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Abstract

In recent years, due to the explosive growth of the number of new mobile wireless

systems with increasingly high data rate requirements, we are facing the problem

of spectrum scarcity. To facilitate new wireless services, frequency bands need to

be allocated within the usable radio frequency (RF) spectrum. Furthermore, larger

and larger bandwidths are required to cater the high data rate communications.

However, the existing RF spectrum is already reserved for various government and

commercial services. Because of this the introduction of new wireless services is

difficult without changing the existing frequency allocation policies.

The spectrum scarcity issue has directed the research of future wireless commu-

nications towards more flexible and dynamic spectrum access techniques. The new

wireless systems can take advantage of the licensed spectrum that is left unused by

licensee or they can share the spectrum provided that they do not interfere with

the licensed users. One of the techniques that has potential to achieve spectrum

coexistence are cognitive radios (CRs) which have gained a significant amount of

interest in the research community. CR terminals are able to sense the surrounding

RF spectrum and adjust their operating parameters accordingly due to which they

are a natural candidate for dynamic spectrum access (DSA) technology.

Several techniques based on CR and DSA methodologies have been proposed with

a promise to achieve more efficient spectrum utilization. However, the gap between

theory and practice still remains. While the concepts are simple, implementing them

in practice is still hindered by several challenges. The goal of this work is to take

one step closer to more practical applications.

In this work we focus on the issue of spectrum sharing and the coexistence of pri-

mary and secondary users. We consider multiple antenna based terminals which have

become a mainstay in modern commercial wireless systems. By taking advantage of

the spatial multiplexing capabilities of the multiantenna terminals, it is possible to

achieve simultaneous primary and secondary transmissions by interleaving them in

the spatial domain.

In practical applications, the difficulty of performing spatial spectrum sharing

while protecting the primary users is due to the fact that the secondary network

can only obtain information on the primary users by estimating it without any

cooperation provided by the primary network. If no additional considerations are

taken into account, this will result in prohibitive amount of interference to the

primary users due to the secondary transmissions.

In this work, two sources of potential interference are tackled. First, channel

estimation errors are considered which are the main cause of interference due to



the fact that without perfect channel state information (CSI), the secondary users

are not able to perfectly orthogonalize their transmit signals with the interference

channel. The second issue is incorrect allocation of spatial spectrum resources by

the secondary users. If the secondary network is not able to accurately determine

the number of transmit streams used by the primary system, it is possible that the

secondary system incorrectly allocates too many transmit streams, some of which will

overlap with the primary user’s signal space and therefore will result in interference.

For the issue of spatial resource allocation, at first, cooperative estimation scheme

is investigated in order to improve the estimation accuracy in the low signal-to-

noise ratio region. A new decision fusion rule is proposed which is able to both

improve the probability of correct estimation as well as to avoid interference to the

primary user in the case of an error. To further avoid interfering with primary system

when an error actually occurs or when only estimated CSI is available, a transmit

power control method is proposed for the secondary users. In order to achieve more

realistic characterization for the interference, it is modeled as a random variable

and a probabilistic protection constraint is applied in order to guarantee desired

interference outage probability for the primary user.
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Chapter 1

Introduction

1.1 Background

1.1.1 Wireless communications and spectrum management

In 1865, James Clerk Maxwell postulated the existence of electromagnetic waves in

his paper [1] with his famous equations and predicted that electricity, magnetism

and light are all manifestations of the same physical phenomenon, electromagnetic

field. Later, Maxwell’s theory was confirmed by Heinrich Hertz who carried out a

set of experiments with the antennas he had developed. Hertz was able to produce

electromagnetic waves which would travel through free space and were then captured

by a detector device. While Hertz himself did not realize the possible ramifications,

his work combined with Maxwell’s theory essentially laid out the foundation for

wireless communications.

Hertz’s proof of the existence of electromagnetic waves inspired other people to

experiment on the new form of electromagnetic radiation. Among these were an

Italian inventor and engineer, Guglielmo Marconi, who developed a wireless tele-

graph device capable of transmitting Morse coded messages over long ranges. After

performing a series of demonstrations with his device for the British goverment,

Marconi was able to gradually increase the operating range: the English channel

was crossed in 1899 and the Atlantic ocean in 1901.

After Marconi’s experiments, radio communication become popular and radios

were used for example in naval communications where wire telegraphy was not an

option. In the beginning of the twentieth century, the radio communication was

completely unregulated and anyone possessing a radio transmitter could send mes-

sages over the whole frequency band. It has been estimated that in 1911 there were

already over 10 000 radio amateurs in the United States alone. The first steps to-

wards regulated spectrum use were taken with the Radio Act of 1912 which is a

United States federal law stating that all radio stations in the United States must

be licensed by the federal government and that seagoing vessels are required to con-
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tinuously monitor frequencies reserved for distress signals. The bill followed shortly

after the sinking of Titanic when several lives were lost due to the radio operators

of a nearby ship being asleep [2].

In the beginning of the twentieth century, amplitude-modulated (AM) radio was

invented by Reginald Fessenden and Lee de Forest. As opposed to the spark-gap

based radio devices where one transmitter covers the entire spectrum, AM radio

made it possible for several transmitters to send signals at the same time. Later

in the 1920s, vacuum tube was invented which revolutionized the radio technology.

Vacuum tubes played a key role in the development of electronic technology which

caused a major push to the expansion and commercialization of radio communication

applications such as radio broadcasting, television, large telephone networks and

radar systems.

After the spread of radio communication technology, interference was quickly

identified as an issue. The early radio devices based on the spark-gap technology

were not able to efficiently control the frequency which set a limitation on the number

of simultaneous transmitters within a geographical location. After the invention of

tunable radio transmitters, frequency management became the means to achieve

simultaneous transmissions on the radio spectrum and therefore take advantage of

the potential of radio technology. The radio spectrum was eventually identified as a

limited resource and in order to provide reliable operation by avoiding interference

between transmitters, governmental agencies were established to be in charge of

spectrum management.

Currently, the use of radio spectrum is regulated by goverments in most coun-

tries in process known as frequency allocation or spectrum allocation. Since the radio

waves travel across national boundaries, international cooperation between countries

is necessary. The International Telecommunication Union (ITU) is a specialized

agency of the United Nations which is responsible for coordinating the shared global

use of the radio spectrum. ITU organizes the World Radiocommunication Confer-

ence (WRC) every three to four years where the national regulatory agencies gather

together to review and possibly revise the radio regulations and the international

use of radio spectrum.

Even though current radio communication technology is leaps ahead of the ca-

pabilities of the first radio transmitters, the basic rules governing spectrum use have

gone through very little evolution since they were established in the early twentieth

century. From early on, the radio communication has been based on the premise that

the radio spectrum is divided into portions separated by guard bands and different

radio applications are assigned their own piece of the spectrum to operate on. These

frequency allocation policies are usually very strict and they offer little flexibility

due to the fact they are made on long term basis, covering large geographical areas,
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and with exclusive licenses.

While the static spectrum allocation policies have shown to be able to control

interference between wireless communication systems and simplify the transmitter

design by having them operate only on a designated frequency range, its lack of flex-

ibility can make the introduction of new wireless services difficult. This problem has

been highlighted in the recent years by the explosive increase in the number of wire-

less terminals, introduction of new communication technologies and operators. The

frequency bands suitable for commercial radio services have already been allocated

to legacy systems for the most part making the available bands scarce and sought

after resources. Obtaining operating rights has become increasingly expensive as

seen for example in the United Kingdom’s 4G spectrum auction for Long Term Evo-

lution (LTE) services which raised 3.62 billion dollars. Although it seems like the

usable radio spectrum has already been exhausted, preliminary measurements [3]

have shown that for the most part the allocated spectrum is highly underutilized.

Results from more recent spectrum measurement campaigns around the world have

shown similar results which confirms that spectrum scarcity problem is in fact a

result of strict frequency allocation policy instead of actually overloading the usable

radio spectrum. While the static spectrum allocation policy was applicable in the

past, it is now evident that in order to support future wireless technologies and

to efficiently make use of the available radio spectrum, a policy reform is in place.

This situation has been acknowledged and it has motivated the development of new,

more flexible spectrum access policies which can eventually take over the currently

applied inefficient static spectrum allocation schemes.

1.1.2 Dynamic spectrum access

Inefficient utilization of the available radio spectrum has sparked interest in spectrum

management methods which are able to overcome the limitations of static spectrum

allocation policies. Number of initiatives and activities have been put in motion in

regulatory [4–9], research as well as economic [10,11] communities in order to improve

spectrum utilization. The methods that attempt to share spectrum among wireless

services, technologies and operators and aiming to improve the overall spectrum

utilization are gathered under the umbrella term Dynamic Spectrum Access (DSA).

Examples of spectrum sharing have existed in various applications in the past [12]

but it has become increasingly popular topic since the spectrum scarcity issue was

identified.

Among the proposed spectrum access models, three main models can be iden-

tified [13]. Dynamic exclusive use model follows along the lines of static spectrum

allocation policy in the sense that different frequency bands are exclusively licensed

to different services, technologies and operators. The difference to the static pol-

3



icy is that some amount of flexibility is allowed in order to improve the spectrum

efficiency. The spectrum licensees are allowed to sell or lease their share of the

spectrum and they are allowed to choose what kind of services and technologies

use their respective frequency band [14]. In this model the spectrum sharing is not

required by the spectrum regulator but more efficient spectrum use is motivated by

economic benefits. Dynamic spectrum allocation [15] is another approach that can

also be categorized under the dynamic exclusive use model. In dynamic spectrum

allocation, two or more radio networks share a block of frequency spectrum by tak-

ing advantage of spatial and temporal variations in the spectrum usage. Dynamic

spectrum allocation resembles the static allocation policy in the sense that spectrum

is allocated exclusively to the licensed services. The difference is that in dynamic

spectrum allocation, the spectrum allocated to the licensees can adapt to the ex-

pected demand of the services sharing the same frequency band depending on time

and location in relatively fast time scale.

Open spectrum access model [16] on the other hand proposes that instead of

regulatory authority, the spectrum use is managed completely by its users. It has

been theorized that by creating a basic set of rules for spectrum access the users are

able to coordinate the spectrum use while avoiding interference between each other.

The open spectrum access model has also faced criticsm as it has been suggested

that it is possible for the users to take advantage of the common spectrum pool for

their own benefit and thus degrade the overall spectrum utilization.

Hierarchical spectrum access model can be viewed as a combination of the two

previous models. In hierarchical spectrum access model the users are divided into

two categories: primary users who are licensed to access certain frequency band and

secondary users who do not possess licensed frequency band. To realize efficient

spectrum use in the hierarchical model, the secondary users are allowed to access

the spectrum licensed to primary users by limiting the interfence the secondary

spectrum access will generate. The interference can be avoided by requiring the

secondary users to operate below the noise floor of the primary users. By spreading

the secondary transmissions over a wide frequency band it is possible to achieve

high data rate transmission (similar to spread spectrum and ultrawideband com-

munications) albeit the drawback is that only short communication ranges can be

covered due to the transmit power limitations. On the other hand, this approach

has the benefit that it is not necessary to monitor primary user transmissions to

avoid interference as long as secondary transmit power constraints can be met. If

the secondary users are equipped with multiple antennas, it is also possible to meet

the interference constraint by directing the secondary transmission away from the

primary users. In this case the secondary users must be able to approximate interfer-

ence resulting from secondary transmissions which can be done based on reciprocity
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if the primary communication can be observed. Another means to achieve spectrum

sharing is to let the secondary users transmit using portions of the licensed spectrum

that are left unused by the primary user. The variations in primary user spectrum

utilization can result in spectrum holes at certain times or locations, also known as

spectrum white space. If the secondary user is able to identify these spectrum holes,

it is possible to exploit them for opportunistic spectrum access (OSA). [17]

While the dynamic exclusive access model can improve the overall spectrum

utilization compared to the static access model, it leaves room for improvement

as it can not adjust to the spectrum usage variations quickly enough. The open

sharing model also has its problems as demonstrated by the interference generated by

the multiple heterogenous technologies (such as cordless phones, Bluetooth devices

and wireless local area networks) operating on the industrial, scientific and medical

(ISM) band. Out of the three models presented, the hierarchical spectrum access is

probably the most likely to be adopted in future wireless communication systems.

