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Abstract

This study focuses on abdominal organ segmentation using a statistical shape model
(SSM). One of the main contributions of the study is that it introduces an algorithm
for postmortem computed tomography (CT) volume segmentation, which is a
first application of computer-aided diagnosis using autopsy imaging (Ai). The
method is innovative not only in its application but also in the methodology for
the statistical shape analysis of a limited number of label volumes with a large
variation in shape. A second important contribution is that it provides a globally
optimal solution for the objective functional of the segmentation, considering all
possible shapes generated by the SSM. The thesis consists of five chapters. The first
chapter provides the background of medical image segmentation and Ai, and the
purpose of the study presented in thesis. In the second chapter, the development
of an SSM of a liver for postmortem CT images is described. The performance of
the SSM of a postmortem liver is found to be improved by using artificial shape
labels synthesized from in vivo liver shape labels. In Chapter 3, the integration
of these SSMs in the postmortem liver segmentation algorithm is explained. The
conventional SSM-based liver segmentation algorithm is extended to postmortem
CT volumes by using a dynamic probabilistic atlas. The best SSM described in
Section 2 also show the highest performance in segmentation. Chapter 4 provides a
solution to optimize the segmentation energy across all shapes in the SSM, as well
as the segmentation labels in a graph cut segmentation. The solution is guaranteed
to be globally optimal, as compared to that of the conventional algorithm used in
existing methods that employs a branch-and-bound search over a search tree of
predefined shapes. The proposed algorithm improves the segmentation accuracy as
well as the computational efficacy. The performance is also comparable to that of the
state-of-the-art segmentation algorithms. Finally, the summary and conclusions are
presented in Chapter 5, and future works are discussed.
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Chapter 1

Introduction

1.1 Background of statistical shape models for medical

image segmentation

Since the 1970s, great advances have been made in imaging technology for 3-
dimensional (3D) X-ray computed tomography (CT), which is now an indispensable
tool for diagnosis in many clinical practices in Japan. In addition, computer aided
diagnosis (CAD) has become an important research subject. Automated segmenta-
tion of an abdominal organ from a CT image is a crucial task in many CAD systems.
However, the segmentation of an abdominal organ from a CT image has constituted
a difficult problem because of the relatively low S/N ratio of the image, as well as
the relatively high variation in the shape of an organ belonging to different patients,
as shown in Fig. 1.1.

Over the last two decades, a number of image segmentation algorithms have been
proposed. One of the early successful methods was based on active contour models,
also referred to as Snakes, introduced in Kass et al. [2], where the evolution of the
contour is constrained by two types of energy: external energy, which evaluates the
titness between the model and the image data, and internal energy, which assesses
the smoothness of the contour. The original version of Snakes, which was designed
for 2D images, was extended to 3D image segmentation [3]. However, since the
smoothness constraint was based not on the statistical information but on a general
spline function, the segmentation results may be inappropriate.

A segmentation algorithm based on a statistical shape model (SSM) is one of the
most popular recent approaches for organ segmentation. This has an advantage
over non-SSM-based approaches, such as Snakes, in that it can describe global shape
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Fig. 1.1 Examples of ten abdominal CT images with and without contours of pancreas
(right two columns) shown in red
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constraints learned statistically from the training shapes. Thus far, a variety of SSM
construction algorithms have been proposed, which are categorized into two groups
by the shape representation methods: explicit and implicit.

The most widely used SSM that employs explicit shape representation is the point
distribution model (PDM) [4]. In PDM, the distribution of the anatomical landmarks
on training shapes is statistically analyzed by principal component analysis (PCA).
Pizer et al. [5] proposed a shape representation called m-rep, in which shapes are
represented by the medial points of the center line and the radii. The main drawback
of this method is that it requires that point correspondences be established between
different subjects among the training shapes. Styner et al. [6] proposed a method
using spherical harmonics for shape representation called SPHARM-PDM, which
represents the shape on a frequency domain. A possible limitation of SPHARMS is
that the shapes are required to have a spherical topology. Moreover, it remains to be
seen which is the best method for mapping the shape onto the frequency domain.

For implicit shape representations, the statistical deformation model was proposed,
which statistically models the deformation of the mean shape, i.e., the template.
Rueckert et al. [7] introduced a statistical model for the deformation field described
as a free form deformation (FFD) model that deforms an object by manipulating
an underlying mesh of control points. Durrleman [8] proposed employing the
LDDMM (Large Deformation Diffeomorphic Metric Mapping) for the statistical
deformation model. LDDMM guarantees that the mapping of the deformation will
be diffeomorphic (i.e., continuous and one-to-one), which is a desired property
for describing the variation in anatomical structures in many cases. However, this
method requires some parameters for the deformation model, as well as huge
computational resources for calculating the deformation. The level set distribution
model (LSDM) [9] is another widely used implicit shape representation. LSDM
describes the contour of a shape as a level set function defined by a discrete signed
distance function in a high-dimensional space. The set of shapes represented as level
set functions are known not to form a linear space, which may lead to an invalid
shape when it is constructed by PCA. Nevertheless, this method requires neither the
establishment of the point correspondences between different training subjects nor
any parameters for the shape representation, which could be a great advantage over
all the SSM construction methods described above.

In other important studies related to SSMs, their extension to multiple organs
was investigated. Tsai et al. [10] and Yang et al. [11] developed multi-shape SSM
based on multiple level set representations. In more recent studies, logarithms of
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odds (LogOdds) based shape representations [12] and label spaces [13] were pro-
posed, and their modification, called isometric log-ratio mapping, was proposed by
Changizi and Hamarneh [14]. However none of these methods was designed for
abdominal organs. Okada et al. [15] developed multi-shape SSM for seven abdom-
inal organs, where the hierarchy and interrelations among organs were explicitly
incorporated, which was successfully applied to multi-organ segmentation. Recently,
a hierarchical SSM for fourteen abdominal organs was developed [16], where the
synthesized labels were used to overcome the lack of a training dataset; however, its
application to multi-organ segmentation remains as future work.

In a number of studies in the literature, these SSMs are integrated in the seg-
mentation process in various manners. Cootes et al. [4] extended their PDM with
a model fitting algorithm, which is generally referred to as an active shape model
(ASM). ASM is an extension of Snakes that can impose the PDM-based energy on
the contour evolution. In [17], some methods are introduced to integrate an SSM
in a segmentation algorithm based on the front propagation of the level set, called
the level set method. However, the success of this method strongly relies on the
initialization of the segmentation. Thus, poor initialization may result in a local

optimum, i.e., an undesired segmentation result.

The recent noteworthy progress in segmentation is due to the use of discrete
optimization techniques. [18] proposed a graph-based segmentation method, called
graph cuts, which was successfully applied to a variety of image segmentations,
including segmentation of 3D medical images. The biggest advantage of graph cuts
is that the globally optimal solution for the binary segmentation problem can be
efficiently computed. Recently, a number of authors integrated SSMs in the graph
cut segmentation framework for various applications, e.g. , Grosgeorge et al. [19],
Malcolm et al. [20], and Nakagomi et al. [21], in which SSM is used to provide prior
knowledge of the shape, called a shape prior. However, the segmentation accuracy
of these methods still depends on the performance of the shape prior selection
method.

Some authors proposed an optimization method not only for segmentation
labeling but also for the shape prior. Besbes et al. [22], Chen et al. [23], Xiang et al.
[24] presented a joint optimization method of the segmentation and the shape prior
from the PDM based on a discrete optimization framework in different manners.
However, the global optimality of the solution is not guaranteed in all these methods.
Lempitsky et al. [25] proposed a novel framework for jointly computing the optimal
graph cut segmentation and the shape prior from a number of shape templates.
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Nevertheless, in this method, all the templates should be defined in advance, and
the algorithm can consider only a small subset of the shapes generated by the
SSM. To the best of my knowledge, a globally and jointly optimal solution for the
segmentation labeling and the shape prior remains an unresolved problem.

1.2 Autopsy imaging

1.2.1 Background of autopsy imaging

Autopsy has played an important role in the advances in many fields of medicine
e.g. , autopsy, pathology, and epidemiology. However, the autopsy rate in Japan is
extremely low. As a result, deaths from blunt trauma without surface injuries may
be overlooked, and the cause of death may be misinterpreted.

Meanwhile, with the advancement of imaging technology, imaging of cadavers,
i.e., postmortem imaging (PMI), is becoming popular as a new approach to corpse
analysis. PMI has been conducted under the name of virtopsy in Switzerland [26],
virtual autopsy in France [27] and Radio-autopsy in Germany [28], the concepts of
which are similar each other. In Japan, a new concept called autopsy imaging (Ai)
was proposed by Ezawa et al. [29], M.D. of the National Institute of Radiological
Sciences. In this study, I denote PMI by Ai.

Ai has a complementary relationship with conventional autopsy and provides
information that supplements that gained from the autopsy [29], resulting in higher
diagnostic accuracy. However, a state-of-the-art CT scanner outputs several hundred
or several thousand slice images per cadaver, which places a heavy burden on the
doctor. Moreover, the specific appearance of targets in Ai, e.g. , postmortem changes
as well as the pathology or injury that caused death, makes diagnosis difficult even
for a trained radiologist. Therefore, a computer-aided diagnosis (CAD) system is
required to assist the doctor.

1.2.2 Difficulties in PMCT image segmentation

Difficulties in the segmentation of organs from PMCT images arise because they are
very different from in vivo CT images. The three most dominant challenges in liver

segmentation in Ai are summarized as follows.

Severe organ deformation
Figure 1.2 shows an example of typical changes in the shape of a liver after
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death. The right lobe of the liver is elevated because of respiratory arrest,
while the left lobe descends because of the dilation of the heart. Moreover, the
microbism of organs causes an accumulation of gas in the abdomen, pushing
the entire liver upward. These postmortem changes make the variation in
the postmortem liver shape much wider than the variation in the in vivo liver
shape. Consequently, as compared to an in vivo liver model, a statistical shape
model of the postmortem liver requires a substantial amount of training data.

Fig. 1.2 Typical examples from an in vivo liver (left) and a postmortem liver (right).
The yellow lines indicate the true contours of the livers. In the postmortem liver,
the right lobe was elevated owing to respiratory arrest, and cardiac arrest caused
enlargement of the right ventricle, resulting in a downward deformation of left lobe

Severe pathology
Postmortem changes in CT values make the liver segmentation from PMCT
images much more difficult than do those in in vivo CT volumes. For example,
Fig. 1.3 shows a severe metastases in the lung, which is one of the specific
appearances in PMCT images. Lung disease such as this causes a lower contrast
between the lung and the liver, when a contrast agent is used.

Intensity changes and artifacts
Postmortem changes also appear in the CT value, e.g. , fluid accumulation in
the lungs and postmortem hypostasis. In addition, because of the postmortem
rigidity, the doctors are forced to scan corpses with their arms at their side,
which may cause strong artifacts in the PMCT volumes. As shown in Fig. 1.4,
intensity changes and artifacts lead to a lower S/N ratio between the liver and
lung. It should also be noted that PMCT is commonly acquired without using
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Fig. 1.3 A PMCT case with severe pathology

a contrast agent, which makes it difficult to apply many existing segmentation
algorithms designed for multi-phase in vivo CT volumes to a single-phase
PMCT volume.

Fig. 1.4 A PMCT case with intensity changes in CT value as well as strong artifacts
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For the above reasons, conventional SSM designed for in vivo CT images may
not applicable to PMCT images. However, no studies have been conducted on a
segmentation algorithm for PMCT and the relationship between SSMs in in vivo and
postmortem organs has not been investigated.

1.3 Purpose

The purpose of this study is to achieve breakthroughs on the issue relate to the
SSM-based abdominal organ segmentation on a CT volume, which are summerized
as follows:

Developement of an SSM and SSM-based postmortem liver segmentation
Due to the large differences in shape as well as in appearance between in vivo
and postmortem CT images, segmentation algorithms designed for in vivo
livers may not applicable to the postmortem livers. Many state-of-the-art liver
segmentation algorithms employ SSMs; however all of which are designed for
in vivo livers.

Integration of an SSM with graph cuts for abdominal organ segmentation
Some conventional studies [22-24] proposed simultaneous optimization of
the segmentation and the shape generated from SSM. All of these methods,
however, are not guaranteed to achieve globally optimal solution.

1.4 Outline

The rest of this thesis is organized as follows.

In Chapter 2, the SSM construction method for a postmortem liver is introduced.
First, the relationship between SSMs obtained from in vivo liver CT scans and those
from postmortem cases is investigated. Then, a sophisticated SSM construction
method for postmortem livers using synthesized-based learning is proposed. The
performance of the different SSMs is compared in terms of the performance indices,
i.e., generalization and specificity.

In Chapter 3, the integration of the SSMs mentioned in the previous section
into the proposed postmortem liver segmentation algorithm is explained. The
performance of the SSMs are compared in terms of segmentation accuracy.

In Chapter 4, pancreas segmentation from in vivo CT images is described, where
the joint optimization method is employed to obtain an optimal segmentation la-
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beling, as well as an optimal shape prior, from all the possible shapes from the
SSM.
Chapter 5 summarizes this study. Then, the conclusion and future work are

presented.






Chapter 2

Statistical shape model of the
postmortem liver

2.1 Introduction

The autopsy rate in Japan is extremely low. As a result, deaths from blunt trauma
without surface injuries may be overlooked, and the cause of death may be misin-
terpreted. A new concept called autopsy imaging (Ai) was proposed by Dr. Ezawa,
M.D. of the National Institute of Radiological Sciences in Japan [29]. Ai has a com-
plementary relationship with conventional autopsy and provides supplemental
information to the autopsy [30], resulting in higher diagnostic accuracy. A cadaver is
scanned using an imaging modality, such as CT, US, or MR. The images are analyzed
by a medical doctor and used in the subsequent surgical dissection. However, a state-
of-the-art CT scanner outputs several hundred or sev-eral thousand slice images per
cadaver, which places a heavy burden on the doctor. Therefore, a computer-aided
diagnosis (CAD) system is required to assist the doctor.

In many CAD systems, a statistical shape model (SSM) [31] of an organ plays
a key role as a shape prior that achieves high performance during the segmen-
tation of an organ, such as the liver [32, 33] or lung [21]. Recent notable studies
include conditional SSMs as described in [34]. Related studies [35, 36] incorporate
the uncertainties of the conditions within the conditional SSMs, such as the liver
segmentation algorithm with a relaxed conditional SSM developed by Tomoshige
et al. [37]. Other important studies relate to SSMs for multiple shapes enable the
segmentation process to impose neighbor constraints. Tsai et al. [10] and Yang et al.
[11] developed neighbor-constrained segmentation using a multi-shape SSM based



12 Statistical shape model of the postmortem liver

on representations of multiple level sets. Recent studies have proposed different
approaches for representing multiple shapes, as well as logarithms of odds-based
(LogOdds) shape representations [38] and label spaces [13]. Changizi and Hamarneh
[14] introduced isometric log-ratio mapping to overcome several drawbacks of the
previous method [13]. More recent studies [15, 39] include applications of multi-
shape SSMs to multiple organ segmentation based on abdominal CT volumes. All
of these SSMs were originally designed for organs in in vivo bodies, but they might
also have potential applications in Ai.

However, different types of deformation in a cadaver might not be accounted
for by an SSM trained from in vivo livers. As shown in Fig. 1.2 of Section 1.2.2,
respiratory arrest causes diaphragmatic elevation, and circulatory arrest causes
enlargement of the right ventricle, resulting in the right lobe going up and the left
lobe going down. This suggests that a conventional SSM constructed from in vivo
livers [21, 32, 33] might lack the ability to describe postmortem livers. One possible
solution to the problem is to use postmortem livers to build an SSM. Because of the
shortage of postmortem liver CT data and shape label volumes manually drawn by
experts, an SSM trained only from a small number of postmortem livers might not
be able to describe the various shapes of postmortem livers.

A machine learning-based methodology has been developed in order to improve
accuracy when only a small amount of training data are available, which is called
synthesized-based learning [40]. Synthesized-based learning has been successfully
applied to many pattern recognition applications such as human shape matching
[41] and traffic sign symbol recognition [42]. One of the purpose of this study is to
synthesize postmortem liver labels by transforming in vivo liver labels and to train
an SSM for a postmortem liver using synthesized postmortem liver labels.

To the best of my knowledge, this is the first report that explores an SSM as
well as the SSM-based segmentation algorithm for a postmortem liver. The main
contributions of this paper are summerized as follows:

(i) Investigation of the relationship between SSMs constructed from in vivo livers
and those from postmortem livers

(ii) Proposal of algorithms to transform in vivo liver labels such that they resemble
postmortem liver labels

(iii) Comparison of SSMs constructed using synthesized postmortem liver labels
from the viewpoint of describing postmortem liver shapes
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The remainder of this chapter is organized as follows. In section 2.2, I discuss the
relationship between SSMs built from in vivo livers and postmortem livers. Section
2.3 proposes algorithms for the transformation from in vivo livers to postmortem
livers, and compares SSMs trained using different sets of synthesized postmortem
liver labels, followed by conclusions for this chapter in Section 2.4.

2.2 Relationship between SSMs of an in vivo liver

and a postmortem liver

2.2.1 Level set distribution model

I investigated the relationship between SSMs trained using in vivo liver data and
postmortem liver data in terms of performance in describing postmortem livers.
This study focuses on a level set distribution model (LSDM) [9] that does not require
correspondence between boundaries of shape labels. Here, a shape label was manu-
ally drawn by experts, where each voxel value is one inside a liver and zero outside.
It is simply called a label in the remainder of this paper.

