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Abstract

Recently, with the development and growing popularity of pen-based or touch-based input
devices, such as smart phones and tablet PCs, on-line handwritten text recognition has been
receiving large attention, especially for unconstrained text recognition. This trend is spreading
into automobiles where drivers may input destinations to navigation systems by speech or written
characters. In this situation, however, they often have to write characters without supported by
wrist or elbow and without visual feedback. Moreover, they may stop writing while writing
destinations to keep safe driving, namely, a text may be written in one or more steps, so that
positions of characters or even strokes (a trajectory written from pen/finger down to up) become
unstable. In this thesis, to develop an character-position-free on-line handwritten Japanese and
Chinese text recognizers, we firstly collect handwritten text patterns written without supported by
wrist or elbow and without visual feedback, and make models to produce such text patterns from
normally handwritten text patterns extracted from the TUAT Kondate Japanese database and
CASIA-OLHWDB2.1Chinese database, as well as the model for text patterns with characters
completely overlaid. Then, we consider recognition methods which can recognize handwritten
Japanese and Chinese text patterns produced from all the models.

To our best knowledge, it is common to use integrated segmentation and recognition method
for normally handwritten Japanese/Chinese text recognition, to solve the character segmentation
problem. It is more challenge for character-position-free handwritten text due to the fact that
spaces between characters are very unstable. We considered two segmentation methods to solve
it. One classifies each off-stroke between real strokes into a non-segmentation point, a
segmentation point, and an undecided point according to the output of SVM model, we call it
“candidate segmentation method”. The other sets each off-stroke as an undecided point, we call
it “undecided segmentation method”. Both two segmentation methods evaluate the segmentation
probability by SVM model. Then, the optimal segmentation-recognition path can be effectively
found by Viterbi search in the candidate lattice, combining the scores of on-line and off-line
character recognition, geometric context, linguistic context, as well as the segmentation scores by
SVM. We test these two methods on generated character-position-free Japanese and Chinese
sample patterns, as well as on collected handwritten Japanese text patterns. The results of
experiments confirm that the undecided segmentation method yields better recognition rate than
the candidate segmentation method, approaching the performance of the latest recognizer on
normally handwritten horizontal Japanese and Chinese text patterns with no serious speed



restriction in practical applications.

In chapter 1, we briefly describe the background and the objective of this study. Then, we
introduce the organization of this thesis.

In chapter 2, we mainly give a survey on the state-of-the-art methods for on-line handwritten
text recognition, and the overlaid handwriting text recognition used on mobile phones with small
surface. Then, we introduce current text input situation in the driving context, and character-
position-free handwritten text recognition.

In chapter 3, we firstly describe collected handwritten text patterns without supported by wrist
or elbow and without visual feedback. Then, we describe the normally handwritten text patterns
in Kondate database and CASIA-OLHWDB database. Finally, we introduce 4 models to generate
character-position-free Japanese and Chinese text patterns using normally handwritten horizontal
Japanese and Chinese text patterns, respectively.

In chapter 4, we briefly describe the character recognition system combining on-line and off-
line character recognizers, for each candidate character pattern in the candidate lattice.

In chapter 5, we describe the recognition methods for character-position-free on-line
handwritten Japanese text recognition.

In chapter 6, we describe the linguistic context and geometric context for the path evaluation
criterion to improve the text recognition accuracy.

In chapter 7, we describe experiments on generated character-position-free on-line handwritten
Japanese and Chinese text datasets, and collected handwritten text patterns, as well as normally
handwritten Japanese text patterns. Moreover, we compare the results of the proposed
segmentation methods with the original recognizer, and give some analyses of recognition
performance.

In chapter 8, we conclude this research and give several directions for the future work.
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1. Introduction

In this chapter, we describe the background and objective of this study. We also introduce the
organization of this thesis.

1.1 Background

The research on on-line handwriting recognition began in the 1960s, and has been receiving
intensive interest in the 1980s [1]. Most recognition systems, however, have writing constraint
that characters are written in boxes to provide character segmentation prior to recognition. It is
not natural and uncomfortable for people, due to people must pause every time they write one
character.

In recent years, with the development and proliferation of pen-based and touch-based input
devices, such as smart phones, tablet PCs, Anoto-pen [3], and electronic whiteboards and so on.
These devices improve the precision of capturing the trajectories of pen tip movements and
provide a comfortable writing interface, moreover, their writing area are getting larger than before.
People tend to write text continuously without writing box constraint for recording information
or communication. Therefore, on-line handwritten text recognition has been receiving large
attention, especially for unconstrained text recognition.

This trend is spreading into automobiles with large surface for vehicle-mounted touch panels,
where drivers may input destinations to navigation systems by speech or written characters. In
this situation, however, they often have to write characters without supported by wrist or elbow
and without visual feedback. Moreover, they may stop writing while writing destinations to keep
safe driving, namely, a text may be written in one or more steps, so that positions of characters or
even strokes (a trajectory written from pen/finger down to up) become unstable. Therefore, we
need to develop a handwriting recognizer to recognize handwritten text patterns written under this
environment. Except the special automobile environment, this recognition system also can be
applied to the need of recognizing text written without visual feedback, such as writing memos
for students in the class while listening and watching the blackboard, and recoding some
information in the meeting.

Since we do not have actual on-line handwritten text patterns collected from vehicle-mounted
touch panels while driving, we have collected a small amount of text patterns from students with
the condition that they write specified short phrases on a tablet PC without supported by wrist or
elbow and without confirming previously written strokes, namely, without visual feedback for the
safety of driving, which meets the requirement for display system operation while a vehicle is in
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motion [4]. This is a simulated environment where a driver would write destinations under such
the condition. Then, we make models to produce such text patterns as much as possible from
normally handwritten text patterns, as well as the model for text patterns with characters
completely overlaid, which provides a convenient input choice especially writing Kanji characters
by finger. We call them character-position-free handwritten text patterns.

The character-position-free handwritten text recognition becomes more challenging than
normal handwritten text due to the unstable position between characters, especially the loss of
horizontal character shift in overlaid handwritten text. This thesis mainly focuses on resolving the
character segmentation problem, and constructing a robust character-position-free on-line
handwritten Japanese/Chinese text recognition system.

1.2  Objective

The research objective is to develop a handwriting recognizer based on the existing system [5],
which can recognize character-position-free on-line handwritten Japanese/Chinese text patterns,
and apply it into automobile environment.

The Japanese is a large character set language, which includes thousands of ideographic
characters of Kanji, two sets of phonetic characters (Hiragana and Katakana), alphanumeric, and
symbols. Most Kanji character patterns are composed of multiple subpatterns called radicals,
which are shared among many Kanji character patterns. The Chinese also includes tens of
thousands of traditional characters and simplified ones. In Chinese, About 5000 characters are
frequently used in daily life [7].

Due to the large character set, the unstable character positions and the divergence of writing
styles, it is a challenging research work to segment correctly characters before recognition as
human for machine. To solve this problem, we follow the over-segmentation-based recognition
framework as shown in Figure 1-1. In the over-segmentation stage, we consider two segmentation

— Linguistic
[ Character recognition ] context
Input l l

handwritten text ion- iti Result text
— Over-segmentation —| Segggg:tggzsﬁsgggrl}tlon — Pathsearch [—

T

Geometric
context

Figure 1-1 Flow chart of over-segmentation-based recognition.

methods.
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1.3  Structure of this thesis

In chapter 1, we briefly describe the background and the objective of this study. Then, we
introduce the organization of this thesis.

In chapter 2, we mainly give a survey on the state-of-the-art methods for on-line handwritten
text recognition, and the overlaid handwriting text recognition used on mobile phones with small
surface. Then, we introduce current text input situation in the driving context, and character-
position-free handwritten text recognition.

In chapter 3, we firstly describe collected handwritten text patterns without supported by wrist
or elbow and without visual feedback. Then, we describe the normally handwritten text patterns
in Kondate database and CASIA-OLHWDB database. Finally, we introduce 4 models to generate
character-position-free Japanese and Chinese text patterns using normally handwritten horizontal
Japanese and Chinese text patterns, respectively.

In chapter 4, we briefly describe the character recognition system combining on-line and off-
line character recognizers, for each candidate character pattern in the candidate lattice.

In chapter 5, we describe the recognition methods for character-position-free on-line
handwritten Japanese text recognition.

In chapter 6, we describe the linguistic context and geometric context for the path evaluation
criterion to improve the text recognition accuracy.

In chapter 7, we describe experiments on generated character-position-free on-line handwritten
Japanese and Chinese text datasets, and collected handwritten text patterns, as well as normally
handwritten Japanese text patterns. Moreover, we compare the results of the proposed
segmentation methods with the original recognizer, and give some analyses of recognition
performance.

In chapter 8, we conclude this research and give several directions for the future work.
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2. State of the art

In this chapter, we mainly review the state-of-the-art recognition methods for on-line
handwritten text recognition, and on-line handwriting overlaid text recognition which has been
applied in small-surface devices, such as smart-phones. Then, we introduce current text input
situation in the driving context. Finally, we introduce the character-position-free handwritten text
recognition, we may consider on-line handwriting overlaid text as an extremely special case of
character-position-free handwritten text patterns.

2.1  On-line handwritten text recognition

With the development of pen-based or touch-based devices, such as tablet PCs, digital pens and
electric whiteboards and so on, the writing area of these devices becomes larger than before.
People tend to write text continuously with little constraints. The demand for improving the
handwriting text recognition is still increasing to meet potential many applications. On-line
handwritten text recognition has been receiving larger attention, especially for unconstrained text
recognition.

In general, handwritten text pattern recognition methods divided into on-line recognition and
off-line recognition [6]. On-line recognition recognizes text patterns captured from a pen-based
or touch-based input device where a series of trajectories of pen-tip or finger-tip movements are
recorded, while off-line recognition recognizes text patterns captured from a scanner or a camera
device as two dimensional images. Due to the on-line handwritten text pattern includes both
temporal information of pen-tip or finger-tip movements and spatial shape information, the on-
line handwriting recognition can yield higher recognition accuracy than off-line recognition.
Moreover, on-line handwriting recognition provides friendly interaction and adaptation capability
for users, such as the recognition result is showed and updated at the same time while writing,
user can respond to the recognition result to correct misrecognition.

The research on on-line handwriting recognition started in the 1960s and has been receiving
intensive interest from the 1980s. Tappert et al. [1] made a comprehensive survey before the 1990s.
Nakagawa gave a survey focused on on-line handwritten Japanese characters recognition [2].
Since the 1990s, the research efforts have been aiming at the relaxation of constraints to ensure
successful recognition, such as writing in boxes and the compliance with standard shapes. In
recent survey papers, Plamondon et al. [6] mainly reviewed the advances of western handwriting
recognition. Liu et al. [7] reviewed the advances in on-line Chinese and Japanese handwriting
recognition from the 1990s. Recently, Zhu et al. [9] reviewed the on-line handwriting Japanese
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character recognition and its practical applications.

The handwritten Japanese/Chinese text recognition is more challenging than western language
due to the large character set. Japanese character set consists of various characters: symbols,
numerals, hiragana and katakana (called Kana), and Kanji characters of Chinese origin. Hiragana
and katakana are phonetic characters. Kanji characters are ideographic characters, which have
divided into two classes: JIS (Japanese Industrial Standard) first level set and JIS second level.
The JIS first level set contains 2,965 common use characters, which are necessary for reading the
newspaper, and the JIS second level set contains 3,390 characters less common and special
characters for naming.

Chinese characters sets consist of traditional Chinese characters mainly used in Taiwan, and
simplified Chinese characters used in the mainland of China. The simplified Chinese characters
includes two character sets, one contains 3,755 characters and the other contains 6,763 characters,
where the first set is a subset of the second one, were announced as the National Standard
GB2312-80. The traditional Chinese set includes 5,401 characters. In both simplified and
traditional Chinese, about 5,000 characters are frequently used [7].

Moreover, most Kanji/Chinese character patterns are composed of multiple subpatterns, called
radicals, which are shared among many Kanji character patterns. In Kanji character patterns, some
are simple consisting of a single radical, while others are complex with multiple radicals.

In addition, the various writing styles also obstruct handwritten text recognition. The
handwritten scripts are generally classified into three typical styles: regular style, fluent style and
cursive style. The regular style is also referred to as block style or hand-printed style, which is
written carefully with keeping fairly strict proper stroke number and order. The fluent style is
often called “cursive” style, which is close to peoples’ practical writing and is written faster with
fewer strokes, and some characters are connected together. The current recognition systems can
recognize regular script with high accuracy, whereas the recognition of fluent or cursive style still
remains unsolved and requires more intensive research efforts. The fluent or cursive script is the
target of most recognition systems, which features greater variability of stroke-order and stroke-
number within character and occurs frequently in practical writing.

Therefore, it is impossible to segment characters unambiguously in handwritten text
recognition. Many works have focused on resolving the segmentation problem. These proposed
methods can be roughly classified into the following categories: segmentation-based method,
integrated segmentation and recognition method, and segmentation-free method.

2.1.1 Segmentation-based method

The segmentation-based method attempts to segment characters before character recognition
solely according to geometric layout features, such as character size, position, and inter-
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relationship.

Tseng et al. [13] proposed a segmentation method based on merging strokes and dynamic
programming for the off-line handwritten Chinese characters recognition. It firstly extracts the
strokes of the off-line characters to build the stroke bounding boxes. Then, the stroke bounding
boxes are heuristically merged as a candidate character or a part of candidate character pattern
using knowledge-based merging operations. Finally, the best segmentation boundaries is found
by dynamic programming method. This method, however, is feasible only for neatly handwritten
text. The segmentation performance mainly relies on the extracting stroke algorithm from
characters.

Lu et al. [14] proposed a method to segment handwritten Chinese destination addresses of mail
pieces. It merges subassemblies of Chinese characters based on the structural features of Chinese
characters and the topological relations of subassemblies, namely, left-right, upper-lower and
inside-outside relations. This pure structure-based segmentation method, however, is only suitable
for handwritten text patterns without connected characters.

Zhao et al.[15] presented a two-stage approach to segment unconstrained off-line handwritten
Chinese characters. In the first segmentation stage, according to the vertical projection and
background skeleton, a horizontal handwritten Chinese character text is coarsely segmented into
several blocks, and the blocks of connected characters are identified. The candidate segmentation
points are found. In the second stage, connected characters are separated using geometric features
of strokes, then the fine segmentation paths are extracted using fuzzy decision rules, which
classify the candidate segmentation points. This segmentation method can resolve parts of
connected characters. The segmentation accuracy of characters, however, is 81.6% on 1,000
unconstrained handwritten Chinese character texts. Wei et al. [16] proposed a new approach for
connected Chinese characters, where the best segmentation path can be found by genetic
algorithm.

Liang et al. [17] proposed a metasynthetic method to segment off-line handwritten Chinese
character texts. For non-touching characters, it firstly applies the Viterbi algorithm to obtain the
candidate segmentation paths, then a dynamic programming algorithm is applied to merge
components. For touching characters, it firstly extracts candidate segmentation paths according
to background and foreground information, and extracts peripheral features for each candidate
segmentation path. Then the best segmentation path is found by the mixture probabilistic density
function whose parameters are obtained by the EM algorithm.

Furukawa et al. [18] proposed a segmentation method for online unconstrained handwritten
Japanese texts using off-stroke (between strokes) features. In this method, the handwritten text is
pre-segmented into basic segments, and a segmentation graph is constructed, where a node stands
for a candidate segmentation point, an edge stands for a candidate character pattern, which is
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created by merging one or more basic segments. Then, it extracts the features of each candidate
character pattern, which include temporal and geometric features, and proposed off-stroke
features within candidate character patterns and between candidate character patterns. Based on
the assumption that each feature distribution fits a normal distribution, the candidate segmentation
pattern likelihood can be calculated from these extracted features using a probabilistic model.
Finally, an optimal segmentation path on the segmentation graph is found by dynamic
programming (DP). The character segmentation rates, however, is 75.6% of all characters.

2.1.2 Integrated segmentation and recognition method

Handwritten Japanese/Chinese text recognition is challenging problem due to the fact that
spaces between characters are not obvious, and many Kanji characters comprise radicals with
internal gaps, as well as character touching. Without character recognition cues and linguistic
context, characters in handwritten text patterns cannot be segmented unambiguously. A feasible
solution to overcome the ambiguity of character segmentation is called the integrated
segmentation and recognition method. Liu et al. [8] evaluated several common pattern classifiers
based on this integrated segmentation and recognition framework, which includes neural
classifiers, discriminative density models, and support vector classifiers, on handwritten numeral
texts recognition. They demonstrate that superior text recognition performance can be achieved
with appropriately designed classifiers even with simple pre-segmentation and without using
geometric context in post-processing.