The OSA model has been considered in a plethora of works on dynamic spectrum

access techniques and secondary spectrum access by exploiting spectrum holes in

time domain or geographical locations has been considered as a possible solution to

the spectrum scarcity problem. With multiantenna terminals becoming increasingly

popular in consumer wireless systems, the spectrum sharing techniques based on

multiantenna techniques have also attracted attention recently. These techniques

can be viewed as a combination of the interference constrained spectrum access

and opportunistic spectrum. The DSA model considered for the remainder of this

dissertation is based on multiantenna enabled OSA framework

1.1.3 Cognitive radio

DSA techniques have attracted a great deal of attention due to its potential to

alleviate the spectrum scarcity problem by improving overall spectrum utilization.

Moreover, DSA has been considered to have possible applications in other areas such

as ad hoc, emergency and military networks [18–21]. The main technique that is

generally considered as the enabler of DSA is Cognitive Radio (CR) which is often

paired up with Software-Defined Radio (SDR) technology.

The term SDR was first introduced in 1992 by Joseph Mitola in his paper [22]

where he described the architecture principles of the software-based transceiver he

had been working on. SDR is essentially a radio communication system where the

components that have been conventially implemented with specialized hardware (e.g.

amplifiers, detectors, filters etc.) are instead implemented by software running on a

general-purpose processor, Digital Signal Processor (DSP) or a Field-Programmable

Gate Array (FPGA). The idea behind SDR is that by having most of the signal

processing done in software it can support a variety of radio protocols as the RF
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chain is reconfigurable. The term CR was also introduced my Mitola in 1999 [23]

and it is considered as one of the goals that the SDR platform should evolve into.

CR is an intelligent, context-aware radio which is able to sense its surroundings. By

learning from its environment, CR can then adjust its radio transmission parameters

adaptively and autonomously.

The original concept of CR was somewhat general idea but the two main charac-

teristics are easy to identify. First one is the learning ability, where the CR terminals

capture information from the surrounding RF environment, and the second one is

the reconfigurability where CR can dynamically adapt to the information it has

observed. Therefore it is natural to consider CR in the context of DSA. CRs are

able to detect possible spectrum holes within their coverage area which could then

be utilized for secondary transmission without interfering with the primary users.

CR can reconfigure various transmission parameters like operating frequency and

bandwidth (to adapt to unused frequency bands), modulation and channel coding

(to adapt to channel conditions) and transmission power (to control interference to

primary users). DSA is one of the important applications of CR where the benefits

of cognition-reconfiguration cycle can be realized.

1.1.4 Network architecture

A typical architecture of a CR network is illustrated in Figure 1.1. The CR net-

work can be divided into two main groups, namely primary network and secondary

network [24]. The primary network is defined as wireless network which has an ex-

clusive license to access certain frequency band with a network infrastructure already

in place, such as television broadcast network or a cellular network. The primary

network is composed of primary users and a primary basestation. The primary users

(or licensed users) are licensed to access their respective frequency. This access is

controlled only by the primary basestation and it should not be affected by any of

the unlicensed users. The primary users should not need any modification or addi-

tional functions to allow the coexistence of the unlicensed users and basestations.

The primary basestation is a fixed network infrastructure component which has a

spectrum license such as a basestation transceiver system (BTS) in a cellular system.

The primary basestation does not have capability to support spectrum sharing with

the secondary users, however, it is possible that it supports both legacy and new

protocols for the primary network access of secondary users.

The secondary network (or unlicensed network) does not possess a license to

operate in the desired frequency band. Therefore, the spectrum access is allowed

only in an opportunistic manner. The secondary networks can be deployed either

as a fixed infrastructure or as an ad hoc based network as shown in Figure 1.1. The

secondary network is composed of secondary users, secondary basestation and a

6



Figure 1.1: CR network architecture.
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spectrum borker. The secondary users do not have a license to access the frequency

band. Hence, DSA and CR functionalities are required so that the secondary users

can access and share the licensed spectrum. The secondary basestation is a fixed

infrastructure component with DSA capabilities and it provides a single hop connec-

tion to the users without spectrum license. Through the secondary basestation, the

unlicensed users can access other networks. The spectrum broker (or a scheduling

server) is a central network entity which manages the sharing of the spectrum re-

sources among different secondary networks. The spectrum broker can be connected

to each network and it can provide information on spectrum availability to enable

the coexistence of multiple secondary networks [25–27].

The reference network found in Figure 1.1 consists of a primary network and both

infrastructure and ad hoc based secondary networks. The networks operate under

a spectrum environment which consists of licensed frequency bands and unlicensed

frequency bands. In addition, the secondary users can communicate with each other

either by accessing the secondary basestation or via multihop connections. Therefore

we can consider three types of spectrum access in the CR network: primary network

access where the primary users access primary basestations on the licensed frequency

band, secondary network access where the secondary users access secondary base

stations on both licensed and unlicensed frequency bands, and secondary ad hoc

access where the secondary users communicate with each other on both licensed

and unlicensed frequency bands without assistance from the secondary basestation.

When secondary users access the licensed band, avoiding interference to the primary

users is of great importance. In this case, the spectrum available to the secondary

users depends on the primary user traffic as well as the interference from primary

users located nearby. When accessing the unlicensed frequency bands, however, all

of the network entities are considered equal and in this case the spectrum broker

has an important role in managing the available spectrum in a fair manner among

the secondary entities.

While the theory behind DSA concept is fairly simple, efficient and interference-

free spectrum access in practice is very challenging. In order to realize this, a set

specific functionality is required to locate the spectrum holes and manage their use.

Spectrum sensing is the function responsible for finding the portions of the spec-

trum which are available to the secondary users for opportunistic use. Spectrum

sensing must also take care of detecting if the primary users appear while the sec-

ondary user is operating on the licensed frequency. It has been suggested that the

secondary spectrum access could possibly be supported by the primary network by

sharing real-time information on the licensed spectrum utilization [28]. This infor-

mation could be broadcast to the secondary users for example by using the proposed

cognitive pilot channel (CPC) [29–31]. This approach has the benefit that secondary
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users would be able to obtain perfect knowledge on the instantaneous spectrum us-

age, however it is possible that the changes required to facilitate the additional

communication are not feasible if the primary network is based on legacy technol-

ogy, for example. In this case, the secondary network is responsible for monitoring

the primary network traffic and has to make decisions on when to access the spec-

trum and when to vacant the channel based on its own observations. Under such

circumstances, spectrum sensing is the most important aspect to enable secondary

spectrum access.

Spectrum sensing can be performed independently or in a cooperative fashion. In

non-cooperative sensing, the secondary users make their own local observations on

the spectrum utilization while in cooperative sensing, the sensing information can

be exchanged between multiple users. In theory, cooperative sensing can achieve

more accurate spectrum sensing and it offers benefits such as reducing the detec-

tion performance requirements of individual secondary users and mitigation of the

degrading effects of multi-path fading and shadowing [32, 33]. Cooperative sensing

can also be used to shorten the detection time of weak primary signals which re-

sults in improved frequency agility of the overall network [34, 35]. The downside of

cooperative sensing is that it requires a dedicated control channel for exchanging

the sensing information and it introduces additional signaling overhead which could

pose a problem with primary networks where the spectrum utilization varies fast.

Spectrum decision functionality is used to analyze the spectrum holes and decide

the most suitable spectrum band for the secondary spectrum access. The detected

spectrum holes are characterize in terms of parameters such as interference level,

path loss, channel error rate and so on. Then, the best available frequency band is

selected based on the user Quality of Service (QoS) requirements (data rate, error

rate, etc.) and spectrum characteristics.

Spectrum sharing is used to provide fair spectrum access to the coexisting sec-

ondary users and networks by managing the access of the spectrum holes. This

resembles the Medium Access Control (MAC) issue on traditional communication

systems, however in DSA/CR applications specific MAC protocols are required [36].

Spectrum mobility is essential in order to avoid interference to the primary users.

The secondary users must be able to vacant the channel in the case that primary

users appears to access it and move the secondary transmission to another spec-

trum hole. Switching the operating band of the secondary transmission can also be

triggered due to other reasons such is preservation or improvement of the QoS. The

event of transitioning from a spectrum hole to another is also known as spectrum

handover. The goal of spectrum mobility functionality is to provide seamless com-

munication during the frequency band transitions while avoiding interference to the

primary users.
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1.1.5 Standardization activities

Standardization plays an important role in promoting the commercialization and de-

ployment of DSA and CR based communication systems. The Institute of Electrical

and Electronics Engineers (IEEE) has spearheaded the standardization initiatives

but at the moment other international standardization organizations and indus-

try associations such as the ITU, the Wireless Innovation Forum, the European

Telecommunications Standards Institute (ETSI), and the European association for

standardizing information and communication systems (Ecma International) are also

working on development of DSA/CR related standards [37].

At the moment, the most popular standards on DSA/CR are the IEEE 802.22

standard for Wireless Regional Area Network (WRAN) using TV white space and

the IEEE P1900 series of standards on dynamic spectrum management [38]. There

are also other related activities within the IEEE and many other IEEE 802 standards

include capabilities for DSA and CR techniques which have resulted from coexistence

activities [39].

IEEE 802.22 was the first global standard based on the DSA/CR technology

[40, 41]. The main target application of the standard is wireless broadband access

in rural areas with performance similar to the fixed broadband access technologies

deployed in urban and suburban areas. The standard defines physical (PHY) and

MAC layers for unlicensed terminals to access the TV frequency bands on a non-

interfering basis [42, 43] based on CR technology. The standard focuses on the

TV white space (TVWS) due to its favorable propagation cahracteristics and the

large coverage areas as well as the large amounts of available TVWS [44]. The

standard specifies that the WRAN network should operate in a point to multipoint

(P2MP) basis and the system consists of Basestations (BS) and Customer-Premises

Equipment (CPE). The CPEs are connected to the BS via a wireless link and the

BSs are responsible for controlling the medium access for all the CPEs connected to

them. The PHY layer must be able to adapt to different conditions and it has to

be able jump from channel to channel without transmission errors or losing CPEs.

Flexibility is also required for being able to dynamically adjust the bandwidth,

modulation and coding schemes. The modulation scheme considered for both uplink

and downlink is Orthogonal Frequency Division Multiple Access (OFDMA) which

is capable to achieve the fast adaptation required from both the CPEs and the

BSs. By using a single TV channel with a bandwidth of 6 MHz, the achievable

data rate is approximated to be 19 MBit/s at a 30 km distance. The standard also

considers using multiple channels for transmission which results in higher overall

bandwidth and thus improves the system performance. The MAC layer is based on

CR technology as it is required that the system can adapt to changes in the spectrum

utilization. The BS broadcasts on channels that can be used without interference
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and when a CPE is turned on, it can identify the channels that can be used to

connect to the BS. The CPEs perform two types of spectrum sensing: in-band and

out-of-band. In-band spectrum measurement consists of sensing the channel used

by both the BS and the CPE and the out-of-band measurement is responsible for

sensing the rest of the channels. Both spectrum measurements are performed on two

types of granularity, namely fast sensing and fine sensing. Fast sensing is performed

by both the CPE and the BS and the sensing speeds are less than 1 ms per channel.

Based on the outcome of fast sensing mechanism, fine sensing is performed which is

considerably slower, taking more than 25 ms per channel. The sensing mechanisms

are used to determine if there are urgent transmissions taking place and if it is

necessary to avoid interfering with them.

On the contrast to IEEE 802.22 which focuses on specific mechanisms in PHY and

MAC layers, the IEEE P1900 series concentrates on architectural concepts and spec-

ifications for policy-based network management with DSA in a heterogeneous wire-

less access network composed of incompatible wireless technologies (3G/4G, WiFi,

WiMAX). The series consists of six standards defining terminology and concepts

(IEEE P1900.1), recommended practices for interference and coexistence analysis

(IEEE P1900.2) and conformance evaluation of SDR software modules (P1900.3),

architectural building blocks (P1900.4), policy language and architectures (P1900.5),

spectrum sensing interfaces (P1900.6), and radio interface for DSA (P1900.7).

