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Abstract 

Intensive tillage by means of mouldboard ploughing can be highly effective for weed 

control in organic farming, but it also carries an elevated risk for rapid humus decomposition 

and soil erosion. Conservation tillage techniques offer considerably reduced soil erosion and 

improved soil structure but they are rarely used in organic farming systems due to the 

increased weed pressure. To develop organic systems that are less dependent on tillage this 

study evaluated the non-legume cover crops spring rye (Secale cereale L.), black oat (Avena 

sativa L.), sunflower (Helianthus annuus L.), white mustard (Sinapis alba L.), buckwheat 

(Fagopyrum esculentum Moench) and hemp (Cannabis sativa L.) for their ability to suppress 

weed growth, reduce plant available nitrogen in the soil and produce large amounts of 

biomass with slow N mineralisation, without and with the incorporation of organic fertiliser 

(horn grist, 50 kg N ha
-1

) before seeding. Resulting from these preliminary trials the spring 

rye was chosen as cover crop before no-till, reduced tillage and plough tillage cropping of 

legume cash crops monocropped and intercropped with cereal grains. The legume cash crops 

winter and spring faba bean (Vicia faba L.), field pea (Pisum sativum L.) and spring narrow-

leafed lupin (Lupinus angustifolius L.), monocropped and intercropped with winter wheat 

(Triticum aestivum L.; winter crops) and oats (Avena sativa L.; spring crops) were evaluated 

for their dry matter production and grain yield as well as for their ability to suppress weeds. 

An additional study determined if the transition to the no-till system could be carried out 

through no-till seeding of summer annual legume cover crops faba bean, normal leafed field 

pea, narrow-leafed lupin, grass pea (Lathyrus sativus L.), and common vetch (Vicia sativa L.) 

monocropped and intercropped with sunflower after the harvest of cereal grain cash crops. 

The objectives of the studies were: (i) to examine six non-legume cover crops (rye, oats, 

sunflower, mustard, buckwheat and hemp) for their suitability for cover cropping preceding 

no-till sown legume cash crops through evaluation of their ability to produce biomass and 

reduce plant available inorganic soil N resources by N accumulation and assessment of long 

term N immobilisation in plant compartments with a high C : N ratio through simulated N 

mineralisation, (ii) to determine if the total biomass production and N accumulation can be 

increased by incorporating organic fertiliser before seeding, (iii) to assess the suitability of 

three different legume species (field pea, faba bean and narrow-leafed lupin) for no-till cash 

crop systems by examination of their grain production after no-till, reduced tillage and plough 

tillage, (iv) to determine the capacity of intercropped plant stands of legume cash crops and 
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cereal grains to enhance the weed suppression and the total grain yield, (v) to investigate if 

autumn seeding compared to spring seeding of grain legumes can enhance the weed 

competition of legume cash crops, (vi) to determine if the transition to the no-till system can 

be alternatively realised through no-till seeding of legume cover crops or if tillage is needed 

for sufficient weed suppression and cover crop production. 

The non-legume cover crop biomass production ranged from 0.95 to 7.73 Mg ha
-1

, with 

fertiliser increasing the total biomass at locations with low N status. Sunflower consistently 

displayed large biomass and N accumulation at all locations and fertiliser variations, although 

not always significantly more than other species. Most shoot-N was stored in sunflower leaf 

material, which can be easily mineralised making it less suited as cover crop before no-till 

sown spring grain legumes. Rye, which produced slightly less biomass, but accumulated more 

N in the stem biomass, would be better suited than sunflower in this type of system. The N 

mineralisation simulation from rye biomass indicated long N immobilisation periods 

potentially improving weed suppression within no-till sown legume cash crops. 

The legume cash crop winter field pea (normal leafed variety), displayed in the no-till 

system grain yields of up to 3.39 Mg ha
-1

 which was similar to the plough tillage system. For 

spring faba bean and field pea the yield in the reduced tillage system amounted to 2.92 and 

3.29 Mg ha
-1

, respectively which was similar to the plough tillage system, but did not exceed 

2.15 Mg ha
-1

 in the no-tillage system. Narrow-leafed lupin consistently displayed yields 

below 0.65 Mg ha
-1

 in the no-tillage system. Normal leafed winter field pea appeared to be 

best suited for the transition period to an organic no-tillage system due to the autumn seeding 

and its high competitive ability. Spring faba bean and field pea can be successfully grown in 

the reduced tillage system. Intercropping can increase the total grain yield and weed 

competition as long as sufficient soil nitrogen resources are plant available. 

The no-tillage sown monocropped and intercropped legume cover crop total shoot dry 

matter, shoot N accumulation and N2 fixation differed with year, location, tillage system and 

species due to variations in weather, inorganic soil N resources and weed competition. 

Biomass production reached up to 1.65 and 2.19 Mg ha
-1

 (both intercropped field peas), and 

N2 fixation up to 53.7 and 60.5 kg ha
-1

 (both common vetches) in the no-till and reduced 

tillage system, respectively. In the no-till system consistently low sunflower performance 

compared with the legumes prevented significant intercropping effects. Under central 

European conditions no-till cover cropping appears to be practicable if weed density is low at 

seeding. The interactions between year, location, tillage system and species demonstrate the 

difficulties in cover crop species selection for organic conservation tillage systems. 
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This study demonstrated two approaches for the transition to no-till seeding in organic 

agriculture. Before no-till sown legume cash crops the N immobilisation of available 

inorganic soil N resources would be most successful with cereal grains that show high C : N 

ratios in their plant material to reduce weed infestation from emerging weeds in legume cash 

crops. No-till seeding of legume cash crops with high weed suppressive abilities appears to be 

possible. Legume cover cropping could be carried out if weed density at seeding is low. This 

study´s results indicated that the complete transition to an organic no-till system is probably 

not practicable due to the different weed suppressive abilities of cash crops and the increasing 

weed pressure after the omission of tillage. Nevertheless, certain cash and cover crops can be 

sown without tillage and the integration of short term no-tillage phases growing grain 

legumes could make organic farming more sustainable. 
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Abbreviations 

 

a.s.l above sea level 

BO Bockelwitz (trial location) 

cv. cultivar 

C Carbon 

DM dry matter 

DWD Deutscher Wetterdienst (German Meteorological Service) 

GR Groß Radisch (trial location) 

IC intercropped 

KÖ Köllitsch (trial location) 

LfULG Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie  

(Saxon State Office for Environment, Agriculture and Geology) 

MC monocropped 

N Nitrogen 

PI Pillnitz (trial location) 

RG Reinhardtsgrimma (trial location) 
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1. Chapter: Introduction 

1.1 No-till seeding in organic farming 

Sustainable organic farming is based on the principle of soil fertility preservation. This 

stands in contrast to the widespread use of deep inversion plough tillage for primary tillage in 

organic farming systems (Wilhelm et al., 2011). The continued use of the mouldboard plough 

is due to its proven efficiency for weed control (Gruber and Claupein, 2009). However, this 

labour and energy intensive technique reduces the soil's aggregate stability and organic matter 

content (Schjønning and Rasmussen, 1989; Hermawan and Cameron, 1993) leading to soil 

erosion. No-till practices on the contrary can diminish soil erosion to tolerable rates 

(Montgomery, 2007), stabilise soil aggregates and increase soil organic carbon close to the 

soil surface while reducing the annual CO2 emissions (Carter, 1992; Madari et al., 2005; He et 

al., 2009; Ussiri and Lal, 2009).  

Nonetheless, to date, the adaption of organic no-tillage systems is negligible under the 

temperate climate conditions of central Europe. In this region the average annual precipitation 

range (Germany 551.6 – 1018.1mm) (Becker, 2013) is higher than in the semi-arid and arid 

regions of North America and Central Asia in which the conventional no-tillage systems are 

widely used. No-tillage practices can increase the soil water storage (Fabrizzi et al., 2005) but 

potential yield increases due to the water preservation are limited in central Europe so that the 

adaption rate will only increase if economic or environmental benefits arise. Economic 

benefits from reduced fuel consumption and lower labour costs due to omitted tillage are 

often already offset in the transition period to the no-tillage system by yield reductions 

(Reicosky and Saxton, 2007) as a result of poor crop emergence, increased weed pressure and 

reduced N mineralisation. 

The omission of tillage typically increases the abundance of perennial weeds (Streit et al., 

2000; Tørresen et al., 2003) which is a main drawback in organic no-till systems that do not 

allow continuous cropping, as it is the case in arable fields in Central Europe. Plant mulches 

from cover crops and heavy straw covers have shown weed suppressive abilities and could be 

a key technology for a successful transition to an organic no-tillage system (Massucati and 

Köpke, 2010). 
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1.2 Strategies for the implementation of no-tillage practices in organic agriculture 

The production of large amounts of mulch material has to be ensured by choosing the right 

strategy depending on the point in the crop rotation and the related status of N availability as 

well as the N requirements of the following crop.  

Transitioning to organic no-tillage at the end of a yearly crop cycle by omitting stubble 

tillage can increase perennial weed growth (Pekrun and Claupein, 2006) especially in cases of 

high N availability. To improve the conditions in the transition period it is advisable to 

remove very competitive perennial weeds after harvest by plough tillage and suppress 

emerging weeds through the establishment of cover crops, which produce a weed suppressing 

soil cover in which the spring cash crops are directly sown. Today, cover crops in Central 

Europe are predominantly used to reduce soil erosion and nitrogen (N) leaching. For this 

purpose cover crops need to develop quickly and cover the ground, ideally producing ≥2.0 

Mg ha
-1

 above ground dry matter and accumulate ≥60 kg N ha
-1

. The ability of cover crops to 

suppress weeds and reduce their germination and growth through low N availability is a new 

core task which is particularly important for grain legume cash crops in organic no-tillage 

systems.  

Cover crop plants can reduce weed growth through light interception, above and below 

ground competition and uptake of available inorganic nutrient resources particularly nitrate N 

(Kruidhof et al., 2008; Spies et al., 2011). For systems with subsequent legume cash crops 

weeds can be suppressed by the thick residue mulch that retains accumulated N, intercepts 

light and has, in some species, allelopathic properties (Barnes and Putnam, 1983; Putnam and 

DeFrank, 1983; Teasdale and Mohler, 2000). 

1.3 Characteristics of cover crop materials 

For a long lasting effect in legume cash crops the composition of cover crop residues 

should delay residue decomposition and N mineralisation. Parameters for the biochemical 

composition or residue quality can include the content of carbon (C), N, carbohydrates, 

cellulose, hemicelluloses, lignin and polyphenols as well as the proportion of carbon to 

nitrogen (C : N ratio) in the plant materials (Bending et al., 1998; Trinsoutrot et al., 2000; 

Corbeels et al., 2003; Abiven et al., 2005). The influence of most of the parameters on N 

mineralisation varies but it has been shown that the N mineralisation correlates well with the 

residue C : N ratio (Trinsoutrot et al., 2000).  
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A high quality residue has a high C : N ratio which results in slow decomposition and N 

mineralisation, while low quality residues with low C : N ratios are mineralised in a short 

period of time. Plant parts differ in their C : N ratio depending on their phenological growth 

stage (Steer et al., 1985), making the compartmentalisation important for the evaluation of the 

residue quality. The C : N ratio of stem material increases as they develop and mature due to 

the relocation of N during the generative growing phase into inflorescence and seeds. The 

result is that the C : N ratio is usually highest in the stem material and lowest in the leaf and 

inflorescences. For a slow residue decomposition and N mineralisation it is therefore not only 

important to select for species with a large C : N ratio for the whole plant, but to select for 

cover crops that produce large amounts of stem material with a high C : N ratio before 

reaching maturity. The C : N ratio in legume plant material is usually much lower than in non 

legumes (Smith and Sharpley, 1990), thus it can be beneficial to use non legume cover crops 

for reduced N mineralisation and better retention of residues on the soil surface. The non 

legume species rye, oats, sunflower, mustard, buckwheat and hemp have been evaluated as 

cover crops through the determination of their total biomass production (Stivers-Young, 1998; 

Creamer and Baldwin, 2000; Clark, 2007; Miyazawa et al., 2010; Forentìn et al., 2011). Rye, 

oats and mustard have been in use as cover crops in organic farming in Central Europe. 

Sunflower, buckwheat and hemp are considered to be promising new cover crops. 

Cereal cover crops can use the plant available soil nitrogen (N) resources to produce large 

quantities of plant material with a wide carbon (C) to N ratio (Ruffo and Bollero, 2003) which 

can result in a N immobilisation and reduced weed growth. Additionally rye mulch has shown 

the ability to reduce the weed emergence and the weed biomass under no-tillage conditions 

(Barnes and Putnam, 1983). For the transition to an organic no-tillage system the mulch layer 

should be established with a cover crop in late summer right after the last stubble tillage. 

Low inorganic soil N, as a result of slow N mineralisation, can have negative effects on 

both non-legume weeds and cash crops. Grain legume cash crops are able to substitute for low 

inorganic soil N by symbiotic N2 fixation which makes them suitable for the transition period 

to an organic no-till system. Diametrically opposed to high N demand by non legume cash 

crops high inorganic soil N resources (in particular nitrate) are undesired for grain legume 

cash crops because they limit the symbiotic N2 fixation. For peas it has been shown by Voisin 

et al. (2002) that soil nitrate contents have to fall below the threshold value of <56 kg N ha
-1

 

to initiate symbiotic N2 fixation. In their experiments, peas in their vegetative and beginning 

of seed filling state, began to display reduced symbiotic N2 fixation at soil nitrate contents of 

>3 and >14 kg N ha
-1

 (0-0.4 m soil layer), respectively. Cover crops should therefore produce 
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large amounts of biomass to accumulate and immobilise as much inorganic soil N as possible. 

In a succeeding pea cash crop this could help to maximise the percentage of the total crop N 

derived from symbiotic N2 fixation. Large amounts of residues are also needed for sufficient 

weed suppression (Teasdale et al., 1991), while low soil nitrate availability could additionally 

reduce the germination of weeds like Chenopodium album L. that require nitrate to break their 

seed dormancy. This could be advantageous for grain legumes especially in their early 

growing period in which their slow initial development (Giunta et al., 2009), makes them 

susceptible to weed competition (Nelson and Nylund, 1962).  

1.4 Advancements in seeding technology 

While the weed suppression increases with mulch quantity (Teasdale and Mohler, 2000) 

the crop seed placement is impaired by heavy residue layers. With no-till disk machines seeds 

can end up positioned on top of hairpinned residues while shank type openers are not 

practicable under very heavy residue conditions due to poor residue flow leading to plugging 

problems of the seeding unit. The embedding of seeds in hairpinned residues can result in 

reduced crop emergences in dry conditions due to poor seed-soil contact (Baker and Saxton, 

2007). Therefore special no-tillage seeding techniques have to be used for thick cover crop 

residue layers. The inverted T-cross slot openers (Fig. A 1-2a-b), were developed for the use 

in high residue environments (Baker, 2007) and can improve the seed placement under those 

conditions by placing the seed into horizontal slots below the residue covered soil surface, 

creating water vapour rich conditions that favourably affect germination (Fig. A 3; Wuest, 

2002; Baker, 2007). 

1.5 Timing of legume cash crop seeding and use of intercrops 

Even with weed suppressing plant mulch present and crop seed placement with advanced 

seeding technology the crop-weed competition can still be shifted in favour of weed growth 

due to the slow early development of large seeded grain legumes. 

The establishment of the winter legumes in autumn allows a faster spring development and 

biomass production compared with legumes that are sown in spring. Additionally the early 

crop-weed competition of the legumes can be further improved by cereal grains that are sown 

with the legumes. Such intercropped (IC) plant stands are able to use the faster canopy 

development (Giunta et al., 2009) and the early elevated soil N uptake of the IC cereals 
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(Jensen, 1996) to increase the crop-weed competition of the IC crop stands compared with the 

monocropped (MC) legumes. This can considerably reduce the weed biomass production 

compared with MC legume plant stands as was shown for winter wheat and winter faba bean 

by Bulson et al. (1997).  

Winter wheat is well adapted to the winter conditions in central Europe and can be 

intercropped with both the winter faba bean and field pea. Both of these legumes have shown 

the capability to overwinter under central European conditions (Arbaoui et al., 2008; Urbatzka 

et al., 2012). However they are also susceptible to frost damage if there is no protective snow 

cover. Experiments in the harsh winter conditions of North America have shown that long 

stubble can significantly increase the winter wheat survival due to the increased snow depth 

and higher soil temperatures (Larsen et al., 1988). For the winter legumes a similar result 

could be achieved with cover crop residues which increase snow trapping and protect the 

winter legumes in the no-tillage system. 

In spring the advanced winter legume development will only be a competitive advantage 

against the weeds if sufficient quantities of legumes overwinter. In years with a low 

overwintering percentage the spring sown legumes could reach higher yields and show a 

better weed suppression than the winter legumes.  

Depending on the point in crop rotation and the soil N status cover cropping might require 

additional fertilisation for non-legume cover crops or the use of legume cover crops. 

1.6 No-till sown legume cover crops 

In some conditions it can therefore be advisable to transition to the no-till system after 

grain cash crop harvest in summer with the establishment of no-till seeded cover crops. This 

can reduce the weed competition for the cover crop because the available N resources for 

weeds have been depleted by the cash crop, whereas perennial weeds that are favoured by the 

omission of tillage (Moonen and Barberi, 2004), were cut in the harvest process. The no-till 

seeding of cover crops can also reduce the annual weed population density as weed seeds are 

not incorporated into the soil and germination from the weed seed bank is not induced by 

tillage (Bilalis et al., 2001). During the cover cropping period, the weed growth will be 

reduced through cover crop-weed competition for light, water and nutrients.  

In organic no-till systems late season cover crops have to be terminated in their growth to 

enable seeding and development of the cash crops. The cover crop termination by frost is 

therefore an essential component in an organic no-till system approach because the 
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termination by tillage or herbicides is not possible and alternative methods like mowing or 

rolling can delay the cash crop seeding and pose the risk of regrowth. The termination of 

cover crops during winter is also advantageous in dry years because it allows the soil water 

resources to be replenished over winter while frost resistant cover crops would continue their 

resource usage throughout spring, with possibly detrimental effects for the subsequent cash 

crop (Clark, 2007). 

Growing a cover crop mixture of legumes and a non-legume, like rye, can further deplete 

available soil N sources for weeds, reducing their growth and increasing the legume N2 

fixation efficiency (Brainard et al., 2012). The additional biomass production of the non-

legume can increase the total intercropped biomass over the monocropped biomass 

production. The use of rye can be problematic in an organic no-till system when insufficient 

winter kill delays the cash crop seeding, because for the successful termination by the 

alternative use of a roller-crimper, rye has to reach anthesis (Mirsky et al., 2009). 

Alternatively sunflowers can be used and as a warm season crop they will be terminated by 

frost. Sunflowers are well suited as an intercrop partner due to the complementary 

characteristics to legumes, such as early ground shading. Successful conventional sunflower 

cropping in a well fertilised no-till system has shown their suitability for conservation tillage 

(Halvorson et al., 1999). 

Low inorganic soil N resources after the harvest of cereals can be compensated by legumes 

through N2 fixation (Reiter et al., 2002). The N2 fixation can be a competitive advantage over 

the weeds and increase the available N resources for the subsequent cash crop, which will be 

provided through decomposing legume residue (McVay et al., 1989). This could, to some 

extent, compensate for the decreased mineralisation in the no-till system.  

1.7 General objectives and thesis layout 

Research in the transition period into organic no-till systems has been sparse in Central 

Europe and no successful concept has been established to this day. Therefore it was the 

objective of the present study to develop an approach to enable the use of no-till seeding in 

organic farming systems. Due to limited availability of direct weed control measures without 

soil disturbance in organic farming our new approach used a combination of non-legume 

cover crops to immobilise available soil N resources and suppress weeds through thick mulch 

covers subsequent to legume cash crops. The transition into the no-till system by no-till 

seeding of legume cover crops was additionally trialled. It is expected from this study that the 
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results will be a valuable contribution for the development of a more sustainable organic no-

tillage system.  

The objectives of this study were: 

(i) To examine six non-legume cover crops (rye, oats, sunflower, mustard, buckwheat and 

hemp) for their suitability for cover cropping preceding no-till sown legume cash crops 

through evaluation of their ability to produce biomass and reduce plant available inorganic 

soil N resources by N accumulation and assessment of long term N immobilisation in plant 

compartments with a high C : N ratio through N mineralisation with the STICS crop model. 

(ii) To determine if the total biomass production and N accumulation can be increased by 

incorporating organic fertiliser before seeding. 

(iii) To assess the suitability of three different legume species (field pea, faba bean and 

narrow-leafed lupin) for no-till cash crop systems by examination of their grain production 

after no-till, reduced tillage and plough tillage. 

(iv) To determine the capacity of intercropped plant stands of legume cash crops and cereal 

grains to enhance the weed suppression and the total grain yield. 

 (v)  To investigate if autumn seeding can enhance the weed competition of legume cash 

crops. 

(vi) To determine if the transition to the no-till system can be alternatively realised through 

no-till seeding of legume cover crops or if tillage is needed for sufficient weed suppression 

and cover crop production. 

The present dissertation consists of five Chapters. The non-legume cover crop trials are 

described in Chapter 2 followed by Chapter 3 with an implementation of preliminary trial 

results described in Chapter 2. In trials described in Chapter 3 the non-legume cover crop rye 

is used as a cover crop ahead of no-till sown legume cash crops monocropped and 

intercropped with cereal grains. In additional trials described in Chapter 4 legume cover crops 

were used to approach the introduction into organic no-tillage directly after harvest of a cereal 

grain cash crop. 
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2. Chapter: The Suitability of Non-legume Cover Crops for 

Inorganic Soil Nitrogen Immobilisation in the Transition Period 

to an Organic No-till System 

2.1 Introduction 

The evaluation of cover crops through determination of their biomass production and weed 

suppression is common. However, for the use in the transition period to an organic no-till 

system the cover crops need to reduce the plant available N in the soil and produce large 

amounts of biomass with slow N mineralisation. Therefore a novel approach should be used 

to evaluate potential cover crops by their proportion of stem, leaf and inflorescence with 

regards to total cover crop biomass, the C : N ratio of the plant compartments and the related 

N mineralisation. The total and partitioned cover crop biomass and N accumulation as well as 

the individual C : N ratio of plant partitions can each be used to evaluate the quantity and 

quality performance of different plant species. However, the production of large amounts of 

biomass combined with a large N accumulation does not necessarily lead to an extended 

period of low N availability. For a more specific cover crop selection based on their overall 

properties, all factors can be combined in a model simulation like the residue decomposition 

model of the STICS (Simulateur mulTIdisciplinaire pour les Cultures Standard) model 

(Brisson et al., 1998). The simulated proportional net N mineralisation of separated leaf and 

stem material could help to identify species specific N mineralisation behaviour of the plant 

compartments while the combined simulation of the different materials from one species 

would account for material interactions during mineralisation. Cover crop species often differ 

in their leaf and stem biomass production and in the amount of N that is accumulated in these 

plant compartments. Their characteristics vary as well and it is important to simulate the net N 

mineralisation from the individual residues to predict the amount of released N over winter 

potentially influencing the early weed competition and the onset of symbiotic N2 fixation in 

the succeeding legume cash crop. These new methods could help to identify cover crops more 

precisely for the transition to organic no-tillage systems.  

The growth of non legume cover crops can be impaired by the low availability of inorganic 

soil N. This shortage could be compensated by the incorporation of organic fertilisers before 

the seeding of the cover crops, which improves the N supply and could lead to increased 
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cover crop biomass production. The larger dry matter production could result in improved 

residue cover and weed suppression in the early cash crop phase.  

It was the objective of our trials with non-legume cover crops to test the following 

hypotheses: (i) The cover crop species rye, oats, sunflower, mustard, buckwheat and hemp 

differ in their partitioning of biomass, N accumulation and C : N ratio in stem material as well 

as in combined leaf and inflorescence material. (ii) The use of fertiliser before seeding 

increases the total biomass production and N accumulation of the non legume cover crops. 

(iii) Cover crop species differ in the ability to reduce plant available inorganic soil N during 

growth and in their potential to immobilise the accumulated N over winter and spring. As a 

result, these species vary in their suitability as cover crops preceding no-till sown legume cash 

crops. 

2.2 Materials and Methods 

2.2.1 Experimental study site and field trial setup 

Field trials were conducted from July to October 2008 in three different environments 

(three site-years): at the long term organically farmed research field of the University of 

Applied Sciences Dresden at Pillnitz (PI; 51°00'N, 13°53'E, 116 m a.s.l.), at a long-term 

certified organic farm at Groß Radisch (GR; 51°15'N, 14°41'E, 240 m a.s.l.), and the organic 

research field of the Teaching and Research Farm Köllitsch (KÖ; 51°30'N, 13°06'E, 84 m 

a.s.l.), Germany (at GR based on and at PI and KÖ equivalent to Council Regulation (EC) No 

834/2007 (European Union, 2007). The three sites were selected to represent different climate 

conditions, in particular a different distribution of precipitation during the cover cropping 

phase. The preceding crops before the cover cropping period were spring barley, winter 

triticale and winter wheat at the PI, GR and KÖ location, respectively. At the GR and KÖ 

locations the grain was harvested in early August 2008 and the straw was transported off the 

field. At PI the spring barley was chopped with a flail mower on the 18 June due to 

insufficient plant development; residues remained in the field. 