The integrated segmentation and recognition method is classified into segmentation-free and
over-segmentation-based methods [10], [11]. The two methods are also called implicit
segmentation and explicit segmentation methods, respectively. Segmentation-free methods will
be introduced in the next section.

Over-segmentation-based methods [5], [12], [19], [20], [21], [22], [23], [24], attempt to split
character patterns at their true boundaries and classify the split character patterns. Character
patterns may also be split within them, but they are merged later. This is called over-segmentation.
The over-segmentation-based method is mainly accomplished in two steps: over-segmentation
and path search. The handwritten text pattern is firstly over-segmented into primitive segments,
and each segment composes a single character or part of a character. The primitive segments are
combined to generate candidate character patterns, and then a segmentation lattice is constructed
as shown in Figure 2-1, where a node stands for a candidate segmentation point and an edge stands
for a candidate character pattern. Each candidate character pattern can obtain several similar
character classes with the corresponding class scores by character recognition, and then
segmentation-recognition candidate lattice is constructed, where each path in the lattice
corresponds to a segmentation-recognition paths (hypothesis), which is evaluated by combining
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the character recognition, linguistic context and geometric context. Finally, the optimal
recognition result text is found by searching for the optimal segmentation-recognition path with
maximum score or minimum cost.

PSP UP sP sP

Figure 2-1 Segmentation lattice. (SP is segmentation point and UP is undecided point.) The thickly

marked path is the correct segmentation path.

(1) Path evaluation

The key issue in over-segmentation-based text recognition is how to evaluate of candidate
segmentation-recognition paths (segmentation hypotheses) in the candidate lattice. A desirable
criterion should make the path of correct segmentation have the maximum score. Probabilistic
model based on the maximum a posteriori (MAP) criterion [25] is one of the frequently used
methods for segmentation hypothesis evaluation [5], [26], [27].

An early text class probability model can be found in [28]. Assume that a handwritten text
pattern X is segmented into a sequence of segments S = s;s,,:+,s, (note that there are many
segmentation candidates even with the same text length), where s; stands for a candidate
character pattern, and is assigned to a text class C = c;c,, -*+, ¢, Where character c; is assigned
to s; by a character recognition. The a posteriori probability of the text class is defined as:

P(CIX) = Z P(C,S|X) (2-1)
S
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The segmentation candidate is constrained to have the same length of C, that is |S| = |C| = n.
The candidate character patterns are represented by the feature vectors X = x;x5,++,x,. TO
avoid summing over multiple segmentation candidates in Eq. (2-1), the optimal text class can be
decided by

C*=arg max max P(C,S|X). (2-2)

This is to find for the optimal segmentation candidate S for each text class. Using the Bayesian
law, P(C,S|X) is decomposed into

P(XIC,S)P(C,S) _ P(XIC,S)P(S|C)P(C)

= = 2-3
Assuming context independence of character shapes, it can by approximated as:
T Pxilci, sP(siler)
XilCiy S Si|Ci
P(C,S|X) ~ P(C A
(C,S1X) = P( )|| PO
P(ci,silxi)
=P(C 2-4
( )I [Freo (@4

n
—P(0) 1_[ P(cilsy, x)P(silx;)
L P(c;)
i=1
where P(s;|x;) stands for the probability of geometric context, the priori probability of text class
P(C) stands for the linguistic context. It is often approximated by a bigram language model for
an open vocabulary:

PO = P(e | | Paitein) (25)
=2

Assume that the character recognition is not related into the geometric context, P(c;|s;, x;)
can be replaced by P(c;|x;). Ignoring the geometric context, P(s;|x;) can be viewed as a
constant, and the text class probability in Eq. (2-4) is approximately

1 P(ci|x;
P(C,SIX)zP(C)l_[ I(f(c'x))
i=1 .

(2-6)

where P(c;|x;) stands for the posterior probability of the candidate character pattern x; being
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recognized as c;. In literature [28], P(c;|x;) is approximated by the output of a multi-player
perceptron (MLP) classifier.

In handwritten Japanese text recognition, Nakagawa et al. [23] proposed a text class probability
model incorporating the geometry of inter-character gap. The candidate pattern sequence is
denoted by S = 5,915292,"*,Sngn, Where s; represents the geometric features of the i-th
character pattern, which includes the width and height of bounding box, and g; represents the
geometric features between adjacent two character patterns. In the Eq. (2-3), P(X) is omitted
because it is independent of text class. P(C) is estimated by a bigram model. Hence, P(C,S|X)
is approximated by

P(C,S|X) = P(X|C,S)P(S|C)P(C)

n
| [Peaten
i=1

(2-7)

n n
x| [Pesitcorcgieci x| [ Peeilei)
i=1 i=1

where P(x;|c;) is the likelihood of pattern x; with respect to class c;, which is estimated by a
character classifier. P(s;|c;) and P(g;|c;ici+1) can be seen as character likeliness and between-
character compatibility, respectively. Finally, by taking log of the both sides in Eq. (2-7), the all
score of a path is the summation of product of probabilistic likelihood in the right-hand side. The
literature [20], [29], [30], [31] have used the similar evaluation criterion.

If the character classifier is trained to be resistant to non-characters, namely, all defined classes
are assigned low confidence values on non-character patterns. Without geometric context score,
it can still give high text recognition accuracy [7]. The text pattern is classified to

C*=arg mé;\xP(C)P(XlC) = arg max P(C) nP(xi|ci) (2-8)
c L

=1

By assuming P(C) is equal, the classification criterion is further simplified to
n
C*=arg mé;\XP(XlC) = arg maxl_[P(xdcl-) (2-9)
c .
=1

A text pattern can be segmented into variable lengths of character pattern sequences. However,
since the likelihood measure is usually smaller than one, the summation criterion is often biased
to paths with fewer characters, namely short path. This will raise the segmentation error of
merging multiple characters into one candidate pattern. To overcome this bias, Tulyakov et al.
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[32] proposed a normalized text probability score as follows:

n 1/Tl
C* = arg max (1_[ P(x; |ci)> (2-10)
c
i=1

The normalized criterion, obtained by dividing the summation criterion by the number of
segmented characters (segmentation length), tends to over-split characters.

To solve the problems, Zhu et al. [5] proposed a robust context integration model for on-line
handwritten Japanese text recognition. By labeling primitive segments, the proposed path
evaluation criterion can not only integrate the character shape information into recognition by
introducing some adjustable parameters, but also is insensitive to the number of segmented
character patterns because the summation is over the primitive segments. The path evaluation
criterion is expressed as follows:

n 6
FX,C) = Z E[Ahl + Az (e — D)logPy + Az logP (g, |SP)
i=1 \ h=1
Jitki—1
+2 2 log P(g;|NsP) b + ma
72 oy 9 (g,| ) (2-11)

where P,,P,,P;,P,,Ps, and Py stands for the probabilities of trigram (P(c;lci—2¢i—1) ),
character pattern sizes (P(b;|c;)), inner gaps (P(q;l|c;)), single-character positions (P(p{|c;)),
pair-character positions (P(pf’|cl-_1cl-)) and character recognition (P (x;|c;)), respectively. k; is
the number of primitive segments contained in the candidate character pattern x;. Ay1, Ap2 (h =
1~7) and A are the weighting parameters. g; is the between-segment gap feature vector. If the
adjacent two segments is within a true character, the label is NSP (non-segmentation point),
otherwise is SP (segmentation point). Due to the character recognition is estimated by the
combination score of on-line and off-line isolated character recognizers, Zhu et al. [33] divided

o

the character recognition into two parts P(x{"|c;) and P(x'/|c;), where x{™ denotes the on-

line features of x;, x?// denotes the off-line features of x;. P(x{"|c;) and P(x!'/|c;) are
estimated by the score of the on-line recognizer and off-line recognizer, respectively. Then the

path evaluation criterion in Eq. (2-11) is changed as follows:

n 7
€)= D 3D U+ ok = DlogPy + As:logP(g,|SP)
i=1 \h=1
Jjitki—1
+2 Z log P(g;|NsP)} + ma
82 oy 9 (91| ) (2-12)
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Under this same path evaluation criterion, Gao et al. [34], [35] reduced the text recognizer size
for hand-held devices by compressing each component in this text recognition system. It
compresses MQDF2 based off-line character recognizer by linear discriminant analysis (LDA),
vector quantization and data type transformation, and selects an elastic matching based on-line
recognizer. This recognition method has been successfully applied in smart phones and tablets.

In handwritten Chinese text recognition, to overcome the problem of sensitivity of the path
length, Wang et al. [36] used the similar path evaluation criterion for real-time recognition of on-
line handwritten sentences. The path evaluation is the combination of multiple contexts as
follows:

fX,C)

n
= Z{kilogp(ciIxi)+/hlogP(CiICi—l)HlegP(CiIgf‘C)HlegP(le = 1|g}")

=1

+ A4logP(ci_y,ci|gP¢)+AslogP (27 = 1|gPh)} (2-13)

where P(c;|x;) is given by the character classifier, P(c;|c;—,) is a bigram language model,
P(cilgi®) and P(z = 1|g}‘i) stand for the unary class-dependent (uc) and unary class-
independent (ui) geometric score, respectively. P(c;_y,c;|g?¢) and P(zf = 1|g?") stand for
binary class-dependent (bc) and binary class-independent geometric score (bi), respectively.
Compared to literature [33], they added unary and binary class-independent geometric
information to evaluate the path.

Wang et al. [21] also used the similar path evaluation criterion [36] for off-line unconstrained
handwritten Chinese text recognition. Paths are evaluated from the Bayesian decision view by
combing character recognition scores, class-dependent and class-independent geometric contexts,
and linguistic context. The recognition performance on the HIW-MW test set [37] achieved the
character-level accurate rate of 91.86% and correct rate of 92.72% using word class bigram.

Li et al. [24] proposed a new probabilistic model for off-line unconstrained handwritten text
recognition to evaluate possible segmentation hypotheses. The path evaluation criterion as shown
in Eq. (2-14) can be implemented in a simply way that follows Bayesian rules using just two
classifiers, one is MQDF based isolated character recognizer, which has been trained by a linear
discriminant analysis (LDA) —based negative training strategy using non-character patterns, the
other is a the character verifier to check whether a candidate character pattern is true character or
not, which can be transformed to posterior probability of a five-class MQDF classifier, including
Chinese class, digit class, punctuation class and two classes of non-characters. The proposed
method achieved the character-level recognition rates of 80.15% with a bigram language model
on HIT-MW test set.
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Zhou et al. [38] proposed a new method for on-line handwritten Chinese/Japanese text
recognition by defining the high-order semi-Markov conditional random fields (CRF) on the
candidate lattice to directly estimate the posterior probability of segmentation-recognition paths.
In this semi-CRF model, it fuses the scores of character recognition, geometric and linguistic
contexts in a principled MAP framework. This method has yielded superior text recognition
performance compared to the state-of-the-art methods on the test sets of CASIA-OLHWDB
(Chinese) [39], TUAT Kondate (Japanese) and ICDAR 2011 Chinese handwriting recognition
competition.

The weighting parameters in the path evaluation criterion were sometimes determined by trial
and error to yield higher text recognition performance. In recent years, some works have applied
the supervised text-level learning approach to estimate the weighting parameters by minimizing
the text recognition error. Zhu et al. [5] optimized the weighting parameters for on-line
handwritten Japanese text recognition using genetic algorithm (GA). They also compared with
the minimum classification error (MCE) criterion [40] optimized by stochastic gradient decent
[41], and showed that GA-based optimization method yields better text recognition performance
than MCE. Wang et al. [36] optimized the combing weights by MCE learning for on-line
handwritten Chinese text recognition. The parameters in MCE learning are learned by stochastic
gradient decent. Zhou et al. [26] proposed learning the weights by minimizing the negative log-
likelihood (NLL) loss under the framework of CRF, and compared its performance with MCE
criterion. Zhou et al. [38] modified NLL loss by adding a margin term to improve the
generalization performance of parameter learning in semi-CRF.

(2) Path search

The search of optimal path for handwritten Japanese/Chinese text recognition is not trivial due
to the large number of candidate segmentation-recognition paths in the candidate lattice.
Moreover, the search is complicated when using word-level language models because the word
segmentation is again a combinatorial problem [21]. The exhaustive search strategy that computes
the scores of all segmentation-recognition paths and then selects the optimal one is
computationally expensive.

Heuristic search algorithms that evaluate only a portion of segmentation-recognition paths have
been commonly used in handwritten text recognition. The speech recognition field has
contributed many efficient search algorithms based on dynamic programming (DP) and beam
search [42].

If the segmentation-recognition path is scored by the accumulated cost form, the optimal path
can be easily found by dynamic programming algorithm [5], [23], [29], [30], [31]. Under the
normalized criterion, however, DP algorithm does not guarantee finding the optimal path. Beam
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search strategy has been employed. Among the partial paths ending at an intermediate node in the
candidate lattice, beam search retains multiple partial paths with high scores for extension, the
retained partial paths are also called beam width. All the retained partial paths of the parent nodes
are extended to each child, where several high-score partial paths are again retained. At the
terminal node, the path of highest score in the retained paths is as the optimal path. Liu et al. [8]
used the beam search to find the optimal result for handwritten numeral text recognition.

On the other hand, according to the order of node generation in the heuristic research, the search
algorithms can be divided into character-synchronous and frame-synchronous search [10]. The
frame-synchronous is also called time-synchronous search. Liu et al. [43] proposed lexicon-
driven text recognition approach for Japanese mail address reading using character-synchronous
beam search strategy. The all address phrases are stored in a trie structure lexicon. Due to the
beam search is used to expand all the nodes of same depth in the search space synchronously and
proceeds by depth until there is no open node to expand, the character-synchronous beam search
is appropriate for lexicon-driven text recognition. Zhu et al. [44] proposed lexicon-driven
approach for on-line handwritten Japanese disease names recognition using frame-synchronous
beam search. It restricts the character categories of recognizing each candidate character pattern
from the trie lexicon of disease names and preceding paths during path search, as well as the
length of disease names. The beam search is used to expand all the nodes of same segment in the
search space.

2.1.3 Segmentation-free method

The over-segmentation-based method tries to over-segment handwritten text at the all possible
character boundaries. For cursive writing with character overlapping and touching, however,
handwritten texts are not easily segmented, over-segmentation-based method may result in
misrecognition. In this case, a segmentation-free method is appropriate.

The segmentation-free methods, which mostly combined with hidden Markov model (HMM)-
based recognition [11], simply slice the word or text pattern into frames (primitive segments) with
moving a sliding window along word or text pattern, and label the sliced frames, which are
concatenated into characters during recognition. Figure 2-2 shows an example of segmentation-
free method for a handwritten Japanese text, the red rectangle is a sliding window with W width.

Su et al. [45] [46] proposed a segmentation-free strategy based on HMM for off-line realistic
Chinese handwritten text recognition. The handwritten text is first converted to observation
sequence by sliding windows with extracting features for each frame. In the training stage,
embedded Baum-Welch algorithm is adopted to train character HMMs. In the testing stage, the
optimal text result maximizing the a posteriori is found by Viterbi algorithm.
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Figure 2-2 Segmentation-free method. W is the width of sliding window.

Recently, Messina et al. [47] proposed a segmentation-free method for handwritten Chinese
text recognition based on multidimensional long-short term memory recurrent neural networks
(MDLSTM-RNN). In this network model, the input image is divided into regularly spaced
“frames” (vertical slices of the input image) by the scanning procedure, then an output vector of
probabilities is produced for each frame, where each element of vector is associated to one of the
characters. The free parameters in the network are trained to minimize the negative log-likelihood
of the sequence of characters predicted by the network and the target transcription using the
connectionist temporal classification (CTC).

Segmentation-free methods avoid character segmentation prior to recognition, and reduce
expenditure in preparation of training data without labeling each character in texts. In the
segmentation-free strategy, it only inputs the handwritten text images and their underlying
character string, the system aligns automatically each character to its position in the text image
and then estimates the model of that character. However, such methods do not sufficiently
incorporate character shape information.

In on-line handwritten Japanese/Chinese text recognition, since over-segmentation-based
methods can better utilize character shapes, the over-segmentation-based method is effective and
more efficient compared with segmentation-free method [7]. Moreover, over-segmentation-based
methods produce less primitive segments since they attempt to find the true boundaries of
character patterns.