Coexistence issues have also been considered in other IEEE standardization activ-

ities and existing standards have been updated to include support for coexistence and

unlicensed devices. The IEEE 802.11 standard, for example, now includes support

for channel access and coexistence features using TVWS. New functionalities intro-

duced include sensing of other transmitters (IEEE 802.11af [45]), Transmit Power

Control (TCP) and Dynamic Frequency Selection (DFS) (IEEE 802.11h) and its

extensions (IEEE 802.11y). Correspondingly, the IEEE 802.16h standard has intro-

duced mechanisms to enable coexistence with systems with primary users [46]. The

IEEE 802.19 standard addresses coexistence issues of unlicensed networks between

different wireless standards under development within the IEEE (802.11, 802.15,

802.16 and 802.22).

Furthermore, other organizations besides the IEEE are also developing standards

for DSA and CR systems. For example, ITU has released technical reports [47, 48]

dealing with applying SDR techniques to International Mobile Telecommunications

(IMT) 2000 standard for 3G communications and other mobile systems. ETSI is

also working on Reconfigurable Radio Systems (RSS) standardization including CR

technology and White Space (WS) access [49]. Ecma has also published a standard

for portable devices operating on TVWS [50]. The standard specifies PHY and MAC

layers and a number of primary user protection mechanisms which can be used to
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meet regulatory requirements.

Even though several activities have been initiated, the standardization of DSA

and CR systems still requires a great deal of work. A great challenge for the stan-

dardization is the fact that the spectrum regulations differ from country to another.

The fact that several organizations are independently on different further compli-

cates the standardization issue.

1.2 Motivation

In the recent years, DSA and CR techniques have attracted a significant amount of

interest as a potential solution to the spectrum scarcity problem where the demand

for available spectrum increases while the reserved portions remain highly underuti-

lized. DSA and CR can be used to alleviate this issue by having unlicensed secondary

users to access the licensed spectrum opportunistically, without interfering with the

licensed primary users. To realize interference-free unlicensed spectrum access, the

secondary users are required to employ CR techniques such as spectrum sensing and

spectrum sharing to detect the transmit opportunities and take advantage of them.

In DSA networks, the secondary spectrum use is allowed only if the secondary users

can guarantee QoS for the primary network, usually in terms of interference power.

In theory, the DSA and CR concept is simple, but putting it into practice is

hindered by several challenges. While several prototypes [51–55] and experiments

[56–58] have shown that there is potential for practical applications, there are still

numerous issues that need to be investigated more. Identifying spectrum holes,

effective but interference-free coexistence, managing spectrum opportunities among

multiple secondary users have all been addressed in the literature but there are

still many problems that prevent moving from theory to practice. For spectrum

sensing there are methods varying from energy detectors to feature based detection to

methods based on random matrix theory. However, it has still not been proven that

accurate sensing can be achieved in low signal strength. Spectrum sharing methods

have also been explored in great detail but a lot of the work is based on unrealistic

assumptions on the available information or primary user cooperation, and so forth.

Therefore, further investigation is required with more realistical approach.

The earlier studies on spectrum sharing were mostly based on opportunistical

spectrum access in time and frequency domains. In temporal spectrum sharing, the

secondary users attempt to identify time instants during which the primary users do

not access the frequency band. Similarly, the frequency domain spectrum sharing

attempts find vacant blocks on the licensed spectrum. As mentioned earlier, these

methods can be combined by having the secondary users hop on time/frequency

grid form a spectrum hole to another. The drawback of this approach is that in
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an area with high primary network traffic, it might not be possible to guarantee

continuous operation for the secondary users. Therefore, coexistence methods where

simultaneous primary and secondary transmissions can be realized on the same

frequency band are desirable.

As mentioned earlier, the coexistence methods based purely on transmit control

suffer from short transmission distances due to the strict interference constraints.

Multiantenna based methods which avoid interference by directing the transmissions

away from primary users by using beamforming, however, do not suffer from this.

The signal processing required by multiantenna terminals tends to more complex

but as most of the consumer wireless devices nowadays are equipped with multiple

antennas it can deduced that the computational costs are not prohibitely high.

Multiantenna based spectrum sharing techniques where the interference is avoided

with a combination of transmit beamforming and power control (sometimes called

cognitive beamforming) have attracted some amount of interested in the research

community in the recent years. The methods are very promising as ideally it is

possible to achieve simultaneous secondary transmission while completely avoiding

interference to the primary user. The ideal case, however, requires accurate infor-

mation on channels between secondary and primary users. While obtaining channel

state information (CSI) at the transmitter is trivial in regular wireless communi-

cations as it is possible to use pilot signals and feedback, it is significantly more

difficult in a CR system. Generally it is unreasonable to expect assistance from the

primary user especially if the goal is to coexist with a legacy system. Therefore, the

task of estimating the channel between the secondary user and the primary user is

left to the secondary user alone. As it is not possible to take advantage of pilot-based

estimation, the channel estimation has to be performed blindly. Blind methods can

not generally achieve the accuracy of conventional channel estimation methods and

therefore it is very probable that significant estimation errors will occur. Under these

circumstances, the secondary user must take additional measures to compensate for

the interference resulting from the imperfect channel state information.

In this dissertation, the issue of multiantenna based spectrum sharing is investi-

gated in the case where the unknown primary user parameters can not be accurately

determined by the secondary user. The objective is to demonstrate that even with

such uncertainties it is possible to protect the primary user from interference by

sacrificing some of the achievable secondary user performance.

1.3 Thesis contributions

The main contribution of this dissertation is to provide a framework for the devel-

opment of practical spectrum sharing that employ multiantenna techniques in the
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presence of channel and spatial degrees of freedom uncertainties. As opposed to the

majority of related works, instead of setting a strict threshold for the interference we

formulate a statistical primary user protection constraint based on the interference

outage probability. This is a more realistic characterization for the interference in

the presence of uncertainties which behave randomly in practice.

Furthermore, this dissertation addresses the issue of finding spectrum opportu-

nities in the multidimensional signal space which has not been considered in the

literature in a cognitive radio context. The issue is investigated in terms of both

estimation as well transmission in the presence uncertains.

Since the constraint used to protect the primary user is defined in terms of prob-

ability, it is necessary to obtain expressions for the distribution of the interference

power. In this dissertation, two kinds of estimation errors are considered and corre-

sponding interference power distributions are derived. These expressions can prove

to be useful in scenarios other than spectrum sharing, such as multiantenna enabled

multiuser networks.

1.4 Thesis outline

The rest of the thesis is organized as follows. In Chapter 2, the problem of estimating

the available spatial transmit opportunities is investigated. A cooperative secondary

network operating in the vicinity of primary user terminal is considered. Before

engaging transmission, the secondary users must determine the number of spatial

streams they can allocate for transmission without interfering with the primary

user. After obtaining individual estimates at each secondary user, the estimates are

combined at a fusion center (FC) to extract spatial diversity. By improving the

estimation accuracy, it is possible to effectively reduce the interference that would

result from the secondary transmissions.

Chapter 3 deals with interference resulting from channel estimation errors. In

order to mitigate the interference, additional transmit power constraints must be

applied by the secondary users. To accomplish this, a statistical model for the

estimation error is obtained. Based on the error statistics, it is then possible to

derive the distribution for the interference power. The maximum transmit power

that can satisfy the primary user protection constraint can then be obtained from

the distribution. The results demonstrate that it is possible to protect the primary

user even in the presence of channel estimation errors.

In Chapter 4, the interference resulting from incorrect allocation of transmit

streams by the secondary users is considered. This is related to Chapter 2 and occurs

when the estimation of allowable transmit streams fails. Similar to Chapter 3, the

distribution of the resulting interference is obtained and it is used to determine the
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maximum transmit power that can satisfy the primary user protection. While this

scenario presents additional challenges for the interference avoidance, it is possible

to determine the maximum achievable secondary user performance.

Finally, the dissertation is concluded in Chapter 5. The results are reviewed and

the implications and directions for future work are discussed.
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Chapter 2

Estimating available spatial

degrees of freedom

In this chapter a cooperative method for the estimation of the number of primary

user transmit streams for cognitive radio networks is proposed. In cognitive radio

systems, this information is essential in order to avoid interference to the primary

system as well as to maximize the capacity for the secondary user. Here, a coopera-

tive secondary network is considered where the secondary users estimate the number

of streams and the independent estimates are then combined by a fusion center in

order to take advantage of the spatial diversity. A decision fusion rule is proposed for

this issue which takes advantage of the estimation bias of the minimum description

length (MDL) algorithm. It is also demonstrated that the proposed method has the

benefit of avoiding harmful interference in the case when the estimation results in

an error.

2.1 Introduction

In recent years, the problem of spectrum scarcity has emerged and it is currently

hindering the introduction of new wireless systems. The finite spectrum resources

have already been reserved for existing licensed wireless network services and the

rigid allocation policies offer very little flexibility to support new wireless commu-

nication systems. On the other hand, several measurements such as [3] confirm the

fact that the reserved spectrum is utilized in a very unefficient manner. Depending

on time and location, there is a possibility that the reserved spectrum is not used by

the licensed primary users (PUs). Cognitive radio (CR) systems, which have been

suggested as a possible solution to the spectrum scarcity problem, attempt to op-

portunistically exploit these temporal and spatial spectrum holes by using them for

secondary transmissions. The premise is that secondary transmissions are allowed

to use the licensed spectrum as long as they do not significantly interfere with the
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primary transmissions.

Multiple-input multiple-output (MIMO) systems, where the transmitter and the

receiver are equipped with multiple antennas, have also gained a strong foothold

among modern wireless communication systems. MIMO is an attractive technol-

ogy as it enables higher data throughput capability without increasing the transmit

power or the bandwidth. This technique, also known as spatial multiplexing, can

achieve array gain and therefore improve the spectral efficiency of the system [59].

CR networks can also benefit from MIMO-enabled terminals as they make oppor-

tunistical spectrum allocation in the antenna domain possible. By orthogonaliz-

ing the secondary transmission space with the interference channel between the

secondary users (SUs) and the PUs, it is ideally possible to achieve concurrent,

interference-free secondary transmissions. Such transmission techniques have been

explored in the existing literature such as [60], [61] and [62].

In the design of CR systems, the two main goals are protecting the PUs from the

interference and maximizing the throughput for the secondary transmissions. In the-

ory, the former does not pose an issue when the SUs employ orthogonal transmission

methods. In practical systems, however, additional measures must be considered due

to the fact that the knowledge of channels between the SUs and the PUs is not avail-

able for the SUs and it can be difficult to obtain due to the lack of assistance from the

primary network. In related works, some solutions to this issue have been suggested

in [63], [64], and [61]. The latter issue, while trivial in regular communications where

the system parameters are readily available, also introduces additional challenges in

the context of CR networks employing orthogonal transmissions. In order to max-

imize the thoughput for the secondary transmissions, the SUs must determine the

number of spatial directions available for orthogonal transmission. Failure to do so

will result either in inefficient spectrum usage or increased interference for the PUs,

both of which conflict with our design goals.

In this chapter, we consider a CR network with multiple SUs who attempt to

access the spectrum reserved for the primary system by using the orthogonal trans-

mission technique. Before initiating the secondary transmissions, the SUs probe

the channel and attempt to estimate the parameters required for efficient secondary

spectrum allocation based on the signals transmitted by the PU. Since the SUs are

sharing the licensed spectrum in the antenna domain, we consider the problem of

estimating the available number of spatial degrees of freedom. In practice, this is

directly related to the number of spatial streams transmitted by the PU. Therefore,

we employ the well-known minimum description length (MDL) algorithm to accom-

plish this task. In order to improve the estimation accuracy, we consider cooperative

estimation among the SUs where the independent estimates are combined to extract

diversity gain. While both the stream number estimation and the decision fusion

17



techniques are well investigated issues on their own, they have not been deeply in-

vestigated in a CR network context so far. Thus, in this chapter, we provide a brief

study on the problem and show that by exploiting the estimation bias of the MDL

algorithm it is possible to employ an unconventional decision fusion technique which

provides significant performance gain over the conventional techniques, especially in

low signal-to-noise ratio (SNR) conditions, as well as increased protection for the

PU.

