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Abstract 

Significant effort in the area of health monitoring has been made over the last few 

decades. Many studies have investigated the correlation between biological signals produced 

by the cardiovascular system (CVS) and patient health conditions, and obtained indexes 

identifying various diseases or their states. The photoplethysmogram (PPG) is one of the 

widely used techniques in medical settings and sports equipment to measure biological 

signals. It is recognized that the PPG, which can be defined as the continuous recording of the 

light intensity scattered from a given source by the tissues and collected by a suitable 

photodetector, can provide valuable information about CVS performance [Allen, 2007]. 

However, PPG dynamics is not yet fully understood. The PPG is measured noninvasively by 

inexpensive and simple to use pulse oximeters, and this makes it quite useful for health 

monitoring applications. 

This study sought to investigate the underlying dynamics of the PPG signals from 

healthy young human subjects. In previous studies the PPG was claimed to be driven by 

deterministic chaos [Tsuda, 1992, Sumida and Arimiru, 2000]; however, the methods applied 

for chaos detection were noise sensitive and inconclusive. Therefore, to reach a consistent 

conclusion it is important to employ additional nonlinear time series analysis tools that can 

test different features of the signal’s underlying dynamics. In this thesis, a comprehensive set 

of nonlinear time series analysis methods, including time-delay embedding, embedding 

dimension, largest Lyapunov exponent, deterministic nonlinear prediction, Poincaré section, 

the Wayland test and the method of surrogate data were applied to the PPG time series to 

identify the unique characteristics of the PPG as a dynamical system. Results demonstrated 

that PPG dynamics is consistent with the definition of chaotic movement, and its chaotic 

properties showed some similarity to Rössler’s single band chaos with induced dynamical 

noise. Additionally, it was found that deterministic nonlinear prediction, Poincaré section and 

the Wayland test can reveal important characteristics about the PPG signal and therefore 

these methods will be important tools for theoretical and applied studies on the PPG. 

Despite the topological similarities between Rössler’s single band chaos and the PPG, 

the declining trend of their short-term deterministic nonlinear prediction was considerably 

different, which gave rise to new questions. One of them is related to the rapid decline of 
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predictability performance in the very short range, although in the longer range high 

performance was sustained; another question is connected with the considerable fluctuations 

of prediction performance indexes. Therefore, particularly careful attention was paid to the 

short-term prediction properties of the PPG.  Global (related to overall trajectory) and local 

(in a fixed region on the reconstructed trajectory) predictions were conducted and found to be 

significantly different. These findings illustrated the variation of the dynamic properties 

between the local and global levels. Additionally, similarities in the short-term prediction 

properties were found between the PPG and Duffing’s forced oscillator in the chaotic regime. 

These results emphasized the importance of comparative investigation of the PPG; in addition 

it identified a new approach for local dynamics investigation that may be promising for 

further application studies. 

Nowadays numerous advantages of wireless and wearable sensor technology have made 

it extremely useful and promising for various applications in the agriculture and food 

industries. However, there is still a shortage of techniques to deal with farm workers’ health 

monitoring in the agricultural industry.  Therefore, the last part of this study sought to 

investigate the effect of tractor noise on the CVS of farm workers by the PPG technique. 

Fourier transform and nonlinear time-series analysis methods, such as time-delay embedding 

and the Wayland test, were applied to the PPG signal to analyze differences in CVS 

performance arising upon exposure to levels of tractor noise corresponding to low, medium, 

and high tractor engine speeds. Results showed that the ratio of two significant component 

frequencies obtained by Fourier analysis and the Wayland test translation error can 

distinguish differences in the PPG signal that arise under noise exposure. Additionally, the 

translation error was less dependent on the subject than the frequency ratio, which may make 

it a useful index for application to real-time health monitoring of farmers.     

This study demonstrated that comprehensive nonlinear time series analysis has high 

potential for effective and reliable PPG dynamics investigation and its application to the PPG 

can not only improve one’s understanding of PPG dynamics, but also stimulate the 

development of new PPG signal based applications related to health monitoring in general 

and particularly in the agriculture industry.    
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Chapter 1. Introduction 

 

1.1. Background and Review 

1.1.1 Cardiovascular system and its signals 

The cardiovascular system (CVS) and blood circulation have been subjects of numerous 

studies over the last decades. Although the first attempts to understand processes in the CVS 

were made centuries ago, the recent dramatic increase of cardiovascular diseases (CVDs) among 

the aged as well as young people have made investigation of the CVS and its processes more 

important than ever. Thus, according to statistical data published by The Heart Foundation 

organizations, CVDs are the leading cause of hospitalizations and death cases in Australia 

[National Heart Foundation of Australia], USA [The Heart Foundation of U.S.] and New 

Zealand [The National Heart Foundation of New Zealand]. Similar situations have been 

observed in many other developed countries. Although in Japan mortality from CVDs is lower 

than in other developed countries [Hiroyasu, 2008], it is the second most frequent cause of death 

[Japanese Ministry of Health, Labour and Welfare; Hiroyasu, 2008], and there is concern about a 

possible increase in mortality from CVDs due to changes in Japanese daily life towards a more 

Western lifestyle [Hiroyasu, 2008]. According to annual data published by the Japanese Ministry 

of Health, Labour and Welfare for the period from 2006 to 2013, the percentage of total deaths 

caused by CVDs was in the range from 15.5 to 16%. Besides lifestyle reasons, some of these 

fatal cases were caused by unbalanced work loads or work in difficult environmental conditions; 

thus workers in construction and agricultural field, power machinery operators, etc. regularly 

experience exposure to heat, noise, high vibration, etc. Occupational safety of workers whose 

profession involves high risks of health damage could benefit significantly from continuous 

health monitoring. This makes a deeper understanding of CVS processes not only necessary but 

also promising as it can provide one with valuable information about the CVS dynamics, which 

might lead to the development of effective and reliable CVS condition monitoring systems, 

methods for evaluation patients’ recovery etc.  
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The development of modern equipment and various technologies that allow biological signal 

(BS) measurements have made BSs quite an attractive subject for studies. The combination of 

new measurement techniques, advanced equipment and continuously increasing computer 

computational power makes the process of data collection and analysis easier, faster and less 

expensive. These factors have contributed to the increased variety of health monitoring devices, 

and nowadays BS analysis based devices are an integral part of the equipment used in clinical 

settings [Allen, 2007; Fedotov and Akulov, 2013; Tamura et al., 2014]. Thus, heart rate 

variability (HRV), blood pressure (BP) and oxygen saturation monitors are routinely used in 

hospitals as well as in daily life.  

Over the last few decades, a significant effort has been made to understand the correlation 

between different BSs and patient health conditions by obtaining indexes that identify diseases or 

their states [Borlotto et al., 2000; Elgendi, 2012; Elgendi et al., 2011; Gil et al., 2008; Hashimoto 

et al., 2002; Iokibe et al.., 2003; Kohjitani et al., 2015; Komatsu et al., 2003; Pilt et al., 2013; 

Sato et al., 2013; Shelley, 2007; Shi et al., 2009; Theiler, 1995; Tsuda, 1992; Usman et al., 2012]. 

Some studies have attempted to estimate occupational physical and mental burden through 

indexes obtained from BSs [Yamada et al., 2009; Miao et al., 2008; Thiyagarajan et al., 2013]; 

however only a small number of these studies have dealt specifically with BS dynamics.  The 

development of new applications for advanced health monitoring and disease identification 

based on BS analysis requires an in depth understanding of the underlying dynamics. 

 

1.1.2. Electrocardiogram and photoplethysmogram 

A significant breakthrough was made in the last century in the field of bio-medical signal 

recording. Nowadays by using simple and relatively inexpensive equipment one can easily 

obtain extended and high resolution time series, as real-time monitoring systems have become 

widely available. Among various signals produced by the CVS that are commonly measured by 

modern sensors for medical applications the most widely used non-invasive signals are 

electrocardiogram (ECG or EKG), BP and photoplethysmogram (PPG) from which information 

regarding patient’s health can be extracted, for example HRV, oxygen saturation, etc. Although 
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they are produced by the same, rather complex system, these signals can register different 

aspects of CVS dynamical properties.  

The electrocardiogram is defined as a continuous recording of the bioelectrical activity of 

the heart. An ECG is a simple, noninvasive procedure. To obtain ECG electrodes need to be 

placed on the skin of the chest and connected to a device that measures electrical activity all over 

the heart. ECG is widely used for visual and counter analysis in diagnosis of heart rhythm 

dysfunction and HRV monitoring [Fedotov and Akulov, 2013]. A wide range of studies have 

been conducted on the ECG signal [Ende et al., 1998; Maniwa et al., 2004; Perc, 2005; Small et 

al., 2001; Shelhamer, 2007], in which along with direct visual and contour analysis, methods of 

nonlinear time series analysis were applied to investigate the dynamic properties of the ECG.  

The PPG is another widely used technique to measure BS for medical applications. The PPG 

technique was established in 1937 by Alrick Hertzman who produced a ‘photoelectric 

plethysmograph’, which he described as a device that “takes advantages of the fact that the 

absorption of light by a transilluminated tissue varies with its blood contents”. Subsequently the 

need for a small, reliable, low-cost and simple to use noninvasive cardiovascular assessment 

technique stimulated the reestablishment of photoplethysmography [Allen, 2007; Millasseau et 

al., 2006; Higgins and Froner, 1986]. 

Unlike the ECG signal, which is usually measured with bulky equipment that is not easily 

moved, modern PPG sensors, commonly called pulse oximeters, are very small, light and usually 

wireless. Although the ECG is one of the most widely and well-studied BSs, besides equipment 

limitations such as cost and size, it also has the disadvantage of being sensitive to the sensor 

placement. In contrast PPG sensors can generally be placed on almost any area of open skin, 

which makes them applicable for various studies and suitable for occupational health monitoring, 

where sensor placement has crucial importance. Additionally, the most important physiological 

indexes such as peak to peak intervals and heart rate obtained from the PPG and the ECG show 

significant correlation [Schäfer and Vagedes, 2013]. These factors, along with sensor’s 

inexpensive cost have made the PPG quite attractive as a BS for applications in many fields. 

Although the PPG is widely used and it is recognized that the PPG can provide valuable 
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information about the CVS, the PPG signal is still not fully understood [Allen, 2007; Kamal et 

al., 1989]. As the PPG contains rich and valuable information about the CVS processes it is 

expected that understanding of PPG dynamical properties could lead to the development of new 

types of monitoring devices and methods for health condition estimation. Considering the above 

mentioned advantages of the PPG, it appears to be quite promising for investigation and was 

chosen as the subject of investigation in this study. 

The PPG can be defined as the continuous recording of the light intensity scattered from a 

given source by the tissues and collected by a suitable photodetector [Bernardi and Leuzzi, 1995]. 

The apparatus consists of a transducer that shines infrared light onto the skin.  The light is 

absorbed by hemoglobin, and the backscattered radiation is detected and recorded. The 

backscattered light will depend on the amount of hemoglobin in the skin, and the result obtained 

will therefore reflect the cutaneous blood flow [Wahlberg and Lindberg, 1995]. Modern PPG 

sensors usually utilize low cost semiconductor technology with LED and matched photodetector 

devices working at the near infrared (NIR) wavelengths (NIR band 0.8 to 1 µm), which allows 

measurement of deep-tissue blood flow [Allen, 2007; Tamura et al., 2014].  

PPG detectors have two operational configurations: transmission and reflectance modes. In 

the transmission configuration, the tissue sample is placed between the source and detector, so 

light from the LED is transmitted through the tissue and detected on the opposite side from the 

source by the photodetector. In the reflectance mode the emitter and detector are positioned 

adjacent to each other [Allen, 2007; Bernardi and Leuzzi, 1995; Tamura et al., 2014]. 

Transmission mode PPG imposes more restrictions on the body locations available for study than 

the reflection mode [Allen, 2007]. However it was found that the significance of the signals 

obtained by the two methods is the same: in both cases it depends on the superficial circulation 

[Bernardi and Leuzzi, 1995]. 

 

1.1.3. Applications of the photoplethysmography 

The PPG technique has been widely used in commercially available sports and medical 

devices measuring heart rate, oxygen saturation and blood pressure that can be directly used for 
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health assessment and monitoring of patients in medical settings or for exercising individuals 

[Allen, 2007; Han and Kim, 2012; Nakajima et al., 1996; Perez-Martin et al., 2010]. Besides 

these the PPG has been applied in clinical settings for detecting peripheral vascular decease, 

assessment of autonomic function, such as vasomotor function, thermoregulation, neurology and 

other cardiovascular variability assessment [Allen, 2007], and  for studies of dermatological 

disorders and systemic disease, for skin experimental purposes [Wahlberg and Lindberg, 1995]. 

Nowadays the advantages of wireless and wearable sensor technology have made the PPG 

extremely useful and promising for applications in many fields including the agriculture and 

food industries [Kawakura and Shibasaki, 2014; Wang et al., 2005]. However, there is still a 

significant difference in the number of techniques, equipment and methods that are actually 

applied to farm workers’ health monitoring in the agricultural industry compared with the 

number of medical and sports applications. 

 

1.1.4. Analysis methodologies applied to the photoplethysmogram 

As mentioned above, the various advantages of the PPG have made it the subject of many 

studies in different fields, and various approaches have been applied to analyze the PPG. Among 

them conventional methods such as contour analysis, analysis of the 1st and 2nd derivatives of 

the PPG, Fourier transform, and rather advanced methods of nonlinear time series analysis can 

be distinguished.   

Contour analysis. Analysis of PPG waveform was initiated in the 1940s by A. Hertzman, 

who introduced first pulse oximeter [Millasseau et al., 2006] this was probably one of the first 

attempts to analyze the PPG. 

The appearance of the pulse waveform is defined by anacrotic and catacrotic phases. The 

anacrotoc phase being the rising edge of the pulse, and the catacrotic phase is the falling edge of 

the pulse wave.  The first one is primary concerned with systole and the second one with diastole 

and wave reflection from the periphery. A dicrotic notch is usually seen in catacrotic phase of 

subjects with healthy compliant arteries Fig. 1.1 [Allen, 2007; Millasseau et al., 2006].  
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The pulsatile component of the PPG waveform that related to the cardiac pulsation is usually 

called the ‘AC’ (alternative current) component and its fundamental frequency depends on the 

heart rate and typically varies around 1-1.4 Hz. This AC component is superimposed onto a large 

‘DC’ (direct current) components that depends on the structure of the tissue and the average 

blood volume of both arterial and venous blood. DC component varies slowly due to the 

respiration, vasomotor activity, vasoconstrictor waves, thermoregulation and other slow 

circulatory changes [Allen, 2007; Tamura et al., 2014; Bernardi and Leuzzi, 1995].   

 

Fig. 1.1 Components of the PPG signal waveform for healthy young subjects. 

 

Despite the amplitude variations from person to person and various factors that influence 

local perfusion, the contour or shape of the PPG remains approximately same. While it was 

found that a well-defined dicrotic notch is usually observed in data from healthy subjects, in 

atherosclerosis patients the dicrotic notch is generally missing or diminished; another study 

showed sensitivity of the dicrotic notch shape to alcohol and nitrates [Millasseau et al., 2006]. 

Various patterns of PPG contour, such as the systolic amplitude, pulse width peak to peak 

interval, measure of reflected wave contribution to systolic pressure, and others were used in 

attempts to classify results according to patient age and the presence of coronary artery diseases 
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[Elgendi, 2012; Millasseau et al., 2006].  Later contour analysis was expanded on the 

acceleration PPG (APG) data, which are obtained as the 2
nd

 derivative of the PPG, and 

correlations of different indexes derived from APG shape with age, arterial distensibility in 

adolescence, mental stress, arteriosclerosis, arterial stiffness, and other factors were found 

[Bortolotto et al., 2000; Elgendi et al., 2011; Elgendi et al., 2014; Elgendi, 2014; Fujimoto and 

Yamaguchi, 2008; Iokibe et al., 2003; Maniwa et al., 2004].  

Although contour analysis appeared to be quite useful and can provide valuable information 

for medical applications, it does not reveal the true dynamics of the PPG. 

Nonlinear time series analysis. Development of the theory of deterministic chaos and 

methods of nonlinear time series analysis became an inspiration for new studies on many BSs 

such as ECG, HRV as well as PPG. Many studies have investigated ECG, HRV and PPG signals 

obtained from healthy human subjects, as well as from patients with mental or heart illnesses 

[Glass, 2009; Goldenberg et al., 1990; Ivanov et al., 1999; Letellier, 2013; McClintock and 

Stefanovska, 2002; Miao et al., 2008; Miao et al., 2012; Poon and Merrill, 1997; Phamet et al., 

2013; Shelhamer, 2007]. For example, two studies [Tsuda, 1992; Sumida and Arimitu, 2000] 

attempted to use the geometric pattern of the PPG time-delay reconstructed trajectories for 

qualitative measurement of mental disease.  The Lyapunov exponent (LE), which gives a 

measure of the rate of divergence of neighboring trajectories [Bezruchko and Smirnov, 2010], 

was used as measure of mental load during the performance of particular tasks, such as talking, 

reading or driving a car on a simulator [Sato et al., 2013]. Additionally, method of surrogate data 

[Sumida and Arimitu, 2000], sample entropy [Pham et al., 2013] and the trajectory parallel 

measure method [Fujimoto and Yamaguchi, 2008] were applied to the PPG. Although a limited 

number of nonlinear time series analysis methods were applied to the PPG data, the results 

appeared to be valuable and promising for medical health monitoring applications.   

Besides applying methods of nonlinear time series analysis for obtaining practical 

measurements of mental and physical health conditions in early studies, the PPG, as well as the 

ECG and HRV, were claimed to be chaotic. These conclusions were generally drawn based on 

results of time-delay reconstructed trajectories, correlation dimension (CD) and LE. Later, with 
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further investigation of methods of nonlinear time series analysis for real world data, evidence 

for the chaotic nature of many BSs was questioned [Glass, 2009; Paluš, 1998; Shelhamer, 2007]. 

