A Study on a Multidimensional
Configurable Processor Array in
Hardware and Software Complex

Architecture

Author: Jiang Li

Supervisor: Prof. Masatoshi Sekine

Department of Electrical and Electronic Engineering
Tokyo University of Agriculture and Technology

A Dissertation submitted for degree of Doctor of Engineering

March 2015

Abstract

High performance computing (HPC) usually solves complex science, engineering, and
business problems that require huge computation capabilities. The main trend HPC so-
lutions are implemented by supercomputers which are composed of huge amount of gen-
eral purpose processors as computing nodes on a network, to meet the demand of most
high performance computing applications. As the ordinary HPC systems composed of
CPUs is limited by power and heat constraints, the system had to be comprised of much
larger number of lower-power, lower-performance cores. The high-performance with
low power consumption is required. Recently, GPGPU which composes of thousands
cores is commonly used to accelerate HPC in many studies, but the actual achieved
performance changes greatly for each application relative to its peak performance. In
addition, data communication bottleneck among computing nodes also can be solved by
through various approaches such as optical communication.

FPGA (Field Programmable Gate Array) is a LSI that can implement most suitable
specific processor circuit on particular applications. With the development of FPGA
technology, many HPC applications can be accelerated by using FPGAs to deliver enor-
mous performance. The configurable HPC systems which accumulated a lot of FPGAs
are able to be widely utilized on HPC to implement high performance on low power
consumption.

We constructed a configurable processor array with multidimensional FPGA array,
that named as Virtual Object by Configurable Array of Little Scalable Engine(Vocalise).
The proposed system has following features:

1. The design and development is higfi@ency and easy-to-use for various applica-

i Abstract

tions through combining software and logic circuits.

2. The scalable multidimensional FPGA array enables implementation of 3-D inter-
connections. And the network topology of FPGAs can suits to solfferdnt dimen-
sional problems.

In general, applications implemented on system with FPGAs are considéied|ti
to develop, because hardware design knowledge of application designer and particu-
lar development tools are required. Moreover, large-scale FPGA array management is
also dificult to be implemented. In order to compensate this problem, hardware ob-
ject(hwObject) has been proposed in previous studies of our laboratory. The logic cir-
cuit as an hwObject can be utilized to implement applications like software object. The
application system which using the method calledgwcomplex. Through a hisw
complex, the application designer can easily realizes configufatioesgontrol on all
FPGA array. A lots of standardized peripheral and control circuit can be hiddenswhw
complex units, the programmers are only requires to focus on processor circuit design
for a new application, and does not require development of Therefore, the development
cycle and dfficulties reduces.

In the meantime, on almost all of previous configurable computing studies, the inter-
connection among FPGAs were only connected by 1D or 2D network. For 3D com-
putational problem, when 3D mesh grids are mapped on 2D or 1D processor network,
it certainly will arises the data communication loss to cause of system’s performance
degradation For probing and solving the problem, we implemented a multidimensional
FPGA array (maximum dimension is 3D) which composed of many small FPGA cards in
our system. Each FPGA card can interconnect using®@ixtbp, down, left, right, front,
and back) terminals. The multidimensional FPGA array are scalable design that can in-
crease and decrease on a scale freely, and it is easy to control with a host PC through
the hwsw complex method. Meanwhile, the communication network among FPGAs
is scalable according to user design. When the system operates multidimensional ap-
plications, transmissionfieciency among FPGA can be improved through user-adjusted
dimensionality and network topologies foffidirent applications.

In the study, we aims to explore merit and demerit of the approach in a real system

with a 3D FPGA array. In order to realize a 3D FPGA array on Vocalise system, we de-
veloped a solution to realize fast and flexible circuit configuration on multidimensional
FPGA array, and implemented data communications among host and FPGAs. Further-
more, to demonstrate théfectiveness of the proposed methods, we solved numerical
calculation problems: CIP method and 3D Poisson equation with Vocalise system run-
ning at 66 Mhz. We also evaluated performance, communications overhead among FP-
GAs and power consumption. As results, one FPGA can performs 1.916 GFlops on 3D
CIP method which achieves 99% peak performance (1.93 GFlops). Morec&22

3D FPGA array performs 12.46 GFlops on 3D Poisson equation problem. The maxi-
mum scale FPGA array can realizes 199.36 GFlops with consuming 435 W. Although
the utilized FPGA is a low performance FPGA in Xilinx products, it is also possible to
achieve high-speed operation at 500 MHz. THedive performance of systemx8x4
FPGASs) can be expected to realize close to 2 TFlops running at 500 Mhz. Based on the
above results, we analyzed the speciftcceency and capacity of Vocalise.

Table of Contents

Abstract

Chapter 1
1.1
1.2
1.3

Chapter 2
2.1

2.2

2.3

Chapter 3
3.1

Introduction 1
Background 2
Objectivesofthestudy
Dissertation constitutes

Previous Work - Hardware and Software Complex Architecture 11

Hwswcomplex 11
2.1.1 SwObjectand hwObject 12
212 HwNet 13
HwModuleseries 17
221 HwModuleV2 17
222 HwMoudleVS 22
Application implementation of Vocalise system 24
2.3.1 SwObjectin Vocalisesystem 25
2.3.2 HwObjectin Vocalisesystem 26
2.3.3 HwObject interface in Vocalise system 28
2.3.4 Designflow of application 35
Architecture and Implementation of Vocalise System 41
3BDFPGAarray e 41

3.1.1 Bridge VS (BVS) and ProcessVS (PVS) 43

Vi Table of Contents
3.2 Vocalise connection bus (VC Bus) network 44
3.2.1 Circuitconfiguration 44
3.2.2 Configurationcircuits 47
3.2.3 Datatransmission and FPGA array management 47
3.2.4 Implementation circuits for data communication on VC Bus 50
3.2.5 Selectorcircuitsonsubboard 54
3.2.6 Circuitsdesignof BridgeVS 56
3.3 Vocalise innerbus (VIBus) network 59
3.3.1 Telecommunication mechanisms 60
3.3.2 ImplementationofVIBus 63
3.4 Discussionof VCBusandVIBus 66
3.4.1 Parallel circuit configuration 66
3.4.2 Scalable multi-FPGAs communication 68
3.4.3 Data communicationffeciency on multidimensional in-
terconnection. 70
Chapter 4 System Evaluation 73
4.1 Applications of numerical simulation 73
4.1.1 Advection equation with CIP method 74
4.1.2 Poisson equation with Jacobi method 87
4.2 Performance evaluation and discussion 100
4.2.1 Experimental environment and comparison object 100
4.2.2 Evaluation of advection equation with CIP method 100
4.2.3 Evaluation of Poisson equation with Jacobi method . .. 105
4.2.4 Discussion of the distributed system 111
4.3 Power consumption measurement 119
Chapter 5 Conclusions and Future Work 123
5.1 Conclusions 123
5.2 Related and futurework 125

Vii

Acknowledgments 129
Bibliography 131

List of Research Achievements 137

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18

3.1
3.2
3.3

A conceptual model of hsw complex system 12
AtypicalhwNetunit. o 13

A layers model from hwObject to hwModule Board 14
FIB-Bus waveformofFIB 18
The appearance of hwModulev2 19
Inner Block circuits on hwModuleV2 20
Appearance of hwModuleVS oo 22
Sub board Appearance and block diagram 23
PE board appearance and block diagram 25
SwObeject concepton Vocalise. 26
hwObject conceptonVocalise. 27
hwObject access method on Vocalise. 29
Multiple hwObijects for applications on Vocalise system. 31
HwObject concepton hwModule. 33
HwNetimplementedon1VS. 35
Desing process of higw complex systems. 36
Desing flow of hwObject Model. 38
O interface on HwNet(VerilogHDL). 39
OverviewofVocalise 42

A HwModule VS (Left) and a (4 4 x 4 VSs) 3D FPGA array (Right) 43
SelectMap configurationelement. 44

List of Figures

3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

3.13
3.14
3.15

3.16
3.17
3.18
3.19
3.20

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Waveform of SelectMAP configuration. 45
The operation steps for configuration of a 3D FPGA array. 46
PVS address signal line format in VC Bus network. 48
The write operation between host PC and FPGA array viaVC Bus. . . 49
The read operation between host PC and FPGA array viaVC Bus. .. 49
VC Bus data communication elements. 51
VCBusMaster Module L. 53
VCBusSlave Module 54
Bridge circuit on Bridge VS. (a: Bridge Circuit on BVS’s Sub Board,

b: Bridge Circuiton BVS'sPEBoard.) 56
VC Bus and VI Bus connections among ProcessVSs 60
Simplex transmission operation between adjacent FPGAs via VI Bus. 61

Write operation signals via VIBUshalf-duplexd in distance transmis-

sionmodé&l L 62
Composition of VI Bus transmissionmodudle 64
Distance transmission among PVSsviaVIBus. 65
Distance transmission on 2D VI Bus Network 67
Different types of VI Bus network topology 69
Data communication in FPGA array withfédrent dimensional inter-
connection 70
Conceptual diagrams of the CIP method. 76
The type M CIP method for sloving a 2D advection problem 79
The process flow chart of type-M 2D CIP method 81
Block diagram of PE for CIP method 82
ThecircuitofBlockl 83
ThecircuitofBlock2 84
The circuitof Block3 85
ThecircuitofBlock4 86

Block diagram of hwNet for sloving 2D CIP method 86

Xi

4.10
4.11
4.12
4.13

4.14
4.15
4.16

4.17

4.18
4.19
4.20
4.21

4.22
4.23
4.24
4.25
4.26

4.27

4.28

4.29

5.1

The processing flow chart of main controller for/2D CIP method . 87

3D collocated grids and computational image. 88
Architecture of hwNet for 3D Poisson Equation. 90
A processing element (PE) of 3D Poisson equation (Left) and parallel
operation organization of 8 PEs(Right). 91
Data transmission and synchronization between adjacent FPGAs . . . 93
Parallel operation organizationof 192 PEs. 95
The architecture of hwNet on Xilinx Virtex-7 XC7V2000T FPGA,
3D(logical network) to 2D(layout); 1Block Processo6PEs. 96
The hwNet architecture on Xilinx Virtex-7 XC7V2000T FPGA.(1Block
Processoe 12PES) 99
Performance of 1D M-type CIPmethod 101
Performance of 2D M-type CIP method 102
Performance of 3D M-type CIP method 103
Change of circuit capacity as the dimensions of operation domain in-
CrEASES v o i e e e e 104
Performance of 1 PVS for 3D Poisson equation 106
A 2D FPGA array (82) PVSs for 3D Poisson equation. 109
A 3D FPGA array (2x2 PVSs) for 3D Poisson equation. 110
Time chart of one FPGA on 3D FPGA array inatimestep. 112

The predicted computationghieiency as computational domain size
INCIEASE« v v e e e e e e e e e 114
Time chart of one FPGA on 3D FPGA array in a time step (communi-

cation frequency at330Mhz) L. 116
A improved method to reduce communication overhead among FPGAs
with optimizatizing algorithm and data communication mechanism . . 117
Power consumptionof FPGAarray 119

A robot with a 3D FPGA array(2 3 x 4 FPGAS) for brain processes 126

Xii

List of Figures

5.2

The proposed implementation methodology of web applica-

tion(Internet Booster and FPGA array server.)

Xiii

List of Tables

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4

4.5

Global Signals 16
Bus TransactionSignals 16
Arbitration Signals L 17
hwModule V2 Specification, 20
Inner Bus of HwModlueV2 oL 21
The specificof SubBoard 24
The specificof PEBoard 24
The circuit scale of hwModulev2 51
The circuit scale of selector on Sub Board of PVS 55
The circuit scale of Bridge circuiton Sub Board of BVS 57
The circuit scale of Bridge circuiton PE Board of BVS 58
Essential VI Bus signals for telecommunication 61
Circuit configuration execution time of multi-FPGA 68
Circuitscaleof 1PEfor2DCIP 84
The circuit scale of hwNets of 2ZBD CIP method 85
Circuit scale for 3D Poisson equation 90

The circuit scale of hwNet with data communication for 3D Poisson
equation e 94
The specifications of Xilinx Virtex-7 XC7V2000T and Spartan-3
XC3S4000 FPGA e 95

Xiv List of Tables

4.6 The circuit scale of hwNet {#x2 Block processors(BPs)192PEs)

for 3D Poisson equation on a Virtex-7 XC7V2000t 97
4.7 The circuit scale of hwNet {# Block processorsl92PES) for 3D

Poisson equation on a Virtex-7 xc7v2000T FPGA 98
4.8 Desktop computer Specifications 100
4.9 Performance of 1D CIP(GFLOPS) 101
4.10 Performance of 2D CIP(GFLOPS) 102
4.11 Performance of 3D CIP(GFLOPS) 103
4.12 The required number of input variable, ALU and BRAM on a PE on

different operation domaindimensions 104
4.13 Execution time and performance for 3D Poisson Equation on 1PVS . 106
4.14 Execution time and data communication among 3D connection for 3D

Poisson Equation.(Ex Time Execution Time, Iteratioa10’) 110
4.15 Execution time and performance for 3D Poisson Equation onx2D(2

PVSs) and 3D(2x2 PVSs) FPGA arrayx : without communication

O :withcommunication) 111
4.16 The predicted computationdlieiency as computational domain size

INCreAsSEe o e e 113
4.17 The predicted computationdlieiency as frequency rati@ of commu-

nicatiofcomputation increases.(Computation domain of a PVS con-

sistsof 10x 10x 6 grids) 115
4.18 The estimated power consumption of hwNet on a Xilinx Virtex-7

XC7V2000T with Xilinx Power Estimator(XPE) 120

Chapter 1

Introduction

Almost all High Performance Computing(HPC) studies aim to realize higher peak
performance, higher bandwidth and lower latency among computing nodes and lower
power consumption through various approaches. Throughout the development process,
there has been a long-standing rivalry between hardware solutions and software so-
lutions for solving the computational problem. Hardware solutions realize the spe-
cific computing with massive parallel arithmetic logic array on hardware level such as
application-specific integrated circuits (ASIC). It is high-performance, highiency
and low power consumption, but isficult to use and very high cost. Software so-
lutions realize the computing with general-purpose processor array which implement
algorithms variable through instruction streams from operating system (software). They
are flexible and very easy-to-use, but low performance and pdiveieacy. In decades
past, software solutions became the main trend in HPC. Because of fast-developing of
software and general-purpose processor, the performance can meet the many applica-
tions requirements. But there are still no substantive changes in its disadvantages. With
the development of semiconductor technology, especially very flexible high performance
programmable logic hardware arise, like field-programmable gate arrays (FPGAS). It be-
comes possible to realize a kind of reconfigurable computing architecture which comb-
ing the flexibility of software with high performance of hardware. Thus computing ar-
chitecture not only has advantage between hardware solution and software solution, but

2 Chapter 1 Introduction

also blurs the borders between hardware solution and software solution. It could hope-
fully becomes the leading HPC area in new period over the next several decades. In this
thesis, we build a HPC system by using the reconfigurable computing approach.

1.1 Background

Today more supercomputers are designed to achieve higher performance with lower
power consumption. The conventional supercomputers which are composed of general-
processors are main trend for High Performance Computing (HPC) applications. It is
easy for general-purpose CPUs to provide an optimal solution for the broad spectrum
of HPC applications. The conventional super-computers mainly rely on increasing im-
plemented cores to achieve higher peak-performance. However, there is a demand to
the conventional supercomputers for improving the parallel-processiimgency. It
depends mainly on the overhead in synchronization or data transfer among the shared
memories or message transposing, most of the computational power has been wasted. In
many cases, the bandwidth among the parallel microprocessors causes a limitation of the
overall performance.

For example, Fujitsu K supercomputer is the fastest supercomputer in 2011, uses
68,544 2.0GHz 8-core SPARC64 VIII-fx processors packed in 672 cabinets, total of
548,352 cores, manufactured by Fujitsu with 45nm CMOS process technology. Its per-
formance is 8.162 PFlops on LINPACK benchmark[5]. However, by increasing number
of the composed processor, the power consumption and running costs were rapidly in-
creased. The highest total power consumption of Fujitsu K supercomputer was estimated
to be 9.89 MW, while the average power consumption of a Top 10 system is 4.3MW.
Thus the power consumption roughly equals to that of 10,000 houses, and its annual
running cost is 10 million US dollars. It is important to reduce the power consumption
and cost. And the power dissipation and heat has become one of the major drawbacks
to limit to achieve higher peak performance of supercomputer. Therefore, it becomes an
important trend to achieve higher computatidhioceency and lower power consumption
on most supercomputer researches in recent years [6]. The Green500 List [7] was paid

1.1 Background 3

more and more attentions, which supercomputers can be compared by performance-per-
watt.

Recent years, GPGPU(general-purpose computing on graphics process units) origi-
nally designed for computer video cards have emerged as the most powerful chip to ac-
celerating high performance computingfierent to multi-core CPU architecture which
currently ship with two or four cores, GPU architectures running thousands of threads
in parallel with hundreds of cores. There are several approaches to programming GPUs
such as NVIDIA CUDA(Compute Unified Device Architecture), AMD stream, Ope-
NACC and OpenCL ect.. Many new generation supercomputers implemented with GPG-
PUs to realized higher performance and power, such as TSUBAME-KFC [8], Tianhe-I
[9] ect..

Meanwhile, interest has arisen in augmenting these clusters with programmable logic
devices, such as Field Programmable Gate Array (FPGAs). The FPGA is a reconfig-
urable hardware. The FPGAs hardware can creates custom specific processing units
which are optimized to meet the particular requirements of each HPC application.

In many cases, FPGAs aréfective for the high-performance computing (HPC) ap-
plications, and this solution can potentially deliver enormous performance. And many
HPC applications can be accelerated by incorporating specialized processing capabilities
to handle particular tasks.

Although the number of usable gates in FPGA has increased up to several million, par-
allel applications will require even larger numbers. Because of FPGA capacity has terms
for each of the available hardware resources, including hard multipliers and BRAMs
as well as general-purpose logic elements. Depending on the application, any of the
resources can become the limiting one. For solving many practical applications, com-
putational capability of an FPGA is often not enough. For example, on our previous
research [19],The system needed at least 10 FPGAs to implement simultaneously brain
process applications such as move motion, voice recognition, image recognition, voice
synthesis.

Therefore, a scalable FPGA array structure is also interesting. The FPGA's computing
power comes from the parallel it uses to handle a problem. Special purpose processors

4 Chapter 1 Introduction

built with FPGAs are becoming popular in super computing. Many parallel computing
systems with multi-FPGAs have been developed, such as Maxwell [41], the Berkeley
Emulation Engine (BEE) [13], Cube [14], programmable active memory (PAM) [15],
and the systolic computational-memory array (SCMA) [16].

BEE3 The third-generation BEE (BEE3) comprises modules with four Virtex-5 FP-
GAs connected by ring interconnection. BEE3 is a production multi-FPGA sys-
tem with up to 64 GB of dynamic random-access memory (DRAM) and several
I/O subsystems that can be used to enable faster, larger and higher fidelity com-
puter architecture or other systems research.

Maxwell Maxwell is a 64 FPGA supercomputer with an IBM Blade Centre Cluster and
FPGA acceleration. It has 32 Blade servers, each with one Intel Xeon CPU and
two Xilinx Virtex-4 FPGAs. The CPUs are connected to the FPGAs by a standard
IBM PCI-X expansion module. The FPGAs are connected by a dedicated 2D
torus network.

Cube Cube is a massively parallel FPGA cluster that contains 512 Xilinx Spartan 3
FPGAs on 64 boards. The FPGAs on each board are connected in a chain and are
suited to pipeline and systolic architectures.

PAM The FPGA-based PAM comprises a 2D array of FPGAs, and external local-
memory behaves as memory for a host machine while processing the stored data.

SCMA The systolic computational-memory array(SCMA) is extensible over a 1D or
2D array of FPGAs connected by a mesh network. It is designed for extensi-
bility with multiple devices for high and scalable performance of floating-point
computation.

Above researches show that the multi-FPGAs HPC system can usually provide higher
utilize the peak performance of hardware, higher computation performance and better
power dficiency. For example, a SCMA system, which equips two ALTERA Stratix
Il FPGA, The implemented system, which implements 192 processing elements run-

1.1 Background 5

ning at 106MHz; it has 40.7 GFlops the peak performance in single precision com-
putation. The SCMA achieves high utilization of peak performance, about 32.8 to
35.7 GFlops performances can be implemented for the simple benchmark computations,
which consists of red black-SOR (successive over-relaxation) method, Fractional-step
method (FRAC) method, finite-fierence time-domain(FDTD) method computation.
The SCMA can provides 29 times and 10.13 times faster computation than 3.4-GHz Pen-
tium4 processor for Fractional-step method (FRAC) computation and firfferelce
time-domain(FDTD) method computation. Consequently, double- FPGA SCMA con-
sumes 90.21 W to 109.81 W for the simple benchmark computations . While software
computation with the Pentium4 processor which has the average power consumption of
125.99 W. It means that the FPGA system consumes the 69% to 87% power of software
computation with the Pentium4 processor, and requires only 2.8% to 7.0% of the total
energy for the same computations with Pentium4 processor to realize the computation
speedup.

Because of FPGA has highfieiency, low power consumption and low-heating
characteristics, but CPU and GPU performawedt are hitting the wall in recent
years. Recent studies have shown that FPGA-based application can achieve more
than 10 times better performance per watt and latency improvement compared to
CPUGPU implementation[17][18]. FPGAs can provide the heart of what's needed for
power-dficient hardware application acceleration on one chip while providing solutions
that are below the 25W per board targets. For instance, Baidu (Chinese web services
leader) presented their research at the 2014 Hot Chips Symposium,[18] , they achieved
375 GFlops dissipating less than 20W in DNN(Deep Neural Network) prediction
computation with mid-end FPGAs, the FPGAs can deliver more performance than
CPUs or GPUs .

On the other hand, although there are lots of researches which implement applications
with FPGA. But the reconfigurable computing system with FPGAs is stiiladilt to be
widely used by users in many practical HPC applications. Because offtirulty of
the hardware design and the lack of the particular design tools in building system. If
developers want to utilize the heterogeneous HPC system with FPGA, they often have to

6 Chapter 1 Introduction

study and master VHDMerilog HDL language to design the whole circuits on FPGAs.
The developing cost is very high and the hardware development cycle is very long; the
designer have to spend an amount of time to design the whole circuits implemented on
FPGA, corresponding interface circuit and driver for every specific application. There-
fore it is important to provide an easy-to-use development environment on a HPC system
with FPGAs.

A kind of hardwarg¢software complex architecture was proposed on a lot of previous
works of our laboratory.[19]-[23] The proposed system composed of host pc and a PCI
FPGA device. An object-oriented application operations were able to be divided into
Objects processed by CPU and Objects processed by FPGA on PCI device. The user
can easily utilize the objects operated by FPGA like software objects. By using this
approach, we had realized amount of accelerated application processes such as the image
recognition process, half-negation web application process etc. on previous of proposed
system. Furthermore, the application developing cost and cycle also Wectvely
reduced [20].

In order to implement a highfiéciency and easy-to-use development environment for
multi-FPGAs HPC systems. We utilize fsw complex concept to implement our HPC
system. The contrgldata communications of FPGA array and computation of applica-
tion are implemented by haw complex units. Meanwhile, the data communication cir-
cuit, control circuitamong host PC and FPGA array have been standardized and achieved
as peripheral circuits, which spend very much time and energy in the design. The hard-
ware developers only need to design the processing elements which implemented on
FPGA array for a new specific application, and focus on executibciency of circuit
and parallel &iciency among processing elements on multi-FPGAs. It enabld¥co e
tively reduce the diiculty of system utilization and development cycle.

1.2 Obijectives of the study

Many HPC applications such as partialfdrential equation (PDE) solvers [24],
climatgocean-modeling systems[25], and molecular dynamics simulations[26] use

1.2 Objectives of the study 7

Cartesian grids of dierent dimensions and structure. A distributed computing system
operates these applications with a processor array in parallel through grid processes
mapped on a computing network. However, the communication pattern might be com-
pletely diterent for diferent applications. Process mapping on the network significantly
affects application performance. Moreover, communicatifiitiency might also be
changed when operating applications witffelient network topologies.

For example, for 3D PDE problems, each Cartesian grid must perform nearest-
neighbor communication along the edges. The 3D computational domain is arranged
to each parallel computing nofbeocessor of a 1D or 2D computing network. Each
nodégprocessor communicates not only with its physically nearest neighbors; it is forced
to share network links with other communication. Such sharing results in significant
communication contention and performance loss.

While FPGAs are connected by 2D direct interconnection in some multi-FPGAS sys-
tem, such as Maxwell, PAM and SCAM. Cube comprises multiple FPGAs in 3D space;
however communication among FPGAs on each board is still achieved with a chain inter-
connection. When operating 3D numerical calculation problems, the 1D or 2D physical
layout of application processes might not match the communication characteristics of
the application to result in performance and communicatt@oiency loss. Thus, link
bandwidth often needs to be doubled and redoubled because data communication among
nodes might cause system bottleneck. With a 3D FPGA array, the communicition e
ciency is able to be improved.

For improving this issue, we propose an multidimensional FPGA array designed with
configurable circuits. We designed a reconfigurable parallel computing platform with a
multidimensional array of FPGAs. This custom computing system has been named the
“Virtual Object by @nfigurable Aray of Little Scalable Egine (Vocalise)”.

The purpose of the system is to study the feasibility of an application-specific multi-
dimensional configuration of the FPGA array. The personal HPC can be configured to
customize it for specific problems. In Vocalise, each FPGA card has six-wayCaD |
that enable implementation of 3-D interconnection, FPGA array can be configured in a
cubic form or a plane form for each specific problem, like LEGO block. By using appli-

8 Chapter 1 Introduction

cation specific and scalable multidimensional interconnection, the FPGA array is easy
to create various network topologies oftdrent dimension (1D, 2D, or 3D) and infor-
mation. For diferent applications, we can configure the physical layout of the system to
match communication patterns ofi@irent applications and optimally map processes to
the network to achieve improved communicatidfiogency.

Considering a 3D FPGA array easily achieves higher transmisfficieacy than a 1D
or 2D arrays of FPGAs for a 3D PDE problem. In our approach, the multidimensional
computational domain is arranged to each parallel computing/pamteessor which is in
a same dimensional computing network, For a 3D problem, the computation is operated
by 3D FPGA array.

The study aims to evaluate and explore the merit and demerit of the approach in a
real system. To clarify the capacity, we implemented Vocalise system with a 3D FPGA
array firstly. With swhw complex, we achieved the communicatmntrol of a 3D
FPGA array. In order to realize the highieiency circuit configuration, we developed
a flexible and high-speed circuit configuration solution in parallel for a large-scale 3D
FPGA array. Through developing a configuration circuits implemented on FPGA, bit-
stream data of circuits can b&ectively written into any connected FPGAS in parallel
with the implemented configuration circuit via the existing network connections among
multidimensional FPGAs.