The rest of the chapter is organized as follows. In Section 2.2, we introduce the

system model and assumptions, present the problem formulation and briefly cover

the existing techniques that our work is based on. In Section 2.3, we discuss the

decision fusion problem and outline our proposed method. Numerical results that

confirm the validity of our proposal can be found in Section 2.4. Finally, the paper

is concluded in Section 2.5.

2.2 System model

The CR network considered in this paper is illustrated in Fig. 2.1. The network

consists of a single PU (although the system model can be easily extended to consider

multiple PUs) and K SUs that attempt to opportunistically access the spectrum

reserved for the PU. The PU terminal is equipped withM antennas and the SUs each

have N antennas. The PU is assumed to communicate in a time-slotted manner, i.e.,

it alternates between transmitting and receiving modes. Moreover, it is assumed that

the PU transmits using spatial multiplexing so that independent data streams are

sent from each of its antennas. During the primary transmission, the SUs estimate

the interference channel between the primary and the respective secondary terminals

as well as other parameters, such as the number of independent streams transmitted

by the PU. In addition, the CR network is connected to a fusion center (FC) which

is used to aid the cooperative estimation. After estimating the PU parameters,

the SUs transmit their respective estimates to the FC which then combines the

independent estimates to obtain a final estimate and feeds it back to the SUs. The

communication between the SUs and the FC is outside the scope of this paper, so

we assume that error-free feedback channel is available which does not interfere with

the PU. In practice, this can be realized by allocating a small amount of bandwidth

from a frequency not used by the PU for the communication between the SUs and

the FC.

The signal vector received at the kth SU terminal is expressed as

yk[n] = Hkx[n] + zk[n] (2.1)

where Hk ∈ CN×M is the channel from the PU to the kth SU, x[n] ∈ CM is the
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PU SU FC

Figure 2.1: Cooperative cognitive radio network.

symbol vector transmitted by the PU, zk[n] ∈ CN is the noise vector at the kth

SU and n is the discrete time index. We consider a slow fading scenario where the

channel matrices can be considered as constants during the primary transmission

period and each Hk is modelled as independent and identically distributed (i.i.d.)

standard Rayleigh fading channels. The effects of multipath fading, shadowing and

pathloss are assumed to be included in the variation of the channel coefficients. In

addition, the channels are assumed to be reciprocal, i.e., the reverse channel from

the kth SU to the PU terminal can be expressed as (Hk)
T . We also model signals

transmitted by the PU so that x[n] are i.i.d. complex Gaussian vectors with zero

mean and variance α. Similarly, the noise vectors zk[n] are assumed to be i.i.d.

complex Gaussian with zero mean variance σ2
z .

During the secondary transmission phase, which takes place after the SUs have

acquired the required transmission parameters, the SUs employ an orthogonal trans-

mission method introduced in [60]. In orthogonal transmission, the SUs transmit

over the orthogonal complement space of (Hk)
T . Due to the orthogonality of the

transmit channel and the interference channel, the secondary transmission will ide-

ally result in no interference towards the PU. In practice, the SUs can obtain the

orthogonal complement space as the basis of the null space of (Hk)
T from the co-

variance matrix of (2.1) which can be expressed as

Rk
yy = E{yk[n]y

H
k [n]} = αHkH

H
k + σ2

zI (2.2)

where E{·} denotes mathematical expectation over n and α and σ2
z are the received

signal and noise powers, respectively. The basis of the null space of (Hk)
T can then

be obtained as the complex conjugate of the eigenvectors of (2.2) that correspond to

the N −M smallest eigenvalues. The value N −M also corresponds to the number

of spatial degrees of freedom that can be used orthogonal secondary transmission.

In order to determine the dimension of the orthogonal complement space for the
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secondary transmission, knowledge of M is required at the SU terminals. In a CR

network, however, the PU does not provide assistance to the secondary network and

therefore this information must be estimated by the SUs. As the channel matrices

Hk have full rankM , it follows that the ordered eigenvalues of (2.2) can be expressed

as λ1 > λ2 > . . . > λM > λM+1 = . . . = λN = σ2
z . Therefore it is possible

to determine the number of primary transmit streams from the eigenvalues of the

covariance matrix.

In practice, the ideal covariance matrix (2.2) is not available due to finite number

of samples observed by the SUs as well as the corrupting noise. Instead, the SUs

use the respective sample covariance matrices

R̂
k

yy =
1

L

L∑
n=1

yk[n]y
H
k [n] (2.3)

where L denotes the number of observed samples used. It follows that when using

the sample covariance matrix, the smallest eigenvalues are no longer equal and it is

not possible to accurately determine the number of transmit streams, M , anymore.

However, it is possible to estimate this value by using the minimum description

length (MDL) algorithm introduced in [65]. The MDL algorithm uses information

theoretic criterion to select the model that is most likely for the given observation.

This is done by minimizing the cost function

MDL(m) = −L(N −m) log

(∏N
i=m+1 λ̂i∑N
i=m+1 λ̂i

) 1
L−M

+
1

2
m(2N −m) log(L) (2.4)

where λ̂i denotes the ith largest eigenvalue of the sample covariance matrix (2.3).

The estimate at the kth SU, M̂k, is then obtained as m ∈ {0, . . . , N − 1} which

minimizes the corresponding MDL criterion, i.e., M̂k = arg min
m

MDL(m).

2.3 Cooperative source number estimation and decision fu-

sion

In a CR network where multiple SUs attempt to independently estimate the number

of primary transmit streams, it is possible to take advantage of the increased spatial

diversity and achieve more accurate estimation for the number of primary transmit

streams. This can be realized by combining the K independent estimates at the FC.

The final estimation result decided by the FC is expressed as M̂ = f(M̂1, . . . , M̂K)

which is a function of the K independent estimates. The benefit of combining

multiple estimates can be seen as a way to extract diversity gain, as the probability

that all K channels simultaneously experience poor fading conditions is significantly
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smaller than in the case where there is only one SU.

As we are concerned with the problem of estimating the number of primary

transmit streams, there are two possible error events we need to consider. The first

one is underestimation, i.e., P0 := {M̂ < M} and the second one is overestimation,

correspondingly P1 := {M̂ > M}. Let us now study the implications of each case

in our system model. As the number of available spatial directions is equal to

N −M it follows that in the event of P0, the secondary network incorrectly decides

that it can allocate more spatial directions for the secondary transmission than are

actually available. This can have severe consequences in terms of PU protection as

it results in the secondary signal space overlapping with the interference channel,

and therefore it can cause significant amount of interference to the PU. On the

other hand, in the case of P1, the secondary network ends up using a number of

spatial directions that is less than what is actually available. While this results

in suboptimal spectrum allocation in terms of secondary transmission, it does not

cause any additional interference to the PU. As the premise of CR systems is based

on the agreement not to interfere with the primary transmissions, it can be said that

out of the two possible error events P1 is more favorable.

For conventional decision fusion systems, there are several fusion rules available

in the literature. A common strategy to combine independent estimates is to use a

voting-based fusion rule. Among the voting-based strategies, majority voting is a

reasonable method for several systems. In majority voting, the fusion center decides

in favor of the estimate which receives the highest number of votes among the K

SUs. The majority voting method is in fact the optimal fusion rule when the number

of sensors K is odd, the probabilities for each sensor to give the correct estimation

result are equal, and the decisions among the K sensors are independent [66]. Using

majority voting with unbiased estimates provides good results as it averages out the

outlier estimates which have higher probability of being incorrect.

Here we consider the MDL algorithm for the task of estimating the number of

primary transmit streams. The MDL algorithm is very popular method for source

number estimation due to its simple implementation. However, because of the model

inaccuracies, insufficiently small number of observed samples and observation noise,

the MDL algorithm actually results in biased estimates [67]. This fact is illustrated

in Fig. 2.2 where the error probabilities of the MDL algorithm can be seen in non-

cooperative operation for various values of M . It can be seen that at low SNR the

estimation errors are almost exclusively due to the underestimation event, P0. As

the SNR increases, the underestimation probability converges towards zero while

the overestimation event, P1, becomes more dominant. At high SNR region, the

estimation errors can be seen to be mostly due to underestimation. As the MDL

algorithm results in biased estimates, it can be seen that the estimation performance
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Figure 2.2: Error probabilities for the source number estimation in non-cooperative oper-
ation with N = 5 SU antennas, M = {1, 2, 3} PU streams and L = 100 samples.

can be further improved from the majority voting rule. For example, applying the

majority voting with the MDL at low SNR would result in erroneous estimate with

high probability as it will average out the outliers. However, due to the estimation

bias of the MDL algorithm, the estimates with higher values are actually more likely

to be correct.

Due to the aforementioned issues, namely, underestimation resulting in additional

interference to the PU and the MDL algorithm having negative bias in the low SNR

region we are motivated to propose a new decision fusion rule. Our proposed fusion

rule decides in favor of the largest estimate among the candidate estimates and it

can be expressed as

M̂ = max{M̂1, . . . , M̂K}. (2.5)

The merits of the proposed fusion rule are twofold. First, at the low SNR region,

we can achieve improved estimation accuracy as the fusion rule always decides in

favor of the estimates with larger values which are most likely to be correct. Second,

in the case where the fusion rule actually results in an erroneous decision, it will

with high probability result in P1 which is the desirable error event in terms of PU

protection.
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Figure 2.3: Estimation probabilities for the source number estimation in cooperative op-
eration with N = 5 SU antennas, M = 3 PU streams and L = 250 samples.

2.4 Numerical results

In this section, we provide some numerical simulation results to verify the validity

and the performance of our proposed decision fusion method. The performance

of the proposed fusion rule was compared to the majority voting fusion, which is

usually employed for similar problems. The system parameters considered for the

simulations were K = 10 SU terminals each equipped with N = 5 antennas. For

the PU, spatial multiplexing with M = 3 independent data streams were assumed.

For computing the sample covariance matrix (2.3), each of the SUs used L = 250

samples. In addition, the SNR was defined as α
σ2
z
for the simulations and the results

were obtained as the average over 100 000 Monte Carlo simulations.

First, the estimation probabilities of the fusion rules were evaluated and the

results can be found in Fig. 2.3. In addition to the cooperative estimation results,

the error probability of a non-cooperative SU was included as a comparison. It

can be seen that the majority voting fusion rule results in improved estimation

probability when the estimation probability of a single terminal exceeds 0.5, as

expected. However, at low SNR the proposed maximum fusion rule achieves even

better performance than the majority vote, approximately by a 3 dB margin. At

high SNR, the maximum fusion exhibits a slight performance degradation which is
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Figure 2.4: Estimation probabilities for the source number estimation in cooperative op-
eration with N = 5 SU antennas, M = 3 PU streams at −5 dB SNR.

due to the fact the error events at high SNR are mostly due to the overestimation

event, P1.

Next, the estimation performance of the cooperative estimation methods was

evaluated in terms of number of samples L used for estimating the sample covariance

matrices. The result is shown in Fig. 2.4 where it can be confirmed that the

non-cooperative operation as well as the cooperative methods with decision fusion

benefit from increasing the number of observed samples. This due to the fact that

the estimation performance of the MDL algorithm depends on both the SNR and

the number of samples observed during the estimation. Increasing either one has

the result of improving estimation accuracy. In addition, it can be seen that the

cooperative estimation using the proposed maximum decision fusion rule benefits the

most even with a very moderate increase in the number of samples. For example, at

−5 dB to achieve estimation probability of approximately 0.7 only L = 100 samples

are required, whereas the corresponding estimation performance with the majority

voting rule requires more than L = 400 samples. This effect is due to the fact that

the maximum fusion rule can operate at lower SNR as mentioned earlier.

Finally, the performance of the proposed maximum fusion rule was evaluated as

a function of the number of SU terminals. In Fig. 2.5 it can be seen that at lower

SNR of −8 dB, the performance increases almost linearly as the number of SU ter-
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Figure 2.5: Estimation probabilities with maximum fusion rule in terms of the number of
SUs each with N = 5 antennas, M = 3 PU streams and L = 250 samples.

minals increases because the probability that a correct estimate is found among the

candidate estimates is low. At higher SNR levels where the estimation probability

is higher, however, the increase in estimation probability grows significantly faster.