Given a set of N binary labels I; (i =1,..., N), each shape I; is embedded in the
zero level set of the signed distance function of I;. Let ¢, be a d x 1 feature vector
constructed from the signed distance function of I; , where d is the number of voxels.
I call this feature space a level set space. I employed a weighted distance function
defined by ¢, = W¢, that was reported to be superior to the conventional distance
function [43]. W = diag (wy, ..., w,;) is a weight matrix, where wy, is computed by

1 Y 1
Wk:ﬁz

S 1+exp (7]i])

(2.1)

with 7y determined empirically.

Principal component analysis (PCA) is applied to the set of weighted distance
vectors @, to construct an eigenshape space or an SSM. The principal components
and scores can be used to reconstruct a weighted distance vector of a shape as

@, ~pu+ U (2.2)

where y = % YN, @, is an average vector. U = [uy,...,u;] is a matrix whose j-th
column is the j-th principal component vector and & = [ag,...,a] " is a coefficient



14 Statistical shape model of the postmortem liver

vector, where ¢ is the number of principal components. A shape can be reconstructed
by binarizing the weighted distance function with a zero threshold value.

144

--->
Division of label sets

—> Relation of training and test (training -> test)
<> “ (Cross validation)

Fig. 2.1 Illustration for label set divisions (dashed lines) and the relationship between
training and test data (solid lines) for performance evaluations of the three SSMs

2.2.2 Materials, performance indices, and SSMs to be compared

L' and 32 postmortem (dead)

I used datasets of 144 in vivo (living) liver labels,
liver labels, D32. The labels were manually delineated on non-contrast CT volumes
of size 512x512x191-3201 voxels and were reduced to 170x170x 170 voxels for
the sake of computational efficacy (voxel size: 2.0-mm isotropic). The study was
approved by the ethics committee of Chiba University. A spatial standardization
was carried out so that the gravity points of the labels were identical among the

training datasets.
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Training and testing datasets were required to evaluate the generalization and
specificity of the SSMs, which will be explained in detail in “Evaluation of SSMs”
section. The L'* and D3? sets were randomly divided into two equally sized subsets,
named L2 and D'®. In addition, two L!® subsets were randomly extracted from the
two L72 subsets, as shown by the dashed lines in Fig. 2.1. This study constructed
three SSMs, namely SSME72 SSML16 and SSMP®, which were built from subsets
L72, L% and D1, respectively. The constructed SSMs were evaluated using the
L'® and D' subsets that were not used for training. The relationship between the
training and test data is represented by the solid lines in this figure. For the sake
of consistency, the size of the test labels used to evaluate the SSMs was fixed at 16
throughout the study.

The main objective of SSM is to provide a probability distribution for the shape
that an object can assume. Therefore, as mentioned in [44] and [45], the following
properties are desired for SSMs.

* Generalization : The ability to describe instances outside the training set.
* Specificity : The ability to represent only valid instances of the object.

Based on [44], I define the generalization and the specificity indices used to evaluate
the performance of my SSMs. Furthermore, I define the sum of the two indices
of each SSM as the overall performance index of the SSM. Further details on the
computation of the generalization and specificity are shown in Fig. 2.3 and are
described in the following subsections.

Generalization

Generalization is a measure of the ability to describe unknown shapes. This is a
fundamental property because it allows a SSM to learn the characteristics of an
object class from a limited training set. If the SSM is overfitted to the training set, it
will be unable to generalize to unknown examples. Generalization is defined as an
average of Jaccard indices (JIs), each of which is calculated between an unknown
shape S, (n = 1,...,N) in a test dataset and its reconstructed shape S, by projection
of the shape into the eigenshape space and back projection from the eigenshape
space constructed using the training shapes:

1Y A
(Generalization) = N Y JI(Sn, Sn) (2.3)
n=1
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where N is the number of test shapes and JI (S, §n) is a Jaccard index between S,,
and S,,. The JT between two regions A and B was computed by

[AN B

JI(A, B) = A0

(2.4)
where the size |-| means the volume of a region.

Specificity

Another important measure is specificity. A specific SSM should only generate
instances of the object class that are similar to those in the test shapes. It is useful
to assess this quantitatively by generating instances using the SSM and comparing
them with the test shapes. To compute specificity, a large number of arbitrary shapes
{R1,..., Ry} were generated from the eigenshape space, using normal random
numbers for the coefficient vectors of Eq. (2.2). Typically, the number of arbitrary
shapes M was set as 5,000 in this study. The maximum value of the JI between the
generated shape and the test shapes was computed and averaged over the generated
shapes.

(Specificity) = — Z max ]I(Sn, Ru) (2.5)

m 1n€{L,...

The number of principal components ¢ of each SSM was chosen such that the
cumulative contribution ratio was equal to 0.95 and was determined empirically. The
weighting parameter <y for the level set was set to 0.25, at which value the ssmMbP1e
showed the highest performance in generalization, and was fixed throughout the

experiment.

2.2.3 Results and discussion

Figure 2.2 shows box plots of JIs computed for the generalization and specificity of
SSML72, SSME16 and SSMP16, and the sums of both indices. Note that both indices
of all models were computed individually using L'® and D' subsets not used for
training. For example, two D'® subsets were used to evaluate SSMP'® in a cross-
validated manner. Subsequently, they were employed again to validate SSM' as
well as SSM72, as indicated by the solid arrows whose arrowheads point to D' in
Fig. 2.1. The results of the latter experiment indicated a difference in performance
when applying an SSM to data with different types of deformation, as shown in Fig.
1.2. Statistical tests were carried out between two SSMs under the null hypothesis
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(a) JIs and generalization (X) in Eq. (2.3)

0.9 08y
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Fig. 2.2 Generalization, specificity, and the sum of both indices of the SSMs. Each
model was evaluated individually using D'® and D'°. The box plots in (a) and (b)
show the distributions of JIs in Egs. (2.3) and (2.5), respectively, where the whiskers
denote the range from the minimum to the maximum and the crosses indicate
generalization and specificity, respectively. (a) JIs and generalization (multiplication

(b) JIs and specificity (X) in Eq. (2.5)

............................

L16

D16

[ IssmP6
R ssmt 6
0 ssmt72

sign) in Eq. (2.3). (b) JIs and specificity (multiplication sign) in Eq. (2.5). (c) Sum of
generalization and specificity
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Statistical shape model of the postmortem liver

Training shapes

Statistical
analysis

— Specificity

Fig. 2.3 lllustration of the performance indices of the SSMs. Generalization is the
average of Jaccard indices (JIs) between test shapes and the back-projected shapes
from an eigenshape space. Specificity is the average of maximum JIs between
artificial shapes, based on random numbers and the test shapes

HO: two JI distributions of the SSMs are statistically identical. The significance level was

fixed at 0.05 throughout this study. I individually performed a Wilcoxon matched-

pairs test for generalization and a Mann-Whitney U test for specificity. Note that no

statistical test can be defined on the sum of both indices, because it is a scalar value.

From the experimental results, the following were observed:

1. The performance when applying an SSM to data with the same types of defor-

mation was always superior to those applying an SSM to data with different
types of deformation. For example, generalization of SSMP¢ evaluated by D1°
was higher than that of SSM!¢ evaluated by D¢, with a statistically significant
difference. A similar relationship was observed not only in generalization, but
also in specificity. Consequently, the sum of both indices presents an analogous
relationship in the magnitude of the sum.

. When increasing the number of training labels from 16 to 72, the generalization

of SSM7? was greatly improved compared to SSM L16. Consequently, even
when evaluating with D the generalization of SSML72 was much higher than
that of SSMP'®, with a statistically significant difference. In contrast, there was
no clear evidence that the specificity of an SSM for a postmortem liver could
be increased by increasing the number of training labels.
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3. The sum of both indices of SSM'”2 was improved by increasing the number of

training labels due to an improvement in generalization.

The first observation suggests that the performance of an SSM constructed using
in vivo liver labels suffers when describing postmortem liver shapes. The second
and third observations indicate that a larger number of training labels are required
to improve the performance of the SSM, particularly from the viewpoint of general-
ization. In vivo liver labels might be helpful in training an SSM for a postmortem
liver to an extent, but the performance of an SSM constructed using in vivo livers
would suffer when describing the specific shape of a postmortem liver (see Sections
2.3.4 and 2.3.5 for more details). In addition, because of the shortage of postmortem
liver CT and label volumes, it is impossible to increase the number of postmortem
liver labels for training.

2.3 SSM for a postmortem liver based on synthesized-

based learning

2.3.1 Synthesis of postmortem liver labels from in vivo liver la-
bels

In this section, I present three transformation methods to simulate the changes
in shape from in vivo livers to postmortem livers, which are categorized into a
geometrical transformation F4 and two statistical transformations, Fr and Frg. 1
define the respective transformations as follows:

e F4: L — Dy (geometrical)
e Fr:L — Dy (statistical)
e Frr: L — D4 (statistical)

where L is a set of in vivo (living) liver labels.

Geometrical transformation

I define a geometrical transformation F4 as an affine transformation of in vivo liver
shapes in real 3D space. I formulate an affine transformation Ty : O — Q) over the
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domain of the images, (2 C R3, as
Tm(x) =M(x—g)+g (2.6)

where Mis a 3 x 3 affine transformation matrix, and the symbol g denotes the gravity
point of the liver labels. It is ensured that the gravity point of the label is constant
before and after the transformation. Let in vivo liver label I} € L be the function
I — {0, 1}. I define a synthesized postmortem liver 4 € D4 as

IA = IL o TM* (2.7)

The optimal affine matrix M* is obtained by minimizing the surface distance between
the mean shape of in vivo livers I; and that of postmortem livers Ip, which can be
formulated as
M* = arg mindg,, ¢ (Ip, I, o Tm) (2.8)
M

where dswf(-, -) is the surface distance between two mean shapes that were con-

L72 and postmortem liver label set D! re-

structed from in vivo liver label set
spectively. The matrix M is initially set to the unit matrix and optimized using
the Nelder-Mead method [46]. Finally, the obtained optimal affine transformation
matrix M* is applied to all in vivo liver labels in the L7? set so as to synthesize

postmortem liver labels D 4.

Statistical transformation

I introduce two types of statistical transformation methods that apply linear trans-
formations to the distribution of in vivo liver shapes in a level set space. The first
transformation Fr : L — Dr is defined as a translation such that the mean of in vivo
liver labels p; is equal to that of postmortem liver labels y, in a level set space, as
shown in Fig. 2.4:

¢r =@+ (mp —H)- (2.9)
where ¢; is a feature vector constructed from a signed distance function of a liver

label, as explained in section 2.2.1.

The second method Frg : L — D1r performs a translation followed by a rotation
such that the axes of the eigenshape space Uy [1y, ..., ] of in vivo livers coincide
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(a) Eigenshape space Eigenshape space
of in vivo livers of postmortem livers

Level set space
(b)
+
M
(c)
ML
L Translation b
—_— .
& Rotation TR Original Transformed

Fig. 2.4 Statistical transformations from in vivo livers to postmortem livers in a level
set space. (a) The original relationship between the eigenshape spaces of in vivo
livers and postmortem livers. (b) Transformation by translation of the postmortem
liver label distribution. (c) Transformation by translation followed by rotation so
that the coordinates of the eigenshape space of postmortem livers are identical to
those of in vivo livers
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with those of postmortem livers Up = [dy, ..., d¢]:

¢rr = UpU[ (¢ —py) +1p (2.10)

where U] is a Moore-Penrose pseudo-inverse of Uj.

2.3.2 SSMs to be compared

Figure 2.5 presents a workflow for constructing an SSM for a postmortem liver.
Given in vivo (living) liver labels L and postmortem (dead) liver labels D, artificial
postmortem liver labels D are synthesized by transforming in vivo liver labels L to
resemble postmortem liver labels. Then, D is combined with D, and the “D + D”
set is used to build an SSM for a postmortem liver.

Training data
4 N N
c
2
©
o
2| | | synthesized Original
Original © ynthesized = rigina _ _
S In vivo livers: L ) [ \postmortem livers: D/ 9 postmortem livers: D/
—

>R
N

Statistical analysis

¥

Level set distribution model:

u;

Fig. 2.5 lllustration of workflow of the proposed SSM construction

In this study, five SSMs were built. Three SSMs were constructed using the three
label sets Dr, Drg, and D 4. The remaining two SSMs were built using synthesized
labels D 41 and D zrg, which were synthesized by applying transformations Fr and
Frg to D 4, respectively. Note that an eigenshape space was recomputed from D 4,
and transformations Fr and Frg were defined for the new eigenshape space. The
relationships between the five SSMs and the five synthesized liver label sets for
training are summarized as follows, where the training label sets are in parentheses.
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D+T  model (D and Dr)

D+ TR model (D and DrR)

D+A  model (Dand D,)

D+ AT model (D and D7)

D + ATR model (D and D 47R)

2.3.3 Materials, performance indices, and parameters

To compare the SSMs, the sets of 144 in vivo liver labels L and 32 postmortem liver
labels D were employed again and randomly divided into training labels and testing
labels. These labels are the same as those mentioned in Section 2.2.2. All SSMs
compared in this section were assessed in terms of generalization and specificity
using two D' subsets, where a test label set was separated from a training label set
as explained in Section 2.2.2. I set the weighting parameter -y for the level set and
the number of the generated shapes for specificity to be the same as the values in
Section 2.2.2. The number of principal components t for each SSM was also decided

in the same manner described in that section.

2.3.4 Results

Figure 2.6 summarizes the performance of the three conventional and five proposed
SSMs in terms of generalization, specificity, and the sum of both indices. It was
found that the D 4+ A model was best in terms of generalization, while the D 4+ T
model was best in terms of specificity. I compared the performances of the eight
SSMs and performed a statistical analysis of the results. Table 2.1 shows the results
of the statistical tests of all possible pairs among the eight SSMs; the significance
level and statistical tests used in this section are the same as those used in Section
2.2.3.

2.3.5 Discussion

From Table 2.1, it was found that the D + L, D + T, and D + AT models were
statistically identical to the best D + A model in terms of generalization, and the
D + AT model was statistically the same as the best D + T model in terms of
specificity. Thus, the D 4+ T and D + AT models that were the logical products of
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(a) JIs and generalization (X) in Eq. (2.3) (b) JIs and specificity (X) in Eq. (2.5)
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D L D+L D+T D+TR D+A D+AT D+ATR

Fig. 2.6 Generalization, specificity, and the sum of both indices of the three con-
ventional SSMs and five proposed SSMs. Each model was evaluated using two
D' subsets. (a) JIs and generalization (multiplication sign) in Eq. (2.3). (b) JIs and
specificity (multiplication sign) in Eq. (2.5). (c) Sum of generalization and specificity
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Table 2.1 Results of statistical significance tests for all pairs among the eight SSMs
evaluated. 1t shows the statistical difference in generalization was observed at
p < 0.05; f indicates the statistical difference in specificity was observed at p < 0.05

D L D+L D+T D+TR D+A D+ AT

D+ATR + +t +t +1 iy T3 T
D + AT + 1t t,1 i
D+TR +t t1 +1 1,1

D+T tt tt 1

D+L 1,1t

L 1,1

{D+L,D+T,D+ A, D+ AT} and {D + T, D + AT} were considered to be superior
to other SSMs in terms of both performance indices. When the sum of both indices
was computed, the D 4+ T model achieved the highest score. Therefore, I concluded
that the D + T model was the best model in this study. In the remainder of the
discussion, I will explore the D + T model further.

First, I compared the best model with the conventional SSMs, that is, the D,
L, and D + L models, based on Fig. 2.6 and Table 2.1. All experimental results
showed that the conventional models were inferior to the proposed best D + T
model, except for the generalization of the D + L model. It was found from Table 1
that the generalization of the D 4 L model was statistically identical to that of the
best model. However, the specificity of the D 4 L model was significantly lower than
that of the best model. The lower specificity of the D + L model will be discussed
further in the fourth paragraph of this section.

My second topic concerns the generalization of the SSMs. Figure 2.7 shows errors
between the true shape and the reconstructed shapes from the eigenshape spaces of
eight SSMs (see “Level set distribution model” section for the reconstruction). The
colors represent the reconstruction error, and were mapped onto the true surface. The
numerals are JIs, and a higher JI denotes greater generalization. In these figures, the
D + A model showed the highest JI, which was consistent with the results from Fig.
2.7 a. One of the reasons why the D + A model achieved the highest performance in
generalization is that reconstruction errors were suppressed, especially in the area
of the left lobe and the top of the right lobe, as indicated by the arrows in 2.7.

