
2

Finally, it can be verified that A and B satisfy the Bezout identity. Indeed,

we have

(AN +BD)(w)(t) = I(w)(t) (3.13)

According to the above analysis, the proposed unstable nonlinear system,

P is stable by the proposed design scheme. Note that in order to realize the

Bezout identity, the controllers are chosen from the the simplicity viewpoint.

The controller A is chosen from the following set: A = {A ∈ Lipα(X) : (I −
AN)D−1 ∈ Lipα(X)}. In this case the controller A will stabilize the unstable

operator D−1. There is a cancellation of unstable factor between D−1 and

I − AN , hence, the stability of the controller B is guaranteed. Aside from

that, there exist a great number of chooses only if the designed controllers

are satisfied with the Bezout identity condition. After that, the case of the

nonlinear system with bounded perturbations is proposed to confirm the

effectiveness of the robust design scheme.

After that, the perturbations and right factorization of the overall plant

are given as follows, where the perturbations δ(t) is chosen as δ(t) = 0.5e−
1
15

t

for confirming the effectiveness of the proposed design scheme.

(P +∆P )(u)(t) = δ(t)(

∫ t

0

[u(τ)]
1
4dτ + e

2
15

t[u(t)]
2
5 )

(N +∆N)(w)(t) = δ(t)

∫ t

0

e−
1
12

τ [w(τ)]
1
10dτ + δ(t)[w(t)]

4
25

D(w)(t) = e−
1
3
t[w(t)]

2
5

Based on the above perturbed system, the conditions (3.11) and (3.12)

are verified as shown in Figure 3.7 and Figure 3.8 to make the design scheme
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Figure 3.7: The effectiveness of (3.11)
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Figure 3.8: The effectiveness of (3.12)



50 CHAPTER 3. Lα OPERATOR-BASED RCF & ROBUST CONTROL

Figure 3.9: Plant output y



3.4. CONCLUSION 51

available, where the reference input is chosen as r(t) = 1.5(1 + e−
1
2
t) shown

in Figure 3.6. As Figure 3.7 and Figure 3.8 are shown, the bounded pertur-

bations is satisfied with the conditions for guaranteeing robust stability.

Next, the simulation result of the plant output of the nonlinear system

with bounded perturbations is given in Figure 3.9. Thus, based on the simu-

lation results, robust stability of the nonlinear system with bounded pertur-

bations is obtained by the proposed design scheme.

3.4 Conclusion

In this chapter, extended right coprime factorization is discussed based on

the proposed Lα operator and robust control for the nonlinear system with

bounded perturbations is considered using a new unimodular operator for

guaranteeing robust stability. The application range of the robust right co-

prime factorization approach was extended by the proposed operator. Feasi-

ble design schemes were proposed for avoiding the difficulties in calculation

based on the proposed operator, which meant that robust stability of the

perturbed nonlinear system can be guaranteed based on the proposed uni-

modular operator B. Finally, the effectiveness of the proposed design scheme

was confirmed by a simulation example.





Chapter 4

Extended right coprime
factorization and robust control
using adjoint operator

4.1 Introduction

In Chapter 3, extended right coprime factorization and robust control for

nonlinear systems satisfying Lα operator condition are discussed by using the

proposed Lα operators. According to the proposed method, right coprime

factorization is extended, which means that the application of operator-based

right coprime factorization becomes broader. However, besides the above

considered issues, there is few attention on how to factorize nonlinear sys-

tems with perturbations for a robust right coprime factorization and the

rational boundedness for robust condition issue. Therefore, in this chapter

for dealing with these issues, inner product and adjoint operators of Hilbert

spaces are introduced. Adjoint operator-based extended robust right coprime

factorization is proposed, which not only guarantees existence of the compen-

sator for the isomorphism, but also combines with inner product providing a

quantitative right factorization for the nonlinear system with perturbations.

As to robust stability of the nonlinear system, a practical design scheme is

53
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proposed by two steps, which is realizable due to avoiding the irrational num-

ber of robust stability and complex calculation for the considered nonlinear

systems.

In Section 4.2, how to factorize a given nonlinear system is considered

based on the adjoint operator of Hilbert spaces. The isomorphism relation-

ship is reconstructed based on Hilbert spaces, which extends the application

range of the isomorphism technique. That is, adjoint operator combining

inner product of Hilbert spaces is employed to factorize a unstable system

using isomorphism idea. Then, in terms of the obtained factors, coprime-

ness property of the nonlinear system is discussed and the design schemes

of stable controllers for Bezout identity are given, which guarantee that the

obtained right factorization is coprime. In this section, stability of nonlinear

systems is guaranteed using the extended right coprime factorization based

on the proposed adjoint operator combining inner product of Hilbert spaces.

In Section 4.3, robust control design for the nonlinear system with per-

turbations is considered based on the obtained right coprime factorization in

Section 4.2. Specially, first, the considered problem is discussed on irrational

boundedness of the robust conditions. Second, mathematical preliminaries

are given for developing the sufficient condition for robust stability of non-

linear systems with perturbations. Third, the robust control design scheme

for the nonlinear system with perturbations is proposed to guaranteeing ro-

bust stability of the considered systems, while the proposed design scheme

can avoid the issue that irrational boundedness holds the norm inequalities.

That is, in the real application, the proposed design scheme is more practi-

cal. Finally, The given numerical example illustrates the effectiveness of the

proposed methods.

In Section 4.4, extended right coprime factorization using adjoint oper-

ator of Hilbert spaces and rational boundedness of robust condition for the

considered nonlinear systems are summarized.
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4.2 Right coprime factorization with adjoint

operator

4.2.1 Problem statement

There have been many significant results on robust control using robust

right coprime factorization for nonlinear systems, however, among the re-

sults, there exists few attention on how to factorize a given nonlinear system

with perturbations such that the perturbed system has a robust right co-

prime factorization. Therefore, in this section, the problem will be discussed

for a class of nonlinear systems.

The aim of this section lies in obtaining robust right coprime factorization

of the nonlinear system with perturbations quantitatively. Based on the

proposed adjoint operator, a generalized form of the isomorphism relationship

is defined extending the application range of isomorphism technique.

4.2.2 Adjoint operator

Definition 4.1. An isomorphism is defined from U to Y with a single binary

operation, if an operator ψ from U to Y is bijective and satisfied with the

following conditions,

ψ(u1 ◦ u2) = ψ(u1) ⋆ ψ(u2), for each u1, u2 ∈ U

where ◦ and ⋆ are the suitable operations defined on U and Y , respectively.

In order to apply the isomorphism technique, a compensator is designed

based on adjoint operators of Hilbert spaces. Firstly, the definition of inner

product is given as follows.

Definition 4.2. A mapping (u1, u2) →< u1, u2 >, from U × U to the

field of complex numbers C, such that

1. < au1 + bu2, u3 >= a < u1, u3 > +b < u2, u3 >;
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2. < u2, u1 >= < u1, u2 >;

3. < u1, u1 >⩾ 0. < u1, u1 >= 0 only when u1 = 0.

whenever u1, u2, u3 ∈ U and a, b ∈ C. Then, the mapping < · , · > is

said to be an inner product on U .

Based on proposed inner product, a norm of an element of the space U

can be obtained.

Lemma 4.1. If < · , · > is an inner product on a complex vector space

U , the equation

∥ x ∥=< x, x >
1
2 (4.1)

defines a norm ∥ · ∥ on U , where x ∈ U .