Many tools that were previously thought to provide explicit evidence of chaotic motion were 

discovered to be noise sensitive and could produce misleading results. In addition, these tools did 

not take into account all of the important properties of the PPG signal needed for positive 

identification of chaos. Thus it is still quite controversial whether the dynamics of these signals 

involve chaotic motion or not [Glass, 2009; Shelhamer, 2007]. Signals like HRV and ECG, 

which were believed to be driven by deterministic chaos, have been subjected to detailed 

reinvestigation [Glass, 2009; Shelhamer, 2007]. Similarly the PPG signal was claimed to be 

chaotic in the early 1990s; however, past evidence of chaos has been found to be necessary 

rather than sufficient, especially in biological studies [Glass, 2009; Shelhamer, 2007]. In general, 

positive identification of chaotic motion is not straightforward and evaluation of results obtained 

by methods of nonlinear time series analysis is often empirical and relies on the researcher’s 

experience. Therefore, it is still not known whether the PPG signal is chaotic or not. In addition, 

many of its characteristics are not yet well studied. Therefore, to reach a consistent conclusion on 

the nature of the PPG dynamics, it is important to employ additional nonlinear time series 

analysis tools that can test different features of the signal’s underlying process. Also, it is 

expected that extracting new information from the PPG by using an expanded nonlinear time 

series toolkit might lead to the discovery of new features of the PPG that would be valuable for 

the development of new applications.  

 

1.2. Constructive approach 

In mathematical modeling, the creation of the model as a rule is supported by experimental 

data representing the process for which the model is to be built. Accordingly, model validation is 

not possible without relevant real world data, which can confirm the appropriateness of the 

model or lead to further model modification. Therefore, the importance of real world data in 

modelling is apparent. However in studies of real-world signals, for which dynamics are under 

investigation and are not yet described by any model, models do not usually contribute 
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significantly to the study of data dynamics. One of the obvious problems in the reverse 

relationship (model-data) for utilizing first one for the sake of the second is that in an assumed 

case the dynamics of the real world data is unknown. In some specific cases researcher can 

assume that one or another model for a similar process may demonstrate similar behavior; 

however, one can hardly expect to have the same variables in the model as in the investigated 

signal. On the other hand, positive identification of the dynamics in the case of complex systems 

is not straightforward and often may cause confusion due to highly empirical interpretation of 

results.  

To overcome above-mentioned difficulties and find a way to utilize well-known models for 

obtaining reliable results of the study on dynamics and chaotic behavior of the PPG, 

methodology called the “constructive approach” is introduced in this thesis. The constructive 

approach is shown schematically in Fig. 1.2. 

 

Fig. 1.2 Constructive approach scheme. 
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Since in many cases direct comparison of model output and real data is impossible, 

comprehensive nonlinear time series analysis, which includes an expanded toolkit, was chosen as 

a core of the constructive approach as seen in the Fig. 1.2. Unlike traditional approaches, 

nonlinear time series analysis allows not only direct comparison of signals, but comparison of 

the underlying signal characteristics.  Based on results of nonlinear time series analysis, 

similarities in dynamics that define core properties can be found. Although identifying a 

dynamical system that has properties resembling those of PPG dynamics would not mean that the 

dynamics are identical, it would provide an opportunity for comparative dynamics investigation, 

so that features of the PPG can be evaluated on the basis of comparison with dynamics of a 

system that possesses similar characteristics.  

In the constructive approach scheme, the use of nonlinear time series analysis serves not 

only as a tool for comparing data, but it can also indicate the necessity for experiment design 

improvement. As seen in Fig. 1.2, after conducting nonlinear time series analysis for real-world 

data, depending on the results the experimental design may be changed or analysis can be 

proceeded to the next step, to compare analysis results for simulated and real-world data. After 

comparison of data characteristics, according to the results one may be able to proceed to 

comparative study and obtaining dynamical characteristics of signal under investigation, which is 

the main step of the constructive approach, or if results were not comparable model can be 

changed to the model that may have properties more similar to those of the PPG. As seen from 

this scheme, the constructive approach has a recursive structure and therefore this sequence of 

steps can be repeated until enough information about signal dynamics can be obtained. 

 

 

1.3. Objectives of the thesis 

The PPG appears to be quite a useful and promising BS for various medical and daily health 

care applications; as well it might be promising for developing advanced applications related to 

occupational safety and health. However, even though nowadays it is widely used for routine 

health monitoring in medical and sports devices, the PPG dynamics is still not completely 
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understood. Therefore this study was designed to fulfill the following objectives. The main 

objective of this thesis is to investigate dynamics of the PPG time series as a nonlinear dynamical 

system by applying comprehensive nonlinear time series analysis and provide solid evidence of 

the PPG signal’s dynamics consistence with the definition of chaotic motion as “recurrent 

motion in simple systems or low-dimensional behavior that has some random aspects as well as 

certain order” [Thompson and Stewart, 1991]. Another goal of this thesis is the detailed study of 

the PPG properties and determining important indexes that are obtained by methods of nonlinear 

time series analysis and reflecting chaotic characteristics of PPG dynamics, which can contribute 

to the development of PPG applications. Another goal is to demonstrate that methods of 

nonlinear time series analysis and indexes obtained from them can be used for occupational 

health monitoring. As a case study, the physiological condition of agricultural workers under 

exposure to noise from agricultural machinery will be investigated by conventional time series 

analysis methods and methods of nonlinear time series analysis. 

Additionally this thesis aims to demonstrate a methodological approach of comparative and 

comprehensive nonlinear time series analysis in combination with a constructive approach for 

investigation of chaotic behavior of BSs with the PPG as an example, which can be applied for 

investigation of other BSs demonstrating complex behavior.  
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Chapter 2. Detection of Chaotic Motion in Human Photoplethysmogram 

 

2.1. Introduction 

In studies dealing with the investigation of real-world biological data, which are measured 

from the studied subject, the dynamical process underlying the obtained signal is usually 

unknown. Although the identification of dynamics is highly desired, it is rarely achieved due to 

the intricacy of biological processes, presence of noise, experimental design, etc.    

Many studies have investigated ECG, BP, HRV and PPG signals obtained from healthy 

human subjects, as well as from patients with mental or heart illnesses [Ivanov et al., 1999; 

Mascro et al., 2001; McClintock et al., 2002; Poon et al., 1997; Pham et al., 2013; Millasseaua et 

al., 2006; Miao et al., 2012; Glass, 2009; Shelhamer, 2007]. In early studies, the PPG as well as 

ECG and HRV were claimed to be chaotic primarily based on results of time-delay reconstructed 

trajectories, CD and largest Lyapunov exponent (LLE). Subsequently, however, with the 

development of methods of nonlinear time series analysis for real world data, evidence for the 

chaotic nature of many BSs has been questioned [Glass, 2009; Shelhamer, 2007]. Indeed, 

positive identification of dynamical processes in the case of real-world signals is not 

straightforward. Various tools that intend to test dynamics have reliable performance in the case 

of model-generated data; however, noise inevitably present in the BSs can mislead tests and 

produce results that cannot be unambiguously interpreted. In this case, the final conclusion is 

often based entirely on the investigator’s personal judgment and experience. Thus, many tools 

that were previously thought to provide explicit evidence of chaotic motion, which were applied 

for the analysis of the PPG, were discovered to be noise-sensitive and could produce ambiguous 

results. Therefore it is still quite controversial whether PPG signals’ dynamics involves chaotic 

motion or not [Glass, 2009; Shelhamer, 2007]. Signals like HRV and ECG that were believed to 

be driven by deterministic chaos have been subjected to detailed reinvestigation [Glass, 2009; 

Shelhamer, 2007]. Similarly PPG signal was claimed to be chaotic in the early 90s [Tsuda, 1992], 

however nowadays past evidence of chaos was found to be necessary rather than sufficient, 
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especially in biological studies [Glass, 2009; Shelhamer, 2007]. Therefore it is also still not 

known whether the PPG signal is chaotic or not. In addition, many of its characteristics are not 

yet well studied. 

Claims of the chaotic nature of the PPG in normal subjects were mostly based only on the 

application of classical methods such as time-delay reconstructed trajectories, power spectrum, 

correlation dimension (CD) and Lyapunov exponent (LE) and surrogation that  were applied to 

characterize PPG time series [Pham et al., 2013; Tsuda, 1992; Sumida et al., 2000]. Positive 

Lyapunov exponent was believed to provide strong evidence of chaotic behavior. However, these 

tests (CD and LE) are inconclusive since as it was found in recent studies that they may indicate 

chaos even in systems that are not driven by chaos [Shelhamer, 2007; Paluš, 1998]. Therefore, a 

clear answer regarding the nature of the PPG signal dynamics cannot be obtained by only 

applying these types of classical measurements, although they may provide useful results for 

medical applications.  

Various definitions of chaos can be found in the literature; this study abides by the following 

quite broad, so called “positive” definition of chaos as “recurrent motion in simple systems or 

low-dimensional behavior that has some random aspects as well as certain order” provided by 

Thompson and Stewart. It covers a wide range of systems that produce chaos and yet have 

significantly different properties, as for example chaotic Lorenz, Rössler, and Duffing systems. 

In order to test whether the PPG is consistent with this definition, a comprehensive set of 

nonlinear time series analysis tools is required; such a toolkit must cover all significant 

characteristics of chaotic motion as well as perform well with noise-contaminated data.  

In this chapter a time-delay embedding method, the power spectrum, embedding dimension, 

largest Lyapunov exponent (LLE), deterministic nonlinear prediction’s (DNP) correlation 

coefficient (CC) and relative route mean square error (RRMSE), Poincaré section, Wayland test 

translation error and the method of surrogate data were applied to investigate whether the 

underlying dynamics of the PPG signal involves motion on a strange attractor and to study the 

chaotic motion characteristics of the PPG signal. This expanded toolkit was designed to cover 

most of the defining characteristics of chaotic motion and is expected to help in this study to 
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investigate a wider range of PPG signal characteristics, compared with previous studies, and thus 

to extract its underlying properties. Additionally, in an effort to analyze the PPG signal not only 

quantitatively, but qualitatively a comparative analysis of the PPG signal and Rösser’s single 

band chaos was conducted.    

 

2.2. Materials and Methods 

The PPG signal was recorded using a finger PPG recorder by detecting the near infrared 

light reflected by vascular tissue following illumination with a LED. Data were collected from 

ten 19- to 27-year old volunteers among Tokyo University of Agriculture and Technology 

(TUAT) students in a good health condition. Experimental data collection was approved by 

TUAT authorities. Written informed consent was obtained from participants prior the experiment.  

All participants were surveyed about their age, health condition and life style; at the time of the 

study all subjects were healthy non-smokers, physically active to similar levels, were not taking 

any medication, and nine of them declare no history of heart disease, while one has minor heart 

disorder.  

For each subject five measurement repeats were done. The measured period was 5 min with 

5 msec sampling steps. For all data collection sessions, a BACS (Computer Convenience, Inc.) 

transmission-mode PPG sensor (Fig. 2.1) was located on the right forefinger.  The experiment 

was designed taking into account the factors affecting cutaneous blood flow as described in 

appendix section A.1. Every measurement was preceded by a blood pressure check and was done 

with the subject in a relaxed sitting position in a room with temperature, noise and vibration 

control. Each test subject was asked to rest for 5 min under quiet conditions in the laboratory 

room in the same sitting position in which the recordings were obtained, and with the test site 

uncovered. An example of a 30-second long portion of the obtained PPG signal is shown in Fig. 

2.2. Time series of all collected data are shown in appendix Fig. A.1-2. 
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Fig. 2.1 Finger PPG recorder. 

Fig. 2.2 Example of 30-second long portion of the healthy young subject PPG signal (10th 

subject’s 2nd measurement). 
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2.3. Comprehensive Nonlinear time series analysis 

To analyze data sets obtained in the experiments described in section 2.2 and to investigate 

whether the PPG signal is consistent with the above definition by Thompson and Stewart and 

study its chaotic characteristics in details, a complex of nonlinear time series analysis tools was 

applied. Orbital instability was tested with LLE, determinism with DNP, WTE, recurrence of 

motion with time-delay embedding and Poincaré section; additionally phase randomized 

surrogation was applied. 

 

2.3.1. Spectral analysis  

An example of typical plot of the Fourier spectrum in the studied time series after smoothing 

by moving average method is shown in Fig. 2.3; Fourier transform for all collected data is shown 

in appendix Fig. A.3-4. In Fig. 2.3, small fluctuations, which indicate environmental noise, can 

be distinguished around the high frequency predominant component (HF), which period is 

approximately equal to the heart cycle period. Lower frequency (LF) components correspond to 

respiration and other effects, such as thermoregulation and nervous system activity.  Table 2.1 

shows values of amplitude and frequency corresponding to the predominant component obtained 

by Fourier transform. As seen from Table 2.1, while amplitude (|FT|) demonstrates significant 

variations among subjects, all predominant frequencies (HF) are changing in the range 1.02-1.52 

Hz, which is the range of normal heart beat frequencies. 

 

2.3.2. Time-Delay Embedding 

By using the time-delay embedding technique the possible dynamics of time series can be 

reconstructed in phase space. Many of the nonlinear time series analysis tools are applied on the 

reconstructed dynamics. The structure of reconstructed trajectories is considered to be an 

important characteristic of time series [Shelhamer, 2007l West, 2013]; the obtained geometric 

pattern of the trajectories may provide valuable information about the PPG signal properties, for 

example, it can reflect the level of physical or mental activity or the level of maturity [Tsuda, 

1992; Sumida et al., 2000].  
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Fig. 2.3 Example of typical spectra obtained by Fourier analysis, where LF is low frequency and 

HF is predominant frequency components (data correspond to the 1
st
 measurement for the 1

st
 

subject). 

 

TABLE 2.1 Amplitude (|FT|) and frequency (HF) of the PPG predominant component. 

Repeat   Subject   

 

1 2 3 4 5 

 

|FT| HF |FT| HF |FT| HF |FT| HF |FT| HF 

1 5339.0 1.20 5608.5 1.12 5057.4 1.09 4185.4 1.04 1814.5 1.02 

2 1877.5 1.24 2063.1 1.21 2906.8 1.21 2276.4 1.12 1839.4 1.22 

3 876 1.08 799.9 1.09 545.7 1.12 326.1 1.16 711.4 1.08 

4 6198.9 1.16 6960.6 1.15 5438.9 1.11 5765.3 1.03 2947.3 1.19 

5 1057.7 1.40 3475.7 1.28 2384.0 1.24 4018.1 1.29 3792.7 1.34 

6 7843.4 1.07 6379.4 1.09 7048.2 1.05 4945.1 1.03 2784.6 1.05 

7 4382.0 1.17 5915.2 1.19 7298.9 1.12 5763.3 1.14 4100.3 1.15 

8 7085.3 1.17 6758.1 1.12 5449.0 1.15 4378.1 1.07 4711.1 1.13 

9 3028.2 1.09 2557.6 1.10 2451.6 1.11 3563.0 1.12 3006.1 1.06 

10 5324.7 1.52 7062.0 1.47 8937.0 1.43 5444.2 1.41 3658.1 1.39 
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If data points of the original time series are denoted as X(t) (t ∈ [1, 𝑁]) and m is the 

embedding dimension, then trajectories can be reconstructed in m-dimensional phase space. Each 

point on the reconstructed trajectory is defined as Z(t)=(X(t) X(t+τ) .. X(t+(m-1)τ)), where τ 

defines the separation between points of the original time series. For time-delay reconstruction, 

the time-delay lag τ needs to be sufficiently large to ensure that the resulting individual 

coordinates are relatively independent; however, it should not be too large to make it completely 

independent statistically [Abarbanel, 1993]. In this study the time lag for further calculations 

have been defined as a quarter of the period of the predominant component [Packard, Crutchfield, 

1980] obtained by Fourier analysis (Table 2.1). 

 

Fig. 2.4 Trajectory reconstructed in 4-dimensional phase space by time-delay embedding. 
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Following previous studies [Miao et al., 2012; Tsuda, 1992; Sumida et al., 2000] in which it 

was shown that at least 4 dimensions need to be used for the PPG signal and results of minimum 

embedding dimension calculation shown in the next section, time-delay embedding technique 

was performed with 4 dimensions to obtain the reconstructed trajectories in phase-space. An 

example (corresponding to the 1
st
 subject’s 1

st
 measurement) of the typical data for a time-delay 

reconstruction is shown in Fig. 2.4, where the 4
th

 dimension is represented by color. As seen in 

Fig. 2.4, the reconstructed trajectory has well-defined structure. Reconstructed trajectories for all 

data are shown in Fig. A.5-6. According to Fig. A.5-6, most of the data have reconstruction with 

clear structure, except for data corresponding to all measurements of the 3
rd

 subject and several 

measurements corresponding to subjects 2 and 9, for which reconstructed trajectories do not 

demonstrate well-defined structure.  

 

2.3.3 Embedding dimension 

Attractor dimension has been the most intensely studied quantity for dynamical systems 

[Ivanov et al., 1999]. The dimension can be an indicator of the degree of “complexity” of a 

system [Shelhamer, 2007]. In many early studies the correlation dimension (CD) was applied in 

an attempt to prove that the underlying system exhibits chaotic behavior. However CD can be 

observed for certain types of filter noise, or random processes with power-law frequency spectra. 

Therefore, by itself it cannot be considered as sufficient proof of the chaotic nature of a signal, 

but it is an important index for nonlinear time series analysis for investigated signals. In some 

cases, the dimension value obtained under different stimulus conditions or health versus 

pathology can be useful [Shelhamer, 2007]. 

In this study the embedding dimension was estimated. One efficient method to determine the 

embedding dimension is the method of false nearest neighbors (FNN) [Kennel et al., 1992; Cao, 

1997], which is based on the idea that if m is a perfect embedding dimension then any two points 

that are close in m-dimensional phase-space will remain close in (m+1)-dimensional phase-space. 