My third topic relates to the specificity of SSMs. Specificity is the ability to
exclude unnatural shapes from the eigenshape space of an SSM. Figure 2.8 shows
shapes from eigenshape spaces, which were generated from a uniform sampling of
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Fig. 2.7 A postmortem liver and its reconstructed shape from each SSM with a color
display of surface error between the true shape and the reconstructed shape

the coefficients a; and a; in Eq. (2.2) from —2 sigma to +2 sigma, with an interval
of one sigma. The red color indicates that the maximum ]I between a shape and
the test postmortem liver shapes was lower than 0.6, which means that the shapes
were different from postmortem ones, or unnatural shapes. It was found from Fig.
2.2 that the D 4+ T and D + AT models generated only two unnatural shapes, but
conventional SSMs generated five to seven unnatural shapes. These observations
support the above discussions about specificity: (i) the D + T and D + AT models
were superior to other SSMs in terms of specificity, and (ii) the conventional D + L
model can be a good model in terms of generalization, as mentioned in the first
paragraph. However, its low specificity is problematic, as shown in Fig. 2.8, resulting
in it being inferior to the proposed models. Here, I discuss the reasons why the
D + T model achieved the highest performance in specificity. Generally speaking,
using good shapes for training helps to achieve higher specificity, where a good
shape is one that resembles the shape of a test label. Table 2.2 shows the similarity
between the 144 artificial postmortem liver labels in Dt used for training and the
32 actual postmortem liver labels used for testing. Similar to the computation of
specificity, the maximum of JIs between an artificial label for training and actual
labels for testing was computed for each artificial label and averaged over all the
artificial labels. The higher the JIs, the more the artificial liver shapes resemble actual
postmortem liver shapes. Table 2.2 shows that Dt contained better shapes than other
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synthesized label sets, and the results showed the D + T model achieved the best

performance in terms of specificity.
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Fig. 2.8 Shapes from the eigenshape space of each SSM. Shapes were generated from
a uniform sampling of coefficients &y and a; of the SSMs. The red color indicates that
the maximum JI between a shape and the postmortem liver shapes was lower than
0.6, which means that the shapes did not resemble postmortem livers

My fourth topic is the effect of the number of principal components t and the

weighting parameter 7y on the performance indices of the SSM. Figure 2.9 shows

changes in the performance indices (generalization and specificity) of the D 4 T

model as 7y and t changed. Note that the actual values of ¢ for the proposed D + T
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Table 2.2 Similarity between the synthesized labels for training and actual labels for
testing

DT f)TR DA DAT DATR
0.6572 0.6486 0.6365 0.6554 0.6366

model were 26 and 28 in the crossvalidation test. The performance indices seemed to
be sensitive to changes in the weighting parameter oy when 7y < 0.2, and insensitive
when 7 > 0.2. On the other hand, while changing t affected the performance indices
when t was small, the effects on the indices were limited when t was large. When
considering the values employed in this study (y = 0.25,t = 26, 28 forthe D + T
model), I supposed that the perturbations around y and t would have a marginal
effect on the performance indices, and would result in similar conclusions.
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Fig. 2.9 Relations between parameters and performance indices. Top generalization,

bottom specificity. The red dotted line indicates the value of y I adopted
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My final topic is the validation of the proposed transformation using actual pairs
of in vivo and postmortem livers obtained from the same subjects. Figure 2.10 shows
three pairs of images scanned from three subjects. If the proposed transformations
are suitable to simulate the changes between an in vivo liver and a postmortem one,
the JI between a true postmortem liver shape and a synthesized shape transformed
from an in vivo liver should be higher than that of a shape without transformation.
Figure 2.11 shows the results of applying the transformations to an in vivo liver label
from case 1 to simulate the changes to a postmortem liver. The numerals show the JIs
between synthesized postmortem liver shapes and the true postmortem liver shape
from the same subject. It was found from the figures that the simulation composed
of F, (affine transformation in 3D space) followed by Fr (translation in level set
space) achieved the best score, and the second and third best were simulations by
F4 and Fr, respectively. All of these were concluded to be superior to other SSMs in
terms of both indices or generalization. It is worth mentioning that the important
characteristic of a postmortem liver was simulated well by these transformations
(the right lobe tends to go up, and the left lobe tends to go down). Figure 2.12 shows
the JIs of all transformations from the three cases; it was confirmed that the JIs of
postmortem liver shapes transformed by Fr, F4, and Fa1 were higher than those of
shapes without transformation.

2.4 Conclusions

This chapter reported a study on a SSM for a postmortem liver in autopsy imaging
and its application to liver segmentation from PMCT volumes. First, the relationship
between SSMs constructed from in vivo liver labels and those from postmortem ones
was investigated. Second, I proposed several algorithms to transform in vivo liver
labels to resemble postmortem liver labels. Third, I conducted a comparative study
on SSMs for a postmortem liver constructed using the transformed labels.

On investigating the relationship between SSMs using 144 in vivo liver labels
and 32 postmortem liver labels, I concluded that an SSM constructed using in vivo
liver labels suffered from inaccuracy when describing postmortem liver shapes. In
addition, a larger number of training labels were required to enhance the perfor-
mance of an SSM. In accordance with these conclusions and to solve the problem of
the shortage of postmortem liver labels, I proposed several geometrical and statisti-
cal transformations to synthesize postmortem liver labels from in vivo liver labels.
Using the proposed SSMs constructed from synthesized liver labels, I developed
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(a) case1 (b) case2 (c) case3

Fig. 2.10 Three pairs of in vivo livers (upper) and postmortem livers (lower); each pair
was scanned from the same subject before and after death

Fig. 2.11 Transition in the shapes between the transformed shapes and the true
postmortem liver shapes from the proposed transformations and JIs



2.4 Conclusions 31

0.80

0.70

0.60 B none
' B F;

0.50 B Fr

HF,

0.40 BF,,

0.30 B Farr

0.20

case1l case? case3

Fig. 2.12 JIs between synthesized postmortem livers and true postmortem livers

a liver segmentation method for PMCT volumes, where the dynamic probabilistic
atlas was employed to handle the the Ai specific appearance of the liver. I reached
the following conclusions from experiments using 144 in vivo liver labels and 32
postmortem liver labels.

1. The best SSM for a postmortem liver in terms of generalization and specificity
was the D + T model, trained using postmortem liver labels as well as post-
mortem liver labels synthesized from in vivo ones by a translation operation in
level set space. The second best was the D + AT model, and the difference in
performance from the best model was statistically insignificant.

2. The best SSMs were confirmed to be statistically superior to conventional (D
and L model) SSMs in terms of generalization and specificity for a postmortem
liver. Conventional D 4 L models showed comparable ability with the best
model in generalization, but significantly lower specificity performance.

3. D + L model also showed the highest segmentation accuracy and statistically
significant improvement from D and L model. Conventional D + L models
showed comparable ability with the best model in generalization, but signifi-
cantly lower specificity performance.

It is worth mentioning the relationships with nonlinear geometrical transfor-
mations and physical model-based algorithms, such as the finite element method
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(FEM)-based transformations. The advantage of the proposed algorithm lies in
the simplicity of simulating the changes. The proposed transformation does not
require any additional nonlinear parameters, most of which are difficult to decide
appropriately. For example, an FEM-based approach requires boundary conditions
and physical parameters of the liver, as well as the forces the liver was subjected to
during the transition process from life to death, all of which are very difficult to esti-
mate. An interesting topic for future studies would be to compare the results of this
study with results from nonlinear geometrical transformations and an FEM-based
approach.

My future plans include applications to other organs, modeling both shape and
appearance changes from an in vivo body to a postmortem body, and a comparative
analysis using a larger amount of Ai data.



Chapter 3

Liver segmentation from PMCT

volumes

3.1 Introduction

This section presents an algorithm for automated liver segmentation from a CT
volume of a cadaver based on a statistical shape model (SSM), that was proposed in
Chapter 2, where a comparative study of the eight SSMs showed that synthesized
data were effective for training an SSM to delineate the specific postmortem shape

of a liver.

3.2 Methods

3.2.1 Algorithm overview

My algorithm extends the previous liver segmentation algorithm [47], where the au-
thors proposed a graph cut segmentation energy based on an SSM-based shape prior.
Figure 3.1 shows the work flow of (a) the previous liver segmentation algorithm
designed for in vivo livers [47] and (b) the proposed liver segmentation algorithm
for Ai.

The previous method consists of three steps: rough segmentation, SSM-based
shape estimation, and estimated shape-based graph cuts segmentation. The rough
segmentation is performed using an atlas-guided expectation maximization (EM) al-
gorithm followed by maximum a posteriori (MAP) segmentation [1]. The a posteriori
probabilities of organs are computed from a mixture of four Gaussians. Subsequently,
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Fig. 3.1 The work flow of the automated liver segmentation algorithm designs: (a)
previous method designed for in vivo liver; (b) the proposed method designed for
Ai

the most similar shape to a MAP segmentation result is extracted from the eigen-
shape space of an SSM in the shape estimation process [47]. The average distance
between the surface of the MAP segmentation and the reconstructed surface in the
eigenshape space is employed as a similarity measure and is minimized by the
Nelder-Mead search algorithm [46]. Finally, the graph cut-based segmentation is
performed, the energy function of which is similar to that in [47]. My energy function
is composed of a unary term and two pairwise terms. The unary term consists of
a negative logarithm of posterior probability of liver, given a CT value in which a
patient-specific probabilistic atlas generated from the estimated shape is used as
a prior probability. Pairwise terms consist of a conventional boundary term and a
shape term that evaluates the difference in gradients between the estimated and true
shape.

The conventional algorithm [47] employed a spatial standardization based on
the non-linear deformation using anatomical landmarks before the segmentation.
However, the landmark detection process, which depends on the CT value, may fail
because of the postmortem changes described in Section 1.2.2. Therefore, the system
was developed without a spatial standardization process. To compensate for the
postmortem-specific deformation of organs, I repeated the process of atlas-guided
EM and MAP by updating the location of the probabilistic atlas according to the
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MAP segmentation result of the previous iteration. The location of the probabilistic

atlas is initialized by the gravity point of the liver estimated by the proposed method

shown in Section 3.2.2.

3.2.2 Estimation of the gravity point of the liver

This section provides the initial estimation of the gravity point of the liver g,:(xo, 10, z0)-

Figure 3.2 shows the outline of the estimation process of g,.

CT image

!

Bone extraction

Body cavity extraction

)

Abd. cavity
extraction

A
|Estimation of Zg |

Calculation of the bounding box
of the abd. cavity at slice

'

| Estimation of X, ¥, |

'

Gravity point of the liver: g,

Fig. 3.2 Flow of the estimation of the gravity point of the liver

Body cavity extraction For the body cavity extraction, the trunk of the body and

bone are extracted by a simple image processing algorithm, as shown in

Algorithms 1 and 2, respectively, which are forwarded to the body cavity

extraction algorithm (see Fig. 3.3).

Algorithm 1 Extraction of the trunk of the body

Binarization of X with thr. = —300 [H.U.]
Binary morphological opening of X with radius r = 1 [voxels]

Dilation of X with r = 3 [voxels]
Remove hole region from X

Binary morphological erosion of X with r = 3 [voxels]
Extract the largest connected component.
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Algorithm 2 Extraction of the bone

Require: CT image X
binarize X with thr. = 100 [H.U.]
dilate X with » = 5 [voxels]
extract maximum volume region from X
erode X with r =5 [voxels].

Estimation of the gravity point of the liver Figure 3.4 shows the estimation pro-
cess of the gravity point of the liver g,:(xo, Yo, z0), which is used for the initial
estimation of the location of the probabilistic atlas. Slice zg is calculated as the
linear combination of the slices of the shoulder and the upper part of the thigh
using the ratio sy : (1 —sx). (%0, o) is calculated from the bounding box of the
body cavity at slice zg. Proportion values sy, s,, and s, are trained from the

training data.

Shoulder

Gravity point S,
of the liver

1-s

z

Upper part
of the thigh

Fig. 3.4 Estimation of the gravity center of the liver. (left: z-coordinate, right: x- and
y-coordinates

3.2.3 Rough extraction of the liver with dynamic probabilistic at-

las

The rough extraction of the liver is conducted by maximum a posteriori (MAP)
segmentation under the given prior probability, e.g. , the probabilistic atlas based
on the equation.

The posterior probability is calculated from the mixture of Gaussians, the param-
eters of which are estimated by an atlas-guided EM algorithm [1] (see Appendix A



38

Liver segmentation from PMCT volumes

/ CT volume /
| Initial probabilistic atlas ; g,

\ 4
t=0

<
y

A

Atlas-Guided EM algorithm for parameter
estimation t—1t+l

¢ A

Maximum a posteriori based rough

segmentation
Update the position of
¢ probabilistic atlas ; g, < g’
Extraction of a connected component with
maximum volume; g’ A
' No
P ARYS
Yes

g': gravity center of the connected component

Fig. 3.5 The proposed rough liver extraction algorithm
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for details), where the mixture ratio can be defined for each voxel independently

1 n N
p(x10) —ﬁZZ N(x;py Zi) (3.1)

i=1ln

where m, N, al i (oc:." = 1), u;, and X; are the number of classes, the number of
voxels, the mixture ratio for each class, the mean vector, and the covariance matrix,
respectively. A/ denotes a multivariate Gaussian distribution with the center u; and
the covariance X;. The EM algorithm yields parameters 6; and 6; = {a?,p;, Z;}. I
used the initial estimation of the mixture ratio a}' for the probabilistic atlas generated

from SSM.

The next step is the MAP-based (maximum a posteriori) segmentation of the

liver based on
L(x) = arg min P(x|I) (3.2)
[

Then, I calculate g}, the gravity point of the rough segmentation result obtained
from Eq. (3.2), and evaluate the difference between g; and the current estimation
of the gravity center g,. If the distance |g, — g}| is larger than the tolerance, g, ., is
updated by the following equation.

gt+2(gt g (if |g;_gt| > 10mm) 33
8t+1 = o (3.3)
g +(g—g) (iflg;—g,]<10mm)

Although there is no theoretical guarantee of convergence, it was experimentally
confirmed that a location of the liver that was better than its initial location could be
found through the several iterations, usually less than ten.

3.2.4 Patient-specific shape estimation

The next step is a patient-specific shape estimation, i.e., a fitting of the SSM to the
rough segmentation result. In this study, I propose using the average asymmetric
distance from the surface of the shape generated by the SSM I'y; to that of the rough
segmentation I'g for the sake of computational efficacy:

d(rR,rM):?{ mer—err/?f dr (3.4)
T'm r'elg I'm
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The Nelder-Mead search algorithm [46] is employed to minimize the coefficients ff
for the SSM.

3.2.5 Fine segmentation based on graph cuts

In this study, graph cuts were employed, which is an efficient optimization method
for the binary labeling problem using the s-t mincut algorithm [48]. Let £!VI denote
a set of binary labels {0, 1}, where 0 and 1 correspond to the background and
the foreground, respectively. The graph cuts optimize the binary labeling x =
(X1, X)) € LWV for a given image I = (I, . . ., Iy)) € RV s0 that the following
equation is minimized.

E(X, I) _ Z A- Egosterior(x/ I) + Z {E%Zadient(l) + E;};ape(I)} '5xp7éxq (3.5)
pev (pa)e€

where A is the positive constant, and the function ¢ is defined as

5xp7éxq = { ! (xp 7£ xq) (36)

0 (xp=xg)
EEOSterior(x, I) and E%gadient( Xp, xq) are calculated as

posterior B Pr(xp = 0|Ip) (xp =1)
Ep (1) = { Pr(x, =1/I,) (xp =0) 5.7)

radien I, — 1,)? 1
Epg ‘ (I) = exp {_( ngzq) } ' HﬁH (3.8)

where ¢ is the positive constant. Shimizu et al. [47] proposed using the shape term,

shape _ 1 —cos 9?"7 9
EpyPe() = [~ 39)

B VPSS (p) 1o
TR Ve (o) G310

Let ¢"55(p) denote the signed distance function of the estimated shape at voxel p.

described as

where

cos 91011 =

The gradient of the shape estimation V¢"5(p) is shown in Figure 3.6.
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Fig. 3.6 (a) Estimated shape prior. (b) Gradient of the shape estimation

3.3 Experimental setups

In the experiment, 32 CT volumes acquired from 32 cadavers and the corresponding
true liver label volumes were prepared. In training an SSM, half of the 32 dead liver
labels were used together with artificial dead liver labels synthesized from 144 living
liver labels. The remaining half of the 32 CT volumes of dead livers was used for
validation of my segmentation algorithm. The process of training and validation
was repeated after changing the role of the two datasets. It should be noted that
the SSM construction and segmentation were performed in a reduced domain
(170 x 170 x 170 voxels; 2.0 mm/voxel isotropic) because of memory limitations.
The segmentation accuracy was measured by calculating the Jaccard index (JI) of the
segmented region and true liver labels.

Five classes for GMM were used, i.e., liver, heart, right kidney, lesion, and
other, the initial parameters of which were trained from 140 in vivo CT volumes.
The parameters for graph cuts were determined empirically based on the JI of the
segmentation result using the conventional model D + T and fixed as ¢ = 4.0 and
A = 0.1 throughout the experiment.

3.4 Results and discussion

Figure 3.7 shows the JIs of a) the rough segmentation based on MAP, b) the shape
estimation, and c) the graph cuts when using the eight different segmentation algo-
rithms, each of which employs one of the eight SSMs. The results showed that the
segmentation based on the D + T model yielded the highest performance (average
JI of 0.806). The D + T model was the only model that significantly outperformed
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Fig. 3.7 JIs of a) the rough segmentation based on MAP, b) the shape estimation, and
c) the graph cuts when using the eight different segmentation algorithms, each of
which employs one of the eight SSMs

all of the conventional SSMs (the D, L, and D + L models) in terms of both shape
estimation and segmentation. Here, a Wilcoxon test with a significance level of 0.05
was used. It is worth mentioning that these findings are consistent with the results
of the previous section, where the D + T model proved the best model and superior
to conventional SSMs, with statistical significance for a significance level of 0.05.

Figure 3.8 shows graph cut-based fine segmentation for four cases using different
SSMs.

Figure 3.9 shows examples of shape estimation and graph cuts segmentation
using L and D + T model, in which the contours of the regions are shown in yellow.
The figure shows that the shape estimated by the D 4 T model was obviously more
similar to the true boundary than that estimated by the L model, leading to higher
accuracy in the graph cuts segmentation.