Proof. Based on (4.1) defined, it is apparent that ∥ x ∥≥ 0 and ∥ x ∥=|
a |∥ x ∥ whenever x ∈ U a ∈ C. Moreover, owing to the definition of the

inner product, ∥ x ∥= 0 only when x = 0. The following inequality can be

written in he form

|< x, y >|≤< x, x >
1
2< y, y >

1
2=∥ x ∥∥ y ∥

Also we have,

∥ x+ y ∥2 ≤∥ x ∥2 +2 |< x, y >| + ∥ y ∥2

≤∥ x ∥2 +2 ∥ x ∥∥ y ∥ + ∥ y ∥2

= (∥ x ∥ + ∥ y ∥)2

Thus, ∥ x+ y ∥≤∥ x ∥ + ∥ y ∥ for each x, y ∈ U . Based on the definition of

norm, proof of the lemma is completed.

Definition 4.3. A norm space U is called to be a Hilbert space if its

norm can be defined and is complete, as in (4.1).

In this chapter, the input space U and output space Y are considered in

the context of the Hilbert space. Next, the definition of adjoint operator is

introduced.
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Definition 4.4. If T ∈ Lip(U, Y ), there is an element T ⋆ of Lip(Y, U)

such that

< T ⋆u1, y1 >=< u1, T y1 >

then T ⋆ is called to be an adjoint operator of T .

Moreover, the following properties can be obtained:

1. (aS + bT )⋆ = aS⋆ + bT ⋆

2. (RS)⋆ = S⋆T ⋆

3. (T ⋆)⋆ = T

Based on the proposed adjoint operator, a sufficient condition is pro-

posed in following subsection to guarantee existence of isomorphism for the

nonlinear system with perturbations.

4.2.3 Factorization method based on adjoint operator

Theorem 4.1. In terms of the input space and output space, U and Y ,

respectively, let T ∈ Lip(U, Y ), then T is an isomorphism from U onto Y if

T−1 = T ⋆.

Proof. The operator T is an isomorphism from U to Y if it is both

invertible and norm preserving. Accordingly, suppose T has an inverse, and

it suffices to show that T preserves norms if T ⋆T = I. Since

< T ⋆Tx, x > − < x, x > =< Tx, Tx > − < x, x > (4.2)

for each x ∈ U . Thus, if T ⋆ = T−1, the operator T is an isomorphism.o

The proof of the theorem is completed.

As to the existence of isomorphism for the nonlinear system with per-

turbations, a compensator S is designed to make D̃ = DS satisfied with

D̃−1 = (DS)−1 = S−1D−1 = D̃⋆ as shown in Figure 4.1 based on Theorem

4.1. The nonlinear system with perturbations can be rewritten as shown in

Figure 4.2. After that, robust right factorization of the nonlinear system with
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Figure 4.1: The proposed system with the compensator S−1

perturbations will be considered quantitatively based on the inner product

of Hilbert space.

In this dissertation, ◦ and ⋆ are defined as follows, if each u1, u2 ∈ U ,

◦ : u1 ◦ u2 =< u1, u2 > (4.3)

⋆ : ϕ(u1) ⋆ ϕ(u2) =< ϕ(u1), ϕ(u2) >= ϕ(u1 + ϕ(u2)). (4.4)

After that, we can propose different form of inner product to satisfy the

different requirements of nonlinear systems depending on analysis, which

leads to the extension of application range of the isomorphism technique.

Theorem 4.2. Suppose that the system shown in Figure 4.2, robust right

factorization of the nonlinear system with perturbations can be realized using

isomorphism defined as (4.3) and (4.4) based on the inner product of Hilbert

space.

Proof. Considering the linear space W is the isomorphic space of U ,

assume the isomorphism to be ϕ, thus, w = ϕ(u). Obtain

ϕ(u1 ◦ u2) = ϕ(u1) ⋆ ϕ(u2).

where ◦ and ⋆ are defined as (4.3) and (4.4), respectively.

Form the bijective property of isomorphism, the following equation can

be established:

< ϕ(u), u >= 2ϕ(u). (4.5)
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Figure 4.2: The nonlinear system with perturbations by isomorphism

Then according to the form of (8), its solution can be obtained as follows,

ϕ(u)(t) = ψ(t)Ψ(u)(t),

where 0 < min (ψ(t)) < ψ(t) < max (ψ(t)) < ∞ for t ∈ [0,∞), both ψ(t)

and Ψ(u) are known operators.

Thus, robust right factorization of the nonlinear system with perturba-

tions can be obtained as shown in (4.6) and (4.7), respectively:

D̃−1(u)(t) = ψ(t)Ψ(u)(t) (4.6)

(N +∆N)(w)(t) = ψ(t)Ψ(w)(t) + ∆(t)Ψ(w)(t) (4.7)

The proof of the theorem is completed.

From Theorem 4.2, using the isomorphism, robust right factorization of

nonlinear system with perturbations is obtained. Next, two stable controllers

A and B of Bezout identity will be considered. How to design A and B

directly determines whether the nonlinear system with perturbations can be

robustly stable. Therefore, in the following subsection, existences of two stale

controllers A and B will be discussed.
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4.2.4 Existence of two controllers A and B

Theorem 4.3. As to the nonlinear system shown in Figure 4.2, there exist

two stable controllers A and B such that the output can track to the reference

input.

Proof. Suppose that the two controllers A and B exist, according to the

Lemma 2.6, the following condition of the obtained nonlinear system with

perturbations can be satisfied :

A(N +∆N)(w)(t) + BD(w)(t) = N +∆N(w)(t)

Thus, the controller A is proposed as follows:

A(y)(t) =
m

n
y(t) + b (4.8)

where n, m are real numbers, b is a parameter, 0 < m < ∞, 0 < n < ∞.

According to the designed controller A, we can find the fact that A is stable

and the operator I − A is also invertible.

Since,

(I − A)−1(e)(t) =
n

n−m
e(t) + b.

Therefore, based on Lemma 2.6 B is obtained as follows:

B(u)(t) = (I − A)(N +∆N)D̃−1(u)(t) (4.9)

According to the controller B, B−1 can be driven:

B−1(e)(t) = D̃(N +∆N)−1(I − A)−1(e)(t)

The proof of the theorem is completed.

From Theorem 4.3, the existence of the two controllers A and B is con-

firmed for the obtained robust right factorization. In the following section,

the rational boundedness of robust condition will be discussed for guarantee-

ing robust stability of the nonlinear perturbed system.
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4.3 Robust control for perturbed nonlinear

systems

4.3.1 An example showing necessity of proposed method

In order to show necessity of redesigning robust stability condition, an ex-

ample is given.

An Example Showing Necessity of Redesigning

Considering the real plant P + ∆P , it is defined as follows [80], where

|δ(t)| < 1

(P +∆P )(u)(t) =
1

15
(e2t + (1 + δ(t))et + δ(t) + (δ(t) + δ2(t))e−t)u2(t)

Form the isomorphism technique in [17], the robust right factorization are

obtained as follows:

(N +∆N)(w)(t) =
1 + (1 + δ)(t))e−t

15
w2(t)

(D +∆D)−1(u)(t) =
√
e2t + δ(t)u(t)

Then, the controllers A and B can be designed as follows:

A(y)(t) =
b

a
y(t),

B(u)(t) =
b

a

(
1 + (1 + δ(t))e−t

15

)3

u4(t)

where 0 < b < a <∞.

In terms of the robust stability condition [80], (8 − 4
√
3)b < a < (8 +

4
√
3)b, the controller A is supposed to satisfy the above condition, then the

overall system can be robustly stable.

When it is applied to the practical systems, the irrational number bound-

ary cannot be precisely determined because the irrational number boundary

cannot measure the practical system in many cases like the affection of uncer-

tainties. Thus, a precise design scheme is necessary to deal with the bounded

perturbation of the nonlinear system.
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Figure 4.3: New proposed nonlinear system with perturbations by isomor-
phism

4.3.2 Rational boundedness for robust control condi-
tion

In the following subsection, robust control of the considered system as shown

in Figure 4.3 will be studied.