In addition, we implement the computations of multidimensional CIP method on 1
FPGA, and 3D Poisson equation on 1 FPGAR2FPGAS, and 3D(®2x2 FPGAS)
FPGA array, and examined the following features in the study: 1. Performance of the
processing element implemented on FPGAs. 2. The overheads of data communication
between adjacent FPGAs on D network. 3. Power consumption and powéi-e
ciency of the FPGA array. 4. Capability of multidimensional FPGA array.

We demonstrated that the Vocalise system has enough computation power to imple-
ment HPC applications. Through analyzing above measured results, we also estimated
the computation performance and communication condition of a RHPC system which
was built with large-scale multidimensional FPGA array.

1.3 Dissertation constitutes 9

1.3 Dissertation constitutes

This Chapter introduces background and study objectives.

The remainder of the thesis is organized as follows.

Chapter 2 the previous works of our laboratory is introduced. It consists &whw
complex system hardware and software compositions. Thisvhaomplex and FPGA
board: hwModule series and implementation method for solving specific applications
with hw/sw complex architecture will be presented. Moreover, in the chapter, we also
introduce how to utilize the hisw complex on our Vocalise system, a multidimensional
FPGA array system to implement applications; the design method and throughout the
development process will be described and discussed.

Chapter 3 describes hardware architecture of Vocalise system. The system composed
of amounts of FPGAs through VC Bus network and VI Bus network. Through the two
networks, the configuration method on multidimensional FPGA array, the data transfer
mechanism and parallel computing implementations among FPGAs are realized. More-
over, the hardware design on FPGAs will be described. Discusses features of VC Bus
network and VI Bus network.

Chapter 4 demonstrates sample applications which have been realized on our system to
evaluate the system performance. Implementations of numerical simulation: Advection
Equation with CIP method and Poisson Equation with Jacobi method are described in
detail. Then, evaluates the performances of system for solving advection equation with
CIP method and Poisson equation, data communication overhead among FPGAs and
power consumption.

Chapter 5 summarizes conclusions and suggestions for future work.

11

Chapter 2

Previous Work - Hardware and

Software Complex Architecture

2.1 Hw/sw complex

The Vocalise system is based on a hardware and softwayeflwomplex that have
been previously proposed in [20] by our laboratory. Using th¢stiwmcomplex design
style, we can design a system with swObjects only at the beginning, and then replacing
the swObjects with hwObijects, the design and implementation are completed at the end.
The concept of hygw complex unit is shown in Figure 2.1. The fsw complex consists
of a Host PC which is a standard X86 architecture computer, and hwModule board which
equip numbers of FPGAs and SDRAM.

The HwModule is attached to the PCI bus of the standard Windows PC, and has some
FPGAs for the applications. The Device Driver of hwModule Board is composed ac-
cording to WDM (Windows Driver Model) specifications and operates under Windows
XP OS.

By using the hysw complex unit, execution of application can be separated by two
parts, the object processed by Host Processor is named "swObject”, the object processed
by FPGA is named "hwObiject”. The computing core on FPGA that processes hwObject

12 Chapter 2 Previous Work - Hardware and Software Complex Architecture

Main Memory Local Memory
Micro .
Processer swObject
hwObject UF GPIO
FPGAs
Host PC hwModule Board

Fig. 2.1 A conceptual model of hgw complex system

is named "hwNet".

2.1.1 SwObject and hwObject

SwObject means an object operated by software, it is an ordinary object described
by C++ Language Class. The operating data is implemented on main memory of Host
PC, and the swObject operation is implemented on member function which computed
with general purpose processor. Based on this character, we currently utilize swObject
to execute the complicated operation such as complicated analysis and logical judgment.

HwObject means an object operated by hardware; it is one kind of special object
that its operation is executed by a specific process circuit on FPGA. The hardware ob-
ject(HwObject) is implemented on FPGAs of hwModule as HwNets, and its data, func-
tions, and interface from the host are implemented in main memory. //masaomplex
unit, we can utilize a hwObiject like a software object. We can generate a correspond-
ing hwObject can when the operation is require, and also delete the hwObject when the
operation. The cooperation of the software and the hardware is easily realized. When
application has large-scale bit operations, or signal stream operations, and parallel com-
puting, these parts of application is usually suited to be operated by a application specific
processorsféciently, relative to software operated by CPU. Itis possible to achieve high
efficiency operation and reducing the whole computation time by utilizing a hwObject

2.1 Hwsw complex 13

CM Adapter

CMP A B c D

10 Unit

hwNetUnit hwNet I/O

Fig. 2.2 A typical hwNet unit

to process the bit operation, signal operation, and massive parallel computing.

Meanwhile, with the development of FPGA technology because of the reconfigurabil-
ity of FPGA, it has been widely utilized as a replacement for ASICs in the application-
specific domain, it is suitable for rapid prototyping, and quick time-to-market. In a
hw/sw complex unit, parallel computing parts usually are suited to operated by hwOb-
ject, complicated analyze operations are operated by swObject. Through the method,
system simultaneously has flexibility of software and high-speed of hardware.

The Figure 2.2 shows a typical Block diagram of hwNet on an FPGA.

2.1.2 HwNet

The hwNet is a virtual circuit. The Figure 2.2 shows a typical hNet Unit. The hwNet is
separated from peripheral circuits through corresponding Interface circuits: CM Adapter
module and hwNetO module. Through the CM Adapter module, a hwNet can accesses

14 Chapter 2 Previous Work - Hardware and Software Complex Architecture

user application
hwObject swObject

Object Manager

hwNet Driver WIN32

hwManager API

hwModule
Device Driver

etc.

Operating System
HAL BIOS
PCI-bus, hwModule, etc.

Fig. 2.3 A layers model from hwObject to hwModule Board

SDRAM on Board. Through hwNet® module, the hwNet can receive signals from host
PC, so that users also directly control the hwNet from the software with hwObject. The
hwNet is also possible to connect to external devices through GPIO (General Purpose
Input Output Interface).

The Figure 2.3 shows a layer model from hwObject to hwModule Board. In tfighw
complex unit, the virtual hardware circuit that is being configured on the FPGA is in-
stalled as library in an existing software development environment as hwObject. Though
object manager (ObjectManager) enables to host PC can access and control the hwMod-
ule. By using the ObjectManager, the circuit (HwNet) on hwModule is easily accessed
from the standard €+ compiler and can be used as an object in applications.

For the applications, the hwObiject is just an object same as swObject. Thus enabling
composing, computing and deleting at any time, which also interlocks the writing, com-
puting, and the users can replace hwNet on the FPGA according the requirement at any
time. The hwsw complex architecture enables software programmer to reutilize the

2.1 Hwsw complex 15

prepared hwObject and thus implementing/$ww complex system as an extension of
Object-Orientated Programming.

As shown in Figure 2.1, the controlling the peripheral circuits, communication be-
tween swObject, the corresponding interface module by concealing the process regard-
ing dynamic composition of hwNet. Consequently, the developed hwNet operates on
FPGA boards. Since the control circuit of PCI bus and SDRAM; which overloads the
development, is being concealed at the external of hwNet, hardware designer need only
to concentrate on the designing of hwNet. Through the method as such explained above,
we are making attempt to realize the virtual circuit for hwNet and development cost
reduction.

Using the hyisw complex design method, we can design a system that temporarily in-
cludes swObjects only at the beginning of the design process, then replace the swObjects
with hwObjects when completing hardware design and implementation.

From the viewpoint of reutilizing hwObject, the programmer don’t need to re-
architecture the whole circuit every time on corresponding FPGA board, just redesign
processing core as a hwNet. We established a standard bus inner FPGA named FIB
(FPGA Internal Bus) and connect hwNets via FIB.

m FPGA Internal Bus(FIB) When an FPGA implements multiple Modules or hwNets
has been implemented FPGA, the communications between the modules or hwNets usu-
ally have been achieved by lots of master and slave. Itis necessary to estaliisieate
bus standard to meet the communication demands. We proposed a standard bus: FPGA
Internal Bus(FIB) to users reduce the developmetfiiadilty and cycle.

FIB is a typical MastgSlave transaction mechanism; and FIB consists of following
signals.
Global signals The Global signals of FIB composed of CLK signal and nRst sig-
nal(shown in Table 2.1). CLK signal: provide clock signal for transaction, and rising
edges of signals isfiective. nRst signals: Asynchronous reset signal for system; nega-
tive logic operation is #ective.

Data line divides Read Data{v and Write Data.BE bus transaction mode signal.

16 Chapter 2 Previous Work - Hardware and Software Complex Architecture

Table 2.1 Global Signals

Signals| Source | Description
CLK System| system clock signal
NRST | System| For bus initialization

WE Wirte/Read signalSEL send from master, declare connection status between slaves
MRDY , SRDY declare status of data transfer.

Arbitration signals Masters transfer REQ signal to arbiter to gain access authorization
of bus. The bit-width of SSA signal can be changing with the number of slaves. When
the circuit has multiple masters and salvers, the Arbiter Module arbitrates one of masters
to gain access authorization of bus, and send signals to the specified slave. Likewise,
the Arbiter Module also is able to achieve management of signals from slaves, and send
signals to the corresponding master.

Transfer mechanism When a master transfers data to a slave that there are multiple
masters on an FPGA, following operations need to be completed. The Figure 2.4 shows
The waveform in FIB (FPGA inner Bus). Firstly, the master module send a REQ signals
to the arbiter to gain access privilege of bus. When has multiple slave, the master outputs
a SSA signal to specify a slave module at the same time. When receiving a ACK signal,
the master send address signal and SEL signal. See from bus line, when SEL signal

Table 2.2 Bus Transaction Signals

Signals Source| Description
A[31:0] Master | address signals .DWORD (32 [bit]) addressing.
DW/[31:0] | Master | Writing Data signals
DR[31:0] | Slave | Reading Data signals
BE[31:0] | Master| Byte enabling

WE Master | Judge WritgRead operation
SEL Master | Transaction from master
MRDY Master | Transaction Ready signal from master

SRDY Slave | Transaction Ready signal from slave

2.2 HwModule series 17

Table 2.3 Arbitration Signals

Signals| Source | Description

SSA Master | Specified signal for slave

REQ Master | Request signal for utilizing Bus
ACK Arbiter | acknowledge signals for utilizing Bu

[2)

becomes high means there are data transfers via Bus line. When master and slave receive
read signals(MRDY and SRDY) from each other, master send data to slave. The SEL
signal is de-asserted when the data communication has been completed, and then REQ
signal is de-asserted, the master release the bus permission. In our design, FIB can
achieve single transmission and burst transmission.

2.2 HwModule series

2.2.1 HwModule V2

The hwModule V2 is a PCI device, which implements FPGAs (reconfigurable LSI)
and independent memories. This can be easily mounted to a general-purpose PC, and is
used as a platform for the virtual circuit.

In Vocalise system, the “hwModule V2" FPGA board is mainly a device that connects
extensible multi-FPGAs, i. e., an scalable array of FPGAs. This PCI device is used to
configure application specific circuits and implement data communication between the
host PC and the extensible multi-FPGAs. Use of thgslmmcomplex reduces devel-
opment cycle time and designfiiculties of complex applications. The appearance of
hwModule V2 is shown in the Figure 2.5.

The Table 2.4 lists the specifications of hwModule V2 (shown in Figure 2.2). The
board implements 4 FPGAs. There is one FPGA to implement a bridge circuit to achieve
communications between host PC and other 3 FPGAs, and other 3 FPGAs are utilized
to implement hwNet (virtual circuit) for the users. It is also equipped with four (16MB)
SDRAM to store the process data as the Local Memory. In addition, the hwModule

18 Chapter 2 Previous Work - Hardware and Software Complex Architecture

T 12 T3 T4 T5 16 T7

A | SFaaress 14 |

oy [et T X

o S

we L <X rw X

SEL v /T N
woy :f—/_%;: !
SRY 4 i o - Delivery

1 T T complete

T T2 T3 T4 T5 T6 T7
1 1 1 1 [1

| >< Addresls1 >< |
| I>< Data 1 I>< |
[— I
| X single R X |
_:_l/—i_l_l_

T
) 1 1 ‘ I
Master wait Delivery Slave wait Delivery

complete complete
FIB Standard Waveform when Master waiting FIB Standard Waveform when slave waiting

Fig. 2.4 FIB-Bus waveform of FIB

V2 implements three General Purpose Interfaces (GPIF) to achieve connections with
external devices.
The Figure2.6 shows the circuits in HwModule V2.

m Inner bus line Inner bus lines and circuits of HwModule V2 are shown in Table
2.5. LM-Bus: The Data line for local memory, implement to transfer large amounts of
data between LM and user-FPGA. HN-Bus: the control command lines for User-FPGA,
implement management of users-FPGA. Configuration-Bus achieve to configure circuits
of hwNet on User-FPGAs. And PCI-Bus is implemented to achieve communication
between PCI-FPGA and host PC.

2.2 HwModule series 19

LM-Bus _GPIF1.2,3(40[Lines]x3) Select Map

e W o
/ —

1

\\\ Host PCl-Bus 'Local Memory(16MBx4) ' HN-Bus

Fig. 2.5 The appearance of hwModuleV2

m PCI-FPGA We used 1 FPGA(XC3S1000) as PCI-FPGA to achieve communication
and controls from host PC, and circuit configurations on hwModule V2.

The FPGA implements 4 circuits that consist of PCI Controller, LM-Bus Bridge,
hwNet /O Bridge, User-FPGA Configurator. PCI Controller achieve communication
based on PCI signal standard with Host PC. Host PC enable to access the hwModule V2
with the PCI Controller. LM-Bus Bridge: achieve data communication between Local
Memory and PCI-FPGA. When multi-FPGA are implemented, the LM-Bus is shared by
all FPGA. HwNetlOBridge is the controller circuit for HN-Bus. User-FPGA configura-
tor implemented other circuits of other 3 FPGAs. Through PCI-FPGA, users can easily

20 Chapter 2 Previous Work - Hardware and Software Complex Architecture

Table 2.4 hwModule V2 Specification

Implemented FPGA Purpose
Xilinx Spartan3 XC3S100& 1 | For PCI control circuit (PCI FPGA
Xilinx Spartan3 XC3S100& 4 For hwNet circuit(User FPGA)

Implemented SDRAM| Max Frequency Purpose
16[MB] x 1 133[MHZz] For Configuration Cache Memory
16[MB] x 4 133[MHZ] For Local Memory
Implemented Connectors Pin
GPIF Data(40 Pin), 3 Ports , total 120 Pin
LVDS Data(16 pin), 3 Ports, total 48 pin

implement circuit configuration of other 3FPGAs on hwModule V2 by host PC, and data

A
» HostPC
hwModuleV2
HN-Bus GPIF
PCI-FPGA
hwNet h\;N:t 11O
1/0 Bridge nage
o hw! nit |
PCI User-FPGA| | § AN
PCI Bus Controler, Conﬁgurator'%l' Adai:ter
e M| 1)
LM-Bus S GPIE
Bridge a hWNet p—— Bﬂdge
F 9 E
w N
=
= CM Adapter
3
LM-Bus| LM-Bus
Bridge
e tcerEPG A

Fig. 2.6 Inner Block circuits on hwModule V2

2.2 HwModule series 21

Table 2.5 Inner Bus of HwModlue V2

Bus Type Description

LM-Bus For Data stream

HN-Bus For communication of hwNets
Configuration-Bus| For Configurations of hwNet in user FPGA

communication with hwModule V2.

m User-FPGA The other 3 FPGA is named User-FPGA. The user can implement the
various hwNets(virtual circuits) on these 3 User-FPGAs accordingfferdnt require-
ments.

The implemented circuits mainly consist of 4 type:LM-Bus BriddevNet /O
Bridge'l hwNet Unitl GPIF Bridge. The hwNetO Bridge acheive data communication
and control signals from host PC. The hwNetUnit consists of hwNet(virtual circuits),
CMAdapter(hwNet connect to LM-Bus Bridge), hwN@Il Adapter (hwNet connect to
hwNet O Bridge). Through the User-FPGA, we can not only achieve the application
computing on hwModule V2, but also access lots of external computing device to
elastically expand computing power of the whole system.

m Local Memoryd SDRAM) The hwModuleV2 equips 4 SDRAM(16MB) to store

the computing results of hwNets. Because of memory host PC is named as Main Mem-
ory. Correspondingly these SDRAMs are named Local Memory. The available space of
Local Memory by users are total 64 MB on a hwModule V2.

m General purpose interfaces (GPIF) The hwModule V2 equips 3 GPIF connectors.
Each GPIF corresponding a user FPGA, and is 50 pin connector, data pin 40 pin, total
120 pin on 3 GPIFs.

Through the GPIFs, the HwModule V2 can accesses extern FPGA devices , imple-
ments to control the hwNets or communicate data. The computing power of system is
extendible by connected extern FPGAs.

22 Chapter 2 Previous Work - Hardware and Software Complex Architecture

Fig. 2.7 Appearance of hwModule VS

2.2.2 HwMoudle VS

The hwModule V2 can connect numbers of small FPGA boards to extend systems
computing performance. The small FPGA boards, nhamed “hwModule VS”.(shown in
Figure 2.7)

The hwMoudle VS board comprises a single Sub Board and a single Processing Ele-
ment (PE) Board. Figure shows a PE Board of hwMoudle VS.

Figure 2.8 shows a Sub Board of hwMoudle VS.

The Sub Board is equipped with one Xilinx Spartan-3 XC3S700A FPGA. The Sub
Board equips 4 GPIF 10. Through front and back GPIF IOs, a sub Board can connect
two other sub Board. And other GPIF connects its own PE Board. The Table 2.6 has
shown the specific of Sub Board. In our system, sub board has mainly two functions.

1.) Sub Board supports the implementation of special circuits into its own PE board

2.2 HwModule series 23

/O(Back)

1O 1

0S-A001-0260

XC3S700A

For PE Board§
R J{@ J——

[/O(Front)

Fig. 2.8 Sub board Appearance and block diagram

or the next Sub Board.

2.) Sub Board also transfers computing data and command signals between the host
PC and the PE Board. For many applications, the Sub Board as selector circuit to be
implemented on FPGA of Sub Board, Therefore Sub Board is not equipped with any
local memory such as SDR SDRAM.

Figure 2.9 shows a PE Board of hwMoudle VS.

A PE Board equips one Xilinx Spartan-3 XC3S4000 FPGA. And the PE Board also
equips two 32bit-16MB SDR SDRAM as Local Memory on Board. The PE board has
eight-way General Purpose Interface (GPIE) ports. There are two GPIFOs to be
used to connect to sub Board, and other six-way GRUs lare used to connect with
adjacent PE Board; thus, it is possible to achieve three dimensional data transfer in the
same time. Based on the characteristic, the distributed system is easily extensible to
1D, 2D, or 3D FPGA arrays. It is primarily used to implement the custom arithmetic
circuit for different types of applications. The computational mesh is homogeneously
partitioned into each hwModule VS.

24 Chapter 2 Previous Work - Hardware and Software Complex Architecture

Table 2.6 The specific of Sub Board

LSl
FPGA Xilinx Spartan3 XC3S700A
Connector Description
FronyBack connection 1 Port: 78-pin)
between Sub Board FronyBack Total: 156-pin
SIMDATA line Connector| Data line: 32-pin, Control line: 26-pin, Total 58-pin
Configuration Connector 23-pin

2.3 Application implementation of Vocalise system

In previous sections, we mainly described the concept of thisviwomplex. In
practical applications, we utilize hgw complex units to implement the computations
of application, circuit configuration and accgsmtrol on FPGA array. In this section,
we will introduce how to implement applications on Vocalise system by usingviaw
complex unit. We illustrate the concepts and detail design of swObject and hwObject on
Vocalise system, process flow, design flow of hwObject model.

Table 2.7 The specific of PE Board

LSl
FPGA Xilinx Spartan3 XC3S4000

SDRAM 16[MB]x2
Connection Description

Connector DATA line: 32-pin, Control line 17-pin

between CLK lin :1-pin for each Port, Total: 50-pin

PE Boards 6 Ports(UpDownO FronyBackl Left/Right) Total:300-pin

SIMDATA Connector Data (32-pin) , Control (26-pin) ,Total 58-pin
Configuration Connecto 23 pin

2.3 Application implementation of Vocalise system 25

I/O(Back
= - | ()]
; - SDRAM 5 _
o c 5
Py = |-
< XC3S4000 S |5
= g =
L ForSubBoard 2 || |

,,,,,,,,,,,,,, /o —
I/O(Front)

Fig. 2.9 PE board appearance and block diagram

2.3.1 SwObject in Vocalise system

The swObjects which are a ordinary object described by Canguage Class. Com-
puting data is implemented on main memory of Host PC, and the swObject’s operation
is implemented on member function which computed with Host PC’s general purpose
processor. The essence of a swObject is achieved by allocating memory area on main
memory of Host PC. And swObject operations are implemented by member functions
operated by CPU. These member functions are subroutines of loaded program in main
memory. When having functions calls, CPU achieves decode and operate the subrou-
tine from code area. Actually, the operations of swObject are same to ordinary software
operations.

The conceptual swObject on Vocalise system is shown in Figure 2.10.

When Vocalise system implements most HPC applications, the main processes of ap-
plications are normally operated by hwObject, the swObjects are usually to operate pre-
process or post-process of application.

Pre-process: The swObject decomposes computational data domain into many
sub-computational domain in main memory as requirements of application. Each
sub-computational data domain corresponds to a local memory on hw Module VS. And
swObject can accesses the hwObject to map sub-computational data in main memory to

26 Chapter 2 Previous Work - Hardware and Software Complex Architecture

Host PC

General
- Processor
(CPU)
Data Area
FPGA FPGA .
Host PC |
(0,0) (0,1) SwObject Image 0s mage
FPGA FPGA

(1,0) (1,1)

Fig. 2.10 SwObeject concept on Vocalise.

each local memory on the designated VS.

Post-process: When FPGA array completes the calculations, the swObject accesses a
hwObiject to read the result data on each VS, the result data is mapped on data area in
main memory of Host PC. Then the swObject outputs the result data to display program

or others post-processing programs.

2.3.2 HwODbject in Vocalise system

As well as swObiject’s operation, the hwObject’s operation also can be implemented
through calling member functions of hwObject. The member function calling on swOb-
ject is implemented by ordinary subroutine which processed by CPU. While the member
function calling on hwObject is just a starting procedure to hwNet. The process can be

2.3 Application implementation of Vocalise system 27

\
HwModule
VS

HwNet
Controller e
VC B A
- us
PCI
FPGA
User
-] FPGA
Operator Controller
I \ (VC Bus
Data /)
Memeber|

SwObject HwObject

Fig. 2.11 hwObject concept on Vocalise.

seen as that a hwNet receives a start signal from host, then starts up the operations to
access LM and compute application which are controlled by its own state machine.

The Figure 2.11 shows the data process flow on Volcailse system. Data communica-
tion among host and FPGA array are implemented on following two steps.

1st step, the data in main memory are send to local memory on hwModule V2 by
using IntputOuptut port of hwObjects on host via PCI Bus.

2nd step, a controller circuit as a hwNet, which is configured on hwModule V2, re-
ceives commands from host and switches to the corresponding execution status for data
communication. Then, the data commutations among hwModule V2 and VSs are imple-
mented on hardware layer, the controller circuit on V2 access the data on local memory

28 Chapter 2 Previous Work - Hardware and Software Complex Architecture

on hwModule V2, and communicate datammand with hwNet on VSs).

Through above two steps operations, data in main memory can be physically mapped
on distributed local memories on FPGA array. When host starts to operate applications,
it sends start commands to hwModule V2 via PCI Bus. Then hwNets on hwModule V2
decodes the commands and outputs start signals to each VS on FPGA array on VC Bus
protocol. The hwNet on hwModule VS receives the starting signal, then implemented
process circuit works on operation state to complete computation controlled by its state
machine. The VS send a end signals to V2 when completed computation via VC Bus.
Until hwModule V2 received all end signal from FPGA array, a end signal is send to
inform Host via PCI Bus.

2.3.3 HwODbject interface in Vocalise system

HwObject interface is hwObject's clas®bject on Host PC. It is allocated on main
memory of host PC. Software programs can call hwObject classtin l@nguage to
implement to access the substance of hwobject: hwNet on hwModule. Therefore, this
class of hwobject is a interface of hwObject on hwModule(hwNet).

On Vocalise system, the hwObject interface assess method is show in Figure 2.12. To
implement circuits configuration, access, control and application operation on Vocalise
system, there are two layers of hwObject concept on system (shown in Figure 2.12).

m VocaliseConrtoLhwObject This is an hwObject for solving control on \Vo-
calise. There, we designed a Vocalise controller module circuit as a hwNet imple-
mented on hwModule V2. Thus hwNet correspond to a hwObject model named as
VocaliseConrtolLhwOb ject In other words, the management functions of FPGA array
as applications are implemented WpcaliseConrtoLhwObject The yellow area in
Figure 2.12 iwODb jectVocaliseConrtol model.

There, functions oY/ ocaliseConrtol.hwOb jectcall hwNetDriver to execute requests
of instruction and acquisitions of status. On FPGA side, the hwNetDrivgQaspace
registers forms, can generates formats for appropriate command, requests to access
hwNet. HwNetManger can grasps the status of Object hwModules, avoids access con-

2.3 Application implementation of Vocalise system

29

Applicaiton

hwObijects

Application
HwObject
Interface_1

Application
HwObject
Interface_2

Application
HwObject
Interface_3

[Vocalise HwNetObjectManager }

/
VocaliseControl
Vocalisefontro wObject_Interface
j T

hwObiject

‘ [hwNetDriver]
A j E
‘ Commemdv Stauts Data

BN

\

‘ [HwNet Manager

B S -

‘ [HwModuleDriver]

Application
thbjects VCBus Access
vs1 ¥ vs2 ¥ vsa ¥
User FPGA User FPGA User FPGA

Fig. 2.12 hwObject access method on Vocalise.

30 Chapter 2 Previous Work - Hardware and Software Complex Architecture

flict among multiple hwObject. By using hwNetMnager, request of hwNetDriver can
be executed to hwModule V2 through hwModuleDriver via PCI Bus . Once Vocalise
controller circuit receive request of commaysdatus from host, the circuit will start up

to corresponding work mode. Then Vocalise controller executes circuit configuration,
datgcommangstatus communication with FPGA array on VC Bus protocol, and these
operations are controlled by hardware state machine. It means that the data communica-
tion/control among hwModule V2 and FPGA array are hidden on hardware level. When
software users want to implement acg¢gesatrol with each hwNet on FPGA array, they

just call functions oV ocaliseConrtoLhwOb ject,and don’t need to learn communica-

tion mechanism on hardware level.

m ApplicationhwObject See from the application calculation level, the virtual cir-
cuits for solving application computation are implemented on hwNets(Application pro-
cessing circuits) on VSs. Each virtual circuit hwNet on FPGA array corresponds to an
ApplicationhwOb ject The developers can utilize hwNetObjectManagement to manage
multiple ApplicationhwOb ject Through call functions o¥ ocaliseConrtol.hwOb ject
model,ApplicationhwOb jectinter facecan easily implements to accgsmtrol corre-
sponding hwNet(applications circuits) and local memory on each VS. The amounts of
hwNet(processing circuits) on VS aNecaliseConrtol.LhwOb jectmodel form multiple
ApplicationhwObjects

While software users just require to cAlpplicationhwOb jects, the calculation of
application will be operated by corresponding hwNets on FPGA array.

