
Tokyo University of Agriculture and Technology
Department of Mechanical Systems Engineering

Development of User-friendly, Distributed and Modular
Robotics Frameworks for Enabling the Design and

Integration of Social Intelligent Robots, Applications in
Human-Robot Interaction

Ph.D. Thesis Report

Presented by

Luis Enrique Coronado Zuniga

Supervisor

Gentiane Venture

September 2020





Abstract

Robots, particularly social ones, are very promising machines that have the potential to en-
hance and complement many aspects of our social and everyday lives. However, the utility of
these machines will remain restricted unless end-users (i.e., people who lack a robot engineering
and information technology background) are able to design, execute, modify and update their
own applications. A suitable way to enforce this possibility is through the End-User Develop-
ment (EUD) paradigm. However, EUD for Robotics is a poorly addressed area outside Science,
Technology, Engineering and Mathematics (STEM) aims. Moreover, the availability of robot
software compatible with the resources (i.e., devices and software) of different types of users
becomes relevant for supporting their research and work activities. However, many robotics
frameworks enabling integration and application development are designed to exclusively or
better work in desktop computers with some Linux-based desktop Operating Systems (OS),
such as Ubuntu; therefore limiting their usability and accessibility. Furthermore, many aca-
demic and real-world projects can require high-performance, easy, and robust communication
between software modules composed of a robotics system. These modules are often written
in different programming languages or executed in different computers or smart-devices. This
integration is often done to increase the robot’s capabilities and functions using novel sensors
and algorithms.

In an effort towards enabling end-users, novice programmers and robotics researchers to de-
sign and implement robot applications able to support their goals or needs, this thesis presents
the NEP (Node Primitives) and RIZE (Robot Interfaces from Zero Experience) frameworks.
On the one hand, NEP is a high–level and distributed robotics framework with an abstract
model that encapsulates communication functionalities of most relevant robotics middlewares
and general-purpose message libraries to enable the easy creation of advanced software archi-
tectures for robotics. On the other hand, RIZE is a EUD environment that enables the rapid
prototyping of social robot applications. The first goal of NEP and RIZE is to provide reusable,
flexible, robot-independent, accessible, cross-platform, and user-friendly development tools al-
lowing people with a lack of advanced information technology skills to prototype and develop
applications with robots. The second goal of NEP and RIZE is to enable multidisciplinary
research on Human-Robot Interaction (HRI). For this, expert programmers can integrate new
robot modules on the basis of end-users requirements. NEP is also designed to overcome
limitations of existing distributed frameworks by enabling fast development and integration of
robotics components which can be written in most relevant and modern programming languages
and executed in several operating systems. Findings from comparative performance evaluations
against state-of-art solutions prove the technological suitability of the NEP. Rather than only
testing NEP and RIZE in laboratory tests, these tools are also tested in Human-Robot In-
teraction (HRI) applications performed “in the wild” (i.e., real-world applications executed in
natural, crowded, dynamic and unstructured scenarios). Many of these applications were de-
signed by interdisciplinary teams of robotics and social researchers being RIZE (which software
architecture is based in NEP) a keystone software framework for reducing the gap between
the different practices and domain expertise of researchers. Results from the different projects
involved in this doctoral work prove the suitability of RIZE as a relevant and novel EUD tool
for Robotics. Two group of end-user cases using RIZE are presented in this thesis: (i) long-
term HRI in domestic environments and (ii) Children Robot Interaction (CRI) “in the wild”.
Due to their interdisciplinary nature, this thesis only reports those engineering aspects that are
relevant for this doctoral work and not the findings of social researchers. Therefore, this thesis
reports how RIZE was used by end-users for design and create their experimental scenarios
with robots. Finally, NEP was used in several academic and end-user HRI projects, enabling
undergraduate, master, and doctoral students on the GVlab to fast prototype advanced soft-

I



ware architectures for Robotics; therefore, supporting their research activities. Details of most
relevant projects developed in the doctoral work are presented to prove the technological suit-
ability of NEP for Robotics research. One of the most relevant applications is related to the
creation of social intelligent emotional robots. These applications uses NEP for the integration
of several sensory, perceptual, cognitive, and control modules written in different programming
languages and executed on computers. Another relevant application was successfully presented
in the International Robotics Exhibition (IREX) 2019. Results from applied questionnaires
indicate that most visitors to this exhibition enjoyed the developed interactive scenario. Soft-
ware frameworks presented in this doctoral work can be used as an initial step towards more
user-friendly and reusable applications in Robotics. Applications shown in this thesis prove the
technological suitability and potential of NEP and RIZE for empowering the development of
both academic-oriented and real-world HRI projects.

II



Contents

1 Introduction 1
1.1 Development of Social Intelligent Robots . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Advanced Robot Programming . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 End-User Development for Robotics . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Human-Robot Interaction “in the Wild” . . . . . . . . . . . . . . . . . . 4

1.2 Motivations, Contributions, and Research Questions . . . . . . . . . . . . . . . . 4
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Distributed Robotic Frameworks 7
2.1 A brief introduction to distributed systems . . . . . . . . . . . . . . . . . . . . . 7
2.2 Are distributed robotics frameworks user-friendly? . . . . . . . . . . . . . . . . . 10
2.3 Distributed frameworks for robotics . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Robot Operating System (ROS 1.0) . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 ROS 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 Yet Another Robot Platform (YARP) . . . . . . . . . . . . . . . . . . . . 14
2.3.4 OpenRTM-aist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Software and Hardware 17
3.1 ZeroMQ and nanomsg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Web-technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Node.js . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Vue.js . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.3 Electron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Robot platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.1 Nao and Pepper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.2 Robot arms controlled by MATLAB . . . . . . . . . . . . . . . . . . . . 22
3.3.3 Kawada Nextage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 The NEP Robotics Framework 25
4.1 What is NEP? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 NEP for Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.2 NEP for Javascript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.3 NEP for C# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.4 NEP for MATLAB and Octave . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Discovery Service Master Node . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Performance Evaluation of NEP . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.1 Evaluation in Python and Node.js . . . . . . . . . . . . . . . . . . . . . . 33

III



4.3.2 Evaluation in MATLAB and OCTAVE . . . . . . . . . . . . . . . . . . . 35

5 Visual Programming Environments for End-Users of Social Robots 39
5.1 Motivations for performing a systematic review . . . . . . . . . . . . . . . . . . 39
5.2 Appropriate Abstraction Level for Programming Social Robots . . . . . . . . . . 40
5.3 Visual Programming Environments in Robotics . . . . . . . . . . . . . . . . . . 41
5.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4.2 Search Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.4.3 Selection of Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4.4 Limitation of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.4.5 Reporting of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.5 VPEs for Social Robotics (RQ2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.5.1 Dataflow-based Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.5.2 Block-based Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5.3 Form-filling Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.6 Modeling Intelligent Behaviors (RQ3) . . . . . . . . . . . . . . . . . . . . . . . . 54
5.6.1 Scripting-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.6.2 Rule-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.6.3 State-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.6.4 Behavior-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.7 Tools, technologies and evaluation methods used in VPEs for Social Robotics
(RQ4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.8 Open Challenges of EUD for Social Robotics (RQ5) . . . . . . . . . . . . . . . . 59
5.8.1 Accessibility to External Devices and Resources . . . . . . . . . . . . . . 59
5.8.2 Modularity of Human-Robot Interaction Primitives . . . . . . . . . . . . 60
5.8.3 Scalability in Large Applications . . . . . . . . . . . . . . . . . . . . . . 61
5.8.4 Correct Abstraction Levels and Programming Notations . . . . . . . . . 61
5.8.5 Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.8.6 Explainability and Generation of Robot Social Behaviors . . . . . . . . . 63
5.8.7 Simulation and Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6 Designing RIZE End-User Development Framework 67
6.1 Usability and UX in HCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3 Software architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.4 Automatic Generation of Behavioral Blocks and Code . . . . . . . . . . . . . . . 72
6.5 Graphical elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.5.1 Definition of robot actions . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.5.2 Interaction patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.5.3 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.5.4 Definition of robot reactions . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.5.5 Definition of robot goals . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7 Long-term Human-Robot Interaction in Domestic Scenarios 79
7.1 Objectives and motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2 Software architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.3 Validation “in the wild” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

IV



8 EUD of Children-Robot Interaction Applications using RIZE 85
8.1 Software architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.2 Activities designed by end-users . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8.2.1 Storybook reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
8.2.2 Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
8.2.3 Dance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.2.4 Other activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8.3 Experimental insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

9 Building Emotional Intelligent Robots with NEP and MATLAB 91
9.1 Emotional modelling using dimensional values . . . . . . . . . . . . . . . . . . . 91
9.2 General software Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
9.3 Emotional modelling using Fuzzy Logic . . . . . . . . . . . . . . . . . . . . . . . 93
9.4 Examples of application and discussion . . . . . . . . . . . . . . . . . . . . . . . 94

10 Human–Robot Interaction at an International Robot Exposition 95
10.1 Software architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
10.2 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
10.3 Discussion of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

11 Conclusions, Limitations and Future Work 99
11.1 Discussion summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
11.2 Limitations and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
11.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Publications 103

Appendices 105

A Tables 107

B Code examples 109
B.1 nep.js package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
B.2 RIZE package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Bibliography 110

V



List of Figures

2.1 Abstraction model of distributed robotics systems . . . . . . . . . . . . . . . . . 8
2.2 More popular messaging patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Example of robot and Internet of Things (IoT) components connected with non-

robot-middleware-capable devices and modules via a bridge server . . . . . . . . 13

3.1 Example of a simple GUI created with Vue.js, HTML and Javascript . . . . . . 19
3.2 Graphical representation of a Vue.js application using components (from vue.js

documentation[1]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Software architecture of a Electron application . . . . . . . . . . . . . . . . . . . 21
3.4 Images of social humanoid robots used in this thesis . . . . . . . . . . . . . . . . 22
3.5 Robot arms controlled by MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6 Nextage open collaborative robot . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 NEP Master architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Main interface of the NEP Discovery Master Node . . . . . . . . . . . . . . . . . 32
4.3 Example of data visualization using the NEP Discovery Master interface . . . . 33
4.4 Latency results in scenario R-Remote; comparisons between NEP and ROS-

rosbridge using nodes written in Python 2 and Python 3 executed in different
machines, which are connected over the same Wifi network . . . . . . . . . . . . 34

4.5 Latency results on scenario L-local; comparisons between NEP and ROS-rosbridge
using nodes written in Python 2 and Node.js executed in the same computer . . 35

4.6 Latency comparison connecting MATLAB/Octave with Python using ROS Tool-
box and NEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.7 Latency comparison connecting MATLAB/Octave with Node.js using rosbridge
and NEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1 Flowchart of the search strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Example of a block-based programming environment using general purpose pro-

gramming notations using Google Blockly, end-user code is converted to real
code in some programming language . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3 Simplest notation used in a rule-based VPEs . . . . . . . . . . . . . . . . . . . . 56
5.4 Example of spaghetti code in a dataflow-based VPE (example taken from [2]. . . 56
5.5 a) In state-based methods, each state requires the definition of the decision logic

that indicates the decision-making system how to change to another specific
state; b) Behavior-based approaches separate decision logic from behavior code
enabling a hierarchical and modular representation (adapted from [3]) . . . . . . 57

5.6 Example of behavior tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.1 Home interface of RIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

VI



6.2 Alert displayed when the robot is not able to be connected . . . . . . . . . . . . 69
6.3 Organization of robot behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.4 Programming environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.5 Component diagram of RIZE software architecture . . . . . . . . . . . . . . . . 71
6.6 Schematic overview of the processes involved in the generation of new functional

requirements for the RIZE environment . . . . . . . . . . . . . . . . . . . . . . . 72
6.7 Example of auto-generated graphical elements . . . . . . . . . . . . . . . . . . . 73
6.8 Example of an action in RIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.9 Example of a pattern block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.10 Sequence module blocks example . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.11 Reaction block example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.12 Goal block example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.13 Proposed hybrid FMS and BT engine approach . . . . . . . . . . . . . . . . . . 76

7.1 Proposed software architecture used in experiments performed in domestic envi-
ronments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.2 Initial version of RIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.3 Example of “in the wild” scenarios used for experimental sessions . . . . . . . . 82
7.4 Total usage of robot most used functions over the course of the three sessions . . 83

8.1 Software architecture diagram used for supporting Children-Robot Interaction
(CRI) applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8.2 Example of real end users designing and programming a ”in the wild” Human–
Robot Interaction (HRI) scenario using current prototype of the RIZE robot
End-User Development (EUD) interface for social robots . . . . . . . . . . . . . 87

8.3 Example of activities designed by end-users using RIZE for a kindergarten event 88
8.4 Example of variant of dance and storytelling activities used in other events . . . 88
8.5 More popular messaging patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 89

9.1 PAD emotional model, from [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
9.2 General cognitive and adaptive architecture for emotional robots . . . . . . . . . 92
9.3 Control Architecture for expression of emotional states in robot arm . . . . . . . 93
9.4 Examples of applications preformed using the proposed architectures for devel-

opment of social intelligent robots . . . . . . . . . . . . . . . . . . . . . . . . . . 94

10.1 General software architecture of the HRI application performed in the Interna-
tional Robot Exhibition (IREX) 2019 . . . . . . . . . . . . . . . . . . . . . . . . 96

10.2 Example of interaction between a ROS-based robot and humans in a interna-
tional robot exposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

10.3 People feeling about the HRI scenario . . . . . . . . . . . . . . . . . . . . . . . . 97
10.4 People feeling about the robot’s design intelligence and anthropomorphism . . . 98

VII



List of Tables

2.1 Dimensions used to answer RQ1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.1 Cognitive dimension definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Dimension used to obtain general information of VPEs . . . . . . . . . . . . . . 44
5.3 Dimension used to answer RQ3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4 Dimensions used to answer RQ4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.5 Definitions of Inclusion Criteria (IC) . . . . . . . . . . . . . . . . . . . . . . . . 47
5.6 Definitions of Exclusion Criteria (EC) . . . . . . . . . . . . . . . . . . . . . . . . 47
5.7 General features of VPEs for Social Robotics . . . . . . . . . . . . . . . . . . . . 50
5.8 Comparison between AAI approaches using in VPEs (RQ3) . . . . . . . . . . . . 54

6.1 Usability guidelines used for the design of the NEP interface . . . . . . . . . . . 67

A.1 Dimensions used for answer RQ4 . . . . . . . . . . . . . . . . . . . . . . . . . . 108

VIII



List of abbreviations

AAI Authoring Artificial Intelligence
ACE Adaptive Communication Environment
AIST Advanced Industrial Science and Technology
BDI Belief-Desire-Intention
BT Behavior Tree
CRI Children-Robot Interaction
CSS Cascading Style Sheets
CDF Cognitive Dimension Framework
EUD End-User Development
EUP End-user programming
EUSE End-user Software Engineering
FSM Finite State Machines
HRI Human Robot Interaction
HCI Human-Computer Interaction
HTML HyperText Markup Language
IoT Internet of Things
IoRT Internet of Robot Things
LfD Learning from Demonstration
NARS Negative Attitudes towards Robots Scale
NEP Node Primitives
JSON JavaScript Object Notation
PbD Programming by Demonstration
ProCRob Programming Cognitive Robot
RAT Robot-Assisted Therapy
RIZE Robot Interfaces from Zero Experience
ROS Robot Operating System
RobAPL Robot Agent Programming Language
SDK Software Development Kit
SIR Social Interactive Robots
SWIG Simplified Wrapper and Interface Generator
SUS System Usability Scale
TLX Task Load Index
OS Operating Systems
UX User Experience
VPE Visual Programming Environment
VPL Visual Programming Language
WoZ Wizard of Oz
YARP Yet Another Robot Platform