In this study the embedding dimension for collected PPG data was calculated by the modified 

method of FNN [Cao, 1997]. This method is based on calculation of the following quantity 
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𝐸(𝑚) =
1

𝑁 − 𝑚𝜏
∑

‖𝑍𝑖(𝑚 + 1) − 𝑍𝑛(𝑖,𝑚)(𝑚 + 1)‖

‖𝑍𝑖(𝑚) − 𝑍𝑛(𝑖,𝑚)(𝑚)‖

𝑁−𝑚𝜏

𝑖=1

, 

where Zi(m) = (X(i) X(i+τ) .. X(i+(m-1)τ)) is the i
th

 reconstructed vector in m dimensional 

phase-space; Zn(i,m)(m) is the nearest neighbor of Zi(m) in the m-dimensional reconstructed phase-

space [Cao, 1997]. The vector norm ||•|| is calculated as a Euclidian distance. The value E(m) 

depends only on dimension m and time lag τ. To find an appropriate embedding dimension 

according to the suggested method [Cao, 1997], the value E1(m)=E(m+1)/E(m) must be 

calculated. The minimum embedding dimension can be defined as m = (m0+1), where m0 is the 

dimension starting from which the value E1 saturates.  

Fig. 2.5 shows results of E1(m) calculation for m=1,..,10. As seen in Fig. 2.5, the minimum 

embedding dimension can be defined as 4; therefore, in all further calculations the embedding 

dimension was chosen as 4. Results of E1(m) calculation for all data are shown in Fig. A.7-8. 

 

Fig. 2.5 Determining the minimum embedding dimension by the modified method of false nearest 

neighbors. 
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2.3.4. Largest Lyapunov exponent 

Sensitive dependence to initial conditions is one of the most important properties of the 

chaotic system. Any chaotic system should have at least one positive Lyapunov exponent, with 

the magnitude reflecting the time scale on which system dynamics become unpredictable [Wolf 

et al., 1985; Bezruchko and Smirnov, 2010]. Lyapunov exponent, which provides a qualitative 

and quantitative characterization of dynamical behavior, is a useful dynamical diagnostic for 

chaotic systems since it gives a measure of the rate of divergence of neighboring trajectories 

[Wolf et al., 1985; Bezruchko and Smirnov, 2010].  

In this study LLE was calculated with Wolf’s method [Wolf et al., 1985], which allows the 

estimation of LLE from an experimental time series. As many studies have mentioned [Glass, 

2009; Shelhamer, 2007; Skinner et al., 1998] most computational methods for estimating LLE 

have limitations and can produce positive LLE even for non-chaotic systems [Shelhamer, 2007] 

or can overestimate its value [Skinner et al., 1998].  

LLE was calculated for all measured PPG data, and in all cases resulted in a positive LLE as 

shown in Table 2.2. However, LLEs corresponding to the 3
rd

 subject’s measurements 1, and 3-5 

are at least one order of magnitude smaller than LLEs for other subjects. These significantly 

smaller values are highlighted. 

 

TABLE 2.2 Largest Lyapunov exponents for all collected PPG time series (calculated by Wolf’s 

method). 

Repeat         Subject           

  1 2 3 4 5 6 7 8 9 10 

1 1.041 0.731 0.097 1.143 1.100 1.279 1.206 1.250 1.079 1.014 

2 0.961 0.810 0.117 1.565 0.968 1.020 1.692 1.010 1.150 0.938 

3 1.145 1.099 0.051 1.398 0.861 1.209 0.937 1.121 1.194 1.182 

4 0.744 0.902 0.039 1.303 1.019 1.167 1.621 1.157 1.040 1.119 

5 0.787 0.754 0.063 0.968 1.274 0.766 1.242 0.929 1.000 1.008 
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2.3.5. Deterministic Nonlinear Prediction 

As it is widely known, chaotic systems show predictability in the short-term that should 

decay rapidly, however different systems demonstrate different predictabilities, like for example 

prediction performance for the Lorenz system in chaotic regime and Rössler’s single band chaos 

differs (as shown in Fig. 2.6 (a) and (b)).  

Rössler’s system is described by the following equations [Thompson and Stewart, 1991]: 

{

ẋ = −y − z,
ẏ = x + ay,

ż = b + z(x − c);
 

and Lorenz system by equations [Lorenz, 1963; Thompson and Stewart, 1991]: 

{
ẋ = −σ(x − y),

ẏ = ρx − y − xz,
ż = xy − βz.

 

For calculation of Rösseler’s data, the system coefficients chosen were a= 0.398, b= 2, c=4 

which corresponds to single-band chaos [Thompson and Stewart, 1991; Small et al., 2001; Small 

et al., 2005], and for the Lorenz system σ=10, ρ=28, β=8/3; numerical simulation was done by 

the 4th order Runge-Kutta method with time step 0.01.  

Information about predictability can be used to distinguish different behaviors. Additionally, 

the presence of short-term prediction indicates the determinism of the system under investigation 

[Shelhamer, 2007]. To examine whether PPG time series are predictable in the short-term and 

investigate how forecasting quality changes with increasing prediction time, direct (non-

recurrent) deterministic nonlinear prediction (DNP) was conducted in this study. Prediction 

performance conventionally can be characterized by CC and RRMSE as functions of p - 

prediction time step. CC(p) and RRMSE(p) can be calculated as  

𝐶𝐶(𝑝) =
∑ (𝑍(𝑡 + 𝑝) − 𝑍̅(𝑡 + 𝑝))(𝑍∗(𝑡 + 𝑝) − 𝑍∗̅̅ ̅(𝑡 + 𝑝))𝑁−𝑚𝜏

𝑡=1

√∑ (𝑍(𝑡 + 𝑝) − 𝑍̅(𝑡 + 𝑝))2𝑁−𝑚𝜏
𝑡=1

√∑ (𝑍∗(𝑡 + 𝑝) − 𝑍∗̅̅ ̅(𝑡 + 𝑝))
2𝑁−𝑚𝜏

𝑡=1

,      (2.1) 
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𝑅𝑅𝑀𝑆𝐸(𝑝) = √
∑ (𝑍(𝑡 + 𝑝) − 𝑍∗(𝑡 + 𝑝))

2𝑁−𝑚𝜏
𝑡=1

∑ (𝑍(𝑡 + 𝑝) − 𝑍̅(𝑡 + 𝑝))2𝑁−𝑚𝜏
𝑡=1

 .                    (2.2) 

𝑍∗(𝑡 + 𝑝) is p steps forward prediction of the predictee 𝑍(𝑝), which can be defined as 

𝑍∗(𝑡 + 𝑝) = 𝑍(𝑝) +
1

𝑛
∑ (𝑍𝑖(𝑡 + 𝑝) − 𝑍(𝑡))

𝑛

𝑖=1

, 

where 𝑍𝑖(𝑡) (i=1,..,n) is n nearest neighbors of  𝑍(𝑝). Fig. 2.6 (a) shows an example of typical 

data of CC and Fig. 2.6 (b) RRMSE between real and predicted signals with increasing 

prediction time.  

While short-time predictability can be easily identified, conclusions regarding long-term 

prediction are not straightforward, and in many cases are rather empirical and might be based on 

researcher experience. The prediction quality’s “gold standard” is rapid and apparent decay of 

CC for chaotic Lorenz data, which is actually cannot be always observed for other well-known 

systems generating chaos. For example, in Fig. 2.6 Rössler’s single band chaos shows high CC 

(higher than 0.96) over more than 400 steps, while CC corresponding to Lorenz reaches zero.  It 

is important to notice in Fig. 2.6 (a) and (b) that CC and RRMSE curves corresponding to 

chaotic Rössler band initially demonstrate decay, as would be expected, and later both curves 

stabilize at a high CC value (CC > 0.96) and a low RRMSE value (RRMSE < 0.28)  over a long 

period, however, it is known that chaotic systems do not have long-term prediction and therefore 

despite the stable high CC value and low value of RRMSE these results should not be recognized 

as a sign of long-term prediction.  

As discussed later in Fig. 2.12, PPG trajectories have some topological similarity to 

Rössler’s single band chaos; in accordance with the constructive approach, to illustrate changes 

in the PPG’s CC and RRMSE curves it was compared with the CC and RRMSE curves of the 

corresponding Rössler’s data. In addition, since the PPG data were obtained experimentally, it 

inevitably contains noise, so PPG prediction results were also compared with the same Rössler’s 

system with 7 percent additive (dynamical) noise; results are shown in Fig. 2.6 (a) and (b). DNP 

results for all time series are shown in Fig. A.9-10 and Fig. A.11-12 for the CC and RRMSE 

respectively.  
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(a)  

 

(b)  

Fig. 2.6 (a) Correlation coefficient (CC) and (b) relative root mean squared error (RRMSE) 

curves for nonlinear deterministic prediction of Rössler’s single band chaos, Rössler’s single 

band chaos data with 7% additive noise, chaotic Lorenz and PPG. 
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Fig. 2.7 shows example of actual vs. 0.8s (160 time steps) predicted PPG, even after 160 

steps forecast still resemble original time series with sufficiently high quality to reproduce not 

only the general trend of the PPG waveform, but also smaller details such as the dicrotic notch. 

 

Fig. 2.7 Performance of deterministic nonlinear prediction. Original signal vs. 160 steps (0.8s) 

forward prediction. 

 

As seen from Fig. 2.6 and Fig. 2.7, time series clearly demonstrated the presence of short-

term prediction, which is indicative of underlying determinism. The chosen coefficients for the 

Rössler system correspond to a chaotic regime, and therefore the obtained Rössler’s data should 

not have long-term prediction. Thus comparison between CC and RRMSE curves corresponding 

to PPG, Rössler and noise induced Rössler data in Fig. 2.6 demonstrate the absence of long-term 

forecasting in the PPG signal, which is typical for chaotic motion. Besides finding that PPG’s 

CC and RRMSE curves showed similar trends with CC and RRMSE corresponding to 7% noise 

induced Rössler’s data, these results have demonstrated that it might be misleading to compare 
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results obtained from PPG with chaotic Lorenz data, which played a role of one of the classical 

examples of chaos over decades, but actually demonstrates only one of many other possible 

chaotic behaviors. 

In this study DNP became an important method for testing the predictability properties of 

the PPG signal. In several studies it was claimed that PPG time series of young healthy subjects 

are deterministic chaos, based mostly on results of the Lyapunov exponent, CD and time-delay 

trajectory reconstruction, which as it is nowadays known, may produce misleading results for 

noise contaminated real-world signals. Results of DNP (Fig. 2.6, 2.7) and its comparison with 

chaotic Rössler’s data provided not only substantial  support for the claim of the chaotic nature 

of the PPG, but more importantly, it provides one with quantitative (CC and RRMSE) as well as 

qualitative (similarity of prediction performance with noise induced chaotic Rössler’s data) 

characteristics of PPG dynamics. 

 

2.3.6. Poincaré section 

The Poincaré section is one of the most powerful tools for qualitative exploration of the 

dynamics of a system [Shelhamer, 2007], as it enables a demonstration of the process generating 

chaos in the phase space. The Poincaré section was obtained from a three-dimensional time-

delay reconstructed attractor by a clock-wise rotating slicing two-dimensional plane. Fig. 2.8 

demonstrates areas on trajectory sliced by the plane; in Fig. 2.9, an example of Poincaré sections 

for the 1st subject’s 1st measurement is shown. 

As seen from Fig. 2.8 and Fig. 2.9 dense trajectories (α=75
o
) tend to expand (α=150

o
), bend 

(α=225
o
) and stretch (α=300

o
) and then fold back (α=0

o
, α=75

o
) along the reconstructed attractor. 

This stretch-and-fold behavior generates sensitive dependence on the initial conditions, which is 

recognized as an important property of chaotic dynamics.  

The areas sliced by rotating plane on reconstructed trajectory of all PPG time series and 

corresponding to it Poincaré sections are shown in Fig. A.13-14 and Fig. A.15-24, respectively. 
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Fig. 2.8 The reconstructed trajectory sliced by the rotating plane for the PPG (for the 1
st
 

subject’s 1
st
 measurement). 

Fig. 2.9 Poincaré section for the PPG (for the 1st subject’s 1st measurement), where Y(t) = 

√𝑥(𝑡)2 + 𝑥(𝑡 + 𝜏)2. 
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2.3.7. Wayland test 

In order to explain the variability observed in complex time series and distinguish whether it 

is due to external stochastic noise, internal deterministic dynamics, or a combination of both, the 

Wayland test, which is a computationally simple variation of the Kaplan-Glass method and uses 

the phase space continuity observed in time series to measure determinism, was applied 

[Wayland et al, 1993].  

The Wayland test Translation Error (WTE), which can quantify smoothness of the flow 

reconstructed in the phase space, was calculated in this study. It is defined as median of local 

translation errors that are defined as follows:  

    etrans =
1

k+1
∑

‖vj−⟨v⟩‖
2

‖⟨v⟩‖2 ,k
j=0    

where vj=yj-xj are translation vectors, ⟨v⟩  is the average of v𝑗 , xj (j=1,2,…,k) are k nearest 

neighbors to the fixed and arbitrary chosen point x0 on the reconstructed trajectory and yj are 

projections of xj as shown in Fig. 2.10.  

The WTE performs well in high levels of uncorrelated noise and provides a robust measure 

of the determinism in the trajectories reconstructed in the phase space [Wayland et al, 1993] and 

it is insensitive to an overall scaling of the original time series. If the time series is deterministic, 

then vectors vj will be nearly equal and therefore the WTE will be small [Wayland et al, 1993]. 

For instance, for chaotic Rössler time series (dataset containing 60 000 points) with parameters 

as described in section 2.3.5, the WTE is 0.0002, for Rössler with 7% induced noise the WTE is 

0.0045, WTE for chaotic Lorenz is 0.0004 and for white noise is 1.08 (60 000 points). Table 2.3 

shows the results of WTE calculations for the PPG (time series size is 60 000 points). 

According to Table 2.3, most of the WTE values are small, except for those of the 3
rd

 

subject, which is an indication of determinism in the PPG data. Most the WTE values 

corresponding to the 3
rd

 subject are higher than white noise; therefore, the 3
rd

 subject’s data 

cannot be concluded to be deterministic. However it is still an open question whether this 

difference in WTE values between the 3
rd

 subject and other subjects comes from the 3
rd

 subject’s 
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heart disorder, which was declared in the questionnaire during data collection, from other 

individual features, or the presence of significantly high noise in the measured signal.  

 

 

Fig. 2.10 The nearest neighbors of an arbitrarily chosen point and its projections on a 

reconstructed trajectory for translation error calculation in the Wayland test. 

 

TABLE 2.3 Results of the Wayland test translation error (WTE) calculation for all collected 

PPG time series. 

 

Repeat         Subject           

  1 2 3 4 5 6 7 8 9 10 

1 0.007 0.041 1.046 0.023 0.016 0.092 0.015 0.012 0.031 0.018 

2 0.006 0.041 1.06 0.012 0.024 0.024 0.01 0.017 0.03 0.019 

3 0.005 0.045 1.351 0.013 0.02 0.059 0.019 0.016 0.015 0.027 

4 0.01 0.023 3.148 0.015 0.034 0.027 0.019 0.026 0.039 0.045 

5 0.024 0.048 1.197 0.05 0.085 0.017 0.037 0.035 0.048 0.024 
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2.3.8. Surrogation 

The surrogation approach is to specify a defined null hypothesis and generate set of 

surrogate signals that embody a hypothesis about the time series. Then by determining the 

distribution of the index under investigation obtained from surrogates, empirical statistical 

boundaries can be found. By comparing the index of the original time series with the distribution 

of the index from surrogates, the null hypothesis under which surrogates were generated can 

either be rejected if the value from the original signal does not overlap with the distribution from 

surrogates, or fail to be rejected if the original index is within distribution with high significance 

[Shelhamer, 2007; Theiler et al., 1992]. 

One of the typical applications of surrogate data is to check for determinism and whether 

data are a realization of a specific random process. In this study the null hypothesis is that the 

signal is a realization of a linear Gaussian stochastic process. Surrogate time series were created 

by phase randomization of Fourier transforms for the original PPG data and following inverse 

Fourier transform. As a result, the obtained surrogates are stochastic, but have the same power 

spectrum as the original data. Applying this type of surrogates allows one not only to place 

empirical boundaries, but also to test for nonlinearity of PPG. 

DNP was applied to 100 surrogate datasets. Fig. 2.11 (a) demonstrates the results of DNP 

for surrogate time series generated under the null hypothesis from the original data. As seen from 

the CC curves, the original signal is clearly distinct and does not overlap with curves 

corresponding to surrogates. Fig. 2.11 (b) shows frequency distribution of the 20 steps forward 

prediction CC for surrogates and CC value for the original PPG data; CC(20) values for 

surrogates and the PPG are corresponding to the values at the intersection of orange vertical line 

and CC curves in Fig. 2.11 (a). Results of DNP applied to 50 surrogate datasets for all PPG time 

series are shown in Fig. A.25-26. Since for most of the data in Fig. A.25-26 the PPG CC and 

surrogates CC are clearly distinguishable, the null hypothesis of a linear Gaussian stochastic 

process should be rejected. Additionally, it may be suggest that there is no significant effect of 

Gaussian noise, which PPG may contain, based on results of DNP.  
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(a) 

 

(b) 

Fig. 2.11 (a) Deterministic nonlinear prediction for the PPG (red line) and 100 surrogate 

datasets (blue lines), orange line indicates correlation coefficient values corresponding to the 20 

steps forward prediction; (b) frequency distribution of correlation coefficients for 100 surrogate 

datasets (blue bars) and correlation coefficient for original PPG (red line). 
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2.4. Discussion 

The objective of this study was to provide evidence that the PPG signal, obtained from 

healthy human subjects, is consistent with the definition of chaotic motion given by Thompson 

and Stewart and conduct a comprehensive study of the chaotic characteristics of PPG dynamics. 