For example, the Figure 2.13 shows application hwOjbects for solving Poisson equa-
tion problem with a 2<x 2 VSs FPGA array. There, each hwObject has ID uniquely
corresponding to a hwNet(Process circuit) on VS.

Here, HwObject(0,0,0) to VS(0,0,0), hwObject(0,0,1) to VS(0,0,1),hwObject(0,1,0)
to VS(0,1,0), hwObject(0,1,1) to VS(0,1,1). For solving Poisson equation, boundary
data among adjacent computing nodes needs to be exchanged at each iteration.

Because development cycle of hwNet often is much longer than software developing
cycle. To reduce developmentiiltulty and cost, the design and verification are realized

2.3 Application implementation of Vocalise system 31

Software/
HwObject
Level

. /\

Release mode

VS < >
0,0,0 0,1,0
() () Hardware/
y y HwNet
Level
| 4 y

VS SR VS v
0,0,1) (0,1,1)

Fig. 2.13 Multiple hwObijects for applications on Vocalise system.

on two stages: debug mode stage and release mode stage. On debug mode stage, the data
communication among computing nodes are realized by accesses among corresponding
adjacent hwObjects. The hardware developers only require to design main processing
circuits on hwNet, and do not redesign the development of data communications, which
occupied a great deal of time on the hardware design, among adjacent VSs on debug
mode. The host reads result data on each VS to main memory at each iteration, then
implements boundary data communication among hwObjects in main memory. The
exchanged data was written back to local memory of corresponding VS. Through this
method, application debugging can be implemented on hwObject level(software level),

32 Chapter 2 Previous Work - Hardware and Software Complex Architecture

to a certain extent, the hardware’s debugging works can be realized as simple as debug-
ging software to a certain extent. The programmers are able to monitor the execution
of FPGA, stop it, restart it, set breakpoints etc, not just for using inserts logic analyzer
tools, such as Xilinx ChipScope that allows you to probe the internal signals of your de-
sign inside an FPGA. While your design is running on the FPGA, you can trigger when
certain events take place and view any of your design’s internal signals.

Since computations on debug mode need to frequent exchanges data between host
and FPGA array, the executioffieiency is very low, the bandwidth of PCI Bus and VC
Bus become the bottlenecks. In practical application, the data communications among
computing nodes are implemented on hwNet on each VS on release mode. On the devel-
opment stage, the designers completed the all functions of hwNet. And the debugging of
application implemented on hwNet level(hardware level), the debug method is same to
ordinary hardware design methods by using inserts logic analyzer tools, such as Xilinx
ChipScope.

The Figure 2.14 shows a header of hwObject class on one of a apppication hwNets on
aVs.

The implementation of hwObject’s class consists of following factors.

1) Implementation of hwNet: implementation virtual circuits on hwModule V2,
Bridge VS and Process VS. The member funct®mplelogicis used to configure
a controller hwNet on hwModule V2, and member functidfriteExecis used to
implement a hwNet(process circuit) on designated VS. When hwNets are download
on VS, the initialization of hwNet can be achieved by the member fundtidi and
ResetVS

2)Write input data on Local memory, and read output data when completed the
computation. By using member functions\tfriteVS S DRAMandReadVS S DRAM
the host can achieve wrjtead local memory on any VS. The member functions of
StartVSWBRAMnNdS tartVS RBRAMan implement directly writeead the BRAMs
on any selected hwNet on FPGA arrajxecWriteand ExecReadmplements to
write/read initial dataresults data to local memory on selected VS for application of
Poisson equation.

2.3 Application implementation of Vocalise system

33

2 [l#ifndef SIMPLELCGIC1

3 #define SIMPLELOGICI |

4

5 #include <VirtualChject.h>

6

7 nusing namespace CbiMan:

9
10 class Simplelogic : public VirtualCbject
11 BN
12 public:

13 Simplelogic () : /0 AuAbahA

14 /7 PIEEEIRE

15 Simplelogic{string hwModuleBoard,int iFpgalNo,int ihwHNetHo) ;
; LS L e

16 7 (EEIEERL

17 Simplelogic (string hwNetBase) ;

~Simplelogic() ff im

[SET- Rl

public:
// Initialization
bool INIT():
bool ResetV5():
// Configuration V3

B T, BT P

// VCBus Data Communication
bool WriteVSCTRL(BYTE ADRS, BYTE SELECT, int DATA): //=send control command
int ReadVSS5TTS(BYTE ADRS, BYTE SELECT); //read V5's status

oo

2
2
2
2
2
2
2
2
2
2

// for execution processing (computation)

bool StartVSPE_Debug(int STAPE); // for debug mode
bool StartVSPE_ Release(int STAPE) // for release mode

// VIBus Data Communication

bool ExecVIBus Debug (BYTE AddrTx, BYTE AddrRx); // for debug mode

EE private:

40 bool m_bLMAllocFlg;
41

42

) Y

44

45

46 “#endif

Fig. 2.14 HwObject concept on hwModule.

kool WriteExec(char* cBitFileName, int Writemode, unsigned int &Cutput, BYTE NumlfVs) ;

kool WriteVSSDRAM(BYTE VSADRS, int SDRAMADRS, int ByteNum, int* Data); //write data V5's SDRAM
kool ReadVSSDRAM(BYTE VSADRS, int SDRAMADRS, int ByteNum, int* Data); //read data V5's SDREM

34 Chapter 2 Previous Work - Hardware and Software Complex Architecture

3) ControJstatus of VS’s hwNet. The member functions WriteVS CTRLand
ReadVS STT $nplement to contrgstatus on selected VS’s hwNet. For application,
the member function db tartVS Plgebugare used on debug mode to start the execution
of hwNets. AndExecVIBusDebug function implements the data communication
among VS with hwObject on debug mode. On debug mode, when completed each
iteration, the hwNet executes a stall state, and send result data in BRAM to host. Until
the receive exchanged data from host, the hwNet execute the next iteration operation. In
practice, the member function &ftartVS Plreleases used to start up computation of
Poisson equation on FPGA array on release mode. On release mode, all the operation
and data communication among VSs are executed by state machine on hardware layer.
When operations on VSs are completed, the hwModule V2 received all end signals from
hwNet.

hwNet on hwMoudel VS

Since our system can be applied to numerical simulations based on fifiéeedce
methods. Application circuits(Processing Circuits) are implemented on VSs, as shown
in Figure 2.15. The hwNet accesses local memory (32 bit-16 MB SDRAM) via an
FPGA Inner Bus (FIB). The FIB comprises a 32-bit addf@at bus and control signals
(SEL, MRDY, SRDY, and WR). The application program can manage up to seven hwNet
modules via FIB with hwNet manager module. This makes it easy to control distributed
and parallel computing with VSs.

When an FPGA array is used to computfatient applications, users only need to re-
design the hwNet and hwObject interface, which encapsulate complex FPGA-software
interface protocols. All standard peripheral modules are reusabldferatit applica-
tions, which decreases the number of development steps.

These simulations numerically solve the PDESs to model physics-based numerical sim-
ulations. By utilizing scalable multidimensional designffelient spatial domain prob-
lems can be solved by structuring FPGAs dfelient scale. Depending on calculation
requirements, the scale of an FPGA array can be changed to corresporitérgndidi-
mensionalities and computational scales. For example, we can construct a 2D scalable

2.3 Application implementation of Vocalise system 35

Host PC PVS
SDRAM Controller]
CPU
i; G
hwNet G
Main Mem P |FIB W. e. FIB
| |BusA | (Application BusB P
F Circuit) I
swObject F
% hwNet
Manager
hwObject
Interface
~to Host PC VC Bus

Fig. 2.15 HwNet implemented on 1 VS.

FPGA array for 2D problems or a scalable 3D FPGA array for 3D simulations. The de-
sign of the scalable FPGA array enabl&getive numerical simulation for a particular
computational domain.

2.3.4 Design flow of application

The Figure 2.16.a shwos design folw of application on Vocalise system.

On our design method, the development process flow has following design steps.

1st step design; hisw complex architecture are considered in the initial stage of appli-
cation design. The executions of the application are divided into multiple swObjects and
hwObijects in parallel. There, the hwObjects without hwNet are actually also operated
by CPU.

2nd step design; the developers implement applications on debug mode. The hwOb-
ject interfaces are designed ir-&€ language, and the main processing circuits of hwNet

36 Chapter 2 Previous Work - Hardware and Software Complex Architecture

Object Ot?jeclt
Application Application

HwObject
swObject | | (Without
HwNet)

Peripheral Interface

hardware
Acceleration
process

|Software design
DeBug Mod‘e ©C

Hardware design
(HDL)

HwNet
Without
Data com

With
Data com

Release Mode

Sw/hw
Synchronous design

(a) Desgin process on (b) Desgin process on
Vocalise method Conventional co-design

Fig. 2.16 Desing process of lisw complex systems.

are completed on hardware RTL design level. On this step, the data communications
among hwNets can be realized by software, and execution of hwNet can be implemented
to logging an monitoring on software debugging environment. Therefore, it means that
debugging of hwNet can be implemented on hwObiject level(software).

3rd step design; the developer complete the final design and verification on release
mode, when completed debugging on 3rd step and all function of hwNet on hardware
register-transfer level (RTL) design level. On the step, the developer realize the hwNet
design and debugging by using inserts logic analyzer tools, such as Xilinx ChipScope.

Compared to our approach with a commorn/$wcooperative design(co-desgin) flow
on reconfigurable computing systems(shown in Figure 2.16).

In a common hyisw co-design technology, the applications are realized by software
in the initial design stage. Then, the developer analyzes the multiple software objects

2.3 Application implementation of Vocalise system 37

in parallel, the processing parts on higher computation overhead of CPU are replaced
with optimized specific processing circuits on FPGAs. And developers enquires to de-
sign corresponding interface circuits and driver to match the specific processing circuits
on FPGAs. For each particular application, peripheral interface circuits and drivers are
different. Once solving a new application, the design process need to return to initial
steps on hardware design and software design. The interface circuits and driver need to
redesign to match the new application specific processing circuits, which will occupy
much time and cost on the process of development. And developers implements soft-
warghardware synthesis design on final step of development.

While using our method, all peripheral interface circuits and data communication pro-
tocols among host and FPGA array were standardized, and gaotress (driver) of
FPGA array were hidden in h'aw complex units. The hwObject interface and hwNet
for applications only are required to redesign when change to solve new applications. It
is able to &ectively simple design and reduce the amount of redesign and the turnaround
time.

The developers also can realize hardware design and debugging steps by steps on
debug mode and release mode. don’t need to return to initial design stage. Development
difficulty on debugging of software and hardware can be reduced.

Meanwhile, on the common co-design method, the developers need spend much time
on cooperative works among software and hardware on final design step. But on our
approach, the parallel operations among objects are implemented on initial steps(1lst
step). In the following steps, the software developers can focuses on exedhiti@emey
of software design, and hardware developers also can concentrate on architecture design
on hardware design and debug steps. The overall development costs and development
cycle can be reduced through these improvements.

Design flow of hwObject

The Figure 2.17 shows design flow of hwObject models for solving hwObject- ori-
ented applications.

SwObject and hwObject interface are developed on a integrated software design envi-

38 Chapter 2 Previous Work - Hardware and Software Complex Architecture

HwObject-oriented Application

HardObject
Goftware ObJe@ thawor Mod(;

Intergrated
desgin
environment

High-level
synthesis

synthesis
Obejct Manager HwObject
bit-stream
/ VS VS VS \
hwNet hwNet hwNet
VS VS VS
hwNet hwNet hwNet

Fig. 2.17 Desing flow of hwObject Model.

2.3 Application implementation of Vocalise system 39

Fmodunle HwNet Poisson3D(

2 // Port for read/write Local Memory

oA LM, iD LM , oD LM, oBE_LM, oWE_LM, oREQ LM, iACK A, iMODE_LM,

// Port for read/write via VC Bus

ok VC, iD VC , oD VC, oBE_VC, oWE_VC, oREQ VC, iACK VC, iMODE_VC,

// Port for read/write via VIBus

oA VI_U, iD VI_U , oD _VI_U, oBE VI_U, oWE_VI_U, oREQ VI U, iACK VI_U, iMODE VI _U,
oR VI_D, iD VI D , oD VI_D, oBE VI_D, oWE VI D, oREQ VI D, iACK VI D, iMODE VI D,
ok VI_F, iD VI_F , oD VI_F, oBE VI_F, oWE_VI_F, oREQ VI _F, iACK VI_F, iMODE VI _F,
oA VI_B, iD VI_B , oD _VI_B, oBE VI_B, oWE_VI_B, oREQ_VI_B, iRCK VI_B, iMODE VI_B,
11 oR VI_L, iD VI_L , oD VI_L, oBE VI_L, oWE VI L, oREQ VI L, iACK VI L, iMODE VI L,
12 ok VIR, iD VI R , oD VI R, oBE VI_R, oWE VI R, oREQ VI R, iACK VI R, iMODE VI R, //V
3 // Synchronizing signal of VI Bus

oEnd U, oEnd D, oEnd F,o0End B,0End L,oEnd R,

iEnd U, iEnd D,iEnd_F,iEnd B,iEnd L,iEnd R,

//Control

I 1iCTRLA, iCTRLB, iCTRLC, iCTRLD,

/15 t,at,'_l#

[#1:0]10STTSL, oSTTSB, oSTTSC, oSTTSD,

20 f/aystem line

21 iCLE, inRST

22)

Fig. 2.18 JO interface on HwNet(Verilog HDL).

ronment, such as BorlanciG-.

To hardware developer, only hwNet circuits on VS need to redesign for a new specific
application problem. In hardware development process, hardware developer usually use
register-transfer level (RTL) description to design a hwNet with EDA tools (such as Xil-
inx ISE) in VHDL/Verilog language. Recently, high-level synthesis (HLS) design have
developed. High-level synthesis works at a higher level of abstraction, starting with an
algorithmic description in a high-level language such as System C and A@si+C
The designer typically develops the module functionality and the interconnect protocol.
The high-level synthesis tools handle the micro-architecture and transform untimed or
partially timed functional code into fully timed RTL implementations, automatically cre-
ating cycle-by-cycle detail for hardware implementation. The HLS method lets hardware
designers ficiently build and verify hardware, by giving them better control over opti-
mization of their design architecture, and through the nature of allowing the designer to
describe the design at a higher level of tools while the tool does the RTL implementation.

In order to simplify hwNet's development, we provide a standardized design on
hwNet’s /O interface. The Figure 2.18 shows declarations of a hwNet's ifgutsuts
interface for solving 3D Poisson equation. The hwNet communicates data with local
memory, other hwNets on an VS, other VSs, Host PC through the Memory Type Ports

40 Chapter 2 Previous Work - Hardware and Software Complex Architecture

(MTP) on FIBus protocol. There, a hwNet has a MTP LM for accessing to LM(line
3), a MTP VC for access via VC Bus (line 5), 6 MTPs for data communication via VI
Bus(line 7 to line 12). And the signals of iEnd and oEnd (line 14,15fsihterface

for synchronizing multiple VSs via VI Bus. The signals shown in (linel7,linel9) are
controfstatus JO interface for host which can be defined by user. The signals shown
in line 21 are system line. According to the such standardized interface, the designer
can esaliy to implement a new application through the simple application hwNet. They
don’t need to put a lot offéort on data communications among hwNets, just needs to
redesign the process elements for solving application, and concentrate on algorithm
and architecture of hwNets. Meanwhile, because of VS and hwModule V2 equip the
same Xilinx Spartan-3 4000 FPGA, and the hwNet on hwModule V2 and hwNet on VS
adopt similar standardized interface design based on FIB protocol. Amount of hwNets
of applications implemented on hwModule V2 on previous works can be easily ported
to VSs on Vocalise platform. Through the design method of hwObiject, the development
cost and cycle also can bé&ectively reduced on hardware level design.

41

Chapter 3

Architecture and
Implementation of Vocalise

System

Based on Hy#Sw complex architecture, we designed a HPC system with multi- dimen-
sional FPGA array: Vocalise . The system consists of an FPGA array as the core com-
ponent for operating applications in the proposed system and connect Host PC through
hwModule V2 (shown in Figure 3.1). The proposed FPGA array adopts distributed and
scalable design and consist of massive small FPGA cards.

3.1 3D FPGA array

Figure 3.2-3 shows a photograph of the 3D FPGA array, comprising 64 FPGA Boards
(4 x 4 x 4). This is a promising approach that provides bandwidth-aware structures and
easy to achieve highfisciency data communication between multi-FPGAs for multidi-
mensional computational problems.

For a distributed computing system. The bandwidth between massive processors is
very important, the communication between chips usually become bottleneflietd a

42

Chapter 3 Architecture and Implementation of Vocalise System

2.HwModule V2 (PCl board)

1.Host PC
User FPGA -
M Main Memory
(s || FPGA (SDRAM) PCl Bus
| Bus lconfiguration ‘ HwObject <= | General
\ rocessor|
F| |[Controller > Interface P
| ata
pCl -~
Transmission FPGA VC bus
network
-
VI bus network
3.FPGAarray e -
Pfocessmg VS(PVS) A . /,,4 . A
rmim -~ i PEBoard ,/ - PE Board /- PE Board, AN
(/ Bridge VS(BVS) CL Y App circuit £ App circuit & App circuit <\
: : N i
| T | ub Bo ard ub Bba d |
| Lo PE Board PE Board PE Board ,/ |
! PE Board i Agp circuit £ Afp circuit 7 A&pp circuit C~ I
. - o |
! /g”dgef'"”'t 1 —ub Board Sub Board b Board e !
| N A ! PEBoard /] E Board ,/ E Board // .
: 7 Bridge circujt ‘ i | App circuit £ ?pp circuit % i \pp circuit |
: Sub Board | ! : I “an :
| T T _Sub Board A /Su b Bogrd / /Su H
; Pl 7. s P !
I L | Processing VS(PVS)pE Board /| - PE Board /| - PE Board,” I
! | - ?pp circuit £ L Aipp\/circuit Ay Aipp tircuit £~
| | . i s . d
| i | 8ub Board Sub BObrd "Sub Board |
| E Board J PEBoard ,/ | PE Board ,/ :
i PE Board I ! A?p Gircuit o Afp dircuit S ﬁpp circuit . !
| ridge, circuit ! ! = z > :
| '} I ub Board SubBbard 77 _3ub BGard v !
: z A i i PEBoard ,/ | PE Bodrd ,/ PE Board / |
: A‘dge circuip < | | ?pp circuit <. pp circuit & - App'circuit £ :
| Sub Board | ! y — > .
. I ‘ _/Sub Board A ~Sub Board V- _Sub Board V)
| . \ /
| A : \, /
L S/ N | ‘ 4
NG P N v v e

system performance. In our 3 dimensional FPGA array, as the dimensions of the FPGA

Fig. 3.1 Overview of Vocalise

array grow, the fi-chip bandwidth of FPGAs is boosted. For instance, a single 32-bit
GPIF /O provides 532 MBs bandwidth at 133 MHz. Thus, théfechip bandwidth of
VS achieves 3,192 MB via six-way channels with 3D connections. This is higher than
Maxwell [41], where in the FPGA Board connects to the CPU using @A X bridge
that is capable of 64-bit, 133 MHz operation in PCI-X mode. The configuration has a

peak bandwidth of 600 MB, which is a potential performance bottleneck for Maxwell.

3.1 3D FPGA array 43

HwModule VS

= o g e e

1/0(Back) 1/0(Back)

SDRAM

s

(umo@/dn)or/l

XC3S700A
XC3S4000

(ye1)o/1

{For Sub Board}

| WO [/o J— ;
1/0(Front) 1/0(Front)
1. PE board 2 Sub board ' 3. 3D FPGA array

Fig. 3.2 A HwModule VS (Left) and a (% 4 x 4 VSs) 3D FPGA array (Right)

3.1.1 Bridge VS (BVS) and Process VS (PVS)

The overall Vocalise system structure is shown in Figure 3.1. The hwModule VSs
were divided into two types depending on their implemented function. We exploit the
hwModule VS for extension of V2's/O channels to achieve implementation and data
transmission of the multidimensional FPGA array,. These VSs which implement bridge
circuits, is named “Bridge VS” (BVS) Board (Figure 3.1- 3). These Bridge VSs are used
to connect massive VSs via the multidimensional GO The VS that implements the
application circuit is named the “Processing VS” (PVS) Board (Figure 3.1- 3). The host
PC can be connected to as many as 32 PVSs (4 ¥o8¥Ss) through a single Bridge
VS. There are massive FPGAs in Vocalise system. Through two kinds of network: Vo-
calise connection Bus (VC Bus) network and Vocalise inner Bus (VI Bus)network, the
system connects all FPGAs and implements circuit configurations, managements, com-

44 Chapter 3 Architecture and Implementation of Vocalise System

I
| FPGA arra
: HwModule V2 | CCLK 1 Y
Host PC 1 CCLK Generator
! I cclk
: Configurator - |—hRoe 8
Start [TRDW
: controller SelectMAP MR_B
Main I CLK /End Selector | _ICSI B
Memory ! ?Ea:;‘ ._=ME Hw VS Hw VS
n CLR 1
i LM | [31:0]DATA Write il Read)
)) us W
Conﬂi:;atnon SDRAM > CMPort FIFO
Controller > For
SelectMAP
, clec ![7:0]DATA

Fig. 3.3 SelectMap configuration element.

munications and applications on FPGA array.
In the following sections, we describe the function and implementation of the two
networks: VC Bus network and VI Bus network.

3.2 Vocalise connection bus (VC Bus) network

In our design, the implemented host PC circuit configuration, data communication,
and management of FPGA array is performed via the Vocalise Connection Bus (VC
Bus) network. Since f6-chip I/O bandwidth is significantly limited compared to the
internal wires, the single GPIFQ equipped on the hwModule V2 is only 58-bit width;
thus, we enable a VC Bus line to work in two switchable modes: configuration bus mode
and daticommand bus mode.

3.2.1 Circuit configuration

In the Vocalise platform, a configuration solution based on SelectMAP configuration
schemes is provided to minimize configuration time and maximize flexibility. Multi-
ple FPGAs can be configured using the SelectMAP mode and can be made to start-up
simultaneously.

3.2 \Vocalise connection bus (VC Bus) network 45

The SelectMap(Slave Parallel Mode) configuration is a slave parallel mode; it supports
the fastest configuration of Xilinx Spartan-3 FPGA Family. [32], [33] It is able to users
to program multiple FPGA devices through an external host, such as a microprocessor
or microcontroller, writes byte-wide configuration data into the FPGA.

By using the implemented configuration circuit, we can achieve to configure a multi-
dimensional FPGA array via VC Bus, the configuration bus requires an 8-bit data-line
and a 14-bit control-line. The Figure 3.4 shows signals of SelectMAP configuration.

CLK Clock line.

BusMode Swicth signal of Bus Mode(High: Configuration Bus Mode, Low:
DatgCommand Bus Mode.)

REQ Request signals from master side.

ACK The acknowledge signal from bus arbitration organization.

SEL Select signal, master side outputs active-high when master gains access autho-
rization of VC Bus to objective boards.

A/D Address and Data signals.

FRAME FRAME is active-high, AD line output objective VS’s address. FRMAE is
active-low, AD line output configuration data.

The circuit configuration technique for a 3D FPGA array is achieved by the following
steps, which is shown in Figure 3.5.

S N e B

BusMode |

REQ

ACK \

SEL r
FRAME \

A/D Addresss[0] XAddresss[1] <Addresss[2]

PROG_B

Fig. 3.4 Waveform of SelectMAP configuration .

46 Chapter 3 Architecture and Implementation of Vocalise System

Host > BVSs ~, BVSs _, PVSs _ , PVSs

PC = Sub Board PE Board Sub Board PE Board
Step.1 Step.2 Step.3 Step.4 :
~ Configuarte Configuarte Configuarte Configuarte
 BVS'sSub BVS'SPE PVS'sSub PVS's PE

Fig. 3.5 The operation steps for configuration of a 3D FPGA array.

1). Configure BVS’'s Sub Board: The hwModule V2 configures a bridge circuit
(shown in Figure 3.12a) in the nearest connected Sub board of BVS , and then the host
PC configures the same bridge circuit on the next Sub Board of BVS through the for-
mer configured bridge circuit on the configured Sub Board. The system must complete
circuit configuration n times to install n BVSs.

2). Configure BVS's PE Board: The host PC can configure a bridge circuit (shown in
Figure 3.12b) on PE boards of BVS in parallel with its Sub Board.

3). Configure PVS’s Sub2 Board: The host PC can select any connected Sub Board of
PVS and configure the selector circuit on a target FPGA through the BVS bridge circuits.
Using the same method to configure the BVS’s Sub Board, the host PC can configure the
selector circuit on any row of Sub Board.

4). Configure PVS’s PE Board: The host PC can easily download specific application
circuits in parallel with any selected PE Board of PVS via the VC Bus. Each PVS has
a unique ID; thus, through ID signals, the selector circuits on Sub Boards of PVS can
determine whether to configure their associated PE Boards. Consequently, it is possible
to program diferent configurations for any FPGA in any row. This provides additional
flexibility and enables the user to prograntfeient configurations in the FPGA array.

The bridge and selector circuits, which are implemented on the BVS and the PVS’s
Sub board, are intrinsic peripheral circuits of the system. Circuit configuration is only
required initially. Users do not need to repeat Steps 1-3. Only the application circuits on

3.2 \Vocalise connection bus (VC Bus) network a7

the PVS’s PE Board need to be configured when operating other applications.

3.2.2 Configuration circuits

The system uses a SelectMap configuration control circuit (Figure 3.3) on hwModule
V2 to write byte-wide configuration data to all FPGAs via VC Bus, which works in
the configuration bus mode. In the SelectMap configuration control circuit consists of

following unit.

CCLK Generator
CMportController

Configurator controller unit
SelectMAP selector
FIFOforSelctMap

CCLK generator provides the clock signals for configuration. The circuits bit stream
is transferred to stored in Local Memory by PCI FPGA on hwModule V2. When com-
pleted the initialization of objective FPGA, the CMportController read the bit stream
data from Local Memory to FIFOforSelectMap. Finally The circuit’s bit stream data is
transmitted to connected FPGA via GPIF IO from hwModule V2. The Configurator con-
troller unit is a main control circuit for SelectMAP configuration. It is used to achieve
status identification and control of objective FPGA. SelectMAP selector unit is used to
inputoutput the control signals of selectMAP configuration.