2.2 On-line overlaid handwriting text recognition

On-line handwritten continuous Japanese/Chinese text recognition has been receiving large
attention, and the character-level accuracy is larger than 90% [5], [36], [38]. The touch screen
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size of handheld devices (e.g. smart phones), however, restricts the usage of continuous
handwriting input method, especially in the case that users want to write text by their finger.

To solve the problem, there is one way to allow the user to write characters continuously on
such a small touch screen with their finger on top of each other, namely, characters written
overlaid without pauses as shown in Figure 2-3. Then the handwriting recognition system can
automatically segment and recognize overlaid characters. At the same time, the overlaid
handwriting text recognition causes more challenges than normal handwritten text recognition.

Since there is no spatial interval between characters, it is more difficult to segment characters.
On the other hand, this writing way may confuse users due to that the handwritten characters are
all displayed at the same area. Users cannot see clearly what he/she is currently writing. Moreover,
users may slow down their writing speed or even stop writing and wait for the screen to be cleared.

—

Figure 2-3 An example of overlaid handwriting text.

There have been already some works on the overlaid handwritten text segmentation and
recognition. In overlaid Japanese handwriting recognition, Shimodaira et al. [48] introduced
substroke based Hidden Markov Models (HMMs) with a bigram language model for overlaid
handwritten Japanese text. Using a bigram model consisting of 1,016 Japanese educational Kanji
and 71 Hiragana characters, the character recognition rates are 74.9% for free stroke order patterns
collected from people, and 91.1% for fixed stroke order patterns, artificially created from the
isolated character database. Tonouchi et al. [49] proposed an on-line overlaid handwriting
recognition system based on stroke-level discrete Markov Models They restricted the character
set to recognize to non-Kanji characters, which include 81 hiragana characters and 5 symbols only,
and applied Kana to Kanji conversion (KKC) in order to reduce the writing time of Kaniji,
especially by finger.

In overlaid English handwriting recognition, Bharath A. et al. [50] proposed a HMM-based
recognition system for overwritten lowercase words. The promising result that word recognition
rate is 89% with a 20K word lexicon, has been reported. Recently, Kienzle et al. [51] proposed a
new input method on a small touch screen by writing words with drawing characters on top of
each other. In this method, it never recognizes characters but detects character boundaries to
untangle and render the handwritten message. The ink strokes with a word are automatically
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segmented into characters using a character segmentation algorithm, which builds four end-of-
character models trained discriminatively with AdaBoost. The word boundary, however, is
marked by space gesture.

In overlaid Chinese handwriting recognition, Zou et al. [52] proposed a quick segmentation
method based on an artificial neural network to detect the first stroke of each character, and then
let previous characters fade out for the clear viewing of the current character. The quick
segmentation method is also used in the recognition system to speed up the whole recognition
process. Overlaid handwritten text is recognized by combining scores of character recognition
and bigram scores. Wan et al. [53] proposed a method of combining stroke level evaluation by
SVM model and character level evaluation based on character recognition scores, bigram scores
and geometric scores and then proposed a strategy to filter out correct segmentations. They report
that the strategy performs better than the DP algorithm. Lv et al. [54] proposed a real-time overlaid
handwriting recognition method under the integrated segmentation and recognition framework. It
firstly over-segments a stroke sequence based on SVM into primitive segments, which may be
concatenated into candidate characters during the next path search. Then, it searches for a best
path by integrating class-independent unary and binary geometric scores, character classification
score and bigram linguistic score.

On the other hand, the overlaid handwriting recognition may have another application for input
text by writing in the air. Using various sensors such as Kinect [55], and Leap Motion Controller
[56], we can detect the movement of an index finger so that text written by finger movement can
be recognized.

Zhang et al. [57] proposed a finger-writing Chinese character recognition system for the
character written in the air using a Kinect sensor. It firstly segments the hand from the cluttered
background by a depth-skin-background mixture model. The fingertip then is detected from
various hand poses by a dual-model switching algorithm. Finally, the finger-writing trajectory is
generated by linking all detected fingertip positions and then reconstructed as an inkless character,
which is recognized by a MQDF-based character classifier.

Chen et al. [58] proposed recognition methods for air-writing isolated characters and overlaid
words with constraints on stroke orders and uppercase letters. The air-writing data is recorded by
a six-degree-of-freedom motion tracking system, which includes a push-to-write model to signal
the beginning and ending of writing by holding a button. The word is written with each letter
overlaid in the same “virtual box” in space. They used Hidden Markov models for the air-writing
characters, and statistical models for words by concatenating clustered ligature models and HMM-
based letter models. In literature [59], they proposed an air-writing system for the overlaid words
written in the same “virtual box” using Leap, which automatically detects and recognizes words.
In detection stage, a window-based approach was proposed to automatically detect the air-writing
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event, and the consecutive writing events are converted into a writing segment. In recognition
stage, the writing segments are recognized by a similar HMM-based recognizer used in [58].

2.3 Writing in automobile environment

Nowadays, it is common that computing-based systems and communications technologies are
within modern cars providing various functions to drivers, such as electronic maps and navigation
systems, information and entertainment systems, and satellite radio. Such systems may be already
integrated by the car manufacturer or later added freely by the user. It is evident that using these
functions while driving increase driver distraction and workload, and so, there are very clear rules
about when they may and may not be used in Japan [4]. This is reflected in many navigation
systems, which present a warning that the driver should not interact with the system while the car
is in motion. The results of a survey, however, show that over one in ten (11%) of all drivers claim
to input the destination on their satellite navigation while driving [60]. This survey was conducted
by Privilege Insurance in England. This suggests that users have a desire for text input whiling
driving.

Currently, there have been already some means for text input to interact with a navigation
system in the automobile context. They are mainly classified into three methods, the first one is
typing on a touch screen keyboard, the second one is speech recognition, and the third one is
handwriting recognition.

Under the special driving situations, speech recognition is a more natural way of inputting text.
Several researches show the benefit of speech input [61], [62]. Tsimhoni et al. [61] compared
destination-entry methods between speech recognition and typing on a touching screen keyboard
on examination of driving performance, glance behavior, task partitioning and subjective
evaluation. The results showed that the use of speech recognition was better than touch-screen
keyboard while driving, due to destination entry using a touch-screen keyboard took a longer task
completion time, and significantly increased driving workload.Maciej et al. [62] compared
speech-based interfaces with manual controls for different in-vehicle-information-systems (IVIS)
while driving. These systems include audio, telephone with name selection, navigation system
with address entry and point-of-interest selection. The results showed that speech interfaces
improved driving performance, gaze behavior and subjective distraction for all systems except
the navigation system with point-of-interest entry which requires multiple visual confirmations.
These improvements, however, are not strong enough to reach the performance level of driving
without IVIS.

Although speech recognition shows promise as a largely non-visual/manual input method, it is
not free of certain limitations including usability and problems related to the underlying speech
recognition technology, due to the speech recognition system can fail to recognize spoken input
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correctly or worse due to the similar sounding words and various noise interferences in the car
environment, such as driving noises, wind noise (e. g. open windows), climate control fans, music
and conversations [63].

Technological progress and price reductions have pushed a growing use of touch-based
interfaces to control various functions in automobile environment. In the recent years, some
researches have shown the potential for handwriting recognition for inputting text in the driving
context.

Kamp et al. [64] did a quantitative experiment to evaluate different input devices (touchpad,
keyboard and voice) for an in-vehicle Internet navigator intended for different types of tasks on a
driving simulator. The drive can write any alphanumeric pattern by finger on the touchpad device,
which was located on the steering wheel. The handwritten character was recognized by the
recognition system. Though it is not possible to confirm that the touchpad device can be globally
regarded as an easier and safer way to interact during driving than the keyboard, for the “name”
instruction, the touchpad is clearly much more advantageous than keyboard with almost half the
operating time and error rate of the keyboard. The handwriting touchpad may be considered as an
input choice for drivers to some extent.

Burnett et al. [65] compared handwriting recognition to a conventional on-screen keyboard for
entering an address into a navigation system whilst driving. The study results showed that
handwriting touchpads do offer particular advantages over a conventional on-screen keyboard
system in cars, such as time taken to enter a destination while driving was reduced and driving
performance (e. g. speed variability) was improved when participants utilized handwriting. The
location of the input device, however, plays an important role with regard to the dominant hand
(right hand or left hand).

Inspired by the research work [65], Kern et al. [66] investigated handwriting as a text input
method and explored further locations for the input and output interfaces while driving by creating
different prototypes. These prototypes allow text input on the steering wheel or in the central
console, and provide visual feedback (output) on the input surface or the dashboard. Their study
on a driving simulator showed that handwritten text input by finger on a touchscreen mounted on
the steering wheel is well accepted by users and that the visual feedback should be presented in
the dashboard area or on the steering wheel. Moreover, compared to text input in the central
console, the number of corrective actions and the remaining errors were significantly decreased
(25% less) on the steering wheel.

2.4 Character-position-free handwritten text recognition

With the development and popularity of touch-based or pen-based input devices outside of the
automotive domain, such as PDAs, smartphones, and tablet PCs, these devices may apply to or

28



be embedded into the in-vehicle systems with the constraint of the car cockpit and safety concerns.
Moreover, the existing handwritten Japanese/Chinese text recognition technologies have obtained
higher character-level accuracy (over 90%) [5], [36], [37]. So there is a need for text input. It
offers potential benefits to drivers to integrate the handwriting recognition technologies in the in-
vehicle systems, such as navigation systems and information systems. Handwriting any text (e.g.
destination), however, is a secondary task and disturbs the driver’s visual attention and makes
him/her distracted. There are several proposed interaction methods mentioned in section 2.3,
attempt to balance between the text input by writing for alphanumeric data and driving task.

Due to Japanese/Chinese language has thousands of character categories with different shape,
it is more challenge to input Japanese/Chinese text by writing in automobile environment. To
solve this problem, in our previous work [67], we proposed a new input way that allows drivers
input characters without visual feedback, namely, character-position-free writing as shown in
Figure 2-4, to reduce driver’s distraction as much as possible. We then considered methods for
character-position-free on-line handwritten Japanese text recognition. Moreover, writing Kanji
characters with many strokes by finger is not easy, especially without visual feedback, so we also
considered the case of completely overlaid handwritten text recognition. By following the
integrated segmentation and recognition framework, we considered two segmentation methods in
the over-segmentation stage, one classifies each off-stroke between real strokes into non-
segmentation point (NSP), segmentation point(SP) or undecided point (UP, maybe considered as
NSP or SP) according to the output of SVM, the other sets each off-stroke as UP. From the results,
our proposed methods have obtained a promising recognition rates.

The previous research works on the overlaid handwriting text recognition have introduced in
the section 2.2. On the other hand, there are several research works on splitting of touching
characters in off-line handwritten text recognition [68]. The touching characters mean multiple
characters in a connected component, also called a touching pattern.

@ (b)

(© (d)
(Text: RIRE/NEFHH)

Figure 2-4 Character-position-free handwriting for the same text.
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3. Character-position-free on-line handwritten text

database

In this chapter, we describe character-position-free on-line handwritten text patterns, which
include two parts. One is a small amount of collected text patterns, the other is generated datasets
from normally handwritten Japanese and Chinese text patterns.

3.1 Collected character-position-free text patterns

Due to we do not have actual on-line handwritten text patterns collected from vehicle-mounted
touch panels while driving, we need to investigate handwritten text patterns in such driving
context.

From the guidelines for in-vehicle display systems, published by JAMA (Japan Automobile
Manufacturers Association, Inc.) [4], where the following requirements are related to this study:

e The operation of a display system shall not result in a marked obstruction of forward field

visibility.

¢ Information to be presented by a display system shall not cause the driver to gaze at the screen

continuously.

o Preferably, a display system is so designed that its display of information can be discontinued

by the driver.

¢ Information, such as the reporting of system state and operation that is displayed in response

to the data inputted by the driver shall be quickly and easily comprehensible.

According to the requirements, a driver should write text without visual feedback, moreover,
in one or more steps to keep safe driving.

We collected a small amount of text patterns from 10 participants in our laboratory with
physical conditions simulated driving environment as much as possible. The collecting process is
as follows:

First, we randomly prepared 50 phrases as shown in Table 3-1, most of them are short and the
Japanese address string with many Kanji categories, and printed them with 10 phrases per one

page.

30



Table 3-1 Phrases for collecting character-position-free text patterns.

No. Text No. Text
AEHE AL T e KA — 458 2 — )
1 . 26 B ACKATERR N
2 AR =T R4 1T 27 BFE U —
3 RFFBAFTHUN A4 FH 1 28 ZHT U Ry bS—7 ZEERRIR
4 PZE) NIRRT XA 72 & 2 H 29 VE AR
5 BATRE Z— 30 TROTCHT o5 7 il e 7K 1
6 PR X JRRAT L XA A ST 31 HANBLS S
7 INEFBREE N 32 PR B A
8 BHREEFE I 2 =7 ¢ 28 33 i Rk
9 70y b~ ZEERRIR 34 SICILIA B >
10  KfMAKR—=Y TR 35 HEREHT H R
11 BUEK N AR X R FEH T 36 FRA L E A e A
12 @&ETiX 37 I /N
13 EIERBIER 38 RBERME
14 ERPTHLEDY 39 oRFEE
15 FKEEREE D 40 BOFIEARETERAL 0
16 HHRF—A4 41 TRFERAE A
17 FHFIAE 42 HE YRR AR
18 hoWNAT Y 43 FrEBRE N
19 JLAEER 44 SHIBUYA109
20 H B XA 45 HE/NEEETLOAE
21 BKINREBWEE D% 46 HHEETERERE 7 +—7 A0
22 FpvNEEARR 47 s J IS 7 A X
23 EFESFERAEA 48 KHFfti & — v
24 HWRF AR EHESS 49  FARNHOLE
25 BRSNS 50 EENEHNOT

Second, the participant freely wrote each phrase on a tablet PC without supported by wrist or
elbow, and without confirming previously written strokes, namely without visual feedback. Figure
3-1 shows the collecting scene.
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Figure 3-1 Scene of collecting character-position-free text patterns.

Then, we collected character-position-free on-line handwritten Japanese text patterns from 10
participants in our laboratory. Table 3-2 shows the participants’ information.

Table 3-2 Participants’ Information.

No. | Gender | Native Language | Dominant Hand | Writing Hand Job
1 Male Japanese Right Right Student
2 Male Japanese Right Right Student
3 Male Japanese Right Right Student
4 Male Japanese Right Right Student
5 Male Japanese Right Right Student
6 Male Vietnamese Right Right Foreign Student
7 Male Vietnamese Right Right Foreign Student
8 Male Vietnamese Right Right Foreign Student
9 Female Chinese Right Right Foreign Student
10 | Female Chinese Right Right Foreign Student

Finally, we annotated each stroke and checked these collected text patterns whether some
characters missed in a text or not by an ink annotation tool as shown in Figure 3-2. If some
characters have missed or written incorrectly in a collected text pattern, the participant should
write the text again. Figure 3-3 shows examples of collected handwritten text patterns.
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Figure 3-2 Ink annotation tool for checking collected handwritten text patterns.
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Figure 3-3 Examples of collected handwritten text patterns. The ground truth in bracket of each

text pattern is placed under it.
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The collected handwritten text patterns are so small to simulate exactly handwritten patterns
under driving context. However, it showed some useful information to some extent. Based on the
analysis of collected handwritten text patterns, characters are often partially overlapped on each
other or separated randomly while stroke positions are relatively stable within a character pattern
although displaced strokes make character patterns sometimes difficult to read.

Next, in order to develop a handwriting recognizer which can recognize on-line
Japanese/Chinese text patterns written without physical support and visual feedback, we make
models to produce such text patterns from normally handwritten text patterns in Kondate database
[69] and CASIA-OLHWDB2.1 [39], as well as the model for text patterns with characters
completely overlaid.

3.2 Kondate database

Kondate [69] is a database of on-line handwritten patterns mixed of texts, figures, tables, maps,
diagrams and so on. In this research, we only use the part of on-line handwritten texts, which
initially has been collected in Japanese from 100 people at Tokyo University of Agriculture and
Technology (TUAT) in Japan.

As for on-line handwritten Japanese texts in Kondate, the most text patterns were collected by
writing natural sentences taken from a Japanese newspaper on display integrated tablets. The
writing style was not constrained so that most of the characters were written fluently although
some people write in regular style due to their writing habit. Moreover, the writers write freely
without any writing grids and even without guidelines.

Therefore, Kondate database covers any direction text patterns, such as horizontal, vertical,
diagonal, horizontal and vertical mixed text and so on. Figure 3-4 shows some examples of on-
line handwritten Japanese texts in Kondate.

In this research, we only use horizontal handwritten Japanese text patterns extracted from
Kondate, and call it “Kondate h”. Its statistic information is shown in Table 3-3.