IX



X



Listings

3.1 Simple example of a Node.js package . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Example of code representing the View group in Vue.js . . . . . . . . . . . . . . 19
3.3 Example of code representing the Model and ViewModel groups in Vue.js . . . . 19
3.4 Example of a simple component in vue.js . . . . . . . . . . . . . . . . . . . . . . 20
4.1 Install NEP in Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Minimal code using NEP for creating a publisher in Python . . . . . . . . . . . 27
4.3 Minimal code using NEP for creating a subscriber in Python . . . . . . . . . . . 27
4.4 Minimal code using NEP for creating a ROS re-usable subscriber in Python . . 27
4.5 Install NEP in Node.js . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.6 Minimal code using NEP for creating publisher in JavaScript . . . . . . . . . . . 28
4.7 Minimal code using NEP for creating a subscriber in JavaScript . . . . . . . . . 28
4.8 Install NEP in C# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.9 Minimal code using NEP for creating publisher in C# . . . . . . . . . . . . . . . 29
4.10 Minimal code using NEP for creating a subscriber in C# . . . . . . . . . . . . . 30
4.11 Minimal code using NEP for creating a publisher in Matlab . . . . . . . . . . . 31
4.12 Minimal code using NEP for creating a subscriber in Matlab . . . . . . . . . . . 31
B.1 Package configuration file for nep.js library . . . . . . . . . . . . . . . . . . . . . 109
B.2 Package configuration file for RIZE . . . . . . . . . . . . . . . . . . . . . . . . . 110

XI



XII



Chapter 1

Introduction

1.1 Development of Social Intelligent Robots

Robots are advanced, useful and programmable machines nowadays successfully used in many
manufacturing industries, universities, and research institutes. Traditional robotic structures
(e.g., arm and parallel robots) are generally used to perform high-speed, efficient, tedious, and
repetitive tasks in hazardous and industrial environments. In most of these scenarios, few or no
interactive tasks with humans are required [5, 6]. These cases differ significantly from Socially
Interactive Robots (SIR), whose main goals are to play useful social roles and engage different
types of users through meaningful, natural, suitable, and safe interactions [7, 8]. A related con-
cept is Human Robot Interaction (HRI), which is defined in [9] as “the field of study dedicated
to understand, design, and evaluate robotic systems for their use by or with humans”. The
first HRI studies were performed using robots with a lack of sensing and reasoning capabilities
in industrial and teleoperation tasks [10]. Then, the advances in sensing and computational
capabilities allowed the development of novels methods of interaction with robots. Nowadays,
interactive robots are not only aimed at expert users in laboratories or industrial scenarios.
In fact, robots are also attempting to play several social roles such as helpers, companions,
teachers, or friends in real-world scenarios. Despite being one of the most relevant emergent
technologies according to the World Economic Forum 2019 [11], the successful adoption and
acceptance of social and service robots into our society still requires the solution of many so-
cioethical and technological challenges [12, 13]. Some of the most relevant socio-ethical issues
are: privacy and security [14], legal issues [15], right levels of autonomy and anthropomorphism
[16, 17], threatening of employments [18] and replacement of human interactions [15]. However,
this thesis mostly focus in those technological challenges related to the development of appli-
cations and research activities with intelligent robotics systems, specifically on: (i) enabling
the creation of advanced software architectures by the easy integration of software components
for robotics; (ii) enabling interdisciplinary research activities where the owners of problems can
develop their own applications and design desired intelligent robots; and (iii) bring robots to
new, open, dynamic and natural scenarios. These three main challenges are described below.

1.1.1 Advanced Robot Programming

Distributed robotics frameworks [19] are the main software tools used in modern robotics to
design and create advanced robotics systems. This is done by enabling the integration, execu-
tion, and management of several and independent software modules (also denoted as nodes),
which represent the building block of any complex application in robotics. These modules
generally address specific robotics tasks (e.g., data acquisition, perception, decision-making,
and actuation). With the rapid development of sensors, devices, and algorithms in robotics,

1



nowadays new users outside its classical industrial and academic technological communities are
motivated to develop novel robot applications able to solve their professional needs [20, 21].
To be adopted by a broader community and accessible to more people, robots must be able
to communicate with user’s devices (e.g., computers, tablets, smartphones, and smartwatches)
for monitoring, management, programming and high-level control tasks. Enabling this connec-
tion using modern communication technologies is one of the main objectives of the Internet
of Robot Things (IoRT) [22]. In this context, the availability of robot software compatible
with the resources (i.e., devices and software) of different types of users becomes relevant for
supporting their research and work activities. However, many academic-oriented component-
based and distributed robot frameworks are designed to exclusively or better work in desktop
computers with some specific Linux-based desktop Operating Systems (OS), such as Ubuntu
[23]. This limits accessibility for many experts and novice users preferring or constrained to
use other more popular OS. Moreover, many robotics projects can require high-performance,
easy and robust communication between software modules written in different programming
languages. This task is often done to increase the robot’s capabilities and functions using novel
sensors and algorithms. However, most distributed robotics frameworks tend to officially sup-
port a few programming languages, generally being C++ the main available option according to
[23]. Furthermore, most robotics frameworks were originally designed for supporting academic
projects; therefore, tending to have steep learning curves [24]. Consequently, novice program-
mers in robotics are required to acquire new skills through time-consuming training. One of the
main focus of this thesis is to improve current state-of-art in distributed and component-based
robotics frameworks by proposing a set of usable inter-process communication tools enabling
the design and development of advanced software architectures for robotics. Main requirements
of this novel framework are: (i) to work in many versions of Windows, Linux and Mac OSX,
including those currently not fully compatible or still not well supported by most popular state-
of-art distributed and component-based robotics frameworks; (ii) to enable easy integration of
software modules written in most relevant and modern programming languages for robotics;
(iii) be easy and simple enough for enabling a quick start and use by novice programmers; and
(iv) provide acceptable communication performance for supporting advanced Human-Robot
Interaction (HRI) applications.

1.1.2 End-User Development for Robotics

Similar to the early years of computing hardware, current social robotics applications and
research are widely dominated by high-tech scribes (i.e., experts in programming or engineers
[25]). Unlike the requirements posed by the introduction of robots in industrial scenarios,
use cases in which robots must interact with people using social norms and conventions are
better approached by user experience (UX) designers and researchers in social sciences [26]. As
suggested by several works in HRI research, such as [27, 28, 29, 30, 31], “the role of domain
knowledge specialists should not be neglected” [27]. In fact, the inclusion of this new type
of users in the design processes of SIR is keystone to increase the quality, suitability and
acceptance of intelligent systems and their applications [27, 30]. However, people belonging
to this category are traditionally skillful in domains profoundly different from advanced robot
and software development, and oftentimes lack the required level of expertise in advanced
engineering topics, which are typically used to implement complex robot behaviors. Examples
of approaches addressing this issue by enabling the inclusion of non-roboticists in the creation
of interactive applications are user-centered [32] and participatory design [33]. Recent examples
in Social Robotics applying these methods are presented in [34, 35]. As described in [36], user-
centered and participatory design endorse the “design for use before use” paradigm, which
requires a clear division of labour between the people assigned for the creation of applications

2



at design time and the people able to use and redesign the application at run time. According
to [37], approaches requiring this division of labour have become problematic in many software
development areas due to: i) a lack of expert software developers or (manpower) able to grasp
and attend all possible users as well as their needs; ii) the dynamic change of requirements,
which are often specific to individual domain applications; and iii) possible misunderstandings
between expert software developers and their users due to the difference in backgrounds and
practices.

End-User Development (EUD) has emerged as a suitable alternative to those approaches
requiring a division of labour [37]. This is done by enabling novice users of computers and
people without training on traditional programming languages, which are often denoted as end
users, to redesign their own applications not only at design time but also at run time [38]. The
goal of EUD is to evolve from easy-to-use to easy-to-develop interactive technologies [37]. This
goal is not limited to software but also can include hardware artifacts, such as 3D printing
[37]. A new and broad definition based in the meta-design manifesto [39] also considers EUD
as a sociotechnical activity where users can develop all software and hardware systems that
they use in their everyday life [40]; thereby, enabling the independence of the owners of the
problems (i.e., end users) from the high-tech scribes [25]. The concept of EUD is related to
End-User Programming (EUP) and End-User Software Engineering (EUSE). On the one hand,
EUP is often considered as a sub-set of EUD [41], because it focuses only on the techniques
used to enable end users to write their own programs, such as visual programming, domain-
specific languages and natural language programming. In contrast, EUD not only focuses on
the program creation phases but also on the methods and tools that are able to support the
entire software development lifecycle [38]. This requires reaching independence from high-tech
scribes during the use, redesign, configuration, and extension of the software and hardware
artifacts [40]. On the other hand, EUSE takes a different approach compared to EUP and
EUD. This is because EUSE mostly focuses on providing end users with solutions derived from
traditional software engineering, such as debugging and version control, to promote the creation
of high-quality software (i.e., reusable, reliable and efficient) [41, 42].

Recently, Programming by Demonstration (PbD) and Learning from Demonstration (LfD)
have become in popular EUP approaches enabling industrial robots to perform manipulation
tasks autonomously [43, 44], such as pick-and-place [45] and robotics assembly [43]. For this
end users must use kinesthetic guidance, teleoperation or by using external controls to teach the
possible movements robots can imitate to perform some tasks [46]. However, these approaches
are rarely used for enabling complex social skills, such as communication and emotional in-
telligence. In contrast, Visual Programming Environments (VPEs) are EUD tools offering a
good trade-off between usability (being easy to learn and easy to use), and the overall com-
plexity characterizing the robot-based behaviors that can be developed with these tools. VPEs
integrate a selected Visual Programming Language (VPL) to enable their users to create ap-
plications on the basis of such graphical elements as icons, blocks, arrows, forms, and figures,
among others, rather than code only [47, 48]. However, literature reports few attempts for de-
mocratizing robot programming by enabling end-users to create robot applications using VPEs
that run on top of component-based frameworks for robotics. This aspect allows for the inte-
gration of new robot platforms and the reuse of software modules available in the community.
As described in chapter 5, most EUD and EUP tools for robotics using VPLs present many
accessibility, usability and flexibility issues. Therefore, the second main goal of this thesis is to
improve the current state-of-art in EUD for robotics by the creation of a novel EUD tool able to:
(i) be accessible and usable enough for enabling the easy development of robot applications by
end user; and (ii) be easy expanded or modified with novel perceptual and control algorithms.

3



1.1.3 Human-Robot Interaction “in the Wild”

Robotics is a field governed by short-term experiments performed in controlled and static
scenarios, such as industries and laboratories [49]. This approach makes data collection more
manageable and avoids many of the technical issues often presented when robots perform in
open, uncertain and highly dynamic environments. However, the HRI community has recently
expressed the necessity to move towards natural, open, everyday environments: an approach
referred to as HRI “in the wild” [49, 50]. The importance of “in the wild” research is in
the acquisition of more valuable quantitative and qualitative information, which can be used
to improve the design of robots and their applications, therefore increasing their economic
and social value [51]. Ideally, robots working “in the wild” must be able to adapt to their
environment, interact with humans in a natural way and learn from these interactions. At
the same time, robots need to expose suitable, ethical and explainable behaviors [52, 15, 53].
However, robotics systems presenting all these features can be very expensive (in time and
resources) and difficult to develop even for expert programmers [54, 55]. To overcome some
technical boundaries many works performed in laboratories and “in the wild” scenarios rely on
Wizard of Oz (WoZ) or teleportation approaches [56, 57]. However, these approaches increase
the cognitive workload of social researchers remotely operating robots [56]; therefore becoming
unsuitable in application requiring long-term interactions [57]. An alternative to handling
this problem is through the use of semi-autonomous systems (i.e., when robots controlled by
both humans or some autonomous intelligence). Rather than only focus in laboratory settings,
this work validates the suitability of proposed software tools for enabling research activities
performed in different “in the wild ” scenarios and with autonomous and semi-autonomous
robots. The creation of HRI “in the wild” applications represent a bigger challenge than its
counterpart implemented in controlled and structured scenarios, such as robotics laboratories.
This is due to many technical issues that are difficult to anticipate and fix when working in
public, natural and dynamic scenarios. However, this type of experiment can help researchers
to better understand how people will react to robots in their daily-file environments as well as
in the creation of more generalizable HRI theories [49]. For this, it is keystone the assembling
of interdisciplinary research teams that span robotics, design, and the behavioral sciences, and
in this way, to create more valuable experiments [49]. Therefore, the third focus of this thesis
is to support interdisciplinary research teams from the technical and development standpoint
by filling the gap between the classical and technological research activities in robotics and the
behavioral and social sciences.

1.2 Motivations, Contributions, and Research Questions

The previous section briefly described current gaps in modern research activities towards the
development of robot software aimed to be used and integrated by novice programmers, and end
users as well as evaluated “in the wild” scenarios. Therefore, the main motivation or objective
of this thesis is:

To increase the usability, accessibility, and flexibility of robot software with the creation of
software tools that enable an interdisciplinary and platform-independent development of intel-
ligent robotics systems, which can be able to successfully perform in laboratories and “in the
wild” scenarios

From this general objective, three sub-objectives are defined bellow:

1. (O1): Create a novel, open, usable, cross-platform and high-performance distributed and

4



component-based robotics framework for enabling the easy design and development of ad-
vanced software architectures for robotics

2. (O2): Create a novel Visual Programming Environment tool for supporting interdisci-
plinary research towards the End-User Development paradigm

3. (O3): Prove usability and technological suitability of proposed software tools in Human-
Robot Interaction applications performed in laboratories and “in the wild” scenarios

To address the objective O1, this thesis presents the Node Primitives (NEP) robotics frame-
work, which is composed of a set of libraries and interfaces enabling inter-process communi-
cation capabilities for robotics development. To address the objective O2, this thesis presents
the Robot Interface from Zero Experience (RIZE) a cross-platform EUD tool running on top of
NEP, a usable VPL, and modern web technologies for enabling the easy creation of HRI appli-
cations by end users. Finally, in order to address objective O3, a set of experiments performed
in open, natural crowded, dynamic and noisy scenarios are performed.

The following research question rose from proposed objectives as well as in the development
of this thesis:

• (RQ1) Are existing distributed robotics frameworks user-friendly enough for supporting
research and professional activities of end users and newcomers in Social Robotics?

• (RQ2) What VPE tools for the development of social and service robots have been pro-
posed in the EUD and EUP literature to support end-users research goals or professional
needs?

• (RQ3) What robot behavior modeling approaches have been used in these VPEs to
enable the creation of intelligent robotics systems?

• (RQ4) What technologies, evaluation methods and software tools have been used by
authors of these tools to develop these VPE?

• (RQ5) What are the open issues and challenges for VPEs in the domain of Social
Robotics?

• (RQ6) Can NEP be used to create advanced software architectures written in different
programming languages and/or different computers?

• (RQ7) Is the performance of NEP libraries suitable enough for supporting robotics
projects requiring low latency communication between software components?

• (RQ8) Are the proposed software tools suitable for the creation and execution of HRI
applications performed in “in the wild” as well as academic-oriented research projects?

1.3 Organization

This thesis has 2 main outcomes: NEP (a distributed robotics framework) and RIZE (a EUD
tool). Therefore, the organization of the initial chapters of this thesis report is based on these
two software tools. In these chapters, state-of-art and description of the proposed software
frameworks are presented. The final chapters describe the most relevant research projects
involved in this doctoral work. These projects are presented chronologically. A summary of
the subsequent chapters composing this thesis is described below.

5



Chapter 2 aims to answer research question RQ1, by presenting advantages and drawbacks
of most relevant distributed robotics frameworks.

Chapter 3 presents main technologies and approaches used in the development of the pro-
posed software frameworks and user interfaces.

Chapter 4 presents the developed libraries of the NEP robotics framework as well as a
performance study that proves the performance superiority of the proposed approach against
the most relevant state-of-art solutions. Therefore, answering research question RQ7.

Chapter 5 addresses research questions RQ2, RQ3, RQ4, and RQ5 by presenting a system-
atic review of EUD and EUP tools for the creation of social and service robots.

Chapter 6 presents the design considerations, development details and main features of the
final version of RIZE.

Chapter 7 presents the first big research project performed using NEP and RIZE. This
project involves the use of a humanoid robot in a domestic environment for long-term HRI.
Therefore, answering research question RQ8.

Chapter 8 presents how RIZE has been used to help real end users to design robotics
applications that required to interact with children “in the wild” environments. This project
also proves the suitability of developed software (research question RQ8).

Chapter 9 presents how the version of NEP for MATLAB/OCTAVE has been used to
support academic-oriented application towards the creation of emotional intelligent robots.
This chapter partially answer research questions RQ6 and RQ8.

Chapter 10 presents how NEP was used as the main software framework for enabling the
creation of an emotionally intelligent robot. This robot interacted with visitors at an inter-
national exhibition. Proposed software architecture is composed of many modules written in
several computers and executed in different computers. Therefore, completely answer research
question RQ6 and RQ8.