3.2.3 Data transmission and FPGA array management

The VC Bus works in the data bus mode until the system has completed circuit con-
figuration of the FPGA array. The host PC is able to transmit/datamand to any
objective PVS and read d#s#atus from objective PVS.

48 Chapter 3 Architecture and Implementation of Vocalise System

31 23 15 7 0

Target FPGA ID | Initiator FPGA ID Mode code User available bit

BVS ID| Row ID] FPGA ID in a row

2bit 2 bit 4 bit

Fig. 3.6 PVS address signal line format in VC Bus network.

Address management of PVSs

Each PVS has a unique ID in the VC Bus network. The PVS address signal format is
shown in Figure 3.6. The 32-bit PVS address signal comprises the target board ID(8-bit),
initiator board ID (8-bit), 8-bit mode code line, and 8-bit user-available bit. The mode
code can be identified by slave elements on the PVS in the VC Bus network. It comprises
various types of operation such as read data, write data, and transfer commands. When
multiple devices request the VC Bus, bus arbitration is realized by implemented bridge
circuits on the Bridge VSs.

Communication mechanism

The VC Bus data communication protocol is based on a typical master-slave transmis-
sion mechanism and can achieve 32-bit burst transmission, which is analogous to FPGA
inner Bus . The bus line is equipped with a 32-bjDAine, a 6-bit control line, and a
1-bit clock line.

Figure 3.7 shows write and read operation signals among the hwModule and the FPGA
array.

CLK Clock signal line.

3.2 \Vocalise connection bus (VC Bus) network 49

CLK

REQ
ACK

SEL ‘

FRAME ‘

MRDY ‘ ‘ ‘ ‘
SRDY] I

DATA PVS_Address SDRAM_Address @@@ D

Fig. 3.7 The write operation between host PC and FPGA array via VC Bus.

BusMode Switch signals of Bus Mode(active-high: Configuration Bus Mode, active-
low: DatgCommand Bus Mode.
REQ Request signals from master side, output to arbitration to access to VC Bus.

CLK

REQ
ACK

SEL

FRAME ‘

MRDY ‘ ‘ ‘ ‘
SRDY | I

DATA PVS_Address SDRAM_Address XXXXXX Data0 X Data1l X Data2 X D

Fig. 3.8 The read operation between host PC and FPGA array via VC Bus.

50 Chapter 3 Architecture and Implementation of Vocalise System

ACK The acknowledge signal from arbitration.

SEL Master side output select signal to objective boards when Master gain access au-
thorization of VC Bus.

A/D Addresgdata signals.

FRAME The identification signals of addre¢data line. (FRAME is active-high, out-
puts address of objective PVS; FRMAE is active-low, outputs communication
datdcommand.

MRDY The ready signal from master. When master is ready, assert the signal to slave.

SRDY The ready signal from slave. When receiving master signal and slave is ready,
assert the signal to master.

When host PC communicates with multi-PVSs, the hwModule V2 acts as a master,
and sends SEL and MRDY signals to enable use of the VC Bus and broadcast valid
PVS addresses to the PVSs as targets. The hwModule V2 waits until the SRDY signals
from the target PVSs are received. Subsequently, the hwModule V2 performs a burst
readwrite operation after the negotiation. With the above approach, the host PC can
execute writgread operations to each distributed SDRAM on the FPGA array. Moreover,
the applications running on the host PC send specific commands to any PVS, and read
status of each PVS.

3.2.4 Implementation circuits for data communication on VC Bus

Data communication modules are implemented on hwModule V2 and each PVS PE
board (Figure 3.9) .
The modules consist of following units.

VCBusConnector
VCBusMater
VCBusSlave
HNController

The Table 3.1 shows the circuit scale of controller circuit on hwModule V2.

3.2 \Vocalise connection bus (VC Bus) network

51

Process VS
[sorant] HwModule v2| | PE Board SDRAM
User FPGA
|F|bMasEerConnect0r| .HNIO. | F|b1\/|asterConnector|
v vy v hwNet |+——
| " VCI;%usMastAer || V?BusSIaAve | HNController
v [))) T 3 }
TxBuff [ReTxBuff| RxBuff TxBuff|| RxBuff | VCBusMaster || VCBusSlave |
(FIFO)| (FIFO) | (FIFO (FIEO)||(FIFO) i i i i i
Configuration TxBuff[ReTxBuffl RxBufi TxBuff | RxBuff
Controller > VCBusConnector | (FIFO)| (FIFO) | (FIFO (FIFO) | (FIFO)
I
1 VCBusConnector
Bridge VS PE Board [l |
= fBridge circuit .) A >
Selector Circuit
% Next PVS
Sub Bo
/{ ~Bridge circuit ; Sub Board

x
/Next BVS <“—\/C Bus

Fig. 3.9 VC Bus data communication elements.

VCBusConnector

This module connects external BVS’s Sub board and PVS’s Sub board. It has lots of
10 buffers and registers to convert VC Bus signals from inner FPGA and outside FPGA.
Since clock source VC bus is from host PC, we utilize a Digital Clock ManaD€M [
to achieve driver and modulation of VC bus clock signals from external Sub Board, and

Table 3.1 The circuit scale of hwModuleV?2

Used | Available | Utilization[%]
Nubmer of Slice Flip Flopg 4,520 | 55,296 8
Nubmer of 4 input LUTs | 5,891 | 55,296 10
Nubmer of bonded IOB | 277 489 56
Number of DCMs 3 4 75
RAMB16s 8 96 8

52 Chapter 3 Architecture and Implementation of Vocalise System

output the clock signals to other unit: VCBusMater unit, VCBusSlave unit and HNIO
unit. The DCM primitive in Xilinx FPGA parts is used to implement delay locked loop,
digital frequency synthesizer, digital phase shifter, or a digital spread spectrum.[34]

VCBusMaster

VCBusMaster as a master port of VC bus; the unit receives data from hwNet with
FIB protocol and sends the data to connected FPGAS; it converts FIB protocol and VC
Bus protocol; and it has the slave function of FIB, and the master function of VCBus.
The control signals of hwNet on hwModule VS are also transmitted via VCBus through
the interrupt action of HNController. Since the unit is an asynchronous module, which
has double clock source; FIB clock is from hwNet (inner FPGA), and VC Bus clock
signal is from hwModule V2(host PC). The unit consists of a FIB controller, a VCBus
controller, two asynchronous FIFOs for writjingading, and a synchronous FIFO for
resending data.(shown in Figure 3.10)

The FIBController receives a request from hwNet or HNController unit, outputs the
request to VCBusController; The VCBusController can distinguishes the request is con-
trol or data communication (readrite operation), then send commands or data based
on VCBus Protocol method via VC Bus links.

VCBusSlave

VCBusSlave as VC bus Slave port; it's operation is opposite to VCBusMaster unit,
which implements a slave function of VC Bus, and a FIB master function. It can receives
signals from external FPGAs with VC protocol as a slave, then converts the signals and
outputs to hwNet with FIB protocol. Moreover, control commands for hwNet on PVS are
also send to HNIO unit via VC bus. The clock source of the unitis same as VCBusMaster
unit, FIB clock source is from hwNet, and VC Bus clock source is from hwModule V2
on Host PC. We implements the unit with a FIB controller (clock signal source: FPGA
inner clock), a VCBus controller (clock signal source: VC Bus clock from host), two
asynchronous FIFOs for writifiggading data.

The unit is driven by VC Bus signals. When a request come from external FPGA, the

3.2 \Vocalise connection bus (VC Bus) network 53

hwNet
? Side
VCBusMaster i
A
FIB_Slave
Controller hwNet
CLK
y * y Clock
from hwNet
| Asynchronous | |Asynchronous | Clock
FIFO For Read FIFO For Write separation
Clock
, A * from VCBus

b Y Synchronous
Bus
CLK VCBus_Master | | EIEO for

Controller)

1 i Resending
VCBus
v Side

Fig. 3.10 VCBusMaster Module

unit firstly match its Board address to the address signal from VC Bus. If the match result
is truefequestaddress Boradaddresk the VCBusController decodes the command
signals and outputs it to HNController, When host operates datawvetdexecutions,

the data is transmitted to PVS on VC Bus Protocol, and finally send data to hwNet with
FIBController on FIB protocol method.

HNController

This unit is an controller module of hwNet 10O; it is used to store commands (CTRL)
from the host PC and the status (STTS) of hwNets. The applications on the host PC send
specific commands to any PVS and read the status of each PVS through the implemented.
Moreover, the HNController unit, which is implemented on HwModule V2, can stores
any status (STTS) signals from hwNet on FPGA array; and these status (STTS) are

54 Chapter 3 Architecture and Implementation of Vocalise System

? hwNet Side
VVCBusSlaver i
A
FIB_Master
Controller hwNet
CLK
vy v Clock
from hwNet
| Asynchronous | | Asynchronous | Clock
FIFO For Read FIFO For Write separation
Clock
4 A * from VCBus
Ve v
Bus
oLk VCBus_Slave
Controller
4 A
VCBus
v Side

Fig. 3.11 VCBusSlave Module

stored in BRAM for FPGA array management.

3.2.5 Selector circuits on sub board

Meanwhile, we implemented a selector circuits on Sub Board. The circuit consists of

following units.

e IOBUF
e VCBusSwitch
e ConfigurationSwitch

The Table 3.2 shows the circuit scale of selector on Sub Board of PVS.

3.2 \Vocalise connection bus (VC Bus) network 55

Table 3.2 The circuit scale of selector on Sub Board of PVS

Used | Available | Utilization[%]
Number of Slice Flip Flopg 255 11,776 2
Number of 4 input LUTs | 673 11,776 1
Number of occupied Slices 249 5,888 4
Nubmer of bonded IOB | 239 372 64
Number of DCMs 1 8 12

IOBUF

The module has lots of® Buffers and registers to achieve to convert the signals
among external FPGAs and inner FPGAS; this modules are implemented on Sub Board,
and consists of 3 IOBUFs to contrgs in 3 directions.

1. The FDATAIOBUF is a controller for 10 interfaces on front port from Host
PC(hwModule V2).

2. The BDATA.IOBUF realizes to control the IO interfaces on back port which con-
nect to next Sub Board.

3. The SIMDATAIBUF controls the 10 interfaces on SIMDATA port which connect
to own PE Board.

Moreover, we implement a digital clock manager (DCM) on the FDATUBUF unit.

The clock signal from hwModule V2 inputs the DCM unit, and through the DCM unit
outputs a clock signal as clock source to provide other modules inner FPGA.

SwitchVC

The module is a switch circuit for datammands of VC Bus on DATA ontrol mode;
the module can identifies VC Bus address signals, and matches the target Board bit
of address signals with its board address. Then, based on distinguishing results, the
modules bridge the links among GPIOs in 3 directions (the Front side, the End Side
and PE Board side). If the matching result of address is true, the module implements to
connect FDATA |Os with SIMDATA 1/Os. If the matching result is false, the module

56 Chapter 3 Architecture and Implementation of Vocalise System

Data/Control Config_Data i
VCB —
us signal signal Up_IOBUF
B B— -

Y
{ = PEConfig
I~ Bridge o
SIMDATAIOBUF| o) B
t g 5
il PEDATA Q-
Bridge m
3 - H 5
3 SubConfig s
- > Bridge I_
8 \d 8 \J
Sle — » SubDATA c SIMDATAIOBUF| | Down_IOBUF |
Bridge A
>
Bridge Sub Board Bridge PE Board

Fig. 3.12 Bridge circuit on Bridge VS. (a: Bridge Circuit on BVS’s Sub Board, b:
Bridge Circuit on BVS’s PE Board.)

implements to link FDATA 1Os and BDATA JOs. Moreover, we latch the ingoutput

signals of VC Bus with registers, which is driven by clock signal of DCM, for stabilizing
VC Bus signals inner FPGA.

ConfigurationSwitch

The ConfigurationSwitch module is a switch circuit for configuration data, works in
configuration bus mode; It can identify the ID signal from Configuration Mode, and
match the signal with its Board address. When ID signal is the board address, the module
connects its PE Board, and accomplishes the circuit configuration for its own PE board.

3.2.6 Circuits design of Bridge VS

Host PC connects an 3D FPGA array through Bridge VSs, and realizes ac-
cesgcontrojcircuit configuration for the FPGA array. In our design, see from host PC,

3.2 \Vocalise connection bus (VC Bus) network 57

a Bridge VS connects 4 rows Processing VSs as a sub-group PVS array (maximum
scale: 4times8 PVS). Each Bridge VS has a unique ID, we enable access any PVSs on a
sub-group FPGA array through a Bridge VSs. Meanwhile, the Bridge VSs also are used
to be realized to access arbitration of VC Bus; it guarantees the bus permission among
host PC and FPGAs in connected sub-group FPGA array through a bridge VS.

The Figure 3.12 shows the block diagram of a Bridge VS. The VC Bus signals from
the inner FPGA are divided into configuration signals and/datdrol signals. The
implemented bridge circuits mainly comprises following units.

e InputOutput BUF Units(I0 BUF units).
e Config Bridge Unit.
e DATA Bridge Unit.

We also utilize a DCM to realize management and synthesize of clock, phase shift
and clock skew. And through the DCM, output clock signals to drive other units inner
FPGA. The circuit scales of Bridge circuit on Bridge VS are shown Table 3.3, 3.4.

Table 3.3 The circuit scale of Bridge circuit on Sub Board of BVS

Used | Available | Utilization[%]
Number of Slice Flip Flops 197 11,776 1
Number of 4 input LUTs | 222 11,776 1
Number of occupied Slices 249 5,888 4
Nubmer of bonded IOB | 239 372 64
Number of DCMs 1 8 12
IO BUF units

The 10 BUF units, which equip amount of 10 fbars and registers, which are used
to convert signals betweerfechips and inner FPGA, and divide thé&-gchips VC Bus
signals into configuration signals and datatrol signals inner FPGA as the bus mode
changes.

On the Bridge VS’s Sub Board, we implement three 10 BUF units: FIOBUF,

58 Chapter 3 Architecture and Implementation of Vocalise System

Table 3.4 The circuit scale of Bridge circuit on PE Board of BVS

Used | Available | Utilization[%]
Number of Slice Flip Flopg 672 55,296 1
Number of 4 input LUTs | 895 | 55,296 1
Number of occupied Slices 762 27,648 2
Nubmer of bonded IOB | 299 489 61
Number of DCMs 1 4 25

Back IOBUF and SIMDATAIOBUF to link on ahedgdear Sub Boards and its own PE
Board.

On the Bridge VS’'s PE Board, five 10 BUF units are implemented; one 10 BUF
(SIMDATAIOBUF) unit links to its own Bridge Sub Board, and other four 10 BUF
units (UplOBUF, DownIOBUF, RightIOBUF and LeftlIOBUF) are used to link to
connected PVS’s Sub Board in four directions through four (52 pin to 100 pin) convert
boards.

ConfigBridge units

Configuration bridge unit is used to realize bridge function for configuration data; it
works in circuit configuration bus mode. The module enables the host PC to implement
circuit configuration on selected FPGAs. We implement a SubCongfig Bridge unit on
Bridge Sub Board. The unit can identifies ID and configuration command signals from
host PC. On Bridge VS’s sub board configuration stage, the unit links FaGBWF and
Back IOBUF, and sends circuit configuration bit stream data to linked next sub board.

In the circuit configuration stages (Configuration of Bridge VS’ PE board, Process
VS’s Sub board and PE board), if BVS’s bit of configuration address is same to the
BVS ID, the unit links Front OBUF and SIMDATAIOBUF, and sends circuit config-
uration bit stream data to PE Board. If it is not same to the BVS ID, the unit links to
FrontIOBUF and BacklOBUF, and transmits configuration signals to next Bridge VS’
Sub board.

In the same way, we also implement a PEConfig Bridge unit on Bridge PE board. The

3.3 \ocalise inner bus (VI Bus) network 59

unit identifies configuration signals from Host PC through its Sub Board. On the basis
of the object PVS address signals, the unit can links the correspon@ragphnections
among host and PVSs along the four directions, and sends the configuration bit stream
data to the corresponding PVSs.

DATA Bridge units

The module is a dateommand bridge unit which works in data communication mode
of VC Bus. The module enables the host PC to exchange data with any connected PVS
and send control commands to any PVSs. On Bridge Sub Board, the communication data
signals, command signals, status signals can be transmitted to SubDATABridge circuit
to data among 3 GPIOs. Meanwhile, The SubDATABridge unit also can identifies the
address signals and match the bits of Bridge VS ID on the address signals with its Board
ID. If they are same, the module links the Bridge VS’s PE Board and host PC. If not, the
unit links the 10 connections of FrontlO BUF and BacklO BUF.

We also implemented a PEDATA Bridge unit on PE Board. A 5-way arbiter of VC
Bus is realized on the unit. The unit enables a Bridge VS to achieve to arbitrate the
access requirements from host PC and connected 4 rows FPGA array. The host or PVS
obtains ACK signal from the arbitrator, then send address signal to PEDATA Bridge unit
and assert SEL signal. The unit identifies the target address bits and initiator address bits
based on the address signal, and links to correspondidgydmong target address and
initiator address, until data communication and comrystatlis transmit-receive among
host PC and object FPGAs are completed.

3.3 Vocalise inner bus (VI Bus) network

In the Vocalise system, one PVS transfers data to other PVSs via the Vocalise inner
Bus (VI Bus) network when operating applications (shown in Figure 3.13). The bus line
consists of data line (32 bit) and control line (18 bit).

Figure 3.13 shows VIBus network among PVSs.

By utilizing GPIO connectors in six directions, each Process VS can connects adjacent

60 Chapter 3 Architecture and Implementation of Vocalise System

VI Bus[31:0] VI Bus[31:0]
A 7 A A

/ VI Bus[31:0] VI Bus[31:0]

V [31 :0] V [31:0]
A A 4

ATy vVC Bug(31:0]
v VC Bu Sub Board

[31:0]

VIBusi{0] v gl [31:0] ViBus3f0] Bus [31:0]

Fig. 3.13 VC Bus and VI Bus connections among Process VSs

6 PVS, and realizes the data communications at the same time with the connected PVSs.
Moreover, the route of the VI Bus is variable; it can be changed with the corresponding
communication requirements offtkérent applications changes.

3.3.1 Telecommunication mechanisms

To implement the dferent transfer circuits on PVSs, three types of telecommunication
mechanisms, simplex, half-duplex, and full-duplex transmissions can be realized. The
telecommunication mechanisms and signals is shown in Figure 3.14

Depending on the requirements of applications, the VI Bus works in two modes. One
is point-to-point communication mode, PVS only communicates with adjacent PVSs via
the direct connections. The other one is distance data transmission mode; a PVS can
communicates data with any PVSs on FPGA array via VIBuUS.

Point-to-point data transmission among adjacent PVSs

To reduce the circuit design development cycle, we have designed a foundational com-
munication module: the VIBus module, to establish direct point-to-point connection to
adjacent FPGAs in each six-way directions. The modules are implemented in each pro-

3.3 \ocalise inner bus (VI Bus) network 61

ck ULy

MROY |
SRDY |

DATA b o s

-&—— Transmission state ——p

Fig. 3.14 Simplex transmission operation between adjacent FPGASs via VI Bus.

cessing FPGA, and data is transferred to the nearest adjacent FPGA using three types
of telecommunication mechanisms, i.e., simplex, half-duplex and full-duplex transmis-
sions. Table 3.5 shows the essential signals for implementing the three telecommunica-
tion modes.

In our experiments, the data communication between two FPGAs was implemented at
133 MHz, which is double that of the highest execution frequency of hwNet (66 MHz).
The single connectoy® bandwidth was 4.26 Gbpx (32 bits) at 133 MHz. Figure
3.14 shows the signal timing design of the simplex mode. In a fully connected network
topology, each FPGA connects six FPGASs; thus, the maximum theoretical bandwidth is
25.56 Gbps (6 ways 4.26 Gbps) at133 Mhz among interconnected FPGAS.

Table 3.5 Essential VI Bus signals for telecommunication

Telecommunication Mode Simplex | Half-duplex Full-duplex

Data line (bit) 32 32 Rx(16)+ Tx(16)
control line (bit) 2 7 8
clock line (bit) 1 1 2

total (bit) 35 40 42

62 Chapter 3 Architecture and Implementation of Vocalise System

ACKO

ACK1 |

MRDY |

SRDY |

A/D Address+Command FIS Data0 Data4
AD T <Dt Bt <Gt Gt

Fig. 3.15 Write operation signals via VIBusalf-duplexd in distance transmission made

High-speed distance data transmission of VI Bus

In massive applications, the parallel computing nodes (FPGAs) map on a complicated
network.

When PVS communicates with other PVSs which are not adjacent, it works in distance
communication mode. One PVS can send data to target PVS via intermediate PVSs. The
intermediate PVSs as repeaters transmit data and keep the signal strength to target PVS.

Through utilizing the point-to-point data transmission and distance data transmission,
various data communication network among multiple FPGA can be easily realized. We
realized the distance data transmission with half-duplex and full-duplex transmission
mechanisms. (The Figure 3.15 shows the data transmission waveform with half-duplex
mechanisms.)

CLK Clock line of VI Bus.
REQ Request signal from initiating FPGA to objective FPGA.
FRAME Switch signal for AD line; active-high: addregsommand, active-low: Data.

3.3 \ocalise inner bus (VI Bus) network 63

SEL Select signal from master, it is asserted when master get VI Bus authorization.
ACKO Acknowledge signal from target FPGA when transmission route is determined.
ACK1 Acknowledge signal when FIB of objective FPGA can be utilized.

MRDY Data transmission ready (assert) signal from master.

SRDY Data transmission ready (assert) signal from slave.

A/D Addresgdata line.

Firstly, the initiating FPGA (master) asserts REQ, FRAME signal and send
addres&ommand signals (Reaudrite, half-duplex full-duplex, etc.) . When commu-
nication route from initiating FPGA to objective FPGA is valid, the slave on objective
FPGA asserts ACKO signals. Then, when FIB port inner objective FPGA can be
utilized, the slave on objective asserts ACK1 signals. When master side receives the two
acknowledge signals(ACKO and ACK1), the master asserts SEL and MRDY signal, and
transmit data when receiving SRDY from slave.

3.3.2 Implementation of VI Bus

We implemented a general VI Bus module as general peripheral circuit of hwNet
which can realizes point-to-point transmission and distance data transmission on our
system, to demonstrate the communication feasibility on our system. When PVS as a
repeater receives and identifies data from adjacent PVS. If it is not target FPGA, the
PVS can select a suitable channel and transmit data to adjacent PVS via the according
channel. Because of a PVS can connects multiple PVSs through multiple channels. We
realized a simplified routing function on hardware level on the module for 2D network
connections. The block diagram is shown in Figure 3.16.

VIBus module(point-to-point data communication)
FIB_VIBus_Converter

VIBus_FIB_Converter

VIBusManager

RouteDeterminer

64 Chapter 3 Architecture and Implementation of Vocalise System

SDRAM ‘ VIBus_Up H VIBus_Left H VIBus_Front
(LocalMemory)

[

VIBus_FIB_Converter
HwNet |

VIBus_Manager =~ —— Route_Determiner

FIB_VIBus_Converter

FIB ‘ VIBus_Down ‘ VIBus_Right ‘ ‘ VIBus_Back
— VIBus | | |

Fig. 3.16 Composition of VI Bus transmission module

VIBus

The VIBus units can implement point-to-point data communication among adjacent
PVSs. The units directly connect the according GPO5| and transmit data to adjacent
PVS via the connection. The VIBus modules can achieve two transmission mechanisms
(half-duplex and full-duplex transmission). Each VIBus module has two asynchronous
FIFOs to sengteceive data firom adjacent FPGAs.

The Figure 3.17 shows the data flow of full-duplex transmission between PVS(1) data
and PVS(3) through intermediate PVS(2) via VI Bus.

In the Figure 3.17, PVS(1) writes data to PVS(3). The data transfer is implemented on
multiple clock signal source. PVS(1) firstly writes data to PVS(2) with inner clock signal
from PVS(1), then PVS(2) transfers data to PVS(3) with inner clock signal of PVS(2) .

FIB _VIBus_Converter

The module can converts FIB protocol to VI Bus protocol; it realizes slave function
of FIB and master function of VI Bus.

The number of FIB slave is variable as the required FIB port form hwNet. Inner
FPGA, the hwNet can utilizes up to six FIB ports for data communications of VI Bus.
Because of these FIBs are independent of each other, it is possible that a hwNet can uti-

3.3 \ocalise inner bus (VI Bus) network 65

PVS(1) PVS(2) PVS(3)
QLK fromPVS 1 -
hwNet % h\iNNet CLK from PVS|2 _: | hwNet
. 1
' | :
VIBusLeft VIBusI;Right ViBusLeft | VIBusRight
Asynchronous L Asynchronous Asynchronous | Asynchronous
FIFO(Write) || FIFO(Write) FIFO(Write) FIFO(Write)
|]
|_|| Asynchronous Asynchronous Asynchronous || | Asynchronous
FIFO(Read) FIFO(Read) FIFO(Read) FIFO(Read)
-t ;4
1 CLK from PVS 2 . CLK from RVS 3

— Data folw of PVS(1) write data to PVS(3)

— Data folw of PVS(3) read data from PVS(1)

Fig. 3.17 Distance transmission among PVSs via VIBus

lizes 6 FIB at the same time to access 6 adjacent PVSs. Through FIB signals from hwNet,
FIB_VIBus_Converter modules determine the transmission mechanism (half-dutlex
duplex) and writgread operation; and send data to adjacent FPGAs with VIBus protocol.

VIBus_FIB _Converter

The module realizes opposite functions of BMBus_Converter. It implements slaves
of VI Bus and masters of FIB, to convert VI Bus protocol to FIB protocol from external
FPGA to hwNet.

The number of FIB masters is variable as the FIB ports of hwNet changes.

In the same way, a hwNet can utilizes up to 6 VIBeI8_Converter to realize receiv-
ing data through 6 VIBus modules with VIBus protocol.

66 Chapter 3 Architecture and Implementation of Vocalise System

VIBusManager

The module can implements bridge function of VI Bus, and monitors the status of
VIBus modules. It has multiple arbiters and controllers for multiple VIBus modules.
The module receives the bridge commands from Ralgterminer module to arbiter, and
confirms whether the transmission route is occupied. When path is valid, the module as
a bridge circuit, links to VIBus~IB_Converter and VIBus module on according adjacent
to achieve the data transmit. Moreover, the VIBusManager also realizes to control the
IO interface of VIBus alon initiating terminal. .

Route_Determiner

The module is used to propose data transmission route to objective FPGA, explore
path and determine path. The Raileterminer on initiating FPGA proposes multiple
communication routes from initiating terminal to objective terminal.