Produced by sophisticated mechanisms of the cardiovascular system, the PPG signal is still not 

fully understood. In the in early 90s PPG was claimed to be chaotic based on time-delay 

reconstruction, LLE and CD results [Tsuda, 1992; Sumida and Arimitu, 2000], which were 

previously believed to be sufficient to identify chaos. However, many studies subsequently 

showed that these measures can be misleading and provide false evidence of chaos in the case of, 

for example, noise contaminated experimental data [Glass, 2009; Shelhamer, 2007; Skinner et al., 

1998]. In addition, it is well known that physiological data are inevitably contaminated by 

environmental noise and movement artifacts. And the same measures were used in application 

studies investigating the dependence of PPG characteristics from human subject’s mental and 

physiological conditions [Pham et al., 2013; Tsuda, 1992; Sumida and Arimitu, 2000].    

In an attempt to obtain reliable results, various methods of NTSA, including classical and 

widely used ones – power spectrum, time-delay embedding, and largest Lyapunov exponent have 

been applied and deterministic nonlinear prediction, Poincaré section, Wayland test and 

surrogation have been conducted. These results are not only considered to be more reliable in the 

case of noise-contaminated data, but can also provide new insights into the chaotic properties of 

PPG dynamics.  

Additionally, to study in more detail trajectories’ evolving process, trajectories spreading in 

phase-space have been directly investigated. An arbitrary chosen fixed point on an attractor and 

its nearest neighbor were selected as the starting points of two trajectories.  Fig. 2.12 shows the 

separation of these two trajectories based on the example of 140 and 300-step long segment for 

PPG time series (left side) and for Rössler’s single band chaos with 7 percent additive noise 

(right side), in both cases the trajectories evolve clock-wise. Star and circle markers are 

corresponding to trajectories originating from an arbitrarily chosen fixed point on an attractor 

and its neighboring trajectory, respectively, where red color indicates the starting and black color 



   

33 
 

the ending points of the segment. The distance between trajectories increases immediately with 

increasing evolution time step, however later trajectories are getting closer and remain in the 

bounded region. Obtained PPG trajectories are continuously bending due to that folding is 

realized. In this sense PPG’s attractor seems to belong to the same folded band topological group 

as Rössel’s single band chaotic attractor, rather than the Lorenz group, in which folding is 

produced by splitting and layering [Thompson and Stewart, 1991].  

 

Fig. 2.12 Trajectory tracings for PPG data (left) and Rössler’s single band chaos data with 7% 

additive noise (right). 

 

The investigated data primarily demonstrated the presence of an experimental attractor with 

clear structure, which is necessary for a deterministic process. As shown, the time-delay 

reconstructed PPG attractor had some topological similarity to the attractor obtained from 

Rössler’s single band chaotic data, in which folding is achieved by continuous bending 

[Thompson and Stewart, 1991]. All of the PPG time series had positive LLE that along with 

Poincaré section reflects the sensitive dependence on initial conditions. As shown in Fig. 2.6, Fig. 

2.7 and Fig. A.9-12 all of the data had short-term predictability. The CC curve tends to decline 
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slowly with an increase of the prediction step. To reach a conclusion on the existence of long-

term predictability, results of DNP for PPG were compared with DNP for chaotic Rössler’s data. 

Results of the comparison explicitly illustrated that PPG data should not have long-term 

predictability and that prediction performance of the PPG signal is similar to noise induced 

chaotic Rössler data.   The method of surrogate data applied to DNP confirmed the obtained 

results and demonstrated that there is no significant effect of Gaussian noise that may be 

contained the in signal on the results of DNP.  

To test determinism of the PPG underlying process the Wayland test was applied. Most of 

the data had a small WTE that clearly indicates strong determinism of the process generating 

PPG data. 

These results are consistent with the so-called “positive” definition of chaos by Thompson 

and Stewart [Thompson and Stewart, 1991] as “recurrent motion in simple systems or low-

dimensional behavior that has some random aspects as well as certain order”. Therefore healthy, 

young human subjects’ PPG dynamics could be concluded as chaotic motion, with chaotic 

characteristics, such as bending structure of the attractor, predictability properties similar to noise 

induced Rössler’s single-band chaos. 

 

2.5. Conclusion 

In this chapter nonlinear time series analysis was conducted to investigate the nature of 

finger PPG data obtained from healthy, young human subjects under resting conditions in a 

controlled environment. Spectral analysis, time-delay embedding, embedding dimension, 

nonlinear deterministic prediction, Poincaré section calculation, Wayland test and the method of 

surrogate data were applied to the data to obtain evidence that the studied PPG data are 

consistent with the definition of chaotic motion. Applied methods aimed to test the chaotic 

characteristics of PPG dynamics, such as dependence on initial conditions, predictability and 

determinism. The obtained results provided strong evidence that studied PPG signal dynamics is 

consistent with chaotic motion. Additionally, the similarity of PPG predictability properties and 

attractor’s topological structure to Rössler’s single band chaos was demonstrated. 
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These results provide new insights into the PPG signal characteristics and demonstrate the 

usefulness of deterministic nonlinear prediction, Poincaré section and the Wayland test in 

extracting the underlying chaotic characteristics of the PPG signal.  It is expected that application 

of the above mentioned methods of nonlinear time series analysis may contribute to future 

applied studies on the PPG signal to detect mental and physiological conditions of human 

subjects.  
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Chapter 3. Short-term predictability of human photoplethysmogram 

 

3.1. Introduction 

As discussed in Chapter 2, DNP as well as WTE and other methods of nonlinear time series 

analysis can provide important information about the characteristics of chaotic systems. While 

most of the tests are rather quantitative, prediction also allows one to make qualitative estimation, 

thus the quality of prediction performance may provide useful information for distinguishing the 

type of process underlying the signal. Although prediction per se cannot be used for dynamics 

identification, its results can be valuable for dynamics distinction. 

 In the previous chapter, the comparison of prediction results between Rössler’s single band 

chaos and the PPG provided an answer to the question of long-term prediction existence. Results 

explicitly demonstrated that long-term prediction is impossible. Additionally, certain similarities 

between PPG and Rössler’s reconstructed trajectory were found. However, these DNP results of 

the PPG data in comparison with Rössler and Lorenz in Chapter 2 gave rise to two new questions 

concerning PPG predictability properties. First of all, as shown in Fig. 2.6 and Fig. 3.1, the short-

term prediction performance for the PPG significantly differs from Rössler, Rössler with noise 

and Lorenz models, though for all of the curves in Fig. 2.6 and Fig. 3.1 short-term prediction is 

quite high in quality, and CC and RRMSE curves corresponding to the PPG have noticeably 

different shapes. The short-term DNP’s performance for Lorenz and Rössler forms a plateau 

region for CC before it starts to decay and remains high significantly longer than for PPG data. 

Although this difference does not put into question the prediction properties stated in Chapter 2, 

as the existence of short-term prediction is indisputable, this indicates that in very short-term 

evolution, Rössler’s single band chaos and the PPG underlying processes have considerable 

differences, which cannot be explained by simple matters such as noise induction. Understanding 

the PPG short-term prediction behavior is expected to provide one with a deeper understanding 

of PPG dynamics in general, which is one of the main objectives of this research. Therefore, one 

question originating from the results of Chapter 2, which will be investigated in this chapter, is 

http://www.thesaurus.com/browse/indisputable
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whether predictability similar to the PPG in the short-term can be observed in other systems, or 

in other words what type of dynamics exhibits similar prediction properties.  

As shown in Chapter 2, PPG signal dynamics is consistent with the definition of chaotic 

motion. Although similarities between the PPG and Rössler’s single band chaos were found, 

results in Chapter 2 demonstrated that only a comparative understanding of PPG dynamics could 

be achieved while its true dynamics remains unclear. Therefore to obtain insight into the 

characteristics of short-term prediction we will follow the constructive approach in which DNP 

is used as method for comparing properties between the PPG and well-known systems 

generating chaos. Since, as seen from results of Chapter 2, chaotic Lorenz and Rössler’s models 

do not possess short-term prediction properties that resemble those of the PPG, following the 

constructive approach, different types of chaotic models should be chosen for comparative study 

of the PPG’s short-term prediction characteristics. As both Lorenz and Rössler’s models belong 

to autonomous systems [Thompson and Stewart, 1991], in this chapter the PPG predictability is 

compared with a non-autonomous chaotic system. Even though finding similar DNP 

performance would not mean that the dynamics are identical between the PPG and a system 

possessing similar properties, as in the previous chapter, a comparative understanding of the PPG 

dynamics is expected to be achieved.   Therefore, one of the goals in this chapter is investigation 

of the PPG dynamics’ short-term predictability characteristics in comparison with a well-known 

chaotic non-autonomous system.  

Another question that inevitably arises from the DNP results of the previous chapter is 

related to the wide fluctuation of prediction performance that can be observed in DNP’s CC and 

RRMSE curves for many time series, as seen in Fig. A.9-12. Variations in these fluctuations not 

only from subject to subject, but also those between measurement repeats for the same subject 

might be meaningful. Therefore, what causes this phenomenon is another question under 

investigation in this chapter.  

 In Chapter 2, the results of DNP’s CC and RRMSE were averaged over the PPG 

reconstructed trajectory and therefore correspond to the reconstructed trajectory overall, except 

for the portion that was chosen as the library if the calculation method involves library creation. 
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Results representing the properties of PPG dynamics obtained from whole reconstructed 

trajectory will be referred to herein as global scale results or properties; thus conventional 

prediction results obtained in Chapter 2 will be called global prediction. As seen from the 

reconstructed attractor (Fig. 2.4) and Poincaré sections (Fig. 2.9), trajectories expansion and 

density depend on the local region along the reconstructed attractor and therefore it can be 

assumed that prediction performance might differ locally on each part of the reconstructed 

trajectory. From one point of view this possible variation of dynamical properties among 

different parts or regions along the reconstructed trajectory might be able to explain the 

considerable fluctuations observed in global prediction performance. On the other hand, by itself, 

investigation of local dynamics properties might provide one with a deeper understanding of the 

PPG dynamics and as a result promote further development of PPG applications, since every 

region along the reconstructed attractor can be associated with the cardiac cycle’s phases: atrial 

contraction, isovolumetric contraction, rapid ejection, reduced ejection, isovolumetric relaxation, 

rapid filling and reduced filling. 

In contrast with global prediction, prediction calculated on a fixed region of the 

reconstructed trajectory will be called local prediction. Therefore, for a better understanding of 

PPG dynamics, in addition to the comparative study of global short-term prediction, this chapter 

also aims to investigate local short-term prediction.  

 

3.2. Methodology 

3.2.1. Comparative study of global short-term DNP 

As mentioned above, in this chapter a non-autonomous chaotic system is used for 

comparative investigation of the PPG’s short-term predictability. One of the well-known 

examples of non-autonomous systems is the chaotic Duffing’s forced oscillator, which is utilized 

in this chapter. Duffing’s forced oscillator is described by the following equation: 

𝑥̈ + 𝑘𝑥̇ + 𝑥3 = 𝐵𝑐𝑜𝑠(𝜔𝑡),                                                   (3.1) 
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where the system coefficients were chosen as k=0.05, B=7.5, ω=1, which corresponds to a 

chaotic regime [Thompson and Stewart, 1991]. Numerical simulation was done by the 4th order 

Runge-Kutta method with time step 0.01, and the calculated time series size was 60 000 data 

points. 

 

Fig. 3.1 Correlation coefficient (CC) curves for nonlinear deterministic prediction of Rössler’s 

single band chaos, chaotic Lorenz, chaotic Duffing’s forced oscillator and the PPG. 

 

DNP CC for Duffing’s forced oscillator in comparison with Rössler, Lorenz and PPG DNPs 

are shown in Fig. 3.1, where it is seen that the short-term CC curve corresponding to Duffing’s 

data has a significantly faster drop, compared with Rössler’s and Lorenz’s curves. Therefore, 

Duffing’s chaotic forced oscillator was used for comparative study of PPG predictability. 

 

3.2.2. Local DNP 

DNP short-term performance shown in Fig. 3.1 is referred to as the prediction performance 

averaged over the PPG reconstructed trajectory, i.e. the global DNP. However as seen from the 

reconstructed trajectory (Fig. 2.4) and Poincaré section (Fig. 2.9), the trajectories density and 
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evolving process differs along the reconstructed attractor. Therefore, it is expected that 

prediction performance might differ locally depending on the region of the trajectory where the 

DNP is conducted. In order to investigate local short-term predictability of the PPG in a fixed 

region on the reconstructed trajectory, CC and REMSE need to be calculated over this local 

region.  Let 𝑡1
𝑖  and 𝑡2

𝑖  be starting and ending points of the i
th

 region on the reconstructed 

trajectory, then formulas (2.1) – (2.2) can be rewritten as  

𝐶𝐶𝑖(𝑝) =
∑ (𝑍(𝑡 + 𝑝) − 𝑍̅(𝑡 + 𝑝))(𝑍∗(𝑡 + 𝑝) − 𝑍∗̅̅ ̅(𝑡 + 𝑝))

𝑡2
𝑖

𝑡=𝑡1
𝑖

√∑ (𝑍(𝑡 + 𝑝) − 𝑍̅(𝑡 + 𝑝))2𝑡2
𝑖

𝑡=𝑡1
𝑖 √∑ (𝑍∗(𝑡 + 𝑝) − 𝑍∗̅̅ ̅(𝑡 + 𝑝))

2𝑡2
𝑖

𝑡=𝑡1
𝑖

, 

𝑅𝑅𝑀𝑆𝐸𝑖(𝑝) = √
∑ (𝑍(𝑡 + 𝑝) − 𝑍∗(𝑡 + 𝑝))

2𝑡2
𝑖

𝑡=𝑡1
𝑖

∑ (𝑍(𝑡 + 𝑝) − 𝑍̅(𝑡 + 𝑝))2𝑡2
𝑖

𝑡=𝑡1
𝑖

 . 

CCi and RRMSEi defined by these formulas are the local correlation coefficient and relative root 

mean square error corresponding to the i
th

 region. 

 

3.3. Results 

3.3.1. Global short-term prediction 

Similar to section 2.3.5, DNP was applied to the data sets described in section 2.2. However, 

Duffing’s chaotic forced oscillator (3.1) was chosen as the model for comparison instead of 

Rössler and Lorenz models.  

Fig. 3.2 (a) and (b) demonstrate short-term prediction’s CC and RRMSE, respectively, for 

the PPG, chaotic Duffing’s time series and Duffing’s time series with 7% noise induction. 

Results for Rössler’s single band chaos  prediction (same as in the section 2.3.5) were added to 

illustrate differences in prediction performance. Fig. A. 27-30 show results of global short-term 

prediction CC and RRMSE for all PPG datasets and Fig. 3.3-3.6 demonstrate 450 steps forward 

DNP performance for Rössler and Duffing, Duffing with 7% noise and PPG data. As seen from 
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Fig. 3.2, even a short-term prediction performance for both Rössler and Duffing’s time series 

shows considerable differences, and while the CC curve for Rössler’s time series does not 

demonstrate any noticeable decline for short-term (30 time steps forward) prediction, the CC 

curve corresponding to Duffing’s time series has a distinguishable decline.  Noise induction on 

the Duffing’s data preserves the CC’s curve declining trend and results in a decrease in the 

prediction performance. As is clearly seen in Fig. 3.2 (a), PPG short-term prediction’s CC has 

significant similarity with 7% noise induced Duffing’s forced oscillator over a range from 1 to 

16 steps forward prediction. Although, as can be seen from Fig. A.27-30, CC and RRMSE values 

for the PPG and noise induced Duffing have differences for many other time series starting from 

10 steps forward prediction, what is significant is that for both, the PPG and noise induced 

Duffing’s data show a similar trend of a relatively rapid CC curve decline, compared with 

Rössler’s data. Differences between prediction performance for the PPG and Duffing with 

Rössler are even more enhanced in RRMSE plots. The RRMSE for Duffing and the PPG have a 

rapid increase unlike the RRMSE for Rössler, whose curve remains close to zero and almost flat, 

as seen in Fig. 3.5-6 and Fig. A.29-30. Additionally, in many cases DNP performance for 

Duffing’s data and the PPG have similar high fluctuations of CC and RRMSE curves that were 

not observed in Rössler’s DNP, as seen in Fig. 3.3-3.6. 

Therefore, the PPG short-term predictability has some similarity with the predictability of 

noise induced Duffing’s forced oscillator’s data rather than with Rössler, although as shown in 

Chapter 2, on a global scale, the PGG reconstructed attractor has some topological similarity to 

the noise induced Rössler’s single band chaos.  
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(a)

 

(b) 

Fig. 3.2 (a) Correlation coefficient (CC) and (b) relative root mean squared error (RRMSE) 

curves for deterministic nonlinear prediction of Rössler’s single band chaos, chaotic Duffing’s 

forced oscillator, chaotic Duffing’s forced oscillator data with 7% additive noise and the PPG. 
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Fig. 3.3 Correlation coefficient (CC) for deterministic nonlinear prediction of Rössler’s single band chaos, chaotic Duffing’s forced 

oscillator, chaotic Duffing’s forced oscillator with 7% additive noise and the PPG for 5 measurement repeats (columns) of subjects 1-

5 (rows). 
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Fig. 3.4 Correlation coefficient (CC) for deterministic nonlinear prediction of Rössler’s single band chaos, chaotic Duffing’s forced 

oscillator, chaotic Duffing’s forced oscillator with 7% additive noise and the PPG for 5 measurement repeats (columns) of subjects 6-

10 (rows). 
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Fig. 3.5 Relative root mean square error (RRMSE) for deterministic nonlinear prediction of Rössler’s single band chaos, chaotic 

Duffing’s forced oscillator, chaotic Duffing’s forced oscillator with 7% additive noise and the PPG for 5 measurement repeats 

(columns) of subjects 1-5 (rows). 
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Fig. 3.6 Relative root mean square error (RRMSE) for deterministic nonlinear prediction of Rössler’s single band chaos, chaotic 

Duffing’s forced oscillator, chaotic Duffing’s forced oscillator with 7% additive noise and the PPG for 5 measurement repeats 

(columns) of subjects 6-10(rows). 
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3.3.2. Local regional short-term prediction 

In order to achieve a better understanding of local PPG dynamics by utilizing short-term 

prediction, 4 regions on the reconstructed trajectory (Fig. 3.7) were chosen empirically for 

conducting local short-term prediction. Examples of 4 similar local regions for the 1
st
 subject’s 

1
st
 measurement, 4

th
 subject’s 1

st
 measurement, 8

th
 subject’s 1

st
 measurement and 10

th
 subject’s 

2
nd

 measurement are shown in the first row of Fig. 3.8  

 

 

Fig. 3.7 Four local regions on the portion of the reconstructed PPG trajectory in which local 

short-term prediction was conducted (for better visualization only part of the reconstructed 

trajectory is shown). 