Table 3-3  Statistic information of Handwritten Japanese text Database.

#character #character
Database #writers #text lines
patterns categories
Kondate_h 100 13,685 139,779 1,161
Dataset 1 to 4 100 15,389 129,076 1,123
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Figure 3-4 Examples of handwritten Japanese texts in Kondate.

3.3 CASIA-OLHWDB database

The CASIA-OLHWDB Chinese handwriting databases [39] built by the Institute of
Automation of Chinese Academy of Sciences (CASIA), contain both on-line isolated characters
and unconstrained handwritten texts. The on-line handwritten samples are collected by 1,020
writers using Anoto pen, and divided into six datasets, three for isolated characters (DB1.0-1.2)
and three for handwritten texts (DB2.0-2.2).

In the on-line handwritten text datasets, DB2.1 involves more character categories than DB2.0
and DB2.2. In the thesis, therefore, we use the handwritten text dataset DB2.1, namely, CASIA-
OLHWDB2.1, to generate the character-position-free Chinese handwritten text patterns. The
dataset DB2.1 including 429,083 characters of 2,256 character categories is partitioned into
standard training subset of 240 writers and test subset of 60 writers. The training text set contains
13,758 text lines from 1200 text pages, while the test text set contains 3,524 text lines from 300
text pages. The detail information of DB2.1 is shown in Table 3-4. Figure 3-5 shows some

handwritten text pages of DB2.1.

Table 3-4 Statistic information of Handwritten Chinese text Database.

Database Subset #writers | #text lines #character patterns | #character categories
CASIA- Training set 240 13,758 343,333 2,256
OLHWDB2.1 Test set 60 3,524 85,750 2,251
CASIA-OLHWDB2.1 300 17,282 429,083 2,256
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Figure 3-5 Examples of handwritten Chinese text patterns in CASIA-OLHWDB2.1.

3.4  Generated character-position-free text patterns

Due to the long text would not be written in the driving context, we delete text lines composed
of more than 30 characters from Kondate_h/CASIA-OLHWDB2.1. Moreover, we divide a text
line at the punctuation mark, and delete all punctuation marks following the previous research
[54] since their recognition is difficult as independent symbols but they can be easily input by soft
keys or gestures.

Therefore, based on these new normally handwritten patterns, we make 4 models and generate
4 datasets by changing the parameters to adjust character positions. We call them character-
position-free handwritten Japanese text models and character-position-free handwritten Japanese
text datasets, respectively.

For the random number generation, we compared the uniform random and the normal random.
The uniform random generator generates text patterns more similar to the collected patterns.
Therefore, we choose it to generate the random distance for all models.

Model 1 simulates handwritten text patterns where a character is placed randomly from a half
character-size to a full-size advanced from left to right with 10% variations vertically according
to Eq. (3-1) where d, and d,, stand for the horizontal distance and the vertical distance from the
previous character to the next character, respectively, x and y are the average width and the
average height of characters in handwritten text, respectively. Generated handwritten text patterns
are stored in Dataset 1.
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d,~U([0.5 * x, 1.0 = x]) (3.1)
dy~U([-0.1%y,0.1*y])

Model 2 simulates handwritten text patterns where a character is placed randomly from 0.4
times to 1.5 times the character-size advanced from left to right with 10% variations vertically
according to Eqg. (3-2). It has a wider variation horizontally compared with Model 1. Generated
handwritten text patterns are stored in Dataset 2.

d,~U(]0.4*x,1.5*x
U042 % 15+ 7] 52
dy~U([-0.1%y,0.1*y])
Model 3 simulates overlaid handwritten text patterns where characters are overlaid on previous
characters according to Eq. (3-3). Generated overlaid handwritten text patterns are stored in
Dataset 3.

d,~U([—0.1*x,0.1=x
~U(l %,0.1 + £)) 33
dy~U([-0.1%y,0.1*y])
Model 4 simulates handwritten text patterns where a character is placed randomly in any
direction (left, right, top, bottom etc.) of the immediately preceding character according to Eq. (3-
4). Generated handwritten text patterns are stored in Dataset 4.

d,~U(|—1.0*x,1.0 xx
~U(l %10+ 5]) 3
dy~U([-1.0+y,1.0 * y])
Figure 3-6 shows an original handwritten Japanese text pattern and generated patterns by Model
1 to Model 4, while Figure 3-7 shows an original handwritten Chinese text pattern and generated
patterns by Model 1 to Model 4.
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Figure 3-6 Examples of generated character-position-free handwritten Japanese text patterns.
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(a) An original handwritten text pattern.
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(b) Generated Dataset 1.

(d) Generated Dataset 3 (Left) and Dataset 4 (Right).

Figure 3-7 Examples of generated character-position-free handwritten Chinese text patterns.
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4. Character recognition system

In this chapter, we describe the isolated character recognition system combining the on-line
character recognizer and the off-line character recognizer, for each candidate character pattern in
the candidate lattice. The lattice is constructed for a character-position-free handwritten
Japanese/Chinese text pattern.

Figure 4-1 shows the flow chart of the on-line character recognition system. The input to the
system is an on-line character pattern, which includes a time sequence of coordinates of pen-tip
or finger-tip movements. After feature extraction stage, a fast coarse classification is commonly
used to first select a small subset of candidate classes which the input character pattern is expected
belong to, for speeding up the recognition of the Japanese/Chinese large character set. Then, the
input character pattern is classified into one of these candidate classes in the fine classification
stage including on-line and off-line character recognizers. Finally, the system outputs the top N
(N = 1) candidate classes.

Input on-line character pattern

Feature extraction

\4

Coarse classification

a set of candidate classes

Fine classification

On-line character recognizer

Off-line character recognizer

Output top N candidate classes (N = 1)

Figure 4-1 Flow chart of a character recognition system.
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4.1 Coarse classification

Japanese and Chinese language are large character set. The Japanese character set includes
thousands of ideographic characters of Chinese origin (Kanji), two sets of phonetic characters
(Hiragana and Katakana), numerals and symbols, while the simplified Chinese language used
mainly in the mainland of China has about 6,763 characters.

These large character categories affect not only the recognition accuracy but also the
recognition speed. To improve the recognition speed, a common approach is to perform coarse
classification before the fine classification [7]. In general, the coarse classification employs
simpler classification algorithms or fewer features in order to select a small subset of candidates
out of a very large character set quickly. Then, the fine classification will be used on these selected
candidates to match an input character pattern so that the whole recognition time is reduced.

In the character recognition system, the coarse classification is based on off-line method
without using the time sequence information from an input on-line character pattern, which
includes the following steps: (1) nonlinear normalization, (2) directional features extraction, (3)
feature reduction by Fisher linear discriminant analysis (FLDA), (4) character classification by a
simple distance measure, i.e., Euclidian distance, to select candidates from thousands of character
categories. The processing step 1 to step 3 is same as that of the off-line character recognizer
introduced in the section 4.3.

Fine classification after coarse classification combines an on-line character recognizer and an
off-line character recognizer to select the top character categories with the largest similarities from
these candidates obtained by coarse classification as the output results.

The on-line character recognition method is based on stroke analysis and uses the structural
features such as sampling points and line segments. Therefore, it is robust against character shape
variations, while it is weak at collecting global character pattern information. In contrast, the off-
line character recognition method is based on the image of character pattern. It uses un-structural
features such as directional features, gradient histogram features and projection features, and so,
it is robust against noises and stroke-order dependence but very weak against character shape
variations. That is why combining the on-line and off-line character recognizers for fine
classification to enhance robustness.

4.2  On-line character recognizer

On-line character recognizer recognizes a time sequence of coordinates of pen-tip or finger-tip
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movements, namely, an on-line character pattern as shown in Figure 4-2, which capture the
temporal information on the pen movements, such as the number and order of pen strokes, the
direction of the writing for each pen stroke and the speed of the writing within each pen stroke.

We introduce the Markov random field (MRF)-based on-line character recognizer, which
consists of these components: linear normalization, feature points extraction, and matching the
feature points with the states of each character class based on MRF model. Figure 4-3 shows its
processing steps. In this recognizer, it firstly normalize the input on-line pattern by a linear method
to keep the horizontal and vertical ratio. Second, it extracts feature points by a recursive method
[70]. It then uses a MRF model to match the feature points with the states of each character class
and obtain a similarity for each character class. Finally, it selects the character class with the
largest similarity as the recognition result.

o

2—> . ,unn
asmmmng"®

| ]
AN N mN,
\J - .0
%.l *

‘IIIIIIIII

Figure 4-2 An example of on-line character pattern.

Input i i . Output
p A Linear Feature ppmts MRF recognizer |
on-line pattern normalization extraction pattern result

Figure 4-3 Flow chart of on-line character recognizer.

4.2.1 Linear normalization

Linear normalization is considered to be the most important pre-processing factor for on-line
character recognition, which linearly mapped the character pattern onto a standard plane by
interpolation or extrapolation. The size and position of character is controlled such that
normalized plane in x and y dimension is filled. The implementation of
interpolation/extrapolation is influential to the recognition performance [71], [72]. After linear
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mapping, the character pattern is not deformed except the change of aspect ratio.

It is better to fill both dimensions of normalized pattern (standard pattern), for alleviating
feature extraction and classification, while the deformation is enlarged. In aspect ratio adaptive
normalization (ARAN), however, the dimensions of the standard plane are not necessarily filled
[73]. Depending on the aspect ratio, the normalized image is centered in the plane with one
dimension filled. Assume the standard plane is square and the side length is denoted by L. Denote
the width and height of the input on-line pattern as W, and H,, and that of the corresponding
normalized one as W, and H,, the aspect ratio is defined by

R, = {WZ/HZ, if W, < H, (1)

H,/W,, otherwise

The normalized pattern is filled one dimension by max(W,, H,) = L. That is, to keep the
aspect ratio unchanged, the normalized image does not necessarily fill both dimensions.
According mapping direction, the linear normalization can be divided into the forward mapping
and backward mapping. The linear forward mapping is shown in Eq. (4-2), and the linear
backward mapping is shown in Eq. (4-3), where a and B are parameters computed by Eq. (4-
4).

x' = ax, y' =By (4-2)
x=x'/a, y=Y'/B (4-3)
a=W,/Wy, B =Hy/H (4-4)

4.2.2 Feature points extraction

For on-line character recognition, we use the feature points to express the on-line pattern rather
than original coordinate sequence of the pattern, in order to reduce the computation complexity
and discard repeated sampled coordinates. Before feature extraction, the input pattern is
normalized to 128 x 128 pixels by linear normalization described in the previous section.

We extract feature points using the method by Ramner [70]. For each stroke, first, the start and
end points are picked up as feature points. Then, the farthest point from the straight line between
adjacent feature points is selected as a feature point if the distance is greater than a threshold value.
This selection process continues recursively until no more feature points are selected. Figure 4-4
gives an example of the process of feature point extraction for a stroke.
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Figure 4-4 Feature point extraction of a stroke.

4.2.3 MRF-based on-line character recognition

Markov random fields (MRFs) can effectively integrate the information between neighboring
pen-tip points such as binary features and triple features, which have been successfully applied to
off-line handwritten character recognition [74] and on-line stroke classification [75]. We use a

linear-chair MRF model to match the feature points extracted from an on-line character pattern
with the states of each character class.
The feature points from an input pattern is denoted by sites S = {s;,s,, -, s;}, where | is the

number of feature points, and states of a character class C is denoted by labels L = {ll, l,,- -,l,}
I, }. F is called a configuration.

The mapping from S to L during character recognition is denotedas F = {s; = [;,s, = [; -, s,

The feature vector extracted from feature points of an input pattern is considered as the

observation set O, including unary feature and binary feature. According to Bayesian theorem,
the recognized character class is given by

C*=arg max P(C|0) = arg max P(C)P(0|C)

(4-5)
where P(C) is the a prior probability that the given pattern belongs to a character class C,
P(0|C) isthe likelihood function of the observation set O for a class C.

Since there are more than one configuration F, P(0|C) can be further given by
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P(0|C) = z P(0,F|0) (4-6)
allF

Making the matching under all F from S to L is intractable, so we just consider the best
configuration obtained by Viterbi algorithm. That is

P(0|C) = P(0, Fyes|C) = P(F|C)P(O|Fpest, C) (4-7)

The Hammersley-Clifford theorem establishes the equivalence with the Markov random field

[7].

1 -
P(F|C) = Eexp(—E(FlC)) (4-8)

where E(F|C) =Y, VL (F|C) is the prior energy function and VZ(F|C) is prior clique
potential function defined on the corresponding cl. Z = Y.rexp(—E(F|C)) is the normalization
factor called partition function.

Taking P(0,F|C) into consideration, we can obtain the global likelihood energy function
given by Eq. (4-9). E(O|Fys, C) is computed by Eq. (4-10) where VI (0|F, C) is the likelihood
clique potential function.

1 (4-9)
P(FICYP(OIFyest, €) = 7 exp(=E(FIC) = E(OlFpest, )

E(OIF,C) = ) VE(OIF,C) (4-10)
cl

For simplicity, we consider only single-site cliques cl; = {s;},(0 < i < I) and pair-site
cliques cl, = {{Si,sj}}, (0<i<I,1<j<«I) to construct linear-chain MRF. We can obtain

Eg. (4-11) from above two equations (Eq. (4-9) and Eq. (4-10)), where [, is the label of a class
C assigned to s;. Oy, is the unary feature vector composed of X and Y coordinates of site s;, and
Osl-s]- is the binary feature vector composed of differences of x and y between sites s; and s;,
namely, dx (X coordinate of s; — X coordinate of s;) and dy (Y coordinate of s; —

Y coordinate of s;).
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E(OlFbest.c>+E(F|C)—z 9(IF, C>+Z <F|C>]

Z[mm%mwwdum

Si€cly
+ z [ clz s s]
{sisjlecly
To derive the likelihood clique potentials from the negative logarithm of the conditional
probabilities, we get the Eq. (4-12) and Eq. (4-13) from Eq. (4-11), where P(Os_s, |Ls,. ls,, C) is
setas 1.

Ly, ) +VE, (L5, 1,

c)] @

Si’

V3.(0s,|ls,, €) = —logP(0s,|1s,, C) (4-12)

4-13
Ly, L, C) (4-13)

Ly s, C) = —logP (O,

Vclz (Osisj

Moreover, since a label just interacts with only the neighboring labels in the linear-chain MRF
model, the state transition probability can be employed to derive the prior energy function instead

of the prior clique potential.

(4-14)

Emo—2u4u®+%mﬂum1

1

= > —logP(Lsls,_,.€)

i=1
Therefore, the energy function is as follows:
E(0,F|C) = E(O|Fpes, C) + E(F|C)

1
= 2[_logp(05i|l5i’ C) logP(OSLSz 1| lSi—1’C)

i=1
lOgP(l51|lsl 1’ )] (4-15)

From the Eq. (4-15), the smaller the energy becomes the larger the similarity between the input
pattern and a character class C. Each character class has a linear-chain MRF model. Hence, the
recognition system uses the Viterbi search to match feature points of the input pattern with states
for the MRF model of each character class and to find the matching path with the smallest energy
for each character class.

P(0s,|ls,C) and P(Os,s,_,|Ls,, Is,_,, C) are estimated by Gaussian functions. P(I,|ls,_,,C)
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is calculated as follows.

P11 c #number of transitions fromlg,_ tol (4-16)
(s [ty €) = #number of sites assigned L,
#number of s; assigned [, (4-17)

P(ls [l €) = #number of s,

To train the MRF model for each character class, we firstly initialize the feature points of an
arbitrary character pattern within the training patterns of the character class as states of the MRF.
Second, we set each unary feature vector of each feature point as the mean of the Gaussian
function for each single-state, and each binary feature vector between two adjacent feature points
as the mean of the Gaussian function for each pair-state, with initializing the variances of those
Gaussian functions and the state transition probabilities with 1. Then we use the Viterbi algorithm
or the Baum-Welch algorithm to train the parameters of the MRF, i.e., the means and variances
of Gaussian functions and the state transition probabilities. We repeat the training process until
the optimal parameters are obtained.

4.3  Off-line character recognizer

Off-line character recognition is known as optical character recognition (OCR). It is mainly
used to process off-line character patterns (two dimensional images), which are obtained usually
by scanning the documents or from digital camera and so on. Since character image does not
embed any information about the writing process like the writing order of pen-tip points, pen-up
and pen-down and so on. Therefore, off-line character recognition recognizes character patterns
usually by their shapes. Figure 4-5 shows an example of off-line character pattern.