Figure 3.10 shows the transition of segmentation during the iteration of the
proposed MAP segmentation algorithm using dynamic probabilistic atlas. The liver
segmentation results improved with the increasing number of iterations.
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Case 1 Case 2 Case 3 Case 4

JI =0.8542 J1=0.6873 JI =0.8494 JI =0.7592

L
model
=0.8034
D
model
=0.7603
D+L
model
=0.8031
D+T
model

Fig. 3.8 Segmentation results for four cases using different SSMs



44

Liver segmentation from PMCT volumes

Case 1 Case 2 Case 3 Case 4

JI =0.8614 JI1=0.7324 JI =0.8355 JI =0.7937

D+TR
model

D+A
model

D+AT
model

D+ATR
model

Fig. 3.8 Segmentation results for four cases using different SSMs (cont)
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SSM, SSMp.t SSM, SSMp.t
(J1=0.438) (J1 = 0.539) (J1 = 0.607) (J1=0.838)
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o

(a) Estimated shape (b) Segmentation result

Fig. 3.9 Examples of (a) estimated shapes and (b) segmentation results from the
conventional L model and the proposed D + T model, which showed the best
performance

Fig. 3.10 Transition of segmentation during the iteration of the proposed MAP
segmentation algorithm using dynamic probabilistic atlas
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3.5 Conclusions

I proposed an SSM-based liver segmentation algorithm for autopsy imaging. A
comparison study of algorithms was performed in a cross-validated manner with
eight different SSMs and 32 dead liver CT volumes. The results showed the best
segmentation algorithm employed the SSM trained from both dead liver labels and
dead liver labels synthesized using a statistical transformation. The performance was
statistically superior to that of algorithms with conventional SSMs constructed from
dead and/or living liver labels. The current segmentation performance for a cadaver
is inferior to that for a living body [1, 49, 50] because of postmortem deformation. I
will improve the segmentation process in the near future by incorporating autopsy
imaging specific knowledge into the process.



Chapter 4

Joint optimization of the segmentation
and shape prior from an SSM

41 Introduction

SSM-based postmortem organ segmentation as shown in section 2 and 3 is an
important topic; however, here I would like to address another interesting problem
relates to the SSM-based segmentation for in vivo organs.

The automatic segmentation of abdominal organs such as the pancreas from a
three-dimensional (3D) computed tomography (CT) volume is a challenging task
because of the high inter-subject variability in the shape and location, as well as
the existence of the surrounding organs, which appear similar to pancreatic tissue.
A number of automated pancreas-segmentation algorithms have been proposed
in the context of multi-organ [1, 51, 52] and single-organ [49, 53-57] segmentation
frameworks, all of which yield low-accuracy segmentation.

A promising solution for improving the segmentation performance is the incorpo-
ration of a shape prior into a state-of-the-art segmentation algorithm, such as a graph
cut [48]. A number of segmentation algorithms that incorporate shape priors have
been proposed over the last decade, and they can be categorized into two different
strategies. The first is the selection of one or more shape priors and performing
shape-prior-based segmentation, and the second is optimizing the energy jointly for
both the shape prior and the segmentation.

Most conventional studies based on graph cuts have employed the first strategy,
and a variety of shape priors have been proposed. General shape constraints, such
as ellipse [58], blob-like [59], or compact [60] priors, have been successfully applied
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to the segmentation of a wide range of objects. While these shape priors are useful,
they may be too simple for segmenting objects with more complex shapes. A user-
defined shape template [61] was also incorporated into a graph-cut segmentation.
In particular, a statistical shape model (SSM) [31] may be a good choice for a shape
prior because it can describe the statistical variation in the shape of an organ, and an
appropriate shape prior can be derived from the SSM. Several studies have proposed
the incorporation of an SSM-based shape prior into the graph-cut segmentation
process. Although Grosgeorge et al. [19] and Malcolm et al. [20] used shape priors
for segmentation generated from SSMs produced through linear and nonlinear
statistical analyses, respectively, their methods are not automated, and require user
interaction. Nakagomi et al. [21] proposed fully automated segmentation using
multiple shape priors, which were selected from eigenshapes generated through
a uniform sampling of the first two eigenmodes of an SSM. Linguraru et al. [39]
introduced a patient-specific shape prior, which was derived from the SSM computed
using the Parzen window method. However, a common problem with these SSM-
based approaches is that the shape prior and segmentation under the prior are not
simultaneously optimized, but are sequentially optimized using different criteria.
Therefore, the shape prior selected by these methods may not be optimal with
respect to the graph-cut energy functional, which I hope to minimize during the

segmentation process.

Of the graph-cut segmentation algorithms that use shape priors, a few have
employed the second strategy to find the optimal energy jointly for the segmentation
and shape prior. Kohli et al. [62] used a gradient descent method to optimize the
graph-cut energy depending on the pose of the shape prior or a stickman model. The
second strategy has also been employed in point-distribution model (PDM)-based
approaches, such as the active shape model and active appearance model [4, 63].
However, in recent years, more sophisticated approaches have been employed.
For example, Chen et al. [23] proposed a novel synergistic combination of the
segmentation and PDM. This method iteratively updates the shape prior with the
constraints of a PDM based on the current segmentation results. Although this
study showed promising segmentation results, because it is based on an iterative
optimization method, there is no mathematical guarantee that the attained shape
prior will be globally optimal in terms of the objective functional. Besbes et al. [22]
proposed a segmentation method based on random Markov fields, which combines
shape priors that are defined using the PDM and regional statistics. The experimental
results of hand segmentation showed the effectiveness of the shape prior. However,
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in this study, only an approximate solution was obtained after the minimization
of a nonconvex objective functional using a primal-dual algorithm. In addition,
this method was only applied to two-dimensional (2D) image segmentation. Xiang
et al. [24] proposed a novel framework for image segmentation through a unified-
model-based and pixel-driven-integrated graphical model, where prior knowledge
is expressed through the deformation of a discrete model that involves decomposing
the shape of interest into a set of higher-order cliques. This method shares the
same goal as my study on the joint minimization of the energy functional regarding
the pixel-based segmentation and SSM-based shape prior. However, the energy
functional described in this paper is rather difficult to optimize using a state-of-the-
art optimization algorithm, or TRW-S, and is therefore trapped in the local minimum
of the energy functional. Moreover, only the results for the small 2D images were
shown, and it remains to be seen if this algorithm is applicable to large 3D medical
images in terms of computational cost.

Lempitsky et al. [25] proposed a new framework for computing the optimal
graph-cut segmentation, where a number of shape priors were defined as templates
with various poses and locations. This framework is categorized as the first type of
strategy because the shapes are selected in advance. A branch-and-bound search
was conducted on a tree constructed from agglomerative bottom-up clustering using
the predefined shape templates. The advantage of this study over the approaches
mentioned above is that optimal segmentation can be obtained for a broad family of
functionals depending on the given shape templates. However, this algorithm has a
limitation in that the set of predefined templates may not include an optimal shape
prior that truly minimizes the graph-cut energy among all possible shape priors
generated by an SSM.

On the whole, all of the algorithms mentioned above suffer from the local mini-
mum problem of their functional when considering all possible shapes generated
from an SSM. Generally, a higher segmentation performance is expected if more
shapes of an SSM are evaluated during the segmentation process. The goal of this
study is to provide a theoretical framework for truly optimizing the segmentation
energy considering all of the possible shapes generated from the SSM. This paper
assumes that an SSM is represented as a subspace of level set functions learnt via
principal component analysis (PCA), and the assumptions are relaxed in the dis-
cussion section. It is worth noting that to the best of my knowledge, this is the
first study that perfectly solves the above local minimum problem. Because I em-
ploy a branch-and-bound search strategy, the proposed algorithm is similar to the
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method proposed by Lempitsky et al. [25]. In contrast to Lempitsky et al. [25], my
method employs the second strategy and finds a global solution, i.e., my method
can incorporate all possible shapes defined by an SSM without sampling shapes
from an eigenshape space of the SSM. In addition, I demonstrate the effectiveness
of the proposed algorithm in the context of pancreas/spleen segmentation from
CT volumes. The main contributions of this study, including the differences from

existing works, are as follows:

* In contrast to the conventional method [25], my method conducts joint opti-
mization in terms of the shape prior and segmentation labeling. In addition, it
can handle many more 3D shape templates, and finds an optimal 3D shape
prior! from among all possible 3D shapes (over 10”) generated by an SSM. Owing
to the combination of a level-set-based SSM and the fundamental theorem of
linear programming, the algorithm has the following salient features.

— A conventional algorithm conducts a branch-and-bound search over a
tree of predefined shapes, whereas the proposed algorithm conducts a
branch-and-bound search over the eigenshape space of an SSM to find an
optimal shape prior from among all of the possible shapes generated by
an SSM.

— Unlike the conventional algorithm, the proposed algorithm does not
require the clustering of predefined shape templates. In addition, it is not
necessary to store an entire search tree with all clustered shapes during the
segmentation process because the search tree is dynamically generated in
a top-down manner during the optimization process. Note that it is nearly
impossible to run the conventional algorithm with all of the possible 3D
shapes (over 10%) generated from an SSM, e.g., the clustering for 10°
shapes takes over 10,000, 000 years and 2.04 PB of memory is required to
store the entire clustering tree, as discussed in Section 4.4.2.

* T applied the proposed algorithm to pancreas and spleen segmentation using
multiphase CT volumes, and I observed a statistically significant improvement
compared to the algorithm proposed by Lempitsky et al. [25] for both the

! The term “optimal shape prior” is used differently in various studies. For example, an optimal
shape prior in a study on multishape graph cuts by Nakagomi et al. [21] represented a shape prior
generated by combining several shape templates using a fusion move with the quadratic pseudo-
Boolean optimization (QPBO) algorithm. To the best of my knowledge, the present study is the first
to find an optimal shape prior among all of the possible shapes generated by an SSM for single-shape
graph cuts, and can be extended to multishape graph cuts in the near future.
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Jaccard index (JI) and Dice similarity index (DSI). In addition, comparison with
the state-of-the-art multiple abdominal organs segmentation algorithm was
carried out so as to prove the effectiveness of the proposed algorithm.

The remainder of this chapter is organized as follows. Section 4.2 provides a brief
introduction to a level set based SSM along with a description of how the SSM-based
shape prior is incorporated into my segmentation algorithm. The experimental setup
and results are presented in Section 4.3, followed by a discussion of the results in
Section 4.4 and conclusions in Section 4.5.

4.2 Methods

4.2.1 Generation of shape priors using a level set distribution model

The shape priors used in the proposed method are generated from an SSM using
level-set functions [17] or signed distance functions, which I refer to as the SSM
level-set distribution model (LSDM), and the availability of different SSMs in my
framework is discussed in Section 4.4.4. The shapes are embedded as a zero level set
of signed distance functions with positive values inside an object and negative values
outside the object, which are defined in a discrete 3D image domain comprising a
voxel set V. A training set of signed distance functions was statistically analyzed
through a weighted principal components analysis [64], which yields an eigenshape
space of dimension d (< |V|). The following linear equation is widely used to
generate a shape prior:

d

¢ (a) = pP + Y ain /Al 4.1)

i=1

where u” denotes the average level-set functions of the training labels for the

voxel p (€ V), A; (i = 1,...,d) is an eigenvalue, {ulf, .. .,uZ} represents the first

d unit eigenmodes of the statistical variations for the voxel p, and the vector
]T

« = [ay,...,04]" is a shape parameter vector, which is defined in the rectangu-

lar domain® R, = {r € R? | ||r||., < w} of an eigenshape space with a positive

2 Note that an arbitrary convex polytopic domain is available for the shape parameter space with-
out any modification of the proposed optimization process. In this study, I employed a rectangular
domain for simplification of the implementation. In addition, the proposed method is applicable to
a nonconvex polygon by developing preprocessing that divides a nonconvex polygon into a set of
convex polygons, and postprocessing that finds the minimum from among a set of solutions for all
divided convex polygons.
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constant value w, which is typically set to 3. A shape prior in a discrete image
domain is obtained by mapping & to a label (see Fig. 4.1) as follows:

g:aeRy—ye LV (4.2)

where £ = {0,1} is a set of labels, i.e., 0 for the background and 1 for the foreground.
In this paper, I denote g(&) € £V and ¢ (&) € RY as a vector (or image) whose p-th
elements (or pixels) are g,(«) € £, and ¢7(x) € R, respectively. The LSDM uses a
Heaviside function #(-) as the mapping function g.

yp = gp(a) = H (9" (a)) = { L (¢7(a) 20) (4.3)

R4 L7l

Fig. 4.1 Relationship between the eigenshape space of the LSDM and the discrete
shape label domain. Function g is an onto-mapping from eigenshape space R, to
the discrete shape label domain £!V|. The set of shape priors S C £ is defined as
an image of g, i.e., S = ¢(R4). An arbitrary convex polygon in eigenshape space
H; corresponds to the set of shape labels ¢(H;). Each label y € S has a pre-image

g y) € Ra

Note that the image of g is the set S (€ V), which comprises a finite but signifi-
cantly large number of shape priors, which is difficult to handle using a conventional
algorithm [25]. My goal is finding an optimal shape prior from set S in terms of
a graph cut energy functional. The important properties of function g, which is a
Heaviside function in the present study, are summarized as follows. The function is
1) monotonic and 2) has a many-to-one mapping, i.e., the inverse image g~ (y) is

§ 1 (y) = {& € Ru|¢”(a) > 0for Vp € F} N {w € Ra|¢” (1) < 0 for Vp € B}
(4.4)
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where F = {peV ]|y, =1} and B = {p €V |y, =0} are the sets of voxels
assigned to a the foreground and background, respectively. The third property
of function g is that the inverse image ¢~ '(y) is a solution of the simultaneous
linear inequalities of size |V|, which is a convex polygon in a two-dimensional (2D)
eigenshape space. Note that most of the explanations provided in the present study
utilize a 2D eigenshape space for simplicity, which can easily be extended to higher
dimensions, e.g. , a convex polygon can be replaced with a convex polyhedron in
a 3D eigenshape space. The segmentation of target CT volume I € £IV] is defined
as 0-1 labeling x = (x1,...,x)y|) € L. A shape prior y € S is incorporated into
the segmentation, where S C £V is a set of shape priors. The goal of the present
study is the simultaneous optimization of the segmentation energy functional in
terms of the labeling x € £V and shape priors y € S, which leads to the following
minimization problem:

min  E(x,y,[)= min FP(Ly) x,+ Y BP(Ly)-(1—x
xeLlVl, yes ( y ) xeﬁVl,yeS{pg/ ( Y) P p;/ ( Y) ( P)

(pa)e€

+ ) PW(I)-{x,,xq|}, (4.5)

where N is the set of neighboring voxel pairs. The unary potential terms FF(I,y)
and BP(I,y) which are the costs when assigning voxel p to the foreground and
background, respectively, are defined as follows:

A -Pr(xp =01y + A2 (1—yp) (4.6)

F'(Ly)
P(I A -Pr(xp=1]1,)+A2-yp (4.7)

BP(ILy)

I use a similar energy functional to that proposed by Lempitsky et al. [25], but it
differs with respect to the definition of shape prior y, as described above. The
other changes compared with the method of Lempitsky et al. [25] are related to the
functional Pr (x, = 0] I,),

Pr (1 p
Pr(x, | I,) = r(’”l‘)rxfl)p)r(x’”), 4.8)

which is the posterior probability of a background or foreground that is linearly
combined with a shape prior term using positive constants A1 and A, to represent
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the appearance, which has an important role in the segmentation of an organ [49].
The term PP9(I) is a pairwise potential that defines the cost of assigning adjacent
pixels (p,q) € € to different labels.

_ 2
PPI(I) = exp {_(Ipzazlq) } ) ”i}H (4.9)

4.2.2 Energy minimization strategy

The significantly large number of shape priors in S (C £IV]) makes it difficult to
conduct the global minimization of Eq. (4.5) in terms of x € £Vl and yes
using a conventional approach [25]. Although my approach employs a branch-
and-bound search strategy, I utilize a dynamic branching operation and bounding
computation in an eigenshape space. The key concept that underlies the proposed
algorithm is that the division of a set of shape priors used for branching can be
replaced with a partition of an eigenshape space, which yields convex polygons
that correspond to the shape priors. Another important feature of my method is
a bounding computation algorithm for a given arbitrary convex polygon in an
eigenshape space, which I describe later. Consequently, the search algorithm used to
find an optimal shape prior can be replaced with a top-down search algorithm for
an optimal convex polygon in an eigenshape space, where only a portion of a tree is
generated and searched during the process. These two important features facilitate
an efficient branch-and-bound search in S (C £IVl). The proposed optimization
procedure is conducted in an eigenshape space, and thus I rewrote the energy
minimization problem by substituting mapping function g(«) for shape prior y.

i in E(x, i1 4.10
mmin min (x,g(a); I) (4.10)
The best-first branch-and-bound algorithm [65] is used for the global optimization
of Eq. (4.10). First, I describe the branching operation when given a parent node that
corresponds to a convex polygon in R,, which is followed by an explanation of the
bounding computation and the pseudo-code of the proposed algorithm.