Chapter 11 presents a summary of the discussion and limitations of the performed work as
well as conclusions and possible research directions

6



Chapter 2

Distributed Robotic Frameworks

The development of advanced robotics systems requires expertise in several engineering areas
(e.g., control theory, programming, mechanics, artificial intelligence, and computer vision).
In addition, to improve the quality and user experience of applications using these robotics
systems, is recommended to include end users and domain-specific experts in social sciences
on design and development tasks [27, 30, 31]. Therefore, the creation of intelligent robotics
systems from scratch is generally considered a very complex task that one single researcher
can hardly address. This issue can be partially overcome by the use of a distributed robotic
framework (also identified as “robotic middleware”), which are software tools aimed to help
in the development of complex software architectures for robotics. This is done by enabling
code reuse and integration with different types of software and hardware elements. Due to the
importance of these types of software frameworks in modern robotics development (and for this
thesis), this chapter aims to present user experience challenges of existing and most relevant
distributed robotics frameworks. First, section 2.1 of this chapter describes relevant concepts
about distributed software systems. Then, section 2.2 describes the methodology used to ask
research question RQ1: Are current distributed robotics frameworks user-friendly enough for
support research and professional activities of end users and newcomers in Social Robotics?.
Section 2.3 briefly describes main features of most popular distributed robotics frameworks
found in literature. Finally, section 2.4 briefly discusses and concludes about the analysis done
in this chapter.

2.1 A brief introduction to distributed systems

As defined in [58] a distributed system is “a collection of autonomous computing elements that
appears to its users as a single coherent system”. This definition highlights two main features
of distributed systems: (i) computing elements must perform independently of each other;
and (ii) they need to collaborate to appear to be a single system. Distributed frameworks
are software tools enabling the creation of distributed systems. The most basic task of a
distributed framework is to provide a common infrastructure for enabling cooperation (i.e.,
communication) between the computing elements executed in a distributed system [58, 23].
These computing elements are often identified as nodes. The connection between nodes can be
local (i.e., nodes in the same computer), remote (i.e., nodes in different computers connected
via wireless or wired) or a combination of them. These nodes can be of many types and
be used for several different tasks. They can also be written in many different programming
languages. An essential software used to help in the creation of distributed applications is the
middleware, which provides a set of services and tools for enabling communication between
nodes. Figure 2.1 shows a simplified abstraction model of distributed systems based in [59,
58, 60, 61]. As shown in this figure, distributed robotics frameworks are placed on top of the

7



Figure 2.1: Abstraction model of distributed robotics systems

corresponding OS of the computing devices involved in the distributed system. Distributed
robotics frameworks provide the required services and tools for enabling nodes involved in
distributed applications to communicate between them, by hiding discrepancies of hardware and
OS [58]. Figure 2.1 also shows typical examples of distributed applications. In application A
and C nodes are executed in respective machine and communicated via the robotics middleware
in a localhost network. In application B nodes are distributed in two different computers, which
are remotely communicated using the robotics middleware. As described in [58] a distributed
system ideally must: (a) enable interoperability between software implementations coming
from different sources using a common standard (b) enable applications or interfaces developed
in computer X to be executed, without modification or machine-dependent installation, on a
different computer Y with the same of any other OS; (c) be easy to configure as well as easy to
add new components or replace existing ones without affecting those components that stay in
place, and (b) be transparent or invisible to end users and applications. However, in practice,
these features can represent a big challenge [58].

Inter-process communication methods

A node can be seen as a group of protected resources (e.g., memory, open file descriptors,
executable code, etc.). In a complex robotic system, several nodes must be able to communi-
cate with others that run at the same time. The way in which nodes communicate is called
inter-process communication. Classical forms of inter-process communication are signals, pipes,
shared memory, and sockets. Signals are software interruptions that are generally used to notify
the execution of some event to some process. However, due that signals are too slow and limited,
they can be not sufficient to meet the need for high-bandwidth inter-process communication in
many robotic applications. Pipes are file descriptors that allow two processes to communicate.
They are more appropriate than signals to inter-proceed communication. However, they can
be used only for communication between processes on the same machine. Moreover, it presents
some inconveniences such as a limited buffer in non-blocking mode and a limited number of files
that a process can open. When two or more processes have shared memory the information
is immediately available to the other processes. However, access to the shared memory needs
some synchronization primitives (semaphores, mutex, conditioned variables) in order to avoid
corrupting the data. Shared memory is usually used in multithreading applications where

8



several threads or scheduling entities use the same address space in a process. Threads are
considered lighter and faster to create that process. Also, the communication cost is generally
lower between threads than between processes. Finally, sockets are a more general communi-
cation approach which is the standard for network programming in distributed systems. This
approach is commonly used when communication between two processes on the same or differ-
ent machines is needed. A socket is defined using an IP (Internet Protocol) address, a port that
listens and a protocol. An example of endpoint definition is: tcp : //127.0.0.1 : 5000 where tcp
indicates the protocol, 127.0.0.1 indicates the IP address, and 5000 indicates the port of the
connection.

Software connectors in robotics

A software connector in robotics can been seen as elements that encapsulate any details about
communication protocols and synchronization. In [62] a robotic software communication syn-
thesis denoted as “Protocol Stack View” (PSV) for distributed software was proposed. PSV
describes design principles behind the contemporary distributed software frameworks. In base
to PSV model and as suggested in [63], the of development of software connectors in robotics
can be split in:

• Transportation: a collection of functionalities used to transfer data between process
according to some set of rules. In this layer, the combination of the type of data and
how these data are transferred is defined as a “network protocol”. Examples of network
protocols are the Transmission Control Protocol (TCP) and User Datagram Protocol
(UDP).

• Serialization: defines how data structures and objects are converted and transmitted
across a network through the transportation layer. Examples of serialization formats are
XML (eXtensible Markup Language), JSON (JavaScript Object Notation), YAML (Yet
Another Markup Language) and Protocol buffers.

• Service Discovery: a collection of functionalities which allow distributed applications
to register its services and to discover other services provided.

Messaging Patterns

Design patterns for information exchange are generally used to describe the flow of commu-
nication among processes in distributed systems. Two communication patterns widely used
in Robotics are the Request/Process/Reply and the Publish/Subscribe models. One the one
hand, the Request/Process/Reply model, also denoted as Client/Server, is one of the simplest
communication patterns used by independent processes to share information and coordinate
(Figure 3a). A process issues a request for some data and then goes to an idle state, waiting
for the response to this request. If such a response is never received, a deadlock can occur.
Although a non-blocking version of Request/Process/Reply exists, its use has non-obvious impli-
cations on the whole communication flow. On the other hand, in the Publish/Subscribe model
the producers of messages, called Publisher process, send messages without the knowledge of
what or if any receivers, called Subscriber processes, exist (Figure 3b). Unlike the Request/Pro-
cess/Reply model, a Publish/Subscribe communication is typically asynchronous, which makes
Publish/Subscribe more reliable.

9



(a) Request/Process/Reply

(b) Publish/Subscribe

Figure 2.2: More popular messaging patterns

2.2 Are distributed robotics frameworks user-friendly?

The main focus of the research question RQ1 is to discover if existing distributed robotics
frameworks used in academia are user-friendly enough for enabling their easy use in research
and professional activities of both end users and newcomers. However, user-friendly can be
a subjective term that can depend on the expertise of users with computers and Unix-based
systems. While many expert programmers and researchers preferring Linux distributions can
consider the use of advanced approaches, such as using commands in a terminal, efficient and
easy tasks, novice users of computers (most of them Windows users) can be very reluctant to
use those expert-oriented approaches and feel more comfortable using graphical user interfaces
(GUIs). Dimensions used to answer RQ1 are defined in table 2.1.

Due the main focus of this thesis is to support novice programmers and end-users, a robotic
framework that is not user-friendly for the end user present the next issues: (i) requires to
mainly use complex command lines for the installation of most core functionalities (in table
defined 2.1 as RQ1-D1); (ii) requires to read complex documentation pages composed of many
steps (RQ1-D2); (iii) requires to (re-)install the OS when updating to a new version of the
distributed robotic framework (RQ1-D3); and (iv) requires the installation of complex third-
party software for enabling the use of core functionalities (RQ1-D4). Therefore, in an ideal
scenario, user-friendly installation and updating of a robotic framework must be performed us-
ing a unique, lightweight, familiar and consistent software wizard or setup assistant. Moreover,
the core features of the robotics framework must be able to work without the installation or
updating of complex or heavy third-party software. Furthermore, to be adopted by a broader
community and accessible to more people, robotic frameworks must prioritize and provide full
support popular OS for the general public (e.g,. Windows 7, Windows 10, Android, iOS and
OSX). Dimension RQ2-D5 is used to show those issues of robotics frameworks when supporting
popular OS. As described in [23], C++ is the dominant development language in most robotic

10



ID Dimension Description
RQ1-D1 Installation methods Which aims to discover what are the approaches used to install

basic packages or libraries of existing robotics frameworks in Win-
dows

RQ1-D2 Simple-to-install Which aims to discover if novice programmers and end-users can
successfully install (in Windows) and quick start to using existing
robotics frameworks without so much effort

RQ1-D3 Easy to update Which aims to discover if users of these robotics frameworks can
easily update the different versions of these frameworks

RQ1-D4 Third-party software Which aims to discover if these robotics frameworks require the
installation of some complex third-party software in Windows

RQ1-D5 Operating systems (OS) Which aims to discover which OS are fully supported by these
robotics frameworks

RQ1-D6 Programming languages Which aims to discover which programming languages are offi-
cially and currently supported by these robotics frameworks

RQ1-D7 Pleasant and intuitive Which aims to discover which robotics frameworks offers an intu-
itive, useful and aesthetically pleasant user interface for manage-
ment and visualization of relevant data

Table 2.1: Dimensions used to answer RQ1

frameworks due to its benefits in speed and performance. However, many programmers prefer
to use more usable, efficient, modern and high-level programming languages for fast prototyping
of applications, such as Python, Java, Javascript, and C#, which are nowadays the most used
in general programming according to [64]. Therefore, the native and official support of these
more popular programming languages is keystone to broader robotics to more types of users
and programmers as well as new information technology areas. Dimension (RQ1-D6) aims to
discover which programming languages are officially supported by most relevant state-of-art
robotics frameworks. Finally, a pleasant and intuitive GUI (RQ1-D7) is often described in
Human-Computer Interaction (HCI) as required features to increase the perceived usability
and general UX of users [65, 66].

2.3 Distributed frameworks for robotics

This section briefly describes the main features of more relevant state-of-art distributed robotics
frameworks.

2.3.1 Robot Operating System (ROS 1.0)

The Robot Operating System (ROS), initially proposed in [67], is a mostly academic-oriented
and popular robotics framework designed to support the development of applications in robotics
research [68]. According to its official documentation [69], main features of ROS are: (i) en-
able message-passing between processes; (ii) enable programmers to build and run code across
multiple computers; (iii) provides a package management system; (iv) provide mechanisms en-
abling hardware abstraction and low-level device control and (v) provides an implementation
of some commonly-used robot functionalities for mobile and industrial robots (e.g. pose es-
timation algorithms, mapping, localization and navigation modules and trajectory planning).
The primary goal of ROS is “to support code reuse in robotics research and development” [69].
Even when there is a clear dominance of ROS frameworks as the main communication tool for
the integration of academic software in robotic laboratories, it is not totally free of disadvan-
tages. As described in [70], ROS and most robot middleware still present many shortcomings
regarding usability, portability, accessibility, compatibility and platform dependencies. The
authors of [24] also describe the difficulty in learning as one of the main reasons why users do

11



not prefer or use ROS frameworks for their robotic projects. The main priority of most ROS
releases has been to support Unix-based platforms, especially Ubuntu. Unfortunately, enabling
complete and usable support of more popular and user-friendly OS (e.g Windows 7, 8 and 10)
have been low-priority tasks for ROS developers and its community. This is observed in the
documentation page of the latest release of ROS denoted as Melodic Morenia, which is mainly
focused to be used in Ubuntu 18.04 [71]. As described in the official documentation in [72],
targeted programming languages are C++, Python 2.7 and Lisp. As described in [23] the most
famous graphical tools of ROS are rviz (for 3D visualization) as well as rqt graph (for visualizing
the ROS computation graph), rqt plot (for visualizing numeric values in a 2D), rqt image view
(for displaying images), which are based in rqt (a Qt-based framework for development of
graphical interfaces for ROS). In order to use ROS, users require to acquire experience using
command-line interfaces (rarely presented in end users) as well as deal with complex and many
installations of third-party libraries (especially in Windows). In [73] creators of TiViPE [74],
an state-of-art EUD tool for social robotics, have reported to critical issues of ROS for EUD:
(i) most of the end users are Windows users and require easy-to-install tool; and (ii) end users
will hardly understand (without training) many of the concepts required to use ROS.

To communicate with non-supported devices and programming languages, some robotics
middleware/frameworks integrate bridge servers. As explained in Figure 2.3, this approach
transforms middleware-dependent messages coming from middleware-dependent sockets to mes-
sages serialized in some format which non-supported devices or software modules can read and
write. A popular serialization and data streaming format is the Javascript Object Notation
(JSON). These messages are generally transmitted using the Request/Process/Reply commu-
nication pattern (also denoted Client/Server) via POSIX sockets or Websockets. The module
that performs this transformation between protocols is often called a bridge server. Relevant
state-of-art packages is the rosbridge suite [75]. As described in the official ROS documentation
[76], rosbridge is composed of two parts: the protocol and the implementation. On the one
hand, the rosbridge serialization protocol is a specification for sending JSON messages to ROS.
On the other hand, the rosbridge implementation, also denoted rosbridge suite, is a collection
of packages that implement the rosbridge protocol over Websockets. These packages include the
rosbridge library, rosapi and rosbridge server. Any future reference to ”rosbridge” in this thesis
is made over the rosbridge implementation and not about the rosbridge protocol. However,
the use of the Client/Server pattern tends to create less reliable software architectures due
to communication issues (e.g., loss of connection and deadlocks) as well as lower performance
for data streaming when comparing with the Publish/Subscribe pattern [77]. These issues can
be trivial for short-term and structured experiments requiring the streaming of a low volume
of data at relatively low rate. However, they become relevant when building complex HRI
applications requiring: i) the streaming of high volume of data and sensory information at high
rates, and ii) to be performed in long-term and unstructured Human–Robot Interaction (HRI)
studies outside laboratories. Moreover, solutions such as rosbridge in ROS 1.0 force non-Linux
users to acquire and configure an additional computer with Ubuntu to enable the execution of
the bridge server from which all messages need to go through [75, 78].

2.3.2 ROS 2.0

ROS 2.0 is the new version of ROS designed to overcome relevant demands in the ROS commu-
nity. Rather than only be aimed for purely research purposes, ROS 2.0 is also oriented to sup-
port production and industrial environments [79]. The main focus of ROS 2.0 is to enable real-
time performance. Real-time computing is in many cases misunderstood with fast-performance
processing or communication. Rather than prioritizing fast processing (e.g., increase frame
rates), a real-time system must guarantee a response within specified time constraints, often

12



Figure 2.3: Example of robot and Internet of Things (IoT) components connected with non-
robot-middleware-capable devices and modules via a bridge server

referred to as deadlines (e.g., ensure that the frame rate is stable). Targeted programming
languages are C++, Python 3. Rather than be developed from scratch, ROS 2.0 is built on top
of Data Distribution Services (DDS). Unfortunately, ROS 2.0 is still in its initial development
phases/releases ; therefore providing less usability and software tools when compared with ROS
1.0. In order to install ROS 2.0 in Windows, users must be experts on information technologies
and computers. This is due to the fact that it is required to follow several complex and error-
prone instructions in which users need to use an administrative shell, set environment variables
in the control panel, and execute scripts using command lines. Therefore, the successful in-
stallation of ROS 2.0 can hardly be performed with success by novice end users of computers.
Both version of ROS, 1.0 and 2.0, are dependent of the version of the OS (e.g. ROS 1.0 Kinetic
is primarily targeted at the Ubuntu 16.04 and ROS 1.0 Melodic Morenia is primarily targeted
at the Ubuntu 18.04) as well as third party libraries (e.g., ROS 2.0 requires visual studio 2015
and ROS 2.0 Eloquent Elusor requires visual studio 2019). This hinders the reusability of code
as many ROS packages tend to be version-dependent. In order to use these version-dependent
packages, ROS users often need to re-install a specific version of OS in their machines and deal
with cumbersome and time-consuming installations of the required third-party libraries. As
described in the official documentation of ROS 2.0 [80], “the primary platforms for ROS 2 are
Canonical’s Ubuntu releases”, being Windows 10 supported in a beta version science it initial
release in 2017. This can be seen as a signal of the poor attention and interest that currently
have ROS developers and their community in the use of Windows-based systems as the main
development environment. This can be due to the fact that typical developers and researchers
using ROS (most of them expert programmers) prefer or are used to Linux systems. Another
possible reason can be the lack of real-time capabilities of Windows 10 [81]. As described in
[82] only Linux-based OS can take advantage of the real-time capabilities of ROS 2.0. The
creation of distributed real-time systems is ideal for critical applications such as autonomous
vehicles, spacecrafts, and industrial manufacturing and low tasks such as motion control and
collision avoidance (which are out of the scope of this thesis). However, meeting hard real-time
constraints is often considered technical overkill (i.e., the system is more high-performance and
expensive to develop than what is required) for soft real-time systems (i.e, where occasional or

13



bounded deadline misses can be tolerated, as long as the process continuously receives required
values) [83, 84]. Moreover, end users often work in high-level and non-critical layers, which can
suitably be developed as required soft real-time systems.