The module sends REQ signals along multiple directions, and adopts the route which
receives fastest ACK signal.

In our experiments, we realize distance data communication at 66 Mhz on a 2D FPGA
array, which composed of 834 PVSs. (shown in Figure 3.18) The multiple PVSs can
communicate data at the same time by using R@dgerminer. Because of the routes
become surprisingly complex on a 3D network topology. We determine routes among
PVSs on software, then sentl command to control each PVS to determine routes
through hwisw complex units.

3.4 Discussion of VC Bus and VI Bus

3.4.1 Parallel circuit configuration

Many studies have demonstrated that circuit configuration on multi-FPGAs is often
implemented with custom cables such as USB cables. As the scale and dimensions of
FPGAs have increased, the configuration time and used cables also multiplied. There-

3.4 Discussion of VC Bus and VI Bus 67

Fig. 3.18 Distance transmission on 2D VI Bus Network

fore, an dective approach is necessary to configure a flexible and scalable FPGA array
quickly. In our system, we used an FPGA to configure a circuit on the next FPGA via
VC Bus network; thus, extra custom cables are unnecessary.

Table 3.6 shows circuit configuration time for multiple PVSs in a row via the VC Bus
network. The host PC required approximately 0.2s to configure the same application
circuits to a row of multiple PVSs.

The approach provides parallel configuration of multidimensional FPGAs. For an
application, the configuration mechanism enables the system to implement simultaneous
circuit configuration on 32 PVSs (4 rows 8 PVSs) through a BVS. Moreover, the
configuration mechanism also allows the user to select any FPGA to confidiiereati
application circuits; the FPGA array can perform multiple applications simultaneously.

68 Chapter 3 Architecture and Implementation of Vocalise System

Table 3.6 Circuit configuration execution time of multi-FPGA

FPGA Number 1 2 3 4
Sub Board 0.051s| 0.101s| 0.152s| 0.203s
PE Board 0.201s| 0.201s| 0.201s| 0.202s

3.4.2 Scalable multi-FPGAs communication

In Vocalise, the data communication and synchronization among processing nodes
(PVSs) is implemented via VI Bus network. The VI Bus network is an application net-
work, i.e., it is a dedicated network; (preferably with high throughput and low latency).
Since of each process node is implemented by FPGASs, which is a programmable logic
device. The VI Bus is freely available for custom user designs. Users can arrange pro-
cesses to each node (PVS) witlffeient network topology according to the requirements
of different applications.

For instance, Figure 3.19 shows three types of network topology that can be imple-
mented by our Vocalise via the VI Bus network.

Network A is a common topology for many numerical calculations with multiple par-
allel computing nodes. The network comprises many sub-networks, which form a basic
point-to-point network topology; each connection between FPGAs becomes a sub-bus.
Each connector/© bandwidth can be fully utilized when each FPGA sends data to the
nearest adjacent FPGAs.

Network B is a typical ring bus topology; it is set up in a circular fashion where in data
travels around the ring in one direction. Each processing node (FPGA) on the ring acts
as a repeater to keep the signal strong as it travels. Each FPGA incorporates a receiver
for the incoming signal and a transmitter is used to send the data to the next device in
the ring. This network is dependent on the ability of the signal to travel around the ring.
When an FPGA sends data, it must travel through each FPGA on the ring until it reaches
its destination; thus, each node is a critical link. The ring bus network is commonly seen
in multi-FPGA systems and general multi-core processor designs such as the BEE3, IBM

3.4 Discussion of VC Bus and VI Bus 69

FPGA <= FPGA =~ FPGA <+ FPGA

I' I' A
Network A. | ; !
FPGA <> FPGA <> FPGA <> FPGA
FPGA FPGA FPGA FPGA
4 .)
Network B. — VI Bus
- J
FPGA FPGA FPGA FPGA
FPGA FPGA FPGA FPGA
4)
A I'
Network C. I \
N J
FPGA FPGA FPGA FPGA

Fig. 3.19 Diferent types of VI Bus network topology

cell, and the Intel Haswell processor.

Network C is a hybrid network topology. The whole VI Bus network is distributed to
three sub-networks. Four FPGAs on the left side are arranged in a ring bus network. The
other four FPGAs are arranged in two point-to-point networks. A sub-network is a cus-
tom computing network for executing individual application simultaneously. This allows
that our system do not only to achieve single applicdtrasitiple data stream comput-
ing, but also simultaneously execute multiple applications with a distributed FPGA array.
We have reported that an FPGA array can concurrently operate multiple individual brain
process applications[28]. These brain process circuits such as voice recognition, voice
synthesis, and image recognition were designed dsvinwomplex systems using the

70 Chapter 3 Architecture and Implementation of Vocalise System

Vocalise method.

3.4.3 Data communication #ficiency on multidimensional intercon-

nection

FPGA FPGA
(h) (9)
A g

/ _FPGA y /_FPGA
-

4
/

. - ,...':._'.'_'_".if’" : t *ﬂ'

3D FPGA array(2x2x2

Data
Sub girds‘ communication
(NXN)- e

i FPGA FPGA | .| FPGA | | FPGA
d c o @) (d) ® (h)

a b
FPGA | . FPGA L .| FPGA | .| FPGA
(b) © @ @

3D Computation mesh 2D FPGA array(2x4)

Fig. 3.20 Data communication in FPGA array wittifdrent dimensional interconnection

We discuss data communication overhead between FPGAs when operating a 3D do-
main problem with dierent dimensional FPGA arrays. In common finit€etence
numerical calculations, many exchanges of boundary data among FPGAs occur. For in-
stance, Figure 3.20, shows a 3D computation mesh is decomposed to many sub-grids,
each sub-grids comprises NN x N grids. Thus, Nx N boundary data must be ex-
changed with each nearest sub-grids between each iteration. We us@ 2@ FPGA
array and a X% 2 x 2 3D FPGA array to distribute operations tox2 x 2 sub-grids.

Each FPGA executes the calculation of relative sub-grids as a computing node, such as
FPGA (a) operates sub-grids (a), and so on.

For a 3D FPGA array, each FPGA transfers boundary data only to the connected ad-

jacent FPGAs via 3D interconnection connecf@.IThus, it is relatively easy to imple-

3.4 Discussion of VC Bus and VI Bus 71

ment high-speed and low latency point-to-point data exchange between two connected
FPGAs.

In contrast, for a 2D FPGA array, because of 2D mesh interconnection between FP-
GAs, there are no direct interconnections between FPGAs when boundary data is ex-
changed between the top and bottom of sub-grids, for example, FPGA (a) must ex-
change data with FPGA (e). The FPGA must send data to connected FPGAs until the
data reaches the destination FPGAs. To implement this approach, the system must build
many paths and address identification modules for each FPGA. This will occupy more
logic resources, which are very limited. To achieve highhiceent data exchanges, the
users must take more work time to reduce transmission latency; which is ofienlti
when transferring data via multiple FPGAs. It may be necessary to provide wider link
of data communication to achieve higher bandwidth.

Overall, the comparison shows that an FPGA array with 3D direct interconnection
can provide better scalability, improve communicatidiiceency, and reduce design dif-
ficulty of data communication for 3D computing problems.

73

Chapter 4

System Evaluation

We implement a Vocalise system with multidimensional FPGA array ifstwezom-
plex, the system can implements various applications such as numerical simulations,
brain processes, web applications and so on[23][28][29][50]. When a distributed sys-
tem operates numerical simulation especially many PDE problems, the computing nodes
normally want to keep frequent communication with the adjacent nodes. Therefore, we
mainly evaluate the system through solving 3D PDE problems in the study.

4.1 Applications of numerical simulation

Numerical computing is an study of approximation techniques for numerically solv-
ing mathematical problems. It also is an interconnected combination of computer sci-
ence and mathematics by using to develop and analyze algorithms for solving important
problems in science, engineering, business, and medicine —for example, designing an
aircraft, simulating atmospheric circulation, or detecting tumors in medical images.

By using most partial dierential equation (PDESs), through obtain numerical solu-
tions, physical phenomena such as can be simulated by computer. Since numerical sim-
ulation requires massive computational capabilities, such as big numerical simulation
programs require supercomputers and a large amount of computer resources. Therefore
it also is an important area of HPC study.

74 Chapter 4 System Evaluation

The numerical computation, especially partigfeliential equation (PEDs) solutions
is a main application area of our Vocalise system. The proposed system redlieesdi
applications with highly icient and specific application circuits implemented on large
scale FPGAs. We call these application circuits as hwNets. The most paftisedtial
equation problem are solved with Cartesian-gird. The algorithm is usually suited to be
solving our system. In the sections, we describe experimental implementations of 3D
Poisson equation and CIP method.

4.1.1 Advection equation with CIP method

Advection equation

In physics, engineering, and earth sciences, advection is a transport mechanism of a
substance or conserved property by a fluid due to the fluid’s bulk motion. For example
the transport of pollutants or silt in a river by bulk water flow downstream.

In general, any substance or conserved, extensive quantity can be advected by a fluid
that can hold or contain the quantity or substance.

Advection is sometimes confused with the more encompassing process of convection
which is the combination of advective transport aniugiive transport.

The advection equation is the partiaffdrential equation that governs the motion of a
conserved scalar field as it is advected by a known velocity vector field.

In 2D Cartesian coordinates the advection operator is shown in Equation 4.1.

%JFUZ_:(+v%:0 (4.1)

Here,t is time, X,y is 2D Cartesian coordinatet,is wavefield of advection equation,

uis velocity in x axis, ang is y axis.

Algorithm of CIP method
The Cubic Interpolated Profile (CIP) method is a complicated method for solving the
advection equation, proposed as a stable and less dispersive method in computational

4.1 Applications of numerical simulation 75

fluid dynamics (CFD) since the middle of the 1980s [30],[31]. It has been applied to
simulations of various physical problems and proved to be well performing [35]-[40].
This method is based on a fact, that it is not only the wavefield but also its spatial deriva-
tives propagate along the same characteristic curve derived from a hypertelierial
equation [42]. The CIP method in combination with the method of characteristics, it was
developed to simulate the Maxwell equation accurately compared with FDTD method
[41].

In the thesis, we implemented the CIP method to simulate wave propagation through
solving advection equation. The phenomenon of the wave propagation in one dimen-
sional space can be expressed with the following first-ordégréntial equation.

of af

E + U& =0 (42)

This first-order advection equation shows that a wave packet on the waviepedg-

agates along a cunax/dt = u, which is a characteristic curve, in the phase space. Eq.
4.2 is a characteristic equation for solving the forward propagation of the wavefield. Al-
though this equation is simple, it isfilcult to evaluate numerically with high stability
and less numerical dispersion. The CIP method can solves these problems through solv-
ing not only Eqg.4.2 but also aftierential equation for a spatial derivative of the wavefield
f . When the propagation velocityis constant, the Eq. 4.3 can be obtained through
Eqg.advecEq2.

0g 09 _of

—+u—=0

at Plax TP 97 5x (4.3)

Here,qg is a spatial derivative of. These two equations, Eq.4.2 and Eqg.4.3, become
the governing equations for the propagation of the wavefieddd its spatial derivatives
g. This property can be utilized by the CIP method to solve a hyperbdiierdntial
equation. The Figure 4.1 shows conceptual diagrams of the CIP method[42], [37].

In Figure 4.1(a), the solid line corresponds to an initial wave packet and dashed line

76 Chapter 4 System Evaluation

(a) (b)
udt
4>

Fig. 4.1 Conceptual diagrams of the CIP method.

becomes an exact solution at one time-step ahead. Solving the wave equation numeri-
cally through the finite dference approximation,the white circle can be obtained after
one time progressed (shown in Figure 4.1(a)). If the values of the wavefield between the
grids are interpolated linearly through values at each grid, the numeritigdidn occurs
shown in Figure 4.1(b). However, if the information of the spatial derivatives was used
at each grid, the numerical dispersion problem and the original shape of the wave packet
can be overcome and kept through the all simulation steps. This is the core idea of the
CIP method, and the values at grids are interpolated using a cubic polynomial (shown in
Figure 4.1(c)).

Solution of 1D CIP method
If values of wavefiledf and its derivative g are known at gridandi — 1 The profile
between two grids can be interpolated using a cubic polynomial.

Fi = ai(x— %)% + bi(x = x)? + Gi(x = x) + db (4.4)

There are four variable§’, g, f" ,g" , between two adjacent grids; and these variables
are determined by four cficientsa;, by, ¢, di. By usingg! which is the diferential

operator of functiorf;(x) . We can obtain the following equations.

Fix) = £ (4.5)

4.1 Applications of numerical simulation 77

dx !

Fi(x-1) = —adx + b AX — glAx+ £ = £
dFi(x

% = 3aAX - 2bAX+ g =g,

When velocityu positive direction(forward propagation), valuei@jirds move to the
profile[i — 1,1] Therefore, the cd@cients of equation can be computed with following
Equations. Herdup=1i-1,D = -AX.

a = gin + ginup + 2(fin - firl]p)

= = (4.6)
3(in, - 1) 290+
'~ D2 T D
dFi(x)
di= f

When velocityu is negative direction(backward propagation), valuegifds move to
the profilef, i + 1]. The codicients can be operated with following Equations.

Fi(x) = f (*.7)
dRi(x) _ o
dx '
Fi(X+1) = &AX® + BAX? + gPAX + " = 7,
F. L
% = 33,A% + 20AX+ ¢ = g,

Hereiup=i+1,D = Ax. Whenu > 0,iup=i-1,D = -Ax, u < 0, and wheru < 0,
iup =i—-1,D = -Ax, u < 0. Therefore, We can operated the wavefield at next time

step + 1) with following Equation, where the grids move along the profile at velocity
UAt. Here, X = —UAL.

78 Chapter 4 System Evaluation

= a X3+ b X%+ g'X + £ (4.8)
gt = 3a X% + 20X + ¢

We summarize the CIP method as follows; the wavefield is interpolated by a cubic
polynomial and it is shifted to the wave propagation directiorujs at each time step.
By computing the Eq 4.7 repeatedly, we can solve the 1D advection equation with CIP
method.

Solution of 2D/3D CIP method
The 2D advection equation is expressed with following Equation.

of af af

Lt u— — =0 4.9
at Yax TVay (4.9)
Where tistime,x,yis 2D Cartesian coordinatekjs wavefield of advection equation,
andAx, Ay is constantu is velocity on the x directiony is velocity on y direction.
By using the method which described on previous section, the profile the wavefield

between these two points can be interpolated using a cubic polynomial as follow.

FOXY) = [(arX+CiY +e) X+ 01Y + (i,)IX+ [(b Y +di X+)Y + f,(i, DY + £, j)
(4.10)
Here,X = X - X,Y = y —y; There are 10 cdicientsay, by, ¢1,dy, €1, f1, 01, f, fy, fy
need to operate.
In the same way, the 3D advection equation is following Equation.
of of of of

U—+V6—y +WE—

it + I 0 (4.11)

By using the same method of 1D , the profile between these two points can be inter-

4.1 Applications of numerical simulation 79

Intermediate
point (k)

Jj-1

i-1 i i+1

Fig. 4.2 The type M CIP method for sloving a 2D advection problem

polated by using a cubic polynomial as follow.

3 3
Fijon) = D0 > D ClmaX'YTZ" (4.12)

3
1=0 m=0 n=0

There are 3 codficients need to operate. We can see the numbers dficieats
increases as dimension increases.

When advection equation is n dimensions, it haa@mber of cofficients, and needs
huge amounts of calculation. For reducing the huge calculation burden, we adopt type
M CIP method to operate multidimensional advection equation [43].

Type M CIP is a amplitude compensation method which is based on the diversion
relation of 1D-CIP method, is applied to the multidimensional CIP calculation method
with directional splitting technique [44]. The diagrammatic drawing of type M CIP
solution is shown in Figure 4.2.

When wavefield moves from Point A to Point B With type M CIP method, the advec-
tion can be realized in two steps:

Step 1: Moving from origin point A to intermediate poinat u speed in x direction.

Step 2: Moving from intermediate poirto terminal point B at speed in y direction.

80 Chapter 4 System Evaluation

By using CIP method which is highly precise with interpolating. Even if it passes
along which course, the symmetry of a solution is held, and the same result is obtained.

Therefore, Eq 4.10 can be split into x, y direction, and solved with 1D CIP computa-
tion on according direction. We can gain the following Equations.

ot ot _

E-FU& =0, f"— (413)
% +V% _0, o (4.14)

Here, we set n time step &, next time isf™!; and f* is intermediate value. Therefore,
we can solve a 2D advection equation as following steps.

Stepl: By using 1D CIP method, we get the solutioh of*/dx through f" and
0f"/0xin the x direction.

Step2: By using 1D CIP method, we get the solutidh!,af"1/agy through f* O
df*/dy in the y direction.

Because of f*/dy, which is necessary in step 2, has not been solved in step 1. Mean-
while, at next time (r1), the step 1 computation also ne2fl' + 1/9x, which has not
been solved in step at n time(step 2) .

For the solution in next step, we solve th&* /dy andd f™?1/9x with upwind method
which is a numerical discretization method for solving hyperbolic PDEs. According to
such a scheme, the spatialfdrences are skewed in the “ upwind” direction, i.e., the
direction from which the advecting flow originates. The origin of the method can be
traced back to the work of Courant, Isaacson et al who proposed the CIR method [45].

Theof*/dy can be solved the follow equation.

oyt - ayfirllj
o fh —o,f". .
R A B e BT (4.15)

AX

4.1 Applications of numerical simulation 81

Advection on x axis

Step | ‘ CIP1D(f;n=>* x)
v
1D Interpolation
LINEAR1D(0yf,n=>* x)
Step I ‘ Advection on y axis ‘

CIP1D(f,*=>n+1,y)

v

1D Interpolation
LINEAR1D(0xf, *=>n+1,y)

Y
N
K >lteration?

Yes

\J

Fig. 4.3 The process flow chart of type-M 2D CIP method

The solution of9 f"*1/0x also can be completed in the same way. The operation flow
of 2D CIP method is shown in Figure 4.3.

Process element(PE) for 1D CIP method
To implement the Process element circuit , wefset Ay = 1 as constant value, and
At = 1. The Equation with 1D CIP method becomes following Equations.

a=g' - gip— 2(f" - fiip (4.16)

82 Chapter 4 System Evaluation

B .y
ij »

af; - { b f——| B

| >

=

Block4 > 2y fiﬁ'ﬂ
o> —

Fig. 4.4 Block diagram of PE for CIP method

b= 3(fi3p - fM+29" + gﬂjp (4.17)
™! = —aw® + bt? - glu + " (4.18)
g™t = 3a” - 2bu+ g (4.19)

We utilize adders, multipliers and bit-shift operators to realize the operation of Eq
(4.16)- Eq (4.19). All ALUs are 32-bit floating-point arithmetic units on IEEE754 stan-
dard. The PE circuit is shown in Figure 4.4.

A PE mainly consists of 4 blocks. Blockl is used to achieve operation of Eq (4.16)
and Eq (4.17) to solva andb. The circuit is shown in Figure 4.4.

The Blockl consists of six add¢ssibtractors, one multiplier and two bit-shift opera-
tor. All operators are multi-pipeline architecture. There, the adder is 13 stage pipeline,

4.1 Applications of numerical simulation 83

13clk 1 Multiplier

Fig. 4.5 The circuit of Blockl

multiplier is 8 stage pipeline. Since of sub-unit for solvanlgas 27 stage pipeline length,
and the sub unit fob has 34 stage pipeline length To implement pipelined architecture
of Blockl, we use 7 stage shift registers to delay outpuat of

The Block2 is a sub process unit for solviogandu® with u(shown in 4.6). The unit
utilizes two multipliers to constitute a 16 stage pipelined unit.

The Block3 solves Eq (4.18)and Eq (4.19). It consist of five adsesractors, six
multipliers and one shift register, and the pipeline length is 35 stage.

We implement parallel computing with Block 1 (which sohgeandb) and Block?2 (
which solves? andu®), the pipeline lengths are 34 stages. The blocks 1-3 compose a
pipelined process unit, which has 69 stage pipeline, and consist of 1Y/ aduteactors,

9 multipliers, 3 bit shift operators.
We also sef\x = Ay = 1 andAt = 1. Eq(4.15) becomes the follow Equation.

g =g + (g -gypu (4.20)

Block4 is a processing unit for solving interpolated equation with upwind method (Eq

84

Chapter 4 System Evaluation

:
1
1

______ r=====9

/ | 34olk !

u Multiplier r-‘;;-‘
M | I

r===== |

1 1

Fig. 4.6 The circuit of Block2

(4.8)); It has 34 stage pipeline, and consist of 2 a@addtractors, 1 multipliers.

Due to type-M CIP method, multidimensional advection can be split into n (n is di-
mension)steps computation which realizes computation of 1D CIP method in each step.
The 2D or 3D wave propagation simulation can be realized through changing input data
to the PE circuit for solving 1D CIP method. Meanwhile, for solving n dimension ad-
vection equation, n-1 numbers of Block 4 need to be implemented on PE. For 2D CIP

method, the PE circuit scale is shown in Table 4.1.

Architecture of hwNet

We realized a hwNet to solve 28D advection equation in type-M CIP method. The

hwNet architecture is shown in Figure 4.9.

e Cache
e Processing elements
e PE Controller

Table 4.1 Circuit scale of 1 PE for 2D CIP

Circuit scale

9,940 [Slices] (35[%] of XC3S4000)

Maximum frequency|

165.3 [MHz]

4.1 Applications of numerical simulation 85

Fig. 4.7 The circuit of Block3

e Buffer Controller
e BRAM & LM controller

The data store unit composes of local memory and cache. The initial data and result
data are stored on local memory. We implemented a high-speed cache with registers and
BRAMs in FPGA to satisfy data inpytsutputs of PE at every clock cycle. One PE of
2D CIP method running at 66 Mhz, needs 1.596/&Bput bandwidth and 779 MB
output bandwidth .

Table 4.2 The circuit scale of hwNets of 22D CIP method

Logic 2D CIP 3D CIP Available
Utilization Used | Utilization | Used | Utilization
Flip-Fliops 14,126 25% 16,813 30% 55,296
LUTs 13,664 24% 16,134 29% 55,296
Occupied Slices 10,877 39 % 12,395 44% 27,648
RAM16 3 3% 4 4% 96

86 Chapter 4 System Evaluation

By > R otaials T
¥ fi 1 \ :_3_4211(__: i B9clk :

D T
s

Fig. 4.8 The circuit of Block4

The controller module of hwNet composes of PE controller, BRAM & LM controller,
Cache controller. BRAM & LM controller module is used to realize yeatde access
to initial value datgesult data among host PC and local memories on PVSs. The Cache
controller is used to read the initial value data in local memory to cache before cal-

Host PC
—— Contorl signal
Local Memory —— Input/output Data flow
(SDRAM) —» PE operation Data flow
Cache BRAM&LM PE
Controller Controller Controller

!

]
[

== CIP1D(PE)

Fig. 4.9 Block diagram of hwNet for sloving 2D CIP method

4.1 Applications of numerical simulation 87

Stateldle Stateldle

K>=Iteration_Count

StatePE

StatePE

K<lIteration K<lIteration

StateWait

K>=lteration_Count

StateEnd

2D CIP Method 3D CIP Method

Fig. 4.10 The processing flow chart of main controller foy2D CIP method

culating, and write the result data in cache to local memory after the computation is
completed.

The PE controller is a main controller module of hwNet for managing the status of
PE and data throughputs between PE and cache. The Figure 4.10 shows the processing
flow chart of PE controller on 23D CIP methods. The circuit scales of hwNets on
hwModule V2 are shown in Table 4.2.

4.1.2 Poisson equation with Jacobi method

A Poisson equation is an elliptic PDE that has broad utility in electrostatics, mechan-
ical engineering and theoretical physics [46], [47]. One of the principle cornerstones of
electrostatics is the formulation and resolution of problems described by Poisson equa-
tion. Eq.(4.21) is Poisson equation apply to electrostatics.

V2 = —p/eo (4.21)

88 Chapter 4 System Evaluation

@ (i,j,k+1)
i B (i-1,j,k)
) - O
@ (i,j-1,k) | ,(;'j 0 @ (i,j+1,k)
) O __________________ WK O
@ (i+1,j,k) i
E ¢(IIJIk-1)

Fig. 4.11 3D collocated grids and computational image.

Here,V? is a Laplace operatop,is charge density is electric potential, ane is the
vacuum permittivity.

Solution of Poisson equation

In a case of 3D space, centralidrence methods with second order accuracy give the
approximations for the 3D collocated grids in Figure 4.11.

The Poisson equation can be solved by using Jacobi method(or Jacobi iterative

method) with approximate operations[54], [55]. A 3D Poisson equation can be
expressed in following common form.

new __ 2 old old
Gijk =~ + (D11 K + sk
old old old old
ikt ikt ke T ¢i,j,k_1)/6- (4.22)

Here,¢; j« is a certain value at grid point, (, k). We refer to the operation as neigh-
boring accumulations. In Eq. (4.22) all grid points only require the accumulation com-

4.1 Applications of numerical simulation 89

putations using the adjacent grid point data. All grid-point operations are independent at
one computation time; consequently, this computation is suitable for parallel execution.
We can use an array of parallel processing elements (PEs) to execute Eq. (4.22) to ex-
ploit these locality and parallelism properties. The PEs are the core components of the
implemented application circuits.

By multiplying 6 and then adding<ﬁ1?_j‘j“*’vkV to both sides of Eq.(4.22), we obtain the
following equation.

new _ ¢ ,old old old
Piiik = @Bl jk + Pirsjk T Dijo1k
old old old new 2

Next, we replace & j?‘l’(V: 2¢?'jdk + di,jk, to achieve the final form of the equation.

new __ old old old old
Giik = (D0 jk + vk + Py T i jeik
old old old 2

In our numerical experiments, the erragy/8 decreased rapidly as expected, and
we obtain the experimental results that are less thafi%a0 Thus, we can transform
Equation (4.22) to Equation (4.24) easily to simplify an arithmetic circuit design.

Architecture of hwNet

We developed a hwNet to solve 3D Poisson problems. Figure 4.12 shows the architec-
ture of application circuits (hwNet) for a Poisson equation on a single PVS. The whole
circuit consists of four major components: PE unit, data storage unit, control unit, and
data communication unit.

We implemented a PE for a 3D Poisson equation shown in Figure 4.13. The PE
contains seven adders, one divider and one multiplier to operate one grid-point with
Eq.(4.23) for single-precision floating-point numbers that comply with IEEE754, the

90 Chapter 4 System Evaluation

4 Host PC
_ Local Memory o
(SDRAM)
v
BRAM and LM Cache PE
Controller Controller Controller
. 4 | |
Adjacent PVS v v
Cache(BRAM -— PE
-—> PE
| I
> | | - PE
hwNet o Hp [PE
A]
[
VI Bus controller
VIBys R Tx/Rx elements - >
“ > Tx/Rx elements VI Bus

Fig. 4.12 Architecture of hwNet for 3D Poisson Equation.

standard for floating-point arithmetic. For additional simplification, the arithmetic cir-
cuits, divider, and multiplier are implemented by bit shifting. In addition, the PE is
pipelined. The pipeline length of the PE is 41 stage, which enhances operational e
ciency and achieves high utilization of arithmetic unit. A PE accounts for approximately
7% on a Xilinx Spartan 3 xc3s4000 FPGA equipped on a PVS.