Based onTheorem 4.3, two stable controllers A and B of robust right co-

prime factorization exist for the nonlinear system with perturbations. Thus,

in this subsection, robust stability of the nonlinear system with perturbations

will be discussed.

Theorem 4.4. As to the nonlinear system shown in Figure 4.3, for the

two stable controllers A and B are in forms of (4.8) and (4.9), respectively,

if the following conditions are satisfied:

0 < m < 2n (4.10)

m < n < 2m (4.11)
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then, the following equations

∥ [A(N +∆N)− (N +∆N)] ∥∥ (N +∆N)−1 ∥< 1

∥ BD̃ ∥∥ [A(N +∆N)]−1 ∥< 1

can be satisfied. That is, A(N+∆N) and A(N+∆N)+BD̃ are unimordular.

Proof. First, ∥ [A(N + ∆N) − (N +∆N)] ∥∥ (N +∆N)−1 ∥< 1 will be

proved.

In order to prove the inequality of the Lipschitz norm, an operator H(y)

is proposed as shown in (4.12).

H(y)(t) = [A(N +∆N)− (N +∆N)](N +∆N)−1(y)(t)

= A(y)(t)− I(y)(t) (4.12)

where I(·) is the identity operator.

From (4.12) and the Lipschitz norm, the coefficient of (4.12) can be ob-

tained:

α(H) = α(A)− α(I)

=
m

n
y + b− y

= (
m

n
− 1)y + b (4.13)

Thus, based on condition (4.10), 0 < m < 2n, the following inequality is

obtained,

∥ [A(N +∆N)−(N +∆N)] ∥∥ (N +∆N)−1 ∥

= sup
T∈[0,∞)

sup
y1,y2∈Y
y1 ̸=y2

∥ [H(y1)]−H[(y2)] ∥
∥ [y1]− [y2] ∥

< sup
T∈[0,∞)

∥ m
n

− 1 ∥

< 1 (4.14)
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Therefore, based on Theorem 3.2, the operator A(N +∆N) is unimod-

ular.

Next, ∥ BD̃ ∥∥ [A(N + ∆N)]−1 ∥< 1 is will be proved. The operator

K(r) is established as follows,

K(r)(t) = BD̃[A(N +∆N)]−1(r)(t)

= (I − A)A−1(r)(t)

= A−1(r)(t)− I(r)(t) (4.15)

where I(·) is the identity operator.

According to (4.15), its coefficient can be shown as follow:

α(K) = α(A−1)− α(I)

=
n

m
r − b− r

= (
n

m
− 1)r − b (4.16)

Based on the condition (4.11),

∥BD̃ ∥∥ [A(N +∆N)]−1 ∥

= sup
T∈[0,∞)

sup
r1,r2∈U
r1 ̸=r2

∥ [K(r1)]−K[(r2)] ∥
∥ [r1]− [r2] ∥

< sup
T∈[0,∞)

∥ n

m
− 1 ∥

< 1 (4.17)

From the first result and Theorem 3.2, A(N+∆N)+BD̃ is unimodular.

The proof of the theorem is completed.

Therefore, from Theorem 4.4, the design scheme for robust stability of

the nonlinear system with perturbations is obtained.

Therefore, in this dissertation, robust stability and extended robust right

coprime factorization for the given nonlinear systems with perturbations are

addressed. In the next section, a simulation example is given to confirm the

effectiveness of the proposed methods.
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4.3.3 Simulation example

First, the input space U and the output space Y are given: U = Y = C1
[0,∞).

The nonlinear system with perturbations is shown,

(P +∆P )(u)(t) =
1 + te−t(1 + δ(t))(1 + te2t)

8
u(t)

Next, based on the given plant operator, right factorization is deduced from

the design scheme in this dissertation. Thus, the following inner product is

employed to consider robust right factorization of the given plant,

< ϕ(u)(t), u(t) >= 2u(t)

∫ t

0

(1− t)e−t

(te−t + 1)u2(τ)
ϕ(u)(τ)u(τ)dτ

As to the proposed isomorphism, the following equation is obtained,

2u(t)

∫ t

0

(1− t)e−t

(te−t + 1)u2(τ)
ϕ(u)(τ)u(τ)dτ = 2ϕ(u)(t) (4.18)

By calculating, solution of the equation (4.18) of ϕ(u)(t) is shown,

ϕ(u)(t) =
1

8
(te−t + 1)u(t)

Based on the solution, the operators (N +∆N)(w)(t) and D̃−1(u)(t) can be

obtained,

(N +∆N)(w)(t) =
1 + te−t(1 + δ(t))

8
w(t)

D̃−1(u)(t) =
1 + te−t

8
u(t)

From the right factorization principle, D−1 is obtained ,

D−1(u)(t) = (te2t + 1)u(t).

Meanwhile, the compensator S is founded

S(w)(t) = D−1D̃(w)(t)

= (te2t + 1)
8

1 + te−t
w(t)



66 CHAPTER4. ADJOINT OPERATOR-BASED RCF & ROBUSTNESS

The two stable controllers A and B for the nonlinear system with pertur-

bations are designed.

A(y)(t) =
2

3
y(t) + 15

B(u)(t) =
(1 + te−t(1 + δ(t))(1 + te−t)

24
u(t)

Moreover, based on the designed controller A, the following two conditions

are also satisfied with requirement on inequality of the Lipschitz norm.

Since,

∥ [A(N +∆N)− (N +∆N)] ∥∥ (N +∆N)−1 ∥

= sup
T∈[0,∞)

sup
y1,y2∈Y
y1 ̸=y2

∥ [H(y1)]−H[(y2)] ∥
∥ [y1]− [y2] ∥

< sup
T∈[0,∞)

∥ 2

3
− 1 ∥

< 1 (4.19)

and

∥ BD̃ ∥∥[A(N +∆N)]−1 ∥

= sup
T∈[0,∞)

sup
r1,r2∈U
r1 ̸=r2

∥ [K(r1)]−K[(r2)] ∥
∥ [r1]− [r2] ∥

< sup
T∈[0,∞)

∥ 3

2
− 1 ∥

< 1 (4.20)

Then, the nonlinear system with perturbations can be guaranteed robust

stable.

[A(N +∆N) + BD̃](w)(t) =
1 + te−t(1 + δ(t))

8
w(t)

= M̃(w)(t)

= (N +∆N)(w)(t) (4.21)
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Figure 4.4: Plant output y & reference input r

Thus, the output of the nonlinear system tracking to the reference input can

be guaranteed owing to

y(t) = (N +∆N)M̃−1(r)(t) = r(t).

The simulation results of the output and reference input are shown in

Figure 4.4, where the reference input is r = 0.01(1 + te−t), δ(t) = e−t. From

Figure 4.4, it is easy to find that robust stability of the considered system

is guaranteed, meanwhile, the plant output can track to the reference input

while the reference input. Thus, the effectiveness of the proposed scheme is

confirmed with simulation example.
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4.4 Conclusion

In this chapter, extended robust right coprime factorization and robust stabil-

ity for the nonlinear systems with perturbations are considered based on ad-

joint operator and inner product of Hilbert. The proposed method based on

the inner product extended the isomorphism for the nonlinear systems with

perturbations. Simultaneously, by the adjoint operator of Hilbert spaces,

the existence of a compensator for the systems was obtained. That is, ro-

bust right coprime factorization is extended by the proposed design scheme.

Further, a practical and realizable design scheme for robust stability was

proposed using the proposed controller, which avoided the irrational bound-

edness of robust condition of former results. Finally, the effectiveness of the

proposed design scheme was confirmed by the simulation example.



Chapter 5

Left coprime factorization
realization based on right
factorization and issues on
robust stability of MIMO
nonlinear systems

5.1 Introduction

In Chapter 3 and Chapter 4, extended robust right coprime factorization and

the nonlinear control problem are considered for nonlinear systems based on

Lα operator and adjoint operator, respectively.