[

I

Figure 4-5 Off-line character pattern.
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The major advantage of the off-line recognizers is to allow applying the image process
technology, including nonlinear normalization and off-line feature. In recent years, nonlinear
normalization (NLN) based on line density equalization, moment normalization (MN), bi-
moment normalization (BMN), modified centroid-boundary alignment (MCBA), and their
pseudo-two-dimensional (pseudo 2D) extensions all obtained good accuracy in handwritten
character recognition. Moreover, as for off-line feature, the directional density feature and
gradient feature extracted from character pattern also show more robust than feature points
extracted directly from on-line pattern.

Since the directional features used for the off-line pattern are easily extracted from an on-line
handwritten pattern by discarding temporal and structural information, we directly apply the off-
line recognizer for the input on-line pattern, namely, it does not need to transform each on-line
character pattern to an off-line character pattern.

Our off-line recognizer includes these components: nonlinear normalization, directional
features extraction, dimensionality reduction and MQDF-based off-line character recognizer.
Figure 4-6 shows the flow chart of an off-line character recognizer.

Input on-line pattern

v

Nonlinear normalization

v

Directional features extraction

v

Dimensionality reduction

v

MQDF-based recognizer

v

Output character result

Figure 4-6 Flow chart for an off-line character recognizer.
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4.3.1 Nonlinear normalization

Normalization regulates the size, position, and shape of character pattern, to reduce the shape
variation between character pattern and the corresponding class. Some strategies were proposed
to deform the character shape with aim to reduce the within-class variation. In this thesis, we
apply the pseudo 2D bi-moment normalization (P2DBMN) [102] to normalize the input on-line
pattern, which can be considered as an imaginary image.

Suppose the coordinate mapping functions x'(x,y) and y'(x,y) are obtained by linearly
combining one-dimensional functions with the weight depending on another dimension as given
by Eqg. (4-18). The one-dimensional functions are obtained by applying 1D normalization to the
projection functions of partial images.

K@) =) wlE)xO)

. . 4-18
y'(xy) = ) wORFO) i

For an input on-line pattern which is considered as imaginary image f(x,y) is partitioned into
three horizontal soft strips by the weight function in y-axis:

fie,y) =wif(x,y),i=123. (4-19)

where wi(y) are weight functions as given by

Ye

y
((wi(y) = w, Y <Ye

wi() =1-wl(),y <.
wiy)=1-w?*®),y =y, (4-20)

Ye =Y
wi(y) =w Y =
y 0H1—}’cy Ve

where H; and y. are boundary and coordinate in y-axis of centroid for the input pattern. wy
is constant. Similarly, we obtain the three vertical soft strips f; (x,y) = w'(x)f(x,y),i =
1,2,3.

The three horizontal strips fi(x,y) i = 1,2,3 project onto the x-axis as in Eq. (4-21).

Pi(x) = Z fix,y),i =123 (4-21)
y

The projection functions of the three strips on x-axis Pl(x) i = 1,2,3, are used to compute
three coordinate functions x’(® (x), using the bi-moment normalization (BMN). The three 1-
dimensional coordinate functions are then combined into a 2D coordinate function as given by
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EQ. (4-22). The normalization composed of above two steps is commonly called P2DBMN.

w (' D (x) + w2(x' @),y <. (4-22)

() = { w3 ()x" (@) + w2(x'@(x),y = y.

To obtain x'®(x) i = 1,2,3, by BMN, the second-order moments are split into two parts at
the centroid: ub, and ub} inx-axis, ub, and ulb iny-axis. The bi-moments are computed
from the projection of each strip as given by Eq. (4-23) and Eq. (4-24), respectively.

N2
( Zx>x x — xt) P{(x)
uzh =
Tyt PE ()
x<x (x xé) Pi(x) (4-23)

x<xl P (X)

I(u 23’>y§(y - yci)ZP ')

{ Yy sy B ()

| e -3 B (4-24)
k Zysyci Pyi »)

i—
Up2 =

The centroid of each strip is computed by

(xi _ Y X P (x)
J T AR (4-25)
L i Ly YR ()

y = n
YW (%)
xk—2 /ué‘, xi+2 /u%

For the x-axis, a quadratic function u(x) = ax? + vx + ¢ aligns three

The boundaries of the input pattern are reset to and [yj —

2 ’ué},y§+2 /ué‘; .

points <x£ -2 /uég, xk, xk + 2 /u%) to normalized coordinate (0, 0.5, 1), and similarly, a

quadratic function v(y) used for the y-axis.

Finally, the coordinate functions are given by the following equation.
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{x’(i) (x) = u(x)x®(x) (4-26)
y' Q@) = v(y)y®(x)

4.3.2 Directional features extraction

We extract directly direction features from each on-line character pattern. The implementation
of direction features extraction is various depending on the directional element decomposition,
the sampling of feature values, the resolution of direction and feature plane, etc. Considering that
the stroke segments of Japanese characters can be approximated into four orientations: horizontal,
vertical, left-diagonal and right-diagonal, early works used to decompose the stroke (or contour)
segments into these four orientations. Further, Liu et al. [76] proposed to decompose the stroke
into eight, even 12 and 36 directions. Generally speaking, four and eight directional features are
widely used. It is obvious that decomposing the contour pixels into eight directions instead of
four orientations (a pair of opposite directions merged into one orientation) significantly improved
the recognition accuracy. This is because separating the two sides of a stroke edge can better
discriminate the parallel strokes.

6
5 7
4 0 0
3 1 1
2 2
(@) (b)

Figure 4-7 Eight chaincode directions (a) and the directional decomposition of a blue line segment

(b).

In the off-line recognition, we use the eight directions-based decomposition for each line
segment, defined by two consecutive pen-down points, and extract the directional features [103],
which are histograms of normalized stroke direction. The eight direction planes, corresponding
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to eight chaincode directions, as shown in Figure 4-7 (a). And each line segment is decomposed
into two components in two neighboring chaincode directions, as shown in Figure 4-7 (b).

4.3.3 Blurring and sampling

Each direction plane, with the standard size as the normalized image, need to be reduced to
extract feature values of moderate dimensionality. A simple way is to partition the direction plane
into a number of block zones and take the total or average value of each zone as a feature value.
Partition of variable-size zones was proposed to overcome the non-uniform distribution of stroke
density [77]. Overlapping blocks alleviate the effect of stroke-position variation on the boundary
of blocks [78], yet a more effective way involves partitioning the plane into soft zones, which
follows the principle of low-pass spatial filtering and sampling [79].

In implementation of blurring, the impulse response function (IRF) of spatial filter is
approximated into a weighted window, also called a blurring mask. The IRF is often a Gaussian
function given by

1
h(x,y) = mexp

2
X 204

<_ x* + yz) (4-27)

According to the Sampling Theorem, the variance parameter o, relates to the sampling
frequency (the reciprocal of sampling interval). On truncating the band-width of Gaussian filter,
an empirical formula was given in [80]:

V2t, (4-28)

Oy = T['

where t, is the sampling interval. At a location (x,,y,) of image f(x,y), the convolution
gives a sampled feature value

F(x0,¥0) = 2 Z fG,y)h(x = x0,y — ¥o) (4-29)

X y

For ease of implementation, partition a direction plane into a mesh of equal-size blocks and set

the sampling points to the center of each block. Assume to extract K x K values from a plane,

the size of plane is set to Kt, X Kt,. From N, direction planes, the total number of extracted
feature values is Ny X K?2.

In the above-mentioned normalization and feature extraction, we set the size of normalized

plane (and direction planes) to 24x24 pixels. Since we directly assign the line segments to eight
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direction planes, and the direction planes have continuous pixel values, a moderately small size
of direction plane does not sacrifice the recognition accuracy. Each direction plane is then blurred
and sub-sampled with sampling interval 3. Hence, we obtain 64 (8x8) feature values from each
direction plane and the final dimensionality of feature vector is 512 (8x8x8).

The extracted feature values are causal variables. Power transformation can make the density
function of causal variables closer to Gaussian [80]. This helps improve the classification
performance of statistical classifiers. Power transformation is also called variable transformation
[80] or Box-Cox transformation [81]. Power 0.5 is employed to transform the variables or feature
vector.

4.3.4 Dimensionality reduction

In order to reduce the computation complexity, we use fisher discriminant analysis (FDA) to
reduce the dimensionality of feature vectors. In the process of FDA, we need between-class scatter
covariance S, and within-class scatter covariance S,, of training samples. Suppose there are C
character classes (w;, wy, -, w¢) and the j-th class with N; training samples. The total training
samples is N. Then, S,, and S, are defined as:

c Nj
S, = Z (- %) () — )" (4-30)
j=1i=1
C
Sy = ZN,-(Y,- -0 -7 (4-31)
=1

where X = {x}} G=12,-,Ci=12,-,N;) is set of samples with n-dimensions. )?j =
(Nij) Z?’zjl x} and X = (%) ch-zlzlivjl x} are the mean vector of the j-th class and all classes,
respectively.
Based on the Fisher discriminant criterion [101], the process of working out the transformation
matrix is to find out the optimal ratio which makes the S;, as large as possible while making the
Sw as small as possible, which is described as

wrs,w (4-32)

Wope = arg max WS W = [Wy W, ... W, ],

w
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where {W;|i = 1,2,..,m} are m n-dimensional eigenvectors of S;,1S, corresponding to the m
largest eigenvalues. W, is the n x m matrix composed of the m n-dimensions eigenvectors.
By the transformation matrix Wj,., we can reduce the dimensionality of feature vectors from n-
dimensions to m-dimensions.

4.3.5 MQDF-based off-line character recognition

The modified quadratic discriminant function (MQDF) [82] is the smoothed version of QDF,
which performs Bayesian classification under the assumptions of multivariate Gaussian density
for each class and equal a priori probabilities for all class. For an input pattern X = (x4, -+, x,,)7,
the quadratic discriminant function (QDF) for the class w; (i = 1,---, M) has the form

9ok, 0) = (X =w)" ) (X =) +log |5 @59

where u; and Y; denote the mean vector and the covariance matrix of the class w;, respectively.
QDF is actually a distance metric in the sense that the class of minimum distance is assigned to
the input pattern.

QDF can be re-written in the form of eigenvectors and eigenvalues:

a 1 2 d (4-34)
g1 (X, w;) = Z /1_[(Pij(X —u)7] +Z, logA;j
j=1%ij j=1
where, j = 1,2, ..., d, denote the eigenvalues of the class w; sorted in decreasing order, and ¢;;,
Jj =4ij1,2,...,d, are the corresponding eigenvectors.
By replacing the minor eigenvalues with a larger constant, the modified quadratic discriminant
function (MQDF) is obtained as

ko1 2 1 k
92X, w;) = E , /1_[(pij(X_ui) ] +6_DC(X)+ E - log Ay
j=12i i j=1 (4-35)

+ (n—k)logA;j

where 4;; and ¢;;, j = 1,2,---, k, denote the eigenvalue of the class w; sorted in decreasing
order and the corresponding eigenvectors, respectively. k denotes the number of principal
components and D.(X) is the square Euclidean distance in the complement subspace shown in
Eq. (4-36). The parameter §; can be set as a class-independent constant as proposed by Kimura
etal. [82] and tr(3;) denotes the trace of covariance.
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D0 = IX =il = ) [y = )]’ (4-36)
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4.4  Recognizer combination

The on-line and off-line character recognizers are combined by a linear function [33]. Suppose
a character pattern x; is recognized as a character class c; by the on-line recognizer and off-line
one with their similarity scores £, and focjif, respectively. Then, the confidence of the combined

recognizer £.* by the sum rule with class-independent linear combining parameters is given by
the following formula:

ci)im = Alfocri + Azfoc}if (4-34)

where 4; and A, are parameters. We use the minimum classification error (MCE) criterion to
optimize the parameters, which will be described in chapter 5.
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5. Character-position-free on-line handwritten text

recognition

In this chapter, we describe proposed recognition methods for character-position-free on-line
handwritten Japanese and Chinese text patterns by two segmentation methods to allow a user to
overlay characters freely without confirming previously written characters. In the over-
segmentation step, we consider two segmentation methods to solve the character segmentation
problem. The first one is candidate segmentation method, which classifies off-strokes into
segmentation point, non-segmentation point, and undecided point according the output of SVM
model. The second one is undecided segmentation method, which sets each off-stroke as
undecided point. Both of these two segmentation methods evaluate the character segmentation
probability by SVM model. Then, the optimal segmentation-recognition path can be effectively
found by Viterbi search in the candidate lattice, combining the scores of character recognition,
geometric features, linguistic context, as well as the segmentation scores by SVM classification.

5.1 System overview

The character-position-free on-line handwritten text recognition method has three major steps:
over-segmentation, candidate lattice construction and handwritten text recognition by optimal
path search, as shown in Figure 5-1. Each step is described in detail in the following sections.

Input a handwritten character-position-free text

Over-segmentation

Candidate lattice construction ‘—[ Character recognition ]

Linguistic context ]

Handwritten text recognition
by optimal path search
l Character segmentation ]

Geometric context ]

Output the optimal result string

Figure 5-1 Flow chart of recognition process.
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5.2  Over-segmentation

A handwritten text pattern is composed of many characters with a sequence of strokes, In
Japanese, different kinds and complexities of characters: Kanji, Hiragana, Katakana, numeric
characters and others are mixed. An input text pattern should be correctly segmented into each
character as far as possible. It is difficult, however, due to the facts that spaces between characters
are not obvious, many characters include multiple radicals with internal gaps and some characters
are connected in writing. To solve these problems, a text pattern is over-segmented into a sequence
of primitive segments so as to segment true segmentation points surely but may segment single
character patterns into pieces, which could be combined in the later text recognition stage. Zhu et
al. employ two-stage segmentation scheme [5]. In the first stage, each off-stroke (a vector from
the last point of a previous stroke to the first point of the next stroke) is classified into non-
segmentation point (NSP) and hypothetical one based on geometric features. Then, in the second
stage, each hypothetical point is classified into segmentation point (SP) and undecided point (UP)
using SVM model according to 20-dimensional features extracted from an off-stroke, where a SP
separates two characters at the off-stroke, an NSP indicates the off-stroke is within a character
and a UP is interpreted either as a SP or an NSP. When it is interpreted as a SP, it is used to extract
candidate character patterns beside it with nearest neighbor SPs or UPs interpreted as SPs. When
it is interpreted as an NSP, it is considered within a character pattern and does not play a role for
segmentation. We call a sequence of strokes delimited by SP or UP as a primitive segment.

In a character-position-free handwritten text pattern, however, spaces between characters are
very unstable. We can't directly use the conventional handwritten text recognition model. The first
stage in the above-mentioned recognizer may combine two characters since the space between
them disappears. Therefore, we remove the first stage and only employ the second stage.

The next concern is the classification of off-strokes into NSP, SP or UP. We may follow this
scheme or change the scheme. In this paper, we compare two segmentation methods. The first
one is the conventional method to classify off-strokes into NSP, SP or UP although all the
parameters and thresholds are retrained according to the new training patterns. We call this
method “candidate segmentation method”. On the other hand, we set every off-stroke as UP in
the alternative method although we employ the output of SVM model in the text recognition stage.
We call it “undecided segmentation method”.

Namely, the first method classifies off-strokes into NSP, SP or UP, but the second method treats
every off-stroke as UP. Both of the two methods, however, transform the output of SVM to
segmentation probability value. Moreover, the segmentation probability value is combined into
the optimal path evaluation in candidate segmentation-recognition paths.
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Figure 5-2(a) shows segmentation by the candidate segmentation method and Figure 5-2(b)
shows that by the undecided segmentation method, respectively, where a node is a segmentation
point and a rectangle is a candidate character pattern. Rectangles between adjacent segmentation
points are primitive segments. A segmentation path connects candidate character patterns
following segmentation points from the start to the end. The thickly marked path is the correct
segmentation sequence. We delete candidate character patterns if their widths are longer than the
threshold. It is clear that the undecided segmentation method has more segmentation points than

the candidate segmentation method.

2L

(B¢m)

(a) Segmentation by the candidate segmentation method.

PR

(Bh)

(b) Segmentation by the candidate segmentation method.

Figure 5-2 Over-segmentation.

In both segmentation methods, we need to extract more geometric features from an off-stroke
in order to enhance the reliability of over-segmentation. Through investigation into related
literatures, we employ all the useful geometric features proposed so far, i.e. 56-dimensional
features, to train SVM model. The detail will be described in the next subsection.