The design of the field trial was a completely randomised split plot with four replications. 

The main plot factor was N fertilisation (no fertiliser and fertiliser (horn grist, 50 kg N ha
-1

) 

incorporated directly before seeding. Each main plot was divided into eight sub plots (30 m
2
 – 

3 m wide and 10 m long), with one plot each for spring rye (Secale cereale L., local cultivar 

from St. Leonhard, Austria), black oat (Avena sativa L., cv. Auteuil), sunflower (Helianthus 
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annuus L., cv. Methasol), white mustard (Sinapis alba L., cv. Signal), buckwheat (Fagopyrum 

esculentum Moench, cv. Spacinska) and hemp (Cannabis sativa L., cv. Bialobrzeskie) with 

seeding rates (viable seeds): 300, 350, 90, 150, 200 and 150 seeds m
-2

, respectively), no cover 

crop (weeds only) and bare soil fallow without vegetation (managed through periodical flame 

weeding, every 14 days). The seeding rates were in the upper range of local customary 

seeding rates to achieve rapid ground cover and soil protection as well as weed suppression. 

Plots without cover crop were used to examine weed growth potential and weed competition 

by evaluated cover crop species. Bare soil fallow was included in the study as a control to 

determine the influence of cover cropping on the soil N mineralisation during the cover 

cropping period. 

Two days before seeding, the plough tillage (0.25 m) and the seedbed preparation with a 

rotary harrow (0.08 m) was carried out at the GR and KÖ location (Table 2.1). At GR, the 

field was additionally rolled before seeding. At PI, the residue incorporation by plough tillage 

and seedbed preparation was performed one week (26 June 2008) after barley growth was 

terminated with a flail mower. At the day of seeding, the fertiliser (fertilised plots only) in the 

form of horn grist (DCM - Deutsche CUXIN Marketing GmbH, Germany) at a rate of 50 kg 

N ha
-1

 was incorporated at a depth of 0.05 m with a plot seeder (Type HEGE 80, 

Wintersteiger, Austria). The seeding of the cover crops (row spacing 0.15 m) was carried out 

with the same plot seeder at a depth of 0.03 m. The no cover crop (weeds) and fallow plot 

without vegetation received one pass with the empty plot seeder. The cover crop field 

emergence was determined two to three weeks after seeding with four repetitions per plot 

(four randomly selected rows one metre long). 

2.2.2 Sample collection and analysis 

Soil samples were collected directly after seeding (ten sample points for each main plot) 

and after cover crop biomass sampling in October (four sample points for each subplot). At 

both PI and KÖ, the soil samples were taken from 0 to 1.2 m (four equal core sections at 0.3 

m), while at GR the sampling depth was limited to the soil layer from 0 to 0.6 m (two equal 

core sections at 0.3 m) due to high stone content in the soil layer below 0.6 m. Core samples 

of the same depth-level were homogenised and stored in cold storage coolers in the field, 

followed by deep freezing to -18°C the day of sample collection until the final analyses. 

Within one hour of defrosting, soil extracts with 0.01 M CaCl2 were prepared, and NO3
-
N and 

NH4
+
N concentrations were examined using a Continuous Flow Analyzer (SAN++, Skalar
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Table 2.1. Site specific soil information, experimental and simulation details. 

    Site Pillnitz  (PI) Groß Radisch (GR) Köllitsch (KÖ) 

    Soil type (FAO classification)
a
 Calcaric Cambisol Eutric Gleysol Arenic Fluvisol 

Soil texture Sandy Loam Slightly Loamy Sand Loamy Sand 

Soil pH (0.01 M CaCl2) 6.0 5.4 5.5 

Soil P (CAL; mg kg
-1
)
b
 41 23 26 

Soil K (CAL; mg kg
-1
)
b
 146 134 66 

Soil Mg (0.01 M CaCl2; mg kg
-1
) 78 63 115 

    
Tillage and seedbed preparation 26 June 2008 9 August 2008 11 August 2008 

Fertiliser incorporated
c
 29 July 2008 11 August 2008 13 August 2008 

Cover crop sowing date 29 July 2008 11 August 2008 13 August 2008 

Field emergence determined 19 August 2008 24 August 2008 27 August 2008 

Harvest 25 October 2008 30 October 2008 31 October 2008 

Start of Simulation 25 October 2008 30 October 2008 31 October 2008 

End of Simulation 13 March 2009 18 March 2009 19 March 2009 
      a
 Soil type according to IUSS Working Group WRB, (2006).

  

b
 Calcium Acetate Lactate (CAL) extraction method after Schüller (1969). 

c 
Only in fertiliser plots. 

1
1
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 Analytical B.V., Breda, Netherlands) based on the VDLUFA method A 6.1.4.1 (Thun and 

Hoffmann, 1991) and DIN ISO 14255 : 1998-11 (DIN Deutsches Institut für Normung e.V., 

1998), respectively. Soil sampling depth varied between GR and the other two locations as 

described so that only the samples up to 0.6 m soil depth were used for the comparative 

analysis of all trial sites. 

At the biomass harvest in October an area of 2.04 m
2
 of each plot was cut by hand and the 

plant cover was separated into cover crops and weeds. The above ground gross fresh weight 

of cover crops and weeds was determined directly after harvest in the laboratory using a 

laboratory scale (SI 6002, Denver-Instrument). Samples of 200 to 400 g were dried in a 

drying cabinet at 105°C to constant weight for the dry matter weight calculations. To 

determine the C and N content in cover crop stem, leaf and inflorescence material additional 

plants were harvested from each plot. Ten representative plant shoots per plot were sampled 

for sunflower, mustard, buckwheat and hemp while twenty plant shoots per plot were sampled 

for rye and oats. For each plant, the shoot, leaves and inflorescence were separated from the 

stem by hand. The leaf and inflorescence material were combined and were declared as leaf 

material. The stem and leaf material fresh weight were determined and the plant parts were 

dried for the dry matter weight calculations in a drying cabinet at 60°C. The dried plant parts 

were finely ground (< 0.2 mm) with an ultra centrifugal mill (ZM 1000, Retsch, Germany). 

Analysis for %C and %N was performed with an elemental analyser (TruSpec Macro, LECO, 

USA) in compliance with the VDLUFA method 4.1.2 (Bassler, 1976) and DIN ISO 10694 : 

1996-08 (DIN Deutsches Institut für Normung e.V., 1996) respectively. 

2.2.3 Statistical Analyses 

The data for field emergence, stem and leaf material (separated as well as combined) of 

cover crop shoot dry matter, N accumulation, C : N ratio; weed shoot dry matter and N 

accumulation and the inorganic soil N for the soil layer 0 to 0.6 m were subjected to analysis 

of variance (ANOVA) using the MIXED procedure (SAS v. 9.3 SAS Institute, Cary, NC). 

Statistical analyses were performed over three locations – site years (PI, GR and KÖ) using a 

linear mixed model with location, fertilisation and species as fixed and replicates as random 

effects. The fit of the model was tested using residual plots of the pooled data and, when 

necessary, data transformations (Piepho, 2009) were used to achieve required assumptions for 

linear regression analyses (Ireland, 2010). 



 13 

The cover crop field emergences, cover crop C : N ratio of stem and leaf material,  stem 

percentage of the total biomass (stem%) and %N in stem biomass did not require any 

transformation while the logarithmic transformation was applied to all other data sets. 

Homogeneity of variance was tested and in case of heterogeneous variances the model was 

fitted for partitioned variances (Littell et al., 2011). The degrees of freedom were determined 

based on the Kenward-Roger method. Least square means were calculated and mean 

comparisons were carried out with the Tukey-Kramer test (α = 0.05) within the SAS 

procedure MIXED. 

2.2.4 Simulation of N mineralisation 

The residue decomposition module of the STICS model (Brisson et al., 1998) was utilised 

to predict the N mineralisation from residues produced by the different cover crops. The 

decomposition model considers three pools: the cover crop residues, the microbial biomass 

decomposing the residues and the humified organic matter (Brisson et al., 1998; Nicolardot et 

al., 2001). Daily changes in these pools are related to their C : N ratio and the amount of 

carbon in these pools. During the decomposition of the cover crop residue, carbon is either 

emitted as CO2 or incorporated in microbial biomass. Crop residue N that is not used for the 

growth of microbial biomass is released to the pool of inorganic N. This pool also acts as a 

source of inorganic N for the development of microbial biomass. Decomposing microbial 

biomass releases C and N which is partly included in humified organic matter, partly emitted 

as CO2 or, in the case of N, released as inorganic N. This flow of C and N is characterised by 

the model through (i) the plant residue decomposition rate constant (k) and the accumulation 

of C from residue in the microbial biomass (Y), (ii) the decay rate constant of the microflora 

(λ) and the amount of microbial C humification (coefficient h), (iii) the C : N ratios of the 

three pools C : NResidue, C : NMicrobial biomass and C : NHumus (Fig. 2.1) (Brisson et al., 2009; 

Nicolardot et al., 2001). The permanent mineralisation of humified organic matter consistently 

releases additional mineral N that is not included in the present simulation which only 

considers the net N mineralisation from cover crop residue. The net N mineralisation from the 

cover crops is also influenced by external parameters: the soil (inorganic soil N contents), 

climate (temperature and precipitation) as well as by the placement of residues (at the surface 

or at a certain depth of incorporation). Nicolardot et al. (2001) evaluated and validated the 

decomposition model (Brisson et al., 1998) with mature and immature crop materials in soil 

incubation experiments, revealing significant correlations of the microbial biomass C : N, the 

constant of residue decomposition (k), the coefficient for the humification of the decaying 
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microbial biomass (h), with the C : N ratio of residues. In additional soil incubation 

experiments Justes et al. (2009) confirmed these relationships and further evaluated and 

parameterised the model for immature autumn grown cover crops with a wide range of C : N 

ratios. Under field conditions the decomposition model was recalibrated and successfully 

validated for incorporated immature cover crop residues by Justes and Mary (2004).  

 

Fig. 2.1. Conceptual diagram of the residue decomposition model (Nicolardot et al. 2001), continuous lines 

indicating C fluxes, dashed lines indicating N fluxes. 

For the C : N ratio model parameter the input bounds are 6 and 200. However preliminary 

simulations displayed N mineralisation inconsistencies at low C : N ratios. The simulations 

using hypothetical immature crop residues with a fixed dry matter (1 Mg ha
-1

) and C content 

(40%) as well as variable C : N ratios (8 to 20 : 1) showed that under no-till conditions the 

simulated proportionate net N mineralisation (% of added N) was not graduated according to 

its residue C : N ratio (Fig. 2.2a). Default climate conditions from April to December were 

used (average temperature 14.2°C, cumulative precipitation 513 mm). Within the first 180 

days, the N mineralisation on the soil surface was lower for residues with a C : N ratio of 10 

to 12 than for residues with a C : N ratio of 13 to 20. With tillage (0.25 m depth), the 

simulated net N mineralisation was fine graded and fell with increasing C : N ratios from 8 to 

20 (Fig. 2.2b), similar to the results published by Nicolardot et al. (2001) and Justes et al. 

(2009). Due to the discrepancy between the literature and the simulation results under no-till 

conditions, the simulation with tillage was applied instead. Within the soil, the net N 

mineralisation is usually lower (Coppens et al., 2006) due to N stabilisation by microbial 

biomass, but the simulation still delivers valuable indicators for the evaluation of cover crop 

species. 

Inputs in the present implementation of the model were gained from own samplings and 

measurements (initial cover crop and soil parameters), measurements from weather stations 

Fig. 1 

Fig. 2a 



 15 

(climate data) (DWD 2014 and LfULG 2014 personal communication), and from external 

sources and the literature (soil characterisations) (LfULG, 2014a; LfULG 2014 personal 

communication; Lux, 2015; Table 2.1 and 2.2). The model was run from 25 October, 30 

October and 31 October (day of biomass harvest) at PI, GR and KÖ, respectively for 140 days 

up to the intended seeding of pea cash crops in March (Table 2.1). The initial condition for the 

simulation was the presumed termination of the cover crops with a roller-crimper at the day of 

the biomass harvest. The input for the model was a single intervention (stem or leaf biomass) 

or two interventions (stem and leaf biomass) of organic residue supply with the same quantity 

of stem, leaf or combined stem and leaf dry matter present at biomass harvest. The residue 

type input parameter was ‘immature crop residues’ with plant species and plant compartment 

specific C contents and C : N ratios. For the residue incorporation, a single pass of tillage 

(0.25 m depth) was assumed at the day of cover crop termination. No additional fertilisation 

or irrigation was supplied during the simulation period. Location specific climate conditions 

were used for each simulation. 
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Fig. 2.2a-b. Comparison of proportionate net N mineralisation in no-till (a) and tilled conditions (b) from immature crop residues with fixed dry matter (1 Mg ha
-1

) and 

C content (40%) as well as variable C : N ratios (8 to 20 : 1). 

  

1
6 
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Table 2.2. Monthly mean, trial period and simulation period mean temperature, monthly precipitation and cumulative precipitation during the cover crop trial and 

simulation period. 

                   Temperature (°C)  Precipitation (mm) 

                   Pillnitz (PI)
a
  Groß Radisch (GR)

 b
  Köllitsch (KÖ)

b
  Pillnitz (PI)

a
  Groß Radisch (GR)

 b
  Köllitsch (KÖ)

b
 

                 Month 2008 2009  2008 2009  2008 2009  2008 2009  2008 2009  2008 2009 

                  
January 3.2 -2.5  3.8 -2.1  4.3 -3.2  65 16  50   16  57 8 
February 5.1 1.4  5.0 0.5  4.8 0.8  13 61  18   30  14 27 
March 5.6 5.8  4.9 5.3  4.9 5.3  45 62  42   57  53 48 
April 8.8 13.0  8.5 12.9  8.3 12.2  93 7  61     5  110 9 
May 15.1 14.7  14.4 14.6  14.9 14.4  26 68  17   91  11 54 
June 18.5 15.8  18.3 15.7  18.1 15.6  48 85  48 123  63 45 
July 19.2 19.3  19.1 19.1  19.2 19.0  59 70  87   77  39 91 
August 18.9 19.6  18.6 19.3  19.0 19.7  95 98  83   69  42 75 
September 13.5 15.9  13.6 15.8  13.2 15.3  41 28  30   30  55 29 
October 9.8 8.9  10.0 8.4  9.9 10.7  81 98  90   65  55 56 
November 6.1 8.1  5.7 8.2  5.7 8.0  28 42  24   39  10 99 
December 2.9 0.9  2.6 0.3  1.8 0.2  49 79  34   53  30 148 
                  
Year 10.6 10.1  10.4 9.8  10.3 9.8  643 714  584 655  539 689 
            
                       Mean temperature (°C) trial and simulation period  Cumulative precipitation (mm) trial and simulation period 
 P1 P2  P1 P2  P1 P2  P1 P2  P1 P2  P1 P2 
 14.1 2.7  14.1 2.4  14.0 2.1  217 216  203 161  152 123 
                                    P1, mean temperature and cumulative precipitation during the cover cropping period from cover crop seeding to cover crop dry matter sampling (from August to October 2008). 
P2, mean temperature and cumulative precipitation during the crop simulation period from termination to seeding of the cash crop (November 2008 to March 2009). 
a
 Climate data (DWD 2014 personal communication). 

b
 Climate data (LfULG 2014b). 
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2.3 Results 

2.3.1 Climate 

The climate differed between locations in terms of total precipitation and its monthly 

distribution. In both years, the total precipitation at PI, GR and KÖ ranged above the 

historical average (597, 554 and 453 mm, respectively) (LfULG 2014 and SBS 2015 personal 

communication; LfULG, 2014b; DWD 2014 and 2015 personal communication). The total 

precipitation in 2008 and 2009 was largest at PI with a difference of +59 mm in both years to 

GR, and +104 and +25 mm (2008 and 2009, respectively) to KÖ (Table 2.2). In the cover 

cropping period, the monthly precipitation in August 2008 at PI and GR was 126 and 98% 

higher, respectively than at KÖ, while in September slightly more precipitation occurred at 

KÖ than at the other locations. During the main months of the simulation period the 

cumulative precipitation at PI and GR was 76 and 31% higher, respectively than at KÖ. 

Mean annual temperatures in 2008 at PI, GR and KÖ were 10.6, 10.4 and 10.3°C, 

respectively (Table 2.2). These temperatures were between 0.3 and 0.5°C above the long term 

average, whereas in 2009 they were similar or slightly below the average (10.1, 9.9, 10.0°C, 

at PI, GR and KÖ, respectively) (LfULG 2014 and SBS 2015 personal communication, 

LfULG, 2014b; DWD 2014 and 2015 personal communication). Monthly mean temperatures 

in the cover cropping period (August to October) varied only marginally between the three 

locations. However, monthly mean temperatures during the second and third month of the N 

mineralisation simulation were at PI 1.1 and 0.7°C (December and January, respectively) 

higher than at KÖ. 

2.3.2 Cover crop emergence 

Precipitation before and after cover crop seeding was sufficient for high field emergences, 

which differed slightly between species and locations (Table 2.3). At all three locations 

sunflower, oats and buckwheat consistently displayed the highest field emergences (between 

82 and 97%, Table 2.4). At PI and GR the field emergences of mustard and hemp were below 

the other species. At KÖ the mustard and hemp emergence was higher and within the range of 

the other species. 



19 

 

Table 2.3. Sources of variation, field emergence, dry matter production of combined and separated cover crop materials and the proportion of stem dry matter 

(stem%), weed dry matter production, N accumulation in combined and separated cover crop materials and N accumulated in the cover crop stem (N% stem), N 

accumulation in weed biomass, C : N ratio in stem and leaf material, and the inorganic soil N in the 0 to 0.6 m soil horizon after harvest. 

                 Source of Field Shoot dry matter production  Shoot N accumulation  C : N ratio  Soil N
c
 

                  variation emergence Total Stem Leaf Stem%
a 

Weeds  Total Stem Leaf N% Stem
b
 Weeds  Stem Leaf  0 to 0.6 m 

                  Location (L) n.s. *** *** *** n.s. ***  *** *** *** n.s. ***  *** ***  n.s. 

Fertiliser (F) n.s. *** *** *** * n.s.  *** *** *** *** **  ** ***  *** 

Species (S) *** *** *** *** *** ***  *** *** *** *** ***  *** ***  *** 

L x F n.s. ** *** * ** n.s.  * n.s. * n.s. n.s.  * *  * 

L x S *** ** *** *** *** ***  ** *** * *** ***  *** ***  *** 

F x S n.s. n.s. n.s. * *** **  n.s. n.s. n.s. *** *  n.s. n.s.  n.s. 

L x F x S n.s. n.s. n.s. n.s. n.s. n.s.  n.s. n.s. n.s. n.s. *  n.s. n.s.  ** 
                         a
 proportion of cover crop stem dry matter on total cover crop dry matter production;  

b
 proportion of N accumulation stored in the cover crop stem; 

c
 inorganic soil N. 

Component of variation: *, **, *** significant at P levels of P < 0.05, 0.01, 0.001, respectively; n.s., not significant. 

 

Table 2.4. Cover crop field emergences (averaged across fertiliser levels). 

 Cover crop field emergence (% germinated plants of viable seeds) 

   Species Pillnitz (PI) Groß Radisch (GR) Köllitsch (KÖ) 

        Rye 80 b   A 70 b  A 75 b   A 
Oats 83 ab A 97 a  A 91 a   A 
Sunflower 93 a   A 94 a  A 82 ab A 
Mustard 51 c   B 46 c  B 75 b   A 
Buckwheat  87 ab A 86 a  A 93 a   A 
Hemp  61 c   B 58 c  B 88 a   A 
     Within a column, lower case letters display significant differences between cover crops 
based on Tukey-Kramer means separation (α = 0.05); 
within a row, upper case letters display significant differences between locations based 
on Tukey-Kramer means separation (α = 0.05).
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2.3.3 Dry matter production 

At PI the seedbed preparation took place almost 7 weeks earlier, and the cover crop 

seeding was carried out 13 and 14 days ahead of the locations GR and KÖ, respectively. This 

might have contributed to a larger biomass for all species at PI compared to GR and KÖ. 

Cover crop plant stands in early September are shown in Fig. A 4 and A 5 to A 8a-c. Total dry 

matter production ranged from 4.32 to 7.73 Mg ha
-1

, 0.95 to 3.73 Mg ha
-1

 and 2.16 to 3.94 Mg 

ha
-1

 at PI, GR and KÖ, respectively (Table 2.3, Fig. 2.3a-c). Even with this variation, the 

cover crop species with the largest biomass production were similar at all locations. At PI and 

KÖ the sunflower displayed the largest dry matter production (7.46 and 3.53 Mg ha
-1

, 

respectively, data not shown), while at GR the sunflower, oats and rye produced equally large 

amounts of biomass (3.15, 2.59 and 2.43 Mg ha
-1

, respectively). At PI and KÖ the total 

biomass production by rye (5.51 and 2.82 Mg ha
-1

, respectively) was second to sunflower. 

 

Fig. 2.3a-c. Total dry matter (DM) partitioned into cover crop stem and leaf material, as well as weed 

biomass in plots of rye (R), oats (O), sunflower (S), mustard (M), buckwheat (B), hemp (H) and no cover 

crop – weeds (W), respectively. The cover crop and weed dry matter was produced without fertiliser (left 

side columns) and with 50 kg N ha
-1

 fertiliser (right side columns), respectively. 
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The separation of the total biomass into stem and leaf material revealed divergent amounts 

of stem and leaf biomass produced by the different species. The largest stem dry matter 

production at PI, GR and KÖ was shown by sunflower and rye and, at PI, by mustard. At PI, 

sunflower had the largest leaf biomass, while at GR and KÖ oats and sunflower displayed an 

equally large leaf dry matter production. Sunflower produced large amounts of stem and leaf 

material, but the stem proportion of the total biomass was comparatively low. Rye and 

mustard were the species which displayed, at all locations, consistently the largest stem% 

(Table 2.5). At all locations oats displayed the lowest stem% among the species. It was noted 

that at PI the sunflower stem% was equally low, while it was larger than oats at GR and KÖ.  

Averaged over locations, the incorporation of fertiliser before seeding only increased the 

stem% of oats and buckwheat. Fertiliser consistently increased the total cover crop and stem 

biomass at GR and KÖ, but had no effect at PI. Averaged over locations, the leaf dry matter 

was significantly larger in the fertilised plots of rye, sunflower, mustard and hemp while the 

remaining species showed no response to additional fertilisation. 

The weed biomass in the cover crop plots was highest at GR and lowest at KÖ, ranging 

from 0.02 to 2.18 Mg ha
-1

, without cover cropping the weed biomass was similar at PI and 

GR and larger than at KÖ (Table 2.3, Fig. 2.3a-c). At all locations cover cropping significantly 

reduced the weed biomass compared to weed plots without cover crops. At GR and KÖ, the 

weed biomass in hemp plots was larger than in the other cover crops. At PI the weed biomass 

in plots of hemp was without difference to the other crops. Fertilisation before seeding 

increased the weed biomass in rye and oats, but had no effect on the weed biomass in the plots 

with the other species. 

2.3.4 Shoot N accumulation and inorganic soil N 

The total N accumulation in the combined stem and leaf material ranged from 66.9 to 

129.7 kg ha
-1

, 13.5 to 50.2 kg ha
-1

, and 29.5 to 62.9 kg ha
-1

 at PI, GR and KÖ respectively 

(Fig. 2.4a-c). The available inorganic soil N contents at harvest showed interactions between 

location, additional fertilisation and cover cropping (Table 2.3). The inorganic soil N 

resources in the bare soil fallow plots were, at the end of October in both the unfertilised and 

fertilised plots, higher at PI compared to GR and KÖ. Cover cropping significantly reduced 

the available inorganic N resources compared to the fallow plot without plant cover. Only 

buckwheat in the fertilised plots at KÖ and rye and hemp in the unfertilised plots at GR were 

not able to significantly reduce the inorganic soil N resources compared with the fallow plot. 
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Table 2.5. Proportion of the cover crop stem (stem%) on the total dry matter production. 

  stem% on total dry matter production 

  Pillnitz (PI)  Groß Radisch (GR)  Köllitsch (KÖ)  Fertiliser x Species
b
 

            Species -N +N L x S
a
  -N +N L x S  -N +N L x S  -N     +N 

                  Rye 75 71 73 a  A  71 71 71 ab A  74 69 71 a  A  73 a  A 70 ab A 
Oats 57 58 57 c  A  51 61 56 d   A  56 58 57 d  A  54 c  B 59 d   A 
Sunflower 61 55 58 c  C  69 68 69 b   A  64 63 63 c  B  65 b  A 62 d   A 
Mustard 71 73 72 a  A  72 74 73 a   A  71 69 70 a  A  71 a  A 72 a   A 
Buckwheat 60 65 62 b  B  63 72 67 bc A  66 68 67 b  A  63 b  B 68 bc A 
Hemp 63 64 64 b  A  62 66 64 c   A  66 68 67 b  A  64 b  A 66 c   A 

                        -N: without fertiliser; +N: with 50 kg N ha
-1

 incorporated before seeding;  
a
 L x S, Location x Species interaction: Within a column lower case letters display significant differences between species based on Tukey-Kramer means separation  

(α = 0.05), within a row, upper case letters display significant differences between locations based on Tukey-Kramer means separation (α = 0.05); 
b
 Fertiliser x Species interaction: Within a column lower case letters display significant differences between species based on Tukey-Kramer means separation (α = 0.05), 

within a row, upper case letters display significant differences between fertiliser treatments based on Tukey-Kramer means separation (α = 0.05). 