As we addressed in the former chapter, operator-based coprime factoriza-

tion has been proved to be a promising and effective method, which provides

a rather convenient framework for researching nonlinear systems. A great

number of results on operator-based right coprime factorization has been

consistently pursued with tremendous effort by many researchers in the fields

[65],−, [90]. As we addressed, almost of the researchers on nonlinear systems

are employed right coprime factorization. As to the technique of left coprime

factorization, very little insights and researchers arise for nonlinear system.

69
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As for the right coprime factorization method, the main idea is to factorize a

given system operator P as a composition of two different operators N and

D such that P = ND−1, where N is a stable operator and D is a stable and

invertible operator, then to design other two stable operators A, B satisfying

the Bezout identity AN + BD = M , based on N and D, where M is an

unimodular operator. Therefore, in this chapter, we will extend the right

factorization idea to consider left coprime factorization for nonlinear systems

from the input-output viewpoint.

On the other hand, however, comparing with a great number of results

on single-input-single-output (SISO) nonlinear uncertain systems[54],−, [68],
there are relative fewer results available for MIMO nonlinear systems with

uncertainties due to complications and difficulties in dealing with uncertain-

ties [106],−, [118]. In this chapter, we will discuss an issue on robust control

of MIMO nonlinear systems with uncertainties from the input-output point

of view using the operator-based right coprime factorization approach.

There exists some results based on right coprime factorization for MIMO

nonlinear systems [106] and [107]. In [107], some sufficient conditions for

the MIMO nonlinear perturbed systems are derived. The proposed suffi-

cient conditions are established by using Taylor expansion of a controller. In

terms of Taylor expansion, in some cases, it is a hard condition to satisfy

with derivative condition, owing to calculating the higher derivation of the

controller. Therefore, there are some restrictive conditions for applying the

proposed design scheme [107]. In [106], for dealing with coupling effect and

guaranteeing robust stability of MIMO nonlinear systems, internal operators

of coupling effect are supposed to be satisfied with right factorization, which

means the internal signal of the coupling effect could be observed for obtain-

ing right factorization. Generally speaking, most coupling effect is unknown

for nonlinear systems. Therefore, some cases where internal signal of cou-

pling effect is not available could be difficult to employ the proposed design
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scheme. Therefore, considering the above issues, a feasible design scheme for

MIMO nonlinear systems with uncertainties is motived. First, the definition

of quotient operators is proposed to deal with coupling effect of the MIMO

nonlinear systems. Based on the proposed quotient operator, a sufficient con-

dition is proposed for decoupling the MIMO nonlinear systems, which relaxes

the former restrictive conditions on Taylor expansion and right factorization

of coupling effect. From the proposed design scheme, a unified framework is

established to deal with the existed coupling effect directly. Then, a feasible

control is proposed to deal with the MIMO nonlinear systems with uncer-

tainties based on two sufficient conditions using a new unimodular operator,

whose merits lie in avoiding obtaining right factorization of a control operator

and difficult calculation of the normal Bezout identity.

In Section 5.2, the main results are developed by the proposed methods.

Firstly, the problem statement for this chapter is given, which includes the

concerned issues. Then, the definition of left coprime factorization is recalled.

Based on the given definition, internal-output stability and left coprime fac-

torization for a class of nonlinear system is considered based on extending

right factorization method. Finally, a simulation example is given to confirm

the effectiveness of the proposed design scheme.

In Section 5.3, main results on robust control of MIMO nonlinear systems

are proposed. Coupling effect of the MIMO nonlinear systems is considered.

Then, sufficient conditions for guaranteeing robust stability of the MIMO

nonlinear systems with uncertainties are given. A simulation example is

given to show effectiveness of the proposed design scheme.

In Section 5.4, the summary of left coprime factorization by extending

right factorization for a class of nonlinear systems and robust control for

MIMO nonlinear systems are given.
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5.2 Internal-output stability and left coprime

factoriztion

5.2.1 Problem statement

In the linear case, the equivalent relationship between the Bezout identity

and coprime factorization exists. However, when a nonlinear system using

the left coprime factorization approach is considered, it is difficult to find

the equivalent relationship between the Bozout identity and the copirmeness

of the left factorization. On the other hand, as for right factorization on

the nonlinear systems, unstable factors lie in the process from the input

space to the internal signal space. To guarantee stability of the nonlinear

systems, the internal signal is employed to establish a Bezout identity based

on the obtained right factorization. However, considering left factorization

definition, unstable factors lie in the process from internal signal space to the

output space, which cannot be handled as the way of right factorization.

That is, internal-output stability of nonlinear systems is considered, which

cannot be handled by right coprime factorization, and how to realize left

coprime factorization of nonlinear systems is discussed. Specifically, for deal-

ing with the issue on internal-output stability, the part of left factorization

is designed to transform the issue to a relative convenient framework to

study the nonlinear system based on a right factorization. After that, a sys-

tematic scheme for a family of nonlinear systems is proposed to realize left

coprime factorization combining the right factorization technique. The pro-

posed scheme provides a realization approach to left coprime factorization,

without using the left coprime factorization definition to clarify whether left

factorization of a nonlinear system is coprime or not.
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Figure 5.1: A nonlinear system with left factorization

5.2.2 Mathematical preliminaries

Definition 5.1. A nonlinear system P : U → Y is shown in Figure 5.

1, where U and Y are employed to denote the input space and the output

space, respectively. u, w and y represent the control input, the internal signal

and the output, respectively. Then, the given system P is said to have left

factorization, provided that if there exist a linear space W and two stable

operators N : U → W and D : Y → W such that P = D−1N where D−1

exists ( not stable) and the space W is called to be a factorization space.

Note that the unstable factors of left factorization exist in the part D, so

from the whole system angle, the nonlinear system P is not internal-output

stability in the sense that the bounded internal signal maps bounded output

signal, which is different with right factorization.

Definition 5.2. As for the nonlinear system with left factorization shown

in Figure 1, when the set of all unbounded u such that Pu is bounded and

Nu is bounded is the empty set, then left factorization D and N of P is

said to be coprimeness. This is equivalent to require that for all bounded w,

D−1w is bounded or {u : Nu = w} is bounded.
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5.2.3 Internal-output stability and left coprime factor-
ization

In this section, a relative convenient framework is proposed to study internal-

stability of the nonlinear system with left factorization shown in Figure 5.

1. For dealing with this issue, an idea is proposed to transform the left fac-

torization to an equivalent framework for studying internal-output stability.

That is, the unstable part of the nonlinear system with left factorization D−1

is designed to have right factorization, denoted as D = QR−1, where Q, R

are stable and R−1 is not necessary stable. Let w∗ be the internal signal of D.

Based on the proposed scheme, the fact that Q is invertible can be obtained,

since Q = DR and R, D being invertible imply the composite operator RD

is invertible. Therefore, the internal-output stability is transformed an in-

ternal part issue to the nonlinear system. Through this transformation, the

unstable factor of the nonlinear system is described by the internal part Q−1.

The internal stability of the nonlinear system will be discussed by combining

right factorization with left factorization.

In this chapter, in order to guarantee the internal-output stability of the

nonlinear system and realize left coprime factorization of the nonlinear sys-

tems, an feasible approach is proposed by designing Bzout identity combining

the right factorization technique. However, because of the universal cases of

the composite operator Q−1N , there exist some difficulties in the process of

designing Bezout identity for the nonlinear system. Thus, before designing

the Bezout identity, a preparatory result on the composite operator is shown

as follows.