5.3  SVM model

Support vector machines (SVMs) developed from statistical learning theory [83] for pattern
recognition, have been successful applied to the handwriting segmentation task. Sun et al. [84]
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compared different supervised classifiers for classifying gaps between pieces of handwritten text
to inter-word and intra-word classes, and found that SVMs outperform the other classifiers. Zhu
et al. [85] employed SVM to determine segmentation point candidates for improving on-line
freely written Japanese text recognition. Moreover, they showed that the character recognition
rate by SVM-based segmentation are better than that by the three-layers neural network, although
SVM method takes more training time than the neural network. Harbi et al. [86] also employed a
linear kernel-based SVM classifier with temporal and spatial features for clock drawing
segmentation, and showed this method outperforms the current state-of-the-art method on two
collected datasets.

As for the character-position-free on-line handwritten text segmentation, we continue employ
SVM classifier to segment each off-stroke with more geometric features.

5.3.1 Support Vector Machine (SVM)

Suppose we are given a training set D; = {(x;, y)|i = 1,---,N}e(X x Y)N, where x;eX = R"
stands for the feature vector of a training pattern i, and y;eY = {—1,1} is an associated class
label of a training pattern i, N is the number of training patterns, respectively.

Then, by mapping from the space of R" to the high dimension space H:

X=R"—H

XX = d(x)" (5-1)

Dy is mapped as:

D% = {(Xi'yi)li =1, 'N} = {(q)(xl)'yl)ll =1, !N}
(5-2)
The key idea of SVM is to learn the parameters of the hyperplane in space H that has maximum
margin to classify two classes on training set.
To find the hyperplane wx; + b = 0, it can be translated into the following optimization

problem:

1<
min: > o] +cZgi
i=1

(5-3)
s.t: §20,yi(wx; +b) =21-¢;

where %Iloull2 stands for the maximum margin, ¢; is the learning error of a training pattern

i, C is the trade-off between learning error and maximum margin, respectively.

Then, the feature vectors are mapped into an alternative space choosing kernel function
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K(x;, ;) = ¢(x)p(x;) for nonlinear discrimination. Consequently, it leads to the following
quadratic optimization problem:

N
Vi yjaiaiK(x;, xj) + Z a;

(L&
min: W(a) = 3
=1

(5-4)

Jj=1 =1

(
I
i
N
ts.t: Zyiai =0,vVi:0<a; <C
—

4

where o is a vector of N variables and each element «; corresponds to a training pattern
(i, v1)-

The solution of the optimization problem as shown in Eq. (5-4) is to find a vector a* to let
W(a) isthe minimum and the constraints are fulfilled. The classification of an unknown pattern
x is made based on the sign of the following function f(x), where SV stands for support vector
as shown in Figure 5-3.

FG) = ) @i yiKGox) +b° (55)
i:SV
In this thesis, we set the target value of segmentation points as 1, and that of non-segmentation
points as -1. We use SVM""9" [87] to obtain the separating hyperplane by solving this optimization
problem as shown in Eq. (5-4) on training patterns. This software efficiently solves classification
problem with many thousand support vectors, and converge with fast optimization algorithm.

O SV
wx+b=1

wx+b=-1

Hyperplane: wx+ b =0

Figure 5-3 Example of Support vectors.
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5.3.2 Features for SVM

An off-stroke is evaluated by SVM model. We cover all the useful geometric features from the
literature [54] and [85], and extract 56 features from each off-stroke. Table 1 shows the features
and table 2 shows terms to derive the 56 features. Most of the features are normalized by an
average character size (acs). The average character size is estimated by measuring the length of
the longer side of the bounding box for each stroke, sorting the lengths from all the strokes and
taking the average of the larger 1/3 of them.

We just use order information for the on-line character recognition engine, but we do not use
time information. Time information can be used to separate characters intentionally, but it causes
mis-segmentation when a user stops writing in a character pattern. In automobile environment
and even in ordinary environment, a user may stop writing or resume writing.

Table 5-1 Features extracted from an off-stroke.

No.  Definition No. Definition

f1 DBx/ acs foo Dn/ acs

fa Oan/ (acs)? fao width of Sp / acs

fs Dux/ width of Bp fa1 height of Sp/ acs

fa Dux/ width of Bs faz width of Ss/ acs

fs Dox/ acs fa3 height of Ss/ acs

fe Duy / height of Bp faa log(width/height of Sp)
fz Dty / height of Bs fas log(width/height of Ss)
fs Duy/ acs fas Lp /acs

fo O / area of Bp fa7 Ls /acs

f1o Oy / area of Bs fas square root of Bp/ acs
fu O/ (acs)? fag square root of Bs/ acs
fi2 Dusx / acs fao x-coordinate of P1e/acs
fis Dusy / acs fa1 y-coordinate of Pe/acs
f1a Drs / acs fa2 x-coordinate of P2/ acs
fis Dfy / acs fa3 y-coordinate of P2/ acs
fis Lotf/ acs fas DPx/ acs

fi7 sin(Lofr) fas DPy / acs

fis cos(Lof) fas Dielp / acs

fio f1 / max(fy) in text faz Diepp / acs

fa0 x-center of Sp/ acs fag Dasrp / acs

fo1 y-center of Sp/ acs fag Dastp / acs

fo2 x-center of Ss/ acs fso Daels / acs

fo3 y-center of Ss / acs fs1 Daeps / acs

foa Di/ acs fs2 width of Sps/ acs

fos Dr/ acs fs3 height of Sps/ acs

f26 Dt/ acs fsa log(width/height of Sps)
fo7 Dn/ acs fss x-center of Sps/ acs

fos Dut/ acs fse y-center of Sps/ acs

We examined the distribution of each feature using all the training patterns. We have found 20
features are clearly essential such as fag as shown in Figure 5-4(a) where the two classes (NSP and
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SP) are divided to some extent, while other features such as f,; cannot divide the two classes as
shown in Figure 5-4(b). Table 3 shows the 20 essential features. We still keep using all 56 features,
however, so that they contribute to the segmentation of character-position-free on-line
handwritten Japanese text using SVM.

Table 5-2 Terms to derive features.

Term.  Description

acs Average character size of text line

Bp Bounding box of immediately preceding stroke
Bs Bounding box of immediately succeeding stroke
Bp_an Bounding box of all preceding strokes

Bs_an Bounding box of all succeeding strokes

DBx Distance between Bp_ai and Bs_an in x-axis

Dox Distance between Bp and Bsin x-axis

Dey Distance between Bp and Bsin y-axis

Ob Overlap area between Bp and Bs

(OF] Overlap area between Bp-ai and Bs-an

Dbsx Distance between centers of Bp and Bs in x-axis
Dusy Distance between centers of Bp and Bs in y-axis
Dbs Absolute distance of centers of Bp and Bs

Dfy Vertical distance between Bp_an and Bs

Loff Length of off-stroke

Sp Immediately preceding stroke

Ss Immediately succeeding stroke

Sps Union of Spand Ss

P1e End point of Sp

P2s Start point of Ss

P2e End point of Ss

Lp Length of Sp

Ls Length of Ss

D Distance between left bounds of Bp and Bs

Dr Distance between right bounds of Bp and Bs

Dt Distance between top bounds of Bp and Bs

Dn Distance between bottom bounds of Bp and Bs
Dbt Distance between bottom-top bounds of Bp and Bs
Dri Distance between right-left bounds of Bp and Bs
DPx Distance between P1e and Pas in x-axis

DPy Distance between P1e and Pas in y-axis

Dielp Distance between P1e and left bound of Bp
Diebp Distance between P1e and bottom bound of Bp
Dasrp Distance between P25 and right bound of By
Dastp Distance between P2s and bottom bound of Bp
Daels Distance between P2¢ and left bound of Bs

Da2ebs Distance between P2e and bottom bound of Bs
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Table 5-3 Essential features.

Essential features Number

f1, fo, f5, fg, f12, f13, T14, f16, T24, To5, f26, 27, T28, T2o, fa4, fas fag fa9, f52, fs3 20

25000

20000

15000

10000

Distribution

5000 -

(a) Distributions of the 49th feature.

30000

25000

20000

15000 NSP Sp

10000
P

5000

Distribution

(b) Distribution of the 21th feature.

Figure 5-4 Distributions of two features in training patterns.

Furthermore, in order to standardize the feature values, we normalize the values of each feature
based on the mean u; and standard deviation oy of that feature. The normalized feature value is

then calculated as follows:

i

== (5:6)

The mean and standard deviation are calculated for each feature over the training patterns.
These values are stored and used for normalizing the training and test patterns.
Using these normalized features of training patterns, we train the SVM model by setting NSP
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as negative class and SP as positive class. SVM model actually classifies each off-stroke into NSP,
SP or UP based on its output for the candidate segmentation method, but it does not classify for
the undecided segmentation method. For both of them, however, it produces probability of an off-
stroke as NSP or SP.

5.3.3 SVM-based classification

In the candidate segmentation method, we classify each off-stroke into SP, NSP or UP. The
trained SVM model, however, classifies off-strokes into SP and NSP. Therefore, we need to think
how to judge undecided point.

We followed the judgment method mentioned in [85]. Based on the distribution of the outputs
of the SVM model on training patterns, as shown in Figure 5-5. We can set the concatenation
threshold th,. and the segmentation threshold th, for both the sides of th and judge values
smaller than th, as concatenation (non-segmentation) points, values larger than ths as
segmentation points, and the others as undecided points to obtain the higher segmentation rate.

Moreover, the widths (th — th.) and (thy — th) are not need to equal, due to the unbalanced
distribution of the outputs for two classes of segmentation points and non-segmentation points.
We employ th, and ths determined on the training patterns for the testing patterns.

12000

10000

8000

6000

Distribution

4000

2000

segmentation point

non-segmentation point

0
o = = = - o = = ~ @ = © @ o =
=3 5 3 = 2 g 8 2 2 5 2 2 & & @ S

H - % v = o = = = - w e = >

Output of SVM

Figure 5-5 Distribution of the outputs of the SVM model on training patterns.

5.4 Candidate lattice construction

Each candidate character pattern is associated with a number of candidate classes with
confidence scores from character classification. The combination of all candidate character
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patterns and candidate classes construct a segmentation-recognition candidate lattice, where each
arc denotes a segmentation point and each node denotes a character class assigned to a candidate
pattern. Figure 5-6 shows a part of the candidate lattice of an example as shown in Figure 5-2
where the correct path is thickly marked.

EE

l,/

Figure 5-6 Candidate lattice with two segmentation paths.

5.5 Handwritten text recognition by optimal path search

The original path evaluation model was proposed in [5], and then formulated in [34]. We utilize
the same criterion to evaluate paths in the candidate lattice and search for the optimal text result
by the Viterbi algorithm.

5.5.1 Path evaluation criterion

Given a handwritten text pattern, which is segmented into a sequence of candidate character
patterns X = x;x,,:*+,x,, and a candidate character pattern x; is recognized as a character
class c;, the probability of forming a recognized text string C = c,c5, -+, ¢, is calculated by the
following evaluation function:

(hpa+212(k ~D)IOgP(c; ¢ _p,C;_y)+
o | (214 222k ~D)IogP by |¢; ) + (A3 +232(ki ~1)logP (i ¢ ) +
f(X,C)= (ha1+na2(ki —D)NOGP(x; | ¢; ) + (ks g+ Asa(ki —1))logP(pf [ )+ |+2n
=L (g1 + 2ga(ki ~)logP(pf [c_y.¢ ) +
Jitki-1
27110gP( |SB)+172 D l0gP(g; |Sw) (5-7)
j=ji +1

64



where n is the number of candidate character patterns in a path, k; is the number of primitive
segments within a candidate character pattern x;, Ay, A5, (h=1~7) and X are weighting
parameters.

P(c;|c;—2,c;—1) In Eq. (5-7) is trigram linguistic context probability detailed in Chapter 6.

The term b;, q;, pand p? in Eq. (5-7) stand for bounding box feature, inner-gap feature, and
unary position feature of a candidate character pattern, and binary position feature between
candidate character patterns, respectively. They are together called geometric context, their detail
information are introduced in Chapter 6.

P(x;|c;) inEq. (5-7) is given by a character recognizer detailed in Chapter 4.

The term g; is a spacing feature vector concerning segmentation point, which is extracted
from an off-stroke. Both of the probabilities are approximated by the SVM model introduced in
Sect. 6.3. Here, SP is always treated as Sb and NSP is always treated as Sw. UP is interpreted as
either Sb or Sw. When it is within a character pattern, it is treated as Sw, when it is between
character patterns, it is treated as Sh.

P(g i |Sb) is the probability that the spacing between candidate character patterns (Sb) appears
as g; and P(gj|SW) is the probability that spacing within a candidate character pattern (Sw)
appears as g; in Eqg. (5-7). We approximate these two probabilities using the SVM model
introduced in Sect. 6.3. The output values of SVM is warped to obtain probabilities P(o;|Sh)
and P(o;|Sw) , where o; is the output value of SVM for g;. The warping function is obtained
from the distribution of all output values of SVM on the training dataset. We set P(o,|Sbh)
always as 1.

To warp all output values of SVM, we first obtain the histograms of P(o;|Sbh) and P(o;|Sw),
then take the cumulative probabilities P’(0;|Sbh) and P’'(o;|Sw) as follows:

Plsh) =) paish)

. 59)
Plofsw) =) plllsw)

Then, P'(0;|Sb) and P'(o0;|Sw) are fitted by two sigmoidal functions, with the parameters
estimated by minimizing squared errors, which is similar to Platt’s method [88].

5.5.2 Parameter optimization

We train all the weighting parameters Ayq, Ap, (h=1~7) and X in Eq. (5-7) by the minimum
classification error (MCE) criterion [40] or the genetic algorithm (GA), using training data of
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character-position-free text patterns to maximize the recognition rate on this training data.

(a) MCE criterion

Liu et al. [89] have applied this criterion on handwritten numeral string recognition to improve
recognition performance.

In the character-position-free handwritten text recognition, the weighting parameters A are
trained on a training set D = {X!,C‘|i = 1,---, N}, where C' denotes the ground-truth text class
label of a training sample X*, and N is the number of training samples. Each class C is assigned
a discriminant score g(X*, C, A). Following Juang et al. [40], the misclassification measure on a
training sample from class C* is given by:

(5-9)

o L. 1 ]
d(x4,chA) = —g(X5,CHLA) + log(N — Z e M9XLCA)Y
C#Cl

where 7 is a positive number. When 1 — oo,
o o A 5-10
d(x',c,A) = —g(X,,CLA) + g(X', CLA) (-10)

where C! is the class label with the highest discriminant score in the closest rival class, namely,
g(X%, € A) = max g(X', C, A) (5-11)
C#C!

The loss of misclassification using sigmoid function is computed by,

1

i i —
l(X C ’A) T 1 4 e—€d(xicia)

(5-12)
where & is a parameter. Then, the loss of misclassification based on training set is defined as:

N
13
L(AD) = %Z I(XE, ¢ A) (+-13)
i=1

We use the stochastic gradient descent [41] to learn the optimal parameters in Eq. (5-13). The
parameters are updated on each training sample by

A(t +1) = A(t) — e(t)UVI(XE, C (5-14)

My = aw

where A(t) denotes the parameters on time t, (t) is the learning step, U is related to the
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inverse of Hessian matrix and is usually approximated to be diagonal.

As for the character-position-free handwritten text recognition, MCE is to find the optimal
parameters in Eq. (5-13) by minimizing difference between the scores of the most confusing text
class and that of the correct one. The discriminant function is the path evaluation criterion defined
in Eq. (5-7). The rival segmentation-recognition path, which is the most confusable one with the
correct one, is obtained by beam search. Assume the discriminant functions f, and f, for the
correct path and rival one, respectively. The parameters are updated iteratively by:

At +1) = A — e(®)SLXT, L AM) (L = LXE CLAM) (S — f2) (5-15)

(b) GA

Zhu et al. [5] have reported that the GA-based parameter optimization method yields better
recognition performance than MCE-based method for on-line handwritten Japanese text
recognition. The GA-based method, however, takes more training times than MCE.

The parameters are estimated by a GA on the training text patterns as follows:

Stepl (initialization): Initialize N chromosomes with random values from 0 to 1, average
fitness of the N chromosomes foiq as 0 and time t as 1.

Step 2 (crossover): Select two chromosomes at random from N chromosomes. Cross the
elements between two random positions to produce two new chromosomes. Repeat until
obtaining M new chromosomes.

Step 3 (mutation): Change each element of N+M chromosomes with a random value from —1
to 1 at a probability Py

Step 4 (fitness evaluation): Evaluate fitness in terms of the recognition rate on training data
with the weight values encoded in each chromosome.