2.3.3 Yet Another Robot Platform (YARP)

YARP is a cross-platform robotics framework developed by and for researchers in humanoid
robotics [85]. YARP was developed in C++ and is mostly focused on providing high-performance
communication features, such as reducing communication latency between nodes in a dis-
tributed software architecture for robotics. YARP is probably the most relevant ROS alternative
and has been designed to be the main distribution platform for the iCub robot [86]. Unlike ROS
1.0, which middleware capabilities were developed from scratch, YARP was developed on top
of the Adaptive Communication Environment (ACE) library [87, 88], from which inherits the
portability to Windows, Linux, QNX 6, and Mac OSX [86]. Unlike ROS, YARP is not aimed at
providing package management features nor a low-level build system macros and infrastructure
such as ctakin [89]. Instead it was designed to be easy to interoperate with existing package
management and building systems [85]. YARP can be installed in Windows using a setup as-
sistant. However, it highly depends on the version of Visual Studio for code development and
execution. YARP also provides a set of GUI developed in QT for data visualization, record
data as well as running, stopping, killing and monitoring multiple programs on localhost or
remote machines. However, these GUIs require to be launched and configured using command
lines. In order to be used by other programming languages, YARP users must use the Simpli-
fied Wrapper and Interface Generator (SWIG). However, this task can be time-consuming and
complex to use.

2.3.4 OpenRTM-aist

OpenRTM-aist is a development and middleware framework for component-based robotics.
This robotic framework was developed in the Japan’s National Institute of Advanced Industrial
Science and Technology (AIST) based in the RT-Middleware [90]. The latest release of (1.2.1)
OpenRTM-aist is able to run in Windows and Linux. This version is compatible with C++,
Python 2.7, 3.6, and 3.7, and Java. This framework can be installed from a setup assistant and
provides a large number of user-created software modules, denoted RT-Components. Two main
tools of this robotic framework are RT System Editor and RTC Builder. On the one hand,
RT System Editor is used for connecting RT-components and controlling the system architec-
ture runtime [91]. However, this interface must be launched as plug-in Eclipse (an integrated
development environment used in computer programming). On the other hand, RTC Builder
is used for generating RT-components, which can be converted to an executable binary or a
dynamically loadable shared library. OpenRTM-aist can be connected with OpenRTM.NET
which is a .NET (C#, C++ and Visual Basic) implementation of the RT-Middleware. Unfor-
tunately, a big portion of the documentation and available components are only in Japanese.
This issue limits the accessibility of this framework for specific geographic areas.

2.4 Discussion

As observed in section 2.3 none of the most relevant distributed robotics frameworks satisfy all
of the dimensions proposed in table 2.1. As described in sections 2.3.1 and 2.3.2 frameworks
such as ROS 1.0 and ROS 2.0 are difficult to install and use in Windows machines (from the
point of view of end users). They are also dependent on the OS; therefore, difficult to update.
Moreover, robotics frameworks, such as YARP and ROS 2.0 require the installation of complex

14



and heavy third-party libraries. Furthermore, ROS 1.0 and ROS 2.0 are designed to exclusively
or better work in desktop computers with some Linux-based desktop Operating Systems (OS),
such as Ubuntu [23]. This limits accessibility for many experts and novice users preferring or
constrained to use other more popular OS for the general user. Also, most robotics frameworks
only support few programming languages by default, being C++ and Python the most used.
Many of these frameworks also provide some GUIs for monitoring and management. However,
these GUIs are developed using old development toolkits for creating interfaces and require the
use of command lines for their execution and configuration. Limitations of the aforementioned
robotics frameworks indicate that there is a need for a more user-friendly distributed robotics
framework that end users can use transparently in many different types of computing devices
with minimal effort. Solutions such as rosbridge have been developed to deal with some of
these issues. However, they still need to be configured and launched by high-end scribes and
often present poor communication performances. This last claim is proved in experimental
evaluations performed in chapter 4.

15



16



Chapter 3

Software and Hardware

This chapter briefly described main technologies used in the development of proposed software
frameworks and interfaces as well as those robotic platforms used to create HRI applications
presented in this thesis.

3.1 ZeroMQ and nanomsg

ZeroMQ [92] and nanomsg [93] are an open-source, high-performance, asynchronous messaging
libraries, from which developers can use for basic inter-process communication or develop their
own middleware. ZeroMQ and nanomsg are socket library that provides several common com-
munication patterns. These libraries aim to make the networking layer fast, scalable, and easy
to use. They are also implemented in many languages, such as Python, C, C++, JavaScript,
and C#. They also support all major mobile and desktop OS. Therefore, it can be used in
the development of high-quality and platform-independent distributed systems. ZeroMQ offers
a low-level programming library for the creation of several types of messaging patterns. This
implies that the development and use of design patterns require more effort than other high-
level middleware such as ROS. However, this also allows for more flexibility. Moreover, it lacks
serialization and discovery services, which also imply a bigger effort in the initial development
of a distributed system. Similar to ROS 2.0, which is built on top of Data Distribution Services
(DDS) and YARP [85], which is built on top of the Adaptive Communication Environment
(ACE) library [87, 88], The proposed distributed robotics frameworks adapt and simplifies the
use to a low-level and general purpose communication libraries (ZeroMQ and nanomsg), and
offers a set of supporting software tools for enabling the creation of advanced robot and IoT
software architectures. This also includes the definition of a serialization format and the cre-
ation of a process enabling service discovery of nodes involved in a robotics system architecture.
Examples of non-robotics middlewares built on top of ZeroMQ are presented in [94, 95, 96].
An approach enabling interfacing ROS and Unity using ZeroMQ is presented in [97]. However,
the approach presented in this thesis is ROS-independent and focus to enable the support of
most relevant and modern programming languages for general proposes programming.

3.2 Web-technologies

In order to enable the creation of platform-independent and usable applications, most of the
proposed software interfaces are based on web technologies. Therefore, this section introduces
the most relevant web-based technologies used in this thesis.

17



HTML, JavaScript and CSS

HyperText Markup Language (HTML), JavaScript and Cascading Style Sheets (CSS) are the
core technologies in the World Wide Web. HTML is the standard language for creating web
based applications. It is mainly used to specify the content of web pages. The web browsers
can receive HTML documents from a webserver or from local storage and render them into
web pages. Moreover, the HTML files can embed programs written in a scripting language
such as JavaScript to specify the behavior of web pages. Finally, the inclusion of a CSS files
is often used to define the look of the content of the web application. In order to use the next
frameworks presented in this chapter is required to have an intermediate level of expertise in
these three basic technologies.

3.2.1 Node.js

Node.js [98] is an event-driven and asynchronous Javascript runtime used to create server-side
applications. This framework enables the execution of code Javascript code outside the web
browser. This enables the easy creation of event-driven, asynchronous, modern and usable
applications and user interfaces empowered by exiting web technologies. Moreover, Node,js
present 4 key advantages for the objectives of this thesis: (i) An application developed in
Node.js is intrinsically cross-platform; therefore the same code can run in Windows, OSX
and Linux with very few modifications. (ii) Node.js is based in C++; therefore, enabling the
creation of high-performance interfaces. (iii) Developed applications can be easily compiled by
programmers as well as installed by end users without worrying about third-party libraries,
which are installed automatically if any. (iv) It has a very big and growing community. Node.js
also has a convenient package manager denoted as node package manager or npm which provides
a very large variety of tools for developing advanced web-based applications. Listing 3.1 shows
an example of a very simple package in Node.js.

1 {
2 "name": "my_package",
3 "description": "",
4 "version": "1.0.0",
5 "main": "index.js",
6 "scripts": {
7 "test": "echo \"Error: no test specified\" && exit 1"
8 },
9 "author": "",

10 "license": "ISC",
11 }

Listing 3.1: Simple example of a Node.js package

Packages in Node.js makes ease for developers to manage and install software created in
Node.js. Basic features often defined in a Node.js package are: the version, description, and
name of the package, the main script of the package, a set of the command used to compile,
execute, test, publish or distribute the package, the author name, and the license. Moreover,
a list of packages or dependencies the project needs to be compiled and executed is often
required. Code of the package configuration file for the creation of the nep.js library (one of
the contribution of this thesis) is shown in appendix B.1. Package file enabling the execution,
compilation and cross-platform distribution of RIZE (the EUD interface created in this thesis)
is shown in appendix B.2.

3.2.2 Vue.js

Vue.js is a progressive framework for building user interfaces [1]. Vue.js enables users to render
data to the HTML Document Object Model (DOM) in a declarative way. Data liked to the

18



(a) Before pressing the button (b) After pressing the button

Figure 3.1: Example of a simple GUI created with Vue.js, HTML and Javascript

DOM using Vue.js is reactive; therefore, if the data changes in the Javascript code, Vue.js
will trigger an update of the interface to reflect that change. This Javascript framework uses
the Model-View-ViewModel (MVVM) methodology [99], which is a software architectural and
structural pattern that helps in the separation and development of the GUIs. For this the
MVVM model separates the code required to build a GUI in three main groups: Model, View
and ViewModel. The Model, which is the input or user data processed and allocated in the
application memory. The View, which only includes the fronted or output of the application.
Therefore, this group should not contain any logic or data manipulation tasks. The ViewModel
bridges aforementioned groups by allowing the manipulation of data (in the Model) before it is
output by the View [100]. An simple example of the View group in a user interface developed
with Vue.js is presented in Listing 3.2. This group is developed in the HTML code. In this
example a HTML container div has a id attribute with the value of app. This attribute is
used for vue.js code in listing 3.3 to process outputs inside the container. In this case the
HTML has two elements: text and a button. Text to be displayed is defined in the message
variable and involved by double braces {{message}}. This creates a reactive variable that can
changes dynamically by the code representing the ViewModel group. Moreover, an event is
defined using the Vue.js statement v-on:click in the button. This relates the created event with
the function reverseMessage. The Model group is expressed in the JavaScript Object Notation
(JSON) inside the data element. In this case the variable message is defined a the only variable
representing the Model group. The ViewModel group is expressed in the methods element, in
which developers requires to define the events that will proecces the data displayed in the GUI.
In this case the function reverseMessage will reverse the text displayed in the message variable,
each time the button defined in the HTML code is pressed. The GUI created using this simple
code is shown in figure 3.1.

1 <div id="app">
2 <p>{{ message }}</p>
3 <button v-on:click="reverseMessage">Reverse Message </button >
4 </div >

Listing 3.2: Example of code representing the View group in Vue.js

1 var app = new Vue({
2 el: ’#app’,
3 data: {
4 message: ’Hello Vue.js!’
5 },
6 methods: {
7 reverseMessage: function () {
8 this.message = this.message.split(’’).reverse ().join(’’)
9 }

10 }
11 })

Listing 3.3: Example of code representing the Model and ViewModel groups in Vue.js

Vue.js also allows building large-scale applications composed of small and reusable compo-
nents, which organize a GUI into a tree of nested components as graphically represented in

19



Figure 3.2: Graphical representation of a Vue.js application using components (from vue.js
documentation[1])

figure 3.2. This approach was widely used in the development of the GUIs presented in this
thesis. An example of a simple component in Vue.js is presenting in listing 3.4. Components
can be defined by Javascript variables (in this case denoted as example). A Vue.js presents
four basic sections: (i) inputs, which are the parameters that developers must entry to use the
component;(ii) data, which represent reactive variable or Model of the MVVM methodology;
(iii) methods, which enable data to react to user interactions; and (iv) template, which defines
the HTML code required to define the outputs in the GUI.

1 var example = {
2 // -------------- Input parameters ------------
3 props: ["text_buton"],
4 // --------------- Data model ------------------
5 data: function () {
6 return {
7 dialog_robot_ready = false ,
8 }
9 },

10 // --------------- Functions ------------------
11 methods: {
12

13 reverseMessage: function () {
14 this.message = this.message.split(’’).reverse ().join(’’)
15 }
16

17 },
18 // ---------------- HTML code ----------------
19 template: ‘
20 <p>{{ message }}</p>
21 <button v-on:click="reverseMessage" >{{ text_buton }}</button >‘
22 }

Listing 3.4: Example of a simple component in vue.js

3.2.3 Electron

Electron [101] is an open-source library for Javascript and Node.js developed by GitHub for
building cross-platform desktop applications with HTML, CSS, and JavaScript. Applications
developed with electron can be installed from user-friendly desktop installers (i.e., .dmg, .exe,
and .deb) in Windows 7, 8, 8,1 and 10, Mac OS X and recent versions of Linux. GUIs developed
in this thesis use electron for enabling user-friendly installation and uninstallation of software.

20



Figure 3.3: Software architecture of a Electron application

Figure 3.3 shows the software architecture of most user interfaces developed in this thesis using
electron. Applications using electron are basically composed of a main process and one or
more render processes. While the main process is in charge of creates and executes the render
processes, the render processes create Chromium windows in which any web-based content can
be executed. These electron processes can also access to system files and spawn other processes,
such as Python scripts, using Node.js libraries. This approach enable the creation of usable
and cross-platform Web-based applications that perform a Desktop applications.

Google Blockly

Blockly is Google’s library for building visual programming editors based in an interlocking
building blocks approach. This library is a refinement of Scratch, which is a popular software
tool used to teach how to code to kids. Because is JavaScript and XML based, Google Blockly
is aimed to be used in web-based applications. The main idea of this library is to allow the
development of visual programming editors composed of several blocks. Each block can embed
a variable, method or functionality which can be transformed into code of a real programming
language such as Python and JavaScript. This software tool supports a wide range of modern
web browsers such as Google Chrome, Firefox, and Safari, as well as iOS and Android devices.
An example of a Google Blockly programming environment was shown in chapter 5 in figure
5.2. Basically a Google Blockly programming environment consists of a toolbox in which the
user selects the block to use, a workspace where the user drag and drops the block to generate
a program and a code generator tool in which it is possible to visualize the generated code in
a specific programming language.

3.3 Robot platforms

Software frameworks developed in this thesis were designed to be platform-independent. How-
ever, this section briefly described those robot mostly used in the experimental validations
presented in chapters 7, 8, 9 and 10.

21



(a) Pepper (b) Nao

Figure 3.4: Images of social humanoid robots used in this thesis

3.3.1 Nao and Pepper

NAO and Pepper are popular humanoid robot by Aldebaran/SoftBank Robotics. On the one
hand, the current version of NAO has 25 degrees of freedom and have two HD cameras, two
lateral speakers, four microphones, a sonar rangefinder, two infrared emitters and receivers,
an inertial board, nine tactile sensors, and eight pressure sensors. It have also Ethernet and
Wi-Fi connection. On the other hand, Pepper is a 1.20 metres and 28 kilograms humanoid
robot nowadays also used in real world environments such as stores and airports. This robot
has 20 degrees of freedom and have two HD cameras, one 3D sensor, two lateral speakers, four
microphones on the head, 2 infrared sensors, tactile sensors, an internal unit and six laser line
generators. Unlike NAO, Pepper also has a tablet allocated in its chest, which can be used
to configure robot internet connection, execute application created by Aldebaran/SoftBank
Robotics as well as be used to provide interactive and feedback capabilities to the users. Figure
3.4 shows images of the used Nao and Pepper robots in this thesis.