 

The middle and bottom rows in Fig. 3.8 show the local CC and RRMSE, respectively, over 

the four chosen regions and global short-term DNP (blue lines). The upper row of Fig. 3.8 shows 
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the corresponding 4 regions on each reconstructed trajectory. As seen in Fig. 3.8 in the range of 

1-5 steps forward prediction there is almost no observable difference in the prediction 

performance between different regions on the reconstructed trajectory for the CC, while clear 

differences can be seen in the RRMSE; and for predictions longer than 5 steps considerable 

differences in both local CC and RRMSE curve shape can be observed. Thus, DNP performance 

in regions 1, 3 and 4 (green, magenta and red lines) all show significantly different decreasing 

trends for shown subjects.  

Fig. 3.8 demonstrates examples of local components that contribute to global short-term 

prediction performance after averaging along the reconstructed trajectory. With the same 

prediction step length, but different predictee, the predicted value may appear in a region with 

higher or lower averaged prediction performance, i.e. global CC or RRMSE values might be 

affected by local predictability. Therefore, predictability differences on the local level might be 

able contribute to understanding of significant fluctuations observed in global short-term 

predictions (Fig. 3.3-6). 

A study of local predictability also allows the identification of regions with the lowest or 

highest prediction performance, thus for example for the 8
th

 subject’s 1
st
 measurement (3

rd
 

column in Fig. 3.8), among the 4 different regions shown on the trajectory, the lowest prediction 

performance is observed in region 2 (yellow line), which corresponds to the bending part of the 

reconstructed attractor. The highest prediction performance among 4 regions is observed in 

region 3 (magenta line) that according to Poincaré section corresponds to the folded part of the 

reconstructed trajectory. 
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Fig. 3.8 Four local regions on part of reconstructed PPG trajectory in which local short-term prediction was conducted (upper row); 

Correlation coefficient (CC) (middle row) and relative root mean squared error (RRMSE)(bottom row) curves for local short-term 

deterministic nonlinear prediction in 4 regions of reconstructed PPG trajectory for subjects 1, 4, 8 and 10.
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3.4. Discussion 

The objective of this chapter was to provide additional insight into the short-term 

predictability of the PPG as it may uncover new characteristics of PPG dynamics and help to find 

answers to the questions that arose from the DNP results in Chapter 2. With regard to detecting 

chaotic motion in the PPG (Chapter 2), only the existence of short-term prediction needed to be 

proven, while its characteristics were of no interest. Besides that, none of the numerous studies 

dealing with conventional or nonlinear time series analysis of the PPG have investigated the 

behavior of short-term predictability. However as seen in Fig. 3.2-6, short-term prediction itself 

can provide useful and valuable information about the features of PPG dynamics. Thus, the 

performance of global (overall trajectory) short-term prediction showing rapid decline, which 

was not observed when the Rössler and Lorenz models were utilized, was found to be similar to 

short-term prediction properties of 7% noise induced Duffing’s forced oscillator, even though the 

trajectory evolving process and PPG attractor topology were found to be similar to noise induced 

Rössler’s single band chaos. Besides that, similarities in CC and RRMSE fluctuations could be 

observed in most of the PPG time series and noise induced chaotic Duffing’s forced oscillator 

prediction performance, which were not observed for Rössler’s CC and RRMSE. As Duffing’s 

chaotic forced oscillator is classified as a non-autonomous system, these results reveal the 

possibility that PPG dynamics is a non-autonomous system, although further detailed 

investigation of the similarities between non-autonomous systems and the PPG is required.  

An additional investigation of local predictability (Fig. 3.8) showed that depending on the 

region along the reconstructed trajectory, DNP performance can significantly differ from 

forming a slowly growing RRMSE curve (region 3 in Fig. 3.8 for subject 4) to its quick rise 

(region 4 in Fig. 3.8 for subject 4). These differences do not question the existence of short-term 

prediction, but emphasize the importance of studying local dynamics behavior. Predictability 

differences between local regions might be one of the reasons leading to significant fluctuations 

in the global CC and RRMSE curves. 
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3.5. Conclusion 

In this chapter careful attention was paid to the performance of short-term prediction over 

the reconstructed trajectory, i.e. global DNP, as well as the local DNP. Global short-term 

prediction was investigated by comparisons with Duffing’s forced oscillator in the chaotic 

regime. Results of a comparative study of the PPG signal, from one point of view, allowed a 

detailed study of the PPG short-term predictability properties and at the same time demonstrated 

certain similarities between global prediction performance of the PPG and 7% noise induced 

Duffing’s forced oscillator. Additionally, results of the global short-term prediction emphasized 

that despite certain similarities in the dynamics properties with Duffing’s data or trajectory 

topology with Rössler’s single band chaos, the actual PPG underlying dynamics were not 

revealed and its aspects can only be investigated by comparative studies, as in the constructive 

approach. Based on these results it is expected that further comparative investigation of the PPG 

and non-autonomous systems might be beneficial for revealing the PPG dynamics properties. 

Additional analysis of local predictability demonstrated that local regions along the 

reconstructed attractor have considerably different predictability. Since different areas on the 

PPG attractor refers to different phases of blood pulsation information of local, differences 

between regions on the reconstructed PPG trajectory might provide useful data for new 

application studies and a deeper understanding of the PPG dynamics. However, further 

investigation of the local characteristics of the reconstructed dynamics is required. 

  



   

52 
 

Chapter 4. Application of Photoplethysmogram for Detecting Physiological 

Effects of Tractor Noise 

 

4.1. Introduction 

Agriculture work-related operations can significantly affect farmers’ health by exposure to 

various natural and artificial effects, such as heat, humidity, noise, vibration etc. Many studies 

have paid close attention to the physiological effect of whole-body vibration [Kittusami et al., 

2004; Muzammil et al., 2004] and the problem of power machinery operator's hearing loss due to 

noise exposure [McBride et al., 2003; Murphy, 1992; World health organization]. However, the 

effects of agriculture machinery on the CVS, which consists of heart and vessels' network and 

transports blood through the body, results in even more hazardous consequences for the 

operator's health. These farm work related effects might be especially severe for aging farmers’ 

health. Recently it has been reported by the Japanese Ministry of Agriculture, Forestry and 

Fisheries (MAFF) that a substantial number of farm workers in Japan are over 60 years old.  

Annually about 400 farmers die while performing agriculture work and 70% of these die while 

operating agriculture machinery [Takai et al., 1992; Takai, 2000]. According to MAFF data, the 

number of fatalities in the agricultural industry has remained stable over the last 40 years, while 

significantly decreasing in other sectors; for example, fatal cases in the construction sector have 

decreased 5-fold since 1971.  

The need to protect farmer’s health during farm work has made monitoring of CVS 

performance during exposure to agricultural machinery noise, vibration etc. an extremely 

important issue. 

Nowadays the advantages of wireless and wearable sensor technology, such as installation 

flexibility, mobility, increased robustness and decreased maintenance complexity and cost have 

made it extremely useful and promising for various applications in the agriculture and food 

industries [Kawakura and Shibasaki, 2014; Wang et al., 2005]. However, there is still a shortage 

of techniques to deal with farm workers’ health monitoring in the agricultural industry.   
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Exposure to heat, vibration, high level noise etc. has significant impact on cutaneous blood 

flow as shown in Table A.1. And PPG is one of commonly used nowadays techniques that 

allows registration of changes in cutaneous blood circulation.  

Though tractor operator exposed to combination of various effects, physiological impact of 

each of them need to be studied carefully before assessment of factors combination can be done. 

Therefore this study sought to investigate the effect of tractor noise on the operator’s CVS 

performance by utilizing a PPG finger sensor. In an attempt to develop a simple and reliable 

method to estimate changes in an operator’s state of health during farming under noise exposure 

tools of nonlinear time series analysis, such as time-delay embedding and Wayland test along 

with Fourier analysis have been applied to the PPG signal measured on young subjects exposed 

to tractor sound (noise level exceeding 80 dBA) and in a controlled environment with 

background noise (noise level less than 43dBA) to obtain indexes reflecting changes in CVS 

output. 

 

4.2. Materials and Methods 

Data were collected from seven healthy 20- to 25-year old volunteers among students of 

Tokyo University of Agriculture and Technology (TUAT). Experimental data collection was 

approved by TUAT authorities. Written informed consent was obtained from participants prior 

the experiment. At the time of the study all subjects were healthy, physically active to similar 

levels, were not taking any medication, and none declared a history of heart disease. The PPG 

signal first was recorded with the subject in a relaxed sitting position in a controlled environment 

with background noise level and then with tractor sound corresponding to engine speeds at 900 

rpm (low), 1900 rpm (medium) and 2750 rpm (high). A T125F ISEKI tractor was used for 

generating sound. During data collection with tractor noise exposure subjects were facing the 

right side of the tractor at a distance of 1.5 m from the tractor engine (Fig. 4.1).  

For each condition two measurement repeats were conducted. The measurement period was 

5 min with 5 msec sampling steps. For all data collection sessions, a BACS (Computer 

convenience, Inc.) transmission-mode pulse oximeter (Fig. 2.1) was located on the right 
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forefinger same as in the experiment described in section 2.2.  The first measurement was 

preceded by a blood pressure check. 

 

Fig. 4.1 Data collection experiment under exposure of tractor noise. 

Examples of data collected from the same subject with background noise level and under 

exposure to high noise are shown in Fig. 4.2(a) and Fig. 4.3 (a) respectively. Fig. A.31-32 show 

all collected PPG time series. The noise level was measured at the head of the subject using a 

CUSTOM SL-1370 sound level meter. The measured averaged noise levels for reference 

(background noise) and three engine speeds (low, medium and high) were 42dBA, 72dBA, 

82dBA and 87dBA, respectively.  

 

4.3. Results and Discussion 

The PPG as a physiological signal derived from the cardiovascular system shows an extreme 

intricacy arising from the interaction of many processes, structure units and feedback loops in 

humans. As it was demonstrated in the Chapter 2 among various methods applicable for 

analyzing and extracting information from such a complex signals like the PPG, methods of 

nonlinear time series analysis appear to be useful for studying the underlying properties of the 

signal. In this study Fourier analysis, time-delay reconstruction technique and the Wayland test 

were applied to collected PPG data. 



   

55 
 

4.3.1. Fourier Analysis 

Spectral analysis is one of the widely used tools for time series, including PPG signal [Akar 

et al., 2013], analysis. In this study spectral analysis was applied to the PPG data. Examples of 

typical plots of the spectrum in the studied time series corresponding to background noise level 

and the PPG recorded under high noise exposure are shown in Fig. 4.2 (b) and Fig. 4.3 (b), 

where the predominant component’s period (HF) is approximately equal to the heart beat cycle 

period. Lower frequency components (LF) correspond to respiration and other effects, such as 

thermoregulation and nervous system activity. Results of Fourier analysis for all PPG time series 

are show in Fig. A.33-34. 

One of indexes typically applied for heart rate variability studies is the ratio of lower 

frequency to high frequency, which is equal in this study to fundamental component frequency, 

correspondingly LF and HF in Fig. 4.2 (b) and Fig 4.3 (b). This ratio is recognized as a useful 

index for assessing cardiac sympatho-vagal balance for healthy subjects [Pagani et al., 1986; 

Reyers et al., 2013]. The ratio of these two significant frequency components (LF/HF) is shown 

in Table 4.1.   

 

TABLE 4.1 Value of LF/HF under exposure to noise. 

Noise level Repeat  Subject  

  1 2 3 4 5 6 7 

Ref., 1 0.195 0.464 0.808 0.387 0.504 0.183 0.736 

42 dBA 2 0.227 0.472 0.878 0.54 0.34 0.335 1.36 

Low, 1 0.411 0.608 1.184 0.382 0.253 0.277 0.57 

72 dBA 2 0.527 0.918 1.278 336 0.322 0.262 0.621 

Med., 1 0.681 0.855 1.421 0.377 0.482 0.155 1.516 

82 dBA 2 0.46 1.366 1.467 0.711 0.679 0.456 2.244 

High, 1 0.579 0.979 0.868 0.815 0.406 0.332 1.616 

87 dBA 2 0.657 1.361 1.344 0.887 1.01 0.264 1.452 

 

4.3.2. Time-Delay Embedding  

Following time-delay embedding method performed in Chapter 2, the time lag for the 

embedding have been defined as a quarter of the period of the spectrum predominant component 
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and have been reconstructed PPG trajectory in 4-dimensional phase-space. An example of 

typical data for a time-delay reconstructed attractor for cases of background and high tractor 

noise is shown in Fig. 4.2 (c) and Fig. 4.3 (c), respectively. Time-delay reconstructed trajectories 

for all PPG time series are show in Fig. A.35-36. 

The Fig. 4.2 (c) represents typical reconstructed attractor’s structure for PPG data obtained 

from healthy young subject in resting condition. This result is similar with reconstructed 

trajectory obtained for healthy subjects in the Chapter 2. Trajectories in shown attractor are 

continuously bending due to that folding is realized. As it can be seen from Fig. 4.2 (c) and Fig. 

4.3 (c) attractor’s geometry may change depend on subject’s physical condition; under noise 

exposure attractor shrinks and PPG variability decreases, at the same time structure of attractor 

in Fig. 4.3-c became unclear, comparing with one corresponding to resting condition in Fig. 4.2 

(c).  

 

4.3.3. Wayland Test 

Analogically to Chapter 2 the Wayland test was applied to all collected time series. Table 

4.2 shows the results of WTE calculations. As it can be seen all WTE values are enough small to 

conclude corresponding time series are deterministic. 

 

TABLE 4.2 Translation Error values under exposure to noise. 

Noise level Repeat  Subject  

  1 2 3 4 5 6 7 

Ref., 1 0.02 0.007 0.025 0.007 0.014 0.006 0.021 

42 dBA 2 0.025 0.007 0.044 0.007 0.013 0.01 0.031 

Low, 1 0.048 0.011 0.037 0.007 0.01 0.012 0.02 

72 dBA 2 0.031 0.016 0.035 0.007 0.013 0.011 0.019 

Med., 1 0.064 0.017 0.027 0.01 0.016 0.012 0.039 

82 dBA 2 0.06 0.024 0.028 0.01 0.03 0.017 0.076 

High, 1 0.047 0.016 0.013 0.025 0.016 0.02 0.07 

87 dBA 2 0.073 0.024 0.025 0.02 0.042 0.017 0.057 
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(a)  

(b)  

(c)  

Fig. 4.2 Case of background noise level: (a) PPG time series; (b) Fourier spectrum; (c) time-

delay reconstructed trajectory. 
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(a)  

(b)  

(c)  

Fig. 4.3 Case of tractor high level noise: (a) PPG time series; (b) Fourier spectrum; (c) time-

delay reconstructed trajectory. 
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4.3.4. Statistical Analysis 

Two significant frequency components: LF and HF, the ratio LF/HF and WTE were tested 

with Welch’s t-test, one- and two-factor ANOVA tests, where noise level was factor for one-

factor ANOVA, noise and subjects were factors for two-factor ANOVA. Results are summarized 

in Table 4.3, which reflects the significance level α with which the null hypothesis of equal 

sample means is rejected. Only noise levels higher than 80 dBA are considered to be potentially 

harmful for human health. Table 4.4 presents permissible maximum times for noise exposure. 

Highlighted values indicate noise levels to which subjects were exposed during data collection. 

Results shown in Table 4.3 take into account noise only for medium (1900 rpm) and high engine 

speeds (2750 rpm), since the noise level for both of them was higher than 80 dBA.  

Results demonstrated that HF and the LF/HF ratio corresponding to the reference data and 

data taken during tractor noise exposure differ significantly. According to Table 4.3, results 

obtained from Fourier analysis and the WTE could clearly distinguish between background and 

noisy conditions and in most of the tests α corresponding to the WTE was not larger than that for 

HF, LF/HF. Additionally, prevailing small values of calculated WTE indicated the deterministic 

nature of the PPG signal despite the presence or absence of noise. Two factor ANOVA tests 

showed that along with the noise level, personal features of subjects can also affect the HF, 

LF/HF values, while WTE is less dependent on each individual subject. This advantage of WTE 

makes it useful for application in health monitoring in various fields including agriculture. 

 

TABLE 4.3 Results of t-test and ANOVA tests for the equal sample means null hypothesis 

check for HF, LF, LF/HF and WTE indexes. 

  
HF LF LF/HF WTE 

T-test 
Ref vs. 

Med&High 
-- 0.1 0.1 0.005 

ANOVA 

1F 

Ref vs. Med 0.05 -- 0.05 0.05 

Ref vs. High 0.05 -- 0.05 0.025 

Ref vs. 

Med&High 
0.05 -- 0.1 0.025 

ANOVA Noise level 0.001 0.025 0.025 0.001 

2F Subject 0.001 0.001 0.001 -- 
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TABLE 4.4 Noise levels and maximum noise exposure time [WHO]. 