2
2 
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Fig. 2.4a-c. Inorganic soil N at seeding (SN) and after harvest in plots of rye (R), oats (O), sunflower (S), 

mustard (M), buckwheat (B), hemp (H), no cover crop – weed plot (W) and bare soil fallow (F), 

respectively. Shoot N accumulation of the respective cover crops partitioned into stem and leaf material as 

well as weed shoot N accumulation. Shoot N accumulation without fertiliser (left side columns) and with 

50 kg N ha
-1

 fertiliser (right side columns), respectively. 
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Within the species there were only small variations in their ability to reduce inorganic soil N 

resources as shown by similar inorganic soil N contents in cover crop plots.  

At PI and GR fertilisation before seeding significantly increased the inorganic soil N 

resources in the bare soil fallow plots; this was not the case in most of the cover crop plots. 

Exceptions were plots of buckwheat at PI and GR, hemp at PI and sunflower at GR which 

showed significant larger inorganic soil N contents in the fertilised compared to the 

unfertilised plots. 

At PI, GR and KÖ the largest total N accumulation was displayed by sunflower with 127.8, 

39.2 and 53.3 kg ha
-1

, respectively (data not shown). Equally large was the accumulation by 

mustard at PI (117.3 kg ha
-1

), and by rye, oats (both species 30.4 kg ha
-1

) and buckwheat (29.2 

kg ha
-1

) at GR (data not shown). The total N accumulation of the remaining cover crops at PI 

and KÖ did not vary significantly from one to another. 

At PI and KÖ the largest N accumulation in stem material was shown by mustard (56.7 kg 

ha
-1

) at PI and rye (22.6 kg ha
-1

) at KÖ (data not shown). At GR the rye (14.4 kg ha
-1

) 

accumulated the most N in the stem, but without significant difference to buckwheat, mustard 

and sunflower. Instead of storing N in the stem, the sunflower allocated significantly more N 

than the other species in its leaf material. Only at GR the N in oats leaf material was similarly 

large as in sunflower. 

A species specific increased allocation of N towards the immature cover crop stem was 

consistently shown at all locations by rye. The proportion of total N in the rye stem material 

ranged between 48 and 53% (Table 2.6). Similarly large allocations to the stem material were 

only shown by mustard at PI and GR. For sunflower the proportion of accumulated N in the 

stem material only ranged between 27 and 29%. 

Table 2.6. Proportion of total N accumulated in the stem (N% stem) of individual cover crops (averaged 

over fertiliser levels). 

      % of total N accumulation in cover crop stem 

     Species Pillnitz (PI) Groß Radisch (GR) Köllitsch (KÖ) 

    Rye 51 a 48 a 53 a 
Oats 36 c 33 cd 35 c 
Sunflower 29 d 28 d 27 d 
Mustard 48 ab 44 ab 39 b 
Buckwheat 45 b 42 b 43 b 
Hemp 32 cd 37 c 42 b 

        Within a location column, lower case letters display significant differences 
between cover crop species based on Tukey-Kramer means separation (α = 0.05). 

 

The influence of fertilisation before seeding on the total cover crop N accumulation was 

consistent. At PI, GR and KÖ it increased the total N accumulation in cover crop biomass by 
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21, 56 and 61%, respectively (data not shown). Furthermore, fertiliser increased the share of 

N accumulated in stem material for buckwheat and hemp. In the fertilised rye the proportion 

of accumulated N in the stem was reduced and a higher percentage of N was stored in the leaf 

material. The accumulation of N in leaf material at GR and KÖ was increased through 

additional fertilisation by 49 and 57%, respectively, while it had no effect at PI.  

In cover crop plots the accumulation of N in weed biomass was significantly lower than in 

the no cover crop – weed plot. The exception was the N accumulation in weed biomass in the 

unfertilised hemp plot at GR which was similar to the no cover crop – weed plot. 

2.3.5 C : N ratio in stem and leaf material 

During biomass harvest at the end of October most cover crops had an emerging inflorescence 

or were flowering. Due to the earlier seeding at PI, the majority of species displayed advanced 

growing stages compared to the other locations. Growing stages at GR and KÖ were similar 

at the time of harvest (data not shown). However, the C : N ratio of stem and leaf material 

displayed no consistent differences between locations. The stem C : N ratio ranged from 25  

to 64, 42 to 88 and 32 to 74 at PI, GR and KÖ, respectively (Table 2.7). Independent from 

fertilisation the largest stem C : N at PI, GR and KÖ was consistently shown by sunflower 

(52, 82, 67, respectively). Only at PI, hemp (53) displayed an equally large stem C : N ratio. 

The growing stages of mustard at all locations and of buckwheat at the PI and KÖ locations 

were similar. Yet all cover crops, with the exception of rye and hemp, displayed a significantly 

lower C : N ratio at the PI location than at GR and KÖ. N fertilisation reduced the stem C : N 

only at PI and KÖ (-14 and -11, respectively) but had no effect at GR. 

The leaf C : N ratio ranged from 11 to 18, 14 to 25 and 12 to 23 at PI, GR and KÖ, 

respectively (Table 2.7). Independent from fertilisation, oats displayed, at all locations, the 

largest leaf C : N ratio, although at PI the leaf C : N of rye and buckwheat were similarly 

high. The second largest leaf C : N at PI was shown by sunflower and at GR and KÖ by rye, 

as well as by buckwheat at GR. A low leaf C : N at all locations was shown by mustard and 

hemp, and at GR and KÖ, also by sunflower. Fertiliser reduced the leaf C : N at PI and KÖ 

slightly, but had no effect at GR. 
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2.3.6 Simulated N mineralisation from cover crop residues 

2.3.6.1 Proportionate net N mineralisation and immobilisation from residue N input 

The proportionate net N mineralisation (percentage mineralised of total incorporated N) 

from separate and combined leaf and stem material input displayed some variations between 

locations in conjunction with the variability of C : N ratios at the PI, GR and KÖ location 

(Table 2.7 and Fig. 2.5a-f). The proportionate net N mineralisation from leaf N input after 140 

days ranged from 8.0 to 29% at PI, -12 to 27% at GR and -9 to 25% at KÖ. In March, the N 

input of leaf material for the majority of cover crops was, to some extent, mineralised at GR 

and KÖ. Exceptions were the N immobilisation at GR for both fertilised and unfertilised oats 

and fertilised rye leaf material and at KÖ for unfertilised leaf material of oats and rye (Fig. 

2.5b-c). A larger proportional net N mineralisation cumulation after 140 days was shown by 

fertilised mustard leaf material (29, 24 and 24% of total incorporated leaf N at PI, GR and 

KÖ, respectively) as well as by unfertilised sunflower leaf material (20, 16 and 21% of total 

incorporated leaf N at PI, GR and KÖ, respectively) (Fig. 2.5a-c). 

The proportionate net N immobilisation ranged, for the majority of cover crops stem 

materials, from -14 to -96% at PI, -72 to -139% at GR and -37 to -121% at KÖ for total 

incorporated stem N (Fig. 2.5d-f). Exceptions, with a larger net N immobilisation proportional 

to its N input, were shown at PI by unfertilised hemp stem material (-136% of total 

incorporated stem N) and at GR and KÖ by unfertilised and fertilised sunflower stem material 

(between -137 and -230% of total incorporated stem N). However, in the presence of 

sunflower leaf material the net N immobilisation would not be as high. 

The combined proportional net N mineralisation of sunflower stem and leaf material after 

140 days amounted at GR to -49 and -43% of total incorporated leaf and stem N (unfertilised 

and fertilised sunflower, respectively) and at KÖ to -28 and -19% of total incorporated leaf 

and stem N (unfertilised and fertilised sunflower, respectively) (Fig. 2.7a-c). At the different 

locations, the combined net N mineralisation (% of N input by leaf and stem residues) ranged 

from +6 to -48% at PI, -23 to -57% at GR and -8 to -46% at KÖ. Cover crops from fertilised 

plots at PI and KÖ displayed a tendency to proportionally immobilise less N based on their N 

input, while at GR this was reversed and many cover crops demonstrated a larger 

proportionate net N immobilisation when they were fertilised. 
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Table 2.7. C : N ratio in cover crop stem and leaf material. 

  C : N ratio in cover crop stem and leaf material 
  Pillnitz (PI)  Groß Radisch (GR)  Köllitsch (KÖ) 

         Cover crop stem -N +N L x S
a
  -N +N L x S  -N +N L x S 

               Rye 50 36 43 b   AB  44 61 53 bc  A  42 34 38 c   B 
Oats  48 32 40 bc B  61 61 61 b    A  55 46 51 b   A 
Sunflower  54 49 52 a   C  88 75 82 a    A  74 60 67 a   B 
Mustard  39 27 33 c   B  43 54 49 c    A  55 46 50 b   A 
Buckwheat  40 25 32 c   B  58 42 50 bc  A  56 32 44 bc A 
Hemp  64 42 53 a   A  52 58 55 bc  A  44 37 41 c   B 
               Cover crop leaf               
Rye  18 15 17 a   B  19 21 20 b   A  21 15 18 b   B 
Oats  18 16 17 a   C  24 25 24 a   A  23 20 21 a   B 
Sunflower  14 14 14 b   A  15 14 15 d   A  14 13 14 d   A 
Mustard  12 11 11 c   B  15 14 15 d   A  14 13 13 d   A 
Buckwheat  17 15 16 a   B  19 17 18 bc A  17 15 16 c   B 
Hemp 13 12 12 c   B  16 16 16 cd A  14 12 13 d   B 

                 -N: without fertiliser; +N: with 50 kg N ha
-1

 incorporated before seeding;  
a
 L x S, Location x Species interaction: Within a column lower case letters display significant differences between species  

based on Tukey-Kramer means separation (α = 0.05), within a row, upper case letters display significant differences between 

locations based on Tukey-Kramer means separation (α = 0.05). 
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Fig. 2.5a-f. Proportionate net N mineralisation of separate cover crop leaf material (a-c) and stem material (d-f) at the Pillnitz (PI), Groß Radisch (GR) and Köllitsch 

(KÖ) location. 

 

 

2
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Without fertiliser, oats and rye were the only species which displayed a large net N 

immobilisation (between -40 and -50% of N input by leaf and stem residue) at two locations, 

while for sunflower this was only the case at one location (Fig. 2.7a-c). Oats grown in low 

inorganic soil N conditions at GR and KÖ showed net N immobilisation of -45 and -46% of N 

input by leaf and stem residue, respectively (PI -21%). The net N immobilisation for 

unfertilised rye was -48, -34 and -42% of N input by leaf and stem residue at PI, GR and KÖ, 

respectively. For unfertilised sunflower -20, -49 and -28% of N input by leaf and stem residue 

was immobilised at PI, GR and KÖ, correspondingly. Fertilisation decreased the potential N 

immobilisation at PI and KÖ for all three species and increased the N immobilisation at GR 

for rye and oats by 23 and 7 percentage points, respectively. 

2.3.6.2 Net N mineralisation from separated and combined leaf and stem material 

The estimated net N mineralisation patterns of leaf and stem material, as well as combined 

stem and leaf material, were influenced by the residue material and varied between the cover 

crop species. Differences in N mineralisation of residues between locations appeared in the 

form of increased N mineralisation from leaf material and reduced N immobilisation from 

stem material at PI compared with GR and KÖ (Fig. 2.6a-f). After 140 days the potential N 

mineralisation from leaf material ranged from 2.6 to 22.1, -3.1 to 7.3 and -1.8 to 10.0 kg N ha
-

1
 at PI, GR and KÖ, respectively (Fig. 2.6a-c). At all locations the majority of N 

mineralisation from leaf material occurred during winter, within the first 60 days of the 

simulation. At the end of the simulation in March the cumulative net N mineralisation from 

unfertilised oats leaf material was 4.8, -2.2 and -1.8 kg N ha
-1

 at PI, GR and KÖ, respectively 

and lower than the N mineralisation by unfertilised sunflower (17.9, 3.8 and 7.2 kg N ha
-1

 at 

PI, GR and KÖ, respectively).  

The net N mineralisation from stem material was negative (N immobilisation). With a few 

exceptions at PI, the majority of N immobilisation occurred also in the first 60 days (Fig. 

2.6d-f). After 140 days, the potential N immobilisation ranged from -7.0 to -33.8, -5.6 to -25.8 

and -9.4 to -23.5 kg N ha
-1

 at PI, GR and KÖ, respectively. In conjunction with the large 

amount of sunflower stem material produced without fertiliser at PI, the potential net N 

immobilisation (-33.8 kg N ha
-1

), was larger than at GR and KÖ (-19.9 and -20.7 kg N ha
-1

, 

respectively).  
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For sunflower and the majority of the other cover crops, the N immobilisation through 

stem material could be large enough to offset the net N mineralisation from leaf material. The 

combined net N mineralisation from stem and leaf material ranged after 140 days from 7.4 to 

-32.2, -4.2 to -22.5 and -4.1 to -14.7 kg N ha
-1

 at PI, GR and KÖ, respectively (Fig. 2.7 d-f). 

Only at PI two crops (fertilised mustard and buckwheat: 7.4 and 3.1 kg N ha
-1

, respectively) 

displayed a net N mineralisation. 
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Fig. 2.6a-f. Net N mineralisation of separate cover crop leaf material (a-c) and stem material (d-f) at the Pillnitz (PI), Groß Radisch (GR) and Köllitsch (KÖ) location. 

3
1 
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Fig. 2.7a-f. Proportionate net N mineralisation (a-c) and net N mineralisation (d-f) of combined cover crop leaf and stem material at the Pillnitz (PI), Groß Radisch 

(GR) and Köllitsch (KÖ) location. 

  

3
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2.4 Discussion 

2.4.1 Dry matter production 

The total biomass production at PI was nearly double than at GR and KÖ. This could be 

attributed to the earlier seeding at PI, but was likely also the result of large inorganic soil N 

resources at PI. These resources were accumulated by the cover crops but remained in the 

bare soil fallow at the end of October (Fig. 2.4a). At PI, the preceding spring barley crop was 

terminated by flail mowing and the chopped residue was incorporated nearly one month 

before cover crop seeding, probably increasing the available inorganic soil N resources 

through N mineralisation during the cover cropping phase so that inorganic soil N was not a 

limiting factor for cover crop growth. This hypothesis is supported by the large available 

inorganic soil N resources in the unfertilised bare soil fallow plot at harvest (Fig. 2.4a) and the 

absent response of the cover crop biomass production to additional fertilisation with 50 kg N 

ha
-1

 before seeding at PI. At the GR and KÖ locations, fertilisation increased the total dry 

matter production, which indicates a limitation by low available N resources.  

Particularly at GR, N resources were limited because cover crops competed with large 

amounts of weeds, resulting in reduced N accumulation by cover crops compared to KÖ and 

PI. Differences in N availability and accumulation between locations also manifested in the C 

: N ratio of stem and leaf material. Averaged over species, at PI and KÖ, fertilisation before 

seeding reduced the C : N ratio of both the stem and leaf material while it had no effect at GR 

(data not shown), indicating a stronger N shortage at GR than at KÖ. Campbell et al. (1977) 

showed in a study with cereal grain that plant N content increased with N input rates through 

fertiliser application. At PI and KÖ elevated N accumulation through fertilisation increased 

the proportion of N in plant biomass (data not shown), reducing the C : N ratio as a 

consequence. For the individual species differences between locations were less consistent, 

but four of the six species grown at PI and KÖ displayed significantly lower C : N ratios in 

the leaf material than at GR.  

The impact of advanced plant development at PI compared to GR and KÖ on the cover 

crop C : N ratio was not consistent. Differences between PI and the other locations did not 

consistently occur even with the advanced growing stage at PI. Furthermore differences 

occurred between stem and leaf C : N ratios at the GR and KÖ location with similar growing 

stages. This indicates that the impact of advanced plant development at PI was less influential 



 34 

for the C : N ratio of the plant compartments. The C : N ratios were probably influenced to a 

larger extent through the N supply during growth.  

The N mineralisation from cover crop material is influenced by the amount of carbon input 

and the C : N ratio of the incorporated dry matter. In the present study the simulated N 

mineralisation tended to be larger at PI than at GR and KÖ. For example at PI unfertilised 

oats leaf material displayed a positive proportional net N mineralisation, while it 

demonstrated N immobilisation at GR and KÖ (Fig. 2.5a-c). This probably was due to larger 

N accumulation in the unfertilised oats leaf material at PI (47 kg N ha
-1

) compared to GR and 

KÖ (19.9 and 20.9 kg N ha
-1

, respectively) and the low C : N ratio at PI (18) compared to GR 

and KÖ, (24 and 23, respectively; Table 2.7). During decomposition mineralised inorganic N 

which is not incorporated into microbial biomass would at PI be easily available for additional 

microbial biomass production leading to increased N mineralisation. At GR and KÖ the N 

immobilisation was concurrent with reduced N accumulation and increased C : N ratio of oats 

leaf material. This could be attributed to the reduced N availability from cover crop biomass, 

requiring increased supply of N from the already diminished inorganic soil N resources to 

allow for decomposition of the supplied cover crop material.  

The seeding rate of cover crops influences the relation of stem and leaf material for the 

cover crops used in this study. Steer et al. (1986) found larger stem percentages on the shoot 

dry matter in dense plant stands of sunflower. Conclusions drawn from the present results are 

only applicable for similar seeding rates. The results of the present study can be used as a 

point of reference for future examinations that are needed to determine the relations of stem 

and leaf material with different seeding rates under conditions of organic cover cropping.  

Sunflower produced consistently large amounts of biomass (Fig. 2.3a-c), which at PI were 

similar to the sunflower biomass stated by Forentìn et al. (2011) for high fertility conditions, 

and at GR and KÖ in the unfertilised plots in accordance with cover crop biomass in another 

organic system (Neuhoff and Range, 2012). It was higher than in a reduced tillage organic 

trial (Rühlemann and Schmidtke, 2015), which could be attributed to the sunflower seedbed 

preparation in the present study by plough tillage which alleviated soil compaction and 

controlled weeds effectively. At the same time, sunflower was one of the cover crops with the 

largest N accumulation, even in low N availability, which could be attributed to water and 

nutrient assimilation through the deep rooting taproot (up to 2.9 m soil depth) while the 

majority of the sunflower roots are present between 0 and 0.1 m soil depth (Dardanelli et al., 

1997; Miyazawa et al., 2010). Hocking and Steer (1982) showed that sunflowers are able to 

sufficiently increase N uptake efficiency in low N conditions, explaining the large N 
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accumulation in the present study. However, the preferred use of shallow inorganic soil N 

resources leaves deeper resources exposed for leaching or use by deep rooting weeds. 

Sunflower dry matter accumulation was mostly in the stem, while the majority of N was 

accumulated in the leaf material in accordance with results found for sunflower by Hocking 

and Steer (1983). The resulting low leaf C : N ratio could lead to a fast N mineralisation after 

cover crop termination through a killing frost in no-tillage conditions or through plough 

tillage (Fig. 2.6a-c). The N mineralisation simulation from stem material with a large C : N 

ratio indicated that the strong N immobilisation by sunflower stem material could compensate 

for the N mineralisation of sunflower leaf material when both materials mineralised 

simultaneously next to each other (Fig. 2.7e-f).  

Nevertheless, sunflower leaves would decompose quickly on the soil surface and only 

sunflower stems would be left to cover the ground and reduce the light interception. Due to 

the low number of stems, sunflower would likely not be sufficient to suppress weeds. 

Sunflower can, therefore, only be recommended for systems in which winter legumes are 

sown into autumn-rolled sunflower plant stands. 

Contrasting to sunflower, rye and oats displayed consistently large leaf C : N ratios (Table 

2.7). Rye additionally exhibited large stem% on the total biomass and a biomass production 

similar (GR) or second (PI and KÖ) to sunflower. At PI, the rye biomass without and with 

fertiliser was larger than in an autumn cover crop trial with winter rye by Kruidhof et al. 

(2008) who used fertiliser and a higher seeding rate, presumably due to their late seeding in 

early September compared to end of July in the present trial. In another experiment by 

Kruidhof et al. (2008), the winter rye was sown into a fertilised seedbed on July 25 2003 

resulting in an autumn biomass production that was intermediate between the unfertilised and 

fertilised rye at the GR and KÖ location (Fig. 2.3b-c). This can be attributed to the winter rye 

establishment of only 37% and shows that a high N level and an early seeding date does not 

guarantee a biomass production as large as at PI. 

Oats had diverging characteristics to rye in terms of the stem fraction on the total biomass, 

which was lower (GR and KÖ) than or similar (PI) to sunflower (Table 2.5). However, oats 

also showed consistently large leaf C : N ratios and its combined leaf and stem material N 

mineralisation (% of total incorporated N) was similar to rye. The oats dry matter production 

at PI was similar to the late season biomass in the second trial year by Stivers-Young (1998) 

and at GR and KÖ similar to the first trial year by Stivers-Young (1998) and Brennan and 

Smith (2005). 
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At PI, under conditions of high N availability, mustard produced more biomass than rye 

and oats while at the GR and KÖ location, with its lower N status, the unfertilised oats 

displayed a tendency for a larger biomass production than mustard (Fig. 2.3a-c). These results 

were similar to a trial by Stivers-Young (1998) and indicate that choice of species between 

oats and mustard should depend on the N status of the soil. For the no-till system it is also 

important that the mustard decomposes faster than oats over the winter (Stivers-Young, 1998, 

Grimmer and Masiunas, 2004). Stivers-Young (1998) also found that mustard loses more N 

over winter than oats, which is in accordance with the N mineralisation simulation in the 

present study. Thorup-Kristensen (1994) observed that the recovery of incubated nitrogen 

from fresh biomass was larger for mustard than for oats biomass. This and the stronger N 

mineralisation especially at PI could lead to increased weed growth in mustard plots due to 

larger N availability (Blackshaw et al., 2003). Nevertheless, mustard has shown to suppress 

weeds well into spring (Stivers-Young, 1998; Brust et al., 2014a). Therefore, it could be suited 

for the transition to no-till organic farming, but a non legume cash crop should be grown after 

a well developed mustard plant stand with large N accumulation to benefit from increased N 

mineralisation.  

On soils with increased inorganic soil N resources, rye can accumulate large amounts of 

inorganic soil N and release it over longer time periods making it more suitable as a cover 

crop before grain legume cash crops. In low soil N conditions, rye and oats both seemed to be 

well-suited for the transition period due to their large amount of stems and slow N 

mineralisation. Furthermore, both rye and oats contain allelopathic compounds which could 

further reduce the emergence of weeds (Putnam and DeFrank, 1983; Grimmer and Masiunas, 

2005).  

The buckwheat biomass production at PI was lower than for sunflower and mustard, but 

larger than in a buckwheat summer cover crop in a vegetable system in a study by Creamer 

and Baldwin (2000), most likely because the cover cropping period in the present study was 

about three weeks longer. At GR and KÖ the buckwheat dry matter production was similar to 

another organic system (Neuhoff and Range, 2012). Buckwheat germinates and develops 

quickly making it effective at suppressing weeds (Creamer and Baldwin, 2000), but it is also 

susceptible to light frost which limits its biomass production potential in temperate climate 

conditions. Buckwheat ceases its biomass production after the first light frost, while other 

species like rye and oats can continue their growth. The extended growing period increases 

the biomass production potential of rye and oats since the timeframe between the first frost 

and the end of the growing season can be one month or more (Rühlemann and Schmidtke, 
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2015). The buckwheat stem percentage of the total biomass was consistently large and could 

be increased through fertilisation. However, the low stem C
 
:
 
N ratio was further reduced 

when fertiliser was incorporated before seeding. The N mineralisation percentage of 

incorporated leaf material was average, but the N immobilisation from stem material was low, 

particularly when buckwheat was fertilised (Fig. 2.5a-f). As a result, the combined N 

mineralisation percentage of incorporated leaf and stem material was similar to fertilised 

mustard at PI and at GR and KÖ within the crops with low N immobilisation. Even without 

fertilisation at PI and GR, the combined N immobilisation was reduced. Due to the low frost 

tolerance of buckwheat and its marginal N immobilisation effect, weed growth could resume 

in late autumn and over winter thus buckwheat is not recommended to be used as a cover crop 

before the no-till seeding of spring grain legumes. 

The hemp dry matter production at PI was above and, at GR and KÖ, below the results 

from another study by Brust et al. (2014b). The elevated biomass production at PI was lower 

than in a full summer season biomass trial (May till September) with the same variety, where 

hemp produced more than 10 Mg ha
-1

 (Poiša et al., 2010). Poiša et al. (2010) also showed that 

fertilisation can increase hemp dry matter production, which explains the increased biomass 

production at PI and in the fertilised plots at GR and KÖ. At PI and GR the hemp field 

emergence was lower than at KÖ (Table 2.4). However, only at GR the weed biomass in hemp 

was larger than in the other species, while at PI the weed biomass in plots of hemp was 

similar to the other crops (Fig. 2.3b-c). This shows that increased available soil N resources 

can improve the competitive ability of hemp through increased dry matter production even if 

the emergence is reduced. A cover crop study by Brust et al. (2014b) confirmed that during 

growth, hemp has low weed suppression and showed that weeds can regrow in spring. This 

might be explained by the low leaf C : N ratio and the resulting loss of ground coverage 

through fast decomposition. Fertilisation also increases the leaf biomass, which showed a high 

N mineralisation percentage of the incorporated N (Fig. 2.5a-c). For fertilised hemp the N 

immobilisation from combined leaf and stem material was low at PI and average at GR and 

KÖ. Due to its lower weed suppression during growth weeds can establish and accumulate 

mineralised N making hemp not a viable option for the transition period to organic no-till 

farming when growing spring sown grain legumes as a succeeding crop. 

