
A Study on a Multidimensional
Configurable Processor Array in
Hardware and Software Complex

Architecture

Author: Jiang Li

Supervisor: Prof. Masatoshi Sekine

Department of Electrical and Electronic Engineering

Tokyo University of Agriculture and Technology

A Dissertation submitted for degree of Doctor of Engineering

March 2015



i

Abstract

High performance computing (HPC) usually solves complex science, engineering, and

business problems that require huge computation capabilities. The main trend HPC so-

lutions are implemented by supercomputers which are composed of huge amount of gen-

eral purpose processors as computing nodes on a network, to meet the demand of most

high performance computing applications. As the ordinary HPC systems composed of

CPUs is limited by power and heat constraints, the system had to be comprised of much

larger number of lower-power, lower-performance cores. The high-performance with

low power consumption is required. Recently, GPGPU which composes of thousands

cores is commonly used to accelerate HPC in many studies, but the actual achieved

performance changes greatly for each application relative to its peak performance. In

addition, data communication bottleneck among computing nodes also can be solved by

through various approaches such as optical communication.

FPGA (Field Programmable Gate Array) is a LSI that can implement most suitable

specific processor circuit on particular applications. With the development of FPGA

technology, many HPC applications can be accelerated by using FPGAs to deliver enor-

mous performance. The configurable HPC systems which accumulated a lot of FPGAs

are able to be widely utilized on HPC to implement high performance on low power

consumption.

We constructed a configurable processor array with multidimensional FPGA array,

that named as Virtual Object by Configurable Array of Little Scalable Engine(Vocalise).

The proposed system has following features:

1. The design and development is high-efficiency and easy-to-use for various applica-
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tions through combining software and logic circuits.

2. The scalable multidimensional FPGA array enables implementation of 3-D inter-

connections. And the network topology of FPGAs can suits to solve different dimen-

sional problems.

In general, applications implemented on system with FPGAs are considered difficult

to develop, because hardware design knowledge of application designer and particu-

lar development tools are required. Moreover, large-scale FPGA array management is

also difficult to be implemented. In order to compensate this problem, hardware ob-

ject(hwObject) has been proposed in previous studies of our laboratory. The logic cir-

cuit as an hwObject can be utilized to implement applications like software object. The

application system which using the method called hw/sw complex. Through a hw/sw

complex, the application designer can easily realizes configuration/access/control on all

FPGA array. A lots of standardized peripheral and control circuit can be hidden in hw/sw

complex units, the programmers are only requires to focus on processor circuit design

for a new application, and does not require development of Therefore, the development

cycle and difficulties reduces.

In the meantime, on almost all of previous configurable computing studies, the inter-

connection among FPGAs were only connected by 1D or 2D network. For 3D com-

putational problem, when 3D mesh grids are mapped on 2D or 1D processor network,

it certainly will arises the data communication loss to cause of system’s performance

degradation For probing and solving the problem, we implemented a multidimensional

FPGA array (maximum dimension is 3D) which composed of many small FPGA cards in

our system. Each FPGA card can interconnect using six I/O (top, down, left, right, front,

and back) terminals. The multidimensional FPGA array are scalable design that can in-

crease and decrease on a scale freely, and it is easy to control with a host PC through

the hw/sw complex method. Meanwhile, the communication network among FPGAs

is scalable according to user design. When the system operates multidimensional ap-

plications, transmission efficiency among FPGA can be improved through user-adjusted

dimensionality and network topologies for different applications.

In the study, we aims to explore merit and demerit of the approach in a real system
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with a 3D FPGA array. In order to realize a 3D FPGA array on Vocalise system, we de-

veloped a solution to realize fast and flexible circuit configuration on multidimensional

FPGA array, and implemented data communications among host and FPGAs. Further-

more, to demonstrate the effectiveness of the proposed methods, we solved numerical

calculation problems: CIP method and 3D Poisson equation with Vocalise system run-

ning at 66 Mhz. We also evaluated performance, communications overhead among FP-

GAs and power consumption. As results, one FPGA can performs 1.916 GFlops on 3D

CIP method which achieves 99% peak performance (1.93 GFlops). Moreover, 2×2×2

3D FPGA array performs 12.46 GFlops on 3D Poisson equation problem. The maxi-

mum scale FPGA array can realizes 199.36 GFlops with consuming 435 W. Although

the utilized FPGA is a low performance FPGA in Xilinx products, it is also possible to

achieve high-speed operation at 500 MHz. The effective performance of system (8×4×4

FPGAs) can be expected to realize close to 2 TFlops running at 500 Mhz. Based on the

above results, we analyzed the specific efficiency and capacity of Vocalise.
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Chapter 1

Introduction

Almost all High Performance Computing(HPC) studies aim to realize higher peak

performance, higher bandwidth and lower latency among computing nodes and lower

power consumption through various approaches. Throughout the development process,

there has been a long-standing rivalry between hardware solutions and software so-

lutions for solving the computational problem. Hardware solutions realize the spe-

cific computing with massive parallel arithmetic logic array on hardware level such as

application-specific integrated circuits (ASIC). It is high-performance, high-efficiency

and low power consumption, but is difficult to use and very high cost. Software so-

lutions realize the computing with general-purpose processor array which implement

algorithms variable through instruction streams from operating system (software). They

are flexible and very easy-to-use, but low performance and power efficiency. In decades

past, software solutions became the main trend in HPC. Because of fast-developing of

software and general-purpose processor, the performance can meet the many applica-

tions requirements. But there are still no substantive changes in its disadvantages. With

the development of semiconductor technology, especially very flexible high performance

programmable logic hardware arise, like field-programmable gate arrays (FPGAs). It be-

comes possible to realize a kind of reconfigurable computing architecture which comb-

ing the flexibility of software with high performance of hardware. Thus computing ar-

chitecture not only has advantage between hardware solution and software solution, but
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also blurs the borders between hardware solution and software solution. It could hope-

fully becomes the leading HPC area in new period over the next several decades. In this

thesis, we build a HPC system by using the reconfigurable computing approach.

1.1 Background

Today more supercomputers are designed to achieve higher performance with lower

power consumption. The conventional supercomputers which are composed of general-

processors are main trend for High Performance Computing (HPC) applications. It is

easy for general-purpose CPUs to provide an optimal solution for the broad spectrum

of HPC applications. The conventional super-computers mainly rely on increasing im-

plemented cores to achieve higher peak-performance. However, there is a demand to

the conventional supercomputers for improving the parallel-processing efficiency. It

depends mainly on the overhead in synchronization or data transfer among the shared

memories or message transposing, most of the computational power has been wasted. In

many cases, the bandwidth among the parallel microprocessors causes a limitation of the

overall performance.

For example, Fujitsu K supercomputer is the fastest supercomputer in 2011, uses

68,544 2.0GHz 8-core SPARC64 VIII-fx processors packed in 672 cabinets, total of

548,352 cores, manufactured by Fujitsu with 45nm CMOS process technology. Its per-

formance is 8.162 PFlops on LINPACK benchmark[5]. However, by increasing number

of the composed processor, the power consumption and running costs were rapidly in-

creased. The highest total power consumption of Fujitsu K supercomputer was estimated

to be 9.89 MW, while the average power consumption of a Top 10 system is 4.3MW.

Thus the power consumption roughly equals to that of 10,000 houses, and its annual

running cost is 10 million US dollars. It is important to reduce the power consumption

and cost. And the power dissipation and heat has become one of the major drawbacks

to limit to achieve higher peak performance of supercomputer. Therefore, it becomes an

important trend to achieve higher computation efficiency and lower power consumption

on most supercomputer researches in recent years [6]. The Green500 List [7] was paid
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more and more attentions, which supercomputers can be compared by performance-per-

watt.

Recent years, GPGPU(general-purpose computing on graphics process units) origi-

nally designed for computer video cards have emerged as the most powerful chip to ac-

celerating high performance computing. Different to multi-core CPU architecture which

currently ship with two or four cores, GPU architectures running thousands of threads

in parallel with hundreds of cores. There are several approaches to programming GPUs

such as NVIDIA CUDA(Compute Unified Device Architecture), AMD stream, Ope-

nACC and OpenCL ect.. Many new generation supercomputers implemented with GPG-

PUs to realized higher performance and power, such as TSUBAME-KFC [8], Tianhe-I

[9] ect..

Meanwhile, interest has arisen in augmenting these clusters with programmable logic

devices, such as Field Programmable Gate Array (FPGAs). The FPGA is a reconfig-

urable hardware. The FPGA’s hardware can creates custom specific processing units

which are optimized to meet the particular requirements of each HPC application.

In many cases, FPGAs are effective for the high-performance computing (HPC) ap-

plications, and this solution can potentially deliver enormous performance. And many

HPC applications can be accelerated by incorporating specialized processing capabilities

to handle particular tasks.

Although the number of usable gates in FPGA has increased up to several million, par-

allel applications will require even larger numbers. Because of FPGA capacity has terms

for each of the available hardware resources, including hard multipliers and BRAMs

as well as general-purpose logic elements. Depending on the application, any of the

resources can become the limiting one. For solving many practical applications, com-

putational capability of an FPGA is often not enough. For example, on our previous

research [19],The system needed at least 10 FPGAs to implement simultaneously brain

process applications such as move motion, voice recognition, image recognition, voice

synthesis.

Therefore, a scalable FPGA array structure is also interesting. The FPGA’s computing

power comes from the parallel it uses to handle a problem. Special purpose processors
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built with FPGAs are becoming popular in super computing. Many parallel computing

systems with multi-FPGAs have been developed, such as Maxwell [41], the Berkeley

Emulation Engine (BEE) [13], Cube [14], programmable active memory (PAM) [15],

and the systolic computational-memory array (SCMA) [16].

BEE3 The third-generation BEE (BEE3) comprises modules with four Virtex-5 FP-

GAs connected by ring interconnection. BEE3 is a production multi-FPGA sys-

tem with up to 64 GB of dynamic random-access memory (DRAM) and several

I/O subsystems that can be used to enable faster, larger and higher fidelity com-

puter architecture or other systems research.

Maxwell Maxwell is a 64 FPGA supercomputer with an IBM Blade Centre Cluster and

FPGA acceleration. It has 32 Blade servers, each with one Intel Xeon CPU and

two Xilinx Virtex-4 FPGAs. The CPUs are connected to the FPGAs by a standard

IBM PCI-X expansion module. The FPGAs are connected by a dedicated 2D

torus network.

Cube Cube is a massively parallel FPGA cluster that contains 512 Xilinx Spartan 3

FPGAs on 64 boards. The FPGAs on each board are connected in a chain and are

suited to pipeline and systolic architectures.

PAM The FPGA-based PAM comprises a 2D array of FPGAs, and external local-

memory behaves as memory for a host machine while processing the stored data.

SCMA The systolic computational-memory array(SCMA) is extensible over a 1D or

2D array of FPGAs connected by a mesh network. It is designed for extensi-

bility with multiple devices for high and scalable performance of floating-point

computation.

Above researches show that the multi-FPGAs HPC system can usually provide higher

utilize the peak performance of hardware, higher computation performance and better

power efficiency. For example, a SCMA system, which equips two ALTERA Stratix

II FPGA, The implemented system, which implements 192 processing elements run-
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ning at 106MHz; it has 40.7 GFlops the peak performance in single precision com-

putation. The SCMA achieves high utilization of peak performance, about 32.8 to

35.7 GFlops performances can be implemented for the simple benchmark computations,

which consists of red black-SOR (successive over-relaxation) method, Fractional-step

method (FRAC) method, finite-difference time-domain(FDTD) method computation.

The SCMA can provides 29 times and 10.13 times faster computation than 3.4-GHz Pen-

tium4 processor for Fractional-step method (FRAC) computation and finite-difference

time-domain(FDTD) method computation. Consequently, double- FPGA SCMA con-

sumes 90.21 W to 109.81 W for the simple benchmark computations . While software

computation with the Pentium4 processor which has the average power consumption of

125.99 W. It means that the FPGA system consumes the 69% to 87% power of software

computation with the Pentium4 processor, and requires only 2.8% to 7.0% of the total

energy for the same computations with Pentium4 processor to realize the computation

speedup.

Because of FPGA has high efficiency, low power consumption and low-heating

characteristics, but CPU and GPU performance/watt are hitting the wall in recent

years. Recent studies have shown that FPGA-based application can achieve more

than 10 times better performance per watt and latency improvement compared to

CPU/GPU implementation[17][18]. FPGAs can provide the heart of what’s needed for

power-efficient hardware application acceleration on one chip while providing solutions

that are below the 25W per board targets. For instance, Baidu (Chinese web services

leader) presented their research at the 2014 Hot Chips Symposium,[18] , they achieved

375 GFlops dissipating less than 20W in DNN(Deep Neural Network) prediction

computation with mid-end FPGAs, the FPGAs can deliver more performance than

CPUs or GPUs .

On the other hand, although there are lots of researches which implement applications

with FPGA. But the reconfigurable computing system with FPGAs is still difficult to be

widely used by users in many practical HPC applications. Because of the difficulty of

the hardware design and the lack of the particular design tools in building system. If

developers want to utilize the heterogeneous HPC system with FPGA, they often have to
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study and master VHDL/Verilog HDL language to design the whole circuits on FPGAs.

The developing cost is very high and the hardware development cycle is very long; the

designer have to spend an amount of time to design the whole circuits implemented on

FPGA, corresponding interface circuit and driver for every specific application. There-

fore it is important to provide an easy-to-use development environment on a HPC system

with FPGAs.

A kind of hardware/software complex architecture was proposed on a lot of previous

works of our laboratory.[19]-[23] The proposed system composed of host pc and a PCI

FPGA device. An object-oriented application operations were able to be divided into

Objects processed by CPU and Objects processed by FPGA on PCI device. The user

can easily utilize the objects operated by FPGA like software objects. By using this

approach, we had realized amount of accelerated application processes such as the image

recognition process, half-negation web application process etc. on previous of proposed

system. Furthermore, the application developing cost and cycle also were effectively

reduced [20].

In order to implement a high-efficiency and easy-to-use development environment for

multi-FPGAs HPC systems. We utilize hw/sw complex concept to implement our HPC

system. The controls/data communications of FPGA array and computation of applica-

tion are implemented by hw/sw complex units. Meanwhile, the data communication cir-

cuit, control circuit among host PC and FPGA array have been standardized and achieved

as peripheral circuits, which spend very much time and energy in the design. The hard-

ware developers only need to design the processing elements which implemented on

FPGA array for a new specific application, and focus on execution efficiency of circuit

and parallel efficiency among processing elements on multi-FPGAs. It enables to effec-

tively reduce the difficulty of system utilization and development cycle.

1.2 Objectives of the study

Many HPC applications such as partial differential equation (PDE) solvers [24],

climate/ocean-modeling systems[25], and molecular dynamics simulations[26] use
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Cartesian grids of different dimensions and structure. A distributed computing system

operates these applications with a processor array in parallel through grid processes

mapped on a computing network. However, the communication pattern might be com-

pletely different for different applications. Process mapping on the network significantly

affects application performance. Moreover, communication efficiency might also be

changed when operating applications with different network topologies.

For example, for 3D PDE problems, each Cartesian grid must perform nearest-

neighbor communication along the edges. The 3D computational domain is arranged

to each parallel computing node/processor of a 1D or 2D computing network. Each

node/processor communicates not only with its physically nearest neighbors; it is forced

to share network links with other communication. Such sharing results in significant

communication contention and performance loss.

While FPGAs are connected by 2D direct interconnection in some multi-FPGAs sys-

tem, such as Maxwell, PAM and SCAM. Cube comprises multiple FPGAs in 3D space;

however communication among FPGAs on each board is still achieved with a chain inter-

connection. When operating 3D numerical calculation problems, the 1D or 2D physical

layout of application processes might not match the communication characteristics of

the application to result in performance and communication efficiency loss. Thus, link

bandwidth often needs to be doubled and redoubled because data communication among

nodes might cause system bottleneck. With a 3D FPGA array, the communication effi-

ciency is able to be improved.

For improving this issue, we propose an multidimensional FPGA array designed with

configurable circuits. We designed a reconfigurable parallel computing platform with a

multidimensional array of FPGAs. This custom computing system has been named the

“V irtual Object by Configurable Array of Little Scalable Engine (Vocalise)”.

The purpose of the system is to study the feasibility of an application-specific multi-

dimensional configuration of the FPGA array. The personal HPC can be configured to

customize it for specific problems. In Vocalise, each FPGA card has six-way 3D I/Os

that enable implementation of 3-D interconnection, FPGA array can be configured in a

cubic form or a plane form for each specific problem, like LEGO block. By using appli-
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cation specific and scalable multidimensional interconnection, the FPGA array is easy

to create various network topologies of different dimension (1D, 2D, or 3D) and infor-

mation. For different applications, we can configure the physical layout of the system to

match communication patterns of different applications and optimally map processes to

the network to achieve improved communication efficiency.

Considering a 3D FPGA array easily achieves higher transmission efficiency than a 1D

or 2D arrays of FPGAs for a 3D PDE problem. In our approach, the multidimensional

computational domain is arranged to each parallel computing node/processor which is in

a same dimensional computing network, For a 3D problem, the computation is operated

by 3D FPGA array.

The study aims to evaluate and explore the merit and demerit of the approach in a

real system. To clarify the capacity, we implemented Vocalise system with a 3D FPGA

array firstly. With sw/hw complex, we achieved the communication/control of a 3D

FPGA array. In order to realize the high efficiency circuit configuration, we developed

a flexible and high-speed circuit configuration solution in parallel for a large-scale 3D

FPGA array. Through developing a configuration circuits implemented on FPGA, bit-

stream data of circuits can be effectively written into any connected FPGAs in parallel

with the implemented configuration circuit via the existing network connections among

multidimensional FPGAs.

In addition, we implement the computations of multidimensional CIP method on 1

FPGA, and 3D Poisson equation on 1 FPGA, 2×2 FPGAs, and 3D(2×2×2 FPGAs)

FPGA array, and examined the following features in the study: 1. Performance of the

processing element implemented on FPGAs. 2. The overheads of data communication

between adjacent FPGAs on 2D/3D network. 3. Power consumption and power effi-

ciency of the FPGA array. 4. Capability of multidimensional FPGA array.

We demonstrated that the Vocalise system has enough computation power to imple-

ment HPC applications. Through analyzing above measured results, we also estimated

the computation performance and communication condition of a RHPC system which

was built with large-scale multidimensional FPGA array.
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1.3 Dissertation constitutes

This Chapter introduces background and study objectives.

The remainder of the thesis is organized as follows.

Chapter 2 the previous works of our laboratory is introduced. It consists of hw/sw

complex system hardware and software compositions. The hw/sw complex and FPGA

board: hwModule series and implementation method for solving specific applications

with hw/sw complex architecture will be presented. Moreover, in the chapter, we also

introduce how to utilize the hw/sw complex on our Vocalise system, a multidimensional

FPGA array system to implement applications; the design method and throughout the

development process will be described and discussed.

Chapter 3 describes hardware architecture of Vocalise system. The system composed

of amounts of FPGAs through VC Bus network and VI Bus network. Through the two

networks, the configuration method on multidimensional FPGA array, the data transfer

mechanism and parallel computing implementations among FPGAs are realized. More-

over, the hardware design on FPGAs will be described. Discusses features of VC Bus

network and VI Bus network.