3.3.2 Robot arms controlled by MATLAB

An experimental robotics system controlled by MATLAB was used in several research projects
focused on the development of affective social robots. The robotic system consists of two robot
arm built with Dynamixel motors and several sensory devices (temperature, humidity, and
brightness) to extract relevant information from the environment. Figure 3.5 shows the robot
arms used.

3.3.3 Kawada Nextage

The Kawada Nextage, is a dual-arm industrial and collaborative robot designed to enable the
advanced manipulation of objects. This robot has 15 degrees of freedom as well as a payload of
1.5 kg for each hand. It also has four uEye industrial cameras (2 in head and 1 in each hand),
which can be connected to a computer using a USB 3.0 cable. This doctoral work uses the open
version of this robot, which is compatible with the Robot Operating System (ROS) [67] in its
Kinetic version. Low-level control and path planning tasks are performed in an Intel NUC (a

22



Figure 3.5: Robot arms controlled by MATLAB

small form factor computer) with Ubuntu 16 installed. The Kawada Nextage robot shown in
figure 3.6 was used in this thesis for enabling HRI in an international exposition.

23



Figure 3.6: Nextage open collaborative robot

24



Chapter 4

The NEP Robotics Framework

Many robotics frameworks are available for enabling the creation of distributed software ar-
chitectures. However, most of them present critical usability and UX issues hindering their
use in research activities where end users and novice programmers must develop and use their
own applications without the help of expert programmers and time-consuming training. This
chapter presents the main features of NEP, a high-level robotic framework developed to address
most of the issues presented in chapter 2. NEP provides a unified interface to a multiplicity
of different robotics middlewares and general propose messaging-oriented libraries. NEP was
developed for enabling easy and fast prototyping (through user-friendliness, modularity, and
extensibility) by putting user experience front and center and by minimizing the number of
user actions required for common use in the development of distributed systems for robotics.
NEP is the core contribution this thesis.

4.1 What is NEP?

NEP is a high-level framework. Similarly to Keras [102], which is capable of running on top
of TensorFlow [103] and Theano [104] for easy and fast prototyping of Deep Learning tasks,
NEP is a high-level communication framework capable of running on top of low-level message
libraries and robotic middlewares to provide simple and user-friendly development of accessible,
re-usable and cross-platform robotics applications. This is done by enabling the communication
between sensory, perceptual and cognitive robotics processes denoted as nodes (following the
same terminology that ROS). These nodes, which are often written in different programming
languages, can be executed on the same computer or in different computers and smart-devices
connected at the same cluster or IoT local network. Unlike ROS, which is often used to handle
low-level data generally defined in common structures or messages (e.g., force, torque, velocity,
pose), NEP has been originally designed to deal with high-level data where there is not a unique
or common way of representation (e.g. emotions, speech, gestures, behaviors, and objects).
Therefore, messages in NEP are mostly defined using the JSON, which is a human-readable
standard for the interchange of data. JSON is not only the preferred data interchange format for
web services and applications, but also is highly used in many IoT applications [105, 106, 107].
However, NEP can also be used to send low-level and sensory data representations such as
images.

NEP is a Robotics platform support. According to the definition classification done in [108]
NEP is a IoRT robotics platform. Unlike ROS and YARP that provide a large variety of tools
and algorithms for low-level development in robotics (e.g., simulators, inverse kinematic and
planners), NEP focuses only on communication and the monitoring of data. This makes NEP
easy-to-install using wizards (for end-user software distribution) or popular package manager
(for developers), such as pip, nuget and npm. In the default configuration of NEP, links between

25



modules can be managed by a ROS-like Master node (more details in [67, 24]). This approach
enables the creation of large, flexible and scalable applications. However, sockets connections
(IP address and ports) in NEP can also be directly defined by the user, similar to YARP, for
simpler and robust communication between modules. When reusing NEP code in ROS 1.0 and
ROS 2.0 (i.e, selecting them as back-end options), links between modules are managed by the
ROS Master and the installed Data Distribution Service (DDS) respectively.

NEP uses mainly ZeroMQ. The default back-end option of NEP is ZeroMQ [92] because
it provides a lightweight, portable and high-performance library for inter-process communica-
tion that can be easily installed in almost all programming languages and OS. Furthermore,
the creation of ROS-like peer-to-peer (P2P) communication using topics between components
using ZeroMQ can be a difficult and time-consuming task requiring the manual configuration
of sockets and the definition of the serialization approach (i.e., the process of encoding and
transforming information sent via sockets from bytes to some data structure or object and
vice-versa). This is due that ZeroMQ offer a very low-level API as well as a large variety of
communication patterns and configurations; therefore, enabling their use for many engineer-
ing areas and types of software architectures. Similar to ROS 2.0 with DDS and YARP with
the ACE library, NEP abstracts and simplifies the code required to use low-level libraries and
robotics frameworks for enabling the easy creation of robotics software architectures.

NEP is cross-platform. NEP has been tested in Windows 10 and older Windows versions
such as Windows 7 and Windows 8, which are still used by many industries and end users as
proved in [109]. NEP has also been tested in other OS not fully supported by ROS frameworks
such as older versions of OSX as well as older and newest versions of Ubuntu.

NEP focuses on human-centered projects. While NEP can be used for academic-oriented
applications such as shown in this article, the main focus of NEP is to support human-centered
design tasks, where non-roboticist are included in the design processes of robots. Human-
centered approaches are intrinsically multidisciplinary tasks whose main focus is the develop-
ment of accessible, desirable, intuitive, friendly and usable products able to satisfy human needs
and expectations [110, 111]. In fact, most researchers in the robotics community mostly focus
on machine-centered approaches being novelty and performance the main design objectives.
As described in [110, 112], mature technologies nowadays adopted by the general public have
historically switched their design approaches from machine-centered to human-centered.

NEP is not rosbridge. NEP does not provide a client implementation using the rosbridge
protocol neither is a network protocol for exchanging JSON-encoded ROS topics over Websock-
ets. Instead, the main communication protocol used in NEP is the ZeroMQ Message Transport
Protocol (ZMTP) (described in [92]).

Current focus of NEP is not cloud robotics or web teleportation tasks. Cloud Robotics was
initially defined in [113, 114] as ”an approach to robotics that takes advantage of the Internet
as a resource for massive parallel computation and real-time sharing of vast data resources”.
An example of a framework for cloud robotics is Rapyuta [115], which is used in the RoboEarth
project [116]. Robot Web Tools [70] provides a set of open source modules using the rosbridge
protocol as main technology to enable Client/Server messaging of ROS topics over wide area
networks WAN. However, cloud robotics is out of the scope of the current objectives of NEP.

4.1.1 NEP for Python

Python is a popular programming language used in the development of Robotics and Artificial
Intelligence projects. In many cases, the easy connection of different Python versions is required
to enable the creation of intelligent robots. Due to this, NEP has been designed to work in
both Python 2 and Python 3, using the same API. NEP for Python also provides a high-
level abstraction communication layer which enables the easy switch between similar back-

26



end robotic middlewares and communication libraries. NEP is mostly oriented to support
both Client/Server and Publish/Subscribe communication patterns. Current back-end options
supporting the Client/Server communication pattern are POSIX sockets and ZeroMQ. Current
back-end options supporting the Publish/Subscribe communication pattern are ROS 1.0, ROS
2.0, ZeroMQ and Nanomsg. The selection of the desired back-end is defined by the user..

To start using the basic NEP in Python, it is only required to write the command shown
in Listing 4.1 in some console/terminal.

1 pip install -U nep

Listing 4.1: Install NEP in Python

As an example, the minimal Python code required to create a node publishing data and a
node reading this data in NEP is shown in Listing 4.2 and 4.3 respectively.

1 import nep
2

3 node = nep.node(’python_sender ’) # Define new node
4 pub = node.new_pub(’example ’,’json’) # Define new publisher
5 msg = {’message ’:’hello’} # An example of message
6 pub.publish(msg) # Send message

Listing 4.2: Minimal code using NEP for creating a publisher in Python

1 import nep
2

3 node = nep.node(’python_receiver ’) # Define new node
4 sub = node.new_sub(’example ’,’json’) # Define subscriber
5

6 while True:
7 s, msg = sub.listen () # Read messages
8 if s: # If there is a message
9 print(msg["message"]) # Do something

Listing 4.3: Minimal code using NEP for creating a subscriber in Python

However, the script of Listing 4.3 will create a non-ROS re-usable subscriber. In ROS it
is required to define special functions denoted as callbacks which are only executed when new
data arrives at the socket connection. In order to enable the re-use of a NEP subscriber in
ROS, the definition of a callback is also required. Minimal code enabling the definition of ROS
re-usable callbacks functions in Python is shown in Listing 4.4.

1 import nep
2

3 # Callback defintion
4 def callback(msg):
5 print(msg["message"])
6

7 # Define new node and the desired back -end (in this case ROS 2)
8 node = nep.node(’python_receiver ’, ’ROS2’)
9 # Set callbak to the subscriber

10 sub = node.new_callback(’example ’,’json’, callback)
11 # Start event loop and block main thread
12 node.spin()

Listing 4.4: Minimal code using NEP for creating a ROS re-usable subscriber in Python

NEP was not designed to provide a mechanism that directly connects modules using dif-
ferent protocols and sockets types (e.g., a ZeroMQ subscriber can not read information from a
publisher sending data using ROS). This feature is not even available in rosbridge, as messages
sent and read from ROS modules to non-ROS compatible modules must be transformed to
Websockets by the bridge server. Therefore, both the sender and receiver nodes must share the
same middleware and protocol. However, users of Python can create their own glue modules

27



enabling the communication between different platforms and robot frameworks using the differ-
ent back-end options of NEP. In Python NEP offers a high-level API that enables the re-use of
code between different communication libraries and robot frameworks as well as simplifies their
use and configuration for robot applications. Therefore, the same lines of code used to create
a publisher or subscriber in NEP in Python 2 (which is supported by ROS 1.0 and ZeroMQ)
can be reused in Python 3 (supported by ZeroMQ and ROS 2.0) just by changing the back-end
option to use when creating a NEP node. In the example of Listing 4.4 the back-end option
defined is set in line 8 as ’ROS2’ in the second parameter in the constructor of a new nep.node
object. This parameter can be defined as ’ROS’, to use this code in Python 2 and ROS 1.0
or ’ZMQ’ to use this code in both Python 3 or Python 2 using ZeroMQ sockets. When this
parameter is not defined, such as Listing 4.2 and 4.3, ZeroMQ is used by default.

4.1.2 NEP for Javascript

The integration of JavaScript with robotic systems is relevant to enable the use of IoT technolo-
gies, such as cloud-based and web services as well as in the creation of usable Graphical User
Interfaces (GUIs) providing better user experiences. NEP bindings for JavaScript and Node.js,
denoted as nep.js, can be used to develop web-based applications able to be executed natively
in desktop operating systems and visualized in web-browsers. NEP for JavaScript and Node.js
can be easily installed writing the command shown in Listing 4.5 in some console/terminal.
This library is keystone for the development of RIZE (the second main software outcome in
this thesis).

1 npm i zeromq
2 npm i nep -js

Listing 4.5: Install NEP in Node.js

The minimal code required to create a publisher node and subscriber node in Javascript
using Node.js are shown in Listings 4.6 and 4.7, respectively.

1 // Import main libraries
2 var zmq = require("zeromq");
3 var nep = require("nep -js");
4

5 var node = new nep.Node ("js_sender") // Create a new ne
node

6 var pub = node.new_pub("example", "json") // Define publisher
7 ...
8 pub.publish ({"message":"hello"}) // Send a message

Listing 4.6: Minimal code using NEP for creating publisher in JavaScript

1 // Import main libraries
2 var zmq = require("zeromq");
3 var nep = require("nep -js");
4

5 // Callback definition
6 var callback = function (msg) {
7 console.log(msg)
8 }
9

10 // Create a new ne node
11 var node = new nep.node ("js_receiver")
12 // Define subscriber
13 const sub = node.new_callback("example", "json", callback);

Listing 4.7: Minimal code using NEP for creating a subscriber in JavaScript

28



4.1.3 NEP for C#

C# is a developer-friendly programming language developed by Microsoft as an evolution of
C++. Nowadays C# is one of the most popular programming languages, especially for game
developing and data acquisition acquisition from sensors. Therefore, C# is often the main
programming tool in many game engines, virtual and augmented reality systems and interactive
sensors and devices (e.g., Cameras, Virtual Reality headsets, Kinect and Leap motion). The
integration of many of these tools with robotic systems is often relevant for many researchers
in robotics and biomechanics. A few examples can be seen in [117, 118, 119, 120, 121, 122].
In some cases, these tools are only officially supported or work better in Windows machines
(in particular those products developed by Microsoft). NEP offers bindings for C# projects
using Visual Studio. These bindings can be easily installed using Nuget, which is the official
package manager for Microsoft development platforms. For this, users just require to write the
commands of Listing 4.8 in the Package Manager Console of Visual Studio. For older version
of Visual Studio and Windows OS (e.g. Windows 7) NEP for C# can be also added in the
developer project adding the AsynCIO, NetMQ, Newtonsoft and Nep dynamic libraries in the
project references.

1 Install -Package AsyncIO -Version 0.1.26
2 Install -Package NetMQ -Version 4.0.0.1
3 Install -Package Newtonsoft.Json
4 Install -Package Nep

Listing 4.8: Install NEP in C#

The minimal code required to create a publisher node and subscriber node in C# is shown
in Listings 4.9 and 4.10, respectively.

1 class Msg // Message definition as a class
2 {
3 public string message { get; set; }
4 }
5

6 static void Main(string [] args)
7 {
8 // Create a new node
9 Nep.Node node = new Nep.Node("csharp_sender");

10

11 // Define publisher
12 Nep.Publisher pub = node.new_pub("example", "json");
13

14 // Define message
15 Msg msg = new Msg();
16 msg.message = "hello";
17

18 // Send message
19 pub.publish(msg);
20

21 }

Listing 4.9: Minimal code using NEP for creating publisher in C#

Because JSON objects in C# can not be implemented directly, NEP messages must be
defined in a class, such as shown in lines 1-4 of Listing 9. In this example, the class Mgs is used
to define the messages to send. In this class a JSON (key,value) pair is defined in line 3. The
key element of the JSON pair will have the name of message and the value element will be a
string. Then, the message to send is created as an object of the Mgs class and filled with the
string “hello” in lines 15 and 16 respectively. Finally, the message is sent in line 19. Similar to
the Publisher case, a Subscriber requires the definition of the message to receive as a C# class.
Messages in NEP for C# are obtained as strings and must be converted to JSON values using
the Json.NET library [123], as shown in line 19 of listing 4.10.

29



1 class Msg // Message definition as a class
2 {
3 public string message { get; set; }
4 }
5

6 static void Main(string [] args)
7 {
8 // Create a new node
9 Nep.Node node = new Nep.Node("csharp_receiver");

10

11 // Define subscriber
12 Nep.Subscriber sub = node.new_sub("test");
13

14 while (true)
15 {
16 // Get message as string
17 string message = sub.listen ();
18 // Convert message to object
19 Msg msg = JsonConvert.DeserializeObject <Msg >( message);
20 // Print message
21 Console.WriteLine(msg.message);
22 }
23

24 }

Listing 4.10: Minimal code using NEP for creating a subscriber in C#

4.1.4 NEP for MATLAB and Octave

Nowadays many robotics and control researchers still consider the use of high-level numerical
computing environments, such as MATLAB and Octave, as keystone software tools enabling
prototyping, simulation, and validation of mechanisms, robot algorithms, and control systems.
Moreover, many researchers use these numerical computing environments to perform data ac-
quisition and perception task (e.g., computer vision and deep learning). In order to create
more advanced robotics systems, programs written in MATLAB or Octave must be able to
interface other external sensory, perceptual and cognitive modules in distributed systems. The
most common way to enable the connection between two isolated processes is the use of con-
ventional and synchronous TCP/IP BSD sockets [124, 125]. However, the use of conventional
BSD sockets limits developers to the creation of Client/Server architectures. Compared with
the Publish/Subscribe pattern, a Client/Server solution tends to have lower streaming data
performance and creates less reliable software architectures [126, 77]. Some alternatives to
conventional BSD sockets enabling the interfacing of MATLAB with external robotics modules
have been proposed in the literature recently [127, 128]. Currently, the Robot Operating Sys-
tem (ROS) and Robotics System Toolboxes [127] were launched to enable the creation of ROS
components in MATLAB. However, programs applying this approach can only communicate
with other modules using the same version of ROS. A popular option used to connect different
versions of ROS (i.e., ROS 1.0 with ROS 2.0) is the rosbridge suite [75]. This implementation
of the rosbridge protocol has been used in many projects to connect programs using ROS with
modules using programming languages or executed from operating systems not supported by
ROS. On the other, BSD sockets alternatives supporting Octave are rarely reported in the
literature. Unlike MATLAB, Octave is open source and free to use. The availability and acces-
sibility of inter-process communication methods that enable the creation of distributed robotic
systems in open-source platforms, such as Octave, is, in fact, a relevant contribution to the
community. This can be especially valuable for those researchers, universities, students, and
practitioners using Octave due to their personal preferences or license limitations (which makes
the use of MATLAB a non-possible option).