Due to the circuit scale limitation of the Spartan-3 XC3S4000 FPGA (shown in Ta-

Table 4.3 Circuit scale for 3D Poisson equation

Logic A Process element 3D Poisson(8PE) | Available
Utilization Used | Utilization | Used | Utilization
Flip-Fliops 4,383 7% 36,317 65% 55,296
LUTs 4,107 7% 36,027 59% 55,296
Occupied Slices 3,381 12% 27,646 99% 27,648
RAM16 10 11% 62 64% 96

4.1 Applications of numerical simulation 91

Operation way

n n
10 D

er
SR{| SR SR SR SR|| SR SR BS |x2 !
Ick |

¢".,171,k

1Stage Shift Regist:

Adder: Add
Shift Register: SR
BitShifter: BS

A PE for 3D Poisson Equation

Fig. 4.13 A processing element (PE) of 3D Poisson equation (Left) and parallel op-
eration organization of 8 PEs(Right).

ble 4.3), eight parallel PEs are implemented on a single PVS to solve the 3D Poisson
Equation. The eight PEs are implemented by homogeneously partitioning the entire
grids array as shown in Figure 4.13. Each PE operates sub-grids which are distributed
on a plane. Therefore, the eight PEs are able to process eight sub-girds on eight paral-
lel planes synchronously. We utilized 32 high-speed block RAM (BRAM) modules as
cache to provide dficient inner bandwidth for eight parallel PEs. We implemented a
choice of 66 MHz for an operating frequency on 8 PEs.

The hwNet’'s data storage unit consists of SDRAM and BRAM. SDRAM s local
memory used to store the initial data and the result data, and it allows hwNets access
with a direct memory access (DMA) module via the FIB, which supports burst trans-
mission. There are frequent data exchanges among parallel PEs and memory modules.
Therefore we utilize a significant number of high-speed BRAM modules as cache to
satisfy many PEs. Twelve 32-bit data inputs to 10 PEs at 1 clk proviffeisat in-
ner bandwidth to enable parallel computing on pipelined PEs. The control circuit for
the Poisson equation contains four circuit units: A BRAMandLMController is used to

92 Chapter 4 System Evaluation

control read-write operations for data stored in SDRAM via the FIB; a cache controller
enables high-speed PE cache access. A PE controller enables multiple PEs to operate
application synchronously. The VIBusController: controls data transmission and syn-
chronization of the PVSs.

Data transmission and synchronization among multi-PVSs

In finite difference numerical calculation, data transmission between adjacent PVSs is
necessary when PEs compute the boundary mesh girds. In order to achieve high-speed
data transmission between nearest adjacent FPGAs, we design a transfer data circuit
which is connected via GPIFQ®, 32-bit width, and the data transfer of each way is
independent.

The FPGAs achieve data transmission by using the VI Bus Controller module that
installed multiple VI Bus connectors which implements data transmit elements (Tx ele-
ments) and data receive elements (Rx elements). EagkxTetement comprises multi-
ple TYRx FIFOs. For 3D interconnection, each PVS implements six VI Bus connectors
for six-way data transmission when performing a 3D numerical calculation, as shown in
Figure 4.14.

On the other hand, a synchronization problem witledent clock sources arises from
multiple-device implementation. In our desigrffdrent clock sources are utilized for
different FPGA cards. To address clock signal synchronization problem among FPGAs,
we have utilized delay locked loop digital clock managers (DCM) in each FPGA, the
clock skew and phase divergence among FPGAs carttbetigely improved through
DCMs to achieve synchronization of clock signals.

To implement synchronous operations of multiple PVSs for distributed computing,
we utilize the VIBusController module to achieve a stall mechanism to enable multiple
PVSs to attain synchronous operation of each iteration process. The module causes a
local stall to inner PEs after each iteration, and it outputs a 1-bit End signal (0End) to
all adjacent PVSs via GPIF®s. Until all input End signals (iEnd) from adjacent PVSs
become high andftchip data transmission is completed, inner PEs cannot execute the
next iteration and send a start signal to announce the each boundary PVSs.

4.1 Applications of numerical simulation 93

ViBus_UP ViBus Up 320t VIBus_BACK
_ i)
[VIBus_BACK A 32bit
N
VIBus_LEFT
PVS %’vmus RIGHT
(- 0 =t
/ J VIBus_DOWN ERE Rx | T
VIBus_LEFT T i
ViBus_FRON - < x| i 1] VIBus_|RIGHT
32bit > R VI Bus [ra e
—xT1*>| Controller Cache x <
—=> 15t stage transmission T t T ybit
=—=> 2ndstage transmission I = N
> Out put End signal(oEnd) EREE Lox [R |
> Input End signal(iEnd) A |]
|]
VIBus_Front' Y. v V" 1 ViBus_Down
— 32bit 32bit -

Fig. 4.14 Data transmission and synchronization between adjacent FPGAs

By considering the synchronous operation of a large scale multidimensional FPGA
array, while the data transmission is limited by a 52-bit GRP® port. Therefore, our
system employs a two-stage data transfer mechanism. For example, when PEs oper-
ate a 3D Poisson equation, data transmission works via first stage operation where in
the boundary grids oW IBus FRONT, VIBusRIGHT, andVIBusUP sides are trans-
ferred to adjacent PVSs with corresponding Tx elements. Rx elemeltBus BACK,
VIBUsLEFT, andVIBus DOWN sides receive data from adjacent PVSs via VI Bus.
When a transmission module completes the above operations, the data transmission state
proceeds to stage, which is a backward operation stage. The data flow is opposite to the
forward operation stage. If inner PEs have finished all calculations for all grids in an
iteration process, the VIBusController module enables all PEs to be stall state until all
boundary data has been transferred to adjacent PVSs.

Since the 6-way VIBusController modules require lots of logic sources which consist
of Flip-Flops, LUTs, Slices, especial for BRAMs, there are only up-to 6 PEs can be
realized on a Xilinx Spartan-3 XC3S4000 FPGA which implements on a PVS. The Table
4.4 shows the he circuit scale hwNet with 6-way data communication for solving 3D

94 Chapter 4 System Evaluation

Table 4.4 The circuit scale of hwNet with data communication for 3D Poisson equation

Logic 3D Poisson(6PE)
Utilization Used | Utilization | Available
Flip-Flops 30,237 54% 55,296
LUTs 31,636 57% 55,296
Occupied Slices 25,953 93% 27,648
RAM16 84 87% 96

Poisson equation.

HwNet design on Xilinx Virtex-7 XC7V2000t

Since Xilinx Spartan-3 XC3S4000 FPGA was released in 2008, was only equivalent
to four million ASIC gates for a 90-nm process. In our design, only 6 PEs can be im-
plemented on a Spartan-3 XC3S4000 FPGA for solving 3D Poisson Equation. The peak
performance of a circuit can be calculated in follow equation.

Fpeak= N x F x OF. (4.25)

Where,Fpeakis the peak performance of an FPGWjs number of PESE is number
of floating point arithmetic units in a PEF is PESs’ operating frequency. When using a
Spartan-3 XC3S4000 FPGA, one FPGA can achiey@®6 MHz = 3.56 GFlops.

With the development of semiconductor technology, circuit scale of new generation
high-end FPGA was increased readily. For instance, Xilinx Virtex-7 XC7V2000t FPGA,
a 28-nm process high-end FPGA which was released in 2012. The Table 4.5 shows spec-
ifications of Xilinx Virtex-7 XC7V2000T and Spartan-3 XC3S4000 FPGA. Compared
to used Spartan-3 XC3S4000 FPGA, the flip-flops (FFs) of Xilinx Virtex-7 XC7V2000T
improved 44 times, and Block RAM improved 26.9 times. When using the new genera-
tion high-end FPGA, more PEs can be implemented on single high-end FPGA.

We also design a hwNet which realizes 192 PEs on a Xilinx Virtex-7 XC7V2000t
FPGA to solve 3D Poisson equation with the similar design method. The parallel op-

4.1 Applications of numerical simulation 95

Table 4.5 The specifications of Xilinx Virtex-7 XC7V2000T and Spartan-3 XC3S4000 FPGA

FPGA Spartan-3 XC3S4000 FPGA Virtex-7 XC7V2000T
Slices 27,648 305,400
Logic cells 62,208 1,954,560
CLB Flip-Flops 55,296 2,443,200
Maximum Distributed RAM (Kb) 432 21,550
Total Block RAM (Kb) 1,728 46,512

eration organization of 192 PEs are shown in Figure 4.15. In order to control 192 PEs,
we use 6 PEs as a Block processor(BP), and each Block processor opesdat&g6.0
grids. We implemented>#x2 BPs, which can operates>@0x12 grids, on one Xilinx
Virtex-7 XC7V2000T FPGA.

The Figure 4.16 shows the hwNet architecture on Xilinx Virtex-7 FPGA. In the de-
sign, a logical 3D mesh network interconnections among BPs was mapped on 2D layout
of FPGA. Each BP consists of a PE controller, 6 PEs and a corresponding custom cache

A A
. . . ; o ;
- .-
e
Y Y gy
Has e e
)) Y Y
- s - s
Ay vy gy
= = = e
e
Sub Computation domain ;%?“
(10x 10 xp6 grids) g!
‘/ Block Processol
d

o\
m

Computation domain
40 x 40 x 12 grids

Fig. 4.15 Parallel operation organization of 192 PEs.

Chapter 4 System Evaluation

96

SDRAM

VCBus Controller

’

Miain Controller

SDRAMController > Cache &M Controller Block processor Controller
Process units] W
Block-Processor
PE PE PE PE BP PE PE
Controller Controller Controller Controller Controller Controller Controller
(3.0,0) (3.1,0) (320 (30.1) (3.1.1) (3.2.1) (33.1)
- — P e P [Pe
L[PE . PE L__PE . PE L[__PE L[__PE
Cache [—+ _ PE Cache [—+__ PE Cache [~—| _ PE Cache Cache [— PE Cache [PE Cache Cache [PE
(Block [PE (Block |— PE (Block |-— _ PE (Block (Block |— PE (Block |-— __ PE (Block (Block | _ PE
RAM)] PE RAM)] PE RAM) o] PE RAM) RAM) fe—s] PE RAM) o] PE RAM) RAM) o] PE
—{ PE —_ PE —{__PE —__PE —{__PE —{__PE
PE PE PE PE PE PE PE
Controller Controller Controller Controller Controller Controller r Controller
(20,0) (2.1,0) (220) (23.0) (2.0,1) @11 (2:3,1)
- . P - e [Pe e [Pe
L[PE . PE L[__PE L[PE . PE L PE . PE L[__PE
Cache [+ _ PE Cache [— _ PE Cache [_ PE Cache —_ PE Cache [—|__ PE Cache [+ _ PE Cache [+ PE Cache [PE
(Block [PE Block | PE (Block |—| PE (Block [PE (Block |—| PE (Block |—| PE (Block | PE (Block [PE
RAM) " PE RAM) [PE RAM) l—pE RAM) | PE RAM) | PE RAM) L—pE RAM) [P | RAM) l—"pE
P PE [PE —{ PE [PE [PE —{ PE [PE —{ PE
PE PE PE PE PE PE PE PE
Controller Controller Controller Controller Controller Controller Controller Controller
(1.0,0) (1,1,0) (1.2,0) (1,0,1) (.11 (1.2,1) (1.3,1)
e T —[__PE] PE T —[__PE T —[__PE
Ll PE L PE Ll PE L.l PE L PE Ll PE L PE Ll PE
Cache [+ PE Cache [+ PE Cache [« PE Cache [+ PE Cache [+ PE Cache [+ PE Cache [+ PE Cache [« PE
(Block [PE (Block [PE (Block |—| _PE (Block [PE (Block | PE (Block |—| _PE (Block | PE (Block [PE
RAM) L—{PE RAM) L—PE RAM) f—PE RAM) —{PE RAM) |—PE RAM) f—PE RAM) f—PE | RAM) | PE
- PE - PE —{__PE - PE [PE —{__PE | PE —{__PE
PE PE PE PE PE PE
Controller Controller Controller Controller Controller Controller
(0.0,0) (0.1,0) (0.2,0) (0.0.1) 0.1.1) (0.3,1)
— T] PE — — - — —
L. PE L. PE L__PE L. PE L PE L PE L__PE
Cache (— PE Cache [+ PE Cache [~ PE Cache [— PE Cache [PE Cache [~ PE Cache [PE Cache [~ PE
(Block [PE Block [PE (Block |—| PE (Block [PE (Block | PE (Block |—| _PE (Block [PE (Block [PE
RAM) L PE RAM) L PE RAM) f—PE RAM) L PE RAM) |—pE RAM) f—PE RAM) [—"PE | RAM) | PE
- PE - PE —{__PE - PE - PE —{__PE | PE —{__PE

VIBus _Controller

ViBus_Connector
(Up)

ViBus_Connector
(Down)

ViBus_Connector
(Left)

ViBus_Connector
(Right)

ViBus_Connector
(Front)

(Back)

ViBus_Connector

Tx Rx
element element

Tx Rx
element element

Tx Rx
element element

Tx Rx
elment elment

Tx
element

Rx

element element

Tx

Rx
element

Fig. 4.16 The architecture of hwNet on Xilinx Virtex-7 XC7V2000T FPGA

1Block ProcessoBbPES.

3D(logical network) to 2D(layout)

4.1 Applications of numerical simulation 97

Table 4.6 The circuit scale of hwNetX4x2 Block processors(BPs)192PEs) for
3D Poisson equation on a Virtex-7 XC7V2000t

Logic 3D Poisson(192PEs
Utilization Used | Utilization | Available
Number of Slice registers 942,427 38% 2,443,200
Number of slice LUTs | 886,868 72% 1,221,600
Number of bonded IOBg 452 37% 1,200
Number of Block RAM 799 61 % 1292

(Block RAMs) simultaneously. The PE controller can manage computing status of 6 PEs
and data communication among inner PEs and cache on each BP. The BRAM&LM con-
troller was used to write initial data, which stored in SDRAM, to each block processor,
or read result data on each cache of block processor to SDRAM. The Block proces-
sor controller was mainly used to start up or stall the block processor array. The data
communication among inner Block processors in a 3D mesh network are realized via di-
rected links. We realized same data communication mechanism among adjacent FPGAs
to hwNet on Spartan-3 XC3S4000 FPGA with a VIB@sntroller module. Through the
synthesis process optimization by ISE’'s XST (Xilinx Synthesis Technology), the design
hierarchical of the modules are flatten. The circuits scales of the hwNet is shown in Table
4.6.

We implements a hwNet composes 0f4k2 BPs= 192 PEs on a Xilinx Virtex-7
Xc7v2000t FPGA, to realize 863 GFlops at 500 Mhz(which can be realized on some
examples design). Meanwhile, wher4&3 BPs= 288 PEs cannot be implemented on
a Virtex-7 xc7v2000t FPGA , since its circuit scale limitation, slice LUTs utilization will
be 112%, over 100%.

In order to implement more PEs on a chip, we improved the hwNet design, to reduce
utilized circuits scale. We tested a improvement approach, to combined two intrinsic
block processors on the z axis way as a new Block processor, which consists of 12 PEs
and operates 21 0x12 grids as a decomposed sub-computation domain. For instance,
BP(0,0,0) and BP(0,0,1) was combined as a new BP(0,0). It can be deem that a logical

98 Chapter 4 System Evaluation

Table 4.7 The circuit scale of hwNetX4 Block processorsl92PEs) for 3D Pois-
son equation on a Virtex-7 xc7v2000T FPGA

Logic Top module| BP(12PEs)| hwNet(192PEs)
Utilization used Utilization | Available
Number of Slice registers 3,609 53,564 | 860,633 35% 2,443,200
Number of slice LUTs 695,596 43,108 695,596 57% 1,221,600
Number of bonded IOBs 452 0 452 37% 1,200
Number of Block RAM 31 48 799 61 % 1292

2D mesh computing network was mapped on the physical 2D network. Because of ISE’s
XST optimizes circuit to flatten the design hierarchical of BP module. We improved
the hwNet design through the black box design method of FPGA, to maintain the BP
module’s boundaries design and avoid to be flatten design hierarchical of the BP module
by XST(Synthesis Technology) optimization.

In the improved design, the BP module was designed as a black box model, so we
can directly utilized the generated net list (NGC) file of the BP module to avoid the BP
module was optimized by synthesis process. The hierarchical of BP module can be kept
in the design. The overall hwNet' circuit scale can be calculated based on the circuit
scale of top module of hwNet and BP module. The improved hwNet architecture was
shown in Figure4.17, and the BP module (Black Box), the Top module of hwNet and the
improved hwNet'’s circuit scale were shown in Table 4.7.

For conveniently describing two designs, we named the former hwNet design as
3Dto2D hwNet, the latter as 2to2D hwNet. Compared to the circuits scale of the
two hwNet, the utilization of slice registers was down 3% (from 38B&(2D) to
35%(2Dto2D)), the utilization of the slice LUTs was down 15% (from 729%¢82D)
to 57%(2Dto2D)). We can see the resource usage of slice has k&ectieely reduced,
and more PEs are able to be implemented on the Virtex-7 XC7V2000T FPGA.

Meanwhile, see from the results, in th®t®2D hwNet design, a logical 3D mesh
network was implemented on a physical 2D layout, thus implementation loss and rout-

4.1 Applications of numerical simulation

99

Block Prpcessar

(BP)

SDRAM

VCBus Controller

'

Miain

Controller

SDRAMController

Cache &LM Controller

Block processor Controller

Process units

- -

PE PE PE PE
Controller Controller Controller Controller
(0.3) (13) (23) (33)
PE — PE — PE PE
PE . PE PE b— PE
(I PE [PE |I— PE |I— PE
Cache PE Cache PE Cache PE Cache PE
(Block PE (Block PE (Block PE (Block PE
RAM) [T~ PE RAM) [T PE RAM) PE RAM) [T PE
(SN PE b— PE PE b— PE
A PE R PE A PE R PE
[— PE [S— PE PE [S— PE
(SN PE (S PE PE (S PE
— PE — PE PE " PE
—= PE — PE PE — PE
PE PE PE PE
Controller Controller Controller Controller
0,2) (1,2) 2.2) 3,2)
PE — PE — PE PE
PE . PE PE b— PE
(I PE [PE |I— PE |I— PE
Cache PE Cache PE Cache PE Cache PE
(Block PE (Block PE (Block PE (Block PE
RAM) [T~ PE RAM) [T PE RAM) PE RAM) [T PE
(SN PE b— PE PE b— PE
A PE R PE A PE R PE
[— PE [S— PE PE [S— PE
(SN PE (S PE PE (S PE
— PE — PE — PE — PE
—= PE — PE PE — PE
PE PE PE PE
Controller Controller Controller Controller
0.1) (1.1 @1) (1)
PE — PE — PE PE
PE PE PE (U PE
— PE b PE — PE — PE
Cache [, PE Cache [, PE Cache PE Cache [, PE
(Block PE (Block PE (Block PE (Block PE
RAM) [~ PE RAM) [PE RAM) [~ PE RAM) [~ PE
(SN PE b— PE PE b— PE
A PE R PE A PE R PE
[— PE [S— PE PE [S— PE
(SN PE (S PE PE (S PE
— PE — PE PE " PE
— PE [— PE PE [— PE
PE PE PE PE
Controller Controller Controller Controller
(0.0) (1,0) (2.0) (3.0)
PE — PE — PE PE
PE PE PE PE
— PE — PE — PE — PE
Cache PE Cache PE Cache L Cache PE
(Block PE (Block PE (Block PE (Block PE
RAM) [~ PE RAM) [PE RAM) [~ PE RAM) [~ PE
(SN PE b— PE PE b— PE
PE PE PE PE
[— PE [S— PE PE [S— PE
(SN PE (S PE PE (S PE
— PE — PE PE " PE
—= PE — PE PE — PE
VIBus _Controller
ViBus_Connector ViBus_Connector ViBus_Connector ViBus_Connector ViBus_Connector ViBus_Connector
(Up) (Left) (Right)
Tx Rx T Rx Tx Rx Tx Rx T Rx Tx Rx
element element element element element element elment elment element element slement element

Fig. 4.17 The hwNet architecture on Xilinx Virtex-7 XC7V2000T FPGA.(1Block
Processoe 12PESs)

100 Chapter 4 System Evaluation

ing problems has been seen in the case, compared tdw2R2 hwNet design . We
speculate the cause is that the synthesis process of ISE is incapable of optimizing the 3D
network algorithm, led to the optimized synthesis cannot do anything to minimize the
interconnection among BPs on a 2D layout FPGA.

4.2 Performance evaluation and discussion

4.2.1 Experimental environment and comparison object

We implemented 1D, 2D and 3D advection equation with CIP method, and 3D Poisson
equation with Jacobi method on our HPC system. As one of comparison objects, we also
operate the same calculation with general processor. The experimental environment is
shown in Table 4.8.

Table 4.8 Desktop computer Specifications

CPU Intel Core i5 750 (2.53[GHz])
Mian Mem | DDR3 SDRAM PC3-10700 4[GB]
Mother board Gigabye GA-P55M-UD2
(O] Windows XP Professional SP3
Compiler Borland C++Builder 2006

4.2.2 Evaluation of advection equation with CIP method

We implemented a operation circuit for sloving 1D, 2D and 3D advection equation
with CIP method with an FPGA on hwModule V2. Because of hwModule V2 and PVS
equip the same Xilinx Spatran-3 XC3S4000 FPGA. The hwNet on hwMoule V2 can be
easily ported to PVSs on FPGA array. As comparison objects, we also solving the same
problem with Core i5 CPU. Through measure the computation time, we can evaluated
the practical floating-point performance as following equation.

4.2 Performance evaluation and discussion 101

Table 4.9 Performance of 1D CIP(GFLOPS)

Iteration 10° 10 10° 10°
FPGA (1PE)| 0.197| 0.817| 1.353| 1.392
CPU (1Core)| 0.203| 0.202 | 0.200| 0.200

_N><P><I

F
T

(4.26)

There,F is practical floating-point performancld,is computational domain siz€,is

number of operator units, | is iteration number.

m 1D CIP method We solved 1D wave a propagation problem with CIP method by
using a processing circuit on FPGA at 66 MHz. Meanwhile, we also solved the same
computation with CPU as the comparisons. The computational domains of FPGA, CPU
are a 1D space which composed of 512 girds. Through measuring the calculation time,
the performances were evaluated at 01 Iterations respectively, shown in Table 4.9
and Figure 4.18.

18

1.
6 P L T pp—— Heooo= [y ¢

14 & === FPGA(1PE)

1.2 /
1 === CPU(1Core)

e

0.6 / == Theoretical peak
performance of

0.4
/ FPGA(1PE)
0.2 L} i i

1073 10n4 1075 10”6

Fig. 4.18 Performance of 1D M-type CIP method

102 Chapter 4 System Evaluation

Table 4.10 Performance of 2D CIP(GFLOPS)

Iteration 10° 10 10° 10°
FPGA (1PE) | 0.222| 1.057| 1.548| 1.627
CPU (1Core)| 0.494 | 0.495| 0.493| 0.495

As iteration increased, the performance enhanced, and was asymptotically stable at
1.9 GFlops performance. This is because data communication and control cost among
FPGA and host can be hidden in computing time as iteration increased. The performance
of FPGA can achieves 95% of the processing circuit’s peak performance (1.53 GFlops).
While CPU performs about 200 MFlops of performance, almost have not unchanged
over iterations.

m 2D CIP method We solved the 2D advection equation with CIP method by using an
FPGA. The computational mesh of FPGA composes of 6= 256 grids. Meanwhile,

we also solved the same computation with Core i5 CPU. The computational domain of
CPU is same to FPGA, is 1616 = 256 grids, The evaluated performances are shown
in Figure 4.19 and Table 4.10. We evaluated the total computing time of FPGA, CPU

18
=D o

1.6 — FPGA(1PE)
1.4 /.’
1.2 /

) // —f— CPU(1Core)
1
08

06 / = 3(= Theoretical peak
/ performance of
0.4 ,1 = = = FPGA(1PE)
0.2
0 T T T
1073 1074 1075 1076

Fig. 4.19 Performance of 2D M-type CIP method

4.2 Performance evaluation and discussion 103

Table 4.11 Performance of 3D CIP(GFLOPS)

Iteration 10° 100 10° 10°
FPGA (1PE)| 0.278| 1.218| 1.827 | 1.916
CPU (1 core)| 0.596 | 0.583| 0.579| 0.590

at different iterations. Figure 4.19 and Table 4.10 shows that results calculating the
advection equation in two-dimensional mesh. As iterations increased, the control and
transfer cost can be hidden, the performance of FPGA enhanced. The FPGA performs
1.627 GFlops performance, achieved 94% of peak performance (1.732 GFlops). While
one core of CPU performs steadily about 490 MFlops fiecént iterations.

m 3D CIP method The results of calculating the advection equation in three-
dimensional cuboids space were shown the Figure 4.20 and table 4.11. The computa-
tional domains of FPGA and CPU were a 3D cuboids which composedxob % 6.

As well as 1D, 2D problem, the 1PE of FPGA can performs 1.916 GFolps of actual
performance after Witerations or so. Thefective performance achieved 99 % of
1.93 GFolps of peak performance. One core of CPU (Intel Core i5) performs about 590

2.5

==@== FPGA(1PE)

15 / == CPU(1Core)
1
/ = (= Theoretical peak
performance of
— L s u FPGA(1PE)

0.5 /

1073 1074 1075 1076

Fig. 4.20 Performance of 3D M-type CIP method

104 Chapter 4 System Evaluation
18000
16000
14000
12000
M Flip-Flops
10000
8000 - M LUTs
6000 -
Occupied
4000 - .
Slices
2000 -
0 .
1DCIP 2DCIP 3pciP
Fig. 4.21 Change of circuit capacity as the dimensions of operation domain increases

MFlops of performance for computing 3D CIP method.

Through the results of multidimensional advection equation with CIP method. The

results shows that the processing circuits on an FPGA are [figieacy, can achieve

more than 90% of peak performances. One PE on FPGA running at 66 Mhz can achieves

higher performance than 1 core of Core i5.