For example, at −4 dB only K = 8 SU terminals are required for the maximum

estimation probability.

2.5 Conclusion

Cognitive radio (CR) systems have been proposed as a promising solution to the

spectrum scarcity problem due to their ability to opportunistically allocate unused

spectrum resources for secondary transmissions. An important issue in CR-based

spectrum sharing techniques is the problem of estimating the primary system pa-

rameters which are required for efficient operation while receiving no cooperation

from the primary user (PU). In this paper, we considered a CR network where the

secondary users (SUs) attempt to allocate unused spatial directions for secondary

spectrum use. In order to do this while maximizing the secondary throughput and

avoiding interference to the PU, it is necessary to determine the number of spatial

streams transmitted by the PU. We considered cooperative stream number estima-

tion to solve this problem where each SU in the secondary network first obtains
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independent estimates which are then combined into a final decision. We proposed

a new decision fusion rule for this issue which takes into account and exploits the es-

timation bias of the minimum description length (MDL) algorithm. The benefits of

the proposed method are improved estimation performance in the low signal-to-noise

ratio (SNR) region and better protection for the PU in the case of an estimation

error.
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Chapter 3

Interference avoidance for spatial

spectrum sharing with imperfect

channel state information

In this chapter we propose a power control method for a multiple-input multiple-

output (MIMO) based cognitive radio (CR) system with imperfect channel state

information (CSI). In order to mitigate the interference caused by the channel es-

timation errors, we study the distribution of the channel estimation error and it

effects on the SU’s precoding matrix. We also analyze the statistics of the interfer-

ence power resulting from the channel estimation. Based on empirically obtained

error distributions, we provide an approximation for the error distribution which

is used to obtain an analytical expression for the interference power distribution.

With the interference power, it is possible to constrain the SU’s transmit power in

way that the resulting interference can be guaranteed to stay below the interfer-

ence threshold with desired probability. Therefore, it is possible to improve the PU

protection in the presence of channel estimation errors.

3.1 Introduction

In spectrum sharing, the secondary user (SU) attempts to transmit using the licensed

frequency band reserved for to the primary user (PU). With MIMO-enabled SU ter-

minals it is ideally possible to realize concurrent secondary and primary transmission

without interfering with the primary system. However, to achieve completely inter-

ference free secondary transmission, perfect knowledge of the interference channel

is required in order to orthogonalize the SU’s transmit signals. Practical systems

can not rely on this unrealistic assumption and they have to the estimate the re-

quired CSI. Furthermore, in CR systems the channel estimation is hampered by

the fact that the PU can not be expected to provide any assistance and therefore,
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for example, conventional pilot-based channel estimation methods are out of the

question.

Due to estimation errors, it is not possible to achieve perfectly orthogonal sec-

ondary transmission and, therefore, interference will be caused to the PU. In order to

reduce the interference enough to provide sufficient PU protection, additional coun-

termeasures must be considered. In practice, this means that the SU has to limit

its transmit power so that the interference will remain below the allowed threshold.

In the existing literature, some works have considered this issue already. In [63],

the authors applied a bounded error model for the problem and provided a robust

beamforming solution, however the problem of CSI estimation was not considered

and it was assumed that the error bounds are available at the SU. In [61], the au-

thors proposed a method to estimate the required CSI and also demonstrated that

the average interference can be constrained by applying a first-order approximation

for the perturbation due to the estimation error. Most of the related works attempt

to protect the PU only by constraining the interference power, however, since the

estimation error is a random process, it is more natural to define the protection

constraint in terms of the probability of exceeding the threshold. This leads to a

constraint that is reminiscent of outage probability. It also allows us to exert more

control over the resulting interference, therefore enabling more flexible spectrum

utilization.

In this chapter we will investigate the performance of a MIMO-based spectrum

sharing system where only estimated CSI is available at the SU. Before engaging in

transmission, the SU probes the channel during PU transmission and obtains the

CSI by estimating it from the transmitted PU signals. For the estimation, we apply a

similar technique as proposed in [61] where the null space of the interference channel

is estimated from the sample covariance matrix. In order to mitigate the interference

resulting from imperfect CSI, we propose a power control method which can provide

desired PU protection in the presence of CSI errors. As opposed to previous works,

we define the protection constraint in terms of the probability of exceeding the

interference threshold. In order to satisfy the probabilistic protection constraint, we

analyze the distribution of the CSI errors as well as the interference to obtain the

density function for the interference from where the maximum allowable transmit

powers can be solved.

The rest of the chapter is organized as follows. In Section 3.2, we describe the

system model and define the protection constraint. Section 3.3 presents the existing

techniques that we are using in this work. In Section 3.4, we provide analysis for

the channel estimation errors as well as the interference power and formulate the

proposed power control method. The validity of our analysis as well as the perfor-

mance of the proposed method are evaluated by numerical simulations in Section
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Figure 3.1: Cognitive radio network with two primary users and a secondary transmitter
receiver pair.

3.5. Finally, the chapter is concluded in Section 3.6.

3.2 System model

The system model considered in this chapter is depicted in Fig. 3.1. Here the

CR network consists of two PU transceivers, PU #1 and PU #2, and secondary

transmitter-receiver pair. For the sake of simplicity, we assume that PU #2 is

outside the covarage area of the SU transmitter so that we only need to cancel the

interference towards PU #1. It is, however, trivial to extend the system model to

consider multiple PU terminals within the SU coverage. Furthermore, we assume

that the SU terminals are outside the coverage area of PU #2 so that we can focus

on estimating the interference channel between the SU and PU #1. The coverage

areas of the secondary and primary systems are represented in Fig. 3.1 by dashed

and dotted lines, respectively.

The transmit and receive terminals are equipped with M and N transmit an-

tennas, respectively, and the secondary transmission channel is denoted by HSU ∈
CN×M . Correspondingly, the PU terminals haveMPU antennas each and the channel

from PU #2 to PU #1 is denoted by HSU ∈ CMPU×MPU . The interference channel

from the SU transmitter to PU #1 is denoted by G ∈ CMPU×M . The interference

channel from PU #2 to the SU receiver is not explicitly modeled as the roles of the

SU transmitter and receiver can be reversed due to the symmetrical situation. All

the related channels are assumed to be reciprocal so that, for example, the channel

from PU #1 to the SU transmitter can be expressed as GT . All the channels are

assumed to be Rayleigh distributed with their elements following the distributions

CN (0, σ2
H) for the transmission channels HPU and HSU, and CN (0, σ2

G) for the
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interference channel G.

Let us define a transmission frame consisting of Tframe symbols, during which the

channel estimation and secondary transmission take place. We also assume a slow

fading static scenario so that the channels can be considered to remain constant

during a single transmission frame. The transmission frame can be furthermore

divided into two parts. In the beginning of the frame there is a period when the

SU attempts to estimate the interference channel. We denote the length of this

estimation period by Test. After obtaining the channel estimate, the SU can engage

in secondary transmission while canceling the interference towards the PU for the

remainder of the transmission frame. The SU transmission period is Ttrans symbols

and thus we have the relation Tframe = Test + Ttrans.

The goal of the SU is to design a capacity maxiziming transmit covariance matrix

S = AΣAH ∈ CM×M , whereA ∈ CM×d is the transmit precoding matrix for the SU

and d denotes the number of spatial streams used, and Σ = diag(σ2
1, . . . , σ

2
d) ∈ Rd×d

is the power allocation matrix where σ2
i is the transmit power allocated for the

ith stream. The capacity maximization is constrained by the maximum transmit

power at the SU, PSU, but in order to cancel the interference we also have to take into

account the PU protection constraint. Instead of simply constraining the interference

in terms of power, we wish to constraint the probability of the interference exceeding

the threshold γ. By formulating the protection constraint this way, we attempt to

achieve more realistic interference characterization and also be able to exert more

control over the interference at the PU. Now, the capacity maximization problem

can be defined as follows

max
C

log2 det(IN +HSUCHH
SU/σ

2
z) (3.1)

subject to Prob(IP ≤ γ) = 1− Pout (3.2)

trace(Σ) ≤ PSU (3.3)

where (3.2) is the PU protection constraint, σ2
z is the noise power at the SU receiver,

IP is the interference power ath the PU and Pout is the desired probability at which

the interference threshold is allowed to be exceeded, and (3.3) is the SU’s transmit

power constraint.

3.3 Spectrum sharing and channel estimation

In this section, we introduce the conventional methods that are considered in this

work. First, in Section 3.3.1 we describe the orthogonal transmission method for the

SU as well as the corresponding capacity achieving transmit covariance design. In

Section 3.3.2, we explain the channel estimation method which can be used in order
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to obtain the required CSI for the interference cancellation.

3.3.1 Spectrum sharing with orthogonal transmission

In conventional spectrum sharing techniques, some form of CSI on the interference

channel is required to be available at the SU. Methods that rely purely on power

control require full CSI in order to evaluate the resulting interference at the CSI

and methods that also employ null steering need the CSI to orthogonalize the SU

transmit signals with the interference channel.

In [60], the authors presented various SS methods based on cognitive beamform-

ing. One of them, termed as projected channel SVD (PSVD) enables secondary

transmission over an orthogonal channel while completely negating the interference

caused to the PU. In PSVD, only the basis of the complement space of the interfer-

ence channel matrix G is required for the ortogonal transmission.

In PSVD, the secondary channel HSU is first projected onto the null space of the

interference channel G in order to obtain projected channel as

H⊥ = HSU

(
null (G) null (G)H

)
, (3.4)

where null(·) denotes the basis of the null space of its matrix argument, i.e., a

matrix composed of a set of vectors that span the null space. Since it follows that

H⊥ is orthogonal to the interference channel, the SU can transmit over the projected

channel without interfering with the PU.

To maximize the SU capacity with PSVD, singular value decomposition based

transmission (SVD) [68] over the projected channel is performed. That is, the SU ob-

tains the precoding matrix from the SVD of the projected channel H⊥ = U⊥Σ⊥V
H
⊥

by setting A = [v⊥1 . . .v⊥d], where v⊥i, i = 1, . . . , d are the right singular vectors

that correspond to the d largest singular values, and the power allocation matrix Σ

can be obtained by performing waterfilling over H⊥ with respect to the transmit

power constraint (3.3).

It should be noted that the PSVD-based secondary transmission is only possible

when enough spatial degrees of freedom are available. In other words, the dimension

of the null space of the interference channel should satisfy dim (null (G)) ≥ 1. In

practice, this condition is satisfied for uncorrelated channels when M > MPU which

we assume holds for the rest of the chapter. This assumption increases the required

processing costs at the SU but it is considered to be a reasonable cost in order to

realize concurrent secondary transmission [62].
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3.3.2 Interference channel estimation

For estimating the interference channel, the authors in [61] described a technique

where the SU can obtain the partial CSI required to perform the orthogonal trans-

mission from the covariance matrix of the signals observed during the primary trans-

mission. In order to obtain the channel knowledge for the PSVD, i.e., null (G), the

SU has to estimate it during the primary transmissions. Therefore, we define the

signal received by the SU transmitter during the estimation period as

ySU[n] =

{
GTxPU[n] + zSU[n] n ∈ N
zSU[n] otherwise

, (3.5)

n = 0, . . . , Test − 1

where xPU[n] denote the signals sent by PU #1 during the estimation period. The

signals are assumed to be i.i.d. zero mean complex Gaussian with covariance matrix

σ2
sIMPU

. The noise vector at SU transmitter is denoted by zSU[n] and it is assumed to

be complex Gaussian noise with the covariance matrix σ2
zIM . Moreover, the received

SNR at the SU transmitter is defined as ρest =
σ2
s

σ2
z
and σ2

s = P1

MPU
where P1 is the

transmit power of PU #1. The time instants of the estimation period during which

PU #1 transmits a signal are denoted by N ⊂ {n = 0, . . . , Test − 1}. Moreover,

the portion of the estimation period that is occupied by PU #1 transmission is

expressed as α = |N |
Test

, where |N | denotes the cardinality of N . When n ∋ N , PU

#1 is assumed to be in the receiver mode, or equivalently, neither one of the PUs is

transmitting. In this work, we focus on the case where α = 1. Similar system has

been considered, for example, in [62].