Chapter 4 demonstrates sample applications which have been realized on our system to

evaluate the system performance. Implementations of numerical simulation: Advection

Equation with CIP method and Poisson Equation with Jacobi method are described in

detail. Then, evaluates the performances of system for solving advection equation with

CIP method and Poisson equation, data communication overhead among FPGAs and

power consumption.

Chapter 5 summarizes conclusions and suggestions for future work.
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Chapter 2

Previous Work - Hardware and

Software Complex Architecture

2.1 Hw/sw complex

The Vocalise system is based on a hardware and software (hw/sw) complex that have

been previously proposed in [20] by our laboratory. Using the hw/sw complex design

style, we can design a system with swObjects only at the beginning, and then replacing

the swObjects with hwObjects, the design and implementation are completed at the end.

The concept of hw/sw complex unit is shown in Figure 2.1. The hw/sw complex consists

of a Host PC which is a standard X86 architecture computer, and hwModule board which

equip numbers of FPGAs and SDRAM.

The HwModule is attached to the PCI bus of the standard Windows PC, and has some

FPGAs for the applications. The Device Driver of hwModule Board is composed ac-

cording to WDM (Windows Driver Model) specifications and operates under Windows

XP OS.

By using the hw/sw complex unit, execution of application can be separated by two

parts, the object processed by Host Processor is named ”swObject”, the object processed

by FPGA is named ”hwObject”. The computing core on FPGA that processes hwObject
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Fig. 2.1 A conceptual model of hw/sw complex system

is named ”hwNet”.

2.1.1 SwObject and hwObject

SwObject means an object operated by software, it is an ordinary object described

by C++ Language Class. The operating data is implemented on main memory of Host

PC, and the swObject operation is implemented on member function which computed

with general purpose processor. Based on this character, we currently utilize swObject

to execute the complicated operation such as complicated analysis and logical judgment.

HwObject means an object operated by hardware; it is one kind of special object

that its operation is executed by a specific process circuit on FPGA. The hardware ob-

ject(HwObject) is implemented on FPGAs of hwModule as HwNets, and its data, func-

tions, and interface from the host are implemented in main memory. In sw/hw complex

unit, we can utilize a hwObject like a software object. We can generate a correspond-

ing hwObject can when the operation is require, and also delete the hwObject when the

operation. The cooperation of the software and the hardware is easily realized. When

application has large-scale bit operations, or signal stream operations, and parallel com-

puting, these parts of application is usually suited to be operated by a application specific

processors efficiently, relative to software operated by CPU. It is possible to achieve high

efficiency operation and reducing the whole computation time by utilizing a hwObject
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Fig. 2.2 A typical hwNet unit

to process the bit operation, signal operation, and massive parallel computing.

Meanwhile, with the development of FPGA technology because of the reconfigurabil-

ity of FPGA, it has been widely utilized as a replacement for ASICs in the application-

specific domain, it is suitable for rapid prototyping, and quick time-to-market. In a

hw/sw complex unit, parallel computing parts usually are suited to operated by hwOb-

ject, complicated analyze operations are operated by swObject. Through the method,

system simultaneously has flexibility of software and high-speed of hardware.

The Figure 2.2 shows a typical Block diagram of hwNet on an FPGA.

2.1.2 HwNet

The hwNet is a virtual circuit. The Figure 2.2 shows a typical hNet Unit. The hwNet is

separated from peripheral circuits through corresponding Interface circuits: CM Adapter

module and hwNet I/O module. Through the CM Adapter module, a hwNet can accesses
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Fig. 2.3 A layers model from hwObject to hwModule Board

SDRAM on Board. Through hwNet I/O module, the hwNet can receive signals from host

PC, so that users also directly control the hwNet from the software with hwObject. The

hwNet is also possible to connect to external devices through GPIO (General Purpose

Input Output Interface).

The Figure 2.3 shows a layer model from hwObject to hwModule Board. In the hw/sw

complex unit, the virtual hardware circuit that is being configured on the FPGA is in-

stalled as library in an existing software development environment as hwObject. Though

object manager (ObjectManager) enables to host PC can access and control the hwMod-

ule. By using the ObjectManager, the circuit (HwNet) on hwModule is easily accessed

from the standard C++ compiler and can be used as an object in applications.

For the applications, the hwObject is just an object same as swObject. Thus enabling

composing, computing and deleting at any time, which also interlocks the writing, com-

puting, and the users can replace hwNet on the FPGA according the requirement at any

time. The hw/sw complex architecture enables software programmer to reutilize the
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prepared hwObject and thus implementing hw/sw complex system as an extension of

Object-Orientated Programming.

As shown in Figure 2.1, the controlling the peripheral circuits, communication be-

tween swObject, the corresponding interface module by concealing the process regard-

ing dynamic composition of hwNet. Consequently, the developed hwNet operates on

FPGA boards. Since the control circuit of PCI bus and SDRAM; which overloads the

development, is being concealed at the external of hwNet, hardware designer need only

to concentrate on the designing of hwNet. Through the method as such explained above,

we are making attempt to realize the virtual circuit for hwNet and development cost

reduction.

Using the hw/sw complex design method, we can design a system that temporarily in-

cludes swObjects only at the beginning of the design process, then replace the swObjects

with hwObjects when completing hardware design and implementation.

From the viewpoint of reutilizing hwObject, the programmer don’t need to re-

architecture the whole circuit every time on corresponding FPGA board, just redesign

processing core as a hwNet. We established a standard bus inner FPGA named FIB

(FPGA Internal Bus) and connect hwNets via FIB.

■FPGA Internal Bus(FIB) When an FPGA implements multiple Modules or hwNets

has been implemented FPGA, the communications between the modules or hwNets usu-

ally have been achieved by lots of master and slave. It is necessary to establish a efficient

bus standard to meet the communication demands. We proposed a standard bus: FPGA

Internal Bus(FIB) to users reduce the development difficulty and cycle.

FIB is a typical Master/Slave transaction mechanism; and FIB consists of following

signals.

Global signals The Global signals of FIB composed of CLK signal and nRst sig-

nal(shown in Table 2.1). CLK signal: provide clock signal for transaction, and rising

edges of signals is effective. nRst signals: Asynchronous reset signal for system; nega-

tive logic operation is effective.

Data line divides Read Data(DW and Write Data.BE bus transaction mode signal.
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Table 2.1 Global Signals

Signals Source Description
CLK System system clock signal
nRST System For bus initialization

WE Wirte/Read signal.SEL send from master, declare connection status between slaves

MRDY , SRDY declare status of data transfer.

Arbitration signals Masters transfer REQ signal to arbiter to gain access authorization

of bus. The bit-width of SSA signal can be changing with the number of slaves. When

the circuit has multiple masters and salvers, the Arbiter Module arbitrates one of masters

to gain access authorization of bus, and send signals to the specified slave. Likewise,

the Arbiter Module also is able to achieve management of signals from slaves, and send

signals to the corresponding master.

Transfer mechanism When a master transfers data to a slave that there are multiple

masters on an FPGA, following operations need to be completed. The Figure 2.4 shows

The waveform in FIB (FPGA inner Bus). Firstly, the master module send a REQ signals

to the arbiter to gain access privilege of bus. When has multiple slave, the master outputs

a SSA signal to specify a slave module at the same time. When receiving a ACK signal,

the master send address signal and SEL signal. See from bus line, when SEL signal

Table 2.2 Bus Transaction Signals

Signals Source Description
A[31:0] Master address signals .DWORD (32 [bit]) addressing.
DW[31:0] Master Writing Data signals
DR[31:0] Slave Reading Data signals
BE[31:0] Master Byte enabling
WE Master Judge Write/Read operation
SEL Master Transaction from master
MRDY Master Transaction Ready signal from master
SRDY Slave Transaction Ready signal from slave
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Table 2.3 Arbitration Signals

Signals Source Description
SSA Master Specified signal for slave
REQ Master Request signal for utilizing Bus
ACK Arbiter acknowledge signals for utilizing Bus

becomes high means there are data transfers via Bus line. When master and slave receive

read signals(MRDY and SRDY) from each other, master send data to slave. The SEL

signal is de-asserted when the data communication has been completed, and then REQ

signal is de-asserted, the master release the bus permission. In our design, FIB can

achieve single transmission and burst transmission.

2.2 HwModule series

2.2.1 HwModule V2

The hwModule V2 is a PCI device, which implements FPGAs (reconfigurable LSI)

and independent memories. This can be easily mounted to a general-purpose PC, and is

used as a platform for the virtual circuit.

In Vocalise system, the “hwModule V2” FPGA board is mainly a device that connects

extensible multi-FPGAs, i. e., an scalable array of FPGAs. This PCI device is used to

configure application specific circuits and implement data communication between the

host PC and the extensible multi-FPGAs. Use of the hw/sw complex reduces devel-

opment cycle time and design difficulties of complex applications. The appearance of

hwModule V2 is shown in the Figure 2.5.

The Table 2.4 lists the specifications of hwModule V2 (shown in Figure 2.2). The

board implements 4 FPGAs. There is one FPGA to implement a bridge circuit to achieve

communications between host PC and other 3 FPGAs, and other 3 FPGAs are utilized

to implement hwNet (virtual circuit) for the users. It is also equipped with four (16MB)

SDRAM to store the process data as the Local Memory. In addition, the hwModule
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Fig. 2.4 FIB-Bus waveform of FIB

V2 implements three General Purpose Interfaces (GPIF) to achieve connections with

external devices.

The Figure2.6 shows the circuits in HwModule V2.

■Inner bus line Inner bus lines and circuits of HwModule V2 are shown in Table

2.5. LM-Bus: The Data line for local memory, implement to transfer large amounts of

data between LM and user-FPGA. HN-Bus: the control command lines for User-FPGA,

implement management of users-FPGA. Configuration-Bus achieve to configure circuits

of hwNet on User-FPGAs. And PCI-Bus is implemented to achieve communication

between PCI-FPGA and host PC.
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Fig. 2.5 The appearance of hwModuleV2

■PCI-FPGA We used 1 FPGA(XC3S1000 ) as PCI-FPGA to achieve communication

and controls from host PC, and circuit configurations on hwModule V2.

The FPGA implements 4 circuits that consist of PCI Controller, LM-Bus Bridge,

hwNet I/O Bridge, User-FPGA Configurator. PCI Controller achieve communication

based on PCI signal standard with Host PC. Host PC enable to access the hwModule V2

with the PCI Controller. LM-Bus Bridge: achieve data communication between Local

Memory and PCI-FPGA. When multi-FPGA are implemented, the LM-Bus is shared by

all FPGA. HwNetI/OBridge is the controller circuit for HN-Bus. User-FPGA configura-

tor implemented other circuits of other 3 FPGAs. Through PCI-FPGA, users can easily
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Table 2.4 hwModule V2 Specification

Implemented FPGA Purpose
Xilinx Spartan3 XC3S1000× 1 For PCI control circuit (PCI FPGA)
Xilinx Spartan3 XC3S1000× 4 For hwNet circuit(User FPGA)

Implemented SDRAM Max Frequency Purpose
16[MB] × 1 133[MHz] For Configuration Cache Memory
16[MB] × 4 133[MHz] For Local Memory

Implemented Connectors Pin
GPIF Data(40 Pin), 3 Ports , total 120 Pin
LVDS Data(16 pin), 3 Ports, total 48 pin

implement circuit configuration of other 3FPGAs on hwModule V2 by host PC, and data

Fig. 2.6 Inner Block circuits on hwModule V2
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Table 2.5 Inner Bus of HwModlue V2

Bus Type Description
LM-Bus For Data stream
HN-Bus For communication of hwNets

Configuration-Bus For Configurations of hwNet in user FPGA

communication with hwModule V2.

■User-FPGA The other 3 FPGA is named User-FPGA. The user can implement the

various hwNets(virtual circuits) on these 3 User-FPGAs according to different require-

ments.

The implemented circuits mainly consist of 4 type:LM-Bus Bridge・hwNet I/O

Bridge・hwNet Unit・GPIF Bridge. The hwNet I/O Bridge acheive data communication

and control signals from host PC. The hwNetUnit consists of hwNet(virtual circuits),

CMAdapter(hwNet connect to LM-Bus Bridge), hwNetI/O Adapter (hwNet connect to

hwNet I/O Bridge). Through the User-FPGA, we can not only achieve the application

computing on hwModule V2, but also access lots of external computing device to

elastically expand computing power of the whole system.

■Local Memory（SDRAM) The hwModuleV2 equips 4 SDRAM(16MB) to store

the computing results of hwNets. Because of memory host PC is named as Main Mem-

ory. Correspondingly these SDRAMs are named Local Memory. The available space of

Local Memory by users are total 64 MB on a hwModule V2.

■General purpose interfaces (GPIF) The hwModule V2 equips 3 GPIF connectors.

Each GPIF corresponding a user FPGA, and is 50 pin connector, data pin 40 pin, total

120 pin on 3 GPIFs.

Through the GPIFs, the HwModule V2 can accesses extern FPGA devices , imple-

ments to control the hwNets or communicate data. The computing power of system is

extendible by connected extern FPGAs.
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Fig. 2.7 Appearance of hwModule VS

2.2.2 HwMoudle VS

The hwModule V2 can connect numbers of small FPGA boards to extend systems

computing performance. The small FPGA boards, named “hwModule VS”.(shown in

Figure 2.7)

The hwMoudle VS board comprises a single Sub Board and a single Processing Ele-

ment (PE) Board. Figure shows a PE Board of hwMoudle VS.

Figure 2.8 shows a Sub Board of hwMoudle VS.

The Sub Board is equipped with one Xilinx Spartan-3 XC3S700A FPGA. The Sub

Board equips 4 GPIF IO. Through front and back GPIF IOs, a sub Board can connect

two other sub Board. And other GPIF connects its own PE Board. The Table 2.6 has

shown the specific of Sub Board. In our system, sub board has mainly two functions.

1.) Sub Board supports the implementation of special circuits into its own PE board
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Fig. 2.8 Sub board Appearance and block diagram

or the next Sub Board.

2.) Sub Board also transfers computing data and command signals between the host

PC and the PE Board. For many applications, the Sub Board as selector circuit to be

implemented on FPGA of Sub Board, Therefore Sub Board is not equipped with any

local memory such as SDR SDRAM.

Figure 2.9 shows a PE Board of hwMoudle VS.

A PE Board equips one Xilinx Spartan-3 XC3S4000 FPGA. And the PE Board also

equips two 32bit-16MB SDR SDRAM as Local Memory on Board. The PE board has

eight-way General Purpose Interface (GPIF) I/O ports. There are two GPIF I/Os to be

used to connect to sub Board, and other six-way GPIF I/Os are used to connect with

adjacent PE Board; thus, it is possible to achieve three dimensional data transfer in the

same time. Based on the characteristic, the distributed system is easily extensible to

1D, 2D, or 3D FPGA arrays. It is primarily used to implement the custom arithmetic

circuit for different types of applications. The computational mesh is homogeneously

partitioned into each hwModule VS.
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Table 2.6 The specific of Sub Board

LSI
FPGA Xilinx Spartan3 XC3S700A

Connector Description
Front/Back connection 1 Port: 78-pin )

between Sub Board Front/Back Total: 156-pin
SIMDATA line Connector Data line: 32-pin, Control line: 26-pin, Total 58-pin
Configuration Connector 23-pin

2.3 Application implementation of Vocalise system

In previous sections, we mainly described the concept of the hw/sw complex. In

practical applications, we utilize hw/sw complex units to implement the computations

of application, circuit configuration and access/control on FPGA array. In this section,

we will introduce how to implement applications on Vocalise system by using hw/sw

complex unit. We illustrate the concepts and detail design of swObject and hwObject on

Vocalise system, process flow, design flow of hwObject model.

Table 2.7 The specific of PE Board

LSI
FPGA Xilinx Spartan3 XC3S4000

SDRAM 16[MB]×2

Connection Description
Connector DATA line: 32-pin, Control line 17-pin
between CLK lin :1-pin for each Port, Total: 50-pin

PE Boards 6 Ports(Up/Down・Front/Back・Left/Right) Total:300-pin
SIMDATA Connector Data (32-pin) , Control (26-pin) ,Total 58-pin

Configuration Connector 23 pin
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Fig. 2.9 PE board appearance and block diagram

2.3.1 SwObject in Vocalise system

The swObjects which are a ordinary object described by C++ Language Class. Com-

puting data is implemented on main memory of Host PC, and the swObject’s operation

is implemented on member function which computed with Host PC’s general purpose

processor. The essence of a swObject is achieved by allocating memory area on main

memory of Host PC. And swObject operations are implemented by member functions

operated by CPU. These member functions are subroutines of loaded program in main

memory. When having functions calls, CPU achieves decode and operate the subrou-

tine from code area. Actually, the operations of swObject are same to ordinary software

operations.

The conceptual swObject on Vocalise system is shown in Figure 2.10.

When Vocalise system implements most HPC applications, the main processes of ap-

plications are normally operated by hwObject, the swObjects are usually to operate pre-

process or post-process of application.

Pre-process: The swObject decomposes computational data domain into many

sub-computational domain in main memory as requirements of application. Each

sub-computational data domain corresponds to a local memory on hw Module VS. And

swObject can accesses the hwObject to map sub-computational data in main memory to
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Fig. 2.10 SwObeject concept on Vocalise.

each local memory on the designated VS.

Post-process: When FPGA array completes the calculations, the swObject accesses a

hwObject to read the result data on each VS, the result data is mapped on data area in

main memory of Host PC. Then the swObject outputs the result data to display program

or others post-processing programs.

2.3.2 HwObject in Vocalise system

As well as swObject’s operation, the hwObject’s operation also can be implemented

through calling member functions of hwObject. The member function calling on swOb-

ject is implemented by ordinary subroutine which processed by CPU. While the member

function calling on hwObject is just a starting procedure to hwNet. The process can be
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Fig. 2.11 hwObject concept on Vocalise.

seen as that a hwNet receives a start signal from host, then starts up the operations to

access LM and compute application which are controlled by its own state machine.

The Figure 2.11 shows the data process flow on Volcailse system. Data communica-

tion among host and FPGA array are implemented on following two steps.

1st step, the data in main memory are send to local memory on hwModule V2 by

using Intput/Ouptut port of hwObjects on host via PCI Bus.

2nd step, a controller circuit as a hwNet, which is configured on hwModule V2, re-

ceives commands from host and switches to the corresponding execution status for data

communication. Then, the data commutations among hwModule V2 and VSs are imple-

mented on hardware layer, the controller circuit on V2 access the data on local memory
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on hwModule V2, and communicate data/command with hwNet on VSs).

Through above two steps operations, data in main memory can be physically mapped

on distributed local memories on FPGA array. When host starts to operate applications,

it sends start commands to hwModule V2 via PCI Bus. Then hwNets on hwModule V2

decodes the commands and outputs start signals to each VS on FPGA array on VC Bus

protocol. The hwNet on hwModule VS receives the starting signal, then implemented

process circuit works on operation state to complete computation controlled by its state

machine. The VS send a end signals to V2 when completed computation via VC Bus.

Until hwModule V2 received all end signal from FPGA array, a end signal is send to

inform Host via PCI Bus.