Lemma 5.1. As for the nonlinear system shown in Figure 5.1, if a

feedback compensator is designed as shown in Figure 5.2 such that

∥ S −Q−1N ∥∥ S−1 ∥< 1 (5.1)

where S is the designed controller, then the inverse of Q−1N exists and is
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stable. Its equivalent system is denoted as Q−1Ñ in the rest chapter and the

whole system is shown in Figure 5.3.

Proof. According to Lemma 3.2, show thatQ−1NS−1 is invertible. Since

∥ I −Q−1NS−1 ∥≤∥ S −Q−1N ∥∥ S−1 ∥< 1

Also,

∥ (Q−1NS−1)−1 ∥ ≤ 1

1− ∥ I −Q−1NS−1 ∥

≤ 1

1− ∥ S −Q−1N ∥∥ S−1 ∥
(5.2)

Since Q−1N = (Q−1NS−1)S, we see that Q−1N has an inverse, namely,

(Q−1N)−1 = S−1(Q−1NS−1)−1. Also,

∥ (Q−1N)−1 ∥≤∥ S−1 ∥∥ (Q−1NS−1)−1 ∥

Figure 5.2: Feedback system with the compensator S

Therefore, according to the designed compensator S, the proposed equiv-

alent operator Q−1Ñ is proved to be invertible and its inverse is stable. After

that, relationship from w∗ to u can be obtained. Based on the proposed de-

sign compensator, the design scheme of the realization to left coprime factor-

ization for a specific class of nonlinear systems will be shown in the following

theorem.
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Figure 5.3: The whole equivalent system with the compensator S

Theorem 5.1. As for the nonlinear system shown in Figure 5.3 if there

exist two stable operators A and B, where ∥ AR ∥< 1 and B−1 exists, such

that AR(w∗)(t) + BL̃(w∗)(t) = I(w∗)(t), where I is identity operator from

w∗ to r and L̃(w∗)(t) = (Q−1Ñ)−1(w∗)(t), then the nonlinear system P is

internal-output stable and has left coprime factorization.

Proof. Firstly, in terms of the existence of a controller A, there are a great

number of choices in finding an operator A such that the Lipschitz norm of

AR is less one. For simplicity, in this chapter, we choose

A(y)(t) =
m(t)

n(t)
y(t)

where m(t), n(t) are two designed operators.

A(y) can be found to be stable. And according to the chosen operator A,

the controller B can be designed as follows,

B(u)(t) = (I − AR)L̃−1(u)(t)

From Lemma 3.2, the composite operator I − AR is invertible. Com-

bining with the fact that L̃ is also invertible, the proposed operator B is

invertible.

After obtaining the two controllers A and B, the Bezout identity

AR(w∗)(t) +BL̃(w∗)(t) = I(w∗)(t)
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can be obtained.

Moreover, according to the proposed approach and the connection be-

tween signals of the nonlinear system, Figure 5.4 is shown to describe the

designed scheme, where r, u and y are the reference input, control input and

output of the nonlinear system, respectively.

Figure 5.4: The designed scheme for the nonlinear system

Form AR(w∗)(t) +BL̃(w∗)(t) = I(w∗)(t), we can get

AR(w∗)(t) +BL̃(w∗)(t) = A(y)(t) +B(u)(t) (5.3)

= b(t) + e(t)

Combining with the signals relationship as shown in Figure 5.4, the following

relationship between w∗ and r is obtained.

w∗(t) = I−1(r)(t) (5.4)

Thus, the design of the nonlinear system as shown in Figure 5.4 can be

simplified to Figure 5.5 as follow.

Owing to that I is unimodular and R is stable, so internal-output stability

of the nonlinear system P is guaranteed in the sense that a bounded input

maps a bounded output.
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Figure 5.5: Equivalent system of Figure 5.4

Based on the definition of left coprime factorization proposed in [84],

all bounded w, D−1(w) is bounded or {u : N(u) = w} is bounded. For

the nonlinear system shown in Figure 5.5, all given bounded w, the output

y = D−1(w) is bounded. Indeed, based on the design scheme, the nonlinear

system P is proved to be stable, that is, the output of P is bounded. Thus,

the obtained left factorization of P is coprime through the proposed design

scheme.

The proof of the theorem is completed.

Note that from Theorem 5.1, the realization approach on left coprime

factorization to a class of nonlinear systems is obtained using the proposed

method. Meanwhile, the internal-output stability is guaranteed by combining

left factorization and right factorization. The merits of the proposed meth-

ods lie in two following points that the proposed method can be employed

to study the internal-output stability of the nonlinear systems, transforming

the internal-output issue to a feasible issue, and that left coprime factoriza-

tion makes more sense than the right coprime factorization for the specific

class of nonlinear system, at least for the commonly employed mathematical

description of operator-based nonlinear equations describing systems.

In this section, the proposed method provides some new insights and

thoughts in studying the internal-output stability and establishing left co-

prime factorization for nonlinear systems. After that, the cases where the
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nonlinear systems with the left coprime factorization have bounded pertur-

bations will be discussed.

5.2.4 Simulation example

In this section, a numerical simulation is given for confirming the effectiveness

of the proposed method. Let C[0,∞] be the space of continuous functions, and

C1
[0,∞] consists of all the functions having a continuous first derivative, which

both are defined on [0,∞). Suppose that the input space U and the output

space Y are included in C1
[0,∞]. After that, the nonlinear system P is given

as shown in the following unstable and time-varying nonlinear operator from

U to Y :

P (u)(t) = (1 + t)2(
1

2t+ 1
u(t)− 1

t+ 1
)− t− 1

where I(u)(t) is the identity operator.

Based on the proposed nonlinear system P , left factorization can be ob-

tained as follows,

N(u)(t) =
1

2t+ 1
u(t)− 1

t+ 1

D(w⋆)(t) =
1

(1 + t)2
w⋆(t) +

1

1 + t

It can be found that N and D are both stable operators, D−1 is unstable.　

Since, according to the obtained D, its inverse can be shown as follow,

D−1(w⋆)(t) = (1 + t)2w⋆(t)− t− 1

Then, based on the proposed method for internal-output stability of the

nonlinear system, left factorization on D is designed as follows,

R(w⋆)(t) =
1

t+ 1
w⋆(t)− 1

(1 + t)2

Q(w⋆)(t) =
1

(t+ 1)3
w⋆(t)
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Figure 5.6: Reference input
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Figure 5.7: Plant output
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where Q and R are stable, and the inverse of R−1 is not stable.

After that, according to Lemma 5.1, a compensator will be designed to

make the composite operator Q−1N(u)(t) be unimodular, which is employed

to establish a Beoout identity to guarantee the internal-output stability and

the coprime property of the nonlinear system.

From the above factorization, we can get

Q−1N(u)(t) =
(t+ 1)3

2t+ 1
u(t)− (t+ 1)3

Therefore, the feedback compensator S is designed as follow,

S(u)(t) =
1

(t+ 1)2
u(t) +

2t+ 1

t+ 1

Next, the controllers A and B are designed according to Theorem 5. 1

as follows:

A(y)(t) =
(1 + t)(2t+ 1)

2t2
y(t)

B(u)(t) =
(2t2 − 2t− 1)(t+ 1)

2t2(2t+ 1)
u(t) +

2t+ 1

2t2(t+ 1)

Based on the designed controllers, it can be verified that A and B satisfy

the following Bezout identity. Indeed, we have, AR(w⋆)(t) + BL̃(w⋆)(t) =

I(w⋆)(t).