Branching

Given parent node Hy (C R,), branching is a step used to partition node Hy into
child nodes H; and Hj, (Hy U Hy = Hyp, Hy N Hy = @), which decomposes Eq. (4.10)
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into two sub-problems.

min min E(x,¢(a«);I) = min < min min E(x, ¢(«); I 4.11
min min E(xg(@)0) = min {min min Eug@iD| @1

Various partitions are possible, but I propose a division based on the sign of ¢* (&) in
Eq. (4.1) at voxel k sampled from set Q:

Hy = {a € Ho | ¢"(a) >0 } (4.12)

Hy = {a € Hy | ¢*(a) < o} (4.13)

In this case, Q is a set of voxels k such that the hyperplane ¢*(«) = 0 intersects Hy:

Q= {k €V | min¢*(v) < 0 < max¢*(v) } (4.14)

veV) veVy

where V) is a set of vertices for a convex polygon Hy, which can be computed
analytically by solving the simultaneous linear equations for values of ¢°(a) that
correspond to the edges of Hy. Figure 4.2(a) illustrates the relationship between
convex polygon H; and the sign of level set functions ¢*(a), ¢'(a), and ¢°(a) at
different voxels a, b, and c of Fig. 4.2 (b), among which only voxel c is a member of Q
(ie.,c € Qanda,b ¢ Q). The entire set of Q comprises the voxels in the gray region
shown in Fig. 4.2 (b), where the value of (¢ («)) is either 1 or 0 over & € H;.
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(a) (b)

Fig. 4.2 The relationship between the location of voxel p and the sign of ¢ (&) in
the given H;. The three lines in (a) correspond to ¢ («) = 0 for the three voxels
in figure (b). Here, the normal vector of each hyperplane ¢”(x) = 0 in (a) is
[VAqul, ..., /Aqul] (p € V). The different colors in (b) correspond to three classes.
M (¢P(«)) always takes a value of 1 in the white region and 0 in the black region for
Va € H;. Set Q comprises the voxels in the gray region, where the value of H (¢? («))
is either 1 or 0 over & € H;

Bounding

The lower bounds L(H;; I) (i € {1, 2}) of my method are given below.

min min E(x,¢(«); I
min min (x,g(a); I)

> mi in FP(I . in BP (I (11—
—Eﬁﬁﬂﬁ (1g(0)-xp-+ T min B7(Lg(a) - (1= )

+ ) P’”q(I)-|xp—xq|} (4.15)
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Here, I denote g™ (H;) € £Vl and g™"(H;) € £IV] as the maximum and mini-

mum of g(a) over a € H; at each voxel, i.e., whose p-th elements are ¢’ (H;) =

max g, («) and gmm( ) = ml}}’ll gp(a), respectively. The inequality in Eq. (4.15) is
i xEH;

acH;
Jensen’s inequality for the minimum operation. Eq. (4.16) is derived from the fact

that FP(I,g(«)) and BP(I,g(«)) are the monotonically decreasing and increasing
functions, respectively, in terms of y,, (see Egs. (4.6) and (4.7)), and are independent
of y; (7 € V\ p). Here, H; is a convex polygon, g, («) (p € V) is a monotonic function
(see the properties of g, (a) in Section 4.2.1), and ¢ () is a linear function (see Eq.
(4.1)); thus, the maximum and minimum of ¢ («) for « € H; can be found in the
set V; of H;, and are based on the fundamental theorem of linear programming [66],
which yields the following equations:

QX () — 0 if ¢P(a) < 0forVo €V, (4.18)
P 1 otherwise
1 if ¢F > (0 for Vo €V,
gningg) = - 9Tl 2 0forvo e (4.19)
0 otherwise

Once the maximum and minimum values of H (¢”(«)) for « € H; are obtained from
Egs. (4.18) and (4.19), the minimum value for x € £Vl in Eq. (4.16), or L(H;; I),
can be computed efficiently using the s-t mincut algorithm [48]. Note that the three
properties required for global optimization, i.e., monotonicity, computability, and
the tightness of the lower bound L(Hj; I), are satisfied by this method. The proof
is given in Appendix B. Figure 4.2 shows the relationships between the location of
voxel p and the sign of ¢¥ («) over « € H; These relationships are categorized into
the following three classes according to the sign of ¢? («).
(i) ¢’(«) >0 Ve € H; <> minH (¢P(a)) = minH (¢ (a)) =1

acH; acH;

(i) ¢P(a) <0 Va € H; <> minH (¢¥(a)) = minH (¢?(x)) =0

xcH; acH;
. p _ . p _
(iii) Otherwise “ iréug?—[(qb (w)) =1, ireul?l?{(qb (w)) =0

The three lines in Fig. 4.2(a) correspond to ¢7(a) at voxels a, b, and ¢ in Fig. 4.2(b),
where the gray values represent three classes in the actual nodes in the binary tree
during pancreas segmentation (see Section 4.3.1). Voxel a belongs to class (i), voxel b
is a member of class (ii), and voxel c belongs to class (iii). Note that the set Q in Eq.
(4.14) comprises voxels from class (iii).
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4.2.3 Implementation

Algorithm 3 shows the pseudo-code of the proposed optimization algorithm. Given
target image I, an initial convex polygon Hj that corresponds to the root node is
set as Ry. Next, Hy is divided into two sub-regions, H; and Hj, through Eqgs. (4.12)
and (4.13) using voxel k selected from Q by the operation Select(Q). The child nodes,
Hj and H,, are inserted into Queue as candidates for the next parent node through
an InsertWithPriority operation. Queue is a priority queue, where each element H;
is stored in ascending order of the associated lower bounds, L(H;; I). Next, Hy is
replaced with the node of the lowest lower bound, which is drawn from the queue
using a PullHighestPriorityElement operation, which is followed by updating set Q.
When Q = @, any a* € H yields a globally optimal shape prior y* = g(a*). Finally,

the optimal segmentation x* is obtained by finding arg min E(x, y; I) using the s-t
xeLVI
mincut algorithm [18].

Algorithm 3 Pseudo-code of the proposed optimization algorithm

Require: Targetimage I

HQ%R,X

k : k 0 k
Q¢ {keV[ming(v) <0 < max¢*(v) }
Queue < @

Queue.InsertWithPriority(Hp, L(Hp; I))
while Q # @ do
k < Select(Q)
Hy+ {a€Hy|¢(a) >0}
HQ%{NGHQ | 4)"(«) <0}
Queue.InsertWithPriority(Hy, L(Hp; I))
Queue.InsertWithPriority(Hp, L(Hy; I))
Hy < Queue.PullHigizestPriorityElemeni()
Q<—{k€V\ern€1‘2cp (v)<0<£]rg/>54> (v) }
end while
y* < ¢(a*) where a* € Hy
x* <—arg min E(x, y*; I)
xeLVl

Two computations of s-t mincut are executed at each node in parallel in a multi-
threaded environment. To further accelerate the s-t mincut algorithm, I exploit the
fact that the solutions of the s-t mincut problem at different nodes are sufficiently
similar to use the dynamic graph cut [67] technique, where the previous max-flow
computation is used to find the solution in the updated residual graph.
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The Select(Q) operation may be a random selection from set Q because the global
solution of the segmentation is independent of the choice of Select(Q). Assuming that
any shape prior is equally likely to be optimal, the binary search tree is preferably
balanced [68], i.e., each child of any node contains almost the same number of shapes
as its sibling. Thus, I propose the use of the following selection operation to maintain
the balance of the search tree, instead of a random selection:

Ja—b
Select(Q) = arg min (4.20)
%eQ la+ b
where a4 = max¢?(v) and b = — min ¢”(v), the values of which are proportional
veVy vely

to the maximum and minimum of the signed distance between the hypersurface
¢F (a) = 0 and the vertices Vp, respectively. Note that |a — b|/|a + b| in Eq. (4.20)
takes a higher value as a/b becomes more distant from 1. Intuitively, Eq. (4.20)
approximates voxel p, which divides Hy into two equally sized regions, H; and H,.

PP(a@) =0 (p€Q)

41

{v1,v2,v3,v4,V5} €V
U3

Fig. 4.3 Illustration of the process used to find a voxel for partitioning. The maximum
and minimum of the signed distance from the hypersurface ¢” («) = 0 to the vertices
Vo are computed to select a voxel for partitioning. The proposed operator finds a
voxel p € Q that minimizes |a — b|/|a + b|

4.3 Experimental setup and results

I validated the proposed algorithm in the context of the automated segmentation
of the pancreas and spleen. Note that the energy functional used and the target
organs are just examples to show the applicability of my framework to an actual
segmentation problem. I verified that the energy of my method is lower than that of
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the method proposed by Lempitsky et al., which contributes to an improvement in
the segmentation accuracy. I also conducted a comparison experiment with one of
the state-of-the-art multi-organ segmentation algorithms proposed by Okada et al.
[52] for both pancreas and spleen segmentation.

4.3.1 Pancreas segmentation

I validated the proposed algorithm in the context of automated pancreas segmen-
tation using contrast-enhanced multiphase 3D CT volumes, or early-, portal-, and
late-phase volumes that were obtained from 140 patients, which I refer to as Dataset-
A'in this study. The CT volumes in Dataset-A was measured as 512 x 512 x (154-901)
voxels with a spacing of (0.546-0.782) x (0.546-0.782) x (0.5-1.0) mm/voxel.

To make use of the three-phase information, I aligned the portal- and late-phase
volumes (floating volumes) to the early-phase volume (target volume). For each
control point placed on the regular lattice grids in the floating volume with an
interval of 30 voxels, I calculated a displacement vector using template matching
with a cube of 31 voxels on each side. I employed the normalized mutual information
(NMI) for the metric of similarity between different phase volumes. I calculated the
optimal displacement using an exhaustive search in a cuboidal region of 11 x 11 x 21
voxels centered at the control point. After template matching, I established the
correspondence of every voxel r; € Z3 in the target volume with that in the floating
volume ry € IR3 using a radial basis function (RBF):

rp = A+ R+ WG (4.21)

where G is a radial basis function matrix, the matrix A is an affine matrix, T is a
translation vector, and W is a weight matrix, all of which are computed by solving
linear simultaneous equations [69]. I calculated the CT value of the voxel r; € R3 in
a floating volume using trilinear interpolation.

Next, I automatically extracted an abdominal cavity using graph cuts, and I used
it to obtain a rough alignment of the CT volumes of an unknown input subject to
those of a reference subject whose number of slices is the maximum among the
training data. After the rough alignment, I extracted the surrounding organs, or
the liver and spleen using the maximum a posteriori probability (MAP) method
followed by a refinement process based on morphological operations and graph cuts.
Subsequently, I extracted the portal, splenic, and superior mesenteric veins from
a portal-phase CT volume using a region-growing algorithm whose seed points
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were determined using the estimated hilum locations of the liver and spleen. Finally,
I conducted a spatial standardization of the pancreas to eliminate pose variances
between subjects. To do this, I used a method similar to that applied by Shimizu
et al. [49], where I carried out an RBF-based nonlinear registration to the reference
volume using 56 landmarks (see Fig. 4.4), i.e., 40 landmarks in the abdominal cavity,
14 landmarks in the portal and the splenic and superior mesenteric veins, and two
landmarks in the extracted liver and spleen. I also learned an SSM of the pancreas
from the spatially standardized training labels that were aligned using the same
deformation field.

Fig. 4.4 Examples of (a) the front and (b) top views of the 56 extracted landmarks
used for spatial registration of the pancreas. Forty landmarks are in the abdominal
cavity (yellow); 14 landmarks are in the portal, splenic, and superior mesenteric
veins (red); and the remaining two landmarks are in the extracted liver (blue) and
spleen (green)

After the spatial standardization, I conducted three different types of segmenta-
tion using the proposed algorithm, the algorithm proposed by Lempitsky et al. and
without using the shape-prior based energy. I computed the likelihood, Pr (I,, | x,),
of Eq. (4.21) from the Gaussian mixture distribution of the organs that were es-
timated using the expectation-maximization (EM) algorithm, where I assumed a
Gaussian distribution of two classes, i.e., the pancreas and other tissues, and I com-
puted the initial values of the statistical parameters used in the EM algorithm, i.e.,
the average values and the variances of the foreground /background features, from
the training data.
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In order to account for the much greater shape variation, I set the number of
eigenmodes of the level-set-based SSM and the size of Ry tod = 2 and w = 3.0,
respectively, the former being the same value used by Nakagomi et al. [21], and the
latter being a higher value [21]. The RBF-based three-phase registration employed
a Gaussian kernel whose standard deviation was 22.5 mm, and the RBF-based
spatial standardization of the pancreas used a biharmonic kernel. I employed a
26-neighborhood system for the graph cuts. The parameters used for the graph cuts
were determined experimentally, and were fixed to (A1, Ay, 0) = (1.05, 0.55, 10.0)
throughout the pancreas-segmentation experiment.

I compared the results with those obtained using a conventional algorithm or the
method proposed by Lempitsky et al. which uses a set of predefined shape templates.
Fair comparison studies could be designed with different consistency conditions
between segmentation algorithms, as follows:

1. Consistency in the segmentation performance (or the number of shapes con-
sidered)

2. Consistency in the memory requirements
3. Consistency in the computational time
4. Consistency in the number of nodes traversed (or searched)

Because it is difficult to simultaneously impose several consistency conditions,
in this study, I employed each condition in 1 and 2. To perform a comparison
study under the performance consistency condition, I first planned the experiment
using all of the shapes S generated from an SSM, where |S| > 10°. The proposed
algorithm requires 1.07 GB of memory and takes an average time of 213 s to find
the globally optimal solution from S. In contrast, because of the high computational
cost of the algorithm proposed by Lempitsky et al. I estimated the required memory
and computational time. I found that the estimated memory size is 2.04 PB, and
the estimated computational time is over 107 years using the same computer (see
Section 4.4.2 for the details). The superiority of my algorithm is therefore obvious.
Subsequently, to obtain a quantitative comparison, I performed an experiment under
the memory consistency condition using a smaller subset of shapes S’ C S. I set
the number of shapes as S’ = 49, which were generated by performing uniform
sampling from the same eigenshape space R, with intervals of 1.0. Under this
setting, the experimental results indicated that the method proposed by Lempitsky
et al. required 1.16 GB on average for y € §’, while my algorithm requires 1.07 GB
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on average for y € S, which are nearly the same. The agglomerative hierarchical
clustering over &' for their method was conducted using the Hamming distance
measure, which was the same as that proposed by Lempitsky et al. [25].

To improve the computational efficiency, the input volumes were reduced to 256
x 256 x (335-340) isotropic voxels of (1.092-1.24) mm/voxel before executing the
registration, segmentation of the neighboring organs, and spatial standardization.
For the proposed pancreas segmentation method, to further reduce the computa-
tional costs, I clipped the CT volume with an automatically defined rectangular
region based on the MAP estimates of the neighboring organs. The size of the rect-
angular region was 193 x 146 x 145 voxels, which was sufficiently large to cover the
pancreas for all of the patients. The SSM was also constructed within a rectangular
region.

I conducted a two-fold cross-validation study on Dataset-A with 140 patients,
and I evaluated the segmentation accuracy based on the JI for an extracted region
and the true region, which was drawn manually by experts. I also evaluated the
selected shape priors based on the JI for the selected shape prior and true pancreas
region.

Figure 4.5 shows typical examples of the segmentation results and the selected
shape priors obtained using three methods: the proposed method (left), the method
proposed by Lempitsky et al. (center), and a method without shape priors (right).
Note that I employed the same segmentation processes for all three methods, with
the exception of the graph-cut-based segmentation during the final step. The top
row of Fig. 4.5 shows the selected shape priors (green region), and the bottom row
shows the segmentation results (yellow region). Compared with the shape prior
selected by the proposed algorithm, the one selected by the method proposed by
Lempitsky et al. was not appropriate around the top of the pancreas, and produced
a large segmentation error, as indicated by the blue arrows. This was consistent
with the fact that the energy E for the algorithm proposed by Lempitsky et al. was
higher than that of the proposed algorithm. In addition, the method without a shape
prior over-segmented a region with a similar appearance as the pancreatic tissue
marked by the red arrows. In this figure, the JI indicates that the proposed method
performed better than both of the other methods in terms of both the accuracy of the
selected shape prior and the segmentation results.

Figure 4.6 summarizes the evaluation of the segmentation results, the selected
shape priors, and the segmentation energy for 140 test cases of Dataset-A, where
the proposed method was compared with the method proposed by Lempitsky et al.
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= : True boundary
[l : Shape prior
[l :Segmentation

Proposed method Lempitsky et al. Without a shape prior
(E =2.921 x10%) (E =2.988 x 10%)

Fig. 4.5 Typical results obtained using the proposed method (left), Lempitsky et al.’s
method (center), and the method without shape priors (right). The top row shows
the selected shape priors (green regions), and the bottom row shows the segmentation
results (yellow regions). The major false negatives are denoted by blue arrows, and the
false positives are denoted by red arrows
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and the method without shape priors, the latter of which corresponds to the results
for A, = 0. Using the proposed method, the average JI of the segmentation was
improved by 1.3 pt compared with the method proposed by Lempitsky et al., and by
3.7 pt compared with the method without shape priors. An analysis using a paired
t-test with the null hypothesis (HO) that the JI is identical for both methods showed
that the segmentation accuracy of the proposed method differed significantly from
those of the method proposed by Lempitsky et al. (p = 4.72 x 1072 < 0.05) and
the method without shape priors (p = 7.59 x 1072 < 0.01). The difference with the
method proposed by Lempitsky et al. can be explained by the differences in the JI
of the selected shape priors. The average JI of the selected shape priors increased
by 2.1 pt compared with the method proposed by Lempitsky et al., which is a
statistically significant (p = 1.99 x 107 < 0.01) difference. These observations are
also consistent with the fact that the energy from the proposed method is equal to
or less than that from the method proposed by Lempitsky et al. for all 140 cases in
Dataset-A, which is theoretically expected.

Table 4.1 summarizes the computational cost per case, which was measured
using a 3.1 GHz Intel® Xeon® CPU with two threads. In this table, the number of
traversed nodes (A) is the number of reiterations of the two steps, i.e., branching
and bounding, the computational cost of which was approximated as that of s-t
mincut in the bounding computation. The number of leaf nodes (B) in this table
indicates the number of predefined shape priors using the conventional algorithm
(Lempitsky et al., 2012) and the total number of shapes generated by the SSM (=
size |S|) using the proposed algorithm. I approximated the size |S| as the average
number of regions generated by dividing a square using lines [70]:

S| ~ 11—65(5—1)71—+e+1, 4.22)
where / is the number of lines ¢?(«) = 0 that divide R, into two nonempty sets,
ie,{n € Ry | ¢P(a) >0} and {a € Ry | ¢*(a) < 0}. Note that (B) represents the re-
quired number of s-t mincut computations when I conduct an exhaustive search over
the shape priors, and corresponds to the worst-case complexity of the branch-and-
bound optimization. The normalized number of traversed nodes (A/B) indicates the
ratio of s-t mincut computations relative to that using an exhaustive search. The con-
ventional algorithm [25] required 5.5 s for optimization and traversed 17.77 nodes per
case, whereas the proposed method required 213 s and traversed 6.558 x 10° nodes.
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Fig. 4.6 Summary of the cross-validation test results for each method of pancreas
segmentation using CT volumes from 140 patients. The box plots show the accuracy
of the (a) segmentation, (b) shape priors, and (c) decrease in energy compared with
Lempitsky et al.’s method. The segmentation accuracy was also compared to that
obtained using the method without priors. The plus “+” signs in the box plots and
the numerals above them indicate the average values. The results of the statistical
tests of significance are also shown above the plots
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Compared with the conventional method, the normalized number of nodes searched
was dramatically reduced by the proposed method (from 0.3627 to 9.556 x 10~7).