30



NEP for MATLAB and Octave supports both Client/Sever and Publish/Subscribe commu-
nication patterns. As an example, the minimal code required to create a publisher node in NEP
using MATLAB is shown in listing 4.11. Unlike versions for other programming languages and
due some limitations of MATLAB when using binaries or libraries developed in JAVA, user
requires to serialize the messages to send, which must be defined as MATLAB structures (e.g.,
line 10 of listing 4.11). This can be done in MATLAB using the jsonencode method as shown
in line 11. Then, the converted MATLAB structure can be then published (line 12).

1 % -------------- Import NEP ---------------
2 import nep.Node;
3

4 % --------------- Create node ------------
5 node = nep.Node("matlab_sender");
6

7 % ------------ Define publisher -----------
8 pub = node.new_pub("test", "json");
9

10 % Publish 5 times
11 for c = 1:5
12 msg = struct(’message ’,c) % Messages defined as structures
13 json_msg = jsonencode(msg) % Convert matlab structures to JSON
14 pub.publish(json_msg)
15 pause (1)
16 end
17

18 % ---------------- Close publisher -----------------
19 pub.close() % the subscriber must to be closed.

Listing 4.11: Minimal code using NEP for creating a publisher in Matlab

Minimal code required to create a subscriber able to read information from the publisher
defined in listing 4.11 is shown in listing 4.12. Similar to publisher in MATLAB, subscribers
requires an additional function for decoding the data obtained to a MATLAB structure.

1 % -------------- Import NEP ---------------
2 import nep.node;
3

4 % ---------------- New node ---------------
5 node = nep.node("matlab_receiver");
6

7 % ------------ Define subscriber -----------
8 sub = node.new_sub("test");
9

10 % --------------- Read data ---------------
11 while 1
12 msg = sub.listen (); % listen data
13 if strcmp(msg ,"{}") % If message is null
14 pause (.001)
15 else %Covert JSON to matlab structure
16 value = jsondecode(string(msg))
17 end
18 end

Listing 4.12: Minimal code using NEP for creating a subscriber in Matlab

A similar approach can be applied to generate a Publish/Subscribe architecture in Octave.
These and more sample examples enabling Client/Sever and Publish/Subscribe architectures
in both MATLAB and Octave as well as instructions for installing NEP tools and libraries are
available in [129].

31



Figure 4.1: NEP Master architecture

Figure 4.2: Main interface of the NEP Discovery Master Node

4.2 Discovery Service Master Node

The discovery problem can be defined as the process to find the other peers or nodes in the
network. This problem is one of the main issues that developers must affront when large dis-
tributed architectures are designed. The simplest solution to this problem is using a set of fixed
endpoints descriptions (IP address and ports) saved in strings or configuration files. However,
this approach is unfeasible for large distributed projects due that increases the maintenance
cost of the system. Another popular solution is to use a dynamic discovery node, which is
a node or static point that manages the connections between all the nodes in a distributed
system. The use of a master node reduces the number of endpoints to be configured to only
one. The software architecture of the proposed master node is shown in figure 4.1. In this
approach, the publisher and subscriber instances connect to the NEP master node using a
Client/Server pattern. To connect nodes to the distributed system, the developer needs to
specify the topics that will listen to publishing data in every node. Every topic needs to be
registered in the master node, which manages the endpoint information of each topic. When a
topic registration request is detected by the NEP master node, it assigns an endpoint direction
to a specific topic. This endpoint information is saved and sent to the nodes that perform
the request for that topic. Then, the transition of information is done when at least a pair of
publisher-subscriber have requested the registration of the same topic.

32



Figure 4.3: Example of data visualization using the NEP Discovery Master interface

Rather than be launched using command line instructions, such as ROS and YARP, the
NEP master node was designed as a web-based application. Therefore, end-users and developers
can install this interface using a setup assistant in Windows and OSX. This interface can also
be launched as any other user-friendly application in Windows (double-clicking an icon in the
desktop or selecting the application in the taskbar of Windows). Users of MacOS X can use the
launchpad for executing this interface. Users of Ubuntu requires double-clicking an executable.
Figure 4.2 show current GUI developed for executing the master node. With this interface,
developers can see the name of nodes and topics in a system architecture using NEP. Users
can visualize information of nodes and topics that are working in localhost and in a remote
approach (where a set of computers are connected using WiFi or Ethernet). They can also
restart the master node which manage the remote connections, if the IP of the computer is
changed. Other relevant information such as the current IP address of the computer and the
output command in the scripts running the master nodes (in local and remote modes) can
be also displayed. Moreover, uses can also use this interface for check messages send between
nodes or computers as shown in figure 4.3. The current version of this interface only enable to
display messages using the JSON format in a maximum of 30Hz. This limitation of 30Hz is
done to avoid memory leak, which is presented when some information is very fast updated in
a web interface executed in electron (a web-based technology used in this thesis for developing
usable and cross-platform web-based interfaces). Details about the tools used to develop the
proposed web interfaces in this thesis were briefly presented in chapter 3.

4.3 Performance Evaluation of NEP

This section present a comparative and performance study of NEP inter-process communication
capabilities. The research question guiding this study was defined in chapter 1 as: Is the
performance of NEP libraries suitable enough for supporting robotics projects requiring low
latency communication between software components?.

4.3.1 Evaluation in Python and Node.js

In order to answer the proposed research question, a latency and comparative study against
a state-of-art solution (the official rosbridge suite) was performed using Python and Node.js.

33



(a) Remote connection using ROS and rosbridge
suite

(b) Remote connection using NEP (ZeroMQ)

Figure 4.4: Latency results in scenario R-Remote; comparisons between NEP and ROS-
rosbridge using nodes written in Python 2 and Python 3 executed in different machines, which
are connected over the same Wifi network

This study focuses on two main scenarios: Remote communication in LAN and local-host com-
munication of nodes. One the one hand, scenario (R-remote) is used to discover the suitability
of NEP for messaging between 2 nodes launched in different computers connected to the same
Wifi router. On the other hand, scenario (L-local) is used to discover the suitability of NEP
for messaging between 2 nodes executed in the same computer but written in different pro-
gramming languages. In this scenario, one of these nodes should be written in a programming
language without the ROS official client library. For both scenarios, A-remote and B-local, I
use string type messages of different sizes. The range of the transferred data size is 16 KB
to 1 MB for R-remote scenario and 256K to 8M for the L-local scenario. A dedicated Wifi
router where only the computers used in this study are connected must be used. Moreover, no
additional processes must be executed in both computers as well as not an Internet connection
must be done when executing the experiments. This is done in order to minimize latency due
to external processes in these computers. For this study round-trip latency (i.e, time from the
sender to the receiver in other programming language plus the time from the destination back
to the sender) is measured.

Experimental Settings

Scenario R-remote is composed of two computers identified as Machine1 and Machine2. The
computer used for Machine1 is a Laptop Dell Inspiron 14 with an Intel Core i7-7500U at
2.7GHz, 8 GB of RAM and Ubuntu 16 installed. The computer used for Machine1 is a Laptop
MSI GF63 8RD with an Intel Core i7-8750H at 2.2 GHz, 16 GB of RAM and Windows 10
installed. NEP 0.5.3.5, as well as ROS Kinetic with the official rosbridge suite, were installed
in Machine 1. In Machine 2 NEP 0.5.3.5 and the Python ROS Bridge library in version
0.7.1 were installed. Wi-Fi connection is performed using a low-cost and portable TP-link
TL-WR802N router. Nodes in Machine1, which are identified as NEP M1-1 (for a node using
NEP) and ROS M1-1 (for a node using ROS) are written in Python 2. Node in Machine2,
which are identified as NEP M2-2 (for a node using NEP) and Bridge M2-2 (for a node using
the Python ROS Bridge library) are written in Python 3. Communication is done in two cases:
NEP-RM1 with NEP-RM2 and ROS RM1 with Bridge-RM2.

Scenario L-local was executed in the computer identified as Machine 1 in the A-remote

34



(a) Local connection using ROS and rosbridge suite (b) Local connection using NEP (ZeroMQ)

Figure 4.5: Latency results on scenario L-local; comparisons between NEP and ROS-rosbridge
using nodes written in Python 2 and Node.js executed in the same computer

scenario. Communication for this scenario is performed between nodes written in Python 2
and Node.js (Javascript). Nodes in this scenario are identified as NEP-L (for a node using
NEP), ROS-L (for a node using ROS), nepjs-L (for a node using nep.js), rosnodejs-L (for a
node using rosnodejs). Communication is done in two cases: NEP-L with nepjs-L and ROS-L
with rosnodejs-L.

Results and Discussion

Results from comparative scenarios R-remote and L-remote are shown in Figure 4.4 and 4.5,
respectively. These values are obtained after obtaining 200 samples for each message size.
Figure 4.4 shows the case when two nodes executed in different computers are required to be
connected. This figure clearly shows that the proposed approach using NEP over ZeroMQ
as a back-end option outperforms latency results of ROS using the official rosbridge suite.
Moreover, results in local-host of NEP highly outperform latency results reaching by ROS and
the rosbridge suite. As mentioned in [130] communication using rosbridge to communicate ROS
with other external modules ”incurs in significant overhead due to the rosbridge transaction”.
With NEP this problem is highly reduced for both local and remote (in LAN) scenarios. These
results ask the proposed research question, by proving the suitability of NEP framework for its
use in academic-oriented projects.

4.3.2 Evaluation in MATLAB and OCTAVE

In order to prove the technological suitability of NEP for MATLAB/Octave, we compare
its communication performance against relevant state-of-the-art solutions. For this task, the
round-trip latency (time from the publisher in MATLAB/Octave to the destination in other
programming language plus the time from destination back to MATLAB/Octave) is measured
between: a) MATLAB and Python using ROS Toolbox, c) MATLAB and Python using NEP
and b) OCTAVE and Python using NEP. It is relevant to highlight that the ROS toolbox is not
compatible with Octave. These options of simulates cases when control programs written in
MATLAB/Octave require to be connected with external software modules written in different
programming languages and executed in a remote computer. In these evaluations, MATLAB
2019b and Octave 5.1.0 are executed in a Surface PRO 4 with an Intel Core i5-8350U with
8 GB of RAM and Windows 10. Remote PC running the external programs interfacing with

35



Figure 4.6: Latency comparison connecting MATLAB/Octave with Python using ROS Toolbox
and NEP

Figure 4.7: Latency comparison connecting MATLAB/Octave with Node.js using rosbridge and
NEP

MATLAB are executed in a Laptop Dell Inspiron 14 with an Intel Core i7-7500U, 8 GB of
RAM and Ubuntu 16. Wi-Fi connection is performed using a portable TP-link TL-WR802N
modem for connecting these two computers.

To prove the suitability of using NEP for interfacing MATLAB/Octave with non-ROS enable
software modules round-trip latency is registered between A) MATLAB and node.js using ROS
Toolbox and the rosbridge suite, B) MATLAB and node.js using NEP and C) OCTAVE and
node.js using NEP. Results for different message sizes are shown in figure 4.7.

Results and Discussion

Figure 4.6 shows the latency results for different message sizes executing the proposed scenarios.
These values represent the mean of 200 samples for each message size. Results indicate that
b) NEP in MATLAB highly outperforms latency results of a) ROS Toolbox in MATLAB and
c) NEP in Octave. Result for communicating with Node.js also show lower latency using NEP
and MATLAB. However, in this case the highest latency is reached when using rosbridge to
communicate with Node.js. This can be due to the fact that messages must pass through
a rosbridge server, which converts messages from ROS sockets to Websockets. Instead NEP
enables direct communication between MATLAB/Octave and external modules written in many
other programming languages. Moreover, an improvement in latency when interfacing with

36



Node.js is also obtained. This is an expected result as Node.js is built on top of C++, which
is known to be of higher performance than Python.

37



38



Chapter 5

Visual Programming Environments for
End-Users of Social Robots

In the past few years, a number of systems have been proposed that tackle EUD challenges for
robotics systems at different levels, e.g., motion planning and execution frameworks adopting
Programming by Demonstration (PbD) [131, 132], or the use of Natural Language Processing
(NLP) to provide robots with instructions about how to carry out a certain task [133]. How-
ever, Visual Programming Environments (VPE) are still the EUP and EUD approach offering
the best trade-off between usability (being easy to learn and easy to use), and the overall
complexity characterizing the robot-based behaviors that can be developed with these tools.
VPEs integrate a selected Visual Programming Language (VPL) to enable their users to cre-
ate applications on the basis of such graphical elements as icons, blocks, arrows, forms, and
figures, among others, rather than code only [47, 48]. The relevance of these development
tools has recently increased not only in Robotics-related use cases but also in other fields of
Computer Science, such as the Internet of Things (IoT) [48, 134] video game development
[135, 136] mobile application development [137], and virtual/augmented reality [138]. Due to
their aforementioned flexibility and relevance, this chapter focuses on those EUD tools using
VPEs for the design of Social Robotics applications. For this a systematic literature review
[139, 140] is performed. The organization of this chapter is as follows. Section 5.1 describes the
needs and motivation for performing a systematic literature review of VPEs used for EUD of
social and service robots. Section 5.2 presents some relevant concepts and guidelines used for
the development and evaluation of programming tools for robotics. Section 5.3 describes the
main concepts underlying VPE-based design, with an emphasis on Robotics-related require-
ments. Section 5.4 describes the methodology applied to perform a systematic analysis of the
literature. Section 5.5 presents those VPEs tools found in literature. Section 5.6 presents the
behavior modeling approaches used in VPEs for enabling the development intelligent social
robots. Section 5.7 describes more relevant software tools and technologies executing at the
back-end of these VPEs. Section 5.8 presents relevant open challenges, thereby proposing a
road-map for further research directions. Conclusions are presented in the final section.

5.1 Motivations for performing a systematic review

As described by [38], most relevant literature reviews on EUD, such as [141, 142, 143], present
a limited number of approaches and techniques. These relatively old literature review articles
also tend to omit applications in Robotics. Moreover, the reviews presented in such articles
have been performed and analyzed in the research domain of their authors [38], which differ
from Robotics. Two more recent systematic reviews on EUD approaches are [144] and [38].
The authors of [144] conducted a 10 years (2007-2017) systematic search, in which 21 articles
were finally selected. However, none of them are in the area of Robotics. In contrast, [38]

39



presents an overview of applications, tools and techniques in EUD, EUP and EUSE over 17
years (2000-2017). From the 165 papers finally selected in [38], only four are categorized in
the Robotics area, of which only two are relevant for the focus of this article. Finally, a very
recent narrative review of EUD-inspired software applied to domains such as smart homes,
industrial and humanoid Robotics, task automation, and applications for human assistance are
presented in [145]. However, the review proposed in [145] mainly focuses their analysis and pro-
posed challenges to IoT-specific approaches and rule-based systems, such as the trigger-action
paradigm [146]. In fact, most literature reviews on EUD tend to omit in their analysis the more
recent tools, technologies, and approaches used in robotics aimed to enable the development
of more advanced, reactive and robust robotic systems. Relevant methods often omitted are
the behavior modeling approaches enabling end users to create intelligent social robots. These
approaches, which are often denoted as Authoring Artificial Intelligence (AAI) or Artificial
Intelligence (AI) architectures [147], enable the control of processes in which intelligent agents
evaluate their environment to perform decision making. These AAI methods are nowadays
widely used in areas where the development of complex and intelligent physical and virtual
agents is needed, such as robotics and game development [30]. Three of the main research
goals of AAI methods are: (i) overcome limitations in modularity, reliability, reusability, and
robustness presented by the classical agent behavior modeling methods, such as rule-based sys-
tems and scripting [147]; (ii) enable their use for EUD and interaction design tasks [30]; and
(iii) generate more intelligent, reactive, believable, suitable, and explainable agent behaviors
[148]. Due to this, the role played by the AAI methods in EUD and EUP must not be omitted.
Moreover, current systematic and narrative reviews in EUD also tend to omit in their analysis
those relevant development practices and approaches nowadays used to create more advanced,
reusable, scalable, interactive and reliable robotic systems. In particular are relevant those
focus in the creation of distributed and modular software architectures, such as Component-
based Software Engineering (CBSE) for robotics, which has become quasi-standard for modern
robotic development [149, 77]. These frameworks have been described in chapter 2. Therefore,
their analysis is fundamental for better understanding how to develop more advanced, usable
and robust software back-ending EUD and EUP for robotics. Other recent reviews describing
interesting intuitive programming tools, such as [150, 151], focus on educational contexts for
children rather than EUD applications for adult users.