In order to show the effectiveness the proposed design scheme for the

nonlinear system without perturbation, simulation results are given in Figure

5.6 and Figure 5.7, which are the reference input r(t) and the output y(t),

respectively. The reference input is chosen as r(t) = 1.5(1 + e−0.5t) in this

chapter. Thus, based on the simulation results, the internal-output stability

of the nonlinear system is obtained using the proposed design scheme.
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5.3 Robust stability of MIMO nonlinear sys-

tems

5.3.1 Problem statement

Generally speaking, uncertainties for the MIMO nonlinear system are con-

sidered in many researches. However, the previous methods for dealing with

coupling effect and uncertainties restrict their application to some extent

because of complicated calculation of invertible operators and difficulties in

practice. Therefore, in this chapter, robust control design is discussed for the

MIMO nonlinear system with uncertainties based on the proposed quotient

operator. That is, the proposed quotient operator controller is employed to

deal with coupling effect existing in systems effectively, then the proposed

sufficient conditions relax restriction of the previous methods for stabilizing

the overall systems.

5.3.2 Robust stability of MIMO nonlinear systems

In this chapter, the MIMO nonlinear systems with uncertainties are con-

sidered, however, there exist some particular characteristics compared with

the SISO nonlinear systems due to coupling effect. Therefore, first, we will

discuss coupling effect of the MIMO nonlinear systems.

Assume that a MIMO nolinear system with right factorization, whose in-

put space, quasi-state space and output space are denoted as U ,W and Y , re-

spectively, shown in Figure 5.8 exists coupling effect, where u = (u1, u2, ..., un)

and y = (y1, y2, ..., yn) are input and output, respectively. P = (P1, P2, ..., Pn) :

U → V is a nominal system and has right factorization P = ND−1, where

N = (N1, N2, ..., Nn) : W → V and D = (D1, D2, ..., Dn) : W → U are

stable and D is invertible, ∆D is denoted as immanent coupling effect. As

for coupling effect of the MIMO nonlinear system, assume that the existing
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Figure 5.8: MIMO nonlinear systems with coupling effect.

coupling effect is related to the input signals of the MIMO nonlinear system,

which leads to that internal signals of the system exists coupling effect. For

these cases, there are many real applications where coupling effect exists be-

tween input signal and internal signal in the MIMO nonlinear systems. In

this chapter, the coupling effect of the MIMO nonlinear systems is assumed

to belong to one certain subspace W0 of W .

Next, decoupling for the MIMO nonlinear system will be discussed by

quotient operators.

Definition 5.3. Provided that X be a linear space X0 is a linear subspace

of X, denote by X/X0 the set of all cosets x + X0, for each x ∈ X with

addition defined by (x + X0) + (y + X0) = x + y + X0 and multiplication

by scalars defined by a(x + X0) = ax + X0, then X/X0 is called to be a

quotient space of X by X0. Based on the quotient space of X by X0, define

an operator Q from X to X/X0 as follows, Q(x) = I(x) +X0 then Q is said

to be a quotient operator, where I is the identity operator.

According to the proposed operator, a nonlinear control design for de-

coupling the MIMO nonlinear system is provided in Figure 5.9. Then, the

decoupling problem can be solved by the following lemma.

Lemma 5.2. As for the MIMO nonlinear system as shown in Figure 5.8,

if the controller Q is designed to be a quotient operator from W to W/W0,
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mapping d to W/W0, F is designed to be an operator from W/W0 to W ,

and R is designed such that RD = I, where Q,F and R are stable, then the

MIMO nonlinear system is decoupled.

Proof. The control design of Figure 5.9 indicates that Q guarantees out-

put of Q is not involved in output of D−1, which means that the quotient

space W/W0 merely contains the element of W1.

According to Figure 5.9 and F, obtain

w = (D−1 +∆D)(u)− FQR(u) == b− FQ(d)

= b− g (5.5)

Since, the proposed controller Q is quotient, which guarantees w is not in-

volved in the coupling effect resulting from ∆D. The proof is completed.

Note that based on the proposed design scheme for decoupling, D is

reconstructed as D̃, and the internal signal wi is not involved the coupling

effect ∆D. Compared to the previous method [106] and [107], the merits of

the proposed design scheme are that Taylor expansion of Bi is not needed to

obtain, which can lead to the higher approximation part.

In this chapter, if the decoupled MIMO nonlinear systems, P = D̃−1N

has a right coprime factorization, which indicates P is satisfied with the

Bezout identity

AN+BD̃ = M (5.6)

where A = (A1, A2, ..., An) : V → U is stable, B = (B1, B2, ..., Bn) : U → U

is stable and invertible, and M = (M1,M2, ...,Mn) is one unimodular oper-

ator from W to U . It is worth mentioning that the initial state is supposed

to be considered, that is, AN(w0, t0) + BD̃(w0, t0) = M(w0, t0) should be

satisfied.

Note that generally the given system P is unstable in the sense of bouded-

input-bounded-output stability. As for the MIMO nonlinear system, we
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Figure 5.9: Decoupling design scheme for MIMO nonlinear systems.

Figure 5.10: MIMO nonlinear systems with uncertainties.
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mainly consider the each subsystem Pi, (i = 1, 2, ..., n) to satisfy the Be-

zout identity responding to the controllers.

The MIMO nonlinear system without uncertainties is stable based on the

right coprime factorization. However, for some cases, there are inevitable

factors existing in systems, leading to uncertainties. Therefore, in this chap-

ter, we are in a position to consider robust stability of the MIMO nonlinear

system with uncertainties shown in Figure 5.10.

Issue: Under what conditions does that the MIMO nonlinear system

with uncertainties N → N+∆N not influence stability for the same control

operators A and B.

Main objectives of this chapter is to provide some sufficient conditions to

guarantee the MIMO nonlinear system with uncertainties to be robust stabil-

ity. Before we develop sufficient conditions for robust stability of the MIMO

nonlinear systems with uncertainties, the following preparatory results will

be provided firstly.

Proposition 5.1. Provided that Q, R ∈ Lip(Us, Vs), where Us and Vs

are the stable spaces of U and V , respectively, suppose that Q is invertible

in Lip(Us, Vs) with ∥ Q−R ∥∥ Q−1 ∥< 1, then R is invertible in Lip(Us, Vs)

with

∥ R−1 ∥≤∥ Q−1 ∥∥ R−1(u0) ∥ +
∥ Q−1 ∥

1− ∥ Q−R ∥∥ Q−1 ∥
(5.7)

for any u0 ∈ Us.

Proof. Show that ∥ Q−1R ∥ is invertible in Lip(Us, Vs), because ∥ I −
RQ−1 ∥=∥ Q−R ∥∥ Q−1 ∥< 1. Also, from (2),

∥ (RQ−1)−1 ∥≤ 1

1− ∥ I −RQ−1 ∥
≤ 1

1− ∥ Q−R ∥∥ Q−1 ∥
(5.8)

Since R = (RQ−1)Q, we see that R has an inverse in Lip(Us, Vs), namely,

R−1 = Q−1(RQ−1)−1. ∥ R−1 ∥≤∥ Q−1 ∥∥ (RQ−1)−1 ∥ . The estimation (5)

follows from the above equation and (6).
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Theorem 5.2. As for the MIMO nonlinear system with uncertainties in

Figure 5.10, if the following condition is satisfied,

∥ (Ai(Ni +△Ni)−Bi) ∥∥ B−1
i ∥< 1 (5.9)

then Ai(Ni +△Ni) is an unimodular operator.

Proof. The fact that Bi is unimodular implies that Bi is invertible and

B−1
i is stable. Hence, according to Proposition 5.1, we can obtain Ai(Ni+

△Ni) is invertible.

∥ Ai(Ni +△Ni)
−1 ∥≤ ∥ B−1

i ∥∥ Ai(Ni +△Ni)
−1(x0) ∥

+
∥ B−1

i ∥
1− ∥ B−1

i − Ai(Ni +△Ni) ∥∥ B−1
i ∥

Since Ai(Ni + △Ni) = Bi − (Bi − Ai(Ni + △Ni)) = [I − (Bi − Ai(Ni +

△Ni))B
−1
i ]Bi. Hence, I−[Bi−Ai(Ni+△Ni)]B

−1
i can be proved is invertible.