From Figure 4.18 - 4.20, when computational domain ascended each dimension, the

arithmetic circuit performance enhanced about 18% in the case for solving advection

equation with type-M CIP method. The arithmetic circuits on FPGAs are composed

Table 4.12 The required number of input variable, ALU and BRAM on a PE on
different operation domain dimensions

1D CIP PE| 2D CIP PE| 3D CIP PE
Number of variable 5 9 13
Number of ALU 22 26 29
Number of BRAM 2 3 4

4.2 Performance evaluation and discussion 105

of amounts of FFs(flip-flops), LUTs, Slices and BRAMs. As computational complexity
increased, the arithmetic circuits scale was bound to increased to meet the computational
requirements.

Meanwhile, Figure 4.21 also shows the changes of arithmetic circuit scale for solving
the advection equation with CIP method as each dimension of computational domains
increases. And Table 4.12 shows change of number of ALUs on one PE as input variable
increases. Whenever ascending a dimension of computational domain, the utilized cir-
cuits resources (Flip-flopd_UTsOSlices) enhanced about 35% to satisfy the computing
requirements.

Comparing the both changes between performance and circuits scale, we can see the
rates of circuits scale increase are higher than rates of performance enhance when com-
putational complexity increased. There are several main factors to cause the condition.
As the computational complexity increased, the arithmetic-logic units(ALUS) on process
element(PE) and PE’s pipeline stage increased. Meanwhile, to keep the pipelined archi-
tecture of the PE, we need to utilize more FIFOs to adjust timing among joptpsits
of ALUs.

Moreover, when dimensions of computational domain increased, there are more vari-
ables need to be inputted to the Processing element. This implies that data communica-
tion between data ltiers and main arithmetic circuits becomes more complicated, and
causes cache-control and other peripheral control circuits become enlarged.

4.2.3 Evaluation of Poisson equation with Jacobi method

Performance of 1PVS
The example circuit for a 3D Poisson equation was designed a sample benchmark to
evaluate the performance of an FPGA array. We solved 3D Poisson equation problem
with an FPGA Board (PVS); Thus, eight PEs can compute a cubical spaced048
grids at 66 MHz. The same computation was operated by Core i5 CPU for comparison.
In comparison, six PEs on 1PVS to compute cubical space 16 grids at 66
MHz. The floating-point performance of a PVS can be calculated to measure the exe-

106 Chapter 4 System Evaluation

Table 4.13 Execution time and performance for 3D Poisson Equation on 1PVS

Core i5(1 Core)| 1PVS (6PE)| 1PVS (8PE)
Iterations 10° 10° 10° 106° 10° 10°

Execution Time [s] | 21.9| 2,187.39| 1.60 | 155.34| 1.57 | 152.34
Performance [GFlops] 0.33 0.33 3.37| 3.47 | 457| 4.72

cution time of diferent iterations. Table 4.13 and Figure 4.22 show the floating-point
performance for the 3D Poisson equation with six PEs and eight PEs. As the number
of iterations increased, the real performance (4.72 GFlops) of 1 PVS approached the its
peak performance, which was 4.79 GFlops at 66 MHz. The results shows that 1 PVS
(8PESs) can realized up to 14.3 times speedup than 1 core of CPU.

Performance of FPGA array

In many parallel and distributed systems, the time cost of communication among com-
puting nodes is sizeable fraction of the total time needed to solve a problem. To develop
insight into our experimental results, we made reference to [52], [53], and develop a
simple analytical model of application sensitivity to communication overhead. We can
think of the executionféiciency as the ratio:

Performargce[GFIops]

4.i //'_'
a5)/ .

3 / =0==CPU(1 core)
2.5 / == 1 FPGA((SPE)
2 / 1FPGA(6PE)

1.5
i /
0.5 . 2 ’ e 2
V v hd hd hd v
1

0 T T T T T 1 |teration
103 1074 1075 106 107 1078

Fig. 4.22 Performance of 1 PVS for 3D Poisson equation

4.2 Performance evaluation and discussion 107

T
EE — _ComP

= 4.27
TroTaL ()

whereTroTaL IS the time required by the algorithm to solve the given problem, and
Tcowmp is the corresponding time that can be attributed just to computation, that is, the
time would be required if all communication were instantaneous. The time analysis is
significant for a distributed system because of it is directly related toffivgegcy of the
system. In general, the computation time of a distributed system includes the evaluation
time, and the communication time as following equation.

TroraL= Tcomp + Ton = Tcomp + Tcomu — ToL + T4 (4.28)

Where, Tcomu is the data communication time among computing nodgg,is the
overlap time among computation and data communicaiigims delay for synchronous
operation and control. The communication overhéad = Tcomu — ToL = Ttotal —
Tcomp — Tg. In our system, the synchronous tirig can be negligible. Assuming that
the environment is homogenous, then

Dt,

Tcomp = - (4.29)

wheret, is the time to evaluate one individual (a grid) aDds the computational
domain for an FPGAP is the number of PEs on one FPGA.

The communication time can be divided into three parts: queuing time, transmis-
sion time, propagation time. To analyze communication issues, it is helpful to view the
distributed computing system as a network of computing nodes connected by communi-
cation links. We thus arrive at the following equation for the data communication time
in a link:

Tcomu =P+ AL+ Q, (4.30)

whereP is the processing and propagation tindejs the amount of transfer data (or
number of bytes) antd is the time cost of single data, aQilis the queuing time.

108 Chapter 4 System Evaluation

In our system, we can reasonably assume that the processing and propagation time on
a given link is constant, and the transmission tiésteis much larger than the processing
and propagation time. The transmission time is proportional to the number of length
of the packet, propagation time and queuing time can be negligible, we can roughly
considerMcomu = Ate.

The Eq 4.27 can be changed as

Tcowmp Dtp/P

EF = - :
Tcomp+ Tcomu — ToL+Tqg Dtp/P+Ate —ToL + Ty

(4.31)

The communication overhead is the key factor fi@et the distributed system’s per-
formance. Therefore, we designed a test vehicle with six PEs and six-way data com-
munication circuits in each PVS for multidimensional connection FPGAs. The six PEs
execute the operations on thextl® x6 sub-grids for which the data communications of
10x 10 and 1& 6 planes are required. The execution and data communication are also
processed at 66 MHz. The synchronous data transmission among FPGAs is described in
previous chapter. The exchange data quantity in all six directions varied. To verify the
effect of exchange data quantity on the data communication overhead in 3D-connection
FPGAs, we used a 1D FPGA array to evaluate the data communication overhead time
among JO connections in each direction (X, Y, Z-axis). In each 1D FPGA array, 3D
Poisson equation is calculated with one data transmission from three direction’s at 10
iterations, as shown in Table 4. The execution times were measured with and with-
out the data communications, and the communication overhead time along X-axis was
26.73 - 1643 = 10.3se¢ 1017secfor the Y-axis, and 184secfor the Z-axis. The
results in Table 4 indicate that the data communication overhead is approximately linear
with respect to the size of the data communication plane.

Table 4.14 shows the required data communication overhead between adjacent PVSs,
where the 3D Poisson equation witkk2 PVSs was evaluated (Figure4.23). We im-
plemented 2 2 PVSs, i.e., 24(% 2 x 6) PEs, to calculate the 3D Poisson equation.

We also evaluated execution time fox2PVSs without communications, when the 3D
Poisson operations on each PVS are independent. Table 4.15 shows the communication

4.2 Performance evaluation and discussion 109

’)

Fig. 4.23 A 2D FPGA array (22) PVSs for 3D Poisson equation.

overhead time 2606 — 16534 = 98.72secfor full 2D data communications with adja-

cent PVSs. The performance o2 PVSs without and with data communication was
13.05 GFlops and 8.18 GFlops respectively. When calculating the 3D Poisson equation
with a 3D FPGA array, adjacent PVSs achieve the data communicationsdiQplane

via the Z-axis (Up~Down) connection. Therefore, we roughly estimated the 3D data
communication overhead as.98x (10x 10)/(10x 6) = 16453sec We estimated it in

this manner because the QL0 plane replaces the X06 plane as a bottleneck for the
calculation interval.

We also calculated the 3D Poisson equation with a 3D FPGA ark@x2 PVSs
implemented at 22x2x6 = 48 PEs) and evaluated the communication overhead(show
in Figure 4.24).

The results are shown in Table 5. The2x2 PVSs performs 25.63 GFlops without
communication and 12.46 GFlops with communication. The communication overhead
time among 2x 2 x 2 PVSs is 34616 — 16854 = 177.92sec The measured value
(177.92seq is approximately the same as the estimated value for the communication
overhead (165%3seq, with an 8% error. Moreover, for the Poisson calculation, when the
internal grids were increased, the data communication ratio decreased. Based on these

110 Chapter 4 System Evaluation

Table 4.14 Execution time and data communication among 3D connection for 3D
Poisson Equation.(Ex Time Execution Time, Iteratioa10’)

Transmission X-axis way Y-axis way Z-axis way
direction (Front-Back) | (LefteRight) | (Up<~Down)
Exchange Data | 4 ¢ 10x 6 10x 10
Plane
Ex Time with 26.73 26.52 35.34
Communication [s]
Ex Time without 16.43 16.35 16.9
Communication [s]
Communication
Overhead [s] 10.03 10.17 18.44

results, the performance ok8 x 4 FPGAs can be estimated; 128 FPGAs implemented
at 8x4x4x6 = 768 PEs with communications can achieve 199.36 GFlops. It is possible
to work at 500 MHz for high-speed operation. Thigeetive performance of system
(8x4x4 FPGAS) can be expected to realize 1.5 TFlops performance running at 500 Mhz.

Fig. 4.24 A 3D FPGA array (22x2 PVSs) for 3D Poisson equation.

4.2 Performance evaluation and discussion 111

Table 4.15 Execution time and performance for 3D Poisson Equation onx2D(2
PVSs) and 3D(2x2 PVSs) FPGA arrayk : without communicatiorQO : with
communication)

2x 2 PVSs 2x2x2PVSs
Communication Availablg x O X O
Iterations 10° 1¢° 106° 10°

Execution time [s] 165.34 | 264.06| 168.54 | 346.46

Performance [GFlops] | 3.26 8.18 | 25.63 | 12.46

4.2.4 Discussion of the distributed system

In our experiments, 3D Poisson equation was solved with a 3D FPGA array which
consists of 2x2 PVSs.

We used a fundamental transfer and synchronization mechanism to implemented data
communication among FPGA via 3D directed connection. In this case, the data commu-
nication among FPGAs was realized via direct six-way connections , the figure 4.25 is
the simulated time chart which shows computation and data communication on one chip
of 3D FPGA array in the prototype design.

And data transmission and data reception in each link was completed respectively with
two stages at each iteration computation. The data communication time in each link can
be consider tAcomu = Ts1 + Ts2, WhereTs; andTs,; was required process time at two
communication stage. The executidii@ency Eq. 4.31 can be expressed as following:

3 Tcomp
Tcomp+ Ts1+ Ts2 = ToL + Ty

EF (4.32)

In a time step, considering the pipeline length can be hidden as iteration increases,
and each PE operates a sub-block which consists @01 grids, soTcomp could
be considered 2010 clk. The data communication on 1st stage can be overlapped to
computation, the overlap timéy_ can be roughly considered T, = Ts1. And the
data communication in links on z-axis way became the bottleneck of data transfer, so the
data communication overhead Wesy = Tg1 + Tso — ToL = T2 = 100clk. Based on

112 Chapter 4 System Evaluation

10CLK 100CLK 200CLK

Cal
Tx Front ‘ ‘
Back ‘ ‘
.t EEEEDE DN
Right ‘
Vo
Down

X Front ‘ ‘
Back
Left ‘ ‘
rgnt J 000000000 ‘
upP
Down ‘ ‘

Cal Time Tx Time: Rx Time Idle Time

Fig. 4.25 Time chart of one FPGA on 3D FPGA array in a time step

the analysis of the existing design, we can predict the execuffimreacy with Eq 4.32.

The evaluated value offéciency is about 50%. Meanwhile, based on measured results
shown in Table 4.15; the practical executidfigencyEF = 16854s/346s = 48.7%,

with an 5.2% error. The results shows that design value of the system was realized.

However, the implemented data communication mechanism in this caséicany,
but it can provide steady data communication in the prototype design stage. By analyzing
the computation and data communication situation in the worse case, it is easily to find
the ways to improve the system performance.

The results show the data commutation overhead among FPGAs became the perfor-
mance bottleneck of FPGA array in the case. By reducing the communication overhead,
the computationalféciency of FPGA array can improved. Several the most important
factors that influence the communication delays are the following:

4.2 Performance evaluation and discussion 113

Table 4.16 The predicted computationiil@ency as computational domain size increase

Computational domain sizg¢ 53 10° 20° 40°
Data communication size | 5° 10° 207 407
Computational fiiciency[%] | 45.45| 62.50 | 76.92 | 86.95
Computational domain size 80° | 16C¢° | 320° | 640°
Data communication size| 80 | 160° | 32¢° | 640

Computational fliciency[%] | 96.38| 96 98 99

Computational domain size

In general, the computational domain size has a huge impact on exedtit@ney of
a distributed system. It is commonly known that communication overhead for domain-
decomposition can be hidden through overlapping communication with computation
when a problem size is ficiently large. We assume that a decomposed sub-block of
NxNxN grids has fkNxN complexity for computation while an exchange of bound-
ary data has MN complexity. Then parallel computation with a 3D direct connection
can scale as long as the communication overhead is hidden. In the prototype design for
solving poison equation, the computationgii@encyE F can be calculated as following:

EF = Tcomr _ N3/P
TCOMP + TOH Nstp/P + Nztc

(4.33)

there, the number of PE® = 6, andt, = tc. The Table 4.16 and Figure 4.26 shows
the changed trend of computation#ligiency as population sizBf) changes.

By increasing the computational domain size, the data communication overhead can
be dfectively improved. Because of a PVS has two 16 MB SDRAM as local mem-
ory, which can stores»8L0° number of single precision floating-point data. It means
that there are ¥10° number ofp and¢ can be sorted at local memory separately. The
maximum computational domain sizes of single PVS werex 8388 x 158 grids, the
execution €iciency is 96.34%. It can be estimated that a PVS on a 3D FPGA array can
realize the 3.33 GFlops equivalent performance.

114

Chapter 4 System Evaluation

(%)
100%
90%
80%
70%
60%
50%
40%

30%

Excution efficiency

/

4///"'

/

== Execution

Ve

efficiency

/

'Y

Computational

5~3 1073

2073

4073

do[nain size

T
803 16073 32043 (8rids)

Fig. 4.26 The predicted computationdlieiency as computational domain size increase

Operation and communication frequency

The communication frequency influences the data bandwidth in each link, and deter-
mines the communication time from nodes to other nodes. For the distributed system
in general, the frequency is very important since the node rely very much on boundary

information that is communicated among nodes.

We assumd, is communication frequency, arfd is operation frequency of PE, and

the frequency ratio i& = fc/fy, = tp/tc; The Eq. 4.33 can be expressed in following

form:

EF = =
1};ohﬂp-+ T})H [)/F’ﬁ-/\/(l

Tcomp

b/P (4.34)

In this case design for solving 3D Poisson equatidr, 10x10x6, P = 6, A = 10x10;

4.2 Performance evaluation and discussion 115

Table 4.17 The predicted computationéli@ency as frequency rati@ of commu-
nicatiorfcomputation increases.(Computation domain of a PVS consistsof0R 6

grids)
Frequency ratio 53 10° 20° 40°
Computational liciency[%] | 45.45| 62.50 | 76.92 | 86.95
Frequency ratio 80° | 160° | 32C¢° | 64C°
Computational fliciency[%] | 96.38 | 96 98 99

and the operation and communication frequency were same at 66 Mz 90 Table
4.17 shows the variation trend of computation@lcgency of an FPGA array when only
enhance frequency ratioof communicatiofcomputation.

The communication frequency is usually much faster than processor in practice im-
plementation. Based on the ISE timing summary of synthesize reports, the specific
VIBus_module can achieves the maximum frequency 355.36 Mhz. It means that the
communication frequency among FPGAs can be realized at 330 Mhz, which is 5 times
of computation frequency (66 Mhz), and the time chart simulation is shown in the Figure
4.27. Contrast to the time chart in Figure 4.25, when communication operation runs at
66 Mhz, the communication overhead has been greatly reduced, and the computational
efficiency was enhanced to 83.3% when only raising the communication frequency.

Meanwhile, in general, we assume the computation domain size of one FPGA was
NxNxN grids, Itis obvious that a high communication frequency will improve the speed
of convergence of executiorfiiency. We can estimate a 3D FPGA array can achieve
to 99.3% computationalfiéciency, when each PVS operates 36858 x 158 grids data
at 66 Mhz, while transfers data in each interconnection link running at 330 Mhz.

Algorithm and data communication mechanism

We provided a prototype design of 3D FPGA array for solving 3D Poisson equation.
The algorithm of PEs for solving 3D Poisson equation was not optimized for 3D data
communication network. Through optimizing the computation algorithm and communi-
cation mechanism, that is affective method to improve the executiofti@ency of a
distributed system. Because of the communication overh€gd:= Tcomu - ToL. In

116 Chapter 4 System Evaluation

10CLK

100CLK

Cal
Tx Front ‘ ‘
Back ‘ ‘

et 000 0 0 0 0 0 0 1

Right |
uprP ‘ ‘
Down ‘

R Front ‘ ‘

) Back I::l ‘ ‘
Left

Right D

uP]

Down ‘ ‘

—
—
—
—
—
—
—
—
—

50 clk_c

calTime[| TxTmel] RxTime[| IdeTime[]

Fig. 4.27 Time chart of one FPGA on 3D FPGA array in a time step (communication
frequency at 330 Mhz)

actual design, due to the computation domain size and communication frequency was
generally limited by realistic conditions such as the hardware resources, chip manufac-
turing processes, memory sizes and so on. For a given problem solution with a hardware
architecture, it is aféective way to reduce the required data communication and enhance
overlapping time of computation through optimizing the computation and communica-
tion algorithm.

See from the time chart(Figure 4.25) of one FPGA on 3D FPGA array, the data com-
munication the interconnection links in 6-way has to spent much idle time to wait the
result data which output from PEs. By optimizing the algorithm and communication
strategies, it is possible to realize more data communication overlap to computation. For
instance, in the this case, in order to reduce the communication overhead, the algorithm
and communication mechanism can be realized with the following approach. (shown in
Figure 4.28)

There, each PVS implemenits PEs to operate the RNxN grids as a sub-block of
computation domain, and each PE operates a sub-mesh which consistslei grids.

In n time step, the PVS starts operation from the (0,0,0) gird to (N,N,N)grid along

4.2 Performance evaluation and discussion 117

Sub-block:(NxNxN) grids

! [~—

/ —A_

!
grid(0,0,N);;¢ v

% z

s

n time step

Right

Left PE3 .
PE2 -

PEJ_ A Front y
grid(0,0,0)

YYVYYY VL

YYVYVYY VO

PE Operation way

Front y

grid(0,0,0)
Down Down

Up Up
grid(N,N,N)

.. PE6

-
L - Front Down

1t — >) <

n+1 time step Left p o’ P -, PE2 Right —
//,,v Do - //,v'< < PE1
s A 4 grid(N,N,0) V. A Data communication way
P /L
Front ‘ Front ‘

Fig. 4.28 A improved method to reduce communication overhead among FPGAs
with optimizatizing algorithm and data communication mechanism

the positive direction of (X,Y,Z axis) in Cartesian coordinate (shown in Figure 4.28).
For example, PH firstly operates computations from grid(0,0,0) to grid(N,0,0). Then,
PE.1 achieve computations from grid(0,1,0) to grid (N,1,0). Finally, PEomplete
the computations from grid(N,N,0) to gird(N,N,1) at a iteration with the operation flow.
Meanwhile, the PVS only transmits the operated boundaries data on Front, Left, Down
sides via the corresponding VI Bus links, and receipts the boundaries data of Right, UP,
Back sides from corresponding adjacent FPGASs for the next time stépfomputation.

In the next time step @l), the computation was operated from the grids(N,N,N) to
(0,0,0)grid along the negative direction of (X,Y,Z) axis with the operation flow which
is opposite to n time step. Similarly, the PVS only achieves the data communication in
opposite directions of n time step, the operated boundaries data on Right, UP, Back sides
were send to corresponding adjacent FPGAs, and boundaries data on Front, Left, Down
sides were receipted from adjacent FPGAs for the next time ste}) gomputation. In
the n+2 time step, the PVS executes the same process and communication as in n time

118 Chapter 4 System Evaluation

step, and so on, repeating the operation until the calculation is completed.

By using this approach, the communication data in each iteration can be reduced by
half, and the data communication can almost overlap to data computation, although the
improved method has error compared to previous one. In next works, we will implement
the improved method on our system and measure the actual computation error.

By accounting for these factors, the data commutation overhead can be improved and
the data communication almost completely be hidden. The data communication over-
head is no longer the primary bottleneck, and the performance of 3D FPGA array can be
improved considerably. It is possible to realized the nearly 100% executicrescy.
Because of the FPGAs used in the proposed system are Spartan-3 XC3S4000, which
were released in 2008, only were equivalent to four million ASIC gates for a 90-nm
process. The results do not show superior performance compared to near-term high-end
processors. When the system utilizes the new generation high-end FPGA, the comput-
ing power enhanced as more parallel PEs have been implemented and operated at higher
frequency. The system also can achieve higlieclip communication bandwidth with
new high speed/© connector solution. In many related works have shown that Finite-
Difference Time-Domain (FDTD) computation is suited to FPGAs; thus, a system with
multi-FPGAs can deliver dozens of times computation acceleration compared to same
term processor[46], [47].

We also designed a hwNet which can implements 192PEs on a Xilinx Virtex 7
XC7V2000T FPGA (described in Section 4.1.2). The one Virtex 7 XC7V2000T FPGA
can performs 863 GFlops peak performance at 500 Mhz. When a large scale 3D FPGA
array is built with 22x 22 x 22 = 10,648 Virtex 7 XC7V2000T FPGAs in \Volicase
method, the system can implements»22 x 22 x 192 = 2,044,416 PEs to realize
9.189 PFlops of performance for solving Poisson equation, more than K supercomputer
peak performance (8.162 PFlops).

4.3 Power consumption measurement 119

30

i //
i /
15 /
—&— |dle Power Consumption
10 —%¥— Active power consumption

5"’///

Power Consumption[w]

1 2 3 4 s 6 7 s
Number of PVS

Fig. 4.29 Power consumption of FPGA array

4.3 Power consumption measurement

The FPGA array is powered by a 12V DC power supply. We acquired the power
consumption by measuring the current value.

We measured respectively the actual power consumptions of 1 PVS to 8 PVS, when
operating 3D Poisson Equation ak110? iterations. Meanwhile, we also measured the
Idle power 1 PVS to 8 PVS, when the circuits are configured. The measured results were
shown in Figure 4.29.

The power consumptions growth as numbers of PVS increase. The actual load power
consumption of a single PVS was only 3.36 W, and the idle power of the PVS was 2.11
W, exceeded 50% of its actual power consumption. This is because of the utilized DC-
DC converters on FPGA Boards only can provided 65% converdianescy. By using
high-dficiency DC-DC converters or directly providing stable output voltage to FPGA,
the idle power and actual power consumption can be reduced significantly. In contrast,
we also measured the idle power consumption and active power consumption of CPU on
host PC when operating the same calculation. The idle power consumption of CPU was

120 Chapter 4 System Evaluation

9.72 W, and actual power consumption was 31.8 W. The power consumption of FPGA
is one-tenth than a general-processor so that without additional cooling devices design
for the system. The powefteciency of single PVS was 1.40 GFIgi¢ when eight PEs

are implemented on one PVS for solving 3D Poisson equation. We can estimate that a
3D FPGA array 4x 4 x 8 = 128 PVS consuming power of 435 W when operating 3D
Poisson equation.

Meanwhile, we estimated the power consumption of calculation circuits which con-
sists of 192 PEs implemented on a Xilinx Virtex-7 XC7V2000T with Xilinx Power Esti-
mator(XPE) [56]. The Xilinx Power Estimator (XPE) spreadsheet is a power estimation
tool typically used in the pre-design and pre-implementation phases of a project. XPE
assists with architecture evaluation, device selection, appropriate power supply compo-
nents, and thermal management components specific for your application.

The power consumption can be predicted through considering the design’s resource
usage, toggle rates/Q loading, other factors which it combines the device models to
calculated the estimated power distribution(show in Table 4.18).

Table 4.18 The estimated power consumption of hwNet on a Xilinx Virtex-7
XC7V2000T with Xilinx Power Estimator(XPE)

Resource Power Consumption
Power value [Watt]| Percentage [%]

Leakage 1.75 4
Clock 12.32 31
Logic 17.88 44

BRAM 1.93 5
/O 6.42 16
Total 40.30 100

The power consumption of a Virtex-7 XC7V2000T FPGA was 39.9 W run-
ning at 500 Mhz(Junction Temperature 58°€). One Virtex-7 XC7V2000T
can implements 192 PEs, that equivalents tg4x2 PVSs(Xilinx Spartan-3
XC3S4000). The power fiéciency of dficiency of a Virtex-7 XC7V2000T was
863GFlopg40.30W = 214GFlopgW, and it is 15.4 times moreflécient than

4.3 Power consumption measurement 121

PVS (Spartan-3 XC3S4000). We also estimate an FPGA array which composes of
22 x 22 x 22 = 10,648 Virtex 7 XC7V2000T FPGAs can meets equal levels of K
supercomputer’s performance with consuming 429,114 W power consumption, only
about 4% power consumption of the K supercomputer(9.89 MW).

Yet, the No.1 ranked machine in the Green 500 list(in Novey@bag): TSUBAME-
KFC supercomputer, which combines the computing power of two Intel Xeon ES-2620
processors with four NVIDIA Tesla K20X graphics processing engines per node, can
realized more than 150 TFLOPS of computation running the LINPACK benchmark and
efficiency of 5.27 GFlopdV, it is less than one fourth times than the perfect@diency
of a Virtex-7 XC7V2000T FPGA.

123

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In the work, we build a reconfigurable HPC system with a 3D FPGA array by using
hw/sw complex architecture. The operations of the object-oriented applications have
been partitioned into swObjects processed by CPU and hwObjects on initial stage, which
are operated by processing circuits (hwNets) on FPGA array of design, and the user can
utilize hwObijects like swODbjects. The amounts of peripheral interface circuits of FPGA
array were standardized, and circuit configuration, cofstcoess of FPGA array can
be hidden in hysw complex units. The designers just require to redesign the hwNet
and hwObject interfaces to solve a new applications on distributed computing by using
FPGA array.

Vocalise is a scalable multidimensional interconnection FPGA array computing plat-
form. We developed the parallel and flexible circuit configuration solution for a large-
scale multidimensional FPGA array. This solution enables easy implementation of cir-
cuit configuration for 28D FPGA arrays . The host PC can concurrently configure
most arithmetic circuits on 32 PVSs through each BVS through the configuration cir-
cuits implemented on FPGAs.