2.3.3 HwObject interface in Vocalise system

HwObject interface is hwObject’s class· object on Host PC. It is allocated on main

memory of host PC. Software programs can call hwObject class in C++ language to

implement to access the substance of hwobject: hwNet on hwModule. Therefore, this

class of hwobject is a interface of hwObject on hwModule(hwNet).

On Vocalise system, the hwObject interface assess method is show in Figure 2.12. To

implement circuits configuration, access, control and application operation on Vocalise

system, there are two layers of hwObject concept on system (shown in Figure 2.12).

■ VocaliseConrtol hwOb ject This is an hwObject for solving control on Vo-

calise. There, we designed a Vocalise controller module circuit as a hwNet imple-

mented on hwModule V2. Thus hwNet correspond to a hwObject model named as

VocaliseConrtol hwOb ject. In other words, the management functions of FPGA array

as applications are implemented byVocaliseConrtol hwOb ject. The yellow area in

Figure 2.12 ishwOb jectVocaliseConrtol model.

There, functions ofVocaliseConrtol hwOb jectcall hwNetDriver to execute requests

of instruction and acquisitions of status. On FPGA side, the hwNetDriver as I/O space

registers forms, can generates formats for appropriate command, requests to access

hwNet. HwNetManger can grasps the status of Object hwModules, avoids access con-
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Fig. 2.12 hwObject access method on Vocalise.
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flict among multiple hwObject. By using hwNetMnager, request of hwNetDriver can

be executed to hwModule V2 through hwModuleDriver via PCI Bus . Once Vocalise

controller circuit receive request of commands/status from host, the circuit will start up

to corresponding work mode. Then Vocalise controller executes circuit configuration,

data/command/status communication with FPGA array on VC Bus protocol, and these

operations are controlled by hardware state machine. It means that the data communica-

tion/control among hwModule V2 and FPGA array are hidden on hardware level. When

software users want to implement access/control with each hwNet on FPGA array, they

just call functions ofVocaliseConrtol hwOb ject,and don’t need to learn communica-

tion mechanism on hardware level.

■ ApplicationhwOb ject See from the application calculation level, the virtual cir-

cuits for solving application computation are implemented on hwNets(Application pro-

cessing circuits) on VSs. Each virtual circuit hwNet on FPGA array corresponds to an

ApplicationhwOb ject. The developers can utilize hwNetObjectManagement to manage

multipleApplicationhwOb ject. Through call functions ofVocaliseConrtol hwOb ject

model,ApplicationhwOb jectInter f acecan easily implements to access/control corre-

sponding hwNet(applications circuits) and local memory on each VS. The amounts of

hwNet(processing circuits) on VS andVocaliseConrtol hwOb jectmodel form multiple

ApplicationhwOb jects.

While software users just require to callApplicationhwOb jects, the calculation of

application will be operated by corresponding hwNets on FPGA array.

For example, the Figure 2.13 shows application hwOjbects for solving Poisson equa-

tion problem with a 2× 2 VSs FPGA array. There, each hwObject has ID uniquely

corresponding to a hwNet(Process circuit) on VS.

Here, HwObject(0,0,0) to VS(0,0,0), hwObject(0,0,1) to VS(0,0,1),hwObject(0,1,0)

to VS(0,1,0), hwObject(0,1,1) to VS(0,1,1). For solving Poisson equation, boundary

data among adjacent computing nodes needs to be exchanged at each iteration.

Because development cycle of hwNet often is much longer than software developing

cycle. To reduce development difficulty and cost, the design and verification are realized
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Fig. 2.13 Multiple hwObjects for applications on Vocalise system.

on two stages: debug mode stage and release mode stage. On debug mode stage, the data

communication among computing nodes are realized by accesses among corresponding

adjacent hwObjects. The hardware developers only require to design main processing

circuits on hwNet, and do not redesign the development of data communications, which

occupied a great deal of time on the hardware design, among adjacent VSs on debug

mode. The host reads result data on each VS to main memory at each iteration, then

implements boundary data communication among hwObjects in main memory. The

exchanged data was written back to local memory of corresponding VS. Through this

method, application debugging can be implemented on hwObject level(software level),
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to a certain extent, the hardware’s debugging works can be realized as simple as debug-

ging software to a certain extent. The programmers are able to monitor the execution

of FPGA, stop it, restart it, set breakpoints etc, not just for using inserts logic analyzer

tools, such as Xilinx ChipScope that allows you to probe the internal signals of your de-

sign inside an FPGA. While your design is running on the FPGA, you can trigger when

certain events take place and view any of your design’s internal signals.

Since computations on debug mode need to frequent exchanges data between host

and FPGA array, the execution efficiency is very low, the bandwidth of PCI Bus and VC

Bus become the bottlenecks. In practical application, the data communications among

computing nodes are implemented on hwNet on each VS on release mode. On the devel-

opment stage, the designers completed the all functions of hwNet. And the debugging of

application implemented on hwNet level(hardware level), the debug method is same to

ordinary hardware design methods by using inserts logic analyzer tools, such as Xilinx

ChipScope.

The Figure 2.14 shows a header of hwObject class on one of a apppication hwNets on

a VS.

The implementation of hwObject’s class consists of following factors.

1) Implementation of hwNet: implementation virtual circuits on hwModule V2,

Bridge VS and Process VS. The member functionS implelogicis used to configure

a controller hwNet on hwModule V2, and member functionWriteExec is used to

implement a hwNet(process circuit) on designated VS. When hwNets are download

on VS, the initialization of hwNet can be achieved by the member functionINIT and

ResetVS.

2)Write input data on Local memory, and read output data when completed the

computation. By using member functions ofWriteVS S DRAMandReadVS S DRAM,

the host can achieve write/read local memory on any VS. The member functions of

S tartVS WBRAMandS tartVS RBRAMcan implement directly write/read the BRAMs

on any selected hwNet on FPGA array.ExecWriteand ExecReadimplements to

write/read initial data/ results data to local memory on selected VS for application of

Poisson equation.
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Fig. 2.14 HwObject concept on hwModule.
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3) Control/status of VS’s hwNet. The member functions ofWriteVSCTRLand

ReadVS S TTSimplement to control/status on selected VS’s hwNet. For application,

the member function ofS tartVS PEDebugare used on debug mode to start the execution

of hwNets. And ExecVIBusDebug function implements the data communication

among VS with hwObject on debug mode. On debug mode, when completed each

iteration, the hwNet executes a stall state, and send result data in BRAM to host. Until

the receive exchanged data from host, the hwNet execute the next iteration operation. In

practice, the member function ofS tartVS PEReleaseis used to start up computation of

Poisson equation on FPGA array on release mode. On release mode, all the operation

and data communication among VSs are executed by state machine on hardware layer.

When operations on VSs are completed, the hwModule V2 received all end signals from

hwNet.

hwNet on hwMoudel VS

Since our system can be applied to numerical simulations based on finite difference

methods. Application circuits(Processing Circuits) are implemented on VSs, as shown

in Figure 2.15. The hwNet accesses local memory (32 bit-16 MB SDRAM) via an

FPGA Inner Bus (FIB). The FIB comprises a 32-bit address/data bus and control signals

(SEL, MRDY, SRDY, and WR). The application program can manage up to seven hwNet

modules via FIB with hwNet manager module. This makes it easy to control distributed

and parallel computing with VSs.

When an FPGA array is used to compute different applications, users only need to re-

design the hwNet and hwObject interface, which encapsulate complex FPGA-software

interface protocols. All standard peripheral modules are reusable in different applica-

tions, which decreases the number of development steps.

These simulations numerically solve the PDEs to model physics-based numerical sim-

ulations. By utilizing scalable multidimensional design, different spatial domain prob-

lems can be solved by structuring FPGAs of different scale. Depending on calculation

requirements, the scale of an FPGA array can be changed to corresponding different di-

mensionalities and computational scales. For example, we can construct a 2D scalable
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Fig. 2.15 HwNet implemented on 1 VS.

FPGA array for 2D problems or a scalable 3D FPGA array for 3D simulations. The de-

sign of the scalable FPGA array enables effective numerical simulation for a particular

computational domain.

2.3.4 Design flow of application

The Figure 2.16.a shwos design folw of application on Vocalise system.

On our design method, the development process flow has following design steps.

1st step design; hw/sw complex architecture are considered in the initial stage of appli-

cation design. The executions of the application are divided into multiple swObjects and

hwObjects in parallel. There, the hwObjects without hwNet are actually also operated

by CPU.

2nd step design; the developers implement applications on debug mode. The hwOb-

ject interfaces are designed in C++ language, and the main processing circuits of hwNet
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Fig. 2.16 Desing process of hw/sw complex systems.

are completed on hardware RTL design level. On this step, the data communications

among hwNets can be realized by software, and execution of hwNet can be implemented

to logging an monitoring on software debugging environment. Therefore, it means that

debugging of hwNet can be implemented on hwObject level(software).

3rd step design; the developer complete the final design and verification on release

mode, when completed debugging on 3rd step and all function of hwNet on hardware

register-transfer level (RTL) design level. On the step, the developer realize the hwNet

design and debugging by using inserts logic analyzer tools, such as Xilinx ChipScope.

Compared to our approach with a common hw/sw cooperative design(co-desgin) flow

on reconfigurable computing systems(shown in Figure 2.16 ).

In a common hw/sw co-design technology, the applications are realized by software

in the initial design stage. Then, the developer analyzes the multiple software objects
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in parallel, the processing parts on higher computation overhead of CPU are replaced

with optimized specific processing circuits on FPGAs. And developers enquires to de-

sign corresponding interface circuits and driver to match the specific processing circuits

on FPGAs. For each particular application, peripheral interface circuits and drivers are

different. Once solving a new application, the design process need to return to initial

steps on hardware design and software design. The interface circuits and driver need to

redesign to match the new application specific processing circuits, which will occupy

much time and cost on the process of development. And developers implements soft-

ware/hardware synthesis design on final step of development.

While using our method, all peripheral interface circuits and data communication pro-

tocols among host and FPGA array were standardized, and control/access (driver) of

FPGA array were hidden in hw/sw complex units. The hwObject interface and hwNet

for applications only are required to redesign when change to solve new applications. It

is able to effectively simple design and reduce the amount of redesign and the turnaround

time.

The developers also can realize hardware design and debugging steps by steps on

debug mode and release mode. don’t need to return to initial design stage. Development

difficulty on debugging of software and hardware can be reduced.

Meanwhile, on the common co-design method, the developers need spend much time

on cooperative works among software and hardware on final design step. But on our

approach, the parallel operations among objects are implemented on initial steps(1st

step). In the following steps, the software developers can focuses on execution efficiency

of software design, and hardware developers also can concentrate on architecture design

on hardware design and debug steps. The overall development costs and development

cycle can be reduced through these improvements.

Design flow of hwObject

The Figure 2.17 shows design flow of hwObject models for solving hwObject- ori-

ented applications.

SwObject and hwObject interface are developed on a integrated software design envi-



38 Chapter 2 Previous Work - Hardware and Software Complex Architecture

Fig. 2.17 Desing flow of hwObject Model.
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Fig. 2.18 I/O interface on HwNet(Verilog HDL).

ronment, such as Borland C++.

To hardware developer, only hwNet circuits on VS need to redesign for a new specific

application problem. In hardware development process, hardware developer usually use

register-transfer level (RTL) description to design a hwNet with EDA tools (such as Xil-

inx ISE) in VHDL/Verilog language. Recently, high-level synthesis (HLS) design have

developed. High-level synthesis works at a higher level of abstraction, starting with an

algorithmic description in a high-level language such as System C and Ansi C/C++.

The designer typically develops the module functionality and the interconnect protocol.

The high-level synthesis tools handle the micro-architecture and transform untimed or

partially timed functional code into fully timed RTL implementations, automatically cre-

ating cycle-by-cycle detail for hardware implementation. The HLS method lets hardware

designers efficiently build and verify hardware, by giving them better control over opti-

mization of their design architecture, and through the nature of allowing the designer to

describe the design at a higher level of tools while the tool does the RTL implementation.

In order to simplify hwNet’s development, we provide a standardized design on

hwNet’s I/O interface. The Figure 2.18 shows declarations of a hwNet’s inputs/outputs

interface for solving 3D Poisson equation. The hwNet communicates data with local

memory, other hwNets on an VS, other VSs, Host PC through the Memory Type Ports
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(MTP) on FIBus protocol. There, a hwNet has a MTP LM for accessing to LM(line

3), a MTP VC for access via VC Bus (line 5), 6 MTPs for data communication via VI

Bus(line 7 to line 12). And the signals of iEnd and oEnd (line 14,15)is I/O interface

for synchronizing multiple VSs via VI Bus. The signals shown in (line17,line19) are

control/status I/O interface for host which can be defined by user. The signals shown

in line 21 are system line. According to the such standardized interface, the designer

can esaliy to implement a new application through the simple application hwNet. They

don’t need to put a lot of effort on data communications among hwNets, just needs to

redesign the process elements for solving application, and concentrate on algorithm

and architecture of hwNets. Meanwhile, because of VS and hwModule V2 equip the

same Xilinx Spartan-3 4000 FPGA, and the hwNet on hwModule V2 and hwNet on VS

adopt similar standardized interface design based on FIB protocol. Amount of hwNets

of applications implemented on hwModule V2 on previous works can be easily ported

to VSs on Vocalise platform. Through the design method of hwObject, the development

cost and cycle also can be effectively reduced on hardware level design.
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Chapter 3

Architecture and

Implementation of Vocalise

System

Based on Hw/Sw complex architecture, we designed a HPC system with multi- dimen-

sional FPGA array: Vocalise . The system consists of an FPGA array as the core com-

ponent for operating applications in the proposed system and connect Host PC through

hwModule V2 (shown in Figure 3.1). The proposed FPGA array adopts distributed and

scalable design and consist of massive small FPGA cards.

3.1 3D FPGA array

Figure 3.2-3 shows a photograph of the 3D FPGA array, comprising 64 FPGA Boards

(4 × 4 × 4). This is a promising approach that provides bandwidth-aware structures and

easy to achieve high-efficiency data communication between multi-FPGAs for multidi-

mensional computational problems.

For a distributed computing system. The bandwidth between massive processors is

very important, the communication between chips usually become bottleneck to affect
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Fig. 3.1 Overview of Vocalise

system performance. In our 3 dimensional FPGA array, as the dimensions of the FPGA

array grow, the off-chip bandwidth of FPGAs is boosted. For instance, a single 32-bit

GPIF I/O provides 532 MB/s bandwidth at 133 MHz. Thus, the off-chip bandwidth of

VS achieves 3,192 MB/s via six-way channels with 3D connections. This is higher than

Maxwell [41], where in the FPGA Board connects to the CPU using a PCI/PCI-X bridge

that is capable of 64-bit, 133 MHz operation in PCI-X mode. The configuration has a

peak bandwidth of 600 MB/s, which is a potential performance bottleneck for Maxwell.
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Fig. 3.2 A HwModule VS (Left) and a (4× 4 × 4 VSs) 3D FPGA array (Right)

3.1.1 Bridge VS (BVS) and Process VS (PVS)

The overall Vocalise system structure is shown in Figure 3.1. The hwModule VSs

were divided into two types depending on their implemented function. We exploit the

hwModule VS for extension of V2’s I/O channels to achieve implementation and data

transmission of the multidimensional FPGA array,. These VSs which implement bridge

circuits, is named “Bridge VS” (BVS) Board (Figure 3.1- 3). These Bridge VSs are used

to connect massive VSs via the multidimensional GPIF I/O. The VS that implements the

application circuit is named the “Processing VS” (PVS) Board (Figure 3.1- 3). The host

PC can be connected to as many as 32 PVSs (4 rows× 8 VSs) through a single Bridge

VS. There are massive FPGAs in Vocalise system. Through two kinds of network: Vo-

calise connection Bus (VC Bus) network and Vocalise inner Bus (VI Bus)network, the

system connects all FPGAs and implements circuit configurations, managements, com-
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Fig. 3.3 SelectMap configuration element.

munications and applications on FPGA array.

In the following sections, we describe the function and implementation of the two

networks: VC Bus network and VI Bus network.

3.2 Vocalise connection bus (VC Bus) network

In our design, the implemented host PC circuit configuration, data communication,

and management of FPGA array is performed via the Vocalise Connection Bus (VC

Bus) network. Since off-chip I/O bandwidth is significantly limited compared to the

internal wires, the single GPIF I/O equipped on the hwModule V2 is only 58-bit width;

thus, we enable a VC Bus line to work in two switchable modes: configuration bus mode

and data/command bus mode.

3.2.1 Circuit configuration

In the Vocalise platform, a configuration solution based on SelectMAP configuration

schemes is provided to minimize configuration time and maximize flexibility. Multi-

ple FPGAs can be configured using the SelectMAP mode and can be made to start-up

simultaneously.
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The SelectMap(Slave Parallel Mode) configuration is a slave parallel mode; it supports

the fastest configuration of Xilinx Spartan-3 FPGA Family. [32], [33] It is able to users

to program multiple FPGA devices through an external host, such as a microprocessor

or microcontroller, writes byte-wide configuration data into the FPGA.

By using the implemented configuration circuit, we can achieve to configure a multi-

dimensional FPGA array via VC Bus, the configuration bus requires an 8-bit data-line

and a 14-bit control-line. The Figure 3.4 shows signals of SelectMAP configuration.

CLK Clock line.

BusMode Swicth signal of Bus Mode(High: Configuration Bus Mode, Low:

Data/Command Bus Mode.)

REQ Request signals from master side.

ACK The acknowledge signal from bus arbitration organization.

SEL Select signal, master side outputs active-high when master gains access autho-

rization of VC Bus to objective boards.

A/D Address and Data signals.

FRAME FRAME is active-high, A/D line output objective VS’s address. FRMAE is

active-low, A/D line output configuration data.

The circuit configuration technique for a 3D FPGA array is achieved by the following

steps, which is shown in Figure 3.5.

Fig. 3.4 Waveform of SelectMAP configuration .



46 Chapter 3 Architecture and Implementation of Vocalise System

Fig. 3.5 The operation steps for configuration of a 3D FPGA array.

1). Configure BVS’s Sub Board: The hwModule V2 configures a bridge circuit

(shown in Figure 3.12a ) in the nearest connected Sub board of BVS , and then the host

PC configures the same bridge circuit on the next Sub Board of BVS through the for-

mer configured bridge circuit on the configured Sub Board. The system must complete

circuit configuration n times to install n BVSs.

2). Configure BVS’s PE Board: The host PC can configure a bridge circuit (shown in

Figure 3.12b) on PE boards of BVS in parallel with its Sub Board.

3). Configure PVS’s Sub2 Board: The host PC can select any connected Sub Board of

PVS and configure the selector circuit on a target FPGA through the BVS bridge circuits.

Using the same method to configure the BVS’s Sub Board, the host PC can configure the

selector circuit on any row of Sub Board.

4). Configure PVS’s PE Board: The host PC can easily download specific application

circuits in parallel with any selected PE Board of PVS via the VC Bus. Each PVS has

a unique ID; thus, through ID signals, the selector circuits on Sub Boards of PVS can

determine whether to configure their associated PE Boards. Consequently, it is possible

to program different configurations for any FPGA in any row. This provides additional

flexibility and enables the user to program different configurations in the FPGA array.