Step 5 (selection): Decide the roulette probability of each chromosome according to its fitness.
First select two chromosomes with the highest fitness, and then select chromosomes using the
roulette until obtaining N new chromosomes. Replace the old N chromosomes with the new ones.

Step 6 (iteration): Obtain the average fitness of the new N chromosomes frew. If (frew — foild <
threshold) occurs nsop times or t > T, return the chromosome of the highest fitness. Otherwise, set
frew 10 foig, increment t, and go to step 2.

For evaluating the fitness of a chromosome, each training sample is searched for the optimal
path evaluated using the weight values in the chromosome. To save computation, we first set each
weight value as 1 and select the top 100 recognition candidates (segmentation-recognition paths)
for each training sample.
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6. Linguistic context and geometric context

In this chapter, we describe the linguistic context and geometric context, both of them play an
important role in the path evaluation criterion for character-position-free on-line handwritten
Japanese and Chinese text recognition.

Due to the characters in a handwritten text cannot be segmented unambiguously before
recognition, over-segmentation-based method is commonly employed to solve this problem.
Therefore, this method may produces many candidate character patterns in the candidate lattice.
For each candidate pattern, the character recognizer usually provides not only a unique similar
class with the corresponding score, but also top N (N = 1) candidate classes with scores. The
linguistic context can provide valuable information for selecting the optimal class from the top N
candidate ones. Moreover, combining the linguistic knowledge, the geometric context and
character recognition results, it can verify the candidate patterns, and so improve the text
recognition rate.

6.1 Linguistic context

In handwritten text recognition, the linguistic processing of character recognition results after
character segmentation is usually referred to as postprocessing [1]. Due to the character
recognizer provides several candidate classes for a candidate character pattern, the selection of
the optimal class from the set of candidate classes is based on the linguistic knowledge model.
The linguistic knowledge models are usually represented in word dictionaries and statistical
language models, such as character-based n-gram [91], and word-based n-gram [21], [92], [93].
The word-based n-gram language model is generally based on the syntactic/semantic classes (e.g.,
parts of speech) of words. Its use in linguistic processing involves the segmentation of text into
words, usually by morphological analysis using a lexicon [92], [93]. Moreover, the adaptation of
writer-specific linguistic dictionaries is beneficial for writer dependent handwritten character
recognition [94]. Using the linguistic processing, the error rate of off-line handwritten English
text is reduced by about 50 percent for single writer data and by about 25 percent for multiple
writer data [98].

Recently, the unsupervised language model adaption is proposed for unconstrained off-line
handwritten Chinese text patterns, and improves the recognition performance impressively,
especially for the ancient domain documents [95]. Li et al. [96] applied the recurrent neural
network language model (RNNLM), which is superior to the n-gram language models due to its
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capability to capture long-span history by discriminative leaning using the recurrent neural
network, to improve the recognition of off-line handwritten Arabic documents.

Due to the word-based n-gram language models need an additional word segmentation tasks,
the simple and effective character-based n-gram model is widely used for handwritten Japanese
and Chinese text recognition [5], [38]. Figure 6-1 gives an example to shown character-based and
word-based unigram (n = 1), bigram (n = 2) and trigram (n = 3) language model.

REBIX=ZEIMEFH.

unigram M TmITE]

bigram R TEEI.[E1]

trigram | TRREI.TREII.TRIX]

(@)

EREBI K2/ & H#

w-unigram | TR TRTI TK%) -

w-bigram [RmET | BT K% -

w-trigram | B T A% | TEITK2/NEH |-
(b)

Figure 6-1 Examples of character-based (a) and word-based (b) unigram, bigram and trigram

model.

Statistical language modeling involves attempts to capture regularities of natural language in
order to improve the performance of various natural language applications, such as machine
translations. N-gram models as the most successful statistical language mode have been applied
in handwriting recognition, since it can be easily integrated with the character recognition. We
will introduce it in the next section.
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6.1.1 N-gram language model

The most widely used language models is n-gram language models, where n is called the order
of the model. Such model estimates the statistical dependency between n characters or words.
Considering the complexity of language models, the order n usually takesl, 2 or 3, namely
unigram, bigram and trigram langugae model, respectively.

Given a handwritten Japanese/Chinese text or sentence with | characters W = wyw, -+ wy,
based on the statistical langugae model, the priori probability of this sentence P(C) can be
decomposed as follows:

P(W) = P(wy)P(w|wy)P(ws|wywsy) -+ P(wy|wy - wy_q)

l
= | [Powitwiws i (6-1)
i=1

Here, we assume that the probability of character w; being written depends only on the
previous characters (wy ---w;_;) of the sentence.

In n-gram language models, Eq. (6-1) is transformed into the Eq. (6-2) with changing the
probability of character w; being written depends only on the previous (n — 1) characters of
the sentence.

l l
P(W) = nP(Wi|W1W2 Wiog) = l_[P(Wilwii__%ﬂ (6-2)
i=1 i=1

Where n is called the order of the model. wij denotes the characters sequence w; ---w;. Even for
low orders, the number of equivalence classes becomes quickly intractable. In practice, the
unigrams, bigrams and trigrams are commonly used. They are shown in Eq. (6-3), Eq. (6-4), and
Eqg. (6-5), respectively.

PW) = ‘ 'P(wl-) (6-3)
11
<

P(W) = A P(wilw;_y) (6-4)
i=1

l

Py ~ | | Powidwicawin) (6-5)

i=1

The probabilities P(w;|w/Z},,) are estimated from a corpus of training texts using Maximum
Likelihood (ML) estimation, namely, by counting the number of times a certain sequence of n
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characters appears in the corpus of training texts, given by

Count(wii—n+1) _ C (Wii—n+1)

i-1 - i—-1
Count(wi—n+1 C(Wi—n+1

P(wi|wiTay1) = (6-6)
where C(-) denotes the number of times the argument is counted from the given training corpus.

The model resulting from Eq. (6-6) maximizes the likelihood of the training corpus, which used
to obtain the language models. The n-gram statistics language models have several advantages,
such as the quick speed due to probabilities of n-gram are stored in pre-computed tables, simple
calculation, and generality due to models can be applied to any domain or language, as long as
there exists some training corpus.

For the character-position-free on-line handwritten text recognition, we choose the trigram
language model which combined not only trigram, but also bigram and unigram models, with
considering the computation complexity and effectiveness.

Following the ML estimation, however, the n-gram models face an important problem due to
no corpus is large or wide enough to contain all possible n-grams, namely, all the texts of n
characters not appearing in the training corpus have zero probability. Moreover, many n-grams
appear too few times to allow a good statistical estimation of their probability P(wl- |wl-"_‘,1+1). In
order to solve this problem, the smoothing techniques is applied. We will introduce it in the next
section.

6.1.2 Smoothing algorithms

As many of n-gram probability estimates are going to be zero due to it is impossible that all
words are seen in the training text corpus. Whenever a character string W with P(W) =0
during a text recognition task, that is, the character string should not occur, which is too hard
discrimination for handwritten text recognition, a recognition error will be made. It helps prevent
errors to assign all character strings in non-zero probabilities for handwritten text recognition.

Smoothing technique is used to overcome this problem, i.e. zero probabilities of the unseen n-
grams in the given text corpus by redistributing probabilities between seen and unseen events.
Smoothing techniques produce more accurate probabilities by adjusting the maximum likelihood
estimate of probabilities. Typically, smoothing methods prevent any probability from being zero,
but they also attempt to improve the accuracy of the model as a whole. The name smoothing
comes from the fact that these techniques tend to make distribution more uniform, which can be
viewed as making them smoother. Especially for the very low probabilities such as zero
probabilities are adjusted upward, and high probabilities are adjusted downward.

One simple way of smoothing technique used in practice is the additive smoothing [97], also
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called Laplace smoothing, which is to pretend each n-gram occurs slightly more often than it
actually does for avoiding zero probabilities. Eq. (6-6) is then transformed by following this
additive smoothing as follows:

C(V.Vii—n+1) +8
C(wipy1) + 61V

Paaa (Wilwii—_%+1) = (6-7)
where 6 is aconstant, and subjectedto 0 < § < 1. V s the vocabulary, or set of all characters
considered.

The & is generally considered as 1, and called add-one smoothing. Let us consider the
application of add-one smoothing to bigram probabilities, Eq. (6-7) is simplified as follows:

C(Wi_lwi) +1

Cow) V] ()

Pri(wilwi_y) =

Many other smoothing techniques have been introduced in the literature [97]. Such as the
simple interpolation, Katz smoothing, Backoff Kneser-Ney smoothing and Interpolated Kneser-
Ney smoothing. We will describe the simple interpolation algorithm.

The simple interpolation is a combine techniques in language modeling to simply interpolate
them together. For instance, if one has a trigram model, a bigram model, and a unigram model,
then

Prnterpotation WilWi—awi_1) = 4 P(Wi|lwi_awi_1) + 2, P(wi|lw;_1) + 3P (wy) 6.9)

where A;, A, and A5 are parameters with constraint that 0 < A;,A, and A3 < 1.

In practice, to ensure no word is assigned zero probability, we commonly interpolate with the
uniform distribution P(w;) = 1/size of vocabulary, we also need to deal with the case when,
for instance, the trigram context c;_,c;_;c; has never been seen, namely C(w;_,w;_yw;) = 0.
In this case, we use an interpolated bigram model, etc. Given its simplicity, simple interpolation
works surprisingly well, but other techniques, such as Katz smoothing, work even better, but need
much more training corpus.

In our study, we use this smooth method for trigram language model, which combines the
unigram, bigram and trigram with parameters, where the parameters subjectto A; + 2, + A3 = 1.
It is reduced to unigram or bigram when w; is the first or second character of a sentence.
Moreover, to reduce the model size, we set empirically a threshold to prune the low trigrams
probabilities.
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6.2 Geometric context

In handwritten Japanese/Chinese text recognition, over-segmentation-based method is
commonly employed to overcome the character segmentation problem, due to it is infeasible to
segment character reliably prior to recognition. The geometric context, which includes the
compatibility of character size, position and between-character relationship with respect to the
text layout, can help disambiguate the uncertainty in character segmentation. Especially in
Japanese language, the position of the small Kana such as “tsu” is obviously different with the
normal Kanji. Furthermore, the recognition accuracy will be improved by incorporating the
geometric context with character recognition and linguistic context in the candidate segmentation
and recognition path evaluation.

In on-line handwritten Japanese text recognition, Nakagawa et al. [23] incorporated the
likelihood of geometric features into the path scores, but only simple features are used, such as
character size, inter-character and between-character gap. Zhou et al. [27] incorporated the
geometric context with character recognition and linguistic context into a united framework to
overcome the effect of string length variability and improve the recognition performance. Here,
the geometric context models are made by a statistical method, including class-dependent unary
and binary geometric features with more features. Recently, Zhu et al. [5] combined the more
geometric context with the character recognition, linguistic context and character segmentation
to improve recognition accuracy. The geometric features include the size feature, character inner-
gap feature, and class-dependent unary and binary position features.

In on-line handwritten Chinese text recognition, the employed geometric context including
more features (class-dependent unary and binary geometric features, and class-independent unary
and binary geometric features) [36], [38]. Compared to [5], the mainly difference is that it uses
class-independent unary and binary geometric features, using simple SVM model. Yin et al. [99]
integrated the geometric features to improve the performance of text alignment in Chinese
annotation system. Wu et al. [100] proposed an improved binary geometric model that combines
single-character and between-character features to improve significantly the numeral string
recognition performance on the NIST special database 19.

We will introduce the geometric features used in the character-position-free handwritten text
recognition system, including the character size feature, character inner-gap feature, and unary
position feature of a candidate character pattern, and binary position feature between candidate
character patterns.

The character size feature (or shape feature), namely the term b; in Eq. (5-7), is composed of
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the height and width of the bounding box of a candidate character pattern. Figure 6-2 shows an
example of size features of candidate character patterns.

The character inner-gap feature of a candidate pattern, namely the term q; in Eq. (5-7), is
obtained by projecting the candidate character pattern into the vertical and horizontal directions,
splitting each of their histograms into 3 slices, finding a gap or gaps in each slice, and summing
total lengths of gaps. Hence, the inner-gap feature vector includes 6 values. Figure 6-3 shows an
example of the inner-gap feature of a character pattern.

The class-dependent unary position feature, namely the term p}* in Eq. (5-7), consists of two
vertical distances from the horizontal center of a text line to the top and bottom of the bounding
box of a candidate character pattern, as shown in Figure 6-4.

The class-dependent binary position feature, namely the term p? in Eq. (5-7), is composed of
a vertical distance between the top edges of the bounding boxes of two adjacent candidate
character patterns in a text line and that between the bottom edges of the bounding boxes, as
shown in Figure 6-5.

Due to Japanese and Chinese language are large character set including thousands of character
classes, it is almost impossible to get sufficient training samples covering every class pair. A
feasible method is that using cluster method to reduce the number of classes. The character classes
are then clustered into six super-classes by grouping the mean vectors of the unary geometric
features of all character classes on a training text set using the k-means algorithm. Hence, a pair
of successive characters belong to one of 36 binary super-classes. The training text character
samples, re-labeled to six unary super-classes, are used to estimate the Gaussian probability
density functions of 36 binary super-classes. Then, the binary geometric
probability P(p? |c;—1,¢;) is substituted by P(p?|é;—1,¢;), where &_, and ¢ are the unary
supper-classes of ¢;_; and c;.

We normalize the above 4 features (bi, gi, p%, and pP) by the acs (average character size). Then,
we assume P(b;lc;), P(qilc;), P(p¥lcy), and P(p?|éi—1,¢;) to be normal distributions and
model their logarithms by a quadratic discriminant function (QDF).

width

height\¥ )

-, ~

Figure 6-2 Shape features of character patterns.
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Figure 6-3 Inner-gap feature of a character pattern.
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Figure 6-4 Unary position features of character patterns.
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Figure 6-5 Binary position features between adjacent character patterns.
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7. Experiments

In this chapter, we describe several experiments on generated character-position-free on-line
handwritten Japanese and Chinese text datasets, and collected handwritten Japanese text patterns,
as well as normally handwritten Japanese text patterns. Moreover, we compare the results of
proposed segmentation methods with the original recognizer, and give some analyses of
recognition performance.

7.1 Datasets

The character-position-free on-line handwritten Japanese and Chinese text datasets are
generated by following the generation models described in Chapter 3. We call Japanese and
Chinese text datasets as Dataset M (M=1 to 4) and ch_Dataset M (M=1 to 4), respectively.

The collected Japanese text patterns written without supported by wrist or elbow and without
visual feedback from 10 participants as described in Chapter 3. We call this set of collected sample
patterns as Dataset 5. The statistics of these datasets is shown in Table 7-1.

Table 7-1 Statistics of datasets.

. . #Character #Character
Dataset #Writers | #Text lines patterns categories
Kondate_h 100 13,685 139,779 1,161
Dataset M (M=1 to 4) 100 15,389 129,076 1,123
Dataset 5 10 470 3,580 198
Training set of ch_Dataset M
(M=1 to 4) 240 44,903 293,198 2,175
Test set of ch_Dataset M
(M=1 1o 4) 60 11,246 73,301 2,173

For Dataset 1 to 4 of handwritten Japanese text patterns, we use a 4-fold cross-validation
method to evaluate the performance of recognizers. For Dataset 5, however, we employ a simple
method since it is too small to make a cross validation.

We divide each Dataset M (M=1 to 4) into 4 groups: Dataset M_D1 (patterns by writer 1 ~
writer 25), Dataset M_D2 (writer 26 ~ writer 50), Dataset_ M_D3 (writer 51 ~ writer 75), and
Dataset_M_D4 (writer 76 ~ writer 100), each group includes 25 peoples’ patterns, and let 3 groups
(75 peoples’ patterns) as training patterns, the remaining 1 group (25 peoples’ patterns) as testing
patterns. Moreover, to let our proposed model recognize patterns of all the datasets with the same
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set of parameters, we combine all the training patterns (75x4) as the total training patterns. That
is, the combined training patterns are shared among the following experiments but the testing
patterns are used from each Dataset. If we use the training patterns and testing patterns in each
dataset, we get slightly better results but it seems unfair since we cannot predict which model is
appropriate.

7.2 Settings

For character-position-free handwritten Japanese text patterns, we compare our candidate
segmentation method (CSM) and undecided segmentation method (USM) with the original
recognizer. It was developed for normally handwritten horizontal Japanese text patterns based on
the method [5] and reduced in size by feature selection, LDA, vector quantization and data type
transformation. This comparison is made by changing over-segmentation and replacing the
candidate character segmentation probability while succeeding the character recognition, unary
and binary position features, size and inner-gap features, and linguistic context to evaluate the
candidate segmentation-recognition paths.