The covariance matrix of the signal received at the SU transmitter during the

estimation period can now be expressed as

Ryy = E
{
ySU[n]y

H
SU[n]

}
= ασ2

sG
TG∗ + σ2

zIM (3.6)

where E {·} denotes mathematical expectation. The covariance matrix Ryy shares

the null space with G [69] which was required to obtain the orthogonal channel

projection in (3.4). Therefore, by estimating Ryy by using the sample covariance

matrix of the received signal vector (3.5) we can also obtain an estimate for the null

space of G. The sample covariance matrix was shown in [70] to be the maximum

likelihood estimate of Ryy and it can be expressed as

R̂yy =
1

Test

Test−1∑
n=0

ySU[n]y
H
SU[n]. (3.7)
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The estimate for null (G) can now be obtained from the eigenvalue decomposition

of sample covariance matrix

R̂yy = V RΣRV
H
R (3.8)

by finding the eigenvectors in V ∗
R that correspond to the M −MPU smallest eigen-

values. It is assumed that the SU has knowledge about MPU which in practice can

be estimated from the sample covariance matrix R̂yy [65].

3.4 Interference analysis

In this section, we first provide the analysis required by the problem and then present

our proposed power control method. In Section 3.4.1 the interference power statistics

are derived. Section 3.4.2 discusses how the precoding matrix error is modelled in

this work. Finally, in Section 3.4.3 we propose a power control method for the SU

to limit the interference under channel estimation error.

3.4.1 Interference power analysis

The average interference power due to the secondary transmission at the first PU

terminal can be expressed as

ĪP = E
{
∥GÃΣ1/2xSU[n]∥2

}
, n = Test, . . . , Tframe − 1, (3.9)

where Ã = A + ∆A is the erroneous precoding matrix and ∆A is the error term,

xSU[n] = (x1[n], . . . , xM [n])T ∈ CM is the symbol vector transmitted by the SU at

time instant n and Σ1/2 = diag (σ1 . . . σd). The covariance matrix of the transmit

vector before precoding and power allocation is E
{
xSU[n]x

H
SU[n]

}
= IM , so (3.9)

can be approximated by

ĪP ≈ trace
(
GÃΣÃ

H
GH
)

(3.10)

= trace
(
G∆AΣ∆AHGH

)
(3.11)

= trace
(
Σ∆AHGHG∆A

)
(3.12)

where (3.11) follows from the fact that G and A are orthogonal, and (3.12) follows

from the cyclic property of the matrix trace. Due to the matrix trace it suffices to

only consider the diagonal elements of the matrix argument in (3.12) which can also

be expressed as(
Σ∆AHGHG∆A

)
ii
= σ2

i∆aH
i G

HG∆ai, i = 1, . . . , d (3.13)
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where ∆ai denotes the ith column of the matrix ∆A.

For given precoding matrix error ∆A, we can now obtain the distribution of

(3.13) over all realizations of G. It can be seen that the matrix product GHG ∼
CWM (MPU, σ

2
GIM). From [71] we have the following result for Wishart matrices: if

W ∼ CWm (n,R) and B ∈ Ck×m with rank k, then BWBH ∼ CWk

(
n,BRBH

)
.

Therefore we have ∆aH
i G

HG∆ai ∼ CW1 (MPU, σ
2
G∥∆ai∥2) which reduces to a

Gamma distributed scalar. Thus, the diagonal elements of ∆AHGHG∆A are dis-

tributed as(
∆AHGHG∆A

)
ii
∼ Γ

(
MPU, σ

2
G∥∆ai∥2

)
,

i = 1, . . . , d (3.14)

and due to the scaling property of the Gamma distribution it follows that(
Σ∆AHGHG∆A

)
ii
∼ Γ

(
MPU, σ

2
i σ

2
G∥∆ai∥2

)
,

i = 1, . . . , d. (3.15)

Therefore, as the composite interference power (3.12) is a sum of d random variables

each of which is distributed according to (3.15), its probability density function can

be expressed as a d-fold convolution of Gamma density functions

fI(x) = (f1(x) ∗ . . . ∗ fd(x))(x), (3.16)

where

fi(x;m,λi) =
1

Γ(m)λm
i

xm−1e
− x

λi ,

x > 0; m,λi ≥ 0; i = 1, . . . , d (3.17)

and m = MPU and λi = σ2
i σ

2
G∥∆a1∥2.

3.4.2 Precoding matrix error

As mentioned earlier in Section 3.3.2, the SU obtains the required CSI by using the

sample covariance matrix in (3.7). As the SU only has a limited number of samples

available for the estimation combined with the fact that the observed vectors are

corrupted with noise, the SU can only obtain an erroneous estimate for the null space

of the interference channel. The SU then computes the precoding matrix according

to Section 3.3.1 using the estimated CSI, which results in a precoding matrix that is

not completely orthogonal to the interference channel G. As shown in the previous

section, in addition to the SU’s transmit power, the interference power observed at

the PU depends on the random estimation error through the precoding matrix.
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fi(x|α, β,m, k, θi) =

∫ ∞

0
fi(x|m,λ)gi(λ|α, β, k, θi)dλ

=

∫ ∞

0

1

Γ(m)λm
xm−1e−

x
λ

1

2Γ(k)θki
(αβ)−

1
2
kλ

1
2
k−1e

−
√
λ

θi
√
αβ dλ

=
(αβ)−

1
2
kxm−1

2Γ(m)Γ(k)θki

∫ ∞

0
λ

1
2
k−m−1e

−
(

x
λ
+

√
λ

θi
√

αβ

)
dλ,

≥ 0;m, k, θi, α, β > 0 (3.19)

Although the error in the precoding matrix depends on the parameters ρest and

Test during the estimation period, it is essentially a random process due to the ob-

servation noise and the transmitted symbol sequences. The exact distribution of the

error is unfortunately difficult to obtain because of the non-linear transformations

required for the computation of the precoding matrix. Therefore, we have empiri-

cally obtained the first-order statistics of the precoding matrix error by simulating

the estimation process for various values ρest and Test. The corresponding error vec-

tor magnitudes were then obtained as the averages, ∥∆ai∥, over 10 000 Monte Carlo

iterations. In the following we assume that these empirically obtained values are

available at the SU in order to perform the interference compensation.

As can be seen from (3.15), the distribution of the interference power depends

on the magnitudes of the precoding matrix error vectors ∥∆ai∥. In fact, the esti-

mated precoding vectors ãi consist of a component that lies in the space spanned

by the true precoding vectors ai and a component that lies in the corresponding

complement space. In our case it suffices to only consider the latter as the former

will not contribute to the interference power due to orthogonality. Therefore, we

can obtain the error component by projecting the erroneuos precoding matrix onto

the complement space of the true precoding matrix as ∆A = (IM −AAH)Ã. The

numerical results for the distribution of ∥∆a1∥ can be seen in Fig. 3.2, where the

cumulative distribution function is shown for various Test and ρest pairs. The simula-

tions were performed for M = 4 and MPU = 3 and empirical cumulative distribution

was obtained by simulating the estimation process for 10 000 trials.

In order to take the randomness of precoding matrix error into account, we need

to approximate the probability density function of ∥∆ai∥. It was observed that

the Gamma distribution with parameters k = M and θi =
∥ai∥
M

provides a decent

approximation. The rationale for the parameters of the approximation is the fact

that ai ∈ CM and the length of a random vector can be expressed in terms of

Gamma distribution with the mean of µ = kθi. The approximated distributions are

also plotted in Fig. 3.2. It can be seen that when the estimation SNR is high, the

approximation is quite good for both Test = 50 and Test = 500. On the other hand,
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Figure 3.2: Empirical cumulative distribution function of ∥∆a1∥ and the corresponding
approximation for M = 4 and MPU = 3 with (a) ρest = 10 dB and (b) ρest = 20 dB.

with lower estimation SNR the mismatch becomes larger and some accuracy is lost

for both simulated estimation period lengths.

Because the scale parameters λi in (3.17) depend on the estimation error, we

would like to obtain the corresponding compound distribution where the error dis-

tribution is taken into account. Therefore, we must first derive the probability

density function for λi. Recall from earlier that the distribution of ∥∆ai∥ can be

approximated as Γ(k, θi), where k = M and θi =
∥∆ai∥
M

. It follows that the distri-

bution of λi can now be obtained by transforming the Gamma distribution. Let us

redefine λi = αβX2, where X ∼ Γ(k, θi) and we can obtain the density function

gi(λ) for λi as

gi(λ;α, β, k, θi) =
1

2Γ(k)θki
(αβ)−

1
2
kλ

1
2
k−1e

−
√
λ

θi
√
αβ

λ ≥ 0;α, β, k, θi > 0. (3.18)

We can now obtain the compound density function for fi(x|α, β,m, k, θi) as (3.19)

where the distribution parameters are m = MPU, k = M , θi =
∥∆ai∥
M

, α = σ2
i and

β = σ2
G. Finally, the probability density function of the total interference power
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observed at the PU can be obtained using (3.16) with fi(x) given by (3.19).

3.4.3 Proposed power control method

The drawback of the density function (3.19) is that it does not admit a simple closed

form. The issue is further complicated when more than one spatial stream is used

for the secondary transmission, i.e., d ≥ 2 because of the d-fold convolution required

for the composite distribution (3.16). Therefore we propose a sub-optimal, search-

based method for obtaining the maximum allowable transmit power allocations for

the SU that guarantee that the SU satisfies the PU protection constraint (3.2) and

the transmit power constraint (3.3). An iterative search method for finding the

maximal power allocations is proposed as follows:

1. Find the optimal Σ with respect to the maximum transmit power constraint.

This can obtained by performing waterfilling over H⊥.

2. With the obtained transmit powers σ2
i , numerically evaluate the integral Prob(IP ≤

γ) =
∫ γ

0
fĪP (x)dx, the verify whether the solution satisfies the interference

power constraint (up to desired precision) or not.

3. If the interference power constraint is not satisfied, decrease the maximum

transmit power constraint PSU and return to step 1; otherwise, end the search.

While the search method is computationally very intensive as it requires repeated

numerical integration, it should be noted that when d = 1, online computation

of the maximum allowable transmit power is not required as it does not depend

on the instantaneous channel HSU. Therefore, the maximum transmit powers can

computed beforehand and the SU can select the one corresponding to ρest and Test.

3.5 Numerical results

In this section, we present numerical simulation results to show how the interference

power constraint improves the protection of the PU in the presence of estimation

error. For the simulations, we considered an SU with M = N = 4 antennas and

PUs with MPU = 3 antennas and, thus, d = 1 transmit streams for the secondary

transmission. For each simulated transmission frame, channel matrices HPU, HSU

and G were randomly generated from the standard Rayleigh fading distribution.

The estimation period was then simulated by having the SU transmitter to observe

Test signal vectors transmitted by the first PU over the reverse interference channel

GH . Based on the received signal vectors, the SU then performed channel estimation

and constructed the precoding matrix as well as obtained the power allocations. The

power allocations were computed using a search based on the bisection method with
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Figure 3.3: Capacity of the primary transmission at 10 dB as a function of γ with target
probability Pout = 0.01.

the stopping criterion of 10−4, i.e., the power allocations satisfy Prob(IP ≤ γ) ≥
1− (Pout + 10−4). The interference power at the PU was then computed according

to (3.9) using the obtained transmit covariance matrix.

First we demonstrate the performance of the system from the PU’s point of view.