The weed biomass in all cover crops was largest at GR and lowest at PI while in plots 

without cover cropping the weed biomass at KÖ was lower than at PI and GR (Fig. 2.3a-c). 

Due to the larger dry matter production at PI the cover crops were able to suppress weeds 

more successfully than at GR. The lower weed dry matter production at KÖ could be 
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attributed to low inorganic soil N resources at seeding. The weed species and the weed seed 

bank were not determined in this study but could have influenced the weed biomass 

production significantly resulting in differences between the locations. 

2.4.2 Evaluation of cover crops for N immobilisation in no-till systems based on N 

mineralisation after conventional tillage 

N mineralisation was simulated using model calculations that estimated the mineralisation 

under the assumption of residue incorporation. Coppens et al. (2006) compared N 

mineralisation from mature Brassicaceae (Brassica napus L.) between incorporation and 

surface application under controlled conditions with simulated rainfall at a temperature of 

20°C. The cumulative N mineralisation after about 63 days was 75% larger for the surface 

applied residue than for the control, while the incorporated residues were 45% lower than the 

control. In a field study during the winter period with surface applied frozen Brassicaceae 

leaves, about 30% of the leaf N mineralised within 56 days (Dejoux et al., 2000). In the 

present study Brassicaceae (Sinapis alba L.) leaf material displayed similar N mineralisation 

rates at PI after 140 days and remained lower at GR and KÖ (Fig. 2.5a-c). This shows that the 

N mineralisation was probably underestimated and the majority of N from cover crop leaf 

material would be mineralised on the soil surface during winter. The inorganic N in the soil 

surface layer could then be subject to gaseous loss, leaching or uptake by weeds. This 

demonstrates that the simulation under tillage conditions has only limited predictive value for 

N mineralisation under no-till conditions. The residue incorporation by tillage increases the 

contact area between plant material and soil, resulting in increased N immobilisation 

compared to residue decomposing on top of the surface.  However, it can be assumed that 

different plant materials will show a similar differentiation by N mineralisation when they 

decompose below or on top of the surface, so that the cover crop species evaluation obtained 

with the present simulation offers some indications for no-till systems. The model should be 

further improved and evaluated for N mineralisation simulations under no-till conditions to 

better predict the amount and time N is released from residues under no-till conditions. 

Nicolardot et al. (2007) described in a study with surface applied wheat straw and rye 

leaves the presence of a very active microbial zone in the soil adjacent to the residues. In this 

zone, the surface application of wheat straw with a large C : N ratio resulted in net N 

immobilisation, while net N mineralisation occurred for rye leaves with a low C : N ratio. 

Under no-till conditions the fungal partition of the microbial biomass can translocate 

inorganic soil N into the residues to support the fungal population. This transfer is low 
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towards residues with high N content (leaves) and high for residues with low N content (stem 

and leaf mixture) (Frey et al., 2000). This indicates that the proximity of leaf and stem 

material and the soil surface could result in a larger N immobilisation through microbial 

biomass. It can therefore be advantageous to increase the proximity of the plant material and 

the soil surface after the killing frost through the creation of a soil cover with the help of a 

roller-crimper. Besides its potential to protect accumulated N from leaching or gaseous losses, 

the rolling of cover crops could also decrease the weed biomass in the following cash crop 

(Davis, 2010). 

2.5 Conclusion 

The present study showed that cover crop dry matter production can be increased through 

early seeding and improved N availability as fertiliser increased biomass production in 

locations with low inorganic soil N supply. However, additional fertilisation also reduced in 

many cases the C : N ratio of the plant materials leading to potentially increased N 

mineralisation from combined leaf and stem material.  

Sunflower produced large amounts of biomass, but the majority of its N was accumulated 

in easily decomposable leaf material. The stem amount is low and continuous soil cover and 

weed suppression over winter cannot be ensured due to fast decomposing leaves. In low N 

conditions, rye and oats produced similar amounts of biomass with increased amounts of 

stems. The N mineralisation from combined rye and oats material was low. Both species could 

be suited as cover crops in which spring grain legume cash crops are directly sown. 

Buckwheat biomass production was larger than that of hemp, but its stem C : N ratio was low. 

The hemp biomass production was reduced especially in low input conditions. Both species 

produce residues that are not suited for cover cropping before spring sown grain legume cash 

crops. Our study offered some indications on the suitability of sunflower and rye for early 

cover cropping in high N availability conditions (PI) ahead of autumn (sunflower and rye) and 

spring (rye) sown no-till cash crops; while rye and oats could be suited for locations with 

lower N resources (GR and KÖ) ahead of spring sown cash crops.  
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3. Chapter: Short-term Effects of Differentiated Tillage on Dry 

Matter Production and Grain Yield of Autumn and Spring Sown 

Grain Legumes Grown Monocropped and Intercropped with 

Cereal Grains in Organic Farming 

3.1 Introduction 

The use of mulch from cover crop residue for weed suppression and N immobilisation can 

be advantageous for subsequent legume cash crops. Establishment of the legume cash crop in 

autumn by no-till seeding into cover crop stands could increase the legume overwintering and 

enable early development and weed competition in spring. Intercropping of legume cash crops 

and cereal grains could further improve the weed suppression.  

For both the faba bean and the field pea winter and spring cultivars are available. Another 

high potential legume for the transition period to conservation tillage in organic farming is the 

spring sown narrow-leafed lupin. Due to their ability to symbiotically fix N2 they can 

compensate for the soil N deficiencies which gives them a competitive advantage over non-

legume weeds during the period of conversion to no-tillage organic agriculture. Faba beans, 

field peas and lupins have been widely tested in organic low input systems and have shown 

their ability to reach good yields after plough tillage (Šarūnaitė et al., 2010; Šarūnaitė, 2013 

personal communication; Urbatzka et al., 2011) yet only a few studies have been conducted 

under reduced or no-tillage conditions (Köpke and Schulte, 2008).  

Therefore the objective of our trials with legume cash crops was to test the following 

hypotheses: (i) Legumes are well suited for the transition period to the organic no-tillage 

system and can reach grain yields similar to those in the reduced tillage and the plough tillage 

system. (ii) The legume-weed competition in the organic no-tillage system can be increased 

by the legume seeding in autumn. (iii) Legumes intercropped with cereal grains show a better 

weed suppression and can reach higher yields than the MC legume plant stands.  
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3.2 Material and methods 

3.2.1 Experimental study site 

Field trials were conducted from August 2009 until August 2010 on long-term organically 

farmed ground (equivalent to Council Regulation (EC) No 834/2007, European Union, 2007) 

at the Teaching and Research Farm Köllitsch (KÖ, 51° 30'N, 13° 06'E, 84 m a.s.l.) and two 

long-term certified organic farms (based on Council Regulation (EC) No 834/2007, European 

Union, 2007) located at Bockelwitz (BO, 51° 12'N, 12° 55'E, 209 m a.s.l.) and at 

Reinhardtsgrimma (RG, 50° 53' N, 13° 45' E, 350 m a.s.l.) in the South-East of Germany. The 

trials were set up as multi-location trials with three environments (three site-years) which 

were characterised by the three locations that differed in the climate and the soil. The trail site 

KÖ was chosen to represent a warm and dry climate at a planar location. The temperature and 

the precipitation averages for the 14 year period up to 2008 for the KÖ location were 9.9°C 

and 489 mm. The average temperature in 2009 (9.8°C) was similar to the long-term average 

while it was below the average in 2010 (8.1°C). The total annual precipitation was 689 mm in 

2009 and 959 mm in 2010 which was much higher than the long term value. The site BO is 

located in a hill-land area of the foothill zone which has a climate with an average 

temperature slightly lower than at KÖ and a total precipitation intermediate between KÖ and 

RG. In the BO area the 14 year average temperature was 9.7°C while the total precipitation 

was 633 mm. The mean annual temperature and the total precipitation for the BO area was 

9.7°C and 669 mm in 2009 and deviated from the long-term averages in 2010 with 8.1°C and 

810 mm (LfULG, 2013). To represent a submontane location with lower temperatures and 

higher precipitation, the location RG was chosen. The 14 year mean annual temperature and 

total precipitation was 8.5°C and 781 mm, respectively. The mean annual temperature and 

total precipitation were 8.3°C and 808 mm, respectively in 2009 and 6.8°C and 1017 mm, 

respectively in 2010 (DWD, 2012,  2013 personal communication). Average monthly 

temperatures and total monthly precipitation during the experimental phase of the field trials 

are given in Fig. 3.1a-b. The late autumn temperatures in October ranged at BO and RG 

below the 14 year average and at all locations in November above the long term average (Fig. 

3.1a). The winter period was long and the daily mean temperatures in January and February 

ranged almost constantly below 0°C (Fig. 3.2). 

The soils at the three locations are different due to their varying origin. The soil at the KÖ 

location is a Fluvisol with a pH (0.01 M CaCl2) of 5.4 and a plant available content of 25 mg 

kg
-1

 soil P, 47 mg kg
-1

 soil K, and 121 mg kg
-1

 soil Mg. At the BO location the soil is a 
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Luvisol with a pH (0.01 M CaCl2) of 6.1 and a plant available content of 52 mg kg
-1

 soil P, 

120 mg kg
-1

 soil K, and 131 mg kg
-1

 soil Mg. The soil at the RG location is a Cambisol with a 

pH (0.01 M CaCl2) of 6.3 and a plant available content of 54 mg kg
-1

 soil P, 140 mg kg
-1

 soil 

K, and 88 mg kg
-1

 soil Mg. The plant available Mg was extracted in 0.01 M CaCl2 while plant 

available P and K were extracted using the Calcium Acetate lactate (CAL) method after 

(Schüller, 1969). The soil Corg content was lowest at KÖ (1.45%) and largest at RG (3.31%) 

while it amounted to 1.57% at BO. 

3.2.2 Field trial setup 

The fields at all three locations had been under conventional plough tillage until the 

seeding of cereal grain as the preceding crop for the cover crop in 2009. At KÖ the preceding 

crops were winter wheat, alfalfa and alfalfa at BO winter barley, faba bean and winter wheat 

and at RG winter rye, potato and winter wheat in 2009, 2008 and 2007, respectively. 

Before the cover crop seeding, stubble tillage with shallow soil inversion was conducted at 

a depth of 0.08 to 0.12 m using a stubble plough (Type Zobel, Germany), followed by the 

cover crop seedbed preparation (0.08 m depth) with a rotary harrow (Type Erpice Rotante, 

Maschio, Italy). The seeding of the cover crop spring rye (variety Sorom, seeding rate 400 

viable seeds per m
2
) was conducted at a depth of 0.02 m using a common seed drill (Type D9, 

Amazone, Germany) in August 2009 (Table 3.1). After two months of cover cropping the trial 

area was split into four blocks ahead of the winter crop seeding. The cover crop areas for the 

spring crops were left undisturbed until the field preparation and the seeding in spring 2010. 

The field trial design was a completely randomised split plot with four replications for the 

main plot factor no-tillage, reduced tillage and plough tillage. Each main plot was divided into 

twelve sub plots (22.5 m
2
 - 1.5 m wide and 15 m long) five with MC legumes (two winter and 

three spring legumes), five with IC legumes (two winter legumes intercropped with winter 

wheat, three spring legumes intercropped with oats) and one separate plot with MC winter 

wheat and MC oats. The winter field pea used in this study was a normal leafed variety with 

long vines while the spring field pea was a semi-leafless, short variety (Table 3.2). The 

legume seeding rates in the IC plots were identical to the MC legume with the cereal grain 

seeds added at 20% of the MC cereal grain seeding rate.  

The seeding of the cash crops was conducted by preparing the reduced tillage and plough 

tillage plots and by seeding all three tillage systems at the same day. In October 2009, 
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Fig. 3.1a-b. Monthly mean temperatures and precipitation from August 2009 to August 2010 in Köllitsch 

(KÖ), Bockelwitz (BO) and Reinhardtsgrimma (RG). 

 

 

Fig. 3.2. Daily mean temperatures from 1 January to 31 March 2010 at Köllitsch (KÖ), Bockelwitz (BO) 

and Reinhardtsgrimma (RG).  
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at the BO location in the no-tillage system three main plots were seeded nine days after the 

reduced tillage and the plough tillage system due to a technical defect of the no-tillage plot 

seeder. In the no-tillage system at BO the first sown main plot was excluded and the three 

later sown main plots were included in the trail. In 2010 at the KÖ location the spring seeding 

in the reduced and plough tillage system was delayed by four days after the seeding in the no-

tillage system due to heavy rainfall. 

At the day of seeding the reduced and plough tillage plots received two passes of tillage. 

The first pass in the ploughed plots was a soil inversion (0.25 m depth) conducted with a 

three-furrow plough (Type OS523A02, Vogel & Noot, Germany) while the soil was tilled 

without inversion (0.15 m depth) in the reduced tillage plots using a cultivator with wing 

shares (Type EG3/11, Rabe, Germany). In both tillage systems the first tillage pass was 

followed by the seedbed preparation (0.08 m depth) with a rotary harrow (Type Erpice 

Rotante, Maschio, Italy). In the reduced tillage and the plough tillage system the crops were 

sown with a plot seeder (Type HEGE 80, Wintersteiger, Austria, 0.17 m row spacing) with 

shoe openers (Wintersteiger, Austria - trial preparation winter crops in 2009) and single disk 

coulters (RoTeC Control coulter, Amazone, Germany - trial preparation spring crops in 2010). 

The seeding in the no-tillage system was conducted using a no-tillage plot drill with inverted 

T-cross slot openers (Baker No-Tillage Limited, New Zealand, 0.17 m row spacing). The 

narrow-leafed lupin seeds were inoculated before seeding with Bradyrhizobium spp. lupinus, 

(HiStick, Becker Underwood Ltd., Canada). None of the other legume species required 

inoculation due to a natural level of Rhizobium leguminosarum as a result of various legumes 

in the organic crop rotation. 

3.2.3 Sampling and measurement 

The plant population for the winter legumes was determined before and after the winter in 

a 1.5 m long plot area (Table 3.1), which was also used for the dry matter and the grain yield 

harvest. In autumn six repetitions per plot were counted (six parallel rows 1.5 m long). The 

winter legume emergence can continue throughout the winter so that the plant stand numbers 

should also be determined in the spring (Urbatzka et al., 2012). In spring the plant population 

of the winter legumes and the emergences of the spring legumes as well as the oats were 

determined on all nine parallel rows of each sub plot. 
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Table 3.1. Field trial preparation, data measurement and sample collection dates. 

Location ---------------Köllitsch (KÖ)  ---------------Bockelwitz (BO)  ---------------Reinhardtsgrimma (RG) 

Activity/ Date Winter crop Spring crop  Winter crop Spring crop  Winter crop Spring crop 

      Cover crop sowing 13 August 2009 
 

13 August 2009 
 

14 August 2009 

Cash crop sowing 10 Oct. 2009 26 & 30 Mar. 2010
1)
 

 
11 & 20 Oct. 2009 03 Apr. 2010 

 
11 Oct. 2009 06 Apr. 2010 

Field emergence A
2)
 21 Nov.2009 - 

 
12 Dec. 2009 - 

 
14 Dec. 2009 - 

Field emergence S
3)
 21 Mar. 2010 27 May 2010 

 
03 Mar. 2010 08 & 10 Jun. 2010 

 
23 Mar. 2010 18 & 25 May 2010 

Soil temperature 31 Oct. 2009 - 
 

31 Oct. 2009 - 
 

24 Oct. 2009 - 

measurement 9 Nov. 2009 - 
 

12 Dec. 2009 - 
 

11 Nov. 2009 - 

 
7 May 2010 - 

 
30 Apr. 2010 - 

 
28 Apr. 2010 - 

Harvest 20 Jul. 2010 
 

21 Jul. 2010 
 

17 Aug. 2010 

 
--------------------- 

 
---------------------------
- 

   
--------------

--------- 
 

----------------------- 
 

-------------------------  
1)

 No-tillage sowing 26 March, Reduced and plough tillage sowing 30 March 2010; 
2)

 Autumn counting (1.5 m - 6 rows per plot);  
3)

 Spring counting (1.5 m - 9 rows per plot) 

 

Table 3.2. Crop species, cultivar, 1000 seed weight, monocropped (MC) and intercropped (IC) seeding rate (target plant population) used in the field trials. 

  
1000 seed weight 

Seeding rate 

Crop species Cultivar 
(viable seeds m

-2
) 

(g per 1000 seeds
-1
) MC IC 

Faba bean
w)

 
 
(WF) Vicia faba L. 'Hiverna' 655 48 48 

Faba bean
s)
 (SF) Vicia faba L. 'Fuego' 607 59 59 

Field pea
w)

 (WP) Pisum sativum L. 'Arkta' 130 60 60 

Field pea
s)
 (SP) Pisum sativum L. 'Santana' 221 100 100 

Narrow-leafed lupin
s)
 (NL) Lupinus angustifolius L 'Boruta' 178 150 150 

Oat
s)
 (O) Avena sativa L. 'Dominik' 37 300 60 

Winter wheat
w)

 (W) Triticum aestivum L. 'Achat' 49 280 56 

     
w)

 Winter crop; 
s)
 Spring crop 

4
5 
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The plant population of the winter wheat was not determined before the winter because of 

the delayed emergence in the no-tillage system, while the tillering in spring prevented the 

subsequent counting. 

The winter legume overwintering capabilities were tested for 100 randomly selected 

legumes in each MC and IC legume plot by marking the emerged plants with wooden sticks. 

Both the overwintered and the frozen plants were counted after winter (April 2010).  

The soil temperatures were recorded in the morning at two different dates in autumn and 

one day in spring (Table 3.1). The measurements were conducted with a digital quick-

response thermometer (Type GTH 1160, Greisinger electronic GmbH, Germany). The 

thermocouple probe of the thermometer was perpendicularly inserted into the soil up to the 

seeding depth (0.05 m) and the instantaneous value was recorded. These measurements were 

repeated ten times within each of the three tillage system main plots. 

At the dry matter and grain harvest of the fully ripe crops an area of 2.25 m
2
 of each plot 

was cut above the soil surface and the plant cover was separated into legumes, cereal grains 

and weeds. The legume pods and the grain ears were removed from the plant and the above 

ground gross fresh weight was determined separately for straw, pods and ears. Straw samples 

of 200 to 400 g and all pods and ears were dried to constant weight in the drying cabinet at 

60°C. The threshing of the legume and the cereal grains was conducted with a stationary 

threshing machine (Baumann Saatzuchtbedarf, Germany) and followed by the determination 

of the grain dry matter weight. 

Dried plant samples of MC oats and weeds were fine ground (< 0.2 mm) with an ultra 

centrifugal mill (ZM 1000, Retsch, Germany). Analysis for %N and %C was performed with 

an Elemental Analyser (TruSpec Macro, LECO, USA) in compliance with the VDLUFA 

method 4.1.2 (Bassler, 1976) and DIN ISO 10694 : 1996-08 (DIN Deutsches Institut für 

Normung e.V., 1996), respectively. The plant available soil N resources during the trial period 

in the different tillage systems at the KÖ, BO and RG location were assumed to correspond 

with the total N accumulation of MC oats and weeds. The total N accumulation of MC oats 

and weeds until harvest amounted at KÖ in the no-tillage, reduced tillage and plough tillage 

system to 79, 70 and 81 kg ha
-1

, respectively which shows the comparatively high soil N 

status at the KÖ location. At BO the N accumulation of MC oats and weeds was very low in 

the no-tillage system (23 kg ha
-1

) and increased in the reduced tillage and plough tillage 

system up to 57 and 72 kg ha
-1

, respectively. At the RG location the soil N status and the N 

accumulation of MC oats and weeds was very low in all tillage systems; it amounted in the 
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no-tillage system to 27 kg ha
-1

 and to 23 and 22 kg ha
-1

 in the reduced tillage and plough 

tillage system. 

3.2.4 Statistical Analyses 

The data for the winter and spring plant population, overwintering, soil temperature, crop 

and weed shoot dry matter, grain yield and harvest index were subjected to analysis of 

variance (ANOVA) using the MIXED procedure (SAS v. 9.3 SAS Institute, Cary, NC). The 

statistical analyses for all data sets except the soil temperatures were performed over the three 

environments at the KÖ, BO, RG locations using a linear mixed model with location, tillage 

system and species as fixed and replicates as random effects. The fit of the model was tested 

using residual plots of the pooled data and when necessary data transformations after Piepho 

(2009) were used to achieve the required assumptions for the linear regression analyses 

(Ireland, 2010). The logarithmic transformation was applied to all data sets with the exception 

of the overwintering percentage which was transformed using the arcsine transformation. 

The homogeneity of variance was tested and in case of heterogeneous variances the model 

was fitted for partitioned variances (Littell, 2011). The degrees of freedom were determined 

based on the Kenward-Roger method. Least squares means were calculated and mean 

comparisons were conducted with the Tukey-Kramer test (α = 0.05) within the SAS procedure 

MIXED.  

The soil temperatures were analysed separately for each sample date and location with the 

tillage systems as fixed and the replications as random effects 

There was a significant three way interaction between location x tillage system x species 

for the crop plant population in spring and the legume overwintering percentage (Table 3.3). 

This required a separate analysis for each location, tillage system and species (Table 3.4, 3.5). 

At the KÖ, BO, and RG location within the no-tillage, reduced tillage and plough tillage 

system lower case letters indicate significant differences between the different crops within 

the specific tillage system. Values which do not share the same lower case letter are 

significantly different (α = 0.05) based on Tukey Kramer means separation.  

For each individual crop at the KÖ, BO, RG location the values were compared between 

the no-tillage, reduced tillage and plough tillage system, values which do not share the same 

upper case letter indicate significant differences (α = 0.05) between the tillage systems based 

on Tukey Kramer mean separation. 
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3.3 Results 

3.3.1 Crop establishment 

The establishment of the winter legumes was influenced by their field emergence in 

autumn which was reduced in the no-tillage compared to the plough tillage system (averaged 

across species: -17, -7 and -32% at KÖ, BO, RG, respectively, autumn data not shown) and by 

the legume overwintering (Table 3.3, 3.4). Although the seed emergence factors were not 

quantitatively determined in the present study, it became apparent during soil temperature 

measurements that a compacted layer was present above the seed. 

The overwintering varied with the tillage system in particular for winter faba bean (Table 

3.4). At both the KÖ and BO location the overwintering of MC winter faba bean was lower in 

the plough tillage compared with the no-tillage system (58 versus 21% and 89 versus 43%, at 

KÖ and BO, respectively). The overwintering percentages of MC winter faba bean at RG on 

the other hand were higher in the plough tillage compared with the no-tillage system (85 

versus 70%). At KÖ and BO, in spring the MC and IC winter faba bean plant stand density in 

the reduced tillage and plough tillage system was very low due to the overwintering damage 

so that the MC and IC winter faba bean was at all locations excluded from further 

examinations. At all locations the winter field pea displayed in all tillage systems high 

overwintering percentages without differences between the no-tillage and plough tillage 

system.  

The final spring plant population of the MC and IC winter field pea was lower in the no-

tillage system than in the plough tillage system with the exception of MC winter field pea at 

KÖ and BO which did not show differences between the no-tillage and plough tillage system 

(Table 3.5).  

The plant population of most spring sown crops was only slightly influenced by the 

omission of tillage before seeding. With the exception of MC and IC narrow-leafed lupin at 

KÖ and BO which were strongly reduced in the no-tillage system compared with the tilled 

systems. 
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Table 3.3. Sources of variation of percentage of target crop plant population, legume overwintering, crop and weed dry matter production, grain yield and harvest 

index. 