The bridge and selector circuits, which are implemented on the BVS and the PVS’s

Sub board, are intrinsic peripheral circuits of the system. Circuit configuration is only

required initially. Users do not need to repeat Steps 1-3. Only the application circuits on
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the PVS’s PE Board need to be configured when operating other applications.

3.2.2 Configuration circuits

The system uses a SelectMap configuration control circuit (Figure 3.3) on hwModule

V2 to write byte-wide configuration data to all FPGAs via VC Bus, which works in

the configuration bus mode. In the SelectMap configuration control circuit consists of

following unit.

• CCLK Generator

• CMportController

• Configurator controller unit

• SelectMAP selector

• FIFOforSelctMap

CCLK generator provides the clock signals for configuration. The circuits bit stream

is transferred to stored in Local Memory by PCI FPGA on hwModule V2. When com-

pleted the initialization of objective FPGA, the CMportController read the bit stream

data from Local Memory to FIFOforSelectMap. Finally The circuit’s bit stream data is

transmitted to connected FPGA via GPIF IO from hwModule V2. The Configurator con-

troller unit is a main control circuit for SelectMAP configuration. It is used to achieve

status identification and control of objective FPGA. SelectMAP selector unit is used to

input/output the control signals of selectMAP configuration.

3.2.3 Data transmission and FPGA array management

The VC Bus works in the data bus mode until the system has completed circuit con-

figuration of the FPGA array. The host PC is able to transmit data/command to any

objective PVS and read data/status from objective PVS.
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Fig. 3.6 PVS address signal line format in VC Bus network.

Address management of PVSs

Each PVS has a unique ID in the VC Bus network. The PVS address signal format is

shown in Figure 3.6. The 32-bit PVS address signal comprises the target board ID(8-bit),

initiator board ID (8-bit), 8-bit mode code line, and 8-bit user-available bit. The mode

code can be identified by slave elements on the PVS in the VC Bus network. It comprises

various types of operation such as read data, write data, and transfer commands. When

multiple devices request the VC Bus, bus arbitration is realized by implemented bridge

circuits on the Bridge VSs.

Communication mechanism

The VC Bus data communication protocol is based on a typical master-slave transmis-

sion mechanism and can achieve 32-bit burst transmission, which is analogous to FPGA

inner Bus . The bus line is equipped with a 32-bit A/D line, a 6-bit control line, and a

1-bit clock line.

Figure 3.7 shows write and read operation signals among the hwModule and the FPGA

array.

CLK Clock signal line.



3.2 Vocalise connection bus (VC Bus) network 49

Fig. 3.7 The write operation between host PC and FPGA array via VC Bus.

BusMode Switch signals of Bus Mode(active-high: Configuration Bus Mode, active-

low: Data/Command Bus Mode.

REQ Request signals from master side, output to arbitration to access to VC Bus.

Fig. 3.8 The read operation between host PC and FPGA array via VC Bus.
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ACK The acknowledge signal from arbitration.

SEL Master side output select signal to objective boards when Master gain access au-

thorization of VC Bus.

A/D Address/data signals.

FRAME The identification signals of address/data line. (FRAME is active-high, out-

puts address of objective PVS; FRMAE is active-low, outputs communication

data/command.

MRDY The ready signal from master. When master is ready, assert the signal to slave.

SRDY The ready signal from slave. When receiving master signal and slave is ready,

assert the signal to master.

When host PC communicates with multi-PVSs, the hwModule V2 acts as a master,

and sends SEL and MRDY signals to enable use of the VC Bus and broadcast valid

PVS addresses to the PVSs as targets. The hwModule V2 waits until the SRDY signals

from the target PVSs are received. Subsequently, the hwModule V2 performs a burst

read/write operation after the negotiation. With the above approach, the host PC can

execute write/read operations to each distributed SDRAM on the FPGA array. Moreover,

the applications running on the host PC send specific commands to any PVS, and read

status of each PVS.

3.2.4 Implementation circuits for data communication on VC Bus

Data communication modules are implemented on hwModule V2 and each PVS PE

board (Figure 3.9) .

The modules consist of following units.

• VCBusConnector

• VCBusMater

• VCBusSlave

• HNController

The Table 3.1 shows the circuit scale of controller circuit on hwModule V2.
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Fig. 3.9 VC Bus data communication elements.

VCBusConnector

This module connects external BVS’s Sub board and PVS’s Sub board. It has lots of

IO buffers and registers to convert VC Bus signals from inner FPGA and outside FPGA.

Since clock source VC bus is from host PC, we utilize a Digital Clock Manager（DCM）

to achieve driver and modulation of VC bus clock signals from external Sub Board, and

Table 3.1 The circuit scale of hwModuleV2

Used Available Utilization[%]
Nubmer of Slice Flip Flops 4,520 55,296 8
Nubmer of 4 input LUTs 5,891 55,296 10
Nubmer of bonded IOB 277 489 56

Number of DCMs 3 4 75
RAMB16s 8 96 8
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output the clock signals to other unit: VCBusMater unit, VCBusSlave unit and HNIO

unit. The DCM primitive in Xilinx FPGA parts is used to implement delay locked loop,

digital frequency synthesizer, digital phase shifter, or a digital spread spectrum.[34]

VCBusMaster

VCBusMaster as a master port of VC bus; the unit receives data from hwNet with

FIB protocol and sends the data to connected FPGAs; it converts FIB protocol and VC

Bus protocol; and it has the slave function of FIB, and the master function of VCBus.

The control signals of hwNet on hwModule VS are also transmitted via VCBus through

the interrupt action of HNController. Since the unit is an asynchronous module, which

has double clock source; FIB clock is from hwNet (inner FPGA), and VC Bus clock

signal is from hwModule V2(host PC). The unit consists of a FIB controller, a VCBus

controller, two asynchronous FIFOs for writing/reading, and a synchronous FIFO for

resending data.(shown in Figure 3.10)

The FIBController receives a request from hwNet or HNController unit, outputs the

request to VCBusController; The VCBusController can distinguishes the request is con-

trol or data communication (read/ write operation), then send commands or data based

on VCBus Protocol method via VC Bus links.

VCBusSlave

VCBusSlave as VC bus Slave port; it’s operation is opposite to VCBusMaster unit,

which implements a slave function of VC Bus, and a FIB master function. It can receives

signals from external FPGAs with VC protocol as a slave, then converts the signals and

outputs to hwNet with FIB protocol. Moreover, control commands for hwNet on PVS are

also send to HNIO unit via VC bus. The clock source of the unit is same as VCBusMaster

unit, FIB clock source is from hwNet, and VC Bus clock source is from hwModule V2

on Host PC. We implements the unit with a FIB controller (clock signal source: FPGA

inner clock), a VCBus controller (clock signal source: VC Bus clock from host), two

asynchronous FIFOs for writing/reading data.

The unit is driven by VC Bus signals. When a request come from external FPGA, the
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Fig. 3.10 VCBusMaster Module．

unit firstly match its Board address to the address signal from VC Bus. If the match result

is true(requestaddress= Boradaddress), the VCBusController decodes the command

signals and outputs it to HNController, When host operates data read/write executions,

the data is transmitted to PVS on VC Bus Protocol, and finally send data to hwNet with

FIBController on FIB protocol method.

HNController

This unit is an controller module of hwNet IO; it is used to store commands (CTRL)

from the host PC and the status (STTS) of hwNets. The applications on the host PC send

specific commands to any PVS and read the status of each PVS through the implemented.

Moreover, the HNController unit, which is implemented on HwModule V2, can stores

any status (STTS) signals from hwNet on FPGA array; and these status (STTS) are
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Fig. 3.11 VCBusSlave Module．

stored in BRAM for FPGA array management.

3.2.5 Selector circuits on sub board

Meanwhile, we implemented a selector circuits on Sub Board. The circuit consists of

following units.

• IOBUF

• VCBusSwitch

• ConfigurationSwitch

The Table 3.2 shows the circuit scale of selector on Sub Board of PVS.
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Table 3.2 The circuit scale of selector on Sub Board of PVS

Used Available Utilization[%]
Number of Slice Flip Flops 255 11,776 2
Number of 4 input LUTs 673 11,776 1

Number of occupied Slices 249 5,888 4
Nubmer of bonded IOB 239 372 64

Number of DCMs 1 8 12

IOBUF

The module has lots of I/O Buffers and registers to achieve to convert the signals

among external FPGAs and inner FPGAs; this modules are implemented on Sub Board,

and consists of 3 IOBUFs to control I/Os in 3 directions.

1. The FDATA IOBUF is a controller for IO interfaces on front port from Host

PC(hwModule V2).

2. The BDATA IOBUF realizes to control the IO interfaces on back port which con-

nect to next Sub Board.

3. The SIMDATA IBUF controls the IO interfaces on SIMDATA port which connect

to own PE Board.

Moreover, we implement a digital clock manager (DCM) on the FDATAIOBUF unit.

The clock signal from hwModule V2 inputs the DCM unit, and through the DCM unit

outputs a clock signal as clock source to provide other modules inner FPGA.

SwitchVC

The module is a switch circuit for data/commands of VC Bus on DATA/Control mode;

the module can identifies VC Bus address signals, and matches the target Board bit

of address signals with its board address. Then, based on distinguishing results, the

modules bridge the links among GPIOs in 3 directions (the Front side, the End Side

and PE Board side). If the matching result of address is true, the module implements to

connect FDATA I/Os with SIMDATA I/Os. If the matching result is false, the module
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Fig. 3.12 Bridge circuit on Bridge VS. (a: Bridge Circuit on BVS’s Sub Board, b:
Bridge Circuit on BVS’s PE Board.)

implements to link FDATA I/Os and BDATA I/Os. Moreover, we latch the input/output

signals of VC Bus with registers, which is driven by clock signal of DCM, for stabilizing

VC Bus signals inner FPGA.

ConfigurationSwitch

The ConfigurationSwitch module is a switch circuit for configuration data, works in

configuration bus mode; It can identify the ID signal from Configuration Mode, and

match the signal with its Board address. When ID signal is the board address, the module

connects its PE Board, and accomplishes the circuit configuration for its own PE board.

3.2.6 Circuits design of Bridge VS

Host PC connects an 3D FPGA array through Bridge VSs, and realizes ac-

cess/control/circuit configuration for the FPGA array. In our design, see from host PC,
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a Bridge VS connects 4 rows Processing VSs as a sub-group PVS array (maximum

scale: 4/times8 PVS). Each Bridge VS has a unique ID, we enable access any PVSs on a

sub-group FPGA array through a Bridge VSs. Meanwhile, the Bridge VSs also are used

to be realized to access arbitration of VC Bus; it guarantees the bus permission among

host PC and FPGAs in connected sub-group FPGA array through a bridge VS.

The Figure 3.12 shows the block diagram of a Bridge VS. The VC Bus signals from

the inner FPGA are divided into configuration signals and data/control signals. The

implemented bridge circuits mainly comprises following units.

• Input/Output BUF Units(IO BUF units).

• Config Bridge Unit.

• DATA Bridge Unit.

We also utilize a DCM to realize management and synthesize of clock, phase shift

and clock skew. And through the DCM, output clock signals to drive other units inner

FPGA. The circuit scales of Bridge circuit on Bridge VS are shown Table 3.3 , 3.4.

Table 3.3 The circuit scale of Bridge circuit on Sub Board of BVS

Used Available Utilization[%]
Number of Slice Flip Flops 197 11,776 1
Number of 4 input LUTs 222 11,776 1

Number of occupied Slices 249 5,888 4
Nubmer of bonded IOB 239 372 64

Number of DCMs 1 8 12

IO BUF units

The IO BUF units, which equip amount of IO buffers and registers, which are used

to convert signals between off-chips and inner FPGA, and divide the off-chips VC Bus

signals into configuration signals and data/control signals inner FPGA as the bus mode

changes.

On the Bridge VS’s Sub Board, we implement three IO BUF units: FrontIOBUF,
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Table 3.4 The circuit scale of Bridge circuit on PE Board of BVS

Used Available Utilization[%]
Number of Slice Flip Flops 672 55,296 1
Number of 4 input LUTs 895 55,296 1

Number of occupied Slices 762 27,648 2
Nubmer of bonded IOB 299 489 61

Number of DCMs 1 4 25

Back IOBUF and SIMDATAIOBUF to link on ahead/rear Sub Boards and its own PE

Board.

On the Bridge VS’s PE Board, five IO BUF units are implemented; one IO BUF

(SIMDATAIOBUF) unit links to its own Bridge Sub Board, and other four IO BUF

units (Up IOBUF, Down IOBUF, Right IOBUF and LeftIOBUF) are used to link to

connected PVS’s Sub Board in four directions through four (52 pin to 100 pin) convert

boards.

ConfigBridge units

Configuration bridge unit is used to realize bridge function for configuration data; it

works in circuit configuration bus mode. The module enables the host PC to implement

circuit configuration on selected FPGAs. We implement a SubCongfig Bridge unit on

Bridge Sub Board. The unit can identifies ID and configuration command signals from

host PC. On Bridge VS’s sub board configuration stage, the unit links FrontIOBUF and

Back IOBUF, and sends circuit configuration bit stream data to linked next sub board.

In the circuit configuration stages (Configuration of Bridge VS’ PE board, Process

VS’s Sub board and PE board), if BVS’s bit of configuration address is same to the

BVS ID, the unit links FrontIOBUF and SIMDATAIOBUF, and sends circuit config-

uration bit stream data to PE Board. If it is not same to the BVS ID, the unit links to

Front IOBUF and BackIOBUF, and transmits configuration signals to next Bridge VS’

Sub board.

In the same way, we also implement a PEConfig Bridge unit on Bridge PE board. The
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unit identifies configuration signals from Host PC through its Sub Board. On the basis

of the object PVS address signals, the unit can links the corresponding I/O connections

among host and PVSs along the four directions, and sends the configuration bit stream

data to the corresponding PVSs.

DATA Bridge units

The module is a data/command bridge unit which works in data communication mode

of VC Bus. The module enables the host PC to exchange data with any connected PVS

and send control commands to any PVSs. On Bridge Sub Board, the communication data

signals, command signals, status signals can be transmitted to SubDATABridge circuit

to data among 3 GPIOs. Meanwhile, The SubDATABridge unit also can identifies the

address signals and match the bits of Bridge VS ID on the address signals with its Board

ID. If they are same, the module links the Bridge VS’s PE Board and host PC. If not, the

unit links the IO connections of FrontIO BUF and BackIO BUF.

We also implemented a PEDATA Bridge unit on PE Board. A 5-way arbiter of VC

Bus is realized on the unit. The unit enables a Bridge VS to achieve to arbitrate the

access requirements from host PC and connected 4 rows FPGA array. The host or PVS

obtains ACK signal from the arbitrator, then send address signal to PEDATA Bridge unit

and assert SEL signal. The unit identifies the target address bits and initiator address bits

based on the address signal, and links to corresponding I/Os among target address and

initiator address, until data communication and command/status transmit-receive among

host PC and object FPGAs are completed.

3.3 Vocalise inner bus (VI Bus) network

In the Vocalise system, one PVS transfers data to other PVSs via the Vocalise inner

Bus (VI Bus) network when operating applications (shown in Figure 3.13). The bus line

consists of data line (32 bit) and control line (18 bit).

Figure 3.13 shows VIBus network among PVSs.

By utilizing GPIO connectors in six directions, each Process VS can connects adjacent
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Fig. 3.13 VC Bus and VI Bus connections among Process VSs

6 PVS, and realizes the data communications at the same time with the connected PVSs.

Moreover, the route of the VI Bus is variable; it can be changed with the corresponding

communication requirements of different applications changes.

3.3.1 Telecommunication mechanisms

To implement the different transfer circuits on PVSs, three types of telecommunication

mechanisms, simplex, half-duplex, and full-duplex transmissions can be realized. The

telecommunication mechanisms and signals is shown in Figure 3.14

Depending on the requirements of applications, the VI Bus works in two modes. One

is point-to-point communication mode, PVS only communicates with adjacent PVSs via

the direct connections. The other one is distance data transmission mode; a PVS can

communicates data with any PVSs on FPGA array via VIBus.

Point-to-point data transmission among adjacent PVSs

To reduce the circuit design development cycle, we have designed a foundational com-

munication module: the VIBus module, to establish direct point-to-point connection to

adjacent FPGAs in each six-way directions. The modules are implemented in each pro-
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Fig. 3.14 Simplex transmission operation between adjacent FPGAs via VI Bus.

cessing FPGA, and data is transferred to the nearest adjacent FPGA using three types

of telecommunication mechanisms, i.e., simplex, half-duplex and full-duplex transmis-

sions. Table 3.5 shows the essential signals for implementing the three telecommunica-

tion modes.

In our experiments, the data communication between two FPGAs was implemented at

133 MHz, which is double that of the highest execution frequency of hwNet (66 MHz).

The single connector I/O bandwidth was 4.26 Gbps (× 32 bits) at 133 MHz. Figure

3.14 shows the signal timing design of the simplex mode. In a fully connected network

topology, each FPGA connects six FPGAs; thus, the maximum theoretical bandwidth is

25.56 Gbps (6 ways× 4.26 Gbps) at133 Mhz among interconnected FPGAs.

Table 3.5 Essential VI Bus signals for telecommunication

Telecommunication Mode Simplex Half-duplex Full-duplex
Data line (bit) 32 32 Rx(16)+ Tx(16)

control line (bit) 2 7 8
clock line (bit) 1 1 2

total (bit) 35 40 42
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Fig. 3.15 Write operation signals via VIBus（half-duplex）in distance transmission mode．

High-speed distance data transmission of VI Bus

In massive applications, the parallel computing nodes (FPGAs) map on a complicated

network.

When PVS communicates with other PVSs which are not adjacent, it works in distance

communication mode. One PVS can send data to target PVS via intermediate PVSs. The

intermediate PVSs as repeaters transmit data and keep the signal strength to target PVS.

Through utilizing the point-to-point data transmission and distance data transmission,

various data communication network among multiple FPGA can be easily realized. We

realized the distance data transmission with half-duplex and full-duplex transmission

mechanisms. (The Figure 3.15 shows the data transmission waveform with half-duplex

mechanisms.)

CLK Clock line of VI Bus.

REQ Request signal from initiating FPGA to objective FPGA.

FRAME Switch signal for A/D line; active-high: address/command, active-low: Data.
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SEL Select signal from master, it is asserted when master get VI Bus authorization.

ACK0 Acknowledge signal from target FPGA when transmission route is determined.

ACK1 Acknowledge signal when FIB of objective FPGA can be utilized.

MRDY Data transmission ready (assert) signal from master.

SRDY Data transmission ready (assert) signal from slave.

A/D Address/data line.

Firstly, the initiating FPGA (master) asserts REQ, FRAME signal and send

address/command signals (Read/write, half-duplex/ full-duplex, etc.) . When commu-

nication route from initiating FPGA to objective FPGA is valid, the slave on objective

FPGA asserts ACK0 signals. Then, when FIB port inner objective FPGA can be

utilized, the slave on objective asserts ACK1 signals. When master side receives the two

acknowledge signals(ACK0 and ACK1), the master asserts SEL and MRDY signal, and

transmit data when receiving SRDY from slave.