And since the inverse of I − (Bi − Ai(Ni +△Ni))B
−1
i is satble. Therefore,

we can obtain the inverse of Ai(Ni +△Ni) is stable. Hence, we can get the

conclusion that Ai(Ni +△Ni) is unimodular. The proof is completed.

In the following theorem, we give main result of a new condition which

can guarantee the MIMO nonlinear systems with uncertainties to be robust

stability.

Theorem 5.3. In Figure 5.10, if

∥ BiD̃i ∥∥ [Ai(Ni +△Ni)]
−1 ∥< 1 (5.10)

is satisfied, then the MIMO nonlinear system with uncertainties is robust sta-

ble, i.e. Ai(Ni +△Ni) + BiD̃i is an unimodular operator. Proof. Since we

have ∥ BiD̃i ∥∥ [Ai(Ni + △Ni)]
−1 ∥< 1, hence ∥ [BiD̃i + Ai(Ni + △Ni)] −

Ai(Ni+△Ni) ∥∥ [Ai(Ni+△Ni)]
−1 ∥< 1. It follows that Ai(Ni+△Ni)+BiD̃i

is unimodular by Proposition 5.1. Thus, the MIMO nonlinear system

with uncertainties is satisfied with operator-based right coprime factoriza-

tion, which results in that the overall system is stable.
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Compared with previous methods, on the one hand, one merit of this

chapter lie in that based on the proposed quotient operator, the coupling ef-

fect of the MIMO nonlinear system is decoupled, which reduce the respective

design for the subsystem, providing a relative uniform framework to consider,

at least available for the kind of MIMO nonlinear systems. The realization of

internal signal w is challenging. It is considered to be as the future work. On

the other hand, as for the MIMO nonlinear systems with uncertainties, feasi-

ble design scheme for guaranteeing robust stability is discussed by using the

shown unimodular operator. From Theorem 5.2 and Theorem 5.3, the

proposed design scheme dose not employ the unimodular operator M−1
i of

the previous work, by which the complicated work of calculating the Bezout

identity and the inverse of the unimodular operator Mi is reduced.

5.3.3 Simulation example

In this chapter, a numerical example is given to show the effectiveness of

the proposed method for dealing with coupling effect and robust stability. A

three-input/three-output nonlinear system is considered to demonstrate the

proposed control method.

Let C[0,∞] be the space of continuous functions and C1
[0,∞] be the sub-

space of C[0,∞] that is comprised of all the functions having a continuous

first derivative, both defined on [0,∞). Considering two linear spaces, U

and V : U = C[0,∞], V = C1
[0,∞] ⊂ U as the input space and output space,

respectively, suppose that the three-input/three-output nonlinear system P

is given by the following unstable and time-varying nonlinear operator,

P1 :


P1(u1)(t) = (t2 + et)u1(t) + 1

D1(w1)(t) =
1

t2 + et
w1(t)

N1(w1)(t) = w1(t) + 1

P2 :


P2(u2)(t) =

1 + te−t1 + t2et

8
u2(t)

D2(w2)(t) = (te2t + 1)−1w2(t)

N2(w2)(t) =
1 + te−t

8
w2(t)
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Figure 5.11: Effectiveness (5.9) of P1. Figure 5.12: Effectiveness (5.10) of P1.

Figure 5.13: Effectiveness (5.9) of P2. Figure 5.14: Effectiveness (5.10) of P2.

P3 :


P3(u3)(t) = (1 + t)2u3(t) + 2t2 + 3t+ 2

D(w3)(t) =
1

(1 + t)2
w3(t)−

2t+ 1

1 + t

N(w3)(t) = w3(t) + 1

Without loss of generality, coupling effects of the three-input/three-output

nonlinear system are considered as ∆D12(u2(t)) = K12u2(t), ∆D13(u3(t)) =

K13u3(t), ∆D21(u1(t)) = K21u1(t), ∆D23(u3(t)) = K23u3(t), ∆D31(u1(t)) =

K31u1(t), ∆D32(u2(t)) = K32u2(t). The ranges of coupling effects ∆D12(u2(t))



5.4. ROBUST STABILITY OF MIMO SYSTEMS 91

and ∆D13(u3(t)), ∆D21(u1(t)) and ∆D23(u3(t)), ∆D31(u1(t)) and ∆D32(u2(t))

belong to W1, W2, W3, respectively. For simplicity, in this chapter assume

that ∆D13(u3(t)) = 0, ∆D21(u1(t)) = 0, ∆D32(u2(t)) = 0. Therefore, for

dealing with the existed coupling effects, the controllers Ri(ui(t)), Qi(di(t))

(i = 1, 2, 3), respectively are designed to be Ri(ui(t)) = D−1
i (ui(t)), Qi(di(t))

is the quotient operator from W to W/Wi (i = 1, 2, 3). In the simulation

results, K12 = 1.7, K23 = 1.3, K31 = 1.9.

Next, uncertainties of the three-input/three-output nonlinear system are

considered.Assumed that ∆N1(w1(t)) = δ1(t)w1(t), ∆N2(w2(t)) =
1 + δ2(t)te

−t

8
,

∆N3(w3(t)) =
δ3(t)

2t+ 1
, where δi (i = 1, 2, 3)should be bounded. In simulation

results, δ1(t) = 0.5, δ2(t) = 0.5e−t, δ3(t) = 5 + 2te−0.35t. Note that, as to

the operator-based right coprime factorization method, the boundedness or

stability of ∆Ni, (i = 1, 2, 3) usually does not imply the overall stability,

not even input-output stability, of the perturbed system due to the feedback

configuration. Hence, the robustness issue under consideration is not trivial,

particularly for MIMO nonlinear systems. After that, based on the proposed

control design, the control operators are designed as follows;

A1(y1)(t) = (1− 1

2t2 + et
)y1(t), B1(u1)(t) = u1(t) +

1

2t2 + et
− 1

A2(y2)(t) =
2

3
y2(t) + 15, B2(u2)(t) =

(1 + te−t + t2e−2t)

24
u2(t)

A3(y3)(t) = (1− 1

(2t+ 1)2
)y3(t)

B3(u3)(t) =
t2 + 2t+ 1

4t2 + 4t+ 1
u3(t) +

1 + t

2t+ 1
+

t2 + 2t

t2 + 2t+ 1

Based on the proposed method, the conditions (5.9) and (5.10) should be

guaranteed to make the design scheme available. In other words, calculation

of the left item of the conditions (5.9) and (5.10) should be less than 1. The
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Figure 5.15: Effectiveness (5.9) of P3. Figure 5.16: Effectiveness (5.10) of P3.

simulation results of these conditions are shown in Figures 5.11-5.16, respec-

tively. For showing robust stability of the considered systems, the reference

inputs of P1, P2 and P3 are chosen as r1(t) = 0.15(1 + e−
t
2 ), r2(t) = te−t,

r3(t) = 0.1+ t2e−2t, respectively. For demonstrating the process, simulations

results on reference inputs and plant outputs of the three-input/three-output

nonlinear system are shown in Figures 5.17-5.22. According to Figure 5.18,

Figure 5.20 and Figure 5.22, robust stability of the proposed nonlinear system

is guaranteed by using the proposed design scheme.

5.4 Conclusion

In this chapter, a nonlinear control method using operator-based coprime

factorization for a class of nonlinear systems is considered, and issues on ro-

bust control of MIMO nonlinear systems are discussed. On one hand, firstly,

a part of the nonlinear system was factorized to provide a relative convenient

framework to investigate left coprime factorization. Secondly, the invertible

property of the composite operator for left factorization was guaranteed by

the designed compensator for combining left factorization and right factor-
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Figure 5.17: Reference input r1. Figure 5.18: Plant Output y1.