Exposure level, dBA 80 82 85 88 91 94 97 

Max exposure time, h 24 16 8 4 2 1 0.5 

 

4.4. Conclusion 

The results demonstrate that the WTE, as well as widely used HF and LF/HF indexes 

obtained by Fourier analysis, can be useful tools for assessing CVS performance under different 

noise conditions and are able to distinguish between data taken during exposure to tractor engine 

noise and background noise levels. Moreover, according to Table 4.3, the WTE appeared to be a 

statistically more reliable index than HF and LF/HF since it can differentiate data obtained under 

different levels of noise with lower significance level α. In addition, WTE is likely to be more 

generally applicable than HF and LF/HF due to its independence from individual subjects. 

Additionally, WTE revealed the presence of determinism in all measured data, which is an 

important characteristic of CVS processes.  

This study revealed that the WTE is a valuable tool for assessing physiological burden in 

resting condition under exposure to different levels of noise while noise level does not have 

significant changes during each measurement. However, during real farm operations involving 

power machinery noise level would not be stable as well as operator would experience 

significant physiological load from vibration, temperature changes, etc. besides noise. Therefore 

it can be suggested that the ability of the WTE to indicate changes in the PPG arising due to 

noise exposure expected to be useful for upcoming studies on detecting physiological effects in 

environment with continuously changing noise and in conditions when operator exposed to 

combination of noise and other effects produced by agriculture machinery. Thus the WTE can be 

a useful index used for effective real-time monitoring of the CVS condition of farmers during 

their operation of agriculture machinery. Real time CVS monitoring is expected to decrease 

hazards to farmers’ health.  
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Chapter 5. Perspective and conclusions 

 

5.1 Perspective 

The main motivation for this study was fact even though photoplethysmography technology 

has been used for decades and has become routinely used in health monitoring, the dynamics of 

the PPG signal is still not well studied and it remains unclear what type of process underlies the 

PPG. Despite several reports claiming the chaotic nature of the PPG in the early 1990s, it is still 

unclear whether PPG dynamics involves chaotic motion or not. Inspired by the idea that a better 

understanding of PPG dynamics and its properties may allow one to discover new possibilities 

for medical applications and stimulate improvement of existing health care technologies, this 

study have been undertaken to achieve the ultimate goal to prove that PPG dynamics is 

consistent with chaotic motion and to provide a comprehensive toolkit that can reveal PPG’s 

chaotic dynamics characteristics. In addition, this study aimed to demonstrate the usefulness of 

methods of nonlinear time series analysis for application studies. Considering the increasing 

proportion of aging farmers in the agricultural industry, an additional aim of this thesis was to 

provide an example of the application and usefulness of nonlinear time series methods to CVS 

health monitoring of agriculture workers.  

To fulfill these objectives, in this study two sets of data were collected. The first experiment 

was designed to obtain reference PPG time series from young healthy subjects that were not 

affected by external disturbances, such as noise, temperature fluctuations, vibration, and high 

light intensity, in the absence of any effects of mental activity, stress, sickness, etc. In the second 

experiment, data were collected from subjects that were affected by different levels of external 

noise produced by agriculture machinery, while other conditions were similar to the first 

experiment. Both experiments were conducted in a controlled environment taking into account 

factors that may considerably affect the PPG signal.  

To meet the ultimate goal of this study, comprehensive nonlinear time series analyses were 

applied to the collected PPG time series. Methods of nonlinear time series analysis were 
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carefully chosen in order to test all defining properties of chaotic dynamics. Methods of 

nonlinear time series analysis were conducted using a set of programs developed in MATLAB. 

Selected methods were applied to the data collected in circumstances of noise produced by 

agriculture machinery to demonstrate the applicability of the PPG signal for detection of 

physiological effects of noise, which act as an external irritant, and to illustrate the usefulness of 

nonlinear time series methods in distinguishing the effects of different levels of noise on the PPG. 

 

5.2 Conclusions 

1. Comprehensive nonlinear time series analysis. Results of the PPG signal investigation 

based on comprehensive nonlinear time series analysis described in Chapter 2 allowed to 

conclude that PPG data from young human subjects is consistent with motion on a strange 

attractor. Due to comparative investigation in accordance with the constructive approach of the 

PPG and Rössler’s single band chaos, a topological similarity between the PPG reconstructed 

trajectory and Rössler’s single band chaos was found. As a result, PPG’s reconstructed attractor 

was classified as a folded band type. Additionally, the obtained results demonstrated the 

effectiveness of the designed comprehensive nonlinear time series analysis methodology as a 

chaotic dynamics investigation toolkit, which covers most essential properties of a chaotic signal.  

 

2. Short-term predictability properties of the PPG. It was also found that deterministic 

nonlinear prediction, which has not previously been applied either to a theoretical investigation 

or to an applied study of PPG dynamics, is quite useful for chaotic dynamics investigation and is 

also a promising tool for future application studies. Additional investigation was devoted to the 

short-term predictability properties of the PPG signal in Chapter 3. These results demonstrated 

that the PPG signal’s global (corresponding to overall reconstructed trajectory) and local (in a 

fixed region on the reconstructed trajectory) dynamics may differ considerably. This finding 

clearly demonstrates that detailed PPG dynamics investigations cannot concentrate only on 

global or local dynamics. In addition, it creates an opportunity for further improvement of 

photoplethysmographic technology applications in health monitoring, as PPG trajectory local 
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regions can be associated with different phases of blood circulation, which is correlated with 

heart cycles.  Additionally results of global short-term prediction were found to be similar to the 

DNP performance of the chaotic Duffing’s forced oscillator. It implies that different aspects of 

complex PPG dynamics can be reproduced by various chaotic models and depend on study 

objectives well-known chaotic models, such as Rössler’s single band chaos or chaotic Duffing’s 

forced oscillator, can be utilized for comparative study of the PPG signal’s chaotic properties. 

However none of the discussed models’ dynamics is identical to the PPG dynamics, and only a 

comparative understanding of the PPG properties was achieved.   

 

3. Application for Agricultural Ergonomics. An application study related to occupational 

health monitoring was conducted in Chapter 4 and its results allow to conclude that the PPG 

signal itself and in particular, the nonlinear time series analysis of the PPG is highly valuable for 

health monitoring applications in the agricultural field, as PPG can potentially be used for 

detecting physiological changes in agriculture workers’ blood circulation during the operation of 

farm machinery or while performing other agricultural work. The results obtained also 

emphasized the usefulness of nonlinear time series analysis methods for detecting blood 

circulation changes via the PPG signal compared with conventional analysis. 

 

In summary, it can be concluded that comprehensive nonlinear time series analysis has high 

potential for effective and reliable PPG dynamics investigation. Its application to the PPG will 

not only improve one’s understanding of PPG dynamics, but also stimulate the development of 

new PPG signal-based applications for health monitoring in general and particularly in the 

agricultural industry.     



   

64 
 

References 

 

Abarbanel, H. D. I. The analysis of observed chaotic data in physical systems. Rev. of modern 

physics 1993;65:1331-1392. 

Agache, P. G., Dupond, A.-S. Assesment of scin blood flow in vascular diseases. Bioengineering 

of the skin: Cutaneous Blood Flow and Erythema. CRC Press, USA. 1995, pp. 155-170. 

Akar, S. A., Kara, S., Latifoglu, F., Bilgic, V. Spectral analysis of photoplethysmographic signals: 

The importance of processing. Biomedical signals processing and control 2013;8:16-22. 

Allen, J. Photoplethysmography and its application in clinical physiological measurement. 

Physiological measurement 2007;28:1-39.  

Bernardi, L., Leuzzi, S. Laser Doppler flowmetry and photoplethysmography: basic principles 

and hardware. Bioengineering of the skin: Cutaneous Blood Flow and Erythema. CRC Press, 

USA. 1995, pp. 31-56. 

Bezruchko, B.B., Smirnov, D.A., Extracting Knowledge From Time Series. Springer, Berlin, 

2010. 

Bortolotto, L. A., Blacher, J., Kondo, T., Takazawa, K., Safar, M. E. Assesment of vascular aging 

and atherosclerosis in hypertensive subjects: second derivative of photoplethysmogram 

versus pulse wave velocity. American journal of hypertension 2000;13:165-171. 

Cao, L. Practical method for determining the minimum embedding dimension of a scalar time 

series. Physica D 1997;110:43-50.  

Elgendi, M. Detection of c, d and e waves in the acceleration photoplethysmogram. Computer 

methods and programs in biomedicine 2014;117:125-126. 

Elgendi, M. On the analysis of fingertip photoplethysmogram signals. Current cardiology reviews 

2012;8:14-25. 

Elgendi, M., Jonkman, M., DeBoer, F. Heart rate variability and the acceleration plethysmogram 

signals measured at rest. Biomedical engineering systems and technologies. Springer-Verlag 

Berlin Heidelberg 2011, pp. 266-277. 



   

65 
 

Elgendi, M., Norton, I., Brearley, M., Abbot, D., Schuurmans, D. Detection of a nd b waves in the 

acceleration photoplethysmogram. Biomedical engineering online 2014;13:1-18. 

Ende, M., Louis, A. K., Maass, P., Mayer-Kress, G. EEG signal analysis by continuous wavelet 

transform techniques. Nonlinear analysis of Physiological data. Springer, Berlin, 1998, pp. 

213-220. 

Fedotov, A. A., Akulov, S. A. Matematicheskoe modelirovanie i analiz pogreshnostei 

izmeritel'nykh preobrazovatelei biomeditsinskikh signalov (Mathematical modeling and error 

analysis of biomedical signal transducers). FIZMATLIT, Moscow; 2013. (in Russian). 

Fujimoto, Y., Yamaguchi, T. valuation of mental stress by analyzing accelerated plethysmogram 

applied chaos theory and examination of welfare space installed user’s vital sign. 

Proceedings of the 17
th

 world congress the international federation of automatic control 

2008:8232-8235. 

Gil, E., Vergara, J. M., Laguna, P. Detection of decreases in the amplitude fluctuation of pulse 

photoplethysmography signal as indication of obstructive sleep apnea syndrome in children. 

Biomedical signal processing and control 2008;3:267-277. 

Glass, L. Introduction to controversial topics in nonlinear science: is the normal heart rate 

chaotic? Chaos 2009;19:1-4. 

Goldenberg, A. L., Rigney, D. R., West, B. j. Chaos and fractals in human physiology. Scientific 

American 1990: 43-49. 

Han, H., Kim, J. Artifacts in wearable photoplethysmographs during daily life motions and their 

reduction with least mean square based active noise cancellation method. Computers in 

biology and medicine 2012;42:387-393. 

Hashimoto, J., Chonan, K., Aoki, Y., Nishimura, T., Ohkubo, T., Hozawa, A., Suzuki, M., 

Matsubara, M., Araki, T., Imai, Y. Pulse wave velocity and the second derivative of the 

finger photoplethysmogram in treated hypertensive patients: their relationship and 

associating factors.  Journal of hypertension 2002;20:2415-2422. 

Higgins, J. L., Froner, A. Photoplethysmographic evaluation of the relationship between skin 

reflectance and skin blood volume. J. Biomed. Eng. 1986;8:1130-136. 



   

66 
 

Hiroyasu, I. Changes in coronary heart disease risk among Japanese. Circulation 2008;118:2725-

2729.  

Iokibe, T., Kurihara, M., Maniwa, Y., Ohta, S., Uchida, I., Amata, M., Yamamoto, M. Chaos-

based quantitative health evaluation and disease state estimation by acceleration 

plethysmogram. Japan society for fuzzy theory and intelligent informatics 2003;15(5): 565-

576. 

Ivanov, P. Ch., Nunes Amaral, L. A., Goldberger, A.L. and et. al. Multifractality in human 

heartbeat dynamics.  Nature 1999;399:461-465. 

Japanese Ministry of Health, Labour and Welfare statistical reports: 

http://www.mhlw.go.jp/toukei/list/81-1a.html 

Kamal, A. A. R., Harness, J. B., Irving, G., Mearns, A. J. Skin photoplethysmography – a review. 

Computer methods and programs in Biomedicine1989;28:257-269. 

Kawakura, S., Shibasaki, R. Wearable sensors to measure and analyse outdoor agricultural 

workers’ motion. Agricultural Information research 2014; 23:82-102. (In Japanese). 

Kennel, M., B., Brown, R., Abarbanel, H., D., I. Determining embedding dimension for phase-

space reconstruction using a geometrical construction. Physical review A 1992;45(6):3403-

3411. 

Kittusamy, N. K., Buchholz, B. Whole-body vibration and postural stress among operators of 

construction equipment: A literature review. Journal of safety research 2004;35:255-261. 

Kohjitani, A., Miyata, M., Iwase., Y., Ohno, S., Tohya, A., Manabe, Y., Hashiguchi, T., 

Sugiyama, K. Association between autonomic nervous system and the second derivative of 

the finger photoplethysmogram indices. Journal of atherosclerosis and thrombosis 2015;21:1-

8. 

Komatsu, K.-I., Fukutake, T., Hattory, T. Fingertip photoplethysmography and migraine. J. of the 

neurological sciences 2003;216:17-21. 

Letellier, C. Chaos in nature. World scientific series on nonlinear science, series A, vol. 81. 

Singapore, 2013. 



   

67 
 

Lorenz, E., N. Deterministic nonperiodic flow. Journal of the atmospheric science 1963;20:130-

141. 

Maniwa, Y., Tokutaka, H., Fujimira, K., Ohkita, M., Iokibe, M., Tada, K. Use of chaos and self-

organizing maps for acceleration plethysmogram information. Japan society for fuzzy theory 

and intelligent informatics 2004;16(3):253-261. 

Mascro, S.A., Asada, H.H. Photoplethysmograph Fingernail Sensors for measuring Finger Forces 

Without Haptic Obstruction. IEEE transaction on robotics and automation 2001;17:698-708. 

McBride, D. I., Firth, H. M., Herbison, G. P. Noise exposure and hearing loss in agriculture: a 

survey of farmers and farm workers in the southland region of New Zeland. JOEM 

2003;45(12):1281-1288. 

McClintock, P. V. E., Stefanovska, A. Noise and determinism in cardiovascular dynamics. 

Physica A 2002;314: 69-76. 

Miao, T., Oyama-Higa, M., Sato, S., Kojima, J., Reika, S. Chaos of Photoplethysmogram in 

relation to scalp-EEG: a model and experiments. Int. J. Computer aided Engineering and 

technology 2012;4(6):557-566. 

Miao, T., Shimizu, Shimiyama, O., Oyama-Higa, M. Modelling plethysmogram dynamics based 

on baroreflex under higher cerebral influences. IEEE international conference on systems, 

man and cybernetics 2006: 2868-2873. 

Miao, T., Shimizu, T., Makabe, H., Oyama-Higa, M., Sakamoto, K. Chaos in ear 

plethysmograms: tracking experiment and a model. IEEE international conference on 

systems, man and cybernetics 2008: 2982-2987. 

Millasseaua S. C., Ritter J. M., Takazawa K., Chowienczyk P. J. Contour analysis of the 

photoplethysmographic pulse measured at the finger. Journal of Hypertension 2006, 

24:1449–1456. 

Ministry of Agriculture, Forestry and Fisheries (MAFF). Annual reports and statistics: 

http://www.maff.go.jp/e/ 

Murphy, D. J. Safety and health for production agriculture. USA: The American society of 

agriculture engineers; 1992. 



   

68 
 

Muzammil, M., Siddiqui, S. S., Hasan, F. Physiological effect of vibration on tractor drivers 

under variable ploughing conditions. Journal of occupational health 2004;46:403-409. 

Nakajima, K., Tamura, T., Miike, H. Monitoring of heart and respiratory rates by 

photoplethysmography using a digital filtering technique. Med Eng. Phys. 1996;18(5):365-

372. 

National heart foundation of Australia. Data and statistics. Web page online access: 

http://www.heartfoundation.org.au/information-for-professionals/data-and-

statistics/Pages/default.aspx 

Packard, N. H., Crutchfield, J. P. , Farmer, J. D., Shaw, R. S. Geometry from a Time Series. Phys. 

Rev. Lett. 1980;45:712-716. 

Pagani, M., Lombardi, F., Guzzetti, S., Rimoldi, O., Furlan, R., Pizzinelli, P., Sandrone, G., 

Malfatto, G., Dell’Oro, S., Piccaluga, E. Power spectra analysis of heart rate and arterial 

pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. 

Circulation research 1986;59:178-193.  

Paluš, M. Chaotic measures and real-world systems: does the Lyapunov exponent always 

measure chaos? Nonlinear analysis of Physiological data. Springer, Berlin, 1998, pp. 49-67. 

Perc, M. Nonlinear time series analysis of the human electrocardiogram. European Journal of 

physics 2005;26:757-768. 

Perez-Martin, A., Meyer, G., Demattei, C., Böge, G., Laroche, J.-P., Quere, I., Dauzat, M. 

Validation of a fully automatic photoplethysmographic device for toe blood pressure 

measurement. Eur. J. Vasc. Endovasc. Surg. 2010:1-6. 

Pham, T.D., Thang, T.C., Oyama-Higa, M., Sugiyama, M. Mental-disorder detection using chaos 

and nonlinear dynamical analysis of photoplethysmographic signal. Chaos, Solitons & 

Fractals 2013;51:64-74. 

Pilt, K., Ferenets, R., Meigas, K., Lindberg, L.-G., Temitski, K., Viigimaa, M. New 

photoplethysmographic signal analysis algorithm for arterial stiffness estimation. The 

scientific world journal 2013: 1-9. 



   

69 
 

Poon, C.-S., Merrill, C.K. Decrease of cardiac chaos in congestive heart failure. Nature 

197;389:492 – 495. 

Reyers Del Paso, G. A., Langewitz, W., Mulder, L. J. M., Roon, A. V. The utility of low 

frequency heart rate variability as an index of sympathetic cardiac tone: A review with 

emphasis on a reanalysis of previous studies. Physiology 2013; 50:477-487. 