                Crop plant population  Over-  Dry matter production  Grain - yield  Harvest - Index 
               Source of 
variation 

autumn
a)
 spring

b)
  wintering

c)
  M

d)
 ICG

e)
 Weed  M

d)
 ICG

e)
  M

d)
 ICG

e)
 

               
Location (L) 0.0008  ** <0.0001 ***  0.001  **  0.0229 * <0.0001 *** 0.5557 ns  0.0073 ** <0.0001***  0.0078 *** <0.0001 *** 

Tillage system (T) <0.0001 *** <0.0001 ***  <0.0001 ***  <0.0001 *** <0.0001 *** <0.0001 ***  <0.0001 *** <0.0001***  0.0005 *** 0.0003 *** 

Species (S) 0.3269 ns <0.0001 ***  <0.0001 ***  <0.0001 *** <0.0001 *** <0.0001 ***  <0.0001 *** <0.0001***  <0.0001 *** <0.0001 *** 

L x T 0.0014  ** 0.1431 ns  <0.0001 ***  <0.0001 *** <0.0001 *** 0.079 ns  <0.0001 *** 0.0003***  <0.0001 *** <0.0001 *** 

L x S 0.3932 ns <0.0001 ***  <0.0001 ***  <0.0001 *** <0.0001 *** <0.0001 ***  <0.0001 *** <0.0001***  <0.0001 *** <0.0001 *** 

T x S 0.0018 *** <0.0001 ***  <0.0001 ***  <0.0001 *** <0.0001 *** 0.0027 **  <0.0001 *** <0.0001***  <0.0001 *** 0.0662 ns 

L x T x S 0.1044 ns <0.0001 ***  0.0001 ***  <0.0001 *** <0.0001 *** 0.0851 ns  0.0019 ** <0.0001***  <0.0001 *** 0.0113 * 

                 
a) 

Crop plant population legumes only; 
b) 

Crop plant population legumes and MC oats; 
c) 

Legumes only; 
d) 

Main crop (legumes and MC cereal grain); 
e) 

Intercropped grain 

 Component of variation: *, **, *** significant at P levels of P < 0.05, 0.01, 0.001, respectively; ns, not significant 

Table 3.4. Monocropped (MC) and intercropped (IC) winter legume overwintering in the no-tillage (NT), reduced tillage (RT) and plough tillage system (PT). 

                                                             Legume overwintering (% overwintered plants of 100 marked plants per sub plot before winter) 

             Köllitsch (KÖ)  Bockelwitz (BO)  Reinhardtsgrimma (RG) 

            Species NT RT PT  NT RT PT  NT RT PT 

            MC faba bean 
 
(WF) 58   b A 26 b   B 21 b B  89 a A 17 b C 43 b   B  70   b B 73 bc AB 85 a A 

IC faba bean 
    

(WF) 50   b A 42 b AB 26 b B  86 a A 22 b B 33 b   B  73   b A 69   c    A 80 a A 
MC field pea    (WP) 72 ab A 85 a    A 81 a A  91 a A 78 a B 92 a   A  87   a A 88   a    A 89 a A 
IC field pea      (WP) 82   a A 76 a    A 77 a A  91 a A 79 a B 84 a AB  83 ab A 85  ab   A 90 a A 
            
Within a tillage column, lower case letters display significant differences between crop species within tillage systems based on  

Tukey-Kramer mean separation (α = 0.05); Within locations, upper case letters display significant differences between tillage systems  

within crop species based on Tukey-Kramer mean separation (α = 0.05) 

4
9 
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3.3.2 Soil temperature 

The omission and variation of tillage before the autumn seeding led to variable autumn and 

spring soil temperatures in the three tillage systems. In early November 2009 the soil 

temperatures in the no-tillage system reached at the KÖ and RG location 5.5 and 5.0°C, 

respectively while they were significantly lower in the plough tillage system (5.3 and 4.8°C, 

respectively; Table 3.6). The spring measurement at the KÖ location in early May 2010 and at 

both the BO and RG location in late April 2010 displayed only at the KÖ location higher soil 

temperatures in the no-tillage compared with the plough tillage system (10.7 versus 10.4°C) 

and no differences between the no-tillage and the plough tillage system at the remaining two 

locations. 

3.3.3 Shoot dry matter production 

The shoot dry matter production of legumes, cereal grains and weeds varied with the 

location, tillage system and species (Fig. 3.3a-c, Table 3.3). At the KÖ location the conditions 

in the no-tillage system reduced the crop dry matter production slightly but equally for most 

legumes and cereal grains (Fig. 3.3a). At BO the omission of tillage reduced the crop biomass 

less for legumes than for cereal grains (Fig. 3.3b). For both the MC spring faba bean and field 

pea the dry matter production in the no-tillage compared with the plough tillage system was 

reduced by -35 and -64%, respectively while for MC oats the biomass was reduced by -94%. 

The described differentiated biomass production by legumes and cereal grains in the no-

tillage system was also present at RG (Fig. 3.3c). The reduced tillage on the other hand only 

led at the BO location for the MC narrow-leafed lupin and the MC winter wheat and at the 

RG location for the IC narrow-leafed lupin to a lower dry matter production compared with 

the plough tillage system (Fig. 3.3b-c). 

The dry matter production by the winter field pea at all three locations was largely 

unaffected by the different tillage systems, as illustrated for the RG location in Fig. A 9a-c.  

Exceptions with a lower biomass production in the no-tillage compared with the reduced 

tillage system were the MC winter field pea (-38%) at the BO location and the IC winter field 

pea (-37%) at the RG location (Fig. 3.3b-c). The no-tillage dry matter production of the MC 

winter field pea at the BO location was also different to the plough tillage system while the 

dry matter production in the no-tillage system by the IC winter field pea at the RG location 

was not different to the plough tillage system.  
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Table 3.5. Percentage of target crop plant population in spring of monocropped and intercropped legumes and oats in the no-tillage (NT), reduced tillage (RT) and 

plough tillage system (PT). 

             Crop plant population in spring (% overwintered and germinated plants of viable seeds) 
             Köllitsch (KÖ)  Bockelwitz (BO)  Reinhardtsgrimma (RG) 
            Species

¶
 NT RT PT  NT RT PT  NT RT PT 

            MC faba bean
 w)

 
 
(WF) 54  cd A 35      f B 47    c AB  52   b  A 10    e     C 32   ef   B  49   ce  B 59  ce AB 64   cd A 

IC faba bean
 w)

 
   
(WF) 62  bc A 41    ef B 53  bc AB  52   b  A 17    e     B 25     f   B  54bcd AB 53  de   B 68   bd A 

MC field pea
 w)

   (WP) 52  ce A 59   ac A 66  ab   A  34   c  B 49   bd    A 44  cd AB  56bcd   B 46    e   B 75 abc A 

IC field pea
 w)

     (WP) 35   fg B 57 acd A 57  ac   A  40  bc B 45   cd  AB 54  bc   A  47 ce    B 73   ac  A 73 abc A 

MC faba bean
 s)

 (SF) 78  ab A 72     a A 70    a   A  67    a A 72    a     A 78    a   A  76     a  A 81   ab  A 87     a A 

IC faba bean
 s)

   (SF) 84    a A 66   ab B 61   ac  B  76    a A 72    a     A 78    a   A  76     a  A 86    a   A 83   ab A 

MC field pea
 s)

   (SP) 52  ce A 52 bce A 63   ab  A  49    b B 60  ab   AB 64    b   A  67   ab  B 83  ab AB 86     a A 

IC field pea
 s)

     (SP) 46 def A 48    cf A 52   bc  A  44  bc A 55  bc      A 50   cd  A  62   ac  B 76  ab AB 87     a A 

MC narrow-leafed lupin
 s)

 (NL) 19    h B 46    cf A 58   ac  A  14    d B 52  bd      A 54  bc   A  46   de  B 71  ac   A 72 abc A 

IC narrow-leafed lupin
 s)

   (NL) 23  gh B 42  def A 47     c  A  10    d B 44  cd      A 47  cd   A  74     a  A 65 bcd AB 54    d  B 

MC oat
 s)

            (O) 39   ef A 44  def A 51   bc  A  34    c A 41    d      A 40  de   A  36     e  B 67 bcd   A 62   cd A 

    
 

       ¶
 Monocropped (MC) and intercropped (IC) crop species; 

w)
 winter crop; 

s)
 spring crop; NT: no tillage; RT: reduced tillage; PT: plough tillage; Within a tillage column, 

lower case letters display significant differences between crop species within tillage systems based on Tukey-Kramer mean separation (α = 0.05) 

Within locations, upper case letters display significant differences between tillage systems within crop species based on Tukey-Kramer mean separation (α = 0.05) 

Table 3.6. Soil temperatures in autumn and spring in no-tillage (NT), reduced tillage (RT) and plough tillage (PT) winter-legume plots. 

                 Soil temperature °C – winter legume plots – autumn and spring measurements 
  Köllitsch   Bockelwitz   Reinhardtsgrimma 
               Year Date NT RT PT  Date NT RT PT  Date NT RT PT 

               2009 31 Oct. 7.2 7.4 7.6 
ns

  31 Oct. 5.9A 4.4B 3.8B  24 Oct. 9.9 10.1 10.2 
ns

 
2009 9 Nov. 5.5A 5.3B 5.3B  12 Dec. 2.6A 1.8B 1.7B  11 Nov. 5.0A 4.8B 4.8B 
2010 7 May 10.7A 10.5AB 10.4B  30 Apr. 15.8 15.6 16.1 

ns
  28 Apr. 9.8A 9.1B 9.4AB 

               
Within locations, upper case letters display significant differences between tillage systems within sample dates based on Tukey-Kramer mean 

separation (α = 0.05); ns, not significant 

5
1 
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Fig. 3.3a-c. Shoot dry matter (DM) production of legume and cereal grain. Each column pair represents 

monocropped (left) and intercropped (right) plant stands of winter field pea (WP), spring faba bean (SF), 

spring field pea (SP), and narrow-leafed lupin (NL), respectively. The single columns represent 

monocropped plant stands of winter wheat (W) and oats (O).  
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The no-tillage compared with the plough tillage resulted in a reduced dry matter 

production of the MC winter wheat at both the KÖ and BO location while at the RG location 

the winter wheat dry matter production was very low in all tillage systems (Fig. 3.3a-c). 

At the KÖ location the dry matter production of the spring cash crops was only influenced 

by the differentiated tillage in the case of the MC and IC narrow-leafed lupin. No-tillage 

instead of plough tillage decreased the dry matter production for both the MC and IC narrow-

leafed lupin by -66% at the KÖ location (Fig. 3.3a). In the no-tillage system at the BO 

location the MC and IC narrow-leafed lupin failed to produce any dry matter, while at RG this 

was the case for IC and MC oats (Fig. 3.3b-c).  

The production of biomass by the winter and spring cultivars of the field pea was similar. 

However, in some cases the winter cultivar exceeded the biomass production of the spring 

cultivar. This was the case at the BO location in the no-tillage system for the IC winter field 

pea and at the RG location for the MC and IC winter field pea in the no-tillage system as well 

as for the IC winter field pea in the reduced tillage system (Fig. 3.3b-c).  

The intercropping of legumes with cereal grains at both the KÖ and BO location resulted 

in most cases in an increased dry matter production compared with the MC plant stands (Fig. 

3.3a-b). Due to the additional cereal grain dry matter production the total biomass was 

significantly increased at the KÖ location in the no-tillage system for the IC narrow-leafed 

lupin (+141%), in the reduced tillage and plough tillage system for the IC spring field pea 

(+88 and +61%, respectively) and at the BO location in the reduced tillage system for the IC 

narrow-leafed lupin (+119%). At the RG location the dry matter production of cereal grains 

was low and the total biomass in the IC plant stands was only marginally higher than in the 

MC legume plant stands (Fig. 3.3c).  

The reduction of tillage was accompanied by an increased weed pressure and weed 

biomass production (Fig. A 10a-c). The weed biomass in the no-tillage system in the winter 

crop plots at the KÖ location contained substantial amounts of volunteer spring rye. The 

volunteer spring rye was also present in both the RG and BO location but only in very small 

amounts. Other weeds at the KÖ location included Lamium amplexicaule L., Polygonum 

aviculare L., Stellaria media (L.) Vill. and Matricaria inodora L. with Matricaria inodora L. 

being the main weed in most of the winter crop plots in the reduced tillage and the plough 

tillage system. The weed species diversity at the BO location was limited and Matricaria 

inodora L. was the main weed, which grew into a soil cover especially in the no-tillage plots 

of both the MC and IC narrow-leafed lupin and the MC oats. At the RG location, on the other 

hand, the weed species were highly diverse with Stellaria media (L.) Vill., Cirsium arvense 
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(L.) Scop. and Galinsoga ciliata (Raf.) Blake present in all tillage systems, Apera spica-venti 

L. and Vicia cracca L. in the no-tillage and to some extent in the reduced tillage system. 

The weed dry matter production was influenced by both the tillage system and the crop 

species and two-way interactions occurred between location x species and tillage system x 

species (Fig. 3.4a-c, Table 3.3).  

The best weed suppression was achieved by legumes and cereal grains after the plough 

tillage and reduced tillage. The lowest weed biomass was found at KÖ and BO in the plough 

tillage system, in the MC oats plots (0.04 and 0.15 Mg ha
-1

, respectively) and at the RG 

location in the plough tillage system in the IC spring field pea plots (0.31 Mg ha
-1

) as well as 

in the reduced tillage system in the IC winter field pea plots (0.36 Mg ha
-1

) (Fig. 3.4 a-c). 

Averaged over locations the weed suppression of the MC and IC winter field pea was 

generally high and did not vary between the no-tillage and the plough tillage system. MC 

winter field pea also displayed in all tillage systems a tendency to a stronger weed suppression 

compared with the MC spring field pea. For the spring legumes and the oats the weed biomass 

increased in general with the omission of tillage. 

The intercropping of legumes with cereal grains resulted only for spring legumes in a 

reduced weed biomass production. This was the case in all tillage systems at KÖ and in the 

tilled systems at BO and RG (Fig. 3.4a-c). The largest weed biomass reduction due to 

intercropping was found in the reduced tillage system, at KÖ in plots of IC spring field pea (-

54%) and at BO and RG in plots of IC narrow-leafed lupin (-50 and -48%, respectively). 

3.3.4 Grain yield 

The grain yields of legumes and cereal grains were influenced differently by the omission 

of tillage (Fig. 3.5a-c, Table 3.3). At the KÖ location the variation of tillage influenced the 

different crops only slightly with the exception of the MC and IC narrow-leafed lupin as well 

as the MC winter wheat which displayed a lower grain yield in the no-tillage instead of the 

plough tillage system (Fig. 3.5a). 

At the BO location the no-tillage instead of the plough tillage reduced the grain yield of the 

MC spring field pea by -54% while the reduction was more distinct for the MC oats (-86%) 

(Fig. 3.5b). The no-tillage instead of the plough tillage also reduced the yield of the other 

spring crops at both the BO and RG location, except for the MC and IC spring faba bean at 

the BO location which only displayed a tendency to lower yields in the no-tillage system. 
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Fig. 3.4a-c. Shoot dry matter (DM) production of weeds. Each column pair represents the weed dry 

matter production in plots of monocropped (left) and intercropped (right) plant stands of winter field pea 

(WP), spring faba bean (SF), spring field pea (SP), and narrow-leafed lupin (NL), respectively. The single 

columns represent the weed dry matter production in monocropped plant stands of winter wheat (W) and 

oats (O).  
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For the crops in the reduced tillage system, on the other hand, the grain yields were not 

different to the plough tillage system with the exception of the MC narrow-leafed lupin at the 

BO location, which displayed a lower yield in the reduced tillage compared with the plough 

tillage system. The grain yields of the MC and IC winter field pea were only influenced in one 

case by the tillage system: the MC winter field pea at the BO location displayed a yield 

reduction of -44% in the no-tillage compared with the plough tillage system. 

The grain yields of the spring and winter field pea were largely without difference. 

However, some plant stands especially in the no-tillage system displayed significantly lower 

spring field pea grain yields compared with winter field pea yields. This was the case in the 

no-tillage system at the BO location for the IC spring field pea (-63%) and at the RG location 

for the MC and IC spring field pea (-73 and -65%, respectively) and for the IC spring field 

pea (-36%) in the reduced tillage system (Fig. 3.5b-c). 

The intercropping of legumes and cereal grains increased in many cases at KÖ and BO the 

total grain yield compared with the MC legume plant stands. At the KÖ location this increase 

was shown in all tillage systems while at the BO location it was limited to the reduced tillage 

and the plough tillage system (Fig. 3.5a-b). Significantly increased total grain yields were for 

example shown at the KÖ location in the no-tillage system by the IC narrow-leafed lupin 

(+157%), in the reduced tillage system by the IC spring field pea (+125%) and in the plough 

tillage system by the IC spring field pea (+66%) as well as at the BO location in the reduced 

tillage system by the IC narrow-leafed lupin (+124%) in comparison with their respective MC 

crop yields. 

3.3.5 Harvest index 

The legume harvest index was not influenced by the omission of tillage compared with 

plough tillage before seeding (Fig. 3.6a-c). The harvest index of winter and spring field pea 

was also without difference with the exception of the MC spring field pea at the KÖ location 

which displayed in the reduced tillage system a larger harvest index than the MC winter field 

pea (Fig. 3.6a). At BO in the no-tillage system the harvest index of IC spring field pea and the 

IC oats was similar so that only the IC oats harvest index is visible in Fig. 3.6b. 

Between the different legume crops the harvest indices varied only slightly while for the IC 

cereal grains the harvest indices for the IC oats were often larger than for the IC winter wheat 

resulting in significant interactions (Table 3.3).  

For winter wheat and oats at KÖ the harvest indices in the three tillage systems differed 

only slightly (Fig. 3.6a). However, at the BO location the MC winter wheat displayed a lower 
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harvest index in the no-tillage than in the plough tillage system (Fig. 3.6b). At the RG location 

the harvest indices of IC oats in the reduced tillage system were much lower than in the 

plough tillage system (Fig. 3.6c). 

Due to the nearly complete crop suppression by the IC legumes and weeds some harvest 

indices could not be calculated. This was the case at BO in the no-tillage and plough tillage 

system for IC winter wheat in the winter field pea plots and in the no-tillage system for MC 

and IC narrow-leafed lupin (Fig. 3.6b). At RG in the no-tillage system the MC and IC oats 

failed to produce dry matter and the harvest index could not be calculated (Fig. 3.2c, 3.6c). 

 

 

Fig. 3.5a-c. Grain yield of legumes and cereal grains. Each column pair represents monocropped (left) and 

intercropped (right) plant stands of winter field pea (WP), spring faba bean (SF), spring field pea (SP), 

and narrow-leafed lupin (NL), respectively. The single columns represent monocropped plant stands of 

winter wheat (W) and oats (O). 
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Fig. 3.6a-c. Harvest index of legumes and cereal grains. Each column pair represents monocropped (left) 

and intercropped (right) plant stands of winter field pea (WP), spring faba bean (SF), spring field pea 

(SP), and narrow-leafed lupin (NL), respectively. The single columns represent monocropped plant stands 

of winter wheat (W) and oats (O).  
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3.4 Discussion 

3.4.1 Crop establishment and overwintering 

In autumn the reduced winter legume field emergences in the no-tillage system were 

probably due to soil compaction introduced by seeding into an easily compactable soil that 

had been tilled recently for the seeding of the cover crop (Table 3.1). The single disk type 

opener used in the present study utilizes two angled press-gauge wheels to maintain the 

seeding depth and to close the soil slot (Baker, 2007; Baker and Saxton, 2007). Soil 

compaction can be introduced by gauge wheel downforce pressure and the reduced speed of 

emergence has been reported for double disk openers with one gauge wheel (Chen et al., 

2004) or when increased downward pressure is applied to a pair of angled gauge wheels 

(Hanna et al., 2010). 

Over winter the topsoil consolidated and soil strength increased so that in spring only the 

narrow-leafed lupin showed substantially lower emergences in the no-tillage system (Table 

3.5). This can be explained by the sensitivity of the narrow-leafed lupin seedlings to 

obstructions above the seeds and by their epigeal seedling development. White and Robson 

(1989) showed that the narrow-leafed lupin emergence was reduced in the presence of a soil 

crust while field pea was not affected. Lupin seedlings only expand their cotyledons if they 

are brought above the soil surface (Walker and Edwards, 2011), the seedlings in the present 

experiment could probably not tolerate the soil consolidation in combination with the press-

gauge wheel compaction resulting in low emergences. The field pea and faba bean on the 

other hand show a hypogeal germination and were less influenced because their hypocotyl 

remains below the soil surface and only the epicotyl grows towards the soil surface.  

The winter legume overwintering and the resulting spring plant population is a decisive 

factor for their yield formation. At KÖ and BO the overwintering of the winter faba bean was 

reduced in the plough tillage compared to the no-tillage system (Table 3.4). This can be 

attributed to the climate conditions in the different tillage system before and during the winter 

period. In a study by Ussiri and Lal (2009) and in the present experiment it has been shown 

that the soil temperatures in autumn can be higher in the no-tillage system compared to tilled 

soil (Table 3.6). In the no-tillage system this likely reduced the frost events without snow 

cover in late autumn and early winter. 
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With snow cover the soil temperatures in the no-tillage system with stubble will remain 

higher than in bare ground or tilled soil (Aase and Siddoway, 1980; Malhi et al., 1992), which 

can be advantageous for the overwintering legumes. In the present study the snow cover and 

frost period was interrupted in February by a ten day long warm period (Fig. 3.2), with 

maximum air temperatures up to 11°C. Without snow, the soil surface temperatures during 

sunshine can be higher than the air temperatures (Aase and Siddoway, 1980). This period 

likely reduced the winter faba bean freezing resistance because the dehardening process starts 

at >7°C (Herzog, 1989). The warm period was followed by a frost period. During clear frost 

nights the temperatures on the surface of bare ground can fall several degrees below those of 

stubble ground (Aase and Siddoway, 1980). This explains why the winter faba beans in the 

tilled systems were damaged to a larger extent than in the no-tillage system (Table 3.4). 

At the BO location, the overwintering difference between the no-tillage and the reduced 

tillage system were exceptionally large which can be attributed to the delayed seeding in the 

no-tillage system (nine days later) that likely resulted in better plant pre-hardening at earlier 

growing stages (Herzog, 1989). 

The elevated and precipitation-rich location RG did not show higher frost damages in the 

tilled systems because the snow cover was probably higher and remained intact in the warm 

period. In contrast to the KÖ and BO location, at RG the overwintering had a tendency to be 

higher in the plough tillage system compared with the no-tillage system (Table 3.4), which 

was likely the result of increased fungal disease pressure in the humid conditions of the 

residue covered no-tillage plots. 

For the winter field pea the seeding date in October led to well developed and hardened 

plants which displayed large overwintering percentages with almost no differences between 

the tillage systems. The observed winter hardiness can be attributed to the seeding date in 

early October which resulted in an ideal growth stage at the onset of winter and a favourable 

light intensity and photo period during the cold acclimation (Lejeune-Hénaut et al., 1999; 

Bourion et al., 2003). Furthermore, the allocation of soluble sugars and the related frost 

tolerance seems to remain for some time after the frost influence even if the temperatures rise 

to 15°C (Bourion et al., 2003), which explains the low influence of the brief warm period on 

the winter pea overwintering. 

3.4.2 Crop biomass production and weed suppression 

At KÖ there were no large differences between the MC and IC legume and cereal dry 

matter production in the different tillage systems. At BO and RG the omission of tillage 
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affected the dry matter production of the legumes less than for the cereal grains (Fig. 3.3b-c). 

The reduced cereal grain biomass can be explained with the low soil N status in the no-tillage 

system at BO and RG, which was without effect for the legumes due to their ability for 

symbiotic N2 fixation (Urbatzka et al., 2011).  

The legume biomass production at all locations was without difference between the 

reduced and plough tillage system. This can be attributed to the similar weed biomass in both 

tillage systems. Nakamoto et al. (2006) showed in field trials in central Japan that the 

disruption of the continued use of plough tillage through the use of the reduced tillage reduces 

the biomass of certain weeds, which explains the low weed biomass in the reduced tillage 

system even without plough tillage. Furthermore, tillage prevented the weed emergence 

before the legume emergence, while weeds in the no-tillage system were able to emerge 

before the legumes which increased the early weed pressure especially for spring sown 

legumes (Nelson and Nylund, 1962). 

At all locations, the variation in tillage systems influenced the winter field pea biomass 

production only slightly and the largest dry matter production in the no-tillage system (IC 

winter field pea at BO) was not different to the plough tillage system (Fig. 3.3a-c). 

Nevertheless the largest biomass production in the no-tillage system at both the BO and RG 

location were only at the low to average level of the winter field pea potential compared with 

a conventional no-tillage system at two Pacific Northwest sites in North America (Chen et al., 

2006). 

The MC spring faba bean dry matter production in the no-tillage system which was largest 

at BO was lower than in other organic no-tillage trials (Köpke and Schulte, 2008). In the 

plough tillage system without the strong weed competition the much larger biomass 

production displayed the potential of faba bean at this site (Fig. 3.3b). 

Similarly, the MC spring field pea biomass production in the no-tillage system at BO was 

only about half of the biomass production reported for a less productive sandy loam in an 

organic plough tillage system (Fig 3.3b; Hauggaard-Nielsen et al., 2001; Hauggaard-Nielsen, 

2014 personal communication). The dry matter production in the plough tillage system of the 

present study, on the other hand, was similar to a low yielding non-organic system (Reiter et 

al., 2002).  

In the no-tillage system at both the BO and the RG location the biomass production of the 

winter field pea was higher than for spring field pea (Fig 3.3b-c), due to the crop 

establishment before winter and the strong weed suppression capacity by the winter pea 

(Urbatzka et al., 2011). At KÖ this effect was not present, because the weed biomass 
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production and competition was very high in the winter field pea plots. This can in part be 

attributed to the composition of the weeds which included large amounts of voluntary rye in 

the no-tillage system and also to the high soil N status at KÖ. In the reduced and plough 

tillage system the increased weed biomass did not contain voluntary rye. However, similar to 

the no-tillage system the high soil N status reduced the competitive advantage for the legume 

and increased the growth of the weeds (Blackshaw et al., 2003). This shows that autumn sown 

field pea can have a better legume-weed competition but identifies low available soil N 

resources as a main factor for the success of this strategy. 