3.3.2 Implementation of VI Bus

We implemented a general VI Bus module as general peripheral circuit of hwNet

which can realizes point-to-point transmission and distance data transmission on our

system, to demonstrate the communication feasibility on our system. When PVS as a

repeater receives and identifies data from adjacent PVS. If it is not target FPGA, the

PVS can select a suitable channel and transmit data to adjacent PVS via the according

channel. Because of a PVS can connects multiple PVSs through multiple channels. We

realized a simplified routing function on hardware level on the module for 2D network

connections. The block diagram is shown in Figure 3.16.

• VIBus module(point-to-point data communication)

• FIB VIBus Converter

• VIBus FIB Converter

• VIBusManager

• RouteDeterminer



64 Chapter 3 Architecture and Implementation of Vocalise System

Fig. 3.16 Composition of VI Bus transmission module．

VIBus

The VIBus units can implement point-to-point data communication among adjacent

PVSs. The units directly connect the according GPIF I/Os, and transmit data to adjacent

PVS via the connection. The VIBus modules can achieve two transmission mechanisms

(half-duplex and full-duplex transmission). Each VIBus module has two asynchronous

FIFOs to send/receive data to/from adjacent FPGAs.

The Figure 3.17 shows the data flow of full-duplex transmission between PVS(1) data

and PVS(3) through intermediate PVS(2) via VI Bus.

In the Figure 3.17, PVS(1) writes data to PVS(3). The data transfer is implemented on

multiple clock signal source. PVS(1) firstly writes data to PVS(2) with inner clock signal

from PVS(1), then PVS(2) transfers data to PVS(3) with inner clock signal of PVS(2) .

FIB VIBus Converter

The module can converts FIB protocol to VI Bus protocol; it realizes slave function

of FIB and master function of VI Bus.

The number of FIB slave is variable as the required FIB port form hwNet. Inner

FPGA, the hwNet can utilizes up to six FIB ports for data communications of VI Bus.

Because of these FIBs are independent of each other, it is possible that a hwNet can uti-
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Fig. 3.17 Distance transmission among PVSs via VI Bus．

lizes 6 FIB at the same time to access 6 adjacent PVSs. Through FIB signals from hwNet,

FIB VIBus Converter modules determine the transmission mechanism (half-duplex/full-

duplex) and write/read operation; and send data to adjacent FPGAs with VIBus protocol.

VIBus FIB Converter

The module realizes opposite functions of FIBVIBus Converter. It implements slaves

of VI Bus and masters of FIB, to convert VI Bus protocol to FIB protocol from external

FPGA to hwNet.

The number of FIB masters is variable as the FIB ports of hwNet changes.

In the same way, a hwNet can utilizes up to 6 VIBusFIB Converter to realize receiv-

ing data through 6 VIBus modules with VIBus protocol.
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VIBusManager

The module can implements bridge function of VI Bus, and monitors the status of

VIBus modules. It has multiple arbiters and controllers for multiple VIBus modules.

The module receives the bridge commands from Routedeterminer module to arbiter, and

confirms whether the transmission route is occupied. When path is valid, the module as

a bridge circuit, links to VIBusFIB Converter and VIBus module on according adjacent

to achieve the data transmit. Moreover, the VIBusManager also realizes to control the

IO interface of VIBus alon initiating terminal. .

Route Determiner

The module is used to propose data transmission route to objective FPGA, explore

path and determine path. The RouteDeterminer on initiating FPGA proposes multiple

communication routes from initiating terminal to objective terminal.

The module sends REQ signals along multiple directions, and adopts the route which

receives fastest ACK signal.

In our experiments, we realize distance data communication at 66 Mhz on a 2D FPGA

array, which composed of 3× 4 PVSs. (shown in Figure 3.18) The multiple PVSs can

communicate data at the same time by using RouteDeterminer. Because of the routes

become surprisingly complex on a 3D network topology. We determine routes among

PVSs on software, then send I/O command to control each PVS to determine routes

through hw/sw complex units.

3.4 Discussion of VC Bus and VI Bus

3.4.1 Parallel circuit configuration

Many studies have demonstrated that circuit configuration on multi-FPGAs is often

implemented with custom cables such as USB cables. As the scale and dimensions of

FPGAs have increased, the configuration time and used cables also multiplied. There-
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Fig. 3.18 Distance transmission on 2D VI Bus Network

fore, an effective approach is necessary to configure a flexible and scalable FPGA array

quickly. In our system, we used an FPGA to configure a circuit on the next FPGA via

VC Bus network; thus, extra custom cables are unnecessary.

Table 3.6 shows circuit configuration time for multiple PVSs in a row via the VC Bus

network. The host PC required approximately 0.2s to configure the same application

circuits to a row of multiple PVSs.

The approach provides parallel configuration of multidimensional FPGAs. For an

application, the configuration mechanism enables the system to implement simultaneous

circuit configuration on 32 PVSs (4 rows× 8 PVSs) through a BVS. Moreover, the

configuration mechanism also allows the user to select any FPGA to configure different

application circuits; the FPGA array can perform multiple applications simultaneously.
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Table 3.6 Circuit configuration execution time of multi-FPGA

FPGA Number 1 2 3 4
Sub Board 0.051s 0.101s 0.152s 0.203s
PE Board 0.201s 0.201s 0.201s 0.202s

3.4.2 Scalable multi-FPGAs communication

In Vocalise, the data communication and synchronization among processing nodes

(PVSs) is implemented via VI Bus network. The VI Bus network is an application net-

work, i.e., it is a dedicated network; (preferably with high throughput and low latency).

Since of each process node is implemented by FPGAs, which is a programmable logic

device. The VI Bus is freely available for custom user designs. Users can arrange pro-

cesses to each node (PVS) with different network topology according to the requirements

of different applications.

For instance, Figure 3.19 shows three types of network topology that can be imple-

mented by our Vocalise via the VI Bus network.

Network A is a common topology for many numerical calculations with multiple par-

allel computing nodes. The network comprises many sub-networks, which form a basic

point-to-point network topology; each connection between FPGAs becomes a sub-bus.

Each connector I/O bandwidth can be fully utilized when each FPGA sends data to the

nearest adjacent FPGAs.

Network B is a typical ring bus topology; it is set up in a circular fashion where in data

travels around the ring in one direction. Each processing node (FPGA) on the ring acts

as a repeater to keep the signal strong as it travels. Each FPGA incorporates a receiver

for the incoming signal and a transmitter is used to send the data to the next device in

the ring. This network is dependent on the ability of the signal to travel around the ring.

When an FPGA sends data, it must travel through each FPGA on the ring until it reaches

its destination; thus, each node is a critical link. The ring bus network is commonly seen

in multi-FPGA systems and general multi-core processor designs such as the BEE3, IBM
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Fig. 3.19 Different types of VI Bus network topology

cell, and the Intel Haswell processor.

Network C is a hybrid network topology. The whole VI Bus network is distributed to

three sub-networks. Four FPGAs on the left side are arranged in a ring bus network. The

other four FPGAs are arranged in two point-to-point networks. A sub-network is a cus-

tom computing network for executing individual application simultaneously. This allows

that our system do not only to achieve single application/multiple data stream comput-

ing, but also simultaneously execute multiple applications with a distributed FPGA array.

We have reported that an FPGA array can concurrently operate multiple individual brain

process applications[28]. These brain process circuits such as voice recognition, voice

synthesis, and image recognition were designed as hw/sw complex systems using the
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Vocalise method.

3.4.3 Data communication efficiency on multidimensional intercon-

nection

Fig. 3.20 Data communication in FPGA array with different dimensional interconnection

We discuss data communication overhead between FPGAs when operating a 3D do-

main problem with different dimensional FPGA arrays. In common finite difference

numerical calculations, many exchanges of boundary data among FPGAs occur. For in-

stance, Figure 3.20, shows a 3D computation mesh is decomposed to many sub-grids,

each sub-grids comprises N× N × N grids. Thus, N× N boundary data must be ex-

changed with each nearest sub-grids between each iteration. We use a 4× 2 2D FPGA

array and a 2× 2 × 2 3D FPGA array to distribute operations to 2× 2 × 2 sub-grids.

Each FPGA executes the calculation of relative sub-grids as a computing node, such as

FPGA (a) operates sub-grids (a), and so on.

For a 3D FPGA array, each FPGA transfers boundary data only to the connected ad-

jacent FPGAs via 3D interconnection connector I/O. Thus, it is relatively easy to imple-
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ment high-speed and low latency point-to-point data exchange between two connected

FPGAs.

In contrast, for a 2D FPGA array, because of 2D mesh interconnection between FP-

GAs, there are no direct interconnections between FPGAs when boundary data is ex-

changed between the top and bottom of sub-grids, for example, FPGA (a) must ex-

change data with FPGA (e). The FPGA must send data to connected FPGAs until the

data reaches the destination FPGAs. To implement this approach, the system must build

many paths and address identification modules for each FPGA. This will occupy more

logic resources, which are very limited. To achieve highly efficient data exchanges, the

users must take more work time to reduce transmission latency; which is often difficult

when transferring data via multiple FPGAs. It may be necessary to provide wider link

of data communication to achieve higher bandwidth.

Overall, the comparison shows that an FPGA array with 3D direct interconnection

can provide better scalability, improve communication efficiency, and reduce design dif-

ficulty of data communication for 3D computing problems.
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Chapter 4

System Evaluation

We implement a Vocalise system with multidimensional FPGA array in hw/sw com-

plex, the system can implements various applications such as numerical simulations,

brain processes, web applications and so on[23][28][29][50]. When a distributed sys-

tem operates numerical simulation especially many PDE problems, the computing nodes

normally want to keep frequent communication with the adjacent nodes. Therefore, we

mainly evaluate the system through solving 3D PDE problems in the study.

4.1 Applications of numerical simulation

Numerical computing is an study of approximation techniques for numerically solv-

ing mathematical problems. It also is an interconnected combination of computer sci-

ence and mathematics by using to develop and analyze algorithms for solving important

problems in science, engineering, business, and medicine —for example, designing an

aircraft, simulating atmospheric circulation, or detecting tumors in medical images.

By using most partial differential equation (PDEs), through obtain numerical solu-

tions, physical phenomena such as can be simulated by computer. Since numerical sim-

ulation requires massive computational capabilities, such as big numerical simulation

programs require supercomputers and a large amount of computer resources. Therefore

it also is an important area of HPC study.
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The numerical computation, especially partial differential equation (PEDs) solutions

is a main application area of our Vocalise system. The proposed system realizes different

applications with highly efficient and specific application circuits implemented on large

scale FPGAs. We call these application circuits as hwNets. The most partial differential

equation problem are solved with Cartesian-gird. The algorithm is usually suited to be

solving our system. In the sections, we describe experimental implementations of 3D

Poisson equation and CIP method.

4.1.1 Advection equation with CIP method

Advection equation

In physics, engineering, and earth sciences, advection is a transport mechanism of a

substance or conserved property by a fluid due to the fluid’s bulk motion. For example

the transport of pollutants or silt in a river by bulk water flow downstream.

In general, any substance or conserved, extensive quantity can be advected by a fluid

that can hold or contain the quantity or substance.

Advection is sometimes confused with the more encompassing process of convection

which is the combination of advective transport and diffusive transport.

The advection equation is the partial differential equation that governs the motion of a

conserved scalar field as it is advected by a known velocity vector field.

In 2D Cartesian coordinates the advection operator is shown in Equation 4.1.

∂ f
∂t
+ u
∂ f
∂x
+ v
∂ f
∂y
= 0 (4.1)

Here,t is time,x, y is 2D Cartesian coordinates,f is wavefield of advection equation,

u is velocity in x axis, andy is y axis.

Algorithm of CIP method

The Cubic Interpolated Profile (CIP) method is a complicated method for solving the

advection equation, proposed as a stable and less dispersive method in computational
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fluid dynamics (CFD) since the middle of the 1980s [30],[31]. It has been applied to

simulations of various physical problems and proved to be well performing [35]-[40].

This method is based on a fact, that it is not only the wavefield but also its spatial deriva-

tives propagate along the same characteristic curve derived from a hyperbolic differential

equation [42]. The CIP method in combination with the method of characteristics, it was

developed to simulate the Maxwell equation accurately compared with FDTD method

[41].

In the thesis, we implemented the CIP method to simulate wave propagation through

solving advection equation. The phenomenon of the wave propagation in one dimen-

sional space can be expressed with the following first-order differential equation.

∂ f
∂t
+ u
∂ f
∂x
= 0 (4.2)

This first-order advection equation shows that a wave packet on the wavefieldf prop-

agates along a curvedx/dt = u, which is a characteristic curve, in the phase space. Eq.

4.2 is a characteristic equation for solving the forward propagation of the wavefield. Al-

though this equation is simple, it is difficult to evaluate numerically with high stability

and less numerical dispersion. The CIP method can solves these problems through solv-

ing not only Eq.4.2 but also a differential equation for a spatial derivative of the wavefield

f . When the propagation velocityu is constant, the Eq. 4.3 can be obtained through

Eq.advecEq2.

∂g
∂t
+ u
∂g
∂x
= 0,g =

∂ f
∂x

(4.3)

Here,g is a spatial derivative off . These two equations, Eq.4.2 and Eq.4.3, become

the governing equations for the propagation of the wavefieldf and its spatial derivatives

g. This property can be utilized by the CIP method to solve a hyperbolic differential

equation. The Figure 4.1 shows conceptual diagrams of the CIP method[42], [37].

In Figure 4.1(a), the solid line corresponds to an initial wave packet and dashed line
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Fig. 4.1 Conceptual diagrams of the CIP method.

becomes an exact solution at one time-step ahead. Solving the wave equation numeri-

cally through the finite difference approximation,the white circle can be obtained after

one time progressed (shown in Figure 4.1(a)). If the values of the wavefield between the

grids are interpolated linearly through values at each grid, the numerical diffusion occurs

shown in Figure 4.1(b). However, if the information of the spatial derivatives was used

at each grid, the numerical dispersion problem and the original shape of the wave packet

can be overcome and kept through the all simulation steps. This is the core idea of the

CIP method, and the values at grids are interpolated using a cubic polynomial (shown in

Figure 4.1(c)).

Solution of 1D CIP method

If values of wavefiledf and its derivative g are known at gridsi andi − 1 The profile

between two grids can be interpolated using a cubic polynomial.

Fi = ai(x− xi)
3 + bi(x− xi)

2 + ci(x− xi) + di (4.4)

There are four variablesf n
i , g

n
i , f

n
i−1,g

n
i−1 between two adjacent grids; and these variables

are determined by four coefficientsai ,bi , ci ,di . By usinggn
i which is the differential

operator of functionFi(x) . We can obtain the following equations.

Fi(xi) = f n
i (4.5)
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dFi(xi)
dx

= gn
i

Fi(xi−1) = −ai∆x3 + bi∆x2 − gn
i ∆x+ f n

i = f n
i−1

dFi(xi−1)
dx

= 3ai∆x2 − 2bi∆x+ gn
i = gn

i−1

When velocityu positive direction(forward propagation), value ofi girds move to the

profile[i − 1, i] Therefore, the coefficients of equation can be computed with following

Equations. Here,iup = i − 1,D = −∆x.

ai =
gn

i + gn
iup

D2
+

2( f n
i − f n

iup)

D3
(4.6)

bi =
3( f n

iup − f n
i )

D2
−

2gn
i + gn

iup

D

ci =
dFi(xi)

dx
= gn

i

di = f n
i

When velocityu is negative direction(backward propagation), value ofi girds move to

the profile[i, i + 1]. The coefficients can be operated with following Equations.

Fi(xi) = f n
i (4.7)

dFi(xi)
dx

= gn
i

Fi(xi+1) = ai∆x3 + bi∆x2 + gn
i ∆x+ f n

i = f n
i+1

dFi(xi+1)
dx

= 3ai∆x2 + 2bi∆x+ gn
i = gn

i+1

Hereiup = i + 1,D = ∆x. Whenu ≥ 0, iup = i − 1,D = −∆x, u ≤ 0, and whenu ≤ 0,

iup = i − 1,D = −∆x, u ≤ 0. Therefore, We can operated the wavefield at next time

step(n+ 1) with following Equation, where the grids move along the profile at velocity

u∆t. Here,X = −u∆t.
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f n+1
i = aiX

3 + biX
2 + gn

i X + f n
i (4.8)

gn+1
i = 3aiX

2 + 2biX + gn
i

We summarize the CIP method as follows; the wavefield is interpolated by a cubic

polynomial and it is shifted to the wave propagation direction byui∆t at each time step.

By computing the Eq 4.7 repeatedly, we can solve the 1D advection equation with CIP

method.

Solution of 2D/3D CIP method

The 2D advection equation is expressed with following Equation.

∂ f
∂t
+ u
∂ f
∂x
+ υ
∂ f
∂y
= 0 (4.9)

Where,t is time,x, y is 2D Cartesian coordinates,f is wavefield of advection equation,

and∆x,∆y is constant.u is velocity on the x direction,v is velocity on y direction.

By using the method which described on previous section, the profile the wavefield

between these two points can be interpolated using a cubic polynomial as follow.

F(X,Y) = [(a1X+ c1Y+e1)X+g1Y+ fx(i, j)]X+ [(b1Y+d1X+ f1)Y+ fy(i, j)]Y+ f (i, j)

(4.10)

Here,X = x − xi ,Y = y − yi There are 10 coefficientsa1,b1, c1,d1,e1, f1, g1, f , fx, fy

need to operate.

In the same way, the 3D advection equation is following Equation.

∂ f
∂t
+ u
∂ f
∂x
+ v
∂ f
∂y
+ w
∂ f
∂z
= 0 (4.11)

By using the same method of 1D , the profile between these two points can be inter-
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Fig. 4.2 The type M CIP method for sloving a 2D advection problem

polated by using a cubic polynomial as follow.

Fi, j(x, y) =
3∑

l=0

3∑
m=0

3∑
n=0

Cl,m,nXlYmZn (4.12)

There are 33 coefficients need to operate. We can see the numbers of coefficients

increases as dimension increases.

When advection equation is n dimensions, it has 3n number of coefficients, and needs

huge amounts of calculation. For reducing the huge calculation burden, we adopt type

M CIP method to operate multidimensional advection equation [43].

Type M CIP is a amplitude compensation method which is based on the diversion

relation of 1D-CIP method, is applied to the multidimensional CIP calculation method

with directional splitting technique [44]. The diagrammatic drawing of type M CIP

solution is shown in Figure 4.2.

When wavefield moves from Point A to Point B With type M CIP method, the advec-

tion can be realized in two steps:

Step 1: Moving from origin point A to intermediate point∗ at u speed in x direction.

Step 2: Moving from intermediate point∗ to terminal point B atv speed in y direction.
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By using CIP method which is highly precise with interpolating. Even if it passes

along which course, the symmetry of a solution is held, and the same result is obtained.

Therefore, Eq 4.10 can be split into x, y direction, and solved with 1D CIP computa-

tion on according direction. We can gain the following Equations.

∂ f
∂t
+ u
∂ f
∂x
= 0, f n→ f ∗ (4.13)

∂ f
∂t
+ v
∂ f
∂y
= 0, f ∗ → f n+1 (4.14)

Here, we set n time step isf n, next time isf n+1; and f ∗ is intermediate value. Therefore,

we can solve a 2D advection equation as following steps.

Step1: By using 1D CIP method, we get the solutionf ∗, ∂ f ∗/∂x through f n and

∂ f n/∂x in the x direction.