Table 4.1 Computational complexity for each pancreas segmentation using the pro-
posed method and the method proposed by Lempitsky et al.

Method Time required for hierarchical Optimization Total
clustering time time
Proposed - 213s 213s
Lempitsky et al. 2265 55s 28.1s
Method Number of nodes  Number of Normalized number of
traversed (A) leaf nodes (B)  nodes traversed (A/B)
Proposed 6.558 x 103 6.863 x 10° 9.556 x 10~
Lempitsky et al. 17.77 49 0.3627

4.3.2 Spleen segmentation

I also conducted spleen segmentation through the proposed algorithm using contrast-
enhanced three-phase 3D CT volumes of 40 patients. I refer to these volumes as
Dataset-A’, which is a subset of Dataset-A. Dataset-A’ was measured as 512 x 512
X (191-807) voxels with a spacing of (0.643-0.782) x (0.643-0.782) x (0.8-1.0) mm,
which were reduced to 256 x 256 x (122-340) isotropic voxels of (1.092-1.564)
mm/voxel for computational efficiency. I performed nonlinear registration among
the three different phase volumes, followed by an abdominal cavity extraction and
rough alignment of the cavities among the different subjects, all of which were
conducted in the same manner as mentioned in Section 4.1. Note that the pose
variance of the spleen was nearly eliminated by the abdominal cavity alignment
because the spleen is located close to the abdominal cavity wall. The likelihood
Pr (Ip | xp) of Eq. (4.8) was assumed to be a 3D Gaussian mixture distribution
consisting of four classes, e.g., spleen, liver, inferior vena cava (IVC), and other
organs or tissues, and I used the training data to compute the initial values of the
statistical parameters used in the EM algorithm, i.e., the average values and the
variances of the foreground /background features. The posterior probability of the
spleen was transformed using a linear function to balance that of the background,
and it was forwarded to the graph cuts. The parameters used for the graph cuts were
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determined experimentally and fixed to (A1, Ay, o) = (0.25, 0.15, 12.0) throughout
the spleen-segmentation experiment.

[used d = 2 and w = 3.0 for the number of eigenmodes of the level-set-based
SSM and the size of R,, respectively. The RBF-based three-phase registration em-
ployed a Gaussian kernel with a standard deviation of 22.5 mm. I employed a
26-neighborhood system for the graph cuts.

I conducted a cross-validation study using 40 subjects in Dataset-A’, and I evalu-
ated the segmentation accuracy based on the JI between the extracted region and
the true region, which was drawn manually by experts. I also evaluated the selected
shape priors based on the JI for the selected shape prior and the true spleen region.

Typical results of the spleen segmentation and the selected shape priors for the
three methods are indicated in Fig. 4.7, where the top and bottom rows show the
selected shape priors (green region) and the segmentation results (yellow region),
respectively. For the method without a shape prior, the over-segmented region is
marked by the red arrow, and was reduced by the proposed method. Compared
with the method proposed by Lempitsky et al., the proposed method selected a
better shape prior and resulted in better segmentation. The optimal energy E of the
proposed method was lower than that of the algorithm proposed by Lempitsky et
al. This result indicates that the proposed method was superior to both of the other
methods in terms of the accuracy of the selected shape prior and the segmentation
results.

The box plots in Fig. 4.8 show the JI of the segmentation results for the proposed
method compared with the method proposed by Lempitsky et al. and the method
without shape priors for the selected shape priors, as well as the segmentation energy
for the 40 cases during the testing stage. The average ]I of the segmentation was
improved by 0.5 pt compared with the method proposed by Lempitsky et al., and by
7.2 pt compared with the method without shape priors. A paired t-test under the
null hypothesis (HO) that the JI is identical for both methods revealed that there is a
statistically significant difference in the segmentation accuracy among the proposed
method, the method proposed by Lempitsky et al. (p = 2.24 x 1073 < 0.01), and the
method without shape priors (p = 1.85 x 1072 < 0.05). Compared with the method
proposed by Lempitsky et al., the difference is explained based on the difference
in the JI of the selected shape priors. The average JI of the selected shape priors
increased by 1.9 pt compared with the method proposed by Lempitsky et al., which
is a statistically significant (p = 1.84 x 107° < 0.01) difference. These observations
are also consistent with the fact that the energy from the proposed method is equal



4.3 Experimental setup and results 69

to or less than that of the method by Lempitsky et al. for all 40 cases, which was
expected theoretically.

Table 4.2 summarizes the average computational cost for each spleen segmen-
tation case measured using a 3.1 GHz Intel® Xeon® CPU with two threads. The
conventional algorithm [25] required 17.8 s for optimization and traversed 13.65
nodes per case, whereas the proposed method required 586 s and traversed 7.456 x
103 nodes. The normalized number of nodes searched was reduced dramatically by
the proposed method when compared with the conventional method (from 0.2786 to
1.779 x 10~7), which conducted graph cuts given all possible shapes from an SSM.

——— : True boundary

[ : Shape prior

[] :Segmentation

N=477% D JI = 47.2%

JI=91.0% = ! JI=90.1% [ ’
Proposed method Lempitsky et al. Without a shape prior
(E =1.293 x 104) (E =1.327 X 10%)

Fig. 4.7 Saggital view of the typical results obtained using the proposed method (left),
Lempitsky et al.’s method (center), and the method without shape priors (right). The
top row shows the selected shape priors (green regions), and the bottom row shows
the segmentation results (yellow regions). The major false positives are denoted by
the red arrows
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Fig. 4.8 Summary of the cross validation test results for spleen segmentation using
CT volumes from 40 patients for each method. The box plots show the accuracy of
(a) the segmentation (b) the shape priors, and (c) the decrease in energy compared
with Lempitsky et al.’s method. The segmentation accuracy was also compared
to that obtained using the method without priors. The plus “+” signs in the box
plots and the numerals above them indicate the average values. The results of the
statistical tests of significance are also shown above the plots

Table 4.2 Computational complexity for each spleen-segmentation case using the
proposed method and the method proposed by Lempitsky et al.

Method Time required for hierarchical =~ Optimization = Total
clustering time time

Proposed - 586 s 586 s

Lempitsky et al.’s 144 s 17.8 s 32.2s

Method Number of Number of Normalized number of
nodes traversed leaf nodes (B) nodes traversed (A/B)

(A)
Proposed 7.456 x 103 4.194 x 10% 1.779 x 1077
Lempitsky et al.’s 13.65 49 0.2786
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4.3.3 Comparison experiment with the state-of-the-art segmenta-

tion algorithm

I compared the proposed algorithm with one of the state-of-the art segmentation
algorithms used for the pancreas and spleen. Because there is no single organ-
segmentation algorithm for the pancreas and/or spleen under the same contrast
conditions, I focused on the latest segmentation algorithm of multiple organs, or
the liver, left and right kidneys, pancreas, and spleen, with a PDM-based condi-
tional SSM for a single contrast condition [52]. A well-known advantage of multi-
organ segmentation with a multi-organ SSM over single-organ segmentation with a
single-organ SSM is that the spatial relationship between neighboring organs can be
incorporated in the process, which is highly useful for segmentation.

I conducted the comparative experiment using the same test dataset in 4.3.1 and
4.3.2. To ensure that the difference in the training datasets for the two algorithms
being compared do not introduce a negative influence on the results, I prepared
a sufficient number of additional training datasets (Dataset-B) comprising eighty
cases from the same hospital, and carried out re-training of their algorithm using the
software provided by their research group. Specifically, I evaluated both algorithms
by performing two-fold cross validation of Dataset-A and Dataset-A’, but in the
training phase, I also used Dataset-B, which comprised eighty cases, for each fold to
train the multi-organ segmentation algorithm only. This was done because it was
expected that the multi-organ algorithm would require a larger number of training
data to describe the variation between organs. Figure 4.9 summarizes the number
of training data used to train their conditional SSM and organ-correlation graph
(OCGQG) for each fold. Dataset-B consists of 3D CT volumes having 512 x 512 x (166—
310) voxels with a spacing of (0.488-0.782) x (0.488-0.782) x (0.8-1.0) mm/voxel,
and whose size and spacing are similar to those of Dataset-A and Dataset-A’. The
segmentation was executed on an early-phase CT volume, which is rich in contrast
information.

The segmentation results of the same test dataset, or Dataset-A of 140 pancreas
and Dataset-A’ of 40 spleen, are summarized in Fig. 4.10 and Table 4.3, where the ]JIs
of my algorithm achieved the best result in terms of the average JI. However, the
median JI of the spleen, which was obtained by Okada’s multi-organ segmentation,
was slightly better than that of my algorithm. To evaluate the statistical difference
between any pair of two algorithms, I conducted a paired t-test under the null
hypothesis (HO) that the ]I is identical for both methods. In summary, there was
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R. Kidney 80 cases
L. Kidney 80 cases
Liver 80 cases
Spleen 80+20 cases
Pancreas L T 8070 cases
Dataset-B Half of Dataset-A'
Half of Dataset-A

Fig. 4.9 Number of training data used to train the conditional SSM and organ-
correlation graph (OCG) [52]. In the two-fold cross validation, the training phase of
each fold used not only half of Dataset-A (or Dataset-A’), but also all of the data in
Dataset-B when training the Okada’s algorithm. Note that the test data are exactly
identical to those used in Sections 4.3.1 and 4.3.2

no statistical difference between my algorithm and the multi-organ segmentation
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Fig. 4.10 Summary of the cross-validation test results for (a) pancreas segmentation
using 140 CT volumes and (b) spleen segmentation using 40 CT volumes for the
proposed method, the method proposed by Lempitsky et al., and the method pro-
posed by Okada et al. The box plots show the JI of the segmentation result. The “+”
signs in the box plots and the numerals above them indicate the average values. The
results of the statistical tests of significance are also shown above the plots.
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Table 4.3 The segmentation results obtained using the same test data, i.e., 140 cases
for the pancreas and 40 cases for the spleen.

Pancreas Spleen

Method J1[%] (£SD) DSI [%] J1[%] (£SD) DSI [%]

(£SD) (£SD)
Proposed 62.3 (£19.5) 74.4(£20.2) | 90.0 (£8.2) 94.5 (45.8)
Lempitsky et al. 61.0 (£21.3) 729 (£22.5) | 89.5(+84) 94.2(£5.9)
Okada et al. 61.5(+£19.3) 73.9(£19.6) | 82.3 (£28.8) 85.8 (+29.4)
Performance re-
ported in [52] using || 60.1 (£18.2) 72.5(£17.6) | 87.0 (£9.6) 92.1(%8.1)
different test dataset

4.4 Discussion

4.4.1 Segmentation performance

First, I discuss the effects of the selected shape priors on the segmentation perfor-
mance. As shown in Figs. 4.4-4.8, the proposed algorithm obtained a better shape
prior compared with the method proposed by Lempitsky et al., and it yielded bet-
ter segmentation results. The examples shown in Figs. 4.11(a) and (b) illustrate
cases with the most improved segmentation performance for the pancreas and
spleen, respectively. The results suggest that there is a strong correlation between
the accuracy of the shape prior and the segmentation performance. Figure 4.12
shows this relationship in terms of the JI, which was computed for 140 pancreas
segmentation cases and 40 spleen segmentation cases using the proposed method.
The improvement in the shape prior appeared to be more positively correlated to
the pancreas segmentation. The value of Pearson’s linear correlation coefficient
for the pancreas segmentation was R = 0.7857 (p < 0.01; HO, no correlation). On
the other hand, for the spleen segmentation, I observed a weaker but statistically
significant correlation (R = 0.5634 and p < 0.01). Therefore, I conclude that the
optimization of the shape priors from the perspective of the energy functional used
for segmentation along with the proposed algorithm successfully improved the
performance of both pancreas and spleen segmentation. However, this improve-
ment appeared to be incremental, and I considered the possibility that the method
proposed by Lempitsky et al. found a near-optimal solution, resulting in a small
improvement. However, it is worth adding that the solution obtained using the
method proposed by Lempitsky et al. was not globally optimal, resulting in a small
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but steady performance improvement in the proposed method, i.e., from 61.0 to 62.3
% for pancreas segmentation, and from 89.5 % to 90.0 % for spleen segmentation,
both with a statistically significant difference.
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Fig. 4.11 The most-improved case from the proposed method compared with Lem-
pitsky et al.’s method in terms of JI for (a) pancreas and (b) spleen segmentation. The
top row shows the selected shape priors, and the bottom row shows the segmentation
results

Second, I compare the results obtained using the proposed method against
those recently reported pancreas and spleen segmentation algorithms, whose per-
formances are summarized in Tables 4.4 and 4.5. The tables list the performance
indices and the input contrast conditions, along with the number of test cases used.
A simple comparison that was carried out using the indices only indicated that the
proposed algorithm achieved the best performance for the pancreas segmentation
and good performance comparable to the state-of-the-art algorithms for the spleen
segmentation. However, such a simple comparison may be misleading. The dif-
ference in the performance is due not only to the differences in the algorithms and
input contrast conditions, but also to the difference in the test data. To realize a fair
comparison between two algorithms, it is necessary to at least use the same test data.
For the purpose of showing that my algorithm extracts the pancreas and spleen
precisely as well as the state-of-the-art segmentation algorithm of the pancreas and
spleen, I focused on the algorithm proposed by Okada et al. [52], because it appears
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Fig. 4.12 Relationship between the accuracy of the segmentation and the selected
shape prior of (a) the pancreas and (b) spleen for the JI computed from 140 and 40
cases, respectively, using the proposed method

in both Table 4.4 and 4.5, and it is the latest one. I compared my algorithm with that
proposed by Okada’s algorithm using the same test data. To reduce the influence
of the difference in the training dataset, I re-trained Okada’s algorithm using the
same training data as Dataset-A or Dataset-A’ for each fold of the cross validation.
In addition, I prepared 80 additional cases for training Okada’s algorithm, mainly
in training of a PDM-based conditional SSM and OCG, with the training software
provided by his research group. While it may be a concern that there is a difference
in the number of training datasets, it should be noted that training a multi-organ
SSM generally requires more data than training a single-organ SSM, because of the
larger variation among organs. One possible advantage of such a multi-organ SSM
is that it considers spatial correlations among neighboring organs that are inherent
in human anatomy. As presented in the results in Fig. 4.10 with the statistical
test, I concluded that the two algorithms were comparable with each other with
respect to the segmentation performance. This conclusion suggests that the segmen-
tation performance showed in this paper is the highest level of pancreas and spleen
segmentation.

Third, I discuss other abdominal organ-segmentation algorithms, with the ex-
ception of the pancreas or spleen. In the last five years, there have been over 50
journal papers, including survey papers [74-76], that have been published in major
international journals. Target organs are as follows: approximately 60 % of papers
for the liver [77, 78], approximately 20 % for the prostate [79, 80], approximately
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Table 4.4 Comparison of my automated segmentation method for the pancreas based
on the performance indices reported for automated state-of-the-art pancreas seg-
mentation methods. The methods are partitioned into three groups that are divided
by the solid lines. The top group comprises my method and the method proposed
by Lempitsky et al., where the shape priors were selected from a set of uniformly
sampled shapes in the eigenshape space of an SSM. The middle group comprises
single-organ- (pancreas) segmentation methods, and the bottom group comprises
multiple-organ-segmentation methods including the pancreas. The average JI and
DSI results from my method were better than those obtained by all previously
reported automated pancreas-segmentation methods.

Test
Methods Input Image(s)  cases JI[%](£SD) DSI [%] (£SD)
Proposed 3 (multi-phase) 140  62.3 (£19.5) 74.4 (£20.2)
Lempitsky et al. 3 (multi-phase) 140  61.0 (+21.3) 72.9 (£22.5)
Karasawa et al. [57] 1 (portal-phase) 150 60.5 73.4
Roth et al. [56] 1 (portal-phase) 82 - 71.8 (£10.7)
Farag et al. [55] 1 (portal-phase) 80 57.2 68.8
Erdt et al. [54] 1 (portal-phase) 40 61.2 (£9.08) -
Shimizu et al. [49] 3 (multi-phase) 20 57.9 -
Kitasaka et al. [53] 4 (multi-phase) 22 12 tine, 6 medium, 4 poor casest
Wolz et al. [51] 1 (portal-phase) 150  55.5(4+17.1) 69.6 (£16.7)
Chu et al. [71] 1 (portal-phase) 100 54.6 69.1 (£15.3)
Okada et al. [72] 1 (arbitrary phase) 86 58.0 71.8
Shimizu et al. [1]* 1 (non-contrast) 10 35.0 -

tRe-substitution method
1Visual assesment results
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Table 4.5 Comparison of my automated segmentation method for the spleen based on
the performance indices reported for automated state-of-the-art spleen segmentation
methods. The methods are partitioned into three groups divided by the solid lines.
The top group comprises my method and the method proposed by Lempitsky et
al., where the shape priors were selected from a set of uniformly sampled shapes
in the eigenshape space of an SSM. The middle group comprises single-organ-
(spleen) segmentation methods, and the bottom group comprises multiple-organ-
segmentation methods including the spleen. The average JI and DSI results from my
method were better than those obtained by all previously reported automated spleen-
segmentation methods. Although several authors compared the results between
datasets with different resolutions and/or contrast conditions, only the best results
are displayed here.