The intercropping of spring legumes and oats reduced the weed biomass compared with 

the MC legumes in all tillage systems at the KÖ location and in the tilled systems at the BO 

location (3.4a-b). This could be attributed to the increased soil N status in all tillage systems 

at KÖ and the tilled systems at BO which can increase both the growth and the competitive 

ability of the IC cereal grain (Neumann et al., 2007). A better competitive ability against 

weeds by IC legumes instead of MC legumes was also reported by Hauggaard-Nielsen et al. 

(2001) for a replacement intercrop which differed from the additive intercrop in the present 

study. 

3.4.3 Grain yield and harvest index 

At the KÖ location the winter and spring legume grain yield was consistently low in all 

tillage systems. This can be explained by the weed pressure which was particularly high in the 

winter legume plots (Fig. 3.4a). The largest winter and spring legume yields were reached at 

BO (Fig. 3.5b), due to the overall lower weed pressure (except in the spring sown no-tillage 

crops). At RG even with a large weed competition the legume yield level was not as low as at 

KÖ, because at RG there was a tendency to a larger legume plant population (Fig. 3.4c, Table 

3.5). 

The winter field pea displayed almost no difference between the tillage systems and the 

yields of IC winter field pea in the no-tillage system at the BO location, can be classified as 

high compared with another study in an organic plough tillage system (Urbatzka et al., 2011). 

The other winter field pea yields in the no-tillage system were average and similar to a 

conventional no-tillage system in the Pacific Northwest of North America (Chen et al., 2006).  

Grain yield differences between the no-tillage and the tilled systems were present in the 

spring sown legumes at BO and RG. In the no-tillage system the MC spring field pea yields 

were considerably lower than their potential as shown by higher yields in the plough tillage 

system in the present and other studies in eastern and central Europe (Fig. 3.5a-c; Šarūnaitė et 
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al., 2010; Šarūnaitė, 2013 personal communication; Urbatzka et al., 2011). The MC spring 

faba bean yields in the no-tillage system were at a very low to medium level compared with 

other studies of organic no-tillage or plough tillage systems (Köpke and Schulte, 2008; 

Šarūnaitė et al., 2010; Šarūnaitė, 2013 personal communication). These low yields can be 

attributed to the high weed competition in the no-tillage system (Fig. 3.4b-c). The weed 

competition in all tillage systems and the low field emergence in the no-tillage system led to 

the lower narrow-leafed lupin yield compared with spring field pea and faba bean (Fig. 3.4a-c, 

3.5a-c). This is in agreement with results by Šarūnaitė et al. (2010) and can be attributed to 

the low competitive ability of lupins (Strydhorst et al., 2008).  

There was no difference between the different legume harvest indices in the different 

tillage systems, similar to reports for field pea by Reiter et al. (2002) in a trial with minimal 

and conventional tillage. This indicates that the nutrient supply was not limited which can in 

part be attributed to the legumes ability for adapted symbiotic N2 fixation (Matus et al., 1997).  

The winter field pea yields in the no-tillage system were in many cases higher than spring 

field pea yields even with a lower winter field pea plant population, which shows that autumn 

seeding was advantageous (Table 3.5). An additional advantage was that the winter field pea 

was a normal leafed cultivar with a large biomass production while the spring field pea was a 

semi-leafless cultivar which is less competitive against weeds (Semere and Froud-Williams, 

2001; Spies et al., 2011). 

Intercropping increased the total grain yields of spring sown crops at KÖ in all tillage 

systems and in the reduced tillage and plough tillage system at BO (Fig. 3.5a-b). In these 

particular tillage systems, at the KÖ and BO location MC oat also displayed high yields which 

in the no-tillage system at KÖ were similar to organic oats grain yields in plough tillage 

systems (Kadžiulienė et al., 2011; Šarūnaitė, 2013 personal communication). The increased 

performance of the IC and MC oats was likely a result of the high soil N status in all tillage 

systems at KÖ and in the tilled systems at BO. However particularly at KÖ it was apparent 

that the legume share of the total grain yield was decreased and the oats share was increased, 

probably due to the high soil N status which increased the competitive ability of the IC cereal 

grain similar to the results reported by Hauggaard-Nielsen and Jensen (2001) for an intercrop 

of barley and pea in a replacement design. Additionally, cereal grains show a faster early 

development than legumes (Giunta et al., 2009), which can be a disadvantage for the legumes 

in well fertilised IC plant stands. The IC and MC winter wheat displayed low yields due to the 

strong competition by the winter field pea in IC plant stands and the strong weed pressure in 

the MC plant stands (Fig. 3.4a-c). 
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3.5 Conclusion 

The integration of conservation tillage practices is an important part to advance the 

sustainability of organic farming systems. However, particularly the omission of tillage in the 

transition period has drawbacks. These might be overcome by the integration of legumes 

intercropped with cereal grains as cash crops early in the transition period. The present study 

indicates that only certain legumes are suited for the transition period to an organic no-tillage 

system. The normal leafed winter field pea was well suited for the no-tillage system and 

achieved consistently grain yields similar to the reduced tillage and plough tillage system. 

This was not the case for the semi-leafless spring field pea and spring faba bean which were 

better suited for the reduced tillage system. Narrow-leafed lupin appeared not to be suited for 

conservation tillage systems in organic farming. There was increased weed competition in the 

no-tillage system by autumn sown field pea which in part can be attributed to the seeding in 

autumn and the advanced growth stage in spring. However, the winter field pea cultivar also 

had a higher competitive ability than the spring field pea cultivar. The advantage of autumn 

seeding could not be evaluated for faba bean because in spring they had to be excluded from 

the experiment. Further research is required to determine the benefits of autumn seeding for 

legumes in the organic no-tillage system. Intercropping of legumes and cereal grain only 

increased the weed suppression if sufficient soil N resources were available for the cereal 

grain and if the competition by the IC legume was not too high. Furthermore, the total grain 

yield of the IC plant stands was only increased if the soil N status supported the cereal grain 

growth which was, with the exception of the KÖ location, not the case in the no-tillage 

system. The available soil N resources during the growing period appeared to be an important 

factor for the IC cereal grain – weed competition. For organic no-tillage systems with a high 

soil N status and low weed competition the intercropping of legumes and cereal grains needs 

to be further investigated. The present study showed that for organic systems with low 

available soil N resources it is advisable to use normal leafed winter field pea as the first crop 

in the transition period to an organic no-tillage system. With this strategy the implementation 

of no-tillage phases in the crop rotation appears to be possible and could make organic 

farming more sustainable. 
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4. Chapter: Evaluation of monocropped and intercropped 

grain legumes for cover cropping in no-tillage and reduced tillage 

organic agriculture 

4.1 Introduction 

Between two non-legume cash crops it can be useful to grow legume cover crops to 

suppress weeds and heighten the available N resources for the following cash crop through 

symbiotic N2 fixation. Non-legume cover crops intercropped with legumes can function as a 

sink for nutrients and provide the nutrients to the succeeding spring cash crops. Cover crops 

are usually sown during or after reduced tillage a fuel and time intensive procedure which 

disturbs the topsoil structure. The present trials were conducted to determine whether the 

transition into organic no-till is possible after the grain cash crop harvest by growing legume 

cover crops in a no-till compared with a reduced tillage system. 

The legumes faba bean (Vicia faba L.), field pea (Pisum sativum L.), narrow-leafed lupin 

(Lupinus angustifolius L.), grass pea (Lathyrus sativus L.) and common vetch (Vicia sativa 

L.) are capable of N2 fixation and have been tested as summer green manure (Biederbeck et 

al., 1993;  Townley-Smith et al., 1993; Miller et al., 2011;) and as winter annual cover crops 

(Hargrove, 1986; Holderbaum et al., 1990; Keeling et al., 1996). Only a few studies (Martens 

et al., 2001; Franczuk et al., 2010) have evaluated the use of large seeded legumes as late 

season cover crops that are terminated by frost. Compared to cover crop termination in spring, 

the legume cover crop termination in winter offers the potential of early N mineralisation 

which can improve the growth of non-legume cash crops. In central European conditions, 

frost termination is ensured for the species used in this study and they might be better suited 

than other legumes for late season cover cropping due to their adaptation to dry late summer 

conditions (grass pea) or to biomass production and N2 fixation under wet and cold late 

autumn conditions (faba bean, field pea) (Biederbeck et al., 1993; Power and Zachariassen, 

1993).  

The objective of our trials with legume cover crops was to evaluate five large seeded 

legumes, both monocropped (MC) and intercropped (IC) with sunflowers as late season cover 

crops, all sown without tillage (no-till seeding) and after shallow soil inversion (reduced 

tillage), with a view to finding suitable species for organic no-till cover cropping. 
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4.2 Material and methods 

4.2.1 Experimental sites and setup 

Field trials were conducted from August to October 2009 and 2010 at a long-term certified 

organic farm in Reinhardtsgrimma (50° 53' N, 13° 45' E, 350 m a.s.l.) and at the Teaching and 

Research Farm Köllitsch (51° 30' N, 13° 06' E, 84 m a.s.l.), Germany. Soil parameters are 

presented in Table 4.1. The sites Reinhardtsgrimma (RG), situated at the northern slope of the 

Eastern Ore Mountains and Köllitsch (KÖ), situated in the low land area of northwest Saxony, 

were chosen to represent the late season climate conditions at a submontane and planar 

location in central Europe, respectively.   

The fields at both locations had been under conventional plough tillage up until the cash 

crop preceding the cover crops in 2009 and 2010. The cash crops were winter rye (2009) and 

oats (2010) at the RG location and winter wheat (2009 and 2010) at the KÖ location. Winter 

cash crops were sown during the autumn of the previous year and the oats was sown during 

the spring of the harvest year. The cash crops were harvested during early August and the 

straw was transported off the fields, with one exception at the KÖ site where the straw was 

chopped in 2010. No fertiliser was applied after cash crop harvest and during the cover 

cropping period. 

As cover crops, the legumes faba bean (cv. Scirocco), field pea (cv. Livioletta - normal leaf 

type), narrow-leafed lupin (cv. Azuro), grass pea (cv. Merkur) and common vetch (cv. Mery), 

(1000 seed weight: 437, 169, 145, 224, 46 g, respectively), were sown in MC and IC plant 

stands. The tested varieties are commonly used as cover crops in Central Europe. The seeding 

rate (viable seeds) in the MC plant stands was 55 seeds m
-2

 for faba bean, 110 seeds m
-2

 for  

field pea, narrow-leafed lupin and grass pea, 165 seeds m
-2

 for common vetch, and 139 seeds 

m
-2

 for sunflower. In the IC plant stands an additive mixture was used which consisted of 

legumes at 100% of their full MC seeding rate plus sunflower (cv. Iregi; 1000 seed weight: 65 

g) at 20% (28 seeds m
-2

) of the full MC sunflower seeding rate. These seeding rates were in 

the upper range of the regional, experienced based seeding rates to ensure rapid ground cover 

and high weed suppression. The seed lots, which originated from certified organic seed, 

differed between 2009 and 2010. Seed rates were adjusted to accommodate variations in the 

germination ability of the individual seed lots and equal quantities of viable seeds were sown 

each year.  
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Table 4.1. Soil, experimental details and date of first daily mean below 0°C (End of growing season by temperature definition). 

    Site Reinhardtsgrimma (RG)  Köllitsch (KÖ) 
 2009 2010  2009 2010 

      
Soil type (FAO classification)

a
 

Dystric Cambisol 
(shallow) 

Dystric Cambisol 
(shallow)  

Arenic Fluvisol 
(deep) 

Arenic Fluvisol 
(deep) 

Soil texture Loamy Sand Loamy Sand  Loamy Sand Loamy Sand 

Field capacity (Vol. %)
b
 34 34  32 32 

Soil pH (0.01 M CaCl2) 6.1 5.6  5.6 5.6 

Soil P (CAL; mg kg
-1
)
c
 71 29  31 35 

Soil K (CAL; mg kg
-1
)
c
 156 135  41 40 

Soil Mg (0.01 M CaCl
2
; mg kg

-1
) 88 84  159 131 

      
Cover crop sowing dates 19 August 2009 24 August 2010  17 August 2009 15 August 2010 

Biomass harvest I 18 September 2009 24 September 2010  18 September 2009 20 September 2010 

Biomass harvest II 22 October 2009 25 October 2010  25 October 2009 27 October 2010 

End of growing season
d
 31 October 2009 24 November 2010  13 December 2009 24 November 2010 

            a
 Soil type according to IUSS Working Group WRB, (2006).

 
 

b
 Estimated according to DIN 4220 (DIN Deutsches Institut für Normung e.V., 2008). 

c
 Calcium Acetate Lactate (CAL) extraction method after Schüller (1969). 

d 
First daily mean temperature <0°C, temperature indicator according to the Saxon climate impact monitor. 

6
7 
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The design of the field trial was a completely randomised split plot with four replications. 

The main plot factors were no-till and reduced tillage. Each main plot was divided into twelve 

sub plots (22.5 m
2
, 1.5 m wide and 15 m long), five plots had MC legumes, five plots had IC 

legumes with sunflowers, one plot had MC sunflowers as the reference crop for the 

calculation of the N2 fixation, and one fallow plot was without any cover crop.  

On the day of seeding, the reduced tillage plots received two passes of tillage. The first 

pass was a shallow soil inversion (0.10 to 0.12 m depth) conducted with a stubble plough 

(Type Zobel, Germany) followed by the seedbed preparation (0.08 m depth) with a rotary 

harrow (Type Erpice Rotante, Maschio, Italy). At both locations the reduced tillage cover 

crops were sown at 0.17 m row spacing with a plot seeder (Type HEGE 80, Wintersteiger, 

Austria) with shoe openers (Wintersteiger, Austria - trial preparation in 2009) and single disk 

coulters (RoTeC Control coulter, Amazone, Germany - trial preparation in 2010). The direct 

seeding was conducted using a no-till plot drill with inverted T-cross slot openers (Baker No-

Tillage Limited, New Zealand) at 0.17 m row spacing.  

Narrow-leafed lupin seed inoculation took place just before seeding with Rhizobium lupinii 

(Radicin Nr. 6, JOST GmbH, Germany). Other legume species were not inoculated because it 

was assumed that legumes in the crop rotation maintained a natural level of Rhizobium 

leguminosarum. Field emergence was determined three to four weeks after seeding at a row 

length of 1.5 m with six repetitions per plot. The weed flora was determined visually by 

means of plot pictures taken in the course of the study. In the no-till system, weeds were 

differentiated as weeds present at seeding or newly germinated weeds based on their growth 

stage. In the reduced tillage system, tillage removed weeds before seeding, and all weeds 

present in the study germinated or regrew after the cover crop seeding. 

4.2.2 Sample collection and analysis 

The cover crop and weed biomass were harvested twice; each harvest sample contained the 

biomass produced between seeding and the individual harvest date (Table 4.1). The first 

harvest (harvest I) was performed four to five weeks after seeding to determine the cover crop 

and weed biomass production during the early cover cropping phase. The second harvest 

(harvest II) was conducted in the period between the first frost day (first daily minimum 

temperature <0°C) and the end of the growing season by temperature definition (first day with 

a daily mean temperature <0°C; DWD, 2013 personal communication). This determined the 

total cover crop and weed biomass during autumn. At harvest I and harvest II, an area of 2.25 
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m
2
 of each plot was cut by hand and the plant cover was separated into legumes, sunflowers 

and weeds.  

The above ground gross fresh weight was determined directly after harvest in the 

laboratory using a laboratory scale (SI 6002, Denver-Instrument). Samples of 200 to 400 g 

were dried to constant weight for the dry matter weight calculations in the drying cabinet at 

105°C (harvest I) and 60°C (harvest II). Dried plant samples of harvest II were fine ground 

(< 0.2 mm) with an ultra centrifugal mill (ZM 1000, Retsch, Germany). Analysis for %N and 

%C was performed with an Elemental Analyser (TruSpec Macro, LECO, USA) in compliance 

with the VDLUFA method 4.1.2 (Bassler, 1976) and DIN ISO 10694 : 1996-08 

(DIN Deutsches Institut für Normung e.V., 1996), respectively.  

With the extended difference method the N2 fixation of legume cover crops was estimated 

based on a formula by Stülpnagel (1982) with a modification to include the above ground N 

accumulation in weeds and IC sunflowers as follows: 

N2 fixation monocropping = (NLeg+NWeedLeg) - (NRef+NWeedRef) + (soil NLeg- soil NRef)  

N2 fixation intercropping = (NLeg+NICsunflower+NWeedLeg) - (NRef+NWeedRef) +  

          (soil NLeg- soil NRef)  

where NLeg= shoot N accumulation in the legume; NRef= shoot N accumulation in the 

reference crop MC sunflower; NICsunflower= shoot N accumulation in intercropped sunflower; 

NWeedLeg and NWeedRef= weed shoot N accumulation in the legume and reference crop plot, 

respectively; soil NLeg and soil NRef= inorganic soil N content in the legume and reference 

crop plot, respectively.  

Herbicides had been used in the trial by Stülpnagel (1982), in the current study the 

inclusion of the shoot N accumulation in weeds and IC sunflowers was necessary to estimate 

the actual soil N depletion in the organic system. The root N accumulation was not accounted 

for neither in the present study nor in the method description by Stülpnagel (1982). During the 

vegetative growing phase nodulated legume roots can account for up to 35% of the total plant 

N, whereas the root fraction of the total sunflower plant N can account for up to 33% at floret 

initiation (Armstrong et al., 1994; Hocking and Steer, 1995). It is therefore assumed, that the 

proportion of total plant N excluded from the calculation was similar for the legume and 

reference crop. 

Soil samples (0 to 0.3 m depth) were collected after seeding (ten sample points for each 

main plot) and after harvest II (four sample points for each sub plot). In 2009, soil sampling at 

KÖ was delayed three days after seeding, and during 2010 there was a delay of one day at RG 

as well as five days at KÖ. The core samples were homogenised and stored in cold storage 
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coolers in the field, followed by deep freezing to -18°C the day of sample collection until the 

final analyses. Within one hour of defrosting, soil extracts with 0.01 M CaCl2 were prepared, 

and NO3
-
N and NH4

+
N concentrations were examined using a Continuous Flow Analyser 

(SAN++, Skalar Analytical B.V., Breda, Netherlands) based on the VDLUFA method A 

6.1.4.1 (Thun and Hoffmann, 1991) and DIN ISO 14255 : 1998-11 (DIN Deutsches Institut 

für Normung e.V., 1998), respectively. 

4.2.3 Statistical analyses 

Basic data was examined for outliers with boxplots. Less than 5% of the data points were 

identified as outliers above and below the 1.5 interquartile range, and removed before 

conducting statistical analyses. The unbalanced data set was accounted for in the statistical 

analysis. The cover crop shoot dry matter biomass of IC legumes and IC sunflowers were then 

combined to total IC plant stand dry matter production, so that subsequent analyses always 

compared the MC and IC cover crop plant stands as total values. This was also the case for 

total cover crop shoot N accumulation. Values of IC legumes and IC sunflowers were 

combined as a result of the low IC sunflower biomass production. Data for field emergence, 

total shoot dry matter at harvest I and II, inorganic soil N after harvest II, total shoot N 

accumulation and N2 fixation were subjected to analysis of variance (ANOVA) using the 

MIXED procedure (SAS v. 9.3 SAS Institute, Cary, NC). Statistical analyses were performed 

for two locations (RG and KÖ) and two years (2009 and 2010) using a linear mixed model 

with location, year, tillage system and species as fixed effects and replicates as random 

effects. The fit of the model was tested using residual plots of the pooled data, and data 

transformations (Piepho, 2009), when necessary, were used to achieve the required 

assumptions for linear regression analyses (Ireland, 2010). The arcsine transformation was 

applied to cover crop field emergence; the logarithmic transformation was applied to cover 

crop and weed biomass at harvest I as well as inorganic soil N after harvest II; the Box-Cox 

transformation (fixed λ 0.4) was applied to cover crop and weed biomass at harvest II; data 

for N2 fixation did not require any transformation.  

Homogeneity of variance was tested and in the case of heterogeneous variances the model 

was fitted for partitioned variances (Littell, 2011). The degrees of freedom were determined 

based on the Kenward-Roger method. Least squares means were calculated and mean 

comparisons were conducted using the Tukey-Kramer test (α = 0.05) within the SAS 

procedure MIXED. A letter display for the mean comparisons was created with the %MULT 

macro by Piepho (2012). In the presence of significant four way interactions between the 
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main factors year, location, tillage system and species, the slice option within the %MULT 

macro was used to test for significant simple main effects by comparing one specific factor at 

variable levels of another factor (Schabenberger et al., 2000). Data that had been transformed 

was transformed back to the original scale for presentation. 

4.3 Results 

4.3.1 Weather conditions 

In 2009, the mean annual temperatures at RG and KÖ were 8.3 and 9.8°C, respectively 

(Table 4.2). This was similar to the ten year average, whereas in 2010 temperatures were 2°C 

below the average (8.8 and 10.1 °C, at RG and KÖ, respectively) (LfULG, 2012; DWD, 2012 

and 2013 personal communication). The total precipitation in 2009 was similar at RG and 

higher at KÖ than the historical average (773 and 473 mm, respectively). In 2010 the total 

precipitation was substantially higher at RG (+244 mm) and KÖ (+487 mm) than the 

historical average (LfULG, 2012; DWD, 2012 and 2013 personal communication). The first 

part of the cover cropping period from August to September in 2009 was dry in both locations 

while in 2010, there was considerably more precipitation. In the second part from September 

to October a particularly low mean temperature of 7.1 °C was reached at RG in 2010. 

4.3.2 Cover crop emergence 

The cover crop field emergence was influenced by interactions between year x location x 

tillage system and year x location x species (Table 4.3). The emergence at the RG location in 

both years was lower in the no-till system than in the reduced tillage system (2009: 55 versus 

64%; 2010: 58 versus 66%, respectively; data not shown). At KÖ the emergence was 

significantly reduced only in 2010 (57 versus 74%; 2009: 64 versus 62%, respectively). 

Species specific emergence differences were significant at the two locations for both years 

(Table 4.4). For MC and IC faba bean at RG in 2010 emergence was considerably higher than 

it was for the other species. There was less variation demonstrated between the species at RG 

in 2009 and at KÖ in 2010. 
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Table 4.2. Monthly mean and trial period mean temperature, monthly precipitation and cumulative precipitation during the cover crop trial period. 

           Temperature (°C)     Precipitation (mm)    

         Reinhardtsgrimma (RG)
a
  Köllitsch (KÖ)

b
  Reinhardtsgrimma (RG)

a
  Köllitsch (KÖ)

b
 

            Month 2009 2010  2009 2010  2009 2010  2009 2010 

            January -4.2 -5.3  -3.2 -5.1  22 31  8 36 
February -0.4 -1.6  0.8 -0.5  69 21  27 39 
March 3.9 2.9  5.3 4.9  76 48  48 73 
April 11.2 7.5  12.2 8.9  18 41  9 31 
May 12.8 10.5  14.4 11.3  91 107  54 216 
June 13.9 15.5  15.6 16.6  80 65  45 11 
July 17.6 19.2  19.0 21.4  108 134  91 63 
August 17.6 16.6  19.7 17.9  96 222  75 180 
September 13.8 11.0  15.3 12.9  24 138  29 144 
October 7.1 6.7     10.7 8.1  108 7  56 14 
November 6.7 4.2  8.0 5.3  44 107  99 117 
December -0.7 -5.7  0.2 -4.3  72 96  148 36 
            
Mean temperature (°C) during cover crop trial period  Cumulative (mm)    
P1   15.6 12.3  17.4 15.1  43 90  38 146 
P2  9.4 7.1  13.7

c
 9.0  115 118  60 130 

P3  12.3 9.8  - 12.0  158 208  98 276 
                        P1, mean temperature and cumulative precipitation during the first period from seeding to harvest I (from August to September). 
P2, mean temperature and cumulative precipitation during the second cover crop growth period between harvest I and II (from September to October). 
P3, mean temperature and cumulative precipitation in whole cover crop growing period (from August to October). 
a
 Climate data (DWD 2012 personal communication). 

b
 Climate data (LfULG 2012), Temperature data not available from 10 to 27 October 2009. 

c
 Only timeframe 19 Sept. - 9 Oct. available. 
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4.3.3 Cover crop shoot and weed dry matter production 

The cover crops in the two tillage systems displayed a variable response to the conditions 

in 2009 and 2010 at RG and KÖ resulting in significant year x location x tillage system x 

species interactions for the cover crop dry matter production at harvest I and II (Table 4.3). 

Weed pressure varied between the two trial years concurrent with the weather conditions, 

strongly influencing the cover crop dry matter production. In 2009, the weed biomass 

production in the early crop development phase up to harvest I reached 1.16 Mg ha
-1

 and 0.11 

Mg ha
-1

 in the no-tillage and reduced tillage system, respectively (Table 4.5). In 2010, the 

weed biomass at harvest I reached 0.28 and 0.07 Mg ha
-1

 in the no-tillage and reduced tillage 

system, respectively.  