Figure 5.19: Reference input r2. Figure 5.20: Plant Output y2.

ization. Thirdly, two stable controllers were proposed to establish the Bezout

identity. Based on the proposed designed scheme, left factorization for the

nonlinear systems was proved to be coprime and internal-output stability was

obtained. On the other hand, based on operator-based right coprime factor-

ization, a class of MIMO nonlinear systems with uncertainties is considered

for guaranteeing robust stability of the MIMO nonlinear systems. That is,

based on right coprime factorization of the MIMO nonlinear systems, a feasi-

ble design scheme was proposed by using a new unimodular operator. Based
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Figure 5.21: Reference input r3. Figure 5.22: Plant Output y3.

on the obtained conditions, the designed system was overall stable. Finally,

the effectiveness of the proposed design schemes for left coprime factoriza-

tion and MIMO nonlinear systems with uncertainties was also shown by the

proposed simulation examples.



Chapter 6

Conclusions

In this dissertation, operator-based nonlinear control using extended robust

right coprime factorization for the nonlinear systems is discussed. Mean-

while, a special class of nonlinear system are considered by using left factor-

ization and right factorization. Firstly, using the Lα operator, right coprime

factorization is extended to deal with a broader class of nonlinear systems,

and robust control for the considered system is designed. Secondly, adjoint-

based right coprime factorization are considered in the context of factor-

ization quantitatively-factorization method of the given nonlinear system.

Moreover, rational boundedness robust conditions are given for guaranteeing

robust stability of nonlinear systems. Further, a special class of nonlinear

system is considered by using left factorization and right factorization to

guarantee internal-output stability. Meanwhile, realization of left coprime

factorization is obtained.

In Chapter 2, firstly, mathematical preliminaries for developing main re-

sults of this dissertation consisting of definitions of important spaces and

operators are recalled. In detail, the definitions of extended linear space and

generalized Lipschitz operator are introduced, which serve as foundations for

the research of this dissertation. Therein, right factorization, right coprime

factorization and robust right coprime factorization of a nonlinear system
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in a fairly general operator setting are recalled, which provide the theoret-

ical basis for this dissertation. The concerned and researched problems are

addressed in final.

In Chapter 3, right coprime factorization is extended using the proposed

Lα operators, and nonlinear robust control design of nonlinear systems with

perturbations is considered by using the proposed operator. Firstly, Lα oper-

ators is introduced, by which extended right coprime factorization approach

is discussed for dealing with a broader class of nonlinear systems compared

to right coprime factorization. Then, based on the obtained extended right

coprime factorization, a feasible control design scheme is proposed to guaran-

tee robust stability of the considered nonlinear systems with perturbations.

Feasible design schemes were proposed for omitting the complicated calcu-

lation in process of control and design for the systems with perturbations,

which means that robust stability of the perturbed nonlinear system can

be guaranteed based on the proposed unimodular operator B. Finally, the

effectiveness of the proposed design scheme was confirmed by a simulation

example.

In Chapter 4, adjoint-based right coprime factorization and robust sta-

bility of nonlinear systems with perturbations are investigated. Firstly, a

framework for considering nonlinear systems based on inner product is pro-

posed to study right factorization, which proves fundamental knowledge for

factorizing the systems. Secondly, a sufficient condition based on Hilbert

spaces is given for the considered nonlinear systems to guarantee the iso-

morphism relationship. Thirdly, a robust control design for the considered

nonlinear system is given based on the proposed controller and the unimod-

ular property of controller. According to the proposed robust design scheme,

the nonlinear systems with perturbations can be handled precisely and ef-

fectively. Finally, the numerical example is given to illustrate the validity of

the proposed design methods.
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In Chapter 5, in terms of left factorization and right coprime, a spe-

cial class of nonlinear systems are considered to guarantee stability with the

Bezout identity. Based on the designed method, the considered nonlinear

systems are proved to have coprimeness. First, a design scheme is proposed

to provide a convenient framework to deal with the internal-output stability

of the nonlinear systems. The proposed scheme is motivated by the right

factorization definition and the left factorization definition. By the proposed

framework, a Bezout identity is designed, which can guarantee the internal-

output stability and meanwhile realize left coprime factorization for nonlinear

systems. Moreover, based on operator-based right coprime factorization, a

class of MIMO nonlinear systems with uncertainties is considered for guar-

anteeing robust stability of the MIMO nonlinear systems. That is, based

on right coprime factorization of the MIMO nonlinear systems, a feasible

design scheme was proposed by using an unimodular operator. Based on

the obtained conditions, the designed system was overall stable. Finally, a

simulation examples are involved to illustrate the proposed design scheme

for confirming effectiveness of the proposed methods.
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Appendix A

Proof

A.1 Proof of Lemma 2.1

Suppose that Q : U e → U e is causal. Then by definition we have that

PTQPT = PTQ, so that if xT = yT , then

[Q(x)]T = PTQ(x) = PTQPT (x) = PTQ(xT ) = PTQ(yT )

= PTQPT (y) = PTQ(y) = [Q(y)]T (A.1)

Conversely, suppose that xT = yT implies [Q(x)]T = [Q(y)]T for all x, y ∈ U e

and all T ∈ [0,∞). Fix a T ∈ [0,∞), for any x ∈ U e, let y = xT , then

xT = yT , so that [Q(x)]T = [Q(y)]T . Consequently, we have that

PTQPT (x) = PTQ(xT ) = PTQ(y)

= [Q(y)]T = [Q(x)]T = PT [Q(x)] (A.2)

Since x ∈ U e and T ∈ [0,∞) are arbitrary, it follows that PTQPT = PTQ for

all T ∈ [0,∞), which implies that Q is causal.
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A.2 Proof of Lemma 2.2

Since

∥ [Q(x)]T − [Q(y)]T ∥⩽∥ Q ∥∥ xT − yT ∥ (A.3)

for all x, y ∈ U e and all T ∈ [0,∞). Hence, xT = yT implies that

[Q(x)]T = [Q(y)]T for all x, y ∈ U e and all T ∈ [0,∞).

A.3 Proof of Lemma 2.4

Sufficiency: Since M ∈ µ(W,U), for anyr ∈ Us, we have

r(t) = (AN +BD)w(t)

that is w(t) = M−1r(t) ∈ Ws. Moreover, since y(t) = N(w(t)), e(t) =

BD(w(t)), and b(t) = A(y(t)) = AN(w(t)), the stability of A,B,N and D

implies that y ∈ Ys, e ∈ Us and b ∈ Us. Thus, the system is overall stable.

Necessity: First, it follows from the well-posedness and through the path

of N and A that M : W → U is invertible. Then, it can be verified that

both M and M−1 are stable. As a result, M ∈ µ(W,U).

A.4 Proof of Lemma 2.5

According to M is unimodular, we can get it is invertible. Also based on

AN +BD =M (A.4)

A(N +∆N) +BD = M̄ (A.5)

we have
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M̄ =M + A(N +∆N)− AN

= [I + (A(N +∆N)− AN)M−1]M (A.6)

combining with (A(N+∆N)−AN)M−1 ∈ Lip(De), then I+(A(N+∆N)−
AN)M−1 is invertible, where I is the identity operator. Consequently,

M̄−1 =M−1(I + A(N +∆N)M−1 − ANM−1)−1 (A.7)

Meanwhile, since (A(N + ∆N) − AN)M−1 ∈ Lip(De) and M ∈ µ(W,U),

then M̄ ∈ µ(W,U) provided that the system is well-posed. As a result, for

any r ∈ Us, w = M̄−1r ∈ Ws. Further, since y = (N +∆N)(w), e = BD(w)

and b = A(N +∆N)(w), the stability of A, B, N, D and ∆N implies that

y ∈ Ys ,e ∈ Us and b ∈ Us. Then, the system is overall stable.
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