Test
Methods Input Image(s)  cases JI[%](£SD) DSI [%](£SD)
Proposed 3 (multi-phase) 40 90.0 (£8.2) 94.5 (£5.8)
Lempitsky et al. 3 (multi-phase) 40 89.5 (£8.4) 94.2 (£5.9)

Linguraru et al. [73] 1 (portal-phase) 10 91.0 (£2.6) 95.2 (£1.4)
Okada et al. [52] 1 (arbitrary phase) 134 87.0 (£9.6) 92.1 (£8.1)

Linguraru et al. [39] 2 (multi-phase) 10 - 93.6 (£1.8)
Wolz et al. [51] 1 (portal-phase) 150 86.2 (£12.7) 92.0 (£9.2)
Chu et al. [71] 1 (portal-phase) 100 84.5 91.4 (£5.7)
Shimizu et al. [1]* 1 (non-contrast) 10 83.5 -

tRe-substitution method
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25 % for the kidney [81, 82], and approximately 10 % for multiple organs including
the gallbladder [51, 52]. Note that I counted the number redundantly in the case of
multiple-organ segmentation, and listed only a few papers of the over 50 papers in a
reference list, because this paper is not a review paper of abdominal organ segmen-
tation. The major imaging modality is CT, or over 60 %, and magnetic resonance for
approximately 30 % and ultrasound for approximately 10 %. From a technological
viewpoint, the most commonly used prior for segmentation was derived from an
SSM in approximately 30 % of papers, and a multi-atlas-based prior also gave a
useful prior in approximately 10 % of the papers. Graph cuts is a major approach in
the energy-optimization-based segmentation and over 20 % of papers employed the
approach. A few papers tried to integrate priors derived from atlas [39] or SSM [77]
into the graph-cuts-based approach.

While the applicability of the above algorithms to the pancreas or spleen may
be of some interest, it is very difficult to consider because most algorithms were
configured for the target organ(s) using target specific prior knowledge in an explicit
or implicit manner. To realize a fair quantitative comparison, it is necessary to

completely eliminate and develop a new algorithm, which is nearly impossible.

Recent trends in abdominal-organ segmentation include multiple-organ segmen-
tation with a multi-atlas Wolz et al. [51] or a multi-organ SSM Okada et al. [52],
because such a multi-atlas or SSM evaluates the spatial relationship between neigh-
boring organs, which is inherent to human anatomy. Note that an algorithm for
multi-organs not necessarily outperform an algorithm for a single organ, because
there are many major and minor problems to be solved in organ segmentation. Note
also that a multi-organ SSM can efficiently solve a problem caused by the correlation
between neighboring organs, but do not solve other problems such as the global
optimization addressed in this paper. From a historical viewpoint of medical-image
analysis, technological advancements have been achieved in a spiral manner, where
gradual advances aimed at different problems were presented by many researchers,
and a researcher integrated them into an algorithm, followed by further improve-
ments of the algorithm by many researchers. In this sense, the solution presented in
this paper will be integrated into a multi-organ-segmentation algorithm in the near
future in the hope of realizing a comprehensive solution of the organ-segmentation
problem.
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4.4.2 Computational efficiency

Now, I discuss the computational efficiency of the proposed algorithm based on
Tables 4.1 and 4.2. Compared with the method proposed by Lempitsky et al., the
proposed method increases the number of nodes traversed for pancreas and spleen
segmentation from 17.77 and 13.65 to 6.558 x 103 and 7.456 x 103, respectively, which
increased the computational time from 5.5 s and 17.8 s to 213 s and 586 s , respectively.
This may suggest that there is a possible disadvantage of the proposed algorithm.
However, it should be noted that the number of leaf nodes or shape priors that were
considered during segmentation is approximately 10® times greater for the proposed
algorithm than for the method proposed by Lempitsky et al. To ensure a fair compar-
ison, I divided the number of nodes traversed by the number of leaf nodes, which
I defined as the normalized number of traversed nodes in the present study. The
normalized number showed that the proposed algorithm significantly reduced the
number from 0.3627 and 0.2786 to 9.556 x 10~7 and 1.779 x 107, respectively; thus,
the proposed algorithm was approximately 3.80 x 10° and 1.57 x 10° times more
efficient than the conventional method. Another advantage of the proposed method
compared with the conventional method is that it does not require a predefined
hierarchical cluster tree, which increases the computational costs on the order of
O(n?) (where n is the sampling size) [83]. The computational cost of the clustering
process may be a major problem if the number of shape priors used in 3D segmen-
tation is increased using the method proposed by Lempitsky et al. If we assume
that all possible 3D shapes (6.863 x 10%) are actually generated from an SSM, and
we use a clustering algorithm where the computational cost increases according to
the complexity of O(n?), followed by a graph-cut segmentation using the method
proposed by Lempitsky et al. , it is clear that the computational costs of clustering
will be significant, and a large memory capacity will also be required to store the
shapes. For example, the computational cost for the shape clustering consists of 1)
computation of a pairwise symmetric distance matrix and 2) hierarchical clustering
based on the distance matrix, where the former alone costs over 3.73 x 10 s (over
107 years), which is based on an approximated number of pairs of 1/2 x (10%)? and
an 0.746-ms average computational time of the Hamming distance for a pair using a
single-thread 3.1 GHz CPU. In addition, the amount of memory required to hold
an entire clustering tree is 2.04 x 10'° bytes (= 2.04 PB), which is the number of
nodes (2 x 10° — 1) multiplied by the memory size of the image (193 x 146 x 145
voxels x2 bits). In contrast, the proposed algorithm does not require a clustering
process for a predefined shape template or a hierarchical cluster tree, nor does it
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construct a search tree using all shapes, thereby resulting in a lower computational
time and less memory during segmentation. In addition, the main advantage of
the proposed algorithm is that it is theoretically guaranteed that a truly optimal
solution is obtained in terms of the given energy functional from all possible shapes
(6.863 x 107), whereas this is not true for the method proposed by Lempitsky et al.,
except when all possible shapes are utilized. This incurs a significant computational
cost and requires a very large memory capacity, as mentioned above.

Next, I discuss the effects of the specific voxel-selection operation, Select(Q),
which is used as the eigenshape space partitioning algorithm. Figure 4.13 shows a
scatter plot of the number of nodes traversed using the proposed voxel-selection
operation with Eq. (4.20) and that obtained through a random selection. It is
important to note that using the proposed operation, the number was reduced in
all 140 cases for the pancreas and all 40 cases for the spleen, where all of the points
are plotted below the diagonal line in Fig. 4.13. Compared with a random selection,
the proposed selection operation successfully reduced the average number from
9,988 and 11,411 to 6,558 and 7,460 for the pancreas and spleen, respectively, thereby
reducing the average optimization time from 305 s and 1,437 s to 213 s and 586 s,
respectively. Note that the choice of the selection method does not affect the optimal
shape priors, segmentation results, or minimized energy, which is obvious from
the perspective of the branch-and-bound theory. I also computed the depth of the
leaf node in which the optimal solution was found because of the high correlation
between the depth and the number of nodes traversed. Figure 4.14 shows histograms
of the depth of the optimal solution node with the proposed selection operator and a
random selection operator. Figure 4.14 confirms that the proposed selection operator
greatly reduces the depth of the optimal solution for both the pancreas and spleen
(p < 0.01). The proposed selection operator successfully balances the search tree
and incurs lower computational costs than a random selection operator.

4.4.3 Limitations

Next, I discuss some limitations of the proposed method. Figure 4.15(a) shows
the worst case compared with the method proposed by Lempitsky et al. in terms
of the segmentation accuracy for the pancreas, whereas the proposed algorithm
decreased the JI by 10.1pt (from 73.8 % to 63.7 %). This failure of the proposed
algorithm may be attributed to the inability to select an appropriate shape prior,
as shown in the top row of Fig. 4.15(a). Note that the proposed algorithm can
find a shape prior that truly minimizes the energy of the graph cuts, and the shape
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Fig. 4.13 Comparison of the number of nodes traversed using different voxel selection
operations of (a) pancreas and (b) spleen segmentation. The horizontal and vertical
axes of each plot correspond to a random selection operator and the proposed
selection operator, respectively. The dotted diagonal line shows that the optimization
times were equal using both operators

prior shown in the top left of Fig. 4.15 was an optimal shape in terms of the energy
functional used in my experiment. However, despite the lower energy compared to
that in the method proposed by Lempitsky et al., the JI was degraded because of the
inconsistency problem between the JI and the energy. An example of this problem
was illustrated by Nakagomi et al. [21], where the ]I was decreased while the energy
functional monotonically decreased. It should be noted that this problem may not
be observed by many researchers when the optimization process gets trapped in the
local minimum. However, this problem is faced by almost all existing segmentation
algorithms that are based on optimization theory. A few researchers have studied the
optimal design of the objective function [84], which is quite an interesting topic but
out of the scope of this study, and remains as future work. Another limitation is that
the aforementioned quantitative validation results depend on the application (target
organs) and the hyper-parameters used in the experiment, such as the number of
eigenshape modes and the statistical analysis method used to construct an SSM. For
other applications or parameter sets, the difference between the proposed algorithm
and the conventional method may be either increased or decreased. It should be
noted that the conclusions derived from the quantitative experiments described
above were affected by the conditions. Despite these limitations, I consider that the
main features of the proposed method will not be affected by different applications
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a random selection operator, and the red bars correspond to the proposed selection
operator. There was a significant difference between the two distributions (p < 0.01)
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or parameter sets. In particular, the proposed algorithm can find an optimal shape
among all possible shapes generated from an SSM without requiring the clustering
of predefined shapes or a predefined hierarchical cluster tree, both of which are
prerequisites for conventional algorithms. The computational complexity of the
optimization for a higher number of dimensions d is also an interesting topic of
discussion. The number of leaf nodes |S]|, i.e., the shape priors to be considered
during segmentation, increases drastically as d increases. An explicit form of the
average size of |S| is also given for d = 3 [70], where ¢ is the number of planes used
for partitioning a cubic region:

S| 2042304 —1)t+¢+1 ford =3 (4.23)

~ 31
In pancreas segmentation, the average value of £ is 1.85 x 10°. Thus, |S| is expected
to be 6.72 x 10 when d = 2 and 1.23 x 10'* when d = 3. This means that when
d increases from 2 to 3, the number of shape priors to be considered increases by
over 10,000 times, which may lead to an intractable computational cost. Thus, an

improvement in the computational efficacy for a higher number of dimensions is an

important topic to be addressed in future.
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Fig. 4.15 Worst-case performance compared with Lempitsky et al.’s method in terms
of the segmentation accuracy
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4.4.4 Extensibility of the proposed framework

It is important to discuss the extensibility of the proposed framework to different
SSMs and energy functionals. To clarify the conditions of the SSM and energy
functional that are available in my framework, I showed the sufficient conditions
to compute the lower bound of an energy functional above. To further enhance
the advantage offered by my framework, I discuss the extension of the conditions,

which are summarized as follows.

SSM

The SSM that is applicable to my framework can be generalized as follows:

gp(a) = H(f(¢F (&) =) (4.24)

where f : R — R is a monotonically increasing function, ¢?(a) is a linear function
of « € Ry, and t € Ris a threshold parameter. An SSM defined by f and t € R is
applicable to my framework, and the global solution is computed efficiently. The
proof is given in Appendix B.

Based on the extension using f and f, a possible shape representation ¢ (a)
includes not only a level-set function [17] but also LogOdds [12] and Label Space [13].
Moreover, we can employ ¢ (&) defined on an additive log-ratio (ALR) or isometric
log-ratio (ILR) space [14] by mapping it to the label space using a monotonically
increasing function, f, that makes some of the nonlinear shape representations
available. Note that I assume a binary shape representation that can be derived from
the above shape representations.

Of course, different linear statistical analysis methods such as independent
component analysis (ICA) are applicable to the model ¢ (a), which derives another
linear function in terms of «. A user can choose a suitable shape representation
and statistical analysis method from among the above methods depending on the
problem being considered.

Energy Functional

Suppose h;(y) and hg(y) (p € V) are monotonically decreasing and increasing
penalty functions (£!V] — R), respectively, in a high-dimensional discrete space of y.
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Then, the shape energy terms can be generalized as follows:

FP(Ly) = Ay -Pr(x, =0 I,) + Az - hy(y) (4.25)
BP(Iy) = Ay -Pr(x, =1|1,) + Ay - hp(y) (4.26)

Note that the functions h; (y) and hg (y) satisfy the following inequalities:

hy(y) > hy(y')Vp €V (4.27)
hy(y) < hy(y)Vp eV (4.28)

where {y,y} € £V is a pair of shape label sets such that Yq <Y, Vp € V. Under the
above conditions, we can derive the lower bound as follows:

min min E(x,¢(«x); I
min min (x,g(a); I)

> mi min FP (I, g(«)) - x, + min B? (I, g(«)) - (1 — x
_X?E%I{p;;wEHz (I, g(a)) p p;/thHi (I, g(a)) - ( p)

+ ) PW(I)-\xp—xq|} (4.29)

(pa)e€

> min { Y FP (I,g™(H;)) - x, + Y BY (I,gmi“(Hi)> (1-1xp)
xeLlV peV peV

+ ) PW(I)-\xp—xq{} (4.30)

(pa)e€
= L(H; I)

The inequality in Eq. (4.29) is Jensen’s inequality for the minimum operation. The
inequality in Eq. (4.30) was derived from the definition of the energy terms in Egs.
(4.25) and (4.26), as well as the fact that hg (y) and hg (y) satisfy the conditions in
Egs. (4.27) and (4.28), respectively. I added the proof in Appendix C.2. A potential
choice of 1if,(y) and /}}(y) is a penalty based on a distance function whose value is
proportional to the distance from the boundary of y, which was proposed by Boykov
and Funka-Lea [18]:

hy(y) = D(p, Q) (4.31)

hy(y) = D(p, Q) (4.32)
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where ) = {p € V|y, = 1} is the region of the shape y, and D(p,Q)) = d(p,q)
(D(p,Q2), d(p,q) > 0) is the distance from the point p to the region Q). Figure 4.16
shows an example of hg(y) and h? (y) based on the Euclidean distance function.
Note that we can use an arbitrary distance measure, or a norm of pg, as d(p,q).
In addition, it is possible to extend it to any monotonically increasing function
of the distance measure. Such a transformation may be a reasonable choice of
shape constraint because the shape priors have less influence on voxels near the
boundary, which may reduce the risk of errors in the shape prior at the cost of further
computation for the distance transform.
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Fig. 4.16 A 2D example of the penalty functions (a) hf; (y) and (b) hg (y) based on the
Euclidean distance function. The red contour shows the contour of the shape prior

y.

4.5 Conclusions

In this study, I proposed an algorithm that simultaneously optimizes an energy
functional for segmentation as well as the shape priors used for segmentation. The
proposed joint-optimization algorithm can efficiently find an optimal shape prior
from among all possible shape priors generated from an SSM by conducting a
branch-and-bound search in the eigenshape space. In contrast to the conventional
method [25], the proposed algorithm does not require the clustering of predefined
shape templates or a search tree with all shapes. I demonstrated the effectiveness
of the proposed algorithm for pancreas and spleen segmentation using multiphase
CT volumes that were scanned based on a two-fold cross-validation. The results are
summarized as follows.
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1. Compared with the conventional method described by Lempitsky et al. [25], the
proposed algorithm improves the pancreas- and spleen-segmentation accuracy
(Jaccard index; JI) from 61.0 + 21.3 % and 89.5 + 8.4 % to 62.3 + 19.5 % and
90.0 + 8.2 %, with a statistically significant difference of p < 0.05 and p < 0.01,
respectively. There was also a highly significant difference in the performance
compared with pancreas and spleen graph-cut segmentation without shape priors,
ie., 58.6 £16.1 % and 82.8 - 19.8 % with p < 0.01 and p < 0.01, respectively.

2. The average number of nodes traversed during pancreas and spleen segmentation
was increased from 17.77 to 6.558 x 10° and from 13.65 to 7.456 x 103, respectively,
because of the difference in the number of shape priors searched, i.e., 49 with the
conventional method and 6.863 x 10° and 4.194 x 10'° with the proposed method.
Although the proposed algorithm is relatively slow in practice because many
more shapes are searched, after normalizing the number of nodes traversed using
the number of shapes searched, I found that my algorithm was 3.80 x 10° and
1.57 x 10° times more efficient than the conventional method for pancreas and
spleen segmentation, respectively.

3. Ifound that the proposed method was comparable with the state-of-the-art multi-
organ-segmentation algorithm [52] based on the study performed using the same
test dataset.

4. The proposed voxel-selection operator used to search for an optimal solution
successfully balanced the tree and reduced the depth of the optimal solution,
thereby decreasing the computational time needed.

5. A limitation of the proposed algorithm is the inconsistency between the JI of
the segmentation and the energy functional that needs to be minimized, which
degrades the JI despite the lower energy.

6. I showed the good extensibility of my framework in terms of the SSM and energy
functional. Possible examples of the SSM are the level-set function, LogOdds, and
Label Space learnt via a PCA or an ICA. Another way of incorporating the shape
prior into the energy functional is via a distance function.

Further improvements to the proposed algorithm include the following.

(a) Despite its good performance in terms of the normalized number of nodes
traversed, the actual number of nodes searched is not small, i.e., 6.558 x 10° for
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(b)

(©)

(d)

(e)

pancreas segmentation and 7.456 x 10° for spleen segmentation; thus, further
reducing the number of nodes is an important area that needs to be addressed.

It would be useful to modify the proposed algorithm for application to a different
SSM based on other shape representations such as PDM [63], label space [13], or
LogOdds [38], and that based on non-linear statistical analysis.