The total cover crop dry matter production in the no-till system in 2009 at harvest I was 

largest for MC field pea (0.37 and 0.31 Mg ha
-1

) at RG and KÖ, respectively (Fig. 4.1). That 

same year, the IC field pea and MC sunflower produced up to harvest I the most biomass at 

both locations in the reduced tillage system. Between the first and second harvest the cover 

crop species differed in their biomass production particularly in the no-till system at RG. At 

harvest I, the common vetch displayed a low initial biomass production in the no-till system, 

while it showed strong growth in the second trial period. Conversely, MC and IC narrow-

leafed lupin showed weak growth in the second trial period. Between harvest I and II in the 

no-till system at RG, the MC and IC field pea showed a strong biomass increase, resulting at 

harvest II in a large difference between MC and IC narrow-leafed lupin and the field pea. At 

harvest II within the no-till system at RG the MC and IC field pea produced the most biomass 

by a large margin (Fig. 4.2). At KÖ at harvest II there were only small differences between 

the cover crops with the largest biomass production (MC and IC field pea and IC narrow-

leafed lupin) and the biomass of other species. MC faba bean and grass pea were within the 

group of species with the least biomass production in the no-till system. 

In the reduced tillage system in 2009 at RG the same species as in the no-till system (MC 

and IC field pea) displayed the largest biomass production at harvest II with significant 

differences in relation to the other species. The second largest dry matter production was 

shown by MC and IC grass pea and MC sunflower. At KÖ, the MC sunflower produced the 

most biomass in the reduced tillage system although not significantly different to IC field pea 

and grass pea. The conditions in 2009 favoured the sunflower growth at both locations in the 

reduced tillage system but the intercropping of legumes and sunflowers was only successful in  
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Table 4.3. Sources of variation, degrees of freedom and statistical significance of the sources of variation for of field emergence (legumes and monocropped sunflower), 

total cover crop and weed dry matter production at harvest I and II, inorganic soil N 0 to 0.3 m soil core, shoot N accumulation (shoot N) and N2 fixation. 

           Harvest I  Harvest II  Harvest II 

              Field Dry matter production  Dry matter production  Inorganic Shoot N2 

            Source of variation df
a
 emergence Cover crop

b
 Weed  Cover crop

b
 Weed  soil N N

b
 fixation 

            Year (Y) 1 n.s. *** ***  *** ***  *** *** * 
Location (L) 1 n.s. *** n.s.  *** n.s.  *** *** n.s. 
Tillage system (T) 1 *** *** ***  *** ***  * *** n.s. 
Species (S) 10, (11, 9) *** *** n.s.  *** ***  n.s. *** *** 
Y x L 1 n.s. *** n.s.  *** *  *** *** *** 
Y x T 1 ** * ***  *** ***  n.s. *** n.s. 
L x T 1 n.s. n.s. ***  ** **  * *** * 
Y x S 10, (11, 9) *** *** n.s.  *** ***  * *** *** 
L x S 10, (11, 9) n.s. *** n.s.  *** *  n.s. *** *** 
T x S 10, (11, 9) n.s. *** n.s.  *** n.s.  * *** n.s. 
Y x L x T 1 ** * n.s.  n.s. n.s.  n.s. * ** 
Y x L x S 10, (11, 9) * *** n.s.  *** n.s.  n.s. *** n.s. 
Y x T x S 10, (11, 9) n.s. *** n.s.  * n.s.  n.s. ** n.s. 
L x T x S 10, (11, 9) n.s. ** n.s.  ** n.s.  n.s. * n.s. 
Y x L x T x S 10, (11, 9) n.s. ** n.s.  *** n.s.  n.s. *** * 
Total 351, (383, 319)           
             Component of variation: *, **, *** significant at P levels of P < 0.05, 0.01, 0.001, respectively; n.s., not significant. 
a
 Degrees of freedom (df), values in brackets correspond to weed dry matter production, and N2 fixation, respectively.  

b
 Intercropped cover crop data includes combined dry matter production of intercropped legumes and intercropped sunflowers. 
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Table 4.4. Field emergence of legumes and monocropped sunflowers (averaged across tillage systems). 

     Cover crop field emergence (% germinated plants of viable seeds) 

   Reinhardtsgrimma  Köllitsch 

    Cover crop species
a
 2009 2010  2009 2010 

       MC faba bean 68 d 79 e  67 cde 75 c 
IC faba bean 63 cd 82 e  63 bcd 73 bc 
MC field pea 65 cd 68 d  70 de 72 bc 
IC field pea 58 bc 65 d  67 cde 69 abc 
MC narrow-leafed lupin  68 d 46 a  59 abc 63 ab 
IC narrow-leafed lupin  64 cd 63 cd  62 bcd 67 abc 
MC grass pea  63 cd 48 ab  74 e 61 a 
IC grass pea 56 abc 55 abc  67 cde 59 a 
MC common vetch 51 ab 49 ab  52 ab 57 a 
IC common vetch 48 a 58 bcd  49 a 61 a 
MC sunflower 52 ab 62 cd  62 bcd 65 abc 
                a
 Monocropped (MC) and intercropped (IC) cover crop.  

Within a column, lower case letters display significant differences between cover crops 
within years based on Tukey-Kramer means separation (α = 0.05). 
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Table 4.5. Shoot dry matter (DM) production of weeds in no-till (NT) and reduced tillage (RT) cover crop plots and the control plot at harvest I and II, as well as weed 

dry matter production at harvest II averaged over tillage systems and locations, lower case letters within a column indicate significant weed dry matter differences in 

the plots of the cover crops and the fallow plot, based on Tukey-Kramer means separation (α = 0.05). 

    
 

   Weed dry matter production (Mg ha
-1
) 

 

  

    
 

   Reinhardtsgrimma (RG)  Köllitsch (KÖ) 
 

  

        
 

   2009  2010  2009  2010 Year x Species*** 

            
 

   Harvest I Harvest II  Harvest I Harvest II  Harvest I Harvest II  Harvest I Harvest II 
 

Harvest II 

                    
 

  Cover crop plots
a
 NT RT NT RT  NT RT NT RT  NT RT NT RT  NT RT NT RT 

 

2009 2010 

                    
 

  MC faba bean  0.61 0.08 0.67 0.43  0.12 0.05 0.15 0.08  0.71 0.06 0.58 0.24  0.16 0.06 0.16 0.15 
 

1.92 d 0.54 ab 
IC   faba bean   0.66 0.06 0.73 0.39  0.12 0.03 0.14 0.07  0.92 0.05 0.63 0.24  0.22 0.05 0.21 0.09 

 

1.99 de 0.51 ab 
MC field pea 0.59 0.06 0.42 0.17  0.14 0.05 0.12 0.10  0.91 0.05 0.47 0.17  0.20 0.06 0.19 0.13 

 

1.23 a 0.54 ab 
IC   field pea  0.35 0.06 0.44 0.20  0.15 0.04 0.11 0.11  0.81 0.04 0.57 0.11  0.20 0.05 0.17 0.08 

 

1.32 a 0.47 ab 
MC narrow-leafed lupin  0.63 0.07 0.69 0.32  0.10 0.06 0.14 0.12  0.99 0.07 0.60 0.25  0.17 0.06 0.18 0.11 

 

1.86 d 0.55 ab 
IC   narrow-leafed lupin  0.62 0.09 0.61 0.28  0.17 0.05 0.14 0.13  0.89 0.03 0.46 0.11  0.23 0.05 0.23 0.13 

 

1.46 ac 0.63 b 
MC grass pea 0.74 0.06 0.64 0.24  0.14 0.05 0.13 0.11  0.56 0.04 0.58 0.22  0.16 0.05 0.20 0.09 

 

1.68 bcd 0.53 ab 
IC   grass pea  0.38 0.07 0.63 0.25  0.14 0.04 0.15 0.09  0.86 0.05 0.49 0.08  0.17 0.06 0.11 0.07 

 

1.45 ab 0.42 a 
MC common vetch  0.67 0.11 0.61 0.48  0.11 0.04 0.11 0.13  0.78 0.06 0.40 0.21  0.17 0.04 0.14 0.05 

 

1.70 cd 0.43 a 
IC   common vetch  0.59 0.08 0.45 0.28  0.13 0.05 0.12 0.10  1.16 0.03 0.54 0.13  0.23 0.03 0.17 0.05 

 

1.40 ab 0.44 a 
MC sunflower 0.70 0.05 0.68 0.17  0.12 0.05 0.15 0.13  0.89 0.05 0.58 0.09  0.27 0.04 0.21 0.08 

 

1.52 ab 0.57 ab 

Fallow 0.65 0.08 0.71 0.47  0.14 0.05 0.15 0.09  1.08 0.07 0.78 0.36  0.24 0.05 0.24 0.13 
 

2.32 e 0.61 ab 
                    

 

                      
 

  a
 Weed dry matter in plots of monocropped (MC) and intercropped (IC) cover crops and fallow without any crop. 

*** Year x Species interaction significant at P < 0.001, Within a column, lower case letters display significant differences between trial plots based on Tukey-Kramer means separation (α = 0.05). 
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Fig. 4.1. Shoot dry matter (DM) of legumes and sunflowers at harvest I. Each column pair represents 

monocropped (left) and intercropped (right) plant stands of faba bean (FB), field pea (FP), narrow-leafed 

lupin (NL), grass pea (GP), and common vetch (CV), respectively. The single column represents 

monocropped plant stands of sunflower (S). Lower case letters indicate cover crop specific significant 

differences within tillage systems, based on Tukey-Kramer means separation (α = 0.05). 
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the reduced tillage system at KÖ. In the no-till system the IC sunflower biomass production 

was low and contributed not significantly to an increased total dry matter production in IC 

compared to MC plant stands. 

In 2010 at RG the largest dry matter production at harvest I was in both tillage systems 

shown by MC and IC faba bean, narrow-leafed lupin and IC field pea. Up to harvest II the 

narrow-leafed lupin biomass production fell behind the one by MC and IC faba bean and IC 

field pea. Both species displayed the largest dry matter production in the no-tillage and 

reduced tillage system at harvest II although it was consistently below 0.52 Mg ha
-1

. At KÖ in 

2010, the MC and IC faba bean, narrow-leafed lupin and MC common vetch showed within 

the no-tillage and reduced tillage system the largest dry matter production at both harvest 

dates; reaching at harvest II a biomass of up to 1.49 and 1.65 Mg ha
-1

, in the no-tillage and 

reduced tillage system, respectively. The sunflower was, at both locations, negatively 

influenced by the conditions in 2010; the intercropping with sunflowers was not successful 

and even the biomass production of MC sunflowers at RG and KÖ remained below 0.13 and 

0.55 Mg ha
-1

, respectively.  

The weed population in both years and locations in the no-till system mainly consisted of 

weeds that were already present at seeding and continued to grow after the cash crop harvest. 

In 2009, many of those weeds were able to finish their life cycle in the period up to harvest II 

so that the weed dry matter declined between harvests I and II. After shallow tillage, the 

weeds in the reduced tillage system consisted of both newly germinated weeds and weed 

regrowth (Table 4.6). In 2009 at KÖ the dominant weed species were Poa annua L. in the no-

tillage system and Chenopodium album L. in the reduced tillage system. In 2010 at KÖ the 

largest weed abundance was shown by Matricaria inodora L. in both tillage systems. In 2009 

and 2010 at RG, Stellaria media (L). Vill., was the dominant weed species in both tillage 

systems.  

The weed biomass production was increased in the no-till system, and up to harvest I and 

II influenced by multiple two way interactions (Fig. A 11-14a-c; Table 4.3). At harvest I in 

both years the average weed biomass was larger in the no-till than in the reduced tillage 

system (2009: 0.73 versus 0.06 Mg ha
-1

; 2010: 0.16 versus 0.05 Mg ha
-1

, respectively, derived 

from Table 4.5). This was also the case at harvest II although the differences between the no-

tillage and reduced tillage system were smaller (2009: 0.57 versus 0.23 Mg ha
-1

; 2010: 0.16 

versus 0.10 Mg ha
-1

, respectively). 

Independent from the tillage system, the weed biomass varied considerably between the 

plots of the different cover crops and the fallow plot in 2009 (Table 4.5). The lowest weed dry 
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Fig. 4.2. Shoot dry matter (DM) of legumes and sunflowers at harvest II. Each column pair represents 

monocropped (left) and intercropped (right) plant stands of faba bean (FB), field pea (FP), narrow-leafed 

lupin (NL), grass pea (GP), and common vetch (CV), respectively. The single column represents 

monocropped plant stands of sunflower (S). Lower case letters indicate cover crop specific significant 

differences within tillage systems, based on Tukey-Kramer means separation (α = 0.05).  
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matter production was found in plots of MC and IC field pea, MC sunflower, IC common 

vetch, grass pea and narrow-leafed lupin. In 2009 all cover crops, except IC faba bean, 

displayed a lower weed biomass than in the fallow plot, while in 2010 there was no difference 

between the cover crop plots and the fallow plot. IC compared to MC plant stands influenced 

the weed biomass production only marginally. 

4.3.4 Cover crop shoot N accumulation 

The accumulation of N in cover crop biomass was affected by interactions between year x 

location x tillage system x species (Table 4.3). Within the no-till system in 2009 at RG the 

MC and IC field pea (60.7 and 61.1 kg ha
-1

, respectively) showed the highest N accumulation 

by a large margin, while at KÖ the differences between species were smaller and the N 

accumulation remained below 28.7 kg ha
-1

 (Fig. 4.3). In the reduced tillage system at RG the 

MC and IC faba bean and grass pea accumulated the most N while at KÖ this was the case for 

MC and IC grass pea, IC narrow-leafed lupin and field pea as well as MC sunflower. 

In 2010 at RG the N accumulation was low, the MC and IC faba bean and field pea 

displayed, in both tillage systems, the largest N accumulation (between 15.0 and 19.1 kg ha
-1

) 

while both the MC and IC narrow-leafed lupin and the MC sunflower accumulated less than 

4.2 kg ha
-1

. Conversely at KÖ, the MC and IC narrow-leafed lupin accumulated in both tillage 

systems more than 46 kg ha
-1

 and displayed together with MC and IC common vetch and IC 

faba bean the largest N accumulation.  

A larger shoot N accumulation in the IC compared with the MC plant stands was shown 

only in 2009 at RG by the IC common vetch in the reduced tillage system and at KÖ by the 

IC faba bean in both tillage systems and by the IC field pea in the reduced tillage system. The 

weeds in the no-till system displayed large shoot N accumulation, particularly in 2009 (data 

not shown). 

At seeding, the inorganic soil N resources at RG in both years and at KÖ in 2010 were 

below 14 kg ha
-1

 in both tillage systems, while at KÖ in 2009 they reached 35 kg ha
-1

 in the 

no-till and 61 kg ha
-1

 in the reduced tillage system (Fig. 4.3). After harvest II, the inorganic 

soil N contents displayed a highly significant interaction between year and location (Table 

4.3). In 2009 the inorganic soil N content after harvest II was significantly lower at RG 

compared to KÖ while in 2010 there was no difference between locations. At KÖ, the 

inorganic soil N contents after harvest II were also significantly larger in 2009 than in 2010. 

The different MC and IC cover crops influenced the inorganic soil N contents after harvest II 

only marginally. 
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Table 4.6. Weed biomass compositions at Reinhardtsgrimma and Köllitsch in 2009 and 2010 in the no-till 

(NT) and reduced tillage (RT) system. 

             Present and newly emerged weeds at 
   Reinhardtsgrimma (RG)  Köllitsch (KÖ) 

     2009  2010  2009  2010 

        Weed species NT RT  NT RT  NT RT  NT RT 

            Capsella bursa-pastoris (L.) Medik. - -  - -  - -  ¶ - 

Chenopodium album L. - ¥ +  - -  ¥ ¥ +  - ¥ 

Cirsium arvense (L.) Scop. ¶ + ¥  ¶ ¥ + ¥  ¶ ¥ +  ¶ ¥ ¥ 

Polygonum convolvulus L. ¶ -  - -  - -  - - 

Lamium amplexicaule L. - ¥  ¥ ¥ +  - ¥ +  - ¥ 

Matricaria inodora L. - -  - -  - -  ¥ + ¥ + 

Matricaria recutita L. - -  ¶ ¥  - -  - - 

Medicago sativa L. - -  - -  ¶ -  - - 

Plantago major L. - -  - -  ¶ -  - ¥ 

Poa annua L. - -  - -  ¶ + -  ¶ + - 

Polygonum aviculare L. - -  ¶ -  ¶ + -  ¶ - 

Rumex obtusifolius L. ¶ ¥  ¶ ¥  ¶ ¥  ¶ ¥ - 

Stellaria media (L.) Vill. ¶ ¥ + ¥ +  ¶ ¥ + ¥ +  ¶ ¥ + ¥  ¶ ¥ ¥ + 

Taraxacum spp. ¶ -  ¶ -  ¶ ¥  - - 

Veronica persica Poir. - -  ¶ -  - -  - - 

Viola arvensis Murr. - -  ¶ -  - -  ¶ - 

Volunteer cereal grain ¥ + ¥ +  ¥ + ¥ +  ¥ ¥  ¥ ¥ + 

 - Weed not present. 
¶ Weed present at seeding. 

¥ Weed emerged after seeding. 

¶ ¥ Existing and newly emerged weed. 

+ Dominant weed species 
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Fig. 4.3. Inorganic soil N at seeding, after harvest II, and shoot N accumulation of legumes and sunflower 

at harvest II. The first column pair represents the inorganic soil N content at seeding in the main plot for 

no-till (NT) and reduced tillage (RT), respectively; remaining column pairs represent monocropped (left) 

and intercropped (right) contents after harvest II of faba bean (FB), field pea (FP), narrow-leafed lupin 

(NL), grass pea (GP), and common vetch (CV), respectively. The single column represents monocropped 

plant stands of sunflower (S). Lower case letters indicate cover crop specific significant differences within 

tillage systems, based on Tukey-Kramer means separation (α = 0.05).  
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4.3.5 N2 fixation 

The N2 fixation by the legume cover crops was influenced by interactions between year x 

location x tillage system x species (Table 4.3). Within the no-till system at RG in 2009, the 

MC and IC field pea fixed the most N2 (46.5 and 44.3 kg ha
-1

, respectively). In the reduced 

tillage system this was the case for MC and IC field pea and grass pea (Table 4.7). At KÖ, the 

N2 fixation in the no-till system reached 33.8 kg ha
-1

 (MC field pea), while in the reduced 

tillage system the maximum N2 fixation was only 5.5 kg ha
-1

 (MC common vetch). In contrast 

to the species in the no-till system the N2 fixation of the legumes in the reduced tillage system 

showed no significant variations. 

In 2010 at RG in the no-till system the MC and IC faba bean, field pea and IC common 

vetch displayed an equally large N2 fixation of up to 19.3 kg ha
-1

. In the reduced tillage 

system the largest N2 fixation was shown by IC field pea (17.3 kg ha
-1

), which was only 

significant to the lowest values shown by MC and IC narrow-leafed lupin. At KÖ in 2010 the 

N2 fixation in the no-till system reached 53.7 kg ha
-1

 (IC common vetch), which was not 

significantly different compared to MC common vetch, IC faba bean and narrow-leafed lupin. 

In the reduced tillage system the maximum N2 fixation was 60.5 kg ha
-1

 (MC common vetch) 

which was without difference to the N2 fixation by IC common vetch and MC faba bean. 
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Table 4.7. N2 fixation of legume cover crops in the no-till (NT) and reduced tillage (RT) system. Within a column, lower case letters indicate cover crop specific 

significant differences within tillage systems, based on Tukey-Kramer means separation (α = 0.05). 

  
 

  
 

    N2 fixation (kg ha
-1
) 

  
 

  Reinhardtsgrimma (RG)  Köllitsch (KÖ) 

  
 

 
 

    2009  2010  2009  2010 

   
 

  
 

     Cover crop species
a
 NT RT  NT RT  NT RT  NT RT 

   
 

  
 

     MC faba bean 14.4 bc 15.2 abc 
 

19.3 d 10.9 ab 
 

7.3 ab 0.0 a  41.7 b 52.3 de 
IC faba bean 14.4 bc 21.7 c 

 

16.9 bcd 17.2 b 
 

7.5 ab 0.0 a  44.5 bc 41.7 bcd 
MC field pea 46.5 d 53.2 d 

 

18.7 cd 12.8 ab 
 

33.8 c 0.1 a  22.4 a 36.0 abc 
IC field pea 44.3 d 53.2 d 

 

15.0 bcd 17.3 b 
 

17.8 b 0.0 a  23.7 a 24.5 a 
MC narrow-leafed lupin 2.2 a 9.7 ab 

 

1.9 a 1.0 a 
 

9.6 ab 3.6 a  40.9 b 43.1 cd 
IC narrow-leafed lupin  3.6 ab 6.8 a 

 

2.1 a 1.9 a 
 

16.3 ab 3.3 a  50.5 bc 44.8 cd 
MC grass pea  23.3 c 53.9 d 

 

5.8 ab 12.7 ab 
 

10.4 ab 2.1 a  19.2 a 29.9 a 
IC grass pea 24.7 c 46.5 d 

 

5.4 ab 9.4 ab 
 

18.1 b 1.8 a  23.0 a 29.5 ab 
MC common vetch 26.5 c 18.8 bc 

 

7.5 abc 10.5 ab 
 

6.6 ab 5.5 a  53.6 bc 60.5 e 
IC common vetch 17.3 c 20.7 bc 

 

11.7 abcd 12.7 ab 
 

5.5 a 0.0 a  53.7 c 57.5 e 
   

 

  
 

        
 

  
 

     a
 Monocropped (MC) and intercropped (IC) legume cover crop. 

Within a column, lower case letters display significant differences between legume cover crops based on Tukey-Kramer means separation (α = 0.05). 
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4.4 Discussion 

4.4.1 Crop establishment 

The omission of conventional tillage has been commonly associated with increased soil 

density and impaired root growth (Carter, 1990; Pietola, 2005). This leads to the assumption 

that mechanical impedance of the seed-slot walls in the consolidated soil negatively 

influenced field emergence in the no-till system. However, the reduced field emergence in the 

no-till system was likely only slightly influential as weed competition is more important with 

relation to crop performance. Kapusta (1979) showed that even with similar legume plant 

populations in no-till and tilled systems, yields in the no-till system can be consistently 

reduced due to strong weed competition after tillage is omitted. 

4.4.2 Evaluation of cover crop species 

The field pea performed better than the faba bean when there was a strong weed pressure 

and poor access to water, as demonstrated in the first year of the cover crop trials. The 

explanation for this could be that the field pea is highly competitive (Spies et al., 2001) and 

has a high water efficiency use (Power, 1991), whereas the faba bean is less competitive and 

susceptible to dry conditions (Townley-Smith et al., 1993; Strydhorst et al., 2008). These 

characteristics recommend the normal leafed field pea for use in no-till systems with moderate 

weed abundance in years with low precipitation prior to any other tested legumes. It has to be 

noted that the suitability of the field pea in a weedy field can be considerably reduced if a 

semi-leafless pea variety is used (Semere and Froud-Williams, 2001; Spies et al., 2011). 

The faba bean has potential as a cover crop in the no-till system if the weed pressure is low 

and precipitation is high, as was the case in 2010. The faba bean is better suited under these 

conditions than the field pea due to the susceptibility of field peas to transient water logging 

and fungal infections as shown in an Australian study where high precipitation led to 

increased faba bean and reduced field pea grain yields (Siddique et al., 1993). 

In 2009, the narrow-leafed lupin displayed low biomass production, particularly at RG in 

the second half of the trial. This was likely the result of the strong weed competition, as lupin 

is a weak competitor against weeds (Strydhorst et al., 2008). In addition, the narrow-leafed 

lupin was the only legume species that required additional inoculation and the very low N2 

fixation at RG in both years and tillage systems suggests a failed inoculation of the seed. This 
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likely resulted in a N deficiency and further reduced the competitive ability. By contrast, the 

large dry matter production in the no-till system at KÖ in 2010 shows that with a sufficient N2 

fixation and without high weed pressure, the narrow-leafed lupin can be well suited for an 

organic no-till system.  

In 2009, the common vetch displayed particularly at RG, consistently low dry matter 

production in the dry conditions of the first growing period in both tillage systems. This can 

be explained by its sensitivity to dry conditions and its response of high biomass production 

with increased precipitation (Papastylianou, 1995), as was the case at KÖ in 2010. However, 

the biomass production in the no-till and reduced tillage system was still lower than in a study 

by Franczuk et al. (2010) who used plough tillage and a higher seeding rate (Franczuk, 2014 

personal communication). Even at the lower biomass production rate in the present study, the 

N2 fixation was high which makes the common vetch a very valuable cover crop for an 

organic no-till system.  

The grass pea biomass production in the no-till and reduced tillage system of the present 

study were similar to low and high dry matter yields, respectively, in a conventional no-till 

system in Canada (Martens et al., 2001). The reduced biomass production in the no-till system 

of the present study can be attributed to the high weed pressure and the grass peas’ poor 

competitive ability against weeds (Wall et al., 1988).  

The IC sunflowers could not be successfully established in the no-till system and there was 

no consistent increase of the total above ground dry matter production and N accumulation in 

the IC compared with MC plant stands. This could be explained by the sunflowers’ sensitivity 

to seeding into wet and compacted soils (Carvalho and Basch, 1994; Bayhan et al., 2002) and 

to early competition (Johnson, 1971; Kandel et al., 1997). In the reduced tillage system under 

the warm conditions in 2009, especially the MC sunflowers displayed their ability for a large 

dry matter production. By producing large amounts of biomass, MC sunflowers were able to 

strongly suppress weeds and accumulate large amounts of N, emphasizing the potential of this 

species for cover cropping in organic reduced tillage systems. The potential of sunflower was 

also shown through high sunflower yields in other organic reduced tillage trials (Berner et al., 

2008). Nevertheless, the dry matter production of sunflower in the reduced tillage system can 

be strongly impaired by low temperatures and low inorganic soil N resources, as was the case 

at both locations in 2010. 