As for the training the parameters in the path evaluation function defined in Eq. (5-7), we
choose the MCE criterion to train them on the training text patterns combined from dataset 1 to
dataset 4. We initially set all parameters as 1, the initial learning step as 0.004, and the parameter
of & as 0.9 in Eq. (5-14). The parameters are updated iteratively following Eg. (5-14). The beam
width of beam search is being set as 2.

As for the character recognition, which combines on-line and off-line character recognizers by
a linear function as described in Chapter 4, where the combing parameters are trained by Nakayosi
database [90], we keep top 10 candidate character classes for each candidate character pattern.
We also use Nakayosi database to train geometric feature functions: character unary and binary
position features, character size and inner-gap features.

As for the linguistic context model, it is trained on the year 1993 volume of the ASAHI
newspaper and the year 2002 volume of the NIKKEI newspaper. We estimate the smoothing
parameters (f; = 0.7,5, = 0.2, 83 = 0.1) in Eq. (6-7) by Nakayosi database.

As for the SVM model, we train it on off-strokes of the combined training text patterns.
However, the number of off-strokes is so large (more than a million), we use 1/10 of them as
training data. Moreover, we choose the following radial basis as kernel function:

K(x; %)) = expw (7-1)

We obtained o and C as shown in Eq. (5-3) by examining several values in experiments using
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training data. We then obtained the parameters of the separating hyperplanes for the SVM model
using the same training data again.

On the other hand, to evaluate the effectiveness of the segmentation probability by the SVM
model, we consider the cases when the segmentation scores are not combined in the path
evaluation function for Viterbi search, namely, by setting 0 for A7: and A7 in Eq. (5-7), for
candidate segmentation method and undecided segmentation method. Then we adjust the other
parameters in Eq. (5-7) on the combined training patterns by MCE. We call them the candidate
segmentation method without segmentation scores (CSM_w/o Ss) and the undecided
segmentation method without segmentation scores (USM_w/o Ss), respectively.

For character-position-free handwritten Chinese text patterns, we also compare the candidate
segmentation method and undecided segmentation method, using the similar method as for
handwritten Japanese text patterns.

We trained the on-line and off-line Chinese character recognizers, the combination weighting
parameters of on-line and off-line character recognizers, and geometric scoring functions using
the on-line handwriting Chinese database CASIA-HWDB1.0-1.2 [39], which have 7,356 classes,
including 7,184 Chinese characters and 172 symbols.

As for the Chinese linguistic context model, it is trained on a corpus of People’s Daily. For the
SVM model, we train it on off-strokes of the combined training text patterns from training set of
ch_Dataset 1 to 4. However, the number of off-strokes is so large (more than a million), we use
1/100 of them as training data. Moreover, we use the radial basis as kernel function.

As for the weight parameters of the path evaluation, we train them by MCE criterion on the
text patterns combining all training set of ch_Dataset 1 to 4. We test the performance of the
character-position-free Chinese text recognizer on the text lines from test set of ch_Dataset 1 to
that of ch_Dataset 4, respectively.

7.3 Results of Experiments

We use the recognition rate (R.) defined in Eq. (7-2), the segmentation measure (F) defined in
Eqg. (7-3), which combines recall and precision rates, and the average recognition time cost per
character pattern (T,), to evaluate the text recognizers.

All the experiments are made on a PC with Intel(R) Core(TM) i7-3770 CPU @3.40GHz
3.40GHz (2 processers) and 8 GB memory.
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#number of correctly recognized characters

7-2
¢ #number of all characters (7-2)

2
F=—nn ™
1/R+1/P

#number of correctly detected segmentation points

#number of true segmentation points

p #number of correctly detected segmentation points (7-3)
h #number oftrue segmentation points

7.3.1 Character-position-free Japanese text patterns

We abbreviate the candidate segmentation method as CSM, and the undecided segmentation
method as USM in the following tables. Table 7-2 to Table 7-5 shows the recognition performance
for Dataset 1 to Dataset 4, respectively.

Table 7-2 Recognition performance on Dataset 1.

et Performance R, (%) = T. (5)
Original recognizer 23.72 0.4902 0.012
CSM 89.95 0.9671 0.089

USM 91.83 0.9751 0.139
CSM_w/o Ss 89.72 0.9646 0.086
USM_w/o Ss 91.37 0.9693 0.125

Table 7-3 Recognition performance on Dataset 2.

o Performance R, (%) = T. (5)
Original recognizer 39.61 0.6627 0.013
CSM 90.99 0.9728 0.078

USM 92.23 0.9771 0.121
CSM_w/o Ss 90.81 0.9707 0.075
USM_w/o Ss 91.80 0.9722 0.100
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Table 7-4 Recognition performance on Dataset 3.

o Performance R, (%) F T. ()
Original recognizer 0.00 0.00

CSM 91.31 0.9784 0.299

USM 92.34 0.9795 0.585

CSM_w/o Ss 91.09 0.9760 0.283

USM_w/o Ss 91.85 0.9733 0.557

Table 7-5 Recognition performance on Dataset 4.

N Performance R. (%) F T. (s)
Original recognizer 0.04 0.1600

CSM 83.26 0.9273 0.111

USM 84.97 0.9325 0.133

CSM_w/o Ss 82.94 0.9274 0.111

USM_w/o Ss 84.01 0.9294 0.128

For Dataset 5 (collected sample patterns), we firstly prepare the combined text patterns:
{Dataset M_D1, Dataset M_D2, Dataset M_D3} (M=1 to 4), to train both the segmentation
methods and to tune the parameters of the path evaluation function by MCE; then, we increase
the number of candidate character classes for each candidate character pattern from 10 to 15 (top
15), further update the parameters of the path evaluation function with adding 3/5 of collected
text patterns by the genetic algorithm, and test the performance to the remaining 2/5. Table 7-6
shows the recognition performance for Dataset 5.

Table 7-6 Recognition performance on 2/5 of Dataset 5.

oo Performance R, (%) = T. (5)
Original recognizer 50.84 0.7670 0.015
CsSM 74.86 0.9033 0.119
USM 76.19 0.9046 0.159

The final experiment is to confirm the performance of CSM and USM on normally handwritten
text patterns. Table 7-7 shows the results. For comparison, we also show the performance of the
original recognizer (which is CSM) and that with CSM being replaced by USM, i.e., all off-
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strokes being set as UP (named Original recognizer with USM). Note that parameters for these
two recognizers have been tuned for normally handwritten text.

Table 7-7 Recognition performance on Kondate_h.

oo Performance R. (%) = T. (s)
Original recognizer 93.40 0.9917 0.012
Original recognizer with USM 90.04 0.9542 0.050
CSM 90.38 0.9711 0.050

USM 92.04 0.9814 0.070

Table 7-7 shows interesting results. When the parameters are tuned for normally handwritten
text, CSM (Original recognizer) is significantly more accurate and quicker than USM (Original
recognizer with USM). On the other hand, when the parameters are tuned for character-position-
free handwritten text, USM is more accurate with slightly higher time cost. This will be discussed
in the next subsection.

7.3.2 Character-position-free Chinese text patterns

We investigated the recognition performances of the two segmentation methods (CSM and
USM) on the character-position-free on-line handwritten Chinese text patterns, which generated
from the test set of CASIA-OLHWDB2.1 database. Due to the existing Chinese text recognizer
is designed for normally handwritten text pattern, and it is obvious that it cannot resolve the text
patterns with partly or fully overlapped characters from the previous section, hence, we did not
evaluate the recognition performance of the existing text recognizer on these generated character-
position-free text patterns. Table 7-8 to Table 7-11 shows the recognition performance for
ch_Dataset 1 to ch_Dataset 4, respectively.

Table 7-8 Recognition performance on ch_Dataset 1.

Performance
Method R. (%) F T: ()
CSM 79.73 0.8921 0.178
USM 83.42 0.9163 0.336
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Table 7-9 Recognition performance on ch_Dataset 2.

Performance
Method R. (%) F T. ()
CSM 81.41 0.9025 0.149
USM 84.09 0.9213 0.267

Table 7-10 Recognition performance on ch_Dataset 3.

Performance
Method R. (%) F T: ()
CSM 82.80 0.9174 0.559
USM 83.60 0.9220 0.687

Table 7-11 Recognition performance on ch_Dataset 4.

Performance

Method R (%) F T. (%)
CSM 7434 0.8407 0.274
USM 77.15 0.8662 0.372

7.4 Analysis and Discussion

We will mainly give the analysis and discussion about the character-level recognition accuracy
and recognition speed for character-position-free handwritten Japanese and Chinese text datasets,
respectively.

7.4.1 For character-position-free Japanese text patterns

From the results presented in the previous section, both the candidate segmentation method
(CSM) and the undecided segmentation method (USM) produce far better recognition rate and
segmentation measure for all the datasets than the original recognizer, as shown in Figure 7-1.

Since the average recognition rate by the original recognizer on normally handwritten text
patterns is 93.40%, both the candidate segmentation method and the undecided segmentation
method have realized almost the similar recognition rate even for character-position-free
handwritten text except Dataset 4.

In fact, it is notable that both the candidate segmentation method and the undecided
segmentation method achieve 90.38% and 92.04% recognition rate for Kondate_h, respectively,
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as shown in Table 7-7. This implies that many factors in the evaluation function (Eq. (5-7)) may
relax one or two constraints, especially, the segmentation constraint at the sacrifice of the time
complexity.

The original recognizer is the integrated segmentation and recognition system incorporating
several factors into the evaluation function. It misclassifies true segmentation points as non-
segmentation points in the over-segmentation step for the character-position-free on-line
handwritten text recognition, however, due to the fully or partially overlaid characters. While the
undecided segmentation method sets each off-stroke as undecided point to avoid the
misclassification and the candidate segmentation method keeps the true segmentation points as
much as possible by adjusting the thresholds for the output of SVM. That is why these two
methods can overcome the problem of the original recognizer for the character-position-free on-
line handwritten text recognition.
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Figure 7-1 Comparison the recognition rates of CSM and USM with the original recognizer for
Dataset 1 to 5.

As for the effectiveness of the segmentation probability by the SVM model, it is clarified that
unemployment of the segmentation scores decreases the recognition rate of the undecided
segmentation method by 0.46 point, 0.43 point, 0.49 point and 0.96 point for Dataset 1 to Dataset
4, respectively, and that of the candidate segmentation method by 0.23 point, 0.18 point, 0.22
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point and 0.32 point for Dataset 1 to Dataset 4, respectively, as shown in Figure 7-2. The
recognition rate of the candidate segmentation method decreases less than the undecided
segmentation method, because the former classifies off-strokes into non-segmentation point,
segmentation point, and undecided one based on the output of the SVM model. Hence, it is better
to combine the segmentation scores in the path evaluation for Viterbi search.
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Figure 7-2 Effectiveness of the character segmentation probability for CSM (a) and USM (b).

The average recognition time per character pattern (s)

0.7
06 0585
0.5

0.4

0.299
0.3

0.2

0.139
0.121 0133

0111
01 0.089 0. 078
— ﬂ
0

Dataset 1 Dataset 2 Dataset 3 Dataset 4

| Oirginal recognizer MCSM ®USM

Figure 7-3 Comparison the average recognition time per character pattern of CSM and USM with

the original recognizer for Dataset 1 to 4.

84



As for the recognition speed, except Dataset 3, the average recognition time cost per character
pattern is 0.093 second and 0.131 second, by the candidate segmentation method and the
undecided segmentation method, respectively, whereas the original method recognizer takes
0.012 second for on normally handwritten text. This is because most off-strokes are classified into
undecided points in the candidate segmentation method, and all off-strokes are set to undecided
points, so that the constructed candidate lattice becomes so large.

Moving to the comparison between the candidate segmentation method and the undecided
segmentation method, the recognition rate by the latter is superior to the former by 1.88 point,
1.24 point, 1.03 point, and 1.71 point, for Dataset 1, 2, 3, and 4, respectively, as shown in Figure
7-1. On the other hand, the average time cost per character by the latter increases 0.050 second,
0.043 second, 0.286 second, and 0.022 second, for Dataset 1, 2, 3, and 4, respectively, which is
about 1.20~1.96 times the former, as shown in Figure 7-3, but it is not a problem for real-time
recognition.

Dataset 3 is a set of text patterns where characters are completely overlaid. The overlaid
handwritten character recognition has been proposed for small surface devices. Our experiments
show that it can be treated uniformly by the character-position-free handwritten text recognition.

The recognition rate is even slightly higher for Dataset 3. The off-strokes between characters
move generally from bottom-right to top-left, so that character segmentation reliability could be
enhanced and the character recognition rate is improved slightly from other cases.

On the other hand, the time cost is about 4 times larger than the others. The reason is as follows:
candidate character patterns whose widths are longer than the threshold are deleted from the
candidate lattice as described in Chapter 5, but no candidate is deleted for Dataset 3. Even in this
case, however, the time is about 0.3 or 0.6 second for a character. This is not a serious problem
for practical applications since it is far quicker than handwriting by people.

For Dataset 5 of collected handwritten text samples, the recognition rate is improved from the
original recognizer but still lower than the others. This would be partially because the dataset is
too small and partially because some strokes in character patterns are so largely displaced or
deformed so that those patterns are not character-position-free but stroke-position-free. The
amount of those patterns is not large but not negligible. Removing all the position information
could be considered but would damage total character recognition considerably. To cope with
them is our next challenge.

As for the comparison between the undecided segmentation method and the candidate
segmentation method in general, the undecided segmentation method is more accurate with
slightly higher time cost for character-position-free handwritten text, but the undecided
segmentation method is inferior to the candidate segmentation method for normally handwritten
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text patterns in both accuracy and speed as shown in Table 7-7. This was exactly the reason that
we employed the candidate segmentation method for ordinary text input. When the character
position information is reliable, it must be exploited.

7.4.2 For character-position-free Chinese text patterns

For the results of character-position-free Chinese text recognition presented in the previous
section 7.3, the undecided segmentation method (USM) produces better recognition and
segmentation measure for all the ch_Datasets than the candidate segmentation method (CSM), as
shown in Figure 7-4.
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Figure 7-4 Comparison the recognition rates of CSM with USM for all ch_Datasets.

Since the recognition rate by the existing original recognizer on normally handwritten Chinese
text patterns is 83.62%, both the candidate segmentation method and the undecided segmentation
method have realized almost the similar recognition rate even for character-position-free
handwritten text except ch_Dataset 4.
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8. Conclusion and future work

In this chapter, we draw the conclusion of this thesis, and give several directions for the future
works.

8.1 Conclusion

In this thesis, we have proposed a method to recognize character-position-free on-line
handwritten text patterns, and investigated the recognition performance on generated character-
position-free handwritten Japanese and Chinese text patterns. We have considered two
segmentation methods, one classifies each off-stroke into non-segmentation point, segmentation
point, or undecided point according to the output of SVM model, the other directly sets each off-
stroke as undecided point. The results of experiments confirmed that the proposed method
achieves the best recognition performance for character-position-free text patterns by the
undecided segmentation method, approaching the performance of the original recognizer on
normally handwritten text patterns. The undecided segmentation method for Japanese text
patterns has been employed for the EMIRAI 3 XDAS assisted-driving concept car [104].

We have also considered the case that characters are completely overlaid in this framework,
and have shown that the proposed method works well as for other cases.

8.2 Future work

Although we have realized the character-position-free on-line recognition for handwritten
Japanese and Chinese text patterns, it yet needs to improve the recognition performance including
not only the recognition accuracy but also the recognition speed, especially for applications on
the pen-based or touch-based handheld devices with low power.

First, we need to collect a large set of real patterns in automobile environment. Although we
simulated physical conditions to write characters, mental conditions while driving a car with
watching the frontal view and predicting the other objects’ movement could not be reflected to
simulated patterns. Real patterns must be also collected from small-surface environment.

Second, from the results of experiments, the character segmentation probability by the SVM
model plays an important role in the handwritten text recognition. In candidate segmentation
method, however, based on the output of SVM model, it sometimes misclassifies the true
segmentation points as non-segmentation points, and true non-segmentation points as
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segmentation points. We need to try other methods to get a more robust classification result, such
as Recurrent Neural Networks (RNNs) with the long short-term memory (LSTM) architecture
[105], which are able to effectively utilize the contextual information.

Third, we should reduce the recognition speed time by refining the redundant candidate lattice.
There are many obvious non-character candidate patterns in the candidate lattice, we may employ
effective geometric features to remove them reliably.

Finally, we should enhance the method to recognize stroke-position-free character patterns to
some extent by extracting more geometric and linguistic features.
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