Interference channel estimation was simulated and based on the estimate, the SU

then computes the precoding matrix as described in Section 3.4.3. The resulting

interference power was computed and the channel capacity for primary transmission

was computed by taking the interference from the SU into account. The capacity of

the primary channel HPU with interference was computed as

CPU = log2 det

(
IMPU

+
ρPU
MPU

HPUH
H
PU

)
(3.19)

where ρPU = P2

ĪP+σ2
z
denotes the received signal to noise and interference ratio at PU

#1 and P2 is the transmit power of PU #2. Here we have assumed that PU #2

transmits with equal power allocation for simplicity. The transmit power was fixed

to P2 = 10 and the received SNR at PU #1 was fixed to P2

σ2
z
= 10 dB. For the SU,

the maximum transmit power was set to PSU = 100 and the target probability for

the interference constraint was set to Pout = 0.01. In addition, for the interference

distribution (3.19), we used empirical values of ∥∆a1∥ obtained according to Section

3.4.2 which are assumed to be available a priori to the SU. The parameters used
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Figure 3.4: Probability of satisfying the interference constraint γ = 0.1 at ρest = 10 dB
with target probability Pout = 0.01.

for the estimation period were ρest = 10 dB and Test = {50, 500} symbols. The

simulation was performed by generating 10 000 channel realizations and the average

PU capacity was obtained. We have evaluated the performance of our proposed

method with varying γ and compared it to the PSVD which uses the estimated CSI

without compensation for the estimation error and the results can be seen in Fig.

3.3.

For the conventional PSVD, the amount of capacity loss depends on the mag-

nitude of the precoding matrix error and therefore on the estimation parameters

ρest and Test. It can be seen that for short estimation period such as Test = 50, a

significant capacity loss is observed at the PU whereas for Test = 500 it will be con-

siderably smaller. For the proposed method, however, the capacity loss at the PU

can be made arbitrarily small regardless of Test by adjusting the interference thresh-

old γ. However, when γ → 0, it eventually results in no secondary transmission due

to the limiting of the SU’s transmit power.

In addition to the PU capacity, the probability of the interference power satisfying

the threshold γ was evaluated and the result can be found in Fig. 3.4 where the

complement probability of satisfying the interference power constraint is shown for

ρest = 10 dB. It can be seen that for the simulated Test, proposed method can satisfy

interference threshold γ = 0.1 with probability Pout ≤ 0.01 as required. In fact,

there is even some overcompensation which is due to the fact we have approximated
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the precoding error distribution. If one could obtain the exact distribution for the

precoding error, it would be possible to allocate even more transmit power for the

SU while satisfying the constraint, therefore leading to increased SU capacity. As a

comparison, it can be noted that PSVD without the interference constraint can not

satisfy the interference constraint even when Test = 500 at ρest = 10 dB resulting in

reduced PU capacity. In fact, it is always possible for PSVD to satisfy the protection

constraint given large enough Test for given ρest but the proposed method can satisfy

it regardless of the estimation period length.

3.6 Conclusion

In this chapter, we have considered a SS technique for MIMO-based CR networks.

It was shown that the existing SS techniques fail to sufficiently protect the PU ter-

minals when only estimates of the CSI is available. In order to reduce the harmful

interference towards the PU, a method for compensating the effects of the imperfect

CSI by regulating the SU’s transmit power was proposed. In our work, we consid-

ered a practical scenario where the SU obtains the necessary CSI by estimating the

interference channel. We then obtained a statistical model for the estimation error

and by considering the error statistics, derived the distribution for the interference

power. Based on the interference statistics, we set a probabilistic interference power

constraint and in order to satisfy it, proposed a search-based method for obtaining

the maximum allowable transmit power. The validity of our model and the perfor-

mance of the proposed method were verified by analysis and computer simulations

and it was shown that it is possible to negate the effects of the channel estimation

error in terms of interference power. The drawback of the proposed method is that

limiting the SU’s maximum transmit power will also reduce the maximum achiev-

able capacity for the secondary transmission, however this is unavoidable when we

want to improve the primary user protection using transmit power control.
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Chapter 4

Joint interference avoidance for

spatial spectrum sharing

In order to achieve efficient spectrum utilization, it is possible to employ beam-

forming based spectrum sharing methods in multiantenna equipped cognitive radio

systems. To realize this in a manner that will only result in tolerable amount of

interference for the primary users, the secondary users must be able to accurately

allocate the transmissions in the available signal space. In this chapter, we study

the issue of avoiding interference to the primary users when the secondary users

incorrectly allocate too many spatial streams for the secondary transmissions. We

provide analysis for the interference power statistics in the case of error in order to

satisfy the interference constraint in terms of primary user outage probability. We

also show that protecting the primary user from the stream allocation errors, we

can at the same time take into account the possible channel estimation errors. We

take advantage of the moment matching method to obtain an approximated expres-

sion for the interference power that is tractable for practical analysis. Furthermore,

we provide a method that can find the maximum allowable transmit power for the

secondary user which can satisfy the interference constraint.

4.1 Introduction

Cognitive radio (CR) techniques have attracted significant amount of interest in

the recent years as a possible solution to the impending spectrum scarcity problem.

Especially interesting are the methods that employ multiantenna techniques such as

beamforming to spatially interleave the secondary transmissions so that interference

to the primary user (PU) can be avoided. Ideally, when the secondary system (SU)

is equipped with multiple transmit antennas, it is possible to transmit concurrently

with the PU while negating all interference that would otherwise be caused to the

PU.
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In practical systems, however, there are two important sources that can result in

harmful interference. First is the use of imperfect channel state information (CSI)

and the second one is when the SU incorrectly allocates too many streams for the

secondary transmission. While the former is a major issue and it has been studied

in the literature, the latter has not been studied deeply.

In this chapter, we investigate the issue of avoiding interference in CR network

with incorrect allocation of secondary transmit streams. We carry out analysis of

the interference power statistics so that it is possible to satisfy an outage-based

protection constraint by regulating the transmit power at the SU terminal. We

take advantage of moment matching technique to obtain tractable expression for

the interference power distribution. We also provide a method that can obtain the

maximum allowable transmit power for SU which can guarantee the desired outage

probability for the primary system.

The rest of chapter is organized as follows. In Section 4.2 we present the system

model considered herein. In Section 4.3, we analyze the interference power in the

case of stream allocation error and describe the method which can be used to obtain

the maximum transmit power. The method is verified by numerical simulations in

4.4, and in Section 4.5 we conclude this chapter.

4.2 System model

We consider a system model where the SU attempts to access spectrum reserved

for the primary system. The SU consists of a transmitter-receiver pair and both

terminals are equipped with MSU antennas. The PU has a single terminal with MPU

antennas and it is assumed to operate in receiving mode. We denote the interference

channel between the SU transmitter and the PU receiver by G ∈ CMPU×MSU and the

secondary transmission channel by H ∈ CMSU×MSU .

Under the CR principle, the SU is allowed to access the reserved spectrum as

long as it will not cause harmful interference to the PU. In multiple-input multiple-

output (MIMO) based spectrum sharing, this can be realized by having the SU

map its signal onto the null space of G. Note that for concurrent transmissions

MSU > MPU is required so that the dimension of the available signal space is larger

than zero. In practice, the SU has to estimate the null space of the interference

channel before engaging transmission. For reciprocal channel, this can be done by

having the SU probe the channel while the PU is transmitting and compute the

covariance matrix of the PU signal. Then, the null space of the interference channel

can be obtained as the eigenvectors of the covariance matrix that correspond to

the noise subspace. The dimension of the null space dictates the number of spatial

streams that can support orthogonal secondary transmission. In order to maximize
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the capacity of the secondary transmission, the goal is to use all of the available

streams which is equal to d = MSU −MPU.

In order to orthogonalize the secondary transmit signals with the interference

channel, the SU has to design a beamforming matrix A that satisfies GA = 0. The

beamforming matrix can be further decomposed into A = G0B where G0 is the

basis of the null space of G, and in this case, the optimal beamforming matrix A

can be obtained by finding B using singular value decomposition based precoder

design for the auxiliary channel HG0 and the transmit power allocations can be

correspondingly obtained with waterfilling [61].

In a CR system where the PU parameters are not known at the SU and no

cooperation is provided by the primary system, the SU has to estimate d to determine

the available spatial transmit resources. This can be done by estimating the number

of PU transmit streams during the channel learning. Because the SU does not

have perfect knowledge of d, it is possible that an erroneous estimate will result in

interference towards the PU. If the SU underestimates the null space dimension, i.e.

d̂ < d, the secondary transmission will not use all the available spatial dimensions.

While this results in suboptimal capacity for the SU, it will not cause any interference

to the PU. However, in the case d̂ > d the SU’s transmit space will overlap with

primary signal space and this will cause significant amount of interference.

In the optimal case where the SU knows d, the beamforming matrix is obtained as

a product of G0 and the right singular vectors of the matrix HG0 ∈ CMSU×d. When

the signal space dimension is overestimated, additional column vectors are chosen

to be included in G0 which has the effect of increasing the rank of the auxiliary

channel used for the precoder design. Furthermore, this completely changes the

corresponding singular vectors as well as the resulting beamforming matrix and

thus will cause interference to the PU.

In this chapter, we study the effects of the stream allocation error in the case

d̂ > d and the resulting interference. We attempt to limit the interference so that a

desired quality of service can be guaranteed for the PU. Therefore, we define a pro-

tection constraint that the SU must satisfy in order for the secondary transmission

to be allowed. This is done in terms of outage probability, i.e., we want to con-

strain the probability of the interference power exceeding a predefined interference

threshold. Therefore, our protection constraint is expressed as

Prob(IP ≤ γ) = 1− Pout (4.1)

where IP denotes the interference power, γ is the interference threshold, and Pout is

the desired outage probability
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4.3 Interference with stream allocation error

After the channel learning, the SU has obtained an estimate for the available trans-

mit streams, d̂, and the corresponding beamforming matrix A ∈ CMSU×d̂. Now, the

interference power at the PU due to the secondary transmission can be expressed as

IP = E{∥GAxSU[n]∥22} = E{trace(GAxSU[n]x
H
SU[n]A

HGH)}. (4.2)

Here we assume block fading scenario where the channel is considered constant

during a single transmission frame. For the transmitted secondary signals we have

E{∥xSU∥22} = Σ, where Σ = diag(σ2
1 . . . σ

2
d̂
) and trace(Σ) = Pt, where σ

2
i denote the

transmit power allocated for the ith stream and Pt is the transmit power constraint.

Therefore, the average interference during the SU transmission can be rewritten as

IP = trace(ΣAHGHGA). (4.3)

In order to satisfy the protection constraint (4.1), the distribution of IP is re-

quired. Looking at (4.3) it can be seen that the product GHG is Wishart matrix

with the distribution WMSU
(MSU, IMPU

). Due to the matrix trace, IP can also be

written as a sum

IP = σ2
1a

H
1 G

HGa1 + . . .+ aH
d̂
GHGad̂ (4.4)

where ai is the ith column vector of the beamforming matrix. From the property

of Wishart matrices it follows that aH
i G

HGai follow the Gamma distribution as

Γ(MPU,a
H
i ai = 1) and due to the scaling property of the Gamma distribution we

also have σ2
i a

H
i G

HGai ∼ Γ(MPU, σ
2
i ). Therefore the interference power can be

viewed as a sum of d̂ Gamma distributed random variables. It should be noted that

by setting aH
i ai = 1 we at the same time protect the PU from the possible errors in

the precoding matrix that are caused by the channel estimation errors, calibration

errors, delayed channel state information, and so forth. This is due to the fact that

that for a unit-length precoding vector, if a part of it would lie in the orthogonal

complement space of G, the component that would lie in the space spanned by G

would be less than one, and therefore also aH
i ai < 1.

While exact expressions are available for a sum of Gamma distributed vari-

ables [72], they are usually expressed as infinite sums or in terms of hypergeometric

functions and thus are not tractable for practical analysis. This issue can be cir-

cumvented by approximating the distribution with another Gamma distribution

by matching its moments to the sum of the corresponding moments of the coeffi-

cients [73]. If we denote the r.v. used to approximate IP by X ≈
∑d̂

i=1 σ
2
i a

H
i G

HGai,
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then for the two first moments of X we have

µX =
d̂∑

i=1

MPUσ
2
i = MPU

d̂∑
i=1

σ2
i = MPUPt (4.5)

and

σ2
X =

d̂∑
i=1

MPU(σ
2
i )

2 = MPU

d̂∑
i=1

(σ2
i )

2 (4.6)

which follows from the fact that the two first moments of a r.v. having the distribu-

tion Γ(k, θ) are kθ and kθ2, respectively. Furthermore, we get the distribution for

the approximation as Γ(kX =
µ2
X

σ2
X
, θX =

σ2
X

µX
). The validity of the approximation can

be seen in Fig. 4.1, where it is compared with empirical distribution obtained for

fixed A and Σ over 10 000 realizations of G with MSU = 5, MPU = 3, and d̂ = 3.
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Figure 4.1: Interference power distribution with MSU = 5, MPU = 3, and d̂ = 3.