Limitations of the aforementioned studies indicate that there is a need for a more in-depth
systematic identification of research articles enabling EUD for Social Robotics. This with the
aim of providing a broader overview and understanding of the development approaches, tools,
and practices enabling end users to create intelligent and interactive applications with social
robots. To this end, this chapter presents a systematic search and analysis [139] of VPEs aimed
at enabling the EUD paradigm for social HRI and everyday life applications.

5.2 Appropriate Abstraction Level for Programming So-

cial Robots

Cognitive dimension is a framework used to analyze complex software tools such as program-
ming languages and interactive user interfaces [152], [153]. It can be used to identify usability
problems in early stages of the design of a user interface and to perform iterative design. A
brief definition, based in [154] and [155], of the most relevant cognitive dimensions are shown in
Table 5.1. As a usability principle, design of programming tools based in cognitive dimension
must deal with a set of trade-off (i.e an attempt to improve some dimension always affects other
dimensions). Therefore, cognitive dimension design must be goal oriented by selecting which
dimensions are more important for the target audience.

40



Table 5.1: Cognitive dimension definitions
Dimension Definition
Abstraction gradient types and availability of abstraction mechanisms
Closeness of mapping closeness of representation to domain
Hidden dependencies important links between entities are not visible
Premature commitment constraints on the order of doing things
Viscosity resistance to change
Visibility ability to view components easily
Diffuseness verbosity of language
Error-proneness notation invites mistakes
Hard mental operations high demand on cognitive resources
Progressive evaluation work-to-date can be checked at any time
Provisionality degree of commitment to actions or marks
Role-expressiveness the purpose of a component is readily inferred
Secondary notation extra information in means other than formal syntax
Consistency similar semantics are expressed in similar syntactic forms

Recently, [156] studied cognitive dimensions and usability trade-offs for the area of pro-
gramming social robots. The analysis of [156] resulted in a proposal for a robot programming
model that discomposes the social and intelligent abilities of robots in five abstraction levels:
hardware primitives, algorithms primitives, social primitives, emergent primitives, and methods
for controlling primitives. In this model, the lowest abstraction level is the hardware primitives
that allow programmers to retrieve sensory information from hardware devices and control
robot inputs (e.g., LED’s and motors). The second abstraction level is the algorithm primitives
that are used to build low-level interactive, perceptual and control capabilities in social robots,
(e.g.,face tracking, sound source localization, and inverse kinematics). The third level of social
primitives contains identified and reusable social interactive capabilities that are close to the
domain expertise of the general end users. At the fourth level, emergent primitives are built
from a combination of social primitives (e.g. gaze, speech, and gestures) to create very high-
level social behaviors, such as emotions. Finally, the fifth level contains the control primitives
that are in charge of performing decision making based on the current status of the interaction.
The simplest way of doing this task is by using if-then-else rules. The description of methods
used in EUD tools for social robotics for controlling primitives is the main focus of section 5.6.
Findings of [156] suggest that the use of too many low-level abstractions (i.e. hardware and
algorithm primitives) for the development of programming tools for social robots negatively
affects their usability. Such low-level primitives tend to require hard mental operations and
produce error-prone notations. At the same time, the use of too many emergent primitives
affects the viscosity positively, but the expressive power of the programming tools and hidden
dependencies negatively. In order to reach good usability and cognitive dimension trade-offs
for the end user , these programming tools must use as many social primitives as possible.
A deeper description of these primitives, and their influence on the usability and cognitive
dimension trade-offs of a programming tool for social robots, is explained in depth in [156].

5.3 Visual Programming Environments in Robotics

With some simplification, three main Robotics-related scenarios can be identified where VPEs
may play a decisive role, namely (i) industry settings, (ii) science, technology, engineering and
mathematics (STEM) education, and (iii) end-user applications. Two major factors form a
basis of this classification: the required programming abstraction level [156] and the target
users.

The first distinguishing feature between these classes of use cases is based on the most

41



appropriate level of abstraction characterizing the programming operators and primitives, i.e.,
the available visual elements, which can provide the required usability, intuitiveness, ease of
learning, and flexibility. While deciding to adopt low-level programming abstraction primitives
can enhance the flexibility and the level of code reuse associated with VPEs, it also decreases
their usability and intuitiveness [156]. Furthermore, the capability associated with easy-to-learn
approaches can be negatively affected when developers must deal with a mixture of unbalanced
abstraction levels [153, 156].

A second difference is the target end-users population in its own right. In use cases grounded
in industry scenarios, the use of VPE-based approaches is geared towards the reduction of the
costs associated with the development and maintenance of robot applications in the shop-floor
or the manufacturing cell by human operators who are new or untrained in programming [157].
However, users of industry-oriented VPEs still require some expertise on low-level programming
and Robotics notations. Examples of low-level notations presented in some VPEs for industrial
settings are coordinate frames, tools, materials, joint velocities, end-effector orientations and
positions, and hardware configurations. [158, 159, 160]. In general, industry-oriented VPEs
are mainly focused on enabling robots to execute a set of well-defined sequences of repetitive
and accurate tasks (e.g., assembly, pick-and-place, welding and material handling) [160], rather
than enabling them to play complex and diverse social roles (e.g., teacher, friend or companion).
Some advanced VPEs for industrial settings also enable a mixed approach with PbD methods
[158, 160].

Use cases related to the adoption of VPEs in STEM and – in general – educational settings
are typically aimed at children or new learners of general-purpose programming languages for
developing toy programs rather than real-world applications. This type of VPEs is characterized
by two main peculiarities. Firstly, they must be based on suitable approaches to enforce learning
Computer Science or Robotics-related topics, such as the management of sensors or actuators,
coding, functions, data structures, or algorithms. Secondly, these VPEs must be engaging and
sufficiently easy-to-use to keep students interested and motivated during programming sessions.
The abstraction level typically encoded in this type of interfaces depends also on the age of the
target learners [161]. For elementary and middle school students, these software development
environments must favour simplicity, intuitiveness and avoid the intrinsic complexity of general-
purpose programming languages [162]. However, environments for students in high school and
above often require the use of low-level general-purpose programming syntax (e.g., conditionals,
loops and functions) to enable an easy transfer of knowledge to general-purpose programming
languages or more complex approaches in advanced courses [163]. Nowadays, new STEM-
targeted educational VPEs coupled with robot toys appear every year, notable examples being
the interfaces for such robots as Cozmo [164] and Thymio [165].

Programming robots and learning how to use the available VPEs in both industrial and
STEM-related educational scenarios are generally the main tasks or objectives of their target
users. As mentioned above, these tasks require some low-level expertise in Robotics (in the
case of industrial settings) or the user needs to acquire a complex body of knowledge by time-
consuming training processes (in the case of STEM-related educational scenarios) [161]. This
greatly differs from what is postulated by EUD approaches for domain-specific users [166, 143],
in which programming is seen as an optional task to support work activities carried out by
an end user rather than being a main learning or work objective. This may be the result of
the fact that many domain specific end users do not have the time and motivation to learn
how to use low-level Robotics software approaches [74, 167]. Therefore, VPEs for end users
require more intuitive interfaces, mainly based on programming notations that are close to
the domain knowledge of the general user. In many cases, these VPEs must also be flexible
enough to enable the creation of complex, dynamic and engaging social interactive experiences
with robots. Such interactions often require the use of multi-modal approaches, e.g., gesture

42



and speech recognition, expression of emotions, and engaging dialogues, among others [168].
Examples of domain specific end users are teachers developing robot tutors and helpers, artists
programming a choreography or defining a script for robot-related artistic performances [21],
sellers creating interactive experiences for customers [169], or therapists using robots to help in
therapy sessions, just to name a few [74].

This chapter is targeted to discuss VPEs suitable to enable the adoption of EUD-based
paradigms for the creation of social interaction applications by domain specific end users.
According to the discussion in [170], most common VPL approaches can be categorized as: (i)
form-filling, (ii) data-flow, and (iii) block programming. The description of these types of VPL
is presented bellow.

Form-filling VPLs generally require the use of standard input forms, such as buttons and
checkboxes, along with images to guide the user step-by-step in defining the trigger-action
rules [170, 134]. While such VPLs are popular in different IoT environments, such as smart
homes [170], they are very poorly explored in Robotics [171]. This can be due to the widely
known limitations that these approaches present when are required for producing intelligent
agent behaviors [30, 148]. Moreover, a lack of structure when defining disjoint ad hoc rules
can make trigger-action systems unstable and error-prone when creating relatively complex
programs, which requires the integration of additional tools for solving conflicts between rules
[172, 148, 173]. Therefore, areas requiring the creation of more complex behaviors, such as video
games and Robotics, prefer the use of more structured, robust, and expressive AAI approaches
[147, 174].

Data-flow is a commonly adopted VPL approach in Robotics, not only for creating EUD-
based environments for non-technically skilled people but also for expert use in complex and
robust applications, as described in [175]. A data-flow programming environment is represented
using directed graphs [176]. Nodes in data-flow interfaces are referred to by different terms
by various authors, such as blocks, functions, icons, states, procedures and boxes. Nodes are
connected by means of graphical lines (also cited as wires or arcs), which represent the flow of
data between functions/blocks or transitions between states.

Block programming, based on the primitive-as-puzzle-piece metaphor (also known as block-
based visual programming) [163, 177, 178], is a recently adopted approach that is gradually
gaining attention in the development of EUD-based interfaces [178]. Unlike data-flow tools,
visual elements in block-based VPLs are not connected using lines. Instead, block-based VPLs
programs are built by assembling jigsaw puzzle pieces, which present visual cues that indicate
to the user how visual elements may be used. This makes a block-based VPL an intuitive and
engaging approach able to stimulate the user creativity [163, 170]. Following this definition,
this review considers those VPEs using popular block-based VPLs such as Scratch [179], Snap!
[180] or Google Blockly [181, 182].

5.4 Methodology

This work follow the guidelines proposed in [139, 140] for performing systematic reviews of
Software Engineering. Systematic reviews are objective literature review studies used to identify
relevant research papers, trends, gaps and challenges in some specific research area as well as
to help in the position of research directions and activities [139]. Protocol for performing
systematic review is based on recent and relevant systematic reviews with similar objectives
and domain areas. Specifically, I followed [183], which focuses on the area of HRI, and [41]
which focuses on the area of EUD. As described in [139, 140], and applied in [183], the process
involved in a systematic review consists of five parts: (S1) definition of the review protocol, where
the research questions are careful defined as well as the methods used to answer them; (S2)

43



ID Dimension Description and goal
RQ2-D1 Name This dimension is used to identify each tools analyzed in this

article
RQ2-D2 EUP approach Which aims to discover the VPEs technique used to enable

the creation of end-user programs. Values in this dimension
can be form-filling, data-flow or block-based

RQ2-D3 Target users Which aims to identify the type of end users these VPEs have
been designed

RQ2-D4 Application do-
main

Which aims to discover the application domains in which these
VPEs have been used to support end-users goals and needs

RQ2-D5 Target robot Which aims to identify the type of robots supporting these
VPEs

Table 5.2: Dimension used to obtain general information of VPEs

definition of the search strategy, which aims to identify the relevant research articles in the field;
(S3) documentation of search process, where readers are able to evaluate how completely and
rigorously the search process has been performed; (S4) specification of inclusion and exclusion
criteria, which are used to select core articles in the field; and (S5) a report of relevant data or
information from each research article or software tool.

5.4.1 Research questions

One of the main focus of this thesis is to complement recent literature review works in EUD,
such as [41] and [145], by identifying and analyzing relevant tools and technologies integrating
VPEs for enabling EUD and EUP in the Social Robotics area. The identification of these
tools and technologies can be used to better understand the current scenario of EUD solutions
for Social Robotics. Thus, the following research questions (also defined in chapter 1) were
formulated.

(RQ2) What VPE tools for Social Robotics have been proposed in the literature
to support end-users research goals or professional needs?

The dimensions used to respond to RQ2 are shown in Table 5.2. It is proposed RQ2-D1
(Name) to identify each tool resulting from the systematic search process. This enables a
comparative analysis of these VPEs in the other research questions. Values of RQ2-D2 (EUP
approach) are defined based on the VPEs classification presented in section 5.3. The formulation
of dimensions RQ2-D3 and RQ2-D4 are based on those proposed in [41] to obtain general
information of EUD, EUP, and EUSE tools. Therefore, RQ2-D3 and RQ2-D4 are focused on
identifying the main target users and applications of these tools, respectively. Finally, RQ2-D5
is used to identify which social and service robots are supported by these VPEs. I propose
these dimensions in order to get a general overview of the goals of relevant and recent VPEs
for social robotics.

(RQ3) What robot behavior modeling AAI approaches, have been used in these
VPEs to enable the creation of intelligent Social Robots?

RQ3 mostly focuses on: (i) how end users can effectively and intuitively compose program-
ming primitives for the creation of their desired applications, and (ii) the methods enabling the
control of these primitives. AAI approaches can be considered as those AI methods enabling
the modeling and control of programming primitives used in VPEs for social robotics [156]. On
the one hand, AAI for social robotics must be flexible and expressive enough; thereby, provid-
ing end users with an ability to create interesting and complex behaviors. On the other hand,
they must be intuitive and simple enough for enabling easy creation and reuse of desired robot

44



ID Dimension Description
RQ3-D1 AAI approach Which aims to identify the type of agent behavior modeling

approach used for controlling programming primitives on re-
viewed VPEs

RQ3-D2 Programming
primitives

Which aims to identify the type of programming primitives
used in reviewed VPEs

Table 5.3: Dimension used to answer RQ3

behaviors. Therefore, the main goal of RQ3 is to identify the advantages and disadvantages
of different AAI methods and how they have been used to enable the modeling intelligence
on social robotics in VPEs. Dimension proposed to answer this research question are aimed
to identify the used AAI approaches in VPEs for robotics (RQ3-D1) and identify the type of
programming primitives generally used in these VPEs (RQ3-D2).

(RQ4) What technologies, evaluation methods and software tools have been
used by authors of these tools to develop these VPE?

The focus of RQ4 is on the capabilities of proposed tools for enabling the independence of
end users from high-tech scribes by supporting the end users in the entire life-cycle and not only
in the creation phase. For this, EUD tools must be accessible, easy-to-use and install, support
the end-user devices, and enable an easy extension of the software artifacts (e.g. addition of
perceptual capabilities or re-use with other virtual or physical agents). Dimensions used to
answer RQ4 are summarized in Table 5.4. Dimensions RQ4-D1 and RQ4-D2 are proposed to
analyze the software approaches used to build VPEs for Social Robotics from which modular
and reusability capabilities can be inferred. Dimensions RQ4-D3 to RQ4-D5 aim to discover
which VPEs tools enable support of the entire life-cycle of application development. For this
purpose, the user must be able to install, configure, and use these VPEs and create their own
interactive scenarios with their robots in their own computing devices without the help of high-
tech scribes. RQ4-D6 aims to identify the levels of liveness supported by these VPEs as well
as simulator tools supporting them. Liveness is a concept used in literature for referring to
the capabilities of programming systems to provide an immediate feedback cycle [184]. This
feature can reduce the cognitive burden on programmers and enable users to adopt a more
exploratory programming style [185]. According to [186, 187], it is possible to identify 4 levels
of liveness: (i) level 1 (informative), where visual representations only understandable for expert
developers are provided; (ii) level 2 (informative and significant), where visual representations
of the programs have enough information to enable their execution; (iii) level 2 (informative,
significant and responsive), where feedback can be provided on demand with a “run” button:
and (iv) level 4 (informative, significant, responsive and live), where feedback is automatically
provided as edits are done in the program. Unlike programs executed on a computer, robots
can act and change the real-world environment. Therefore, feedback requiring the robot to
perform motions requires special care. A safe option to implement level 4 of liveness is through
simulations. RQ4-D7 aims to identify those methods used to evaluate the suitability of these
VPEs. Finally, RQ4-D8 aims to identify which VPEs have been reported as: (i) only tested
or evaluated by their developers and colleges (i.e. engineering students), (ii) used by real end
users in design time (i.e., in laboratories); and (iii) used by real end users at run time (i.e, in
the wild).