Due to their importance for N2 fixation, the legumes evaluated in this study may prove 

useful in conventional systems as well. For instance, they can be used as annual green manure 

crops or short term (frost killed) double crops with winter cereals (Townley-Smith et al., 
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1993; Martens et al., 2001). The largest N2 fixation values shown by the legume cover crops 

were within the range of other trials, but might have been higher had root material been 

sampled. The N2 fixation by faba bean at KÖ in 2010 and by the field pea in both tillage 

systems as well as by the grass pea in the reduced tillage system at RG in 2009 were similar to 

the N2 fixation averages between 40 and 49 kg ha
-1

, which were estimated by other methods 

in green manure trials in Canada (Townley-Smith et al., 1993; Biederbeck, et al., 1996;). The 

narrow-leafed lupin at KÖ in 2010 displayed a larger N2 fixation than an undersown legume 

catch crop with a similar dry matter production in Danish organic farming trials (Askegaard 

and Eriksen, 2007). This might be because in the Danish trial the seedbed of the main crop 

(spring barley) was fertilised, increasing the availability and accumulation of N from 

inorganic soil N resources for the later undersown narrow-leafed lupin. The N2 fixation by 

common vetch at RG in 2009 and at KÖ in 2010 was within the range (25 to 90 kg ha
-1

) of 

another Danish organic system trial. Since the root material was not sampled in the present 

study, the total N2 fixation was probably 10 to 25% higher (Mueller and Thorup-Kristensen, 

2001). The calculation of the N2 fixation only included inorganic soil N contents up to a depth 

of 0.3 m because the shallow soil at RG limited the soil sampling. Potential N leaching at RG 

and KÖ during the cover cropping period was not accounted for in the estimation of the N2 

fixation with the extended difference method. 

4.4.3 Influence of available inorganic soil N level and weather conditions 

Low available inorganic soil N resources at RG in both years and at KÖ in 2010 impaired 

the growth of the non-legume cover crop IC sunflower. Transfer of N from the legume to the 

IC sunflower was presumably negligible. The growing period was short, none of the legumes 

exceeded the early flowering period and, up to late flowering, the N transfer from the legume 

to non-legume can be very low (Jamont et al., 2013). In the no-till system at KÖ in 2009, the 

potential available inorganic soil N resources were higher, but the sunflowers were not able to 

acquire a larger amount of N due to the already established weeds. The weeds accumulated 

the majority of the available inorganic soil N resources, which further increased their growth 

(Blackshaw et al., 2003). In the reduced tillage system at KÖ in 2009 without the early weed 

competition and with alleviated soil compaction and even higher inorganic soil N resources, 

the intercropping was successful.  

However, the large inorganic soil N resources at KÖ in 2009 also had a negative effect on 

the N2 fixation by the legumes, which was reduced in the no-till system and almost 

nonexistent in the reduced tillage system. The large available inorganic soil N resources likely 
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led to a depressed nodulation (Dean and Clark, 1980) and a delayed onset of the N2 fixation 

(Voisin et al., 2002). Intercropping did not increase the N2 fixation in the present study, 

presumably due to the short growing season in which the N immobilisation by the IC 

sunflower was not large enough to sufficiently reduce the available inorganic soil N 

resources. 

The preceding cash crops of the cover crops were cereal grains, winter rye and oat at RG 

and winter wheat in both years at KÖ. The difference in grain species was caused by late 

harvest of organic wheat at the RG location, and could have influenced the weed spectrum 

and growing stage at cover crop seeding. The unfavourable climate conditions at RG in 2010 

resulted in late harvest of winter cereal grains and the cover crops were sown after a spring 

sown oats crop. The low weed biomass at RG in 2010 in the no-till system could be attributed 

to the seedbed preparation and oats seeding in spring but the equally low cover crop biomass 

production suggest a much stronger influence of the low late season temperatures at this 

submontane location which displayed the limitations of late season cover cropping.  

4.5 Conclusion 

The present study under central European conditions indicated that no-till practices for 

legume cover cropping in organic farming are only applicable if the weed density at seeding is 

low; otherwise, the weeds will suppress the cover crop growth. In conditions with a high weed 

density, reduced tillage should be considered as an alternative because it strongly reduces the 

early weed pressure. Significant year x location x tillage system x species interactions 

emphasized that the choice of species for late season cover cropping is difficult and the 

potential weed pressure, the inorganic soil N resources, as well as the expected weather 

conditions during the cover cropping period must be considered. The variable legume 

performances indicated that under comparatively dry conditions with moderate weed pressure, 

the normal leafed field pea could be suited for cover cropping in the no-till system while 

under wet conditions and with a low weed pressure, the faba bean, the narrow-leafed lupin 

and the common vetch would be a better choice. The practical use of these legumes in the no-

till system should be further investigated under different climate conditions, soils and within 

different weed communities. In the organic no-till system, the sunflower growth appeared to 

be impaired and the intercropping of legumes and sunflowers had no strong reduction effect 

on the weed biomass production as a result of the absence of an increased total cover crop 

biomass production. In the reduced tillage system legume intercropping with sunflowers or 
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monocropping of sunflowers could be successful if adequate inorganic soil N resources are 

available and the weather conditions are favourable. 
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5. Chapter: General discussion 

5.1 Introduction 

The widespread use of no-till systems in conventional agriculture in North and South 

America as well as central Asia, has invoked great interest among organic producers in 

possibilities of conservation tillage implementation. Additional to the various economic 

advantages organic farmers are furthermore highly interested in environmental benefits 

offered by seeding without tillage as the organic production system is particularly reliant on 

healthy and fertile soil. However, the current organic farming practices use deep soil inversion 

by means of mouldboard plough for weed control (Gruber and Claupein, 2009), potentially 

leading to soil erosion and reduced soil fertility. 

A few studies have used reduced tillage in organic systems (Berner et al., 2008; Krauss et 

al., 2010). But the complete omission of soil disturbance has proven to be difficult to realise 

in organic production systems without adverse consequences on crop yields. Particularly 

problematic is the weed pressure since synthetic herbicides that are commonly used in 

conventional no-till systems are not permitted in organic farming. In organic systems weed 

control usually is based on soil disturbance. There are certain bioherbicides consisting of 

cinnamon and clove oil (WeedZap), acetic and citric acid (AllDown) as well as caprylic and 

capric acid (SUPPRESS) that are permitted for organic farming within the USA (OMRI, 

2015) and in Japan diluted acetic acid (vinegar) can be used if cultural physical and biological 

methods for weed control are not effective (MAFF, 2015). In central Europe the only direct 

weed control methods without soil disturbance are mowing (e.g. flail mowing) and thermal 

weed control but flail mowing of weeds possesses the risk of regrowth and thermal weed 

control has shown not to be very effective for large weeds, many grass species and perennial 

weeds (Wszelaki et al., 2007). Therefore, an approach for the transition to organic no-till has 

to suppress weed growth at an early stage through very competitive cover crops which 

produce large amounts of residue for extended soil coverage.  

Weed growth is enhanced by larger amounts of soil nitrogen (Blackshaw et al., 2003), 

therefore it could be advantageous to use cover crop species to specifically accumulate and 

immobilise large amounts of N for an extended time period.  
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5.2 Non-legume species for cover crop biomass production and long-term N 

immobilisation 

Under central European conditions the cover cropping of small grains (rye and oats) as 

well as mustard is common while sunflowers are seldom used for that purpose. Buckwheat 

and hemp can be considered as novel but have shown their potential as cover crops (Creamer 

and Baldwin, 2000; Brust et al. 2014b).  

In the present study the biomass production of buckwheat and hemp was inconsistent. In 

other studies buckwheat has shown the ability to suppress weeds effectively (Creamer and 

Baldwin, 2000), but it is also susceptible to light frost which limits its potential to produce 

biomass as late season cover crop in temperate climates. The N mineralisation simulation 

revealed only a marginal N immobilisation effect. Therefore buckwheat cannot be 

recommended for cover cropping in the transition period. Hemp is also not suited for this 

period since the anticipated high biomass production could not be achieved by hemp resulting 

in low weed suppression and increased weed biomass production. Mustard has potential as a 

cover crop before no-till sown legume cash crops but it requires large amounts of N for high 

biomass production. Stivers-Young (1998) found that over winter N accumulated in plant 

biomass is lost to a larger extent from mustard than from oats. This is in accordance with the 

mineralisation simulation in the present study and indicated that mustard should only be used 

as cover crop before autumn sown non-legume cash crop that can utilise mineralised N from 

mustard residue.  

In the present study sunflower produced consistently large amounts of biomass and was 

one of the cover crops with the largest N accumulation even in low N availability conditions 

which can be attributed to its ability to increase the N uptake efficiency in low N conditions 

(Hocking and Steer 1982). Solely based on its ability to produce biomass and accumulate N 

sunflower appeared to be a promising cover crop for the transition to organic no-tillage. 

However, the in-depth analysis of the plant compartments revealed that the majority of N is 

accumulated in the leaves which is in accordance with Hocking and Steer (1983). Sunflower 

leaf material showed low C : N ratios with potentially detrimental effects on the long term N 

immobilisation as N mineralisation simulations revealed in the present study (Fig. 2.5 a-c, 2.6 

a-c). In close proximity of leaf and stem material the large C content of the stem material 

could probably reduce the availability of mineralised leaf N for weed growth through N 

incorporation into microbial biomass decomposing the sunflower stems. Nevertheless, leaves 

would decompose quickly leading to reduced ground cover and potentially to increased weed 
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growth. These adverse effects are also due to the low number of stems at a sunflower seeding 

rate of 90 viable seeds m
-2

 compared to rye and oats (300 and 350 viable seeds m
-2

, 

respectively) which develop additional tillers and show therefore increased ground coverage 

when terminated with a roller-crimper. 

The results of the present study indicate that rye or oats might be better suited as cover 

crop preceding no-till sown legume cash crops. Oats showed a lower stem% than sunflower at 

two locations (GR and KÖ) while it was similar to sunflower at PI.  However oats also 

showed large leaf C : N ratios and the simulated proportional N mineralisation of combined 

stem and leaf material was similar to rye. Compared to rye the oats biomass production is 

often reduced (Bauer and Reeves, 1999), which makes rye the most suitable species of the 

evaluated non-legume species for cover cropping before no-till sown legumes.  

The rye biomass production was at one location (GR) similar and at two locations (PI, KÖ) 

second to sunflower. However only after early seeding at the PI location with its presumed 

increased N availability during the cover crop growing phase, the rye biomass production was 

large enough to exceed the threshold of 3.9 Mg ha
-1

 which has been found to reduce the weed 

density of newly emerging weeds after no-till seeding by >75% (Teasdale et al., 1991). 

Massucati and Köpke (2010) achieved a significant reduction of the weed density in no-till 

sown faba beans through the application of 4 Mg ha
-1

 oats straw. In the present trials at KÖ 

and GR the rye biomass production remained below 3.9 Mg ha
-1

 even with additional 

fertilisation. Over winter the rye biomass will decompose resulting in further reduced weed 

suppression. Therefore the rye cover crop biomass production should exceed 3.9 Mg ha
-1

 as it 

was the case at the PI location to ensure sufficient ground coverage in spring. 

For winter rye cover crops it has been shown that late seeding influences the potential rye 

biomass production negatively (Saini, 2009; Bauer and Reeves, 1999). This is consistent with 

the result of the present study and shows the importance of cover crop seeding immediately 

after harvest of the cereal grain. Early harvested cereal grains and therefore early cover crop 

seeding could significantly improve the cover crop biomass production. 

5.3 Grain production of autumn and spring sown legume cash crop monocropped 

and intercropped with cereal grains after variable tillage 

The implementation of spring rye cover cropping before no-till sown legume cash crops in 

the present study showed that under certain conditions the rye can become a problematic 

volunteer weed. The seeding of the cover crop was carried out in early August (similar to the 
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preliminary trials at GR and KÖ), followed by directly seeding the cash crop into the cover 

crop in October. In these plots spring rye re-appeared after winter and developed into a 

volunteer weed, particularly at KÖ. Winter rye is known for its frost resistance but spring rye 

has lower frost resistance (Fowler et al., 1996), and should be terminated by frost. The rye 

regrowth resulted probably from its early growth stage at the beginning of October and the 

insufficient rye termination by the opener disk and press wheels. The rye was only damaged 

and regrowth occurred while the undisturbed rye in the plots of spring sown cash crops was 

terminated by frost. Limin and Fowler (2006) showed that vegetative growing stages of spring 

cereal grain genotypes can possess a substantially increased cold tolerance which explains the 

overwintering of rye regrowth. Nevertheless, the share of rye on the total weed biomass at BO 

and RG was not as high as at KÖ. This can be attributed to the large inorganic soil N 

resources in the no-till system at KÖ which increased the rye growth. Cash crop sowing of 

legumes in autumn should only be carried out if rye has reached anthesis and can be 

successfully terminated with a roller crimper (Mirsky et al., 2009), otherwise spring seeding 

of no-till cash crops into the frost terminated rye residue should be preferred. 

Among the two winter and three spring legumes the normal leafed winter field pea 

appeared best suited for the omission of tillage since its yields were similar in the no-till, 

reduced and plough tillage systems. The semi-leafless spring field pea and spring faba bean 

appeared to be better suited for the reduced tillage system. In the reduced tillage system the 

weeds were removed through tillage which was advantageous for the spring field pea and faba 

bean with their reduced weed suppressive ability. The narrow-leafed lupin appeared not to be 

suited for cash cropping in the organic no-till system due to its low weed competition 

(Strydhorst et al., 2008). Within the no-till system the winter field pea grain yields were not 

consistently larger than the spring field pea yields but additionally the winter field pea 

displayed a tendency to better suppress weeds. The improved weed suppression of the winter 

field pea compared to the spring variety could be attributed to the early seeding in autumn 

which enabled the winter field pea to germinate in autumn and compete with weeds early in 

the growing season. The winter and spring field pea differed in the leaf type and growth habit 

(long-vined) which probably contributed to differences in weed biomass in the field pea plots 

because semi-leafless cultivars of peas are less competitive against weeds (Semere and Froud-

Williams, 2001; Spies et al., 2011). In a recent study Gronle and Böhm (2014) found a better 

weed suppression of long-vined normal leafed winter field peas compared to short-vined 

semi-leafless winter field peas.  
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Intercropping of legumes and cereal grains only was successful for the spring sown 

legumes but even in those crops intercropping did not generally increase the weed suppression 

compared to monocropped plant stands. The intercropping of legumes and oats improved the 

weed suppression in all tillage systems at KÖ and in the tilled systems at BO. This could be 

attributed to the large inorganic soil N resources at KÖ and to increased N mineralisation in 

the tilled systems at BO which probably increased the competitive ability of the cereal 

intercrop component (Neumann et al., 2007). The total intercropped grain yield exceeded the 

MC legume yield only at one location (KÖ) in the no-till system and at two locations (KÖ and 

BÖ) in the reduced and plough tillage system which was probably also a result of the 

increased soil N resources at KÖ location and in the tilled systems at BO. This shows that the 

successful intercropping of legumes and cereal grains is dependent on the available inorganic 

soil N resources as it influences the weed competition and the grain yield of the non-legume 

cereal grain within the IC plant stand. 

5.4 Legume cover crop biomass production and weed suppression in systems with 

reduced and without tillage 

The field trials for the alternative transition to the no-till system after cereal grain harvest 

in late summer with the no-till seeding of legume cover crops revealed several important 

factors that need to be considered when the legume species for cover cropping are chosen. 

Besides the weed pressure, the inorganic soil N resources and the weather conditions are 

strongly influential for the cover cropping success.  No-till seeding of cover crops appeared to 

be only suited if the weed pressure was low or moderate. In high weed density conditions the 

application of reduced tillage before the seeding of the legume cover crops displayed very 

positive effects for their biomass production and weed suppression. This can be explained by 

the slow legume development in their early growing stages (Giunta et al., 2009) and their 

susceptibility to early competition as shown for peas by (Nelson and Nylund, 1962), resulting 

in high competition from already established weeds in the no-till system. Reduced tillage 

removed the weeds and the cover crops only had to compete with emerging or re-emerging 

weeds which reduced the weed biomass production.  

Suitable legume species for no-till cover cropping varied depending on the weather 

conditions. In comparatively dry conditions and with moderate weed pressure, the normal 

leafed field pea was best suited among the evaluated species. Its ability to resist increased 

weed pressure can be attributed to its intertwined long-vined growth habit and its leaf type 
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enabling the normal leafed field pea to overgrow weeds in the inter-row space and reduce the 

available photosynthetically active radiation. Gronle and Böhm (2014) showed in trials with 

long-vined normal leafed field pea a substantial reduction of the photosynthetically active 

radiation transmitted towards the weed canopy which could explain the high weed 

suppression by the normal leafed field pea plant stands. The other cover crops appeared not to 

be suited for cover cropping in the presence of increased weed pressure which is in the case of 

faba bean and narrow-leafed lupin in agreement with the legume cash crop trial described in 

Chapter 3.  

Under low weed pressure conditions there was in one site-year (KÖ 2010) an indication 

that faba bean, narrow-leafed lupin and common vetch could be better suited than field pea if 

precipitation is high. The reduced performance of field pea compared to faba bean, narrow-

leafed lupin and common vetch at KÖ was probably due to its susceptibility to wet conditions 

since the emergence of field pea as well as the weed biomass at harvest I and II in the no-till 

system was similar to faba bean. The well performing legume species probably profited from 

the reduced weed biomass production at KÖ in 2010 which could be attributed to the 

chopping and spreading of the preceding cereal grain crop potentially increasing the weed 

suppression through ground coverage. However the number of weed species emerging after 

no-till seeding was increased in 2010 which disputes this assumption. The weed biomass 

production was probably mainly influenced by the available inorganic soil N resources. The 

large inorganic soil N resources at KÖ in 2009 likely increased the weed biomass production 

(Blackshaw et al., 2003) while lower inorganic soil N in 2010 resulted in lower weed growth. 

The large biomass production of MC sunflower in the reduced tillage system at RG in 2009 

and particularly at KÖ the same year confirmed results from an earlier study presented in 

Chapter 2. The further improved sunflower biomass production at the KÖ location displayed 

again the sunflowers’ response to large available inorganic soil N resources. However, even 

with large inorganic soil N resources available the sunflower failed to produce sufficient 

amounts of biomass in the no-till system at KÖ in 2009. The N accumulation of sunflower 

(Fig. 4.3) in the no-till and reduced tillage system revealed that sunflower accumulated only 

small amounts of N. This can be attributed to the increased N accumulation by weeds (data 

not shown). Johnson (1971) and Kandel et al. (1997) showed that sunflower is very 

susceptible to weed pressure in its early growing stages. Due to the already established weeds 

in the no-till system the weed competition probably reduced the sunflower biomass 

production. This shows that sunflower should only be grown in low weed pressure conditions 

with potentially improved biomass if weeds are removed by tillage. The alleviation of soil 
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compaction through tillage can potentially further improve the sunflower´s growth because of 

its susceptibility to soil compaction (Bayhan et al., 2002). 

5.5 Conclusion 

The complete omission of tillage in organic farming has proven to be difficult but the 

integration of no-tillage phases into organic crop rotations appears to be possible and could 

make organic farming more sustainable. For no-till sown legume cash crops the preliminary 

non-legume cover cropping after plough tillage has shown to produce large amounts of 

biomass potentially reducing the weed biomass in spring. The early seeding of the cover crops 

appeared to be important for the production of large amounts of biomass. The biomass 

production by the non-legume cover crops could be increased through organic fertiliser but in 

many cases with detrimental effects on the long term N immobilisation in cover crop biomass. 

The N mineralisation simulations indicated that rye could be well suited for cover crop 

biomass production and long term N immobilisation. The legume cash crop trials used rye as 

a cover crop in which the legumes were directly sown. The autumn seeding into the rye plant 

stand damaged the rye and resulted in rye regrowth and partially in the development into a 

volunteer weed. This showed that the seeding of the rye has to be carried out as early as 

possible to advance the phenological growth stage towards inflorescence emergence at cash 

crop seeding in October and that the rye needs to be terminated mechanically before cash crop 

seeding. Among the tested legumes the normal leafed field pea displayed the least variation 

between the no-till, reduced tillage and plough tillage system. This indicated that the normal 

leafed field pea is equally suited for all three tillage systems. The spring faba bean and 

narrow-leafed lupin benefitted from the weed removal by tillage in the reduced tillage system 

and appeared to be better suited for the reduced tillage and plough tillage system. The success 

of intercropping spring legume cash crops with oats appeared to be influenced by inorganic 

soil N and showed the importance of available inorganic soil N resources for the success of 

intercropping legumes and non-legumes. This was in agreement with the legume cover crop 

trials in the present study which showed in the reduced tillage system that IC legume and 

sunflower plant stands can produce larger amounts of biomass than MC legumes plant stands 

if sufficient amounts of inorganic soil N are available for the sunflower growth. This was not 

the case in the no-till system because sunflower appeared to be intolerant to the growing 

conditions in the no-till system. The suitability of legume species for no-till cover cropping 

showed some variations depending on the weed pressure and the weather conditions. For 
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moderate weed pressure under dry conditions the normal leafed field pea appeared to be best 

suited for no-till cover cropping. Under wet conditions the faba bean, narrow-leafed lupin and 

common vetch appeared to be suited for the no-till system if the weed pressure was low. It 

was apparent in our trials that only a few crops were able to suppress weeds in the no-till 

system sufficiently. Within a crop rotation the weed pressure would probably increase and 

require occasional tillage to manage weeds. Nevertheless this study has shown that the 

implementation of no-tillage phases in organic agriculture appears to be possible. Such short 

term no-tillage could make organic farming more sustainable. 

5.6 Further research 

The partitioning of the cover crop biomass into stem and leaf material and determination of 

their individual C : N ratios revealed substantial differences between the tested non-legume 

species. The N mineralisation simulation under tillage conditions provided further information 

for the evaluation of the cover crops for long term N immobilisation. Yet, the N 

mineralisation simulation with the STICS crop model could not be carried out under no-till 

conditions because there were large inconsistencies for the decomposition of residues with 

low C : N ratios on the soil surface. The STICS model is capable of simulating the N 

mineralisation on the soil surface but the model needs to be fitted for plant materials with low 

C : N ratios. With the updated model further studies should be carried out to confirm the 

actual amount of N released from the cover crop residues over winter. The STICS model 

could prove to be a useful tool for the evaluation of cover crop and cash crop residues by the 

determination of their N mineralisation. 

The spring faba bean and field pea displayed similar performance in the reduced tillage and 

plough tillage system which indicated that plough tillage is not always required before the 

seeding of these crops. This was also the case for oats which displayed high weed suppression 

in the reduced tillage system if sufficient inorganic soil N resources were available. These 

crops should be further investigated for seeding after reduced tillage because the reduction of 

tillage could further improve the sustainability of the organic farming system. 

Depending on the weed pressure and weather conditions the normal leafed field pea, faba 

bean, narrow-leafed lupin and common vetch appeared to be suited for cover cropping in an 

organic no-till system and should be the basis for no-till cover crop trials with legumes in the 

future. Additional research with these legumes under variable weed pressure and weather 

conditions could improve the decision basis for no-till cover cropping in organic farming.   
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Fig. A 1. Prototype plot seeder with cross-slot openers. 

 

Fig. A 2a-b. Cross-Slot opener (red arrows indicating seed travel and placement). 

a b 
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Fig. A 3. Field pea emerging through cover crop residues in the no-till system. 

 

Fig. A 4. Hemp cover crop in early September at the trial location Pillnitz. 
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Fig. A 5a-c. Rye, oats and sunflower cover crops (respectively), in early September at the trial location Groß Radisch. 
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Fig. A 6a-c. Mustard, buckwheat and hemp cover crops (respectively), in early September at the trial location Groß Radisch. 
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Fig. A 7a-c. Rye, oats and sunflower cover crops (respectively), in early September at the trial location Köllitsch.  
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Fig. A 8a-c. Mustard, buckwheat and hemp cover crops (respectively), in early September at the trial location Köllitsch. 
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Fig. A 9a-c. MC winter field pea at flowering in the no-till, reduced tillage and plough tillage system (respectively), at the trial location Reinhardtsgrimma. 
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Fig. A 10a-c. IC spring field pea at flowering in the no-till, reduced tillage and plough tillage system (respectively), at the trial location Bockelwitz. 
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Fig. A 11a-b. MC field pea in the no-till and reduced tillage system (respectively), in early September at the trial location Reinhardtsgrimma 2009. 
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Fig. A 12a-b. MC Grass pea in the no-till and reduced tillage system (respectively), in early September at the trial location Köllitsch 2009. 
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Fig. A 13a-b. MC common vetch in the no-till and reduced tillage system (respectively), in late October at the trial location Reinhardtsgrimma 2010. 
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Fig. A 14a-b. MC common vetch in the no-till and reduced tillage system (respectively), in late October at the trial location Köllitsch 2010.  
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