In order to determine the maximum transmit power Pt that the SU can allocate

for the secondary transmission while satisfying the protection constraint, we need

the cumulative distribution function for X which is

FX(x; kX , θX) =
1

Γ(kX)

∫ x
θX

0

tkX−1e−tdt. (4.7)
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To satisfy the protection constraint (4.1) for given interference threshold γ we get

Prob(X ≤ γ) = FX(γ) =
1

Γ(k)

∫ γ
θX

tkX−1e−tdt = 1− Pout (4.8)

from where we can solve for Pt by finding the upper limit x0 = γ
θX

for the integral

which results the in integrand being equal to 1− Pout.

Consider the shape and scale parameters for the approximated distribution

kX =
µ2
X

σ2
X

=
(MPUPt)

2

MPU

∑d̂
i=1(σ

2)2
=

MPUP
2
t∑d̂

i=1(σ
2
i )

2
(4.9)

and

θX =
MPU

∑d̂
i=1(σ

2
i )

2

MPUPt

=

∑d̂
i=1(σ

2
i )

2

Pt

. (4.10)

We can notice two issues that further complicate the problem of solving for maximal

Pt. First, both parameters depend on the MPU for which only an incorrect estimate

(in the case of stream allocation error) is available at the SU. In addition, the

parameters also depend on the power allocations for the individual streams which

in turn depend on Pt. In practice, the SU can instead use the value MSU which is

a worst case approximation of MPU. While this serves as a safeguard against the

interference towards the PU, it will result in suboptimal SU capacity. However, let

us ignore this issue for now so that we can attempt to evaluate the theoretically

achievable maximum transmit power. For the second issue, we can consider two

different cases. The term
∑d̂

i=1(σ
2
i )

2 achieves its maximum P 2
t when all the transmit

power is allocated for a single stream which in practice occurs when Pt is relatively

small compared to the singular values of the auxiliary channel HG0. On the other

hand, the sum achieves its minimum
P 2
t

d̂
when equal powers are allocated for each

stream. It is intuitive that when higher transmit power Pt is used, more interference

will be caused to the PU. Therefore, the single stream power allocation can also be

used as a worst case approximation. However, we will also evaluate the maximum

transmit powers for the uniform power allocation which can be useful for the cases

where the SU does not have CSI at the transmitter. Now, the resulting shape

and scale parameters for the interference power distribution are kmax
X = MPU and

θmax
X = Pt for the single stream power allocation, and kmin

X = MPUd̂ and θmin
X = Pt

d̂
for

the uniform power allocation. In both cases, only the scale parameter θX depends

on Pt so after finding x0 that satisfies (4.8) we can solve the maximum transmit

power as Pt =
γ
x0

and Pt =
γd̂
x0

for the single stream and uniform power allocation

cases, respectively.
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4.4 Simulation results

We have evaluated the maximum achievable transmit powers for MSU = 5 and

MPU = 3 antenna configuration. In this case, d = 5 − 3 = 2 and for the erroneous

stream number we have used d̂ = 3. The maximum transmit powers were solved

from (4.8) by using numerical integration and a bisection based search for x0 with a

stopping criterion of 10−6, i.e., the interference power satisfies |Prob(IP ≤ γ)− (1−
Pout)| ≤ 10−6. The results for the maximum transmit power can be seen in Fig. 4.2

where the achievable Pt is plotted as a function of the target outage probability for

different values of the interference threshold γ.
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Figure 4.2: Maximum achievable transmit powers as function of outage probability for
MSU = 5, MPU = 3 and d̂ = 3.

It can be seen that for small outage probabilities, the single stream power allo-

cation results in smaller allowable transmit powers. On the other hand, with higher

outage probabilities the single stream power allocation will result in higher transmit

power than the uniform power allocation. This is due to the fact that the minimum

and maximum approximations have different shape parameters for the interference

power distribution and its effect is more pronounced at smaller probabilities.

While the results are somewhat discouraging as the resulting maximum trans-

mit powers are fairly small, there are some additional considerations that should be
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taken into account for more practical transmit power control. First, the probability

of erroneous stream allocation was not considered here. If the probability of SU

correctly estimating the number of available streams is 0.9 for example, the pro-

tection constraint can be further relaxed to achieve the desired outage probability.

Moreover, it has been shown that very high estimation probability for the number

of streams can be achieved even at quite low signal-to-noise ratio (SNR) region [74].

In practice the low SNR scenario usually occurs when the PU is located far away

from the SU terminal. Therefore in the SNR region where stream allocation errors

are likely to occur, it would be possible to allocate more transmit power for the

secondary transmission if we also take into account the path loss attenuation which

was not considered here. The contribution of this chapter is to provide a frame-

work for the interference power analysis and some preliminary results in terms of

the achievable transmit power. Future work will include more realistic interference

model as well as incorporation of the stream allocation error probabilities.

4.5 Conclusion

In this chapter, we have investigated the issue where a multiantenna enabled SU of

a CR network incorrectly allocates more spatial streams for the secondary transmis-

sion than actually available. We have analyzed the interference power caused to the

PU resulting from such scenario and obtained an approximation for the interference

power distribution. This distribution can be used to obtain the maximum transmit

power for the SU which can satisfy the PU protection constraint with desired prob-

ability. Our results show that while it is possible to protect the PU from the stream

allocation error, it will cause severe degradation for the SU transmission capacity.

Therefore, we can conclude that accurate estimation of the available spatial transmit

resources is essential in MIMO-based spectrum sharing in order to achieve proper

performance.
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Chapter 5

Conclusions and future work

The aim of this thesis was to study methods for primary user protection in MIMO-

based cognitive radio systems with channel estimation and spatial resource allocation

errors. The investigation was motivated by the fact that in order to resolve the

problem of spectrum scarcity, there is demand for dynamic spectrum access methods

which can achieve efficient spectrum utilization. MIMO-based spectrum sharing

methods enable the reuse of licensed spectrum by unlicensed secondary systems. In

order to achieve coexistence, the secondary systems must ensure that no harmful

interference will be caused to the primary system. However, the fact the secondary

spectrum use must be done without cooperation from the primary users leads to the

problem that the secondary system must estimate the primary system parameters,

often by relying blind methods which can result in significant estimation errors.

Therefore, it is important that the secondary system can somehow compensate the

interference caused by these errors in order to access the licensed spectrum. In

Chapter 1, a look into the problem background was provided and the preliminaries

of dynamic spectrum access and cognitive radio techniques were presented with a

review of the current state of developments.

Chapter 2 focused on the problem of estimating the estimation of available spatial

degrees of freedom that can be used for the secondary transmission. A cooperative

secondary network with decision fusion was considered. It was shown that with

cooperative estimation, it is possible to improve the estimation accuracy by taking

advantage of the increased spatial diversity. The estimation accuracy was further

improved by employing a decision fusion rule which takes advantage of the estima-

tion bias of the considered MDL estimation algorithm. The proposed decision fusion

rule was also shown to be able to avoid the error event which results in the harmful

interference to the primary user due to allocating too many spatial streams for the

secondary transmission. While the work in Chapter 2 showed that it is possible to

improve the estimation accuracy in the low signal-to-noise region, more elaborate

system model should be considered in the future work. Instead of a heterogenous
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model where all the secondary users receive a signal with equal strength, distribut-

ing the secondary terminals within the cell at different distances from the primary

terminal would provide more realistic scenario. Furthermore, taking into account

the path loss attenuation will have implications on the distribution of the candidate

estimates and therefore other decision fusion rules might be able to provide better

estimation accuracy in different scenarios.

In Chapter 3 a spectrum sharing scenario with channel estimation errors was

considered. As opposed to conventional interference temperature based methods, a

probabilistic protection constraint was formulated where desired interference outage

probability for the primary user can be guaranteed. While this method results in

lower capacity for the secondary user due to stricter transmit power constraint, the

primary user can be protected at all times with the desired probability. Further-

more, the proposed approach is tolerant to possible channel variations during the

secondary transmission since the constraint is satisfied over all channel realizations.

The difficulty in compensating for the estimation errors is due to the fact that the

estimation errors propagate to the beamforming matrix via non-linear transforma-

tions such as singular value decomposition. While some results are available in the

literature for the perturbation of singular vectors they can be difficult to apply to

the problem at hand due to dependence on the relative gap between singular values.

In Chapter 3, the errors were modeled as a random variables and the correspond-

ing distributions were obtained by a somewhat crude approach based on first order

statistics and empirical distributions. Investigating the distribution of the estima-

tion error in more detail can lead to more accurate interference models. Especially,

if it is possible to establish a dependence between the estimation parameters and

the error distribution.

Chapter 4 dealt with the interference due to spatial resource allocation errors.

By the means of interference analysis, it was shown that in order to protect the

primary user from the stream allocation errors due to the inability of lower bound-

ing the precoding matrix error, the proposed constraint is also tolerant to channel

estimation errors. As in Chapter 3, a probabilistic protection constraint was con-

sidered in order to be able to exert more control over the resulting interference

and therefore being able to enable more flexible spectrum utilization. The analy-

sis of the interference power showed that optimal interference cancellation is not

possible due to the dependence on the unknown parameters. However, the analysis

revealed the achievable maximum transmission powers for the optimal case which

provides some insight into the maximum achievable performance. In practical ap-

plications, one way to circumvent this problem is to use worst case approximations

which however leads to sub-optimal capacity for the secondary users. While the

results of the Chapter 4 provide preliminary results in terms of achievable capacity
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in the case of a stream allocation error, in future work the connection between the

spatial resource estimation and primary user protection should be established. By

considering the estimation error probalities in conjuction with the interference dis-

tribution, it is possible to achieve more relaxed protection constraint which allows

higher transmit power for the secondary user while satisfying the protection con-

straint. Furthermore, the stream allocation errors are unlikely even at relatively low

signal-to-noise ratio region. Therefore, a simple approach would be to consider an

adaptive method which switches between the joint interference mitigation and the

imperfect CSI method based on the received primary signal strength.

In this work, it was shown that it is possible to protect the primary user in the

presence of estimation errors. By employing statistical models for the interference,

it is possible to control the resulting interference and to provide required quality

of service for the primary user based on the interference outage probability. While

the methods provided here are not conclusive and they tend to result in suboptimal

performance for the secondary user, they provide a framework for future research.

By considering more realistic system models by taking into account the geograph-

ical location of the terminals, path loss attenuation due to distance, and possibly

correlated channel models will result in more detailed interference power character-

ization, and therefore would demonstrate more practical performance bounds for

spatial spectrum sharing based cognitive radio systems.
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List of papers by author

A.1 Journal papers with review

1. Samuli Tiiro, Kenta Umebayashi and Yasuo Suzuki, “Study on MIMO-Based

Spectrum Sharing With Stream Allocation and Channel Estimation Errors,”

IEICE Communications Express, review underway.

2. Samuli Tiiro, Kenta Umebayashi, Janne Lehtomäki and Yasuo Suzuki, “Spec-

trum Sharing in MIMO Cognitive Radio Systems With Imperfect Channel

State Information,” IEICE Transactions on Communications, Vol. E97-B, no. 4,

April 2014, to be published.

3. Samuli Tiiro, Kenta Umebayashi, Janne Lehtomäki and Yasuo Suzuki, “De-

cision Fusion for Cooperative Source Number Estimation in Cognitive Radio

Networks,” IEICE Communications Express, Vol. 2, No. 11, November 2013.

A.2 International conferences

1. Samuli Tiiro, Kenta Umebayashi and Yasuo Suzuki, “Cooperative Source Num-

ber Estimation for Cognitive Radio Networks,” Proceedings of International
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[74] S. Tiiro, K. Umebayashi, J. Lehtomäki, and Y. Suzuki, “Decision fusion for co-

operative source number estimation in cognitive radio networks,” IEICE Com-

munications Express, vol. 2, no. 11, pp. 484–489, 2013.

62