Step2: By using 1D CIP method, we get the solutionf n+1,∂ f n+1/∂y through f ∗ と

∂ f ∗/∂y in the y direction.

Because of∂ f ∗/∂y, which is necessary in step 2 , has not been solved in step 1. Mean-

while, at next time (n+1), the step 1 computation also need∂ f n + 1/∂x, which has not

been solved in step at n time(step 2) .

For the solution in next step, we solve the∂ f ∗/∂y and∂ f n+1/∂x with upwind method

which is a numerical discretization method for solving hyperbolic PDEs. According to

such a scheme, the spatial differences are skewed in the “ upwind” direction, i.e., the

direction from which the advecting flow originates. The origin of the method can be

traced back to the work of Courant, Isaacson et al who proposed the CIR method [45].

The∂ f ∗/∂y can be solved the follow equation.

∂y f ∗i, j = ∂y f n
i, j −
∂y f n

i, j − ∂y f n
i−1, j

∆x
, u > 0

= ∂y f n
i, j +
∂y f n

i, j − ∂y f n
i+1, j

∆x
, u < 0 (4.15)
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Fig. 4.3 The process flow chart of type-M 2D CIP method

The solution of∂ f n+1/∂x also can be completed in the same way. The operation flow

of 2D CIP method is shown in Figure 4.3.

Process element(PE) for 1D CIP method

To implement the Process element circuit , we set∆x = ∆y = 1 as constant value, and

∆t = 1. The Equation with 1D CIP method becomes following Equations.

a = gn
i − gn

iup − 2( f n
i − f n

iup) (4.16)
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Fig. 4.4 Block diagram of PE for CIP method

b = 3( f n
iup − f n

i ) + 2gn
i + gn

iup (4.17)

f n+1
i = −au3 + bu2 − gn

i u+ f n
i (4.18)

gn+1
i = 3au2 − 2bu+ gn

i (4.19)

We utilize adders, multipliers and bit-shift operators to realize the operation of Eq

(4.16)- Eq (4.19). All ALUs are 32-bit floating-point arithmetic units on IEEE754 stan-

dard. The PE circuit is shown in Figure 4.4.

A PE mainly consists of 4 blocks. Block1 is used to achieve operation of Eq (4.16)

and Eq (4.17) to solvea andb. The circuit is shown in Figure 4.4.

The Block1 consists of six adders/subtractors, one multiplier and two bit-shift opera-

tor. All operators are multi-pipeline architecture. There, the adder is 13 stage pipeline,
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Fig. 4.5 The circuit of Block1

multiplier is 8 stage pipeline. Since of sub-unit for solvinga has 27 stage pipeline length,

and the sub unit forb has 34 stage pipeline length To implement pipelined architecture

of Block1, we use 7 stage shift registers to delay output ofa.

The Block2 is a sub process unit for solvingu2 andu3 with u(shown in 4.6). The unit

utilizes two multipliers to constitute a 16 stage pipelined unit.

The Block3 solves Eq (4.18)and Eq (4.19). It consist of five adders/subtractors, six

multipliers and one shift register, and the pipeline length is 35 stage.

We implement parallel computing with Block 1 ( which solvesa andb ) and Block2 (

which solvesu2 andu3 ), the pipeline lengths are 34 stages. The blocks 1-3 compose a

pipelined process unit, which has 69 stage pipeline, and consist of 11 adder/subtractors,

9 multipliers, 3 bit shift operators.

We also set∆x = ∆y = 1 and∆t = 1. Eq(4.15) becomes the follow Equation.

g∗i = gn
i + (gn

i − gn
iup)u (4.20)

Block4 is a processing unit for solving interpolated equation with upwind method (Eq
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Fig. 4.6 The circuit of Block2

(4.8)); It has 34 stage pipeline, and consist of 2 adder/subtractors, 1 multipliers.

Due to type-M CIP method, multidimensional advection can be split into n (n is di-

mension)steps computation which realizes computation of 1D CIP method in each step.

The 2D or 3D wave propagation simulation can be realized through changing input data

to the PE circuit for solving 1D CIP method. Meanwhile, for solving n dimension ad-

vection equation, n-1 numbers of Block 4 need to be implemented on PE. For 2D CIP

method, the PE circuit scale is shown in Table 4.1.

Architecture of hwNet

We realized a hwNet to solve 2D/3D advection equation in type-M CIP method. The

hwNet architecture is shown in Figure 4.9.

• Cache

• Processing elements

• PE Controller

Table 4.1 Circuit scale of 1 PE for 2D CIP

Circuit scale 9,940 [Slices]，(35[%] of XC3S4000)
Maximum frequency 165.3 [MHz]
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Fig. 4.7 The circuit of Block3

• Buffer Controller

• BRAM & LM controller

The data store unit composes of local memory and cache. The initial data and result

data are stored on local memory. We implemented a high-speed cache with registers and

BRAMs in FPGA to satisfy data inputs/outputs of PE at every clock cycle. One PE of

2D CIP method running at 66 Mhz, needs 1.596 GB/s input bandwidth and 779 MB/S

output bandwidth .

Table 4.2 The circuit scale of hwNets of 2D/3D CIP method

Logic 2D CIP 3D CIP Available
Utilization Used Utilization Used Utilization
Flip-Fliops 14,126 25% 16,813 30% 55,296

LUTs 13,664 24% 16,134 29% 55,296
Occupied Slices 10,877 39 % 12,395 44% 27,648

RAM16 3 3% 4 4% 96
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Fig. 4.8 The circuit of Block4

The controller module of hwNet composes of PE controller, BRAM & LM controller,

Cache controller. BRAM & LM controller module is used to realize read/write access

to initial value data/result data among host PC and local memories on PVSs. The Cache

controller is used to read the initial value data in local memory to cache before cal-

Fig. 4.9 Block diagram of hwNet for sloving 2D CIP method
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Fig. 4.10 The processing flow chart of main controller for 2D/3D CIP method

culating, and write the result data in cache to local memory after the computation is

completed.

The PE controller is a main controller module of hwNet for managing the status of

PE and data throughputs between PE and cache. The Figure 4.10 shows the processing

flow chart of PE controller on 2D/3D CIP methods. The circuit scales of hwNets on

hwModule V2 are shown in Table 4.2.

4.1.2 Poisson equation with Jacobi method

A Poisson equation is an elliptic PDE that has broad utility in electrostatics, mechan-

ical engineering and theoretical physics [46], [47]. One of the principle cornerstones of

electrostatics is the formulation and resolution of problems described by Poisson equa-

tion. Eq.(4.21) is Poisson equation apply to electrostatics.

∇2ϕ = −ρ/ϵ0 (4.21)
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Fig. 4.11 3D collocated grids and computational image.

Here,∇2 is a Laplace operator,ρ is charge density,ϕ is electric potential, andϵ0 is the

vacuum permittivity.

Solution of Poisson equation

In a case of 3D space, central-difference methods with second order accuracy give the

approximations for the 3D collocated grids in Figure 4.11.

The Poisson equation can be solved by using Jacobi method(or Jacobi iterative

method) with approximate operations[54], [55]. A 3D Poisson equation can be

expressed in following common form.

ϕnew
i, j,k = −h2ρ + (ϕold

i−1, j,k + ϕ
old
i+1, j,k

+ϕold
i, j−1,k + ϕ

old
i, j+1,k + ϕ

old
i, j,k+1 + ϕ

old
i, j,k−1)/6. (4.22)

Here,ϕi, j,k is a certain value at grid point (i, j, k). We refer to the operation as neigh-

boring accumulations. In Eq. (4.22) all grid points only require the accumulation com-
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putations using the adjacent grid point data. All grid-point operations are independent at

one computation time; consequently, this computation is suitable for parallel execution.

We can use an array of parallel processing elements (PEs) to execute Eq. (4.22) to ex-

ploit these locality and parallelism properties. The PEs are the core components of the

implemented application circuits.

By multiplying 6 and then adding 2ϕnew
i, j,k to both sides of Eq.(4.22), we obtain the

following equation.

ϕnew
i, j,k = (ϕold

i−1, j,k + ϕ
old
i+1, j,k + ϕ

old
i, j−1,k

+ϕold
i, j+1,k + ϕ

old
i, j,k+1 + ϕ

old
i, j,k−1 + 2ϕnew

i, j,k − 6h2ρ)/8. (4.23)

Next, we replace 2ϕnew
i, j,k = 2ϕold

i, j,k + δi, j,k, to achieve the final form of the equation.

ϕnew
i, j,k = (ϕold

i−1, j,k + ϕ
old
i+1, j,k + ϕ

old
i, j−1,k + ϕ

old
i, j+1,k

+ϕold
i, j,k+1 + ϕ

old
i, j,k−1 + 2ϕold

i, j,k + δi, j,k − 6h2ρ)/8. (4.24)

In our numerical experiments, the errorsδi, j,k/8 decreased rapidly as expected, and

we obtain the experimental results that are less than 10−4%. Thus, we can transform

Equation (4.22) to Equation (4.24) easily to simplify an arithmetic circuit design.

Architecture of hwNet

We developed a hwNet to solve 3D Poisson problems. Figure 4.12 shows the architec-

ture of application circuits (hwNet) for a Poisson equation on a single PVS. The whole

circuit consists of four major components: PE unit, data storage unit, control unit, and

data communication unit.

We implemented a PE for a 3D Poisson equation shown in Figure 4.13. The PE

contains seven adders, one divider and one multiplier to operate one grid-point with

Eq.(4.23) for single-precision floating-point numbers that comply with IEEE754, the
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Fig. 4.12 Architecture of hwNet for 3D Poisson Equation.

standard for floating-point arithmetic. For additional simplification, the arithmetic cir-

cuits, divider, and multiplier are implemented by bit shifting. In addition, the PE is

pipelined. The pipeline length of the PE is 41 stage, which enhances operational effi-

ciency and achieves high utilization of arithmetic unit. A PE accounts for approximately

7% on a Xilinx Spartan 3 xc3s4000 FPGA equipped on a PVS.

Due to the circuit scale limitation of the Spartan-3 XC3S4000 FPGA (shown in Ta-

Table 4.3 Circuit scale for 3D Poisson equation

Logic A Process element 3D Poisson(8PE) Available
Utilization Used Utilization Used Utilization
Flip-Fliops 4,383 7% 36,317 65% 55,296

LUTs 4,107 7% 36,027 59% 55,296
Occupied Slices 3,381 12% 27,646 99% 27,648

RAM16 10 11% 62 64% 96
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Fig. 4.13 A processing element (PE) of 3D Poisson equation (Left) and parallel op-
eration organization of 8 PEs(Right).

ble 4.3), eight parallel PEs are implemented on a single PVS to solve the 3D Poisson

Equation. The eight PEs are implemented by homogeneously partitioning the entire

grids array as shown in Figure 4.13. Each PE operates sub-grids which are distributed

on a plane. Therefore, the eight PEs are able to process eight sub-girds on eight paral-

lel planes synchronously. We utilized 32 high-speed block RAM (BRAM) modules as

cache to provide sufficient inner bandwidth for eight parallel PEs. We implemented a

choice of 66 MHz for an operating frequency on 8 PEs.

The hwNet’s data storage unit consists of SDRAM and BRAM. SDRAM is local

memory used to store the initial data and the result data, and it allows hwNets access

with a direct memory access (DMA) module via the FIB, which supports burst trans-

mission. There are frequent data exchanges among parallel PEs and memory modules.

Therefore we utilize a significant number of high-speed BRAM modules as cache to

satisfy many PEs. Twelve 32-bit data inputs to 10 PEs at 1 clk provide sufficient in-

ner bandwidth to enable parallel computing on pipelined PEs. The control circuit for

the Poisson equation contains four circuit units: A BRAMandLMController is used to
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control read-write operations for data stored in SDRAM via the FIB; a cache controller

enables high-speed PE cache access. A PE controller enables multiple PEs to operate

application synchronously. The VIBusController: controls data transmission and syn-

chronization of the PVSs.

Data transmission and synchronization among multi-PVSs

In finite difference numerical calculation, data transmission between adjacent PVSs is

necessary when PEs compute the boundary mesh girds. In order to achieve high-speed

data transmission between nearest adjacent FPGAs, we design a transfer data circuit

which is connected via GPIF I/O, 32-bit width, and the data transfer of each way is

independent.

The FPGAs achieve data transmission by using the VI Bus Controller module that

installed multiple VI Bus connectors which implements data transmit elements (Tx ele-

ments) and data receive elements (Rx elements). Each Tx/Rx element comprises multi-

ple Tx/Rx FIFOs. For 3D interconnection, each PVS implements six VI Bus connectors

for six-way data transmission when performing a 3D numerical calculation, as shown in

Figure 4.14.

On the other hand, a synchronization problem with different clock sources arises from

multiple-device implementation. In our design different clock sources are utilized for

different FPGA cards. To address clock signal synchronization problem among FPGAs,

we have utilized delay locked loop digital clock managers (DCM) in each FPGA, the

clock skew and phase divergence among FPGAs can be effectively improved through

DCMs to achieve synchronization of clock signals.

To implement synchronous operations of multiple PVSs for distributed computing,

we utilize the VIBusController module to achieve a stall mechanism to enable multiple

PVSs to attain synchronous operation of each iteration process. The module causes a

local stall to inner PEs after each iteration, and it outputs a 1-bit End signal (oEnd) to

all adjacent PVSs via GPIF I/Os. Until all input End signals (iEnd) from adjacent PVSs

become high and off-chip data transmission is completed, inner PEs cannot execute the

next iteration and send a start signal to announce the each boundary PVSs.
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Fig. 4.14 Data transmission and synchronization between adjacent FPGAs

By considering the synchronous operation of a large scale multidimensional FPGA

array, while the data transmission is limited by a 52-bit GPIF I/O port. Therefore, our

system employs a two-stage data transfer mechanism. For example, when PEs oper-

ate a 3D Poisson equation, data transmission works via first stage operation where in

the boundary grids onVIBus FRONT, VIBusRIGHT, andVIBusUP sides are trans-

ferred to adjacent PVSs with corresponding Tx elements. Rx elements onVIBus BACK,

VIBus LEFT, andVIBus DOWN sides receive data from adjacent PVSs via VI Bus.

When a transmission module completes the above operations, the data transmission state

proceeds to stage, which is a backward operation stage. The data flow is opposite to the

forward operation stage. If inner PEs have finished all calculations for all grids in an

iteration process, the VIBusController module enables all PEs to be stall state until all

boundary data has been transferred to adjacent PVSs.

Since the 6-way VIBusController modules require lots of logic sources which consist

of Flip-Flops, LUTs, Slices, especial for BRAMs, there are only up-to 6 PEs can be

realized on a Xilinx Spartan-3 XC3S4000 FPGA which implements on a PVS. The Table

4.4 shows the he circuit scale hwNet with 6-way data communication for solving 3D
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Table 4.4 The circuit scale of hwNet with data communication for 3D Poisson equation

Logic 3D Poisson(6PE)
Utilization Used Utilization Available
Flip-Flops 30,237 54% 55,296

LUTs 31,636 57% 55,296
Occupied Slices 25,953 93% 27,648

RAM16 84 87% 96

Poisson equation.

HwNet design on Xilinx Virtex-7 XC7V2000t

Since Xilinx Spartan-3 XC3S4000 FPGA was released in 2008, was only equivalent

to four million ASIC gates for a 90-nm process. In our design, only 6 PEs can be im-

plemented on a Spartan-3 XC3S4000 FPGA for solving 3D Poisson Equation. The peak

performance of a circuit can be calculated in follow equation.

Fpeak= N × F ×OF. (4.25)

Where,Fpeak is the peak performance of an FPGA,N is number of PEs,F is number

of floating point arithmetic units in a PE,OF is PEs’ operating frequency. When using a

Spartan-3 XC3S4000 FPGA, one FPGA can achieve 6×9×66 MHz= 3.56 GFlops.

With the development of semiconductor technology, circuit scale of new generation

high-end FPGA was increased readily. For instance, Xilinx Virtex-7 XC7V2000t FPGA,

a 28-nm process high-end FPGA which was released in 2012. The Table 4.5 shows spec-

ifications of Xilinx Virtex-7 XC7V2000T and Spartan-3 XC3S4000 FPGA. Compared

to used Spartan-3 XC3S4000 FPGA, the flip-flops (FFs) of Xilinx Virtex-7 XC7V2000T

improved 44 times, and Block RAM improved 26.9 times. When using the new genera-

tion high-end FPGA, more PEs can be implemented on single high-end FPGA.

We also design a hwNet which realizes 192 PEs on a Xilinx Virtex-7 XC7V2000t

FPGA to solve 3D Poisson equation with the similar design method. The parallel op-
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Table 4.5 The specifications of Xilinx Virtex-7 XC7V2000T and Spartan-3 XC3S4000 FPGA

FPGA Spartan-3 XC3S4000 FPGAVirtex-7 XC7V2000T
Slices 27,648 305,400

Logic cells 62,208 1,954,560
CLB Flip-Flops 55,296 2,443,200

Maximum Distributed RAM (Kb) 432 21,550
Total Block RAM (Kb) 1,728 46,512

eration organization of 192 PEs are shown in Figure 4.15. In order to control 192 PEs,

we use 6 PEs as a Block processor(BP), and each Block processor operates 10×10×6

grids. We implemented 4×4×2 BPs, which can operates 40×40×12 grids, on one Xilinx

Virtex-7 XC7V2000T FPGA.

The Figure 4.16 shows the hwNet architecture on Xilinx Virtex-7 FPGA. In the de-

sign, a logical 3D mesh network interconnections among BPs was mapped on 2D layout

of FPGA. Each BP consists of a PE controller, 6 PEs and a corresponding custom cache

Fig. 4.15 Parallel operation organization of 192 PEs.
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Fig. 4.16 The architecture of hwNet on Xilinx Virtex-7 XC7V2000T FPGA;
3D(logical network) to 2D(layout); 1Block Processor= 6PEs.
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Table 4.6 The circuit scale of hwNet (4×4×2 Block processors(BPs)=192PEs) for
3D Poisson equation on a Virtex-7 XC7V2000t

Logic 3D Poisson(192PEs)
Utilization Used Utilization Available

Number of Slice registers 942,427 38% 2,443,200
Number of slice LUTs 886,868 72% 1,221,600

Number of bonded IOBs 452 37% 1,200
Number of Block RAM 799 61 % 1292

(Block RAMs) simultaneously. The PE controller can manage computing status of 6 PEs

and data communication among inner PEs and cache on each BP. The BRAM&LM con-

troller was used to write initial data, which stored in SDRAM, to each block processor,

or read result data on each cache of block processor to SDRAM. The Block proces-

sor controller was mainly used to start up or stall the block processor array. The data

communication among inner Block processors in a 3D mesh network are realized via di-

rected links. We realized same data communication mechanism among adjacent FPGAs

to hwNet on Spartan-3 XC3S4000 FPGA with a VIBusController module. Through the

synthesis process optimization by ISE’s XST (Xilinx Synthesis Technology), the design

hierarchical of the modules are flatten. The circuits scales of the hwNet is shown in Table

4.6.

We implements a hwNet composes of 4×4×2 BPs= 192 PEs on a Xilinx Virtex-7

xc7v2000t FPGA, to realize 863 GFlops at 500 Mhz(which can be realized on some

examples design). Meanwhile, when 4×4×3 BPs= 288 PEs cannot be implemented on

a Virtex-7 xc7v2000t FPGA , since its circuit scale limitation, slice LUTs utilization will

be 112%, over 100%.