I plan to improve the segmentation performance from the perspective of the
SSM and energy functional. I also plan to extend the proposed algorithm to deal
with other objective functions, such as those containing a multishape term [21],
gradient-based shape term (cf. Section 3.2.5), Parzen-window-method-based
shape term [39], and the functions used by Chen et al. [85], Xiang et al. [24], and
Besbes et al. [22].

To overcome the inconsistency between the JI and the energy, I will determine
the optimal design of an energy functional by referring to Scharstein and Pal
[84] and Komodakis et al. [86].

I will aim to realize further improvements in the computational efficacy of the
proposed algorithm for using an SSM with a higher number of dimensions.



Chapter 5

Summary, conclusions, and future

works

51 Summary

The goal of this study was to provide innovative solutions for the issues related to
abdominal organ segmentation using a statistical shape model (SSM). The first main
contribution of the study is that it provides modelling and segmentation methods
for postmortem CT (PMCT) volumes, which is the first computer-aided diagnosis
using autopsy imaging (Ai). The proposed method is innovative not only in its
application but also in its novel methodology for performing the statistical shape
analysis of a limited number of label volumes with large variations in shape. A
second important contribution of this thesis is that it provides a globally optimal
solution for the objective functional of the segmentation considering all possible
shapes generated by the SSM. The significance of this method is that the solution is
guaranteed to be globally optimal.

In Chapter 2, an SSM of a postmortem liver was developed. First, it was revealed
that the performance of the SSM constructed using in vivo liver labels suffers when
describing postmortem liver shapes, and a larger number of training labels are
required to improve the performance of the SSM. Then, the performance of the
conventional SSMs was found to be improved by using both postmortem liver shape
labels and artificial shape labels synthesized from in vivo liver shape labels.

Chapter 3 described the liver segmentation based on postmortem CT images
using the SSM proposed in Chapter 2. The SSMs using the synthesized labels also
improved the accuracy of segmentation. The results of a comparative study showed
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that the translation in the feature space of the level set was the best method for
simulating postmortem changes in the liver. The segmentation algorithm using the
SSM based on translation achieved an average Jaccard index (JI) of 0.806, which was
the highest among the eight SSMs.

Chapter 4 provided a solution to optimize the energy across all shapes in the
SSM, as well as the segmentation labels in a graph cut segmentation. In contrast to
the conventional methods that are based on a motivation similar to that of my study
[22-24], my method can obtain a globally optimal solution in terms of the graph cut
energy functional. The proposed method outperformed the conventional method
[25] in terms of its higher segmentation accuracy, as well as higher computational
efficiency. As compared to the method in [25], the proposed method improved the
accuracy of pancreas and spleen segmentation in terms of the JI from 61.0 £+ 21.3
% and 89.5 £ 8.4 % to 62.3 £19.5, % and 90.0 + 8.2 %, with a statistically signifi-
cant difference. The proposed method was 3.80 x 10° and 1.57 x 10° times more
efficient than the conventional method [25] for pancreas and spleen segmentation,
respectively.

5.2 Conclusions and future works

To conclude, in my opinion this study significantly influences the history of SSM-
based abdominal organ segmentation from two different aspects: (i) liver segmenta-
tion for PMCT volumes, and (ii) joint optimization of the segmentation and shape
prior generated by an SSM. In the following, I would like present concluding remarks
and the work to be performed in the future.

The proposed SSM-based postmortem liver segmentation algorithm is the first
application of CAD for Ai. I am sure that this will open new doors for developing
Ai-CAD systems. However, further improvement is needed in the performance of
the proposed liver segmentation algorithm, which is still inferior to that for in vivo
CT images [1, 49, 50] because of postmortem deformation. In the future, I would
like introduce another transformation method that simulates the changes after the
death, such as the finite element method (FEM)-based transformations. In addition,
it is important to develop a statistical model for the postmortem changes in CT
values. I also plan to improve the segmentation process by incorporating Ai-specific
knowledge.

The joint optimization of the segmentation and shape prior generated by an
SSM constitutes another innovative contribution to the SSM-based segmentation
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algorithm. This is the first study to provide a globally optimal solution for the energy
across all shapes in the SSM, as well as the segmentation labels, and my method
showed higher segmentation accuracy and higher computational efficiency. The
limitation of my method lies in the inconsistency between the JI and energy, which
is a potential problem for all optimization-based segmentation algorithms. In the
future, I would like to investigate the optimal design of an energy functional, which
has been addressed by a few authors, e.g., Scharstein and Pal [84]. The proposed
method is efficient but the computational cost is still high, which constitutes another
drawback of the method. Therefore, a method to improve the computational efficacy
constitutes another important future study.
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Appendix A

EM algorithm

Let D be a set of observation data and Z be set of latent variables of D that cannot
be observed directly. I denote by D incomplete data and by (D, Z) a set of complete
data. Given a probability distribution of the complete data p(D, Z;0), where 6 is an
unknown parameter, the log likelihood function for the incomplete data is defined
as A.1:

L(8; D) =logp(D;0)
=log) p(D,Z;0) (A1)
Z

The maximum likelihood estimate § of unknown parameters § under the given
incomplete data D can be defined as the parameters that maximize the log likelihood
function L:
0 = arg max L(6; D) (A.2)
6

Because (A.2) is classified as a nonlinear optimization problem that cannot be com-
puted analytically, an efficient approximation algorithm or expectation-maximization
(EM) algorithm is employed.

A.1 Maximization of the log likelihood function of the

complete data

Instead of solving the Eq. (A.2) directly, the EM algorithm maximizes the conditional
expectation value of the log likelihood function of the complete data. In particular,
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the maximum likelihood estimate is computed by an iterative method having two
steps.

First, for a given parameter estimation 6(*) at the ¢-th iteration, the conditional
expectation value of the log likelihood function of the complete data log P(D, Z; 6)
is computed (E-step):

0001 = E(logP(D,z;e)]D;e)(f))
= Y P(z|D;6%) log P(D, Z;0) (A3)
Z

where E(A|B) is an expectation value of A for a given condition B. P(Z|D;6") is a
posterior probability of Z for a given D, which is calculated by Eq. (A.4) based on a
Bayes’ theorem.

P(D, Z;61)

P(z|D;0%) = ZP (D, 2,00

(A.4)

Then, 6 that maximizes Q is used for the (¢ + 1)-th estimation of the parameter
(M-step). These two steps are iterated until the convergence condition is met.

A.2 Extension of the EM algorithm [1]

Shimizu et al. [1] proposed an EM algorithm for the extended-mixture Gaussian
distribution in which the mixture ratio is defined. This model allows us to estimate

parameters considering the location information.

M N
P(v|6) == Y a(n)N(v;pu, %) (A.5)

Here, M is a number of classes, N is a number of voxels, a;(n) is a mixture ratio for
the I-th class at the n-th voxel, and y; and X; are the mean and the covariance for
the I-th class. The unknown variables to be estimated are 0 = {«a;(n), y;, %;}. Given
an incomplete dataset D = {v,;n =1,2,--- ,N}, latent variables z, correspond to
v, indicating from which distribution of the class v, is generated. Taking account
of the fact that the joint distribution of v, and z, can be written as P(vy, z,;0) =
aj(n) N(vn;m;, %), Q the function in the E-step of the EM algorithm is formulated
as

M N
(6|6 =Y Y P( (1] x4 ;00) log {a;(n) N (v, £y) } (A.6)
[=1n=1
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where, P(I | x, ;61")) is calculated by Eq. (A.7) based on the Bayes’ theorem:

P(on,1100)  N(ow L,8) 2l (n)

P(l | x,;60) = =
( | X ) ZP(Un,Z | g(t)) ZN(U"; l/g(t)) al(t)(n)
1 l

(A7)

where
Nowi L80) = — e { 5 0= ) 5 o=} (A8)
@)% 2 ’
(t) ()
In the M-step, %}LG) = 0and % = 0 are solved by the following
! !

update function to maximize Q function for each parameter.

N
Z vy p(1 | vn,é(t))

Z l\vn,

= (t (T
Z(Un_l/‘z )(Un_ﬂl ) p(l|vn,9(t))

it = 2=l N (A.10)

Y p(1]vs,61)

n=1

From the method of Lagrange multipliers, the mixture ratios are calculated by (A.11)
solving the maximization problem of the Q function for a;(n).

M N
(6|6 (Z Y a(n) — ) (A.11)

l =1
M

subjectto ) Z a;(n) =

=1 n=1

Here, A is a Lagrange multiplier.

oL M XN MY
—:Zszl(n)—NZO Zzaz(ﬂ):N (A.12)

I=1n=1 I=1 n=1
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oL
oy (n)

N (5 m1, %)
ap(n) N (vn; 1, Zp)

P(l|v,;01)
A

= P(I|v,;01) - —A=0 . oan)=
(A.13)
From Eq. (A.13) and (A.12), we obtain A = 1. By substituting this into Eq. (A.13),

the update function of «;(n) is obtained:
txl(tﬂ)(n) = P(I|v, ;60W) (A.14)

Here, the posterior probability for yl(t+1), Zl(t+1), and ocl(tH) (n) is obtained by Eq.
(A.15).

N(Un;]/l(t),z(t)) ‘Xl(t) (n)

P(l[o,;6)) = — L (A.15)
YN (017, £0) 0D (n)
=1

When the initial variables have been assigned for u Z(O), ZZ(O), and ocl(o) (n), we obtain

parameters that provide the local maximum of the likelihood function after the
iteration.



Appendix B

Three properties required for the
branch-and-bound optimization

The lower bound proposed in Section 4 possesses the three properties described
below, which are crucial for the lower bound in a branch-and-bound algorithm.

B.1 Monotonicity

Corollary B.1.1. For the nested domains of the shape parameter space Hy C Hy, the
inequality L(Hy; I) > L(Hy; I) holds.

Proof. Let us denote A(x, H;; I) as the expression within the outer minimum of Eq.
(4.15)

A(x,H;I) = Y FP(I, minH (¢F (a))) - x,

pev acH;
+ Y BP(I,minH (¢"(«))) - (1 —xp) + Y, PPI(I)-|xp — x4 (B.1)
pev weH; (pa)e€
Then, L(H;j; I) is reformulated as
L(H;I) = min A(x, H;; 1) (B.2)

xeLlV
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Assume that H; C Hy. Then, for any fixed x, for all voxels p € V and neighboring
voxels (p,q) € &, the following inequalities hold.

min PP (L (¢7(w))) - x, = min FY (LK (47 (@) - %, (B3)
min BY (LH (¢/(w))) - (1= x,) = min B (LK (¢"(2))- (1=%,)  (B4)

This is because x, and (1 — x;,) are non-negative (.- x, € {0, 1}), as are F? and
BP. By summing up inequalities (B.3) and (B.4) over all pixels p € V, and adding
Y(pg)ee PPA(I) - |xp — x4| to both sides that are constant with respect to « € H;, we
obtain

A(x,Hy; I) > A(x, Hy; I) for Vx € EM, (B.5)

i.e., the monotonicity holds for any fixed x. Let x; be the segmentation that yields the

global optimum of A(x, Hy; I), i.e., x; = arg min A(x, Hy; I). Let xo be the segmen-
xe LV
tation that yields the global optimum of A(x, Hy; I), i.e., x; = arg min A(x, Hp; I).
xeLVl
Then, from the definition provided previously and monotonicity (B.5), we obtain

~(B.5) - ~def
L(Hy;I) = A(x1, Hi; I) > A(xq, Ho; I) Ze A(x1,Ho; I) = L(Ho; I) (B.6)

]

B.2 Computability

For a branch-and-bound search algorithm, the lower bound must be computable
in an efficient manner. To compute the lower bound in Eq. (4.17), two types of
optimizations are required, i.e., maximization/minimization with respect to « € H;
and minimization in terms of x € LV, The former is computable through the
fundamental theorem of linear programming [66]. The function that needs to be
minimized is a linear function, and H; is a convex polygon; thus, the maximum and
minimum values of the function are obtained only on the vertex of the polygon [66].
Computing each vertex of H; is equivalent to the solution of a system of 4 equations
with d variables, which has a computational complexity of O(d®) [87]. Then, using a
set of vertex vectors V;, the maximum and minimum values of the function at each
voxel can be computed from Egs. (4.18) and (4.19) with O(d|V;|). In contrast, the
latter minimization equals the minimum of a submodular quadratic pseudo-Boolean
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function. The theoretical complexity is the low-order polynomial of |V| time if it is
solved using the s-t mincut [48].

B.3 Tightness

corollary When the set of shapes prior to g(H;) is a singleton, the lower bound of a
function coincides with its minimum value, i.e.,

L(H;;I) = min A(x,H;;I) = min min E(x,g(«);I) (B.7)
xeLVI xel VI a€H;

corollary

Proof. Assuming that g(H;) is a singleton and that a* is an arbitrary member of H;,

min E(x, g(«); I) = E(x,g(«®); I) (B.8)

NEH,'

Taking the minimum value from both sides with respect to x yields the equation

i in E(x, ;1) = min E(x, g(a); 1 B.9
min min (x,g(a); I) min (x,g(a*); 1) (B.9)

Under the same assumption, the expression within the outer minimum of Eq. (4.16)
will be

A(x, H;I) = Y FP(I, min H (¢ (a))) - xp

pev a€H;
+ ) BY(ILminH (¢F (@) - (1—xp) + ), PPUI) - [xp — x4
pev wet (pa)e€

= E(x,g(a%); 1) (B.10)

By replacing E(x, g(a*); I) in Eq. (B.9) with A(x, H;; I), according to the relationship
described by Eq. (B.10), we obtain

min min E(x, ¢(a);I) = min A(x, H;; 1 B.11
min min (x,g(a); ) min, (x, Hi; I) (B.11)

Therefore, when the set of shapes prior to g(H;) is a singleton, Eq. (B.7) holds. [






Appendix C

Extensibility

C.1 Extensibility of SSM

I would like to prove that the lower bound of an SSM defined with a monotonically
increasing function f : R — R and ¢t € R in Eq. (4.24) can be calculated efficiently
by our framework. Note that ¢ («) is a linear function in terms of « € R,. Because
both f(x) and H(x’ — t) are monotonically increasing functions of x,x" € R, their
composite H(f(x) — t) is also a monotonically increasing function of x. Thus, the
maximum and minimum of g,(«) = H(f(¢”(«)) —t) (Eq. (4.24) in terms of ¢7 («)

over « € H; are found at a* = arg max ¢¥(«) and a* = arg min ¢” («), respectively.
acH; acH;
On the other hand, because ¢”(«) is a linear function in terms of & € R,, the

maximum and minimum of ¢”(«) for « € H; are always found at the vertices
v € V; of polygon H; owing to the fundamental theorem of linear programming [66].
Consequently, the maximum and minimum of g, («) are also found at the vertices
v € V;, and are given as follows:

& (Hi) = {O v < e (€1
1 otherwise

gy " (Hi) = {1 ) =t e e (C.2)
0 otherwise

Egs. (C.1) and (C.2) can be computed efficiently by our proposed framework (see
“Computability” in Appendix B).
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C.2 Extensibility of energy functional

Corollary C.2.1. Given the energy terms in Eq. (4.25) with hl; (y) of Eq. (4.27) and Eq.
(4.26) with hy(y) of Eq. (4.28), Eq. (4.30) holds.

Proof. Given H; C R,, the following inequalities hold:

(5700 =) ) <00 < e (- 5700 vy
(C.3)

Because hg (-) in Eq. (4.27) and hg(-) in Eq. (4.28) are the monotonically decreasing
and increasing functions, respectively, we can derive the following inequalities based
on the above monotonic relation of Eq. (C.3):

Iy (g(0)) < Iy (
Iy (g(w)) < Iy

max(Hi)) Va € H;, \V/p e, (C.4)
min([HY)) Ve € H;, Vp € V. (C.5)

& &9

Taking the minimum of hg(g(oc)) in Eq. (C.4) and hg (g(a)) in Eq. (C.5) over « € H;,
we obtain

min A (g @) > A (g™ (H)) Vp eV, c6)
521[51 hﬁ(g(zx)) > hﬁ(gmaX(Hi)) Vp e V. (C.7)

From Egs. (C.6) and (C.7) as well as the definition of the energy terms, we obtain
in E? — AP —0l7 . min hE
min F(I,g(a)) = A1-Pr (xp = 0| ) + A2 - minhy, (g(#))
> A1 Pr(xy = 0] Ip) + A2 - by (8™ (H;)) = FP (L, g™ (Hy))
(C.8)

min B (I, g(a)) = A1 Pr (x, = 1| Ip) + 2. errelig&hﬁ(g(vé))

> A1-Pr(xp =1 Ip) + Az - by (™" (H;)) = BP(I,g™"(Hj))
(C.9)
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Note that A and A; are positive constants. Multiplying Egs. (C.8) and (C.9) by x,,
and (1 —xp) (p € V), respectively, we obtain

min F(L g(a)) - xp > FP(L g™ (Hy)) - xp (C.10)
min B (I, g(«)) - (1 —xp) > BP(I,g"*(H;)) - (1 — xp) (C.11)

acH;

because x, and (1 — x,) are nonnegative. Finally, summing up the inequalities in
Egs. (C.10) and (C.10) over all pixels p € V and adding Y, 5 PP7 (I) - |xp — x4 to
both sides that are constant with respect to @ € H;, we obtain

Y min F? (I,g(w) xp—i—meBp(I gla))(1—xp)+ Y. PPI(I)|xp, — x4

14
peV'xEH pev < (pg)€€
> Y (L™ (Hy) xp+ Y B” (Lg™"(H)) (1=x,)+ Y PP(I) |x, x|
peV peV (pg)e€

(C.12)

which is the expression within the outer minimum of Eq. (4.30). Because Eq. (C.12)
holds for any x € £V, Eq. (4.30) is derived by taking the minimum of Eq. (C.12)
along x € £V, O
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