Sakai, K. Nonlinear Dynamics and Chaos in Agricultural Systems, Elsevier, Netherlands, 2001. 

Sakai, K., Noguchi, Y., Asada, S. Detecting chaos in a citrus orchard: Reconstruction of nonlinear 

dynamics from very short ecological time series. Chaos, Solitons & Fractals 

2008;38(5):1274-1282. 

Sato, S., Miao, T.,Oyama-Higa, M. Studies on five senses treatment. Knowledge-based systems 

in biomedicine. Springer-Verlag Berlin Heidelberg, 2013, pp. 155-175. 

Schäfer, A., Vagedes, J. How accurate is pulse rate variability as an estimate of heart rate 

variability? A review on studies comparing photoplethysmographic technology with an 

electrocardiogram. International journal of cardiology 2013;166:15-29. 

Serup, J. Cutaneous blood flow and erythema: standardization of measurements. Bioengineering 

of the skin: Cutaneous Blood Flow and Erythema. CRC Press, USA. 1995, pp. 57-64.  

Shelhamer, M. Nonlinear Dynamics in Physiology. A state-Space Approach, World Scientific, 

Singapore, 2007. 

Shelley, K. H. Photoplethysmography: beyond the calculation of arterial oxygen saturation and 

heart rate. Anesthesia and analgesia 2007;105(6):31-36. 

Shi, P., Zhu, Y., Allen, J., Hu, S. Analysis of pulse rate variability derived from 

photoplethysmography with the combination of lagged Poincaré plots and spectral 

characteristics. Medical engineering and physics 2009;81:866-871. 

Skinner, J. E., Zebrowski, J. J., Kowalic, Z. J. New nonlinear algorithms for analysis of heart rate 

variability: low-dimensional chaos predicts lethal arrhythmias. Nonlinear analysis of 

Physiological data. Springer, Berlin, 1998, pp. 129-167. 

Small, M., Tse, C. K., Ikeguchi, T. Chaotic Dynamics and Simulation of Japanese Vowel Sounds. 

Proceedings of the 2005 European Conference on Circuit Theory and Design 2005:2:169-172. 



   

70 
 

Small, M., Yu, D., Harrison, R. G. Surrogate Test for Pseudoperiodic Time Series Data. Physical 

review letters 2001;87(18):1-4. 

Sumida, T., Arimitu, Y. Mental conditions reflected by the chaos of pulsation in the capillary 

vessels. International journal of bifurcation and chaos 2000;10(9):2245-2255.  

Sviridova, N., Sakai, K. Distinguishing Deterministic Chaos and Periodicity in Human 

Photoplethysmogram. Proceedings of International Symposium on Nonlinear Theory and its 

Applications 2014;537-540.  

Takai, M. Overview of regional 36516-farm accidents in 13-years and the safety engineering for 

farm equipment. Journal of the Japanese society of agricultural machinery 2000;62:4-7. (In 

Japanese) 

Takai, M., Hata, S.-I., Sakai, K. Studies on the farm fatal accidents in Hokkaido. Part 2. General 

aspects and accidents on the road. Japanese journal of farm work research 1992;27(2):139-

145. 

Tamura, T., Maeda, Y., Sekine, M., Yoshida, M. Wearable photoplethysmographic sensors – Past 

and present. Electronics 2014;3:282-302. 

The Heart foundation of U.S. Heart disease: scope and impact. Web page online access: 

http://www.theheartfoundation.org/heart-disease-facts/heart-disease-statistics/ 

The national heart foundation of New Zealand. Statistics. Web page online access:  

http://www.heartfoundation.org.nz/know-the-facts/statistics 

Theiler, J. On the evidence of low-dimensional chaos in an epileptic electroencephalogram. 

Physics letters A 1995;196:335-341. 

Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., Farmer, D. Testing for nonlinearity in time 

series: the method of surrogate data. Physica D 1992;58:77-94. 

Thiyagarajan, R., Kathirvel, K., Jayashree, G. C. Ergonomic intervention in sugarcane harvesting 

knives. African journal of agricultural research 2013;8(6):574-581. 

Thompson, J. M. T., Stewart, H. B. Nonlinear dynamics and chaos. John Wiley and sons, U.K., 

1991.  



   

71 
 

Tsuda, I. Chaotic pulsation in human capillary vessels and its dependence on mental and physical 

conditions. International journal of Bifurcation and chaos 1992;2(2):313-324. 

Usman, S., Rozi, R. M., Reaz, M. B. I., Ali, M. A. M., Analysis of area under curve of PPG and 

its relation with HbA1c. IEEE EMBS international conference on biomedical engineering 

and sciences 2012: 260-263. 

Wahlberg, J. E., Lindberg, M. Assessment of skin blood flow – an overview. Bioengineering of 

the skin: Cutaneous Blood Flow and Erythema. CRC Press, USA. 1995, pp.23-30. 

Wang, N., Zhang, N., Wang, M. Wireless sensors in agriculture and food industry – Recent 

development and future perspective. Computers and electronics in agriculture 2005;50:1-14. 

Wayland, R., Bromley, D., Pickett, D., Passamante, A. Recognizing Determinism in a Time 

Series. Physical review letters 1993;70:580-582.  

West, B. J. Fractal physiology and chaos in medicine. Studies of nonlinear phenomena in life 

science, vol. 16. World scientific. Singapore, 2013.  

WHO Occupational exposure to noise: evaluation, prevention and control. World health 

organization. Online access: 

http://www.who.int/occupational_health/publications/occupnoise/en/ 

Wolf, A., Swift, J. B., Swinney, H. L., Vastano, J. Detemining Lyapunov Exponents from a Time 

Series. Physica D 1985;285-317. 

Yamada, K., Yamashita, J., Miao, T. Determination of the effect of break times and caffeinated 

coffee based on earlobe pulse rate analysis. Japanese journal of farm work research 

2009;44(1):11-19. (In Japanese). 

  



   

72 
 

List of tables 

 

TABLE 2.1 Amplitude (|FT|) and frequency (HF) of the PPG predominant component. ........... 17 

TABLE 2.2 Largest Lyapunov exponents for all collected PPG time series (calculated by Wolf’s 

method). ................................................................................................................... 21 

TABLE 2.3 Results of the Wayland test translation error (WTE) calculation for all collected 

PPG time series. ....................................................................................................... 29 

TABLE 4.1 Value of LF/HF under exposure to noise. ................................................................ 55 

TABLE 4.2 Translation Error values under exposure to noise. ................................................... 56 

TABLE 4.3 Results of t-test and ANOVA tests for the equal sample means null hypothesis 

check for HF, LF, LF/HF and WTE indexes. .......................................................... 59 

TABLE 4.4 Noise levels and maximum noise exposure time [WHO]. ....................................... 60 

TABLE A.1 Factors and Variables with Effects on Cutaneous Blood Flow ............................... 87 

 

  



   

73 
 

List of figures 

 

Fig. 1.1 Components of the PPG signal waveform for healthy young subjects. ............................ 6 

Fig. 1.2 Constructive approach scheme. ......................................................................................... 9 

Fig. 2.1 Finger PPG recorder. ....................................................................................................... 15 

Fig. 2.2 Example of 30-second long portion of the healthy young subject PPG signal (10th 

subject’s 2nd measurement). ........................................................................................... 15 

Fig. 2.3 Example of typical spectra obtained by Fourier analysis, where LF is low frequency and 

HF is predominant frequency components (data correspond to the 1
st
 measurement for 

the 1
st
 subject). ................................................................................................................. 17 

Fig. 2.4 Trajectory reconstructed in 4-dimensional phase space by time-delay embedding. ....... 18 

Fig. 2.5 Determining the minimum embedding dimension by the modified method of false 

nearest neighbors. ............................................................................................................ 20 

Fig. 2.6 (a) Correlation coefficient (CC) and (b) relative root mean squared error (RRMSE) 

curves for nonlinear deterministic prediction of Rössler’s single band chaos, Rössler’s 

single band chaos data with 7% additive noise, chaotic Lorenz and PPG. ..................... 24 

Fig. 2.7 Performance of deterministic nonlinear prediction. Original signal vs. 160 steps (0.8s) 

forward prediction. .......................................................................................................... 25 

Fig. 2.8 The reconstructed trajectory sliced by the rotating plane for the PPG (for the 1
st
 subject’s 

1
st
 measurement). ............................................................................................................. 27 

Fig. 2.9 Poincaré section for the PPG (for the 1st subject’s 1st measurement), where Y(t) = 

√𝐗(𝐭)𝟐 + 𝐗(𝐭 + 𝛕)𝟐 ........................................................................................................ 27 

Fig. 2.10 The nearest neighbors of an arbitrarily chosen point and its projections on a 

reconstructed trajectory for translation error calculation in the Wayland test. ............... 29 



   

74 
 

Fig. 2.11 (a) Deterministic nonlinear prediction for the PPG (red line) and 100 surrogate datasets 

(blue lines), orange line indicates correlation coefficient values corresponding to the 20 

steps forward prediction; (b) frequency distribution of correlation coefficients for 100 

surrogate datasets (blue bars) and correlation coefficient for original PPG (red line). ... 31 

Fig. 2.12 Trajectory tracings for PPG data (left) and Rössler’s single band chaos data with 7% 

additive noise (right). ...................................................................................................... 33 

Fig. 3.1 Correlation coefficient (CC) curves for nonlinear deterministic prediction of Rössler’s 

single band chaos, chaotic Lorenz, chaotic Duffing’s forced oscillator and the PPG. ... 39 

Fig. 3.2 (a) Correlation coefficient (CC) and (b) relative root mean squared error (RRMSE) 

curves for deterministic nonlinear prediction of Rössler’s single band chaos, chaotic 

Duffing’s forced oscillator, chaotic Duffing’s forced oscillator data with 7% additive 

noise and the PPG. ........................................................................................................... 42 

Fig. 3.3 Correlation coefficient (CC) for deterministic nonlinear prediction of Rössler’s single 

band chaos, chaotic Duffing’s forced oscillator, chaotic Duffing’s forced oscillator with 

7% additive noise and the PPG for 5 measurement repeats (columns) of subjects 1-5 

(rows). .............................................................................................................................. 43 

Fig. 3.4 Correlation coefficient (CC) for deterministic nonlinear prediction of Rössler’s single 

band chaos, chaotic Duffing’s forced oscillator, chaotic Duffing’s forced oscillator with 

7% additive noise and the PPG for 5 measurement repeats (columns) of subjects 6-10 

(rows). .............................................................................................................................. 44 

Fig. 3.5 Relative root mean square error (RRMSE) for deterministic nonlinear prediction of 

Rössler’s single band chaos, chaotic Duffing’s forced oscillator, chaotic Duffing’s 

forced oscillator with 7% additive noise and the PPG for 5 measurement repeats 

(columns) of subjects 1-5 (rows). .................................................................................... 45 



   

75 
 

Fig. 3.6 Relative root mean square error (RRMSE) for deterministic nonlinear prediction of 

Rössler’s single band chaos, chaotic Duffing’s forced oscillator, chaotic Duffing’s 

forced oscillator with 7% additive noise and the PPG for 5 measurement repeats 

(columns) of subjects 6-10(rows). ................................................................................... 46 

Fig. 3.7 Four local regions on the portion of the reconstructed PPG trajectory in which local 

short-term prediction was conducted (for better visualization only part of the 

reconstructed trajectory is shown). .................................................................................. 47 

Fig. 3.8 Four local regions on part of reconstructed PPG trajectory in which local short-term 

prediction was conducted (upper row); Correlation coefficient (CC) (middle row) and 

relative root mean squared error (RRMSE)(bottom row) curves for local short-term 

deterministic nonlinear prediction in 4 regions of reconstructed PPG trajectory for 

subjects 1, 4, 8 and 10. .................................................................................................... 49 

Fig. 4.1 Data collection experiment under exposure of tractor noise. .......................................... 54 

Fig. 4.2 Case of background noise level: (a) PPG time series; (b) Fourier spectrum; (c) time-

delay reconstructed trajectory. ........................................................................................ 57 

Fig. 4.3 Case of tractor high level noise: (a) PPG time series; (b) Fourier spectrum; (c) time-

delay reconstructed trajectory. ........................................................................................ 58 

Fig. A.1 Experimentally obtained PPG time series of subjects 1-5 (rows) with 5 measurement 

repeats for each (columns). ............................................................................................. 89 

Fig. A.2 Experimentally obtained PPG time series of subjects 6-10 (rows) with 5 measurement 

repeats for each (columns). ............................................................................................. 90 

Fig. A.3 Fourier spectrum of PPG time series for subjects 1-5 (rows) with 5 (columns) 

measurement repeats for each. ........................................................................................ 91 



   

76 
 

Fig. A.4 Fourier spectrum of PPG time series for subjects 6-10 (rows) with 5 (columns) 

measurement repeats for each. ........................................................................................ 92 

Fig. A.5 Reconstructed trajectory of the PPG time series for subjects 1-5 (rows) with 5 

measurement repeats for each (columns); x-, y-, z-axis and color bar correspond to X(t), 

X(t+τ), X(t+2τ) and X(t+3τ) respectively. ...................................................................... 93 

Fig. A.6 Reconstructed trajectory of the PPG time series for subjects 6-10 (rows) with 5 

measurement repeats for each (columns); x-, y-, z-axis and color bar correspond to X(t), 

X(t+τ), X(t+2τ) and X(t+3τ) respectively. ...................................................................... 94 

Fig. A. 7 Determining the minimum embedding dimension by the modified method of false 

nearest neighbors for the PPG time series for subjects 1-5 (rows) with 5 measurement 

repeats for each (columns). ............................................................................................. 95 

Fig. A. 8 Determining the minimum embedding dimension by the modified method of false 

nearest neighbors for the PPG time series for subjects 6-10 (rows) with 5 measurement 

repeats for each (columns). ............................................................................................. 96 

Fig. A.9 Correlation coefficient (CC) for deterministic nonlinear prediction of Rössler’s single 

band chaos, Rössler’s single band chaos  with 7% additive noise, Lorentz system in 

chaotic regime and the PPG for 5 measurement repeats (columns) of subjects 1-5 (rows).

 ......................................................................................................................................... 97 

Fig. A.10 Correlation coefficient (CC) for deterministic nonlinear prediction of Rössler’s single 

band chaos, Rössler’s single band chaos  with 7% additive noise, Lorentz system in 

chaotic regime and the PPG for 5 measurement repeats (columns) of subjects 6-10 

(rows). .............................................................................................................................. 98 

Fig. A.11 Relative root mean square error (RRMSE) for deterministic nonlinear prediction of 

Rössler’s single band chaos, Rössler’s single band chaos  with 7% additive noise, 



   

77 
 

Lorentz system in chaotic regime and the PPG for 5 measurement repeats (columns) of 

subjects 1-5 (rows). ......................................................................................................... 99 

Fig. A.12 Relative root mean square error (RRMSE) for deterministic nonlinear prediction of 

Rössler’s single band chaos, Rössler’s single band chaos  with 7% additive noise, 

Lorentz system in chaotic regime and the PPG for 5 measurement repeats (columns) of 

subjects 6-10 (rows). ..................................................................................................... 100 

Fig. A.13 The areas sliced by the rotating plane on the reconstructed trajectory of PPG signal of 

5 measurement repeats (columns) of subjects 1-5 (rows). ............................................ 101 

Fig. A.14 The areas sliced by the rotating plane on the reconstructed trajectory of PPG signal of 

5 measurement repeats (columns) of subjects 6-10 (rows). .......................................... 102 

Fig. A.15 Poincaré section obtained by slicing PPG trajectory by rotating plane at 5 angles 

(columns) for the 1st subject 1-5th measurement repeats (rows), where Y(t) = 

√𝐗(𝐭)𝟐 + 𝐗(𝐭 + 𝛕)𝟐 ...................................................................................................... 103 

Fig. A.16 Poincaré section obtained by slicing PPG trajectory by rotating plane at 5 angles 

(columns) for the 2
nd

  subject 1-5th measurement repeats (rows), where Y(t) = 

√𝐗(𝐭)𝟐 + 𝐗(𝐭 + 𝛕)𝟐. ..................................................................................................... 104 

Fig. A.17 Poincaré section obtained by slicing PPG trajectory by rotating plane at 5 angles 

(columns) for the 3
rd

 subject 1-5th measurement repeats (rows), where Y(t) = 

√𝐗(𝐭)𝟐 + 𝐗(𝐭 + 𝛕)𝟐. ..................................................................................................... 105 

Fig. A.18 Poincaré section obtained by slicing PPG trajectory by rotating plane at 5 angles 

(columns) for the 4
th

  subject 1-5th measurement repeats (rows), where Y(t) = 

√𝐗(𝐭)𝟐 + 𝐗(𝐭 + 𝛕)𝟐. ..................................................................................................... 106 



   

78 
 

Fig. A.19 Poincaré section obtained by slicing PPG trajectory by rotating plane at 5 angles 

(columns) for the 5
th

  subject 1-5th measurement repeats (rows), where Y(t) = 

√𝐗(𝐭)𝟐 + 𝐗(𝐭 + 𝛕)𝟐. ..................................................................................................... 107 

Fig. A.20 Poincaré section obtained by slicing PPG trajectory by rotating plane at 5 angles 

(columns) for the 6
th

  subject 1-5th measurement repeats (rows), where Y(t) = 

√𝐗(𝐭)𝟐 + 𝐗(𝐭 + 𝛕)𝟐 ...................................................................................................... 108 

Fig. A.21 Poincaré section obtained by slicing PPG trajectory by rotating plane at 5 angles 

(columns) for the 7
th

  subject 1-5th measurement repeats (rows), where Y(t) = 

√𝐗(𝐭)𝟐 + 𝐗(𝐭 + 𝛕)𝟐. ..................................................................................................... 109 

Fig. A.22 Poincaré section obtained by slicing PPG trajectory by rotating plane at 5 angles 