In order to implement more PEs on a chip, we improved the hwNet design, to reduce

utilized circuits scale. We tested a improvement approach, to combined two intrinsic

block processors on the z axis way as a new Block processor, which consists of 12 PEs

and operates 10×10×12 grids as a decomposed sub-computation domain. For instance,

BP(0,0,0) and BP(0,0,1) was combined as a new BP(0,0). It can be deem that a logical
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Table 4.7 The circuit scale of hwNet (4×4 Block processors=192PEs) for 3D Pois-
son equation on a Virtex-7 xc7v2000T FPGA

Logic Top module BP(12PEs) hwNet(192PEs)
Utilization used Utilization Available

Number of Slice registers 3,609 53,564 860,633 35% 2,443,200
Number of slice LUTs 695,596 43,108 695,596 57% 1,221,600

Number of bonded IOBs 452 0 452 37% 1,200
Number of Block RAM 31 48 799 61 % 1292

2D mesh computing network was mapped on the physical 2D network. Because of ISE’s

XST optimizes circuit to flatten the design hierarchical of BP module. We improved

the hwNet design through the black box design method of FPGA, to maintain the BP

module’s boundaries design and avoid to be flatten design hierarchical of the BP module

by XST(Synthesis Technology) optimization.

In the improved design, the BP module was designed as a black box model, so we

can directly utilized the generated net list (NGC) file of the BP module to avoid the BP

module was optimized by synthesis process. The hierarchical of BP module can be kept

in the design. The overall hwNet’ circuit scale can be calculated based on the circuit

scale of top module of hwNet and BP module. The improved hwNet architecture was

shown in Figure4.17, and the BP module (Black Box), the Top module of hwNet and the

improved hwNet’s circuit scale were shown in Table 4.7.

For conveniently describing two designs, we named the former hwNet design as

3Dto2D hwNet, the latter as 2Dto2D hwNet. Compared to the circuits scale of the

two hwNet, the utilization of slice registers was down 3% (from 38%(3Dto2D) to

35%(2Dto2D)), the utilization of the slice LUTs was down 15% (from 72%(3Dto2D)

to 57%(2Dto2D)). We can see the resource usage of slice has been effectively reduced,

and more PEs are able to be implemented on the Virtex-7 XC7V2000T FPGA.

Meanwhile, see from the results, in the 3Dto2D hwNet design, a logical 3D mesh

network was implemented on a physical 2D layout, thus implementation loss and rout-
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Fig. 4.17 The hwNet architecture on Xilinx Virtex-7 XC7V2000T FPGA.(1Block
Processor= 12PEs)
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ing problems has been seen in the case, compared to the 2Dto2D hwNet design . We

speculate the cause is that the synthesis process of ISE is incapable of optimizing the 3D

network algorithm, led to the optimized synthesis cannot do anything to minimize the

interconnection among BPs on a 2D layout FPGA.

4.2 Performance evaluation and discussion

4.2.1 Experimental environment and comparison object

We implemented 1D, 2D and 3D advection equation with CIP method, and 3D Poisson

equation with Jacobi method on our HPC system. As one of comparison objects, we also

operate the same calculation with general processor. The experimental environment is

shown in Table 4.8.

Table 4.8 Desktop computer Specifications

CPU Intel Core i5 750 (2.53[GHz])
Mian Mem DDR3 SDRAM PC3-10700 4[GB]

Mother board Gigabye GA-P55M-UD2
OS Windows XP Professional SP3

Compiler Borland C++Builder 2006

4.2.2 Evaluation of advection equation with CIP method

We implemented a operation circuit for sloving 1D, 2D and 3D advection equation

with CIP method with an FPGA on hwModule V2. Because of hwModule V2 and PVS

equip the same Xilinx Spatran-3 XC3S4000 FPGA. The hwNet on hwMoule V2 can be

easily ported to PVSs on FPGA array. As comparison objects, we also solving the same

problem with Core i5 CPU. Through measure the computation time, we can evaluated

the practical floating-point performance as following equation.
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Table 4.9 Performance of 1D CIP(GFLOPS)

Iteration 103 104 105 106

FPGA (1PE) 0.197 0.817 1.353 1.392
CPU (1Core) 0.203 0.202 0.200 0.200

F =
N × P× I

T
(4.26)

There,F is practical floating-point performance,N is computational domain size,P is

number of operator units, I is iteration number.

■1D CIP method We solved 1D wave a propagation problem with CIP method by

using a processing circuit on FPGA at 66 MHz. Meanwhile, we also solved the same

computation with CPU as the comparisons. The computational domains of FPGA, CPU

are a 1D space which composed of 512 girds. Through measuring the calculation time,

the performances were evaluated at 103 to 106 Iterations respectively, shown in Table 4.9

and Figure 4.18.

Fig. 4.18 Performance of 1D M-type CIP method
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Table 4.10 Performance of 2D CIP(GFLOPS)

Iteration 103 104 105 106

FPGA (1PE) 0.222 1.057 1.548 1.627
CPU (1Core) 0.494 0.495 0.493 0.495

As iteration increased, the performance enhanced, and was asymptotically stable at

1.9 GFlops performance. This is because data communication and control cost among

FPGA and host can be hidden in computing time as iteration increased. The performance

of FPGA can achieves 95% of the processing circuit’s peak performance (1.53 GFlops).

While CPU performs about 200 MFlops of performance, almost have not unchanged

over iterations.

■2D CIP method We solved the 2D advection equation with CIP method by using an

FPGA. The computational mesh of FPGA composes of 16×16= 256 grids. Meanwhile,

we also solved the same computation with Core i5 CPU. The computational domain of

CPU is same to FPGA, is 16× 16 = 256 grids, The evaluated performances are shown

in Figure 4.19 and Table 4.10. We evaluated the total computing time of FPGA, CPU

Fig. 4.19 Performance of 2D M-type CIP method
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Table 4.11 Performance of 3D CIP(GFLOPS)

Iteration 103 104 105 106

FPGA (1PE) 0.278 1.218 1.827 1.916
CPU (1 core) 0.596 0.583 0.579 0.590

at different iterations. Figure 4.19 and Table 4.10 shows that results calculating the

advection equation in two-dimensional mesh. As iterations increased, the control and

transfer cost can be hidden, the performance of FPGA enhanced. The FPGA performs

1.627 GFlops performance, achieved 94% of peak performance (1.732 GFlops). While

one core of CPU performs steadily about 490 MFlops at different iterations.

■3D CIP method The results of calculating the advection equation in three-

dimensional cuboids space were shown the Figure 4.20 and table 4.11. The computa-

tional domains of FPGA and CPU were a 3D cuboids which composed of 7× 6 × 6.

As well as 1D, 2D problem, the 1PE of FPGA can performs 1.916 GFolps of actual

performance after 10̂6 iterations or so. The effective performance achieved 99 % of

1.93 GFolps of peak performance. One core of CPU (Intel Core i5) performs about 590

Fig. 4.20 Performance of 3D M-type CIP method
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Fig. 4.21 Change of circuit capacity as the dimensions of operation domain increases

MFlops of performance for computing 3D CIP method.

Through the results of multidimensional advection equation with CIP method. The

results shows that the processing circuits on an FPGA are high-efficiency, can achieve

more than 90% of peak performances. One PE on FPGA running at 66 Mhz can achieves

higher performance than 1 core of Core i5.

From Figure 4.18 - 4.20, when computational domain ascended each dimension, the

arithmetic circuit performance enhanced about 18% in the case for solving advection

equation with type-M CIP method. The arithmetic circuits on FPGAs are composed

Table 4.12 The required number of input variable, ALU and BRAM on a PE on
different operation domain dimensions

1D CIP PE 2D CIP PE 3D CIP PE
Number of variable 5 9 13
Number of ALU 22 26 29
Number of BRAM 2 3 4
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of amounts of FFs(flip-flops), LUTs, Slices and BRAMs. As computational complexity

increased, the arithmetic circuits scale was bound to increased to meet the computational

requirements.

Meanwhile, Figure 4.21 also shows the changes of arithmetic circuit scale for solving

the advection equation with CIP method as each dimension of computational domains

increases. And Table 4.12 shows change of number of ALUs on one PE as input variable

increases. Whenever ascending a dimension of computational domain, the utilized cir-

cuits resources (Flip-flops，LUTs，Slices) enhanced about 35% to satisfy the computing

requirements.

Comparing the both changes between performance and circuits scale, we can see the

rates of circuits scale increase are higher than rates of performance enhance when com-

putational complexity increased. There are several main factors to cause the condition.

As the computational complexity increased, the arithmetic-logic units(ALUs) on process

element(PE) and PE’s pipeline stage increased. Meanwhile, to keep the pipelined archi-

tecture of the PE, we need to utilize more FIFOs to adjust timing among inputs/outputs

of ALUs.

Moreover, when dimensions of computational domain increased, there are more vari-

ables need to be inputted to the Processing element. This implies that data communica-

tion between data buffers and main arithmetic circuits becomes more complicated, and

causes cache-control and other peripheral control circuits become enlarged.

4.2.3 Evaluation of Poisson equation with Jacobi method

Performance of 1PVS

The example circuit for a 3D Poisson equation was designed a sample benchmark to

evaluate the performance of an FPGA array. We solved 3D Poisson equation problem

with an FPGA Board (PVS); Thus, eight PEs can compute a cubical space of 10×10×8

grids at 66 MHz. The same computation was operated by Core i5 CPU for comparison.

In comparison, six PEs on 1PVS to compute cubical space of 10×10×6 grids at 66

MHz. The floating-point performance of a PVS can be calculated to measure the exe-
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Table 4.13 Execution time and performance for 3D Poisson Equation on 1PVS

Core i5(1 Core) 1 PVS (6PE) 1 PVS (8PE)
Iterations 106 108 106 108 106 108

Execution Time [s] 21.9 2,187.39 1.60 155.34 1.57 152.34
Performance [GFlops] 0.33 0.33 3.37 3.47 4.57 4.72

cution time of different iterations. Table 4.13 and Figure 4.22 show the floating-point

performance for the 3D Poisson equation with six PEs and eight PEs. As the number

of iterations increased, the real performance (4.72 GFlops) of 1 PVS approached the its

peak performance, which was 4.79 GFlops at 66 MHz. The results shows that 1 PVS

(8PEs) can realized up to 14.3 times speedup than 1 core of CPU.

Performance of FPGA array

In many parallel and distributed systems, the time cost of communication among com-

puting nodes is sizeable fraction of the total time needed to solve a problem. To develop

insight into our experimental results, we made reference to [52], [53], and develop a

simple analytical model of application sensitivity to communication overhead. We can

think of the execution efficiency as the ratio:

Fig. 4.22 Performance of 1 PVS for 3D Poisson equation
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EF =
TCOMP

TTOT AL
(4.27)

whereTTOT AL is the time required by the algorithm to solve the given problem, and

TCOMP is the corresponding time that can be attributed just to computation, that is, the

time would be required if all communication were instantaneous. The time analysis is

significant for a distributed system because of it is directly related to the efficiency of the

system. In general, the computation time of a distributed system includes the evaluation

time, and the communication time as following equation.

TTOT AL= TCOMP+ TOH = TCOMP+ TCOMU − TOL + Td (4.28)

Where,TCOMU is the data communication time among computing nodes,TOL is the

overlap time among computation and data communication,Td is delay for synchronous

operation and control. The communication overheadTOH = TCOMU − TOL = TTotal −
TCOMP− Td. In our system, the synchronous timeTd can be negligible. Assuming that

the environment is homogenous, then

TCOMP =
Dtp

P
(4.29)

wheretp is the time to evaluate one individual (a grid) andD is the computational

domain for an FPGA,P is the number of PEs on one FPGA.

The communication time can be divided into three parts: queuing time, transmis-

sion time, propagation time. To analyze communication issues, it is helpful to view the

distributed computing system as a network of computing nodes connected by communi-

cation links. We thus arrive at the following equation for the data communication time

in a link:

TCOMU = P+ Atc + Q, (4.30)

whereP is the processing and propagation time,A is the amount of transfer data (or

number of bytes) andtc is the time cost of single data, andQ is the queuing time.
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In our system, we can reasonably assume that the processing and propagation time on

a given link is constant, and the transmission timeAtc is much larger than the processing

and propagation time. The transmission time is proportional to the number of length

of the packet, propagation time and queuing time can be negligible, we can roughly

considerTCOMU = Atc.

The Eq 4.27 can be changed as

EF =
TCOMP

TCOMP+ TCOMU − TOL + Td
=

Dtp/P

Dtp/P+ Atc − TOL + Td
, (4.31)

The communication overhead is the key factor to affect the distributed system’s per-

formance. Therefore, we designed a test vehicle with six PEs and six-way data com-

munication circuits in each PVS for multidimensional connection FPGAs. The six PEs

execute the operations on the 10×10×6 sub-grids for which the data communications of

10× 10 and 10× 6 planes are required. The execution and data communication are also

processed at 66 MHz. The synchronous data transmission among FPGAs is described in

previous chapter. The exchange data quantity in all six directions varied. To verify the

effect of exchange data quantity on the data communication overhead in 3D-connection

FPGAs, we used a 1D FPGA array to evaluate the data communication overhead time

among I/O connections in each direction (X, Y, Z-axis). In each 1D FPGA array, 3D

Poisson equation is calculated with one data transmission from three directions at 107

iterations, as shown in Table 4. The execution times were measured with and with-

out the data communications, and the communication overhead time along X-axis was

26.73− 16.43 = 10.3sec, 10.17secfor the Y-axis, and 18.44secfor the Z-axis. The

results in Table 4 indicate that the data communication overhead is approximately linear

with respect to the size of the data communication plane.

Table 4.14 shows the required data communication overhead between adjacent PVSs,

where the 3D Poisson equation with 2×2 PVSs was evaluated (Figure4.23). We im-

plemented 2× 2 PVSs, i.e., 24(2× 2 × 6) PEs, to calculate the 3D Poisson equation.

We also evaluated execution time for 2×2 PVSs without communications, when the 3D

Poisson operations on each PVS are independent. Table 4.15 shows the communication
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Fig. 4.23 A 2D FPGA array (2×2) PVSs for 3D Poisson equation.

overhead time 264.06− 165.34 = 98.72secfor full 2D data communications with adja-

cent PVSs. The performance of 2× 2 PVSs without and with data communication was

13.05 GFlops and 8.18 GFlops respectively. When calculating the 3D Poisson equation

with a 3D FPGA array, adjacent PVSs achieve the data communications of 10×10 plane

via the Z-axis (Up↔Down) connection. Therefore, we roughly estimated the 3D data

communication overhead as 98.72× (10× 10)/(10× 6) = 164.53sec. We estimated it in

this manner because the 10× 10 plane replaces the 10× 6 plane as a bottleneck for the

calculation interval.

We also calculated the 3D Poisson equation with a 3D FPGA array(2×2×2 PVSs

implemented at 2×2×2×6 = 48 PEs) and evaluated the communication overhead(show

in Figure 4.24).

The results are shown in Table 5. The 2×2×2 PVSs performs 25.63 GFlops without

communication and 12.46 GFlops with communication. The communication overhead

time among 2× 2 × 2 PVSs is 346.46 − 168.54 = 177.92sec. The measured value

(177.92sec) is approximately the same as the estimated value for the communication

overhead (164.53sec), with an 8% error. Moreover, for the Poisson calculation, when the

internal grids were increased, the data communication ratio decreased. Based on these
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Table 4.14 Execution time and data communication among 3D connection for 3D
Poisson Equation.(Ex Time= Execution Time, Iteration=107)

Transmission X-axis way Y-axis way Z-axis way
direction (Front↔Back) (Left↔Right) (Up↔Down)

Exchange Data
10× 6 10× 6 10× 10

Plane
Ex Time with

26.73 26.52 35.34
Communication [s]
Ex Time without

16.43 16.35 16.9
Communication [s]

Communication
10.03 10.17 18.44

Overhead [s]

results, the performance of 8×4 × 4 FPGAs can be estimated; 128 FPGAs implemented

at 8×4×4×6 = 768 PEs with communications can achieve 199.36 GFlops. It is possible

to work at 500 MHz for high-speed operation. The effective performance of system

(8×4×4 FPGAs) can be expected to realize 1.5 TFlops performance running at 500 Mhz.

Fig. 4.24 A 3D FPGA array (2×2×2 PVSs) for 3D Poisson equation.
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Table 4.15 Execution time and performance for 3D Poisson Equation on 2D(2×2
PVSs) and 3D(2×2×2 PVSs) FPGA array(× : without communication⃝ : with
communication )

2 × 2 PVSs 2 × 2 × 2 PVSs
Communication Available × ⃝ × ⃝

Iterations 108 108 108 108

Execution time [s] 165.34 264.06 168.54 346.46
Performance [GFlops] 3.26 8.18 25.63 12.46

4.2.4 Discussion of the distributed system

In our experiments, 3D Poisson equation was solved with a 3D FPGA array which

consists of 2×2×2 PVSs.

We used a fundamental transfer and synchronization mechanism to implemented data

communication among FPGA via 3D directed connection. In this case, the data commu-

nication among FPGAs was realized via direct six-way connections , the figure 4.25 is

the simulated time chart which shows computation and data communication on one chip

of 3D FPGA array in the prototype design.

And data transmission and data reception in each link was completed respectively with

two stages at each iteration computation. The data communication time in each link can

be consider toTCOMU = TS1 + TS2, whereTS1 andTS2 was required process time at two

communication stage. The execution efficiency Eq. 4.31 can be expressed as following:

EF =
TCOMP

TCOMP+ TS1 + TS2 − TOL + Td
, (4.32)

In a time step, considering the pipeline length can be hidden as iteration increases,

and each PE operates a sub-block which consists of 10×10×1 grids, soTCOMP could

be considered 10×10 clk. The data communication on 1st stage can be overlapped to

computation, the overlap timeTOL can be roughly considered toTOL = TS1. And the

data communication in links on z-axis way became the bottleneck of data transfer, so the

data communication overhead wasTOH = TS1 + TS2 − TOL = TS2 = 100clk. Based on
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Fig. 4.25 Time chart of one FPGA on 3D FPGA array in a time step

the analysis of the existing design, we can predict the execution efficiency with Eq 4.32.

The evaluated value of efficiency is about 50%. Meanwhile, based on measured results

shown in Table 4.15; the practical execution efficiencyEF = 168.54s/346s = 48.7%,

with an 5.2% error. The results shows that design value of the system was realized.

However, the implemented data communication mechanism in this case is inefficiency,

but it can provide steady data communication in the prototype design stage. By analyzing

the computation and data communication situation in the worse case, it is easily to find

the ways to improve the system performance.