We designed specific circuits for solving CIP method and 3D Poisson equation. The
results of the application specific circuits on Vocalise showed operatitiaéacy, scal-

124 Chapter 5 Conclusions and Future Work

ability, communication overhead and power consumption. One PVS which has 1PE was
implemented can realize 1.91 GFlops at 66Mhz for solving 3D CIP method, about 99%
of its peak performance (1.93 GFlops). These show#&diency and high-utilization
of the configurable computing system. The results of 1D,2D and 3D CIP method also
show a realistic problem. With computational dimensions increases, hwNet's circuit
scale growths are faster than the performance improvements; it shows the computational
capabilities of one FPGA was very limited for solving most HPC applications, and the
necessity of a multiple FPGAs system. The PVS implemented 8PEs to achieve 4.72
GFlops performance for the 3D Poisson equation, ax2 PVSs, which used>2x6
PEs with communication, achieved 8.18 GFlops. The 3D FPGA arrag2{RVSs)
which composed of 22x2x6 PEs, achieved 12.46 GFlops with communication. We
estimated that a>8x4 FPGAs, which used» x4x6=768 PEs with communica-
tions, achieve 199.54 GFlops by consuming power of 435W. Through designing the a
hwNet on a high-end FPGA: Virtex XC7V2000T FPGA for solving 3D Poisson equa-
tion, we estimated a XC7V2000T FPGA implemented 192PEs can achieve 863 GFlops
running at 500 Mhz, with 39.9 W power consumption, and a 3D FPGA array composes
of 22 x 22 x 22 = 10,648 Virtex 7 XC7V2000T FPGAs can meet equal levels of K
supercomputer’s performance, with consuming 429,114 W power consumption, only
about 4% K supercomputer’s power consumption(9.89 MW). The system can be as a
prototype design of a multidimensional FPGA array to provide practical reference sig-
nificance when required to build a new generation RHPC system with multidimensional
connections among FPGAs.

Furthermore, in the hwNet designs on Virtex XC7V2000T, we separately developed
two hwNets (Dto2DhwNetand Dto2DhwNe) to map a logical 2D mesh network{4
BPs) and a logical 3D networkiix2 BPs) on FPGA's physical 2D layout for solving
same 3D computation. Compared the two cases, we also foundto23hwN etcir-
cuits scale which mapped a logical 3D mesh network on a physical 2D layout, required
more 15% circuit resources(LUTSs) as routing loss thBto2DhwN etcase.

The system can implementftérent network topologies using the multi-dimensional
direct interconnection, and this scalability is critical to improve communication perfor-

5.2 Related and future work 125

mance. The network can be configured to provide application-specific data communica-
tion for each application.

In addition, numerous technologies for 3D integration are becoming available, such
FPGA 3D packaging, the interconnect length among FPGAs can be reduced greatly. It
means that more chips can be implemented on 3D FPGA array into a limited space, high
density system level integration high density system level integration.

5.2 Related and future work

In the study, we demonstrated the capacity of Vocalise system with a 3D FPGA array
for 3D PDE problems.
In future, we will continue the study as following aspects.

The improvement of Vocalise system

We will improve the data communicatioifieiency among FPGA array through a va-
riety of approaches, such as optimizing commutation mechanism and parallel algorithm,
enhancing the computational size on each computing node (FPGA) and enhancing the
communication fficiency. We will improve stability system such data communication
among host and FPGAs, circuit configuration on a large-scale 3D FPGA array. To real-
ize a 84x4 FPGA array and evaluate the performance for solving 3D PDE problems in
real system.

On the other hand, in order to explore merits and faults of our approach in various
multidimensional application problems, not only PDE problems. We will use the mul-
tidimensional FPGA array to achieve a broad spectrum of applications such real time
parallel brain processes or massively parallel web applications.

Parallel brain processes applications in real time

An artificial intelligent(Al) system requires huge computation for searching processes,
recognitions, memorizing, or recalling. In previous related works, by usingvnaom-
plex, we have developed and several circuits of brain processes to realize artificial func-

126 Chapter 5 Conclusions and Future Work

Fig. 5.1 A robotwith a 3D FPGA array(2 3 x 4 FPGAS) for brain processes

tions of voice recognition, voice synthesis, and image recognition, on hwModule V2 pro-
posed in [28], [29]. The results shown the specific processing circuits, built with FPGA,
for solving pre-processes or post-processes of brain processes such as voice recognition,
image recognition and voice recognition, cdteetively improve operational speed or
reduce overload of CPU. By using the fsw complex architecture, real time process
applications are able to be realized. After analyzing the results for brain processes such
as voice recognition, voice synthesis and image recognition with self-organizing map,
we roughly estimated gate count of the circuits for the brain processes. These distributed
processes can be realized in real time with an FPGA array.

In next work, we will implement more software and circuits of the brain processes by
with a 3D FPGA array, to realize an Al robot which can implements real-time brain pro-
cesses in parallel(shown in Figure 5.1). Since robot is battery-powered, so the low power
and performangeatt of the system is the key to implement real-time brain operation.
The various brain processes were implemented on the complicated hybrid network. It
is a challenge that optimal mapping and routing various brain processes on a suitable
network dimensions and topologies with multidimensional FPGA arrayfectvely

5.2 Related and future work 127

Virtual hardware circuit

Software

1B Client

e - .
-
o

_ Client PC FPGA Card

FPGA Array Server PC
(Vocalise)

Fig. 5.2 The proposed implementation methodology of web application(Internet
Booster and FPGA array server.)

execute multiple brain processes in parallel.

Web applications

The high performance and low power server is desired, to execute heavy load parallel
applications from a large number clients. Recently, FPGAs were utilized to accelerating
large-scale server in some studies. For example, Microsoft used medium-end FPGAs
connected in a tours network to accelerate the Bing web search [17]. Meanwhile, in the
related pervious work, we also proposed a hardware-accelerated web application plat-
form for a power-éicient and high-performance computing system based on the FPGA
array server and the mobile FPGA card in [23][50]. A new implementation methodology
(Internet Boost) of web applications have been proposed, the concept of the proposed
methodology is shown in Figure 5.2. We realize a networkegstweomplex system
and implemented Internet Booster to imposing it on a mobile FPGA board to acceler-
ate web application. The experiments show that a hwNet implementation is 25 times
faster than the software implementation especially for the Encoder component(a video
streaming application), and can be used in real-time applications while the software im-
plementation is not suitable for this purpose. Meanwhile, the CPU overload have been
reduced vastly.

It is also full of challenges to realize distributed web applications with networked

128 Chapter 5 Conclusions and Future Work

hw/sw complex on a multidimensional FPGA array. In next work, we will introduce a
hard-disk array to storage massive data into the FPGA array. To realize low power con-
sumption and high performance WEB application server with multidimensional FPGA
array with our method, to accelerate massive applications from lots of clients.

To demonstrate high-performance and low-power with multidimensional FPGA array
on a broad spectrum of applications. As the more FPGA chips have been required, a
lower price has become important. Our final goal is to realize an application specific
personal computer including scalable multidimensional FPGA arrays.

129

Acknowledgments

My deepest gratitude goes first and foremost to Prof. Masatoshi Sekine, my super-
visor, for his wonderful advice, invaluable guidance, understanding, patience enormous
support and encouragement on my research work. His mentorship was paramount in pro-
viding a well rounded experience consistent my long-term career goals. His constructive
criticism and dedication to academic research stimulate my research ideas. Without his
consistent and illuminating instruction, this thesis could not have reached its present
form.

At the same time, | have to express my sincere gratitude to Dr. Hakaru Tamukoh, the
assistant professor of Sekine lab, he helped me to knowwwomplex and hardware
design technique and gave me many good advices for my study career. | would also
like to thank the members of Sekine lab, especially for the HPC study group members
for their input, vaulable discussions, friendships, encouragements, support and collabo-
ration. They are: Yusuke Atusmari, Hiromasa Kubo, Yuichi Ogishima . Without their
works and helps, the Vocalise system can’t be built in past several years.

Lastly, | would like to thank my beloved family for their loving considerations. For
my parents who raised me with a love of science and supported me in all my pursuits.
For my wife Jun Lai, her support, encouragement, quiet patience and unwavering love
were undeniably the bedrock upon which the past five years of my life have been built.
Without them, | would be lost. They have supported my every endeavor and supported
my choices in life, and for this, | am forever indebted. My family makes life both mean-
ingful and fun.

This study is supported by program “Research and development of ultra-high-speed

130 Acknowledgments

hw / sw complex system with dynamic virtual circuit” (1811 0 0O O O 0O OO
00000 hwswO OO OO OO0OO0O0O”" of Janpan Science and Technology
Agency(JST).

131

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

V. Kindratenko and D. Pointer, “A Case Study in Porting a Production Scientific
Supercomputing Application to a Reconfigurable Computer,” Proc. of 14th Ann.
IEEE Symp. Field-Programmable Custom Computing Machines, pp. 13-22, 2006.
O. Mencer, “ASC: A Stream Compiler for Computing with FPGAs,” IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems, vol. 25, no. 9, pp. 1603-
1617, 2006.

J. Makino, K. Hiraki, M. Inaba, “GRAPE-DR: 2-Pflops Massively-parallel Com-
puter with 512-core, 512- Gflops Processor Chips for Scientific Computing,” Proc.
of ACM/IEEE Conf. on Supercomputing, pp. 1-11, 2007.

Y.S. Hwang, R. Das, J. H. Saltz, M. Hodoscek, and B. R. Brooks, “Parallelizing
molecular dynamics programs for distributed-memory machines,” IEEE Computa-
tional Science & Engineering, vol. 2, no. 2, pp. 18-29, 1995.

M. Yokokawa, F. Shoji, A. Uno, M. Kurokawa and T. Watanabe, “The K com-
puter: Japanese next-generation supercomputer development project.” Proc. of the
17th IEEEACM international symposium on Low-power electronics and design,
pp. 371-372, 2011.

Rajovic N, Vilanova L, Villavieja C, et al., “The low power architecture approach
towards exascale computing,” Journal of Computational Science, vol. 4, no. 6, pp
439-443, 2013.

[7] The Green500 list: httgywww.green500.0rg.

[8]

H. hamoto, K, Shirahata, A. Drozd, et al. Large-scale distributed sorting for GPU-
based heterogeneous supercomputers, In Big Data, 2014 IEEE International Confer-

132 Bibliography

ence on. IEEE, pp. 510-518, 2014.

[9] P. Berczik, R. Spurzem, S. Zhong, L. Wang, et al., “Up to 700k GPU cores, Ke-
pler, and the Exascale future for simulations of star clusters around black holes.”
Supercomputing . Springer Berlin Heidelberg. pp. 13-25.

[10] M.C. Herboradt, T. VanCourt, Y. Gu, B. Sukhwani, A. Conti, J. Model, D. DiS-
abello, “Achieving High Performance with FPGA-based computing,” IEEE Com-
puter, vol.40, no.3, pp. 50-57, 2007.

[11] H. Morishita, K. Inakagata, Y. Osana, N. Fujita, H. Amano, "Implementation and
Evaluation of an Arithmetic Pipeline on FLOPS-2D: Multi-FPGA System,” ACM
SIGARCH Computer Architecture News, vol. 38, Issue 4, pp. 8-13, Sep 2010.

[12] R. Baxter, S. Booth, M. Bull, G. Gawood, J. Perry, M. Parsons, A. Simpson, A.
Trew, A. McCormick, G. Smart, A. Cantle, R. Chamberlain, G. Genest. “Maxwell
a 64 fpga supercomputer,” Proc. of NATBEA Conf. on Adaptive Hardware and
Systems, pp. 287-294, Aug 2007.

[13] J. D. Davis, C. P. Thacker, C. Chang, “BEE3: Revitalizing computer, architecture
research” Microsoft Research Technical Report, no. MSR-TR-2009-45, 2009.

[14] O. Mencer, K.H. Tsoi, S. Craimer, T. Todman, W. Luk, M.Y. Wong, P. Leong.
“Cube: A 512-fpga cluster,” Proc. of IEEE 5th Southern Conference on Programable
Logic, pp. 51-57, 2009.

[15] J. E. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. H. Touati, and P. Boucard, “Pro-
grammable active memories: reconfigurable systems come of age, ” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol. 1, no. 4, pp. 56-69, Mar
1996.

[16] K. Sano, W. Luzhou, S. Yamamoto, “Prototype Implementation of Array-
Processor Extensible over Multiple FPGAs for Scalable Stencil Computation,” ACM
SIGARCH Computer Architecture News, vol. 38, no. 4, Sep 2010.

[17] A.Putnam, A. M Caulfield, E. S. Chung, et al., “A reconfigurable fabric for accel-
erating large-scale datacenter services,” Proc. of 2014 AEBRE 41st International
Symposium on Computer Architecture (ISCA). pp13-24, June 2014.

[18] J. Ouyang, S. Lin, W. Qi, Y. Wang, B. Yu, S. Jiang, “SDA: Software-Defined Ac-

133

celerator for Large-Scale DNN Systems,” Proc. of the HotChips26, Cupertino, CA,
Aug 2014.

[19] M Sekine, T. Kanamaru, K. Kudoh, H. Imanaka, Y. Shiga H. Ito, Y. Myokan,
“Hardware objects of the circuits for robotics,” Proc. of 2003 IEEE internatiional
sysmposium on Computational Intelligence in Robotics and Automation, pp. 1421-
1426, 2003.

[20] K. Kudo, Y. Myokan, W.C. Than, S. Akimoto, T. Kanamaru, and M. Sekine, “Hard-
ware object model and its application to the image processing,” IEICE Trans. FUN-
DAMENTALS, vol.E87-A, no.3, pp.547-558, 2004.

[21] K. Kudo, H. Tamukoh, R. Sato and M. Sekine,“Half-negation pulse logic imple-
mented on hardwafsoftware complex system,” Proc. of 5th International Sym-
posium on Management Engineering (ISME2008), pp.397-404, Mar. 2008, Ki-
takyushu.

[22] K. Kudo, H. Tamukoh, T. Koga, R. Sato, M. Sekine and T. Yamakawa, “A novel
vector quantization circuit employing rough-winner-take-all self-organizing neural
network implemented on hardwgseftware complex system,” Proc. of 5th Inter-
national Symposium on Management Engineering (ISME2008), pp.150-155, Mar.
2008. Kitakyushu.

[23] H. Tamukoh, K. Hanai, R. Kurogi, S. Matsushita, M. Watanabe, Y. Kobayashi, and
M. Sekine, “Internet Booster: A Networked H8w Complex System and Its Appli-
cation to Hi-Performance WEB Application,”Proc. of World Automation Congress
(WAC2010), 7th International Forum on Multimedia and Image Processing, 6 pages
in CD-ROM, Sep. 2010. Kobe.

[24] Argonne National Laboratory. PETSc. hffpuww.mcs.anl.gofpetsc

[25] S. Kumar, C. Huang,G. Almasi, L.V. Kale, “Achieving strong scaling with NAMD
on Blue Gend.,” Proc. of IEEE international parallel and distributed processing
symposium, pp.25-29, Apr 2006.

[26] Naval Research Laboratory. Naval research laboratory layered ocean model
(NLOM). http;//www.navo.hpc.mjNavigatoyFall99 Feature.html

[27] P. Balaji, R. Gupta, A. Vishnu, P. Beckman, “Mapping communication layouts to

134 Bibliography

network hardware characteristics on massive-scale blue gene systems,” Computer
Science - Research and Development, vol 26, Issue3-4, pp. 247-256, June 2011.

[28] M. Sekine, H. Tamukoh, J. Li, et al,“Brain Process: Hardyw&oftware Complex
System Using Logic Circuits in FPGA Array Named Vocalise,” Procedia Engineer-
ing, vol.50, pp.253-264, Oct 2012

[29] J.Li, K. Takahashi, H. Tamukoh, M. Sekine,”Z3D FPGA array for brain process
and numerical computation”, In Proceeding(s) of IEEE 2012 8th International Con-
ference on Natural Computation, pp.16-19, 2012.

[30] H.Takewaki,A.Nishiguchi and T.Yabe, “Cubic Interpolated Pseudoparticle Method
(CIP) for Solving Hyperbolic Type Equations. J.Comput.Phys,” 61 , 261-268(1985).

[31] H.Takewaki and T.Yabe : “Cubic-Interpolated Pseudo Particle (CIP) Method - Ap-
plication to Nonlinear or Multi-Dimensional Problems,”J.Comput.Phys., 70 , 355-
372(1987).

[32] Xilinx: Spartan-3 FPGA Family Data Sheet
DS099 June 27, 2013

[33] Xilinx: Spartan-3 Generation configuration User Guide: Extended Spartan-3A,
Spartan-3E, and Spartan-3 FPGA Families
UG332(v1.6) October 26,2009

[34] Xilinx: Digital Clock Manager (DCM) Module
DS485 April 24, 2009

[35] T. Yabe, T. Aoki, “Formula are derived in the way such as to recover the CIP
method,”Computer Physics Communications,(Phys.Commun). 60 (1991) 219

[36] M. Ida, T. Yabe, “Implicit CIP (Cubic-Interpolated Propagation) method in one
dimension,”

[37] T. Yabe, F. Xiao, T. Utsumi, “The Constrained Interpolation Profile Method for
Multiphase Analysis”

[38] T.Utsumi, T.Yabe, J.Koga, T.Aoki and M.Sekine, “Accurate Basis Set by the CIP
Method for the Solutions of the Shroedinger Equation Comput,” Phys.Commun. 157
pp.121-138, 2004.

[39] T. Utsumi, T.Yabe , J. Koga, T.Aoki, M. Sekine, Y.Ogata, E.Matsunaga, “A

135

Note on the Basis Set Approach in the Constrained Interpolation Profile Method,”
J.Comput.Phys. Vol 196, pp. 1-7, 2004.

[40] T.Yabe, H.Mizoe, K. Takizawa , H. Moriki, H.N. Im and Y.Ogata, “Higher-Order
Schemes with CIP Method and Adaptive Soroban Grid towards Mesh-Free Scheme
J,” Comput. Phys. Vol.194, pp.57-77, 2004.

[41] Y. Ogata, T. Yabe and K. Odagaki, “An accurate numerical scheme for Maxwell
equation with CIP-method of characteristics,” Commun. Comput. Phys, Vol.1, No.2,
pp. 311-335, Feb 2006.

[42] K. Shiraishi, T. Matsuoka“Wave Propagation Simulation Using the CIP Method of
Characteristic Equations,” Comput.Phys. Vol.3, pp.121-135, Jan 2008.

[43] T. Matsuoka,M. Matsunaga, T. Matsunaga, “Electromagnetic wave propagation
analysis by using the CIP method and quadratic interpolation,” Antennas and Prop-
agation Society International Symposium, 2009. APSURSI '09. IEEE , vol., no.,
pp.1,4, 1-5 June 2009

[44] T. Matsuoka, “2D Wave Propagation Characteristics of the CIP Method with Am-
plitude Error Compensation,” 2010 International Conference on Broadband, Wire-
less Computing, Communication and Applications (BWCCA), pp.596 - 599, Nov
2010.

[45] R. Courant, E. Isaacson and M. Rees “On the solution of nonlinear hyperbolic
differential equations by finite flerences,” Communications on Pure and Applied
Mathematics, Vol. 5, Issue. 3, pp. 243-255, Aug 1952.

[46] W. chen, P. Kosmas, M. Leeser, and C. Rappaport, “An fpga implementation of
the two-dimensional finite-éierence time-dimensional (FDTD) algorithm,” Proc.
of FPGA 2004 ACMSIGDA 12th international symposium on Field programmable
gate arrays, pp. 213-222, Feb 2004.

[47] J. P. Durbano, F. E. Ortiz, “Fpga-based acceleration of the 3D firifereince
time-domain method,” Proc. of the 12th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, Vol. 1, pp. 156-163, Apr 2004.

[48] T. Kohonen, W. Chen, P. Kosmas, M. Leeser and C.rappaport, “Self-organizing
Maps 3rd Edition,” Springer, 2001.

136 Bibliography

[49] Adobe Corporation, [Online]. httggwww.adobe.corfdevnet, 2009.

[50] J. Li, H. Tamukoh and M. Sekine, “Hardware Accelerated WEB Platform based on
FPGA Array Server and Mobile FPGA Card,” Proc. of 3rd International Conference
on Internet Technology and Applications (iTAP2012), Aug. 2012, Wuhan, China.

[51] T. Kohonen, W. Chen, P. Kosmas, M. Leeser and C.rappaport, “Self-organizing
Maps 3rd Edition,” Springer, 2001.

[52] R. P. Martin, A. M. Vahdat, , D. E. Culler and T. E. Andersonffé€ts of commu-
nication latency, overhead, and bandwidth in a cluster architecture,” ACM, \Vol. 25,
No. 2, pp. 85-97.

[53] L. T. Bui, D. Essam and H. A.Abbass, “The Role of Explicit Niching and Com-
munication Messages in Distributed Evolutionary Multi-objective Optimization,” In
Parallel and Distributed Computational Intelligence, Vol. 269, 2010, pp. 181-206.

[54] B. L. Buzbee, F. W. Dorr, J. A. George, and G. H. Golub, “The Direct Solution of
the Discrete Poisson Equation on Irregular Regions,” SIAM Journal on Numerical
Analysis, Vol. 8, Issue. 4, pp.722-736, 1971.

[55] A. Nicholls, B. Honig“A rapid finite diference algorithm, utilizing successive over-
relaxation to solve the PoissonCBoltzmann equation,” Journal of Computational
Chemistry, Vol 12, Issue 4, pp. 435-445, May 1991.

[56] Xilinx Power Estimator User Guide
UG440 (v2014.1) April 23, 2014

137

List of Research Achievements

oo

1. Masatoshi Sekine, Hakaru Tamukoh, and JiangHardwargSoftware Complex
System Model for Brain Process by Configurable Circuits,” International Journal
on Computing, Vol. 3, No. 1, pp. 1-7, 2013. (Invited paper)

2. Jiang Lj Yusuke Atsumari, Hiromasa Kubo, Yuichi Ogishima, Satoru Yokota,
Hakaru Tamukoh, Masatoshi Sekine “A Multidimensional Configurable
Processor Array - Vocalise,” IEICE Trans. on Information and System,
\Vol.E98-D,No.2,pp, Feb. 2015.

ogoooooad

1. Jiang Lj Kenichi Takahashi, Hakaru Tamukoh and Masatoshi Sekine, “Dis-
tributed Computing Circuits in Scalable ZZD FPGA Array for 203D Poisson
Equation Problem,” Proc. of IEEE Symposium on Low-Power and High-Speed
Chips COOL Chips XV, 2 pages in CD-ROM, Apr. 2012, Yokohama. (Best
Feature Award)

2. Jiang Lj Kenichi Takahashi, Hakaru Tamukoh and Masatoshi Sekine/3R2D
FPGA Array for Brain Process and Numerical Computation,” Proc. of 8th Inter-
national Conference on Natural Computation (ICNC’12), pp.16-19, May 2012,

Chongging, China.

3. Jiang Lj Hakaru Tamukoh and Masatoshi Sekine, “Hardware Accelerated WEB
Platform based on FPGA Array Server and Mobile FPGA Card,” Proc. of 3rd
International Conference on Internet Technology and Applications (iTAP2012),

138

List of Research Achievements

Aug. 2012, Wuhan, China.

Masatoshi Sekine, Hakaru Tamukoh, Jiang &i al, “Brain Process: hard-
wargsoftware Complex System using Logic Circuits in FPGA Array named
Vocalise,” Proc. of International Conference on Advances Science and Con-
temporary Engineering 2012(ICASCE 2012), pp. 253-264, Oct 2012, Jakarta,
Indonesia.

ggooboooooo
1.00,0000,0000,000,0000,0000%C0OD0O0O0O0O0OO

00 FPGADODODODDODODODO CUDADDDO, 0 2300000000000
00, E2-5, Dec 2009.

.0oooo,00,0000,000,0000,FPGADODCOOOODOOO

O0O0o0oo clPO00O0OU0OoLoOoOoyOoU0O0L,0o00oo0Oobooooboo
000 0000000000 (CAS), Vol.109 No.396 CAS2009-67 pp.19-24,
Jan 2010.

.oooo,0o0,000b0,0obboO0,000,0000,%FPGADOOOO

O0000oDoDoOo HPCOOODODODODODODDDODDOOODODOOO),)
000000000000 0D0 booooOg (RECONF), Vol.110 No.319
RECONF2010-39 pp.1-6, NOV 2010.

.0ooo0,00,0000,000,0000%C000O00000ODOO0OO

O00D00o0oOoDoDOoooooDooOo) 0 2400000000oDooon,
B2-3. Dec 2010.

5.0 0000 O0000b0ObO0obOOoUb0,“0b FPGADODODODODOD

oooooo ClPOO,y00D0DO0O00OO0DOODOO0OO0ODOOODOODOOOOOO
OooooooobCO,0000, vol.110, no.413, DC2010-67, pp51-56, Feb
2011.

.00ooo,00,000,0000,000,00 00,800 FPGAODODO

HPCODODOUODODOODODOODODOODOOOO,”000DO0o0oooooooo
VLSIOOO0O0O0O00VLD), VLD2011-115, vol.111, no.397, pp.141-146, Jan

139

10.

11.

12.

13.

2012.

.0oo0,00,0000,000,0000,900 FPGAODODO HPCODO

00 VocaliseD O OOO, 00000000000 OOOVLSIODDODOOOO
00VvLDO, VLD2012-94, vol.112, no.320, pp.201-206, Nov 2012.

.00 0000000 000000000000, *300 FPGAU OO Vocalise

0000000, 000000000000000000000000000
0000 (RECONF), RECONF2013-32vol.113, No.221, pp.73-78, Sep 2013.

.0ogo,0o0,000DO,0D000,0000,0000,900 FPGAODO

O"Vocalisel OUODO,/0000000DO0000DO0 0D0O0OO0OO0O0OO0O0O
ODO0O0O0O0o0O0 (RECONF), Vol. 113, No.418, pp.79-84, Jan 2014.

0o0,0000,000,0000,0000DO00O0OOOODODO FPGA

000 HPCsystem-Vocalise 0 OO0 00O Oo," 000000000000
OO0 0000000000000 O0dodo (RECONF), Vol. 114, No.331,
pp.7-12, Nov 2014.

oooo,bg,goo,od 00,0000, 00 FPGAD O O "Vocalise”
0000 hwswOOOOOOOOODOOOO,00000000000000
0000000 D00000000DO (RECONF), Vol. 114, No.331, pp.19-24,
Nov 2014.

oo o,bg,oooo,od O0,0000,ocalise0 000000000
odoooOodo,y),00dooood0ooDooo oooooboooooooo
00000 (RECONF), Vol. 114, No.331, pp.25-30, Nov 2014.
unooob,0g,goog,od O,0000 “300 FPGAO OO "hw/swO
0o0o0od0dooooogooy)o0dooooooooooo boooo
000000000000 (RECONF), Vol. 114, No.331, pp.51-56, Nov 2014.