(columns) for the 8
th

  subject 1-5th measurement repeats (rows), where Y(t) = 

√𝐗(𝐭)𝟐 + 𝐗(𝐭 + 𝛕)𝟐 ...................................................................................................... 110 

Fig. A.23 Poincaré section obtained by slicing PPG trajectory by rotating plane at 5 angles 

(columns) for the 9
th

  subject 1-5th measurement repeats (rows), where Y(t) = 

√𝐗(𝐭)𝟐 + 𝐗(𝐭 + 𝛕)𝟐. ..................................................................................................... 111 

Fig. A.24 Poincaré section obtained by slicing PPG trajectory by rotating plane at 5 angles 

(columns) for the 10
th

  subject 1-5th measurement repeats (rows), where Y(t) = 

√𝐗(𝐭)𝟐 + 𝐗(𝐭 + 𝛕)𝟐 ...................................................................................................... 112 

Fig. A. 25 Correlation coefficient (CC) of deterministic nonlinear prediction for the PPG for 5 

measurement repeats (columns) of subjects 1-5 (rows) (red lines) and 50 surrogate 

datasets (blue lines). ...................................................................................................... 113 

Fig. A. 26 Correlation coefficient (CC) of deterministic nonlinear prediction for the PPG for 5 

measurement repeats (columns) of subjects 6-10 (rows) (red lines) and 50 surrogate 

datasets (blue lines). ...................................................................................................... 114 



   

79 
 

Fig. A.27 Correlation coefficient (CC) for short-term deterministic nonlinear prediction of 

Rössler’s single band chaos, chaotic Duffing’s forced oscillator, chaotic Duffing’s 

forced oscillator data with 7% additive noise and the PPG for 5 measurement repeats 

(columns) of subjects 1-5 (rows). .................................................................................. 115 

Fig. A.28 Correlation coefficient (CC) for short-term deterministic nonlinear prediction of 

Rössler’s single band chaos, chaotic Duffing’s forced oscillator, chaotic Duffing’s 

forced oscillator data with 7% additive noise and the PPG for 5 measurement repeats 

(columns) of subjects 6-10 (rows). ................................................................................ 116 

Fig. A.29 Relative root mean square error  (RRMSE) for short-term deterministic nonlinear 

prediction of Rössler’s single band chaos, chaotic Duffing’s forced oscillator, chaotic 

Duffing’s forced oscillator data with 7% additive noise and the PPG for 5 measurement 

repeats (columns) of subjects 1-5 (rows). ..................................................................... 117 

Fig. A.30 Relative root mean square error  (RRMSE) for short-term deterministic nonlinear 

prediction of Rössler’s single band chaos, chaotic Duffing’s forced oscillator, chaotic 

Duffing’s forced oscillator data with 7% additive noise and the PPG for 5 measurement 

repeats (columns) of subjects 6-10 (rows). ................................................................... 118 

Fig. A. 31 Experimentally obtained PPG time series of two measurement repeats of subjects 1-3 

and 1
st
 measurement repeat for subject 4 (columns) for reference, minimum, medium 

and maximum levels of noise (rows). ........................................................................... 119 

Fig. A. 32 Experimentally obtained PPG time series of 2
nd

 measurement repeat for subject 4 and 

two measurement repeats of subjects 5-7 and  (columns) for reference, minimum, 

medium and maximum levels of noise (rows). ............................................................. 120 



   

80 
 

Fig. A. 33 Fourier spectrum of PPG time series of two measurement repeats of subjects 1-3 and 

1
st
 measurement repeat for subject 4 (columns) for reference, minimum, medium and 

maximum levels of noise (rows). .................................................................................. 121 

Fig. A. 34 Fourier spectrum of PPG time series of 2
nd

 measurement repeat for subject 4 and two 

measurement repeats of subjects 5-7 and  (columns) for reference, minimum, medium 

and maximum levels of noise (rows). ........................................................................... 122 

Fig. A. 35 Reconstructed trajectory of PPG time series of two measurement repeats of subjects 

1-3 and 1
st
 measurement repeat for subject 4 (columns) for reference, minimum, medium 

and maximum levels of noise (rows); x-, y-, z-axis and color bar correspond to X(t), 

X(t+τ), X(t+2τ) and X(t+3τ) respectively. .................................................................... 123 

Fig. A. 36 Reconstructed trajectory of PPG time series of 2
nd

 measurement repeat for subject 4 

and two measurement repeats of subjects 5-7 (columns) for reference, minimum, 

medium and maximum levels of noise (rows); x-, y-, z-axis and color bar correspond to 

X(t), X(t+τ), X(t+2τ) and X(t+3τ) respectively. ............................................................ 124 

  



   

81 
 

Nomenclature 

 

The most commonly used symbols and abbreviations are listed below. The specific symbols 

that were used in a particular system or equation are described at their place of appearance in the 

text. 

 

AC alternative current 

APG acceleration photoplethysmogram 

BP blood pressure 

BS biological signal 

CC correlation coefficient 

CBF cutaneous blood flow 

CD correlation dimension 

CVD cardiovascular disease 

CVS cardiovascular system 

DC direct current 

DNP deterministic nonlinear prediction 

ECG or EKG electrocardiogram 

FNN false nearest neighbors 

FR frequency 

|FT| Fourier transform amplitude 

HF high frequency 

HRV heart rate variability 

LE Lyapunov exponent 

LF low frequency 

LLE largest Lyapunov exponent 

NIR near infrared 
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PPG photoplethysmogram 

RRMSE relative route mean square error 

STP short-term prediction 

WTE Wayland test translation error 

Α angle at which reconstructed trajectory was sliced by rotating  

plane in order to obtain Poincaré section 

CC(p) correlation coefficient between actual signal and p-steps forward 

predicted signal 

CCi(p) local correlation coefficient between actual signal and p-steps 

forward predicted signal in ith region 

etrans local translation error 

m0 starting dimension in modified FFN method  

M embedding dimension 

N number of nearest neighbors 

N   Number of points in the PPG time series  

P prediction time step 

RRMSE(p) relative root mean square error between actual signal and p-steps 

forward predicted signal 

RRMSEi(p) local relative root mean square error between actual signal and p-

steps forward predicted signal in ith region 

t   time 

𝑡1
𝑖  starting time point of the ith region  

𝑡2
𝑖  ending time point of the i

th
 region   

vj j
th

 translation vector 

X(t) data points of the PPG time series at the time t  

Z(t) points of time-delay reconstructed trajectory corresponding to the 

time t 

Z
*
(t+p) is p steps forward prediction of the predictee Z(t) 

Zi(m) i
th

 reconstructed vector in m dimensional phase-space 

Z
i
(t) i

th
 nearest neighbor of Z(t) 

τ time-delay lag 
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Appendix 

 

A.1. Factors affecting cutaneous blood flow 

Measurement of cutaneous blood flow (CBF) might be affected by various factors, such as 

anatomical site, physical activity, mental activity, food and drugs and temperature. Factors and 

the strength of their effects on CBF are listed in Table A.1 [Serup, 1995]. 

 

TABLE A.1 Factors and Variables with Effects on Cutaneous Blood Flow 

Factor Strength of effect 

Age Widely age independent 

Sex Minor or no difference 

Menstrual Cycle Minor or no difference 

Race Minor or no difference 

Anatomical site Considerable variation 

Position Ortostatic dependence 

Temporal, diurnal Minor or no effect 

Temporal, day to day May be significant 

Physical activity  Considerable effect 

Mental activity  Considerable effect 

Food and drugs Considerable effect 

Temperature Very significant effect 

 

According to [Serup, 1995] in the design of CBF studies it is highly recommended to take 

into account the following:  

1. Prior to the experiment test subjects should not take any food or drug that might influence 

cutaneous blood flow. Any topical treatment of the test site prior to study should be 

avoided unless it is part of the experiment. 
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2. Test subjects should not have deliberately exercised, been exposed to unusual 

temperatures, or been under mental stress immediately before CBF measurement.    

3. Test subjects should be allowed to rest for 15 min or more under quiet conditions, 

preferably in the laboratory room in the position in which recordings are going to be 

obtained, i.e. sitting or supine, and with the test site uncovered. 

4. The laboratory room and the measurement should be controlled, particularly with respect 

to temperature, convection of air, and noise. Measurement under direct light, including 

direct sunshine, which might influence skin temperature, should be avoided. 

5. Measurements should be performed with the site under study at a standardized level 

relative to the level of the heart. 

 It has also been noticed in several studies utilizing a variety of methods that a decrease in 

skin blood flow occurs immediately following smoking. All studies indicated abnormalities in 

capillary blood flow and its regulation in the skin as an immediate result of smoking [Agache 

and Dupond, 1995]. Decreased skin blood flow in the fingers was found by photoplethysmogram 

measured during smoking.  
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A.2. Results of nonlinear time series analysis for all collected data 

 

Fig. A.1 Experimentally obtained PPG time series of subjects 1-5 (rows) with 5 measurement repeats for each (columns). 
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Fig. A.2 Experimentally obtained PPG time series of subjects 6-10 (rows) with 5 measurement repeats for each (columns). 
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Fig. A.3 Fourier spectrum of PPG time series for subjects 1-5 (rows) with 5 (columns) measurement repeats for each. 
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Fig. A.4 Fourier spectrum of PPG time series for subjects 6-10 (rows) with 5 (columns) measurement repeats for each. 
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Fig. A.5 Reconstructed trajectory of the PPG time series for subjects 1-5 (rows) with 5 measurement repeats for each (columns); x-, 

y-, z-axis and color bar correspond to X(t), X(t+τ), X(t+2τ) and X(t+3τ) respectively. 
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Fig. A.6 Reconstructed trajectory of the PPG time series for subjects 6-10 (rows) with 5 measurement repeats for each (columns); x-, 

y-, z-axis and color bar correspond to X(t), X(t+τ), X(t+2τ) and X(t+3τ) respectively. 
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Fig. A. 7 Determining the minimum embedding dimension by the modified method of false nearest neighbors for the PPG time series 

for subjects 1-5 (rows) with 5 measurement repeats for each (columns). 
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Fig. A. 8 Determining the minimum embedding dimension by the modified method of false nearest neighbors for the PPG time series 

for subjects 6-10 (rows) with 5 measurement repeats for each (columns). 
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Fig. A.9 Correlation coefficient (CC) for deterministic nonlinear prediction of Rössler’s single band chaos, Rössler’s single band 

chaos  with 7% additive noise, Lorentz system in chaotic regime and the PPG for 5 measurement repeats (columns) of subjects 1-5 

(rows). 
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Fig. A.10 Correlation coefficient (CC) for deterministic nonlinear prediction of Rössler’s single band chaos, Rössler’s single band 

chaos  with 7% additive noise, Lorentz system in chaotic regime and the PPG for 5 measurement repeats (columns) of subjects 6-10 

(rows). 
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Fig. A.11 Relative root mean square error (RRMSE) for deterministic nonlinear prediction of Rössler’s single band chaos, Rössler’s 

single band chaos  with 7% additive noise, Lorentz system in chaotic regime and the PPG for 5 measurement repeats (columns) of 

subjects 1-5 (rows). 
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Fig. A.12 Relative root mean square error (RRMSE) for deterministic nonlinear prediction of Rössler’s single band chaos, Rössler’s 

single band chaos  with 7% additive noise, Lorentz system in chaotic regime and the PPG for 5 measurement repeats (columns) of 

subjects 6-10 (rows). 
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Fig. A.13 The areas sliced by the rotating plane on the reconstructed trajectory of PPG signal of 5 measurement repeats (columns) of 

subjects 1-5 (rows). 
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Fig. A.14 The areas sliced by the rotating plane on the reconstructed trajectory of PPG signal of 5 measurement repeats (columns) of 

subjects 6-10 (rows). 

 



   

103 
 

 

 

Fig. A.15 Poincaré section obtained by slicing PPG trajectory by rotating plane at 5 angles (columns) for the 1st subject 1-5th 

measurement repeats (rows), where Y(t) = √𝑿(𝒕)𝟐 + 𝑿(𝒕 + 𝝉)𝟐. 
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Fig. A.16 Poincaré section obtained by slicing PPG trajectory by rotating plane at 5 angles (columns) for the 2
nd

  subject 1-5th 

measurement repeats (rows), where Y(t) = √𝑿(𝒕)𝟐 + 𝑿(𝒕 + 𝝉)𝟐. 
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Fig. A.17 Poincaré section obtained by slicing PPG trajectory by rotating plane at 5 angles (columns) for the 3
rd

 subject 1-5th 

measurement repeats (rows), where Y(t) = √𝑿(𝒕)𝟐 + 𝑿(𝒕 + 𝝉)𝟐. 



   

106 
 

 

Fig. A.18 Poincaré section obtained by slicing PPG trajectory by rotating plane at 5 angles (columns) for the 4
th

  subject 1-5th 

measurement repeats (rows), where Y(t) = √𝑿(𝒕)𝟐 + 𝑿(𝒕 + 𝝉)𝟐. 
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Fig. A.19 Poincaré section obtained by slicing PPG trajectory by rotating plane at 5 angles (columns) for the 5
th

  subject 1-5th 

measurement repeats (rows), where Y(t) = √𝑿(𝒕)𝟐 + 𝑿(𝒕 + 𝝉)𝟐. 
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Fig. A.20 Poincaré section obtained by slicing PPG trajectory by rotating plane at 5 angles (columns) for the 6
th

  subject 1-5th 

measurement repeats (rows), where Y(t) = √𝑿(𝒕)𝟐 + 𝑿(𝒕 + 𝝉)𝟐. 
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Fig. A.21 Poincaré section obtained by slicing PPG trajectory by rotating plane at 5 angles (columns) for the 7
th

  subject 1-5th 

measurement repeats (rows), where Y(t) = √𝑿(𝒕)𝟐 + 𝑿(𝒕 + 𝝉)𝟐. 
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Fig. A.22 Poincaré section obtained by slicing PPG trajectory by rotating plane at 5 angles (columns) for the 8
th

  subject 1-5th 

measurement repeats (rows), where Y(t) = √𝑿(𝒕)𝟐 + 𝑿(𝒕 + 𝝉)𝟐. 
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Fig. A.23 Poincaré section obtained by slicing PPG trajectory by rotating plane at 5 angles (columns) for the 9
th

  subject 1-5th 

measurement repeats (rows), where Y(t) = √𝑿(𝒕)𝟐 + 𝑿(𝒕 + 𝝉)𝟐. 
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Fig. A.24 Poincaré section obtained by slicing PPG trajectory by rotating plane at 5 angles (columns) for the 10
th

  subject 1-5th 

measurement repeats (rows), where Y(t) = √𝑿(𝒕)𝟐 + 𝑿(𝒕 + 𝝉)𝟐. 
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Fig. A. 25 Correlation coefficient (CC) of deterministic nonlinear prediction for the PPG for 5 measurement repeats (columns) of 

subjects 1-5 (rows) (red lines) and 50 surrogate datasets (blue lines). 
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Fig. A. 26 Correlation coefficient (CC) of deterministic nonlinear prediction for the PPG for 5 measurement repeats (columns) of 

subjects 6-10 (rows) (red lines) and 50 surrogate datasets (blue lines). 
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Fig. A.27 Correlation coefficient (CC) for short-term deterministic nonlinear prediction of Rössler’s single band chaos, chaotic 

Duffing’s forced oscillator, chaotic Duffing’s forced oscillator data with 7% additive noise and the PPG for 5 measurement repeats 

(columns) of subjects 1-5 (rows). 
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Fig. A.28 Correlation coefficient (CC) for short-term deterministic nonlinear prediction of Rössler’s single band chaos, chaotic 

Duffing’s forced oscillator, chaotic Duffing’s forced oscillator data with 7% additive noise and the PPG for 5 measurement repeats 

(columns) of subjects 6-10 (rows). 
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Fig. A.29 Relative root mean square error  (RRMSE) for short-term deterministic nonlinear prediction of Rössler’s single band chaos, 

chaotic Duffing’s forced oscillator, chaotic Duffing’s forced oscillator data with 7% additive noise and the PPG for 5 measurement 

repeats (columns) of subjects 1-5 (rows). 
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Fig. A.30 Relative root mean square error  (RRMSE) for short-term deterministic nonlinear prediction of Rössler’s single band chaos, 

chaotic Duffing’s forced oscillator, chaotic Duffing’s forced oscillator data with 7% additive noise and the PPG for 5 measurement 

repeats (columns) of subjects 6-10 (rows). 
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Fig. A. 31 Experimentally obtained PPG time series of two measurement repeats of subjects 1-3 and 1
st
 measurement repeat for 

subject 4 (columns) for reference, minimum, medium and maximum levels of noise (rows). 
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Fig. A. 32 Experimentally obtained PPG time series of 2
nd

 measurement repeat for subject 4 and two measurement repeats of subjects 

5-7 and  (columns) for reference, minimum, medium and maximum levels of noise (rows). 
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Fig. A. 33 Fourier spectrum of PPG time series of two measurement repeats of subjects 1-3 and 1
st
 measurement repeat for subject 4 

(columns) for reference, minimum, medium and maximum levels of noise (rows). 
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Fig. A. 34 Fourier spectrum of PPG time series of 2
nd

 measurement repeat for subject 4 and two measurement repeats of subjects 5-7 

and  (columns) for reference, minimum, medium and maximum levels of noise (rows). 
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Fig. A. 35 Reconstructed trajectory of PPG time series of two measurement repeats of subjects 1-3 and 1
st
 measurement repeat for 

subject 4 (columns) for reference, minimum, medium and maximum levels of noise (rows); x-, y-, z-axis and color bar correspond to 

X(t), X(t+τ), X(t+2τ) and X(t+3τ) respectively. 
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Fig. A. 36 Reconstructed trajectory of PPG time series of 2
nd

 measurement repeat for subject 4 and two measurement repeats of 

subjects 5-7 (columns) for reference, minimum, medium and maximum levels of noise (rows); x-, y-, z-axis and color bar correspond 

to X(t), X(t+τ), X(t+2τ) and X(t+3τ) respectively. 