The results show the data commutation overhead among FPGAs became the perfor-

mance bottleneck of FPGA array in the case. By reducing the communication overhead,

the computational efficiency of FPGA array can improved. Several the most important

factors that influence the communication delays are the following:
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Table 4.16 The predicted computational efficiency as computational domain size increase

Computational domain size 53 103 203 403

Data communication size 52 102 202 402

Computational efficiency[%] 45.45 62.50 76.92 86.95

Computational domain size 803 1603 3203 6403

Data communication size 802 1602 3202 6402

Computational efficiency[%] 96.38 96 98 99

Computational domain size

In general, the computational domain size has a huge impact on execution efficiency of

a distributed system. It is commonly known that communication overhead for domain-

decomposition can be hidden through overlapping communication with computation

when a problem size is sufficiently large. We assume that a decomposed sub-block of

N×N×N grids has N×N×N complexity for computation while an exchange of bound-

ary data has N×N complexity. Then parallel computation with a 3D direct connection

can scale as long as the communication overhead is hidden. In the prototype design for

solving poison equation, the computational efficiencyEF can be calculated as following:

EF =
TCOMP

TCOMP+ TOH
=

N3tp/P

N3tp/P+ N2tc
(4.33)

there, the number of PEs:P = 6, andtp = tc. The Table 4.16 and Figure 4.26 shows

the changed trend of computational efficiency as population size(N3) changes.

By increasing the computational domain size, the data communication overhead can

be effectively improved. Because of a PVS has two 16 MB SDRAM as local mem-

ory, which can stores 8×106 number of single precision floating-point data. It means

that there are 4×106 number ofρ andϕ can be sorted at local memory separately. The

maximum computational domain sizes of single PVS were 158× 158× 158 grids, the

execution efficiency is 96.34%. It can be estimated that a PVS on a 3D FPGA array can

realize the 3.33 GFlops equivalent performance.
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Fig. 4.26 The predicted computational efficiency as computational domain size increase

Operation and communication frequency

The communication frequency influences the data bandwidth in each link, and deter-

mines the communication time from nodes to other nodes. For the distributed system

in general, the frequency is very important since the node rely very much on boundary

information that is communicated among nodes.

We assumefc is communication frequency, andfp is operation frequency of PE, and

the frequency ratio isα = fc/ fp = tp/tc; The Eq. 4.33 can be expressed in following

form:

EF =
TCOMP

TCOMP+ TOH
=

D/P
D/P+ A/α

(4.34)

In this case design for solving 3D Poisson equation,D = 10×10×6,P = 6,A = 10×10;
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Table 4.17 The predicted computational efficiency as frequency ratioα of commu-
nication/computation increases.(Computation domain of a PVS consists of 10×10×6
grids)

Frequency ratio 53 103 203 403

Computational efficiency[%] 45.45 62.50 76.92 86.95

Frequency ratio 803 1603 3203 6403

Computational efficiency[%] 96.38 96 98 99

and the operation and communication frequency were same at 66 Mhz, soα = 1. Table

4.17 shows the variation trend of computational efficiency of an FPGA array when only

enhance frequency ratioα of communication/computation.

The communication frequency is usually much faster than processor in practice im-

plementation. Based on the ISE timing summary of synthesize reports, the specific

VIBus module can achieves the maximum frequency 355.36 Mhz. It means that the

communication frequency among FPGAs can be realized at 330 Mhz, which is 5 times

of computation frequency (66 Mhz), and the time chart simulation is shown in the Figure

4.27. Contrast to the time chart in Figure 4.25, when communication operation runs at

66 Mhz, the communication overhead has been greatly reduced, and the computational

efficiency was enhanced to 83.3% when only raising the communication frequency.

Meanwhile, in general, we assume the computation domain size of one FPGA was

N×N×N grids, It is obvious that a high communication frequency will improve the speed

of convergence of execution efficiency. We can estimate a 3D FPGA array can achieve

to 99.3% computational efficiency, when each PVS operates 158× 158× 158 grids data

at 66 Mhz, while transfers data in each interconnection link running at 330 Mhz.

Algorithm and data communication mechanism

We provided a prototype design of 3D FPGA array for solving 3D Poisson equation.

The algorithm of PEs for solving 3D Poisson equation was not optimized for 3D data

communication network. Through optimizing the computation algorithm and communi-

cation mechanism, that is an effective method to improve the execution efficiency of a

distributed system. Because of the communication overhead:TOH = TCOMU - TOL. In



116 Chapter 4 System Evaluation

Fig. 4.27 Time chart of one FPGA on 3D FPGA array in a time step (communication
frequency at 330 Mhz)

actual design, due to the computation domain size and communication frequency was

generally limited by realistic conditions such as the hardware resources, chip manufac-

turing processes, memory sizes and so on. For a given problem solution with a hardware

architecture, it is a effective way to reduce the required data communication and enhance

overlapping time of computation through optimizing the computation and communica-

tion algorithm.

See from the time chart(Figure 4.25) of one FPGA on 3D FPGA array, the data com-

munication the interconnection links in 6-way has to spent much idle time to wait the

result data which output from PEs. By optimizing the algorithm and communication

strategies, it is possible to realize more data communication overlap to computation. For

instance, in the this case, in order to reduce the communication overhead, the algorithm

and communication mechanism can be realized with the following approach. (shown in

Figure 4.28)

There, each PVS implementsN PEs to operate the N×N×N grids as a sub-block of

computation domain, and each PE operates a sub-mesh which consists of N×N×1 grids.

In n time step, the PVS starts operation from the (0,0,0) gird to (N,N,N)grid along
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Fig. 4.28 A improved method to reduce communication overhead among FPGAs
with optimizatizing algorithm and data communication mechanism

the positive direction of (X,Y,Z axis) in Cartesian coordinate (shown in Figure 4.28).

For example, PE1 firstly operates computations from grid(0,0,0) to grid(N,0,0). Then,

PE 1 achieve computations from grid(0,1,0) to grid (N,1,0). Finally, PE1 complete

the computations from grid(N,N,0) to gird(N,N,1) at a iteration with the operation flow.

Meanwhile, the PVS only transmits the operated boundaries data on Front, Left, Down

sides via the corresponding VI Bus links, and receipts the boundaries data of Right, UP,

Back sides from corresponding adjacent FPGAs for the next time step(n+1) computation.

In the next time step (n+1), the computation was operated from the grids(N,N,N) to

(0,0,0)grid along the negative direction of (X,Y,Z) axis with the operation flow which

is opposite to n time step. Similarly, the PVS only achieves the data communication in

opposite directions of n time step, the operated boundaries data on Right, UP, Back sides

were send to corresponding adjacent FPGAs, and boundaries data on Front, Left, Down

sides were receipted from adjacent FPGAs for the next time step (n+2) computation. In

the n+2 time step, the PVS executes the same process and communication as in n time
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step, and so on, repeating the operation until the calculation is completed.

By using this approach, the communication data in each iteration can be reduced by

half, and the data communication can almost overlap to data computation, although the

improved method has error compared to previous one. In next works, we will implement

the improved method on our system and measure the actual computation error.

By accounting for these factors, the data commutation overhead can be improved and

the data communication almost completely be hidden. The data communication over-

head is no longer the primary bottleneck, and the performance of 3D FPGA array can be

improved considerably. It is possible to realized the nearly 100% execution efficiency.

Because of the FPGAs used in the proposed system are Spartan-3 XC3S4000, which

were released in 2008, only were equivalent to four million ASIC gates for a 90-nm

process. The results do not show superior performance compared to near-term high-end

processors. When the system utilizes the new generation high-end FPGA, the comput-

ing power enhanced as more parallel PEs have been implemented and operated at higher

frequency. The system also can achieve higher off-chip communication bandwidth with

new high speed I/O connector solution. In many related works have shown that Finite-

Difference Time-Domain (FDTD) computation is suited to FPGAs; thus, a system with

multi-FPGAs can deliver dozens of times computation acceleration compared to same

term processor[46], [47].

We also designed a hwNet which can implements 192PEs on a Xilinx Virtex 7

XC7V2000T FPGA (described in Section 4.1.2). The one Virtex 7 XC7V2000T FPGA

can performs 863 GFlops peak performance at 500 Mhz. When a large scale 3D FPGA

array is built with 22× 22× 22 = 10,648 Virtex 7 XC7V2000T FPGAs in Volicase

method, the system can implements 22× 22× 22× 192 = 2,044, 416 PEs to realize

9.189 PFlops of performance for solving Poisson equation, more than K supercomputer

peak performance (8.162 PFlops).
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Fig. 4.29 Power consumption of FPGA array

4.3 Power consumption measurement

The FPGA array is powered by a 12V DC power supply. We acquired the power

consumption by measuring the current value.

We measured respectively the actual power consumptions of 1 PVS to 8 PVS, when

operating 3D Poisson Equation at 1× 108 iterations. Meanwhile, we also measured the

Idle power 1 PVS to 8 PVS, when the circuits are configured. The measured results were

shown in Figure 4.29.

The power consumptions growth as numbers of PVS increase. The actual load power

consumption of a single PVS was only 3.36 W, and the idle power of the PVS was 2.11

W, exceeded 50% of its actual power consumption. This is because of the utilized DC-

DC converters on FPGA Boards only can provided 65% conversion efficiency. By using

high-efficiency DC-DC converters or directly providing stable output voltage to FPGA,

the idle power and actual power consumption can be reduced significantly. In contrast,

we also measured the idle power consumption and active power consumption of CPU on

host PC when operating the same calculation. The idle power consumption of CPU was
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9.72 W, and actual power consumption was 31.8 W. The power consumption of FPGA

is one-tenth than a general-processor so that without additional cooling devices design

for the system. The power efficiency of single PVS was 1.40 GFlops/W when eight PEs

are implemented on one PVS for solving 3D Poisson equation. We can estimate that a

3D FPGA array 4× 4 × 8 = 128 PVS consuming power of 435 W when operating 3D

Poisson equation.

Meanwhile, we estimated the power consumption of calculation circuits which con-

sists of 192 PEs implemented on a Xilinx Virtex-7 XC7V2000T with Xilinx Power Esti-

mator(XPE) [56]. The Xilinx Power Estimator (XPE) spreadsheet is a power estimation

tool typically used in the pre-design and pre-implementation phases of a project. XPE

assists with architecture evaluation, device selection, appropriate power supply compo-

nents, and thermal management components specific for your application.

The power consumption can be predicted through considering the design’s resource

usage, toggle rates, I/O loading, other factors which it combines the device models to

calculated the estimated power distribution(show in Table 4.18 ).

Table 4.18 The estimated power consumption of hwNet on a Xilinx Virtex-7
XC7V2000T with Xilinx Power Estimator(XPE)

Resource Power Consumption
Power value [Watt] Percentage [%]

Leakage 1.75 4
Clock 12.32 31
Logic 17.88 44

BRAM 1.93 5
I/O 6.42 16

Total 40.30 100

The power consumption of a Virtex-7 XC7V2000T FPGA was 39.9 W run-

ning at 500 Mhz(Junction Temperature 58.4◦C). One Virtex-7 XC7V2000T

can implements 192 PEs, that equivalents to 4×4×2 PVSs(Xilinx Spartan-3

XC3S4000). The power efficiency of efficiency of a Virtex-7 XC7V2000T was

863GFlops/40.30W = 21.4GFlops/W, and it is 15.4 times more efficient than
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PVS (Spartan-3 XC3S4000). We also estimate an FPGA array which composes of

22 × 22 × 22 = 10, 648 Virtex 7 XC7V2000T FPGAs can meets equal levels of K

supercomputer’s performance with consuming 429,114 W power consumption, only

about 4% power consumption of the K supercomputer(9.89 MW).

Yet, the No.1 ranked machine in the Green 500 list(in November/2013): TSUBAME-

KFC supercomputer, which combines the computing power of two Intel Xeon ES-2620

processors with four NVIDIA Tesla K20X graphics processing engines per node, can

realized more than 150 TFLOPS of computation running the LINPACK benchmark and

efficiency of 5.27 GFlops/W, it is less than one fourth times than the perfected efficiency

of a Virtex-7 XC7V2000T FPGA.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In the work, we build a reconfigurable HPC system with a 3D FPGA array by using

hw/sw complex architecture. The operations of the object-oriented applications have

been partitioned into swObjects processed by CPU and hwObjects on initial stage, which

are operated by processing circuits (hwNets) on FPGA array of design, and the user can

utilize hwObjects like swObjects. The amounts of peripheral interface circuits of FPGA

array were standardized, and circuit configuration, control/access of FPGA array can

be hidden in hw/sw complex units. The designers just require to redesign the hwNet

and hwObject interfaces to solve a new applications on distributed computing by using

FPGA array.

Vocalise is a scalable multidimensional interconnection FPGA array computing plat-

form. We developed the parallel and flexible circuit configuration solution for a large-

scale multidimensional FPGA array. This solution enables easy implementation of cir-

cuit configuration for 2D/3D FPGA arrays . The host PC can concurrently configure

most arithmetic circuits on 32 PVSs through each BVS through the configuration cir-

cuits implemented on FPGAs.

We designed specific circuits for solving CIP method and 3D Poisson equation. The

results of the application specific circuits on Vocalise showed operational efficiency, scal-



124 Chapter 5 Conclusions and Future Work

ability, communication overhead and power consumption. One PVS which has 1PE was

implemented can realize 1.91 GFlops at 66Mhz for solving 3D CIP method, about 99%

of its peak performance (1.93 GFlops). These showed efficiency and high-utilization

of the configurable computing system. The results of 1D,2D and 3D CIP method also

show a realistic problem. With computational dimensions increases, hwNet’s circuit

scale growths are faster than the performance improvements; it shows the computational

capabilities of one FPGA was very limited for solving most HPC applications, and the

necessity of a multiple FPGAs system. The PVS implemented 8PEs to achieve 4.72

GFlops performance for the 3D Poisson equation, and 2×2 PVSs, which used 2×2×6

PEs with communication, achieved 8.18 GFlops. The 3D FPGA array (2×2×PVSs)

which composed of 2×2×2×6 PEs, achieved 12.46 GFlops with communication. We

estimated that a 8×4×4 FPGAs, which used 8×4 ×4×6=768 PEs with communica-

tions, achieve 199.54 GFlops by consuming power of 435W. Through designing the a

hwNet on a high-end FPGA: Virtex XC7V2000T FPGA for solving 3D Poisson equa-

tion, we estimated a XC7V2000T FPGA implemented 192PEs can achieve 863 GFlops

running at 500 Mhz, with 39.9 W power consumption, and a 3D FPGA array composes

of 22× 22× 22 = 10,648 Virtex 7 XC7V2000T FPGAs can meet equal levels of K

supercomputer’s performance, with consuming 429,114 W power consumption, only

about 4% K supercomputer’s power consumption(9.89 MW). The system can be as a

prototype design of a multidimensional FPGA array to provide practical reference sig-

nificance when required to build a new generation RHPC system with multidimensional

connections among FPGAs.

Furthermore, in the hwNet designs on Virtex XC7V2000T, we separately developed

two hwNets (2Dto2DhwNetand 3Dto2DhwNet) to map a logical 2D mesh network(4×4

BPs) and a logical 3D network(4×4×2 BPs) on FPGA’s physical 2D layout for solving

same 3D computation. Compared the two cases, we also found the 3Dto2DhwNetcir-

cuits scale which mapped a logical 3D mesh network on a physical 2D layout, required

more 15% circuit resources(LUTs) as routing loss than 2Dto2DhwNetcase.

The system can implement different network topologies using the multi-dimensional

direct interconnection, and this scalability is critical to improve communication perfor-
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mance. The network can be configured to provide application-specific data communica-

tion for each application.

In addition, numerous technologies for 3D integration are becoming available, such

FPGA 3D packaging, the interconnect length among FPGAs can be reduced greatly. It

means that more chips can be implemented on 3D FPGA array into a limited space, high

density system level integration high density system level integration.

5.2 Related and future work

In the study, we demonstrated the capacity of Vocalise system with a 3D FPGA array

for 3D PDE problems.

In future, we will continue the study as following aspects.

The improvement of Vocalise system

We will improve the data communication efficiency among FPGA array through a va-

riety of approaches, such as optimizing commutation mechanism and parallel algorithm,

enhancing the computational size on each computing node (FPGA) and enhancing the

communication efficiency. We will improve stability system such data communication

among host and FPGAs, circuit configuration on a large-scale 3D FPGA array. To real-

ize a 8×4×4 FPGA array and evaluate the performance for solving 3D PDE problems in

real system.

On the other hand, in order to explore merits and faults of our approach in various

multidimensional application problems, not only PDE problems. We will use the mul-

tidimensional FPGA array to achieve a broad spectrum of applications such real time

parallel brain processes or massively parallel web applications.

Parallel brain processes applications in real time

An artificial intelligent(AI) system requires huge computation for searching processes,

recognitions, memorizing, or recalling. In previous related works, by using hw/sw com-

plex, we have developed and several circuits of brain processes to realize artificial func-
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Fig. 5.1 A robot with a 3D FPGA array(2× 3× 4 FPGAs) for brain processes

tions of voice recognition, voice synthesis, and image recognition, on hwModule V2 pro-

posed in [28], [29]. The results shown the specific processing circuits, built with FPGA,

for solving pre-processes or post-processes of brain processes such as voice recognition,

image recognition and voice recognition, can effectively improve operational speed or

reduce overload of CPU. By using the hw/sw complex architecture, real time process

applications are able to be realized. After analyzing the results for brain processes such

as voice recognition, voice synthesis and image recognition with self-organizing map,

we roughly estimated gate count of the circuits for the brain processes. These distributed

processes can be realized in real time with an FPGA array.

In next work, we will implement more software and circuits of the brain processes by

with a 3D FPGA array, to realize an AI robot which can implements real-time brain pro-

cesses in parallel(shown in Figure 5.1). Since robot is battery-powered, so the low power

and performance/watt of the system is the key to implement real-time brain operation.

The various brain processes were implemented on the complicated hybrid network. It

is a challenge that optimal mapping and routing various brain processes on a suitable

network dimensions and topologies with multidimensional FPGA array to effectively
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Fig. 5.2 The proposed implementation methodology of web application(Internet
Booster and FPGA array server.)

execute multiple brain processes in parallel.

Web applications

The high performance and low power server is desired, to execute heavy load parallel

applications from a large number clients. Recently, FPGAs were utilized to accelerating

large-scale server in some studies. For example, Microsoft used medium-end FPGAs

connected in a tours network to accelerate the Bing web search [17]. Meanwhile, in the

related pervious work, we also proposed a hardware-accelerated web application plat-

form for a power-efficient and high-performance computing system based on the FPGA

array server and the mobile FPGA card in [23][50]. A new implementation methodology

(Internet Boost) of web applications have been proposed, the concept of the proposed

methodology is shown in Figure 5.2. We realize a networked hw/sw complex system

and implemented Internet Booster to imposing it on a mobile FPGA board to acceler-

ate web application. The experiments show that a hwNet implementation is 25 times

faster than the software implementation especially for the Encoder component(a video

streaming application), and can be used in real-time applications while the software im-

plementation is not suitable for this purpose. Meanwhile, the CPU overload have been

reduced vastly.

It is also full of challenges to realize distributed web applications with networked



128 Chapter 5 Conclusions and Future Work

hw/sw complex on a multidimensional FPGA array. In next work, we will introduce a

hard-disk array to storage massive data into the FPGA array. To realize low power con-

sumption and high performance WEB application server with multidimensional FPGA

array with our method, to accelerate massive applications from lots of clients.

To demonstrate high-performance and low-power with multidimensional FPGA array

on a broad spectrum of applications. As the more FPGA chips have been required, a

lower price has become important. Our final goal is to realize an application specific

personal computer including scalable multidimensional FPGA arrays.
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