(RQ5) What are the open issues and challenges for VPEs in the domain of Social
Robotics?

Research question RQ5 is mostly addressed in Section 5.8 based on the observed values of
dimensions in RQ2, RQ3 and RQ4.

45



ID Dimension Description
RQ4-D1 Communication

of modules
Which aims to discover if these VPEs have been developed
using good practice for the integration of isolated robotics
modules or nodes

RQ4-D2 Software tech-
nologies

Which aims to discover if these VPEs have been developed
using modern technologies

RQ4-D3 Accessibility Which aims to discover if these VPEs are online available;
therefore end users can find them for their use and installation

RQ4-D4 Operating Sys-
tems (OS)

Which aims to discover the degree of support that VPEs have
for the OS often used by end users

RQ4-D5 Easy-to-install
and execute

Which aims to discover if VPEs can be installed and executed
without the support of high-tech scribes

RQ4-D6 Liveness and
Simulation

Which aims level of responsiveness of these VPes to the pro-
grammers edits as well available simulation capabilities

RQ4-D7 Evaluation
methods

Which aims to identify which tools have been evaluated with
real end users and which techniques were used in for these
evaluations

RQ4-D8 Participation of
end users

Which aims to identify the degree of participation that these
tools enable their target end users (i.e., design time, use time
or both)

Table 5.4: Dimensions used to answer RQ4

5.4.2 Search Process

The search was executed in well-established databases in the field of intelligent robotics systems:
IEEE Xplore, Science Direct, ACM digital library, Springer Link and Web of Science. Examples
of other systematic reviews focusing on robotics applications and methods using these sources
are [183, 188, 189].

The time period of publications covered is between 2008 and 2018. The year 2008 was
chosen as the starting year as no earlier tools are described in [37] and [41]. Moreover, 2008
is just before two major events occurred in Robotics, which are relevant for the focus of this
article. One is the initial release of ROS [67] in version 1.0 (2009), which become a milestone
in academic robot development. Approaches using ROS-like frameworks are nowadays quasi-
standard for many researchers in the area of intelligent robot systems. The other is the release
of the first public version of Nao social robot (2008) and its official EUD tool [190]. Nao is
probably the most successfully used Social Robot up to date, which is evidenced by the fact
that most of the VPEs reviewed in this article integrate this robot.

To obtain key terms for the search string, I applied three different strategies: (i) an analysis
of the main goal of this chapter and the research questions, (ii) an analysis of core articles from
previous state-of-the-art studies, and (iii) pilot testing. For step (i), the goal of this chapter is
to identify relevant and recent End-User Development or End-User Programming supporting
Visual Programming Languages for Social Robotics. These keywords are also contained in the
research question (RQ2). Therefore, it is extracted End-User, Programming, Visual, Devel-
opment and Robot. In step (ii), it is used the SEOBook keyword density analyzer [191] to
identify the most recurrent words in two well-known core papers of EUD for Social Robotics,
specifically [74] and [190]. Based on this analysis, keywords, such as Robot, User, Development
and Programming are found to be relevant. In step (iii), I execute and refine the keywords
and the search string iteratively. This process was validated by using a quasi-gold standard
[192]. Finally, the main keywords used for the search are: Robot, End-User Development and

46



ID Description

IC 1 The focus of the article is to describe a EUD or EUP tool for robotics
IC 2 The presented tool is focused to support end users and not expert developers

or people working on industrial tasks/robots

Table 5.5: Definitions of Inclusion Criteria (IC)

ID Description
EC 1 The article only presents an Application Programming Interface (API) using

a purely textual programming language rather than a EUD or EUP tool im-
plementing a VPL

EC 2 The main focus of the presented tool is other EUP approach (e.g., NLP, tan-
gible programming, and PbD) and not the use of a VPL

EC 3 The presented VPE is technically limited to be used in some robot toys or kits
and for STEM educational proposes

EC 4 The article is not written in English

Table 5.6: Definitions of Exclusion Criteria (EC)

Visual Programming. A correlated keyword for End-User Development is End-User Program-
ming, and one for Visual Programming is Visual Language. The search string was defined
using the Boolean operators as follows: ‘Robot’ AND (‘End-User Development’ OR ‘End-User
Programming’ OR ‘Visual Programming’ OR ‘Visual Language’).

5.4.3 Selection of Papers

The next step in the review protocol is a clear definition of the criterion used to decide which
papers are used in this review, and how and when the criteria are applied. The inclusion (IC)
and exclusion (EC) criteria for this study are shown in Tables 5.5 and 5.6, respectively.

The following steps indicate how and when the defined inclusion and exclusion criteria are
applied: (1) reading the title, abstract and keywords of all articles applying inclusion criteria
IC1 and IC2; (2) reading the introduction, contributions, and conclusion of studies included in
Step 1 to eliminate irrelevant documents that meet some of the exclusion criteria EC 1, EC
2, EC 3 and EC4; (3) a complete reading of the remaining studies in Step 2 to validate their
relevance; and (4) collect all the useful information for the proposed research questions. The
search process performed is graphically illustrated in Figure 5.1. As shown in this figure, a
total of 1010 articles were returned by an automatic search in the selected databases. From
these, 54 were selected after executing step (1). In step (2), after performing skim reading 33
were excluded. Finally, 21 articles were selected for this review. However, some articles such
as [193, 26], reference the same interface in different development steps. Therefore in step (3)
I identify more relevant and complete articles describing these VPEs. Finally, a total of 16
interfaces were selected for this review. However, I went through all 21 articles for performing
data collection.

47



Figure 5.1: Flowchart of the search strategy.

48



5.4.4 Limitation of the study

The validity of the review may be threatened by three factors, which are described in [194, 195]:
Publication bias is described in [194] as the problem that “positive results are more likely

to be published than negative results”. In this review, only a few papers of those finally
selected report negative results. However, the interpretation of positive or negative results will
often depend on the point of view of each researcher [194]. A standard method used to deal
with this issue is scanning the gray literature (i.e., master and Ph.D. thesis, books, workshops
proceedings, and technical reports). However, there still exists a risk that the presented analysis
in this article does not offer a complete overview of the VPEs reviewed.

Interpretive validity is achieved when defined conclusions are reasonable given the extracted
data [195]. For this, three researchers experienced in areas such as Software Architectures,
Artificial Intelligence, Social Robotics, Usability Engineering were involved in the validation of
conclusions.

Theoretical validity is determined by the ability of researchers to capture the intended data
[195]. The search process was conducted by an individual author, which is the main threat
to validity. Therefore, during the inclusion and exclusion phase, there is a threat some VPEs
might have been missed. To reduce this threat I ask experts if they know of any unpublished
results or other relevant sources not initially considered in this review. During Data extraction
analysis and classification phases, researcher bias is also a threat. To reduce the bias, the three
reviewers assessed all extractions made by the one reviewer, such as suggested [195, 196] and
applied in [195]. However and described in [195], this threat cannot be eliminated as involves
human judgment.

5.4.5 Reporting of results

Next, I answer the research questions of this study based on the dimensions presented. Research
questions RQ2 is answered in section 5.5 by presenting a brief overview of the VPEs tools for
Social Robotics found after following the proposed search protocol. Section 5.6 is used to answer
the research question RQ3 by discussing AAI tools found in the resulting articles. Research
question RQ4 is addressed in section 5.7 by presenting and analysing the software tools used
in the development of VPEs for social robotics. Finally, research question RQ5 is answered in
section 5.8, which presents the identified open challenges.

5.5 VPEs for Social Robotics (RQ2)

To answer RQ2, this section presents a brief description of the VPEs resulting from the system-
atic search and analysis. I classify these VPEs in three categories: dataflow-based, block-based
and form-filling. This classification was explained in section 5.3. Table 5.7 shows the general
features and the targets of these VPEs.

5.5.1 Dataflow-based Interfaces

The Microsoft Robotics Developer Studio (MRDS) [197] provides a VPE oriented to enable
novice and expert programmers to generate robot-based applications in Microsoft Windows.
MRDS is based on C#, includes a 3D simulator and allows for distributed messaging between
different modules using a SOAP-based application layer protocol referred to as Decentralized
Software Services Protocol (DSSP). MRDS can be used with a set of commercially available
robots, including Nao and Kondo KHR-1 humanoid robots. However, the support for MRDS
has been discontinued recently.

49



Name Target users Application domain Robots
CodeIt! [198] novice and expert program-

mers
service robots Sovioke Relay,

Turtlebot
OpenRoberta [199] children, teens education Nao, toys
Robokol [200] therapists robot-based therapy Ono
BEESM [201] novice and expert program-

mers
smart environments Turtlebot

RIZE [202] UX/UI designers long-term and social HRI, child-robot in-
teraction, entertainment

many

ProCRob [203] teachers, therapists robot-based therapy, tutoring QR
MRDS [197] novice and expert program-

mers
autonomous vehicles, competitions, enter-
tainment

many

Choregraphe [190] novice and expert program-
mers

social HRI, entertainment, robot-based
therapy

Nao, Pepper,
Romeo

TiViPE [74] therapists robot-based therapy Nao
Interaction Composer [193] UX/UI designers shopping malls many
RoboStudio [204] novice and expert program-

mers
healthcare iRobiQ-S

RRP-VPE [205] novice and expert program-
mers

N.A Nao

RoVer [206] UX/UI designers social HRI Nao
Interaction Blocks [207] UX/UI designers N.A Nao
English2NAO [208] therapists robot-based therapy Nao
PersRobIoTE [171] novice programmers smart environments Pepper

Table 5.7: General features of VPEs for Social Robotics

Choregraphe [190] is a cross-platform and desktop-based VPE developed by Aldebaran
Robotics (now Softbanks Robotics). Its main principle is based on using different wires or
connectors to organize multiple robot behaviors in sequence or for parallel execution. The
application includes a 3D simulator and allows for designing and debugging robot animations
using a time-line interface. Furthermore, it allows designers to develop low-level, Python 2
based scripts, as well as the creation of high-level modules (denoted as boxes), which can be
saved as libraries for later reuse. The editing of each box parameters can be done using form-
based visual interfaces.

The Tino’s Visual Programming Environment (TiViPE) [74] is a desktop and data-flow
interface built on QT [209]. Originally, it was designed to enable rapid prototyping of robot be-
haviors using a massively parallel processing and cross-platform approach. In TiViPE, modules
can be developed using different programming languages, and can be integrated with their doc-
umentation in a stand-alone executable, each one characterized by its own graphical front-end.
The development of abstract and complex modules in TiViPE (i.e., made up of simpler, basic,
modules) can be done using a form-based interface to combine selected modules. Then, such
modules can be reused in the same or other TiViPE-based programs. The only robot supported
by TiViPE is Nao. However, unlike Choregraphe, TiViPE allows for the use of multiple Nao
robots at the same time specifying their IP address. In TiViPE, the overall robot behavior’s
control flow is organized using one-to-many connections of module input/output ports, i.e., one
output port of a module can be connected to more than one input ports of different modules.
Optional ports in TiViPE-based modules can be defined to specify relevant parameters needed
for subsequent execution. The latest available version of TiViPE enables also the development
of sensory-driven dynamic and parallel behaviors, which can be defined using a domain-specific
control language. The main real-world use cases in which TiViPE is employed are related to
robot-based social therapy.

Interaction Composer [193] is a flowchart-like and interaction-oriented design framework
specifically aimed at facilitating the development of social robot applications via coordinat-
ing cross-disciplinary teams of expert developers and UX/UI designers, i.e., end users and
researchers in social sciences. As envisaged by the original proposers, it is necessary to clearly
separate the role of different professional participants in the team. Expert software devel-
opers are in charge of low-level programming activities, such as data processing, interfacing

50



with hardware equipment, and the development of basic robot behaviors in C++, whereas
interaction designers only focus on defining the interaction workflow and dialogue generation.
Interaction Composer is characterized by a 4-layer, modular architecture enabling the use of
different robots sharing a number of similar features and capabilities. Besides the standard in-
teraction workflow, this framework allows for specifying interruptions when certain conditions
are met. When an interruption is handled, the control flow resumes from the point where the
interaction workflow was interrupted. Furthermore, Interaction Composer allows encapsulating
visual elements in a hierarchical way. However, notwithstanding this hierarchical approach, the
authors recognize a number of issues related to scalability and flexibility in their dataflow-based
interface [26]. The framework has been widely adopted for developing social robot applications
in real-world settings, such as shopping malls and supermarkets, and also in situations where a
robot acts semi-autonomously [26]. The public availability of Interaction Composer has been
discontinued since 2011.

RoboStudio [204] is a desktop-based VPE aimed at the design and development of service
robots for medical and healthcare applications. Built on top of the Healthbots framework [210],
RoboStudio has been developed using Java and Netbeans, which enable cross-platform support
and a low memory footprint. It allows for using software components originally developed
for ROS [211, 67], and OpenRTM [210]. As a consequence, RoboStudio is characterized by
a high flexibility for the integration of robots and distributed sensors. The design of the
application workflow is based on concepts borrowed from Finite State Machines (FSMs). As a
consequence, the main programming interface has been designed for expert developers rather
than for novices. However, the interface design can be reused and extended to embed other
VPEs. A simple example of this is discussed in [204], where a novel interface, called LTLCreator,
has been developed on top of modules originally developed using RoboStudio and Netbeans.
Algorithms developed using RoboStudio can be converted to an XML-based domain-specific
language called Robot Behavior Description Language (RBDL), which can be executed using
the Healthbots execution engine [212]. Unfortunately, RoboStudio is not available for use to
date.

The Reactive Robot Programming - Visual Programming Environment (RRP-VPE) [205]
is a dataflow- and web-based interface powered by Node.js [213]. RRP-VPE is based on the
Reactive Robot Programming paradigm, which can be described as a “declarative programming
approach towards the development of event-driven applications built around the notion of
continuous time-varying of data streams and the propagation of change” [214]. Unlike most
VPEs based on component-based software engineering approaches, RRP-VPE advocates an
approach in which modules can be developed in the same environment rather than using a
separate, independent tool. RRP-VPE is based on the notion of RRP graphs. These graphs
define processes aimed at transforming inputs into outputs using a set of different connectors
organized in a possibly complex structure. Examples of such connectors include operators
to map certain data to given functions, filter inputs, sample data, or merge different data
sources according to a given logic. However, in order to use RRP-VPE users are required to
be quite skillful in low-level software development to fully understand the notation related to
the declaration of variables, data assignment, and the development of function calls. It is not
clear whether non technical end users can adopt RRP-VPEs or not in spite of these low-level
notations, and what are the usability and cognitive issues implied by such adoption. RRP-VPE
is available online open source [215].

RoVer [206] is an authoring VPE designed with a two-fold purpose in mind: firstly, to en-
able prototyping of human-robot interaction scenarios built on top of a number of available
interaction primitives, and, secondly, to encode appropriate social norms, possibly not known
to the designers a priori but emerging during the interaction process. RoVer adopts formal
verification techniques to ensure that developed programs satisfy a set of social norms en-

51



coded as logical rules. To this end, RoVer employs the Prism Model Checker [216]. Moreover,
this framework is able to provide designers with feedback when a certain social norm cannot
be met. Analogously to other frameworks aimed at human-robot (social) interaction, RoVer
adopts small behavioral primitives, called microinteractions, which can be aggregated to work
sequentially or in parallel. Microinteractions can be aggregated in groups, organized as a set
of states. Then, the overall human-robot interaction unfolds using a structural, FSM-based
architecture, in which transitions between groups of microinteractions depend on the current
robot beliefs. RoVer is implemented in Java and can work in Linux or OSX operating systems.
Currently, it has been used with the Nao robot. RoVer is available online [217].

Interaction Blocks [207] is a visual authoring environment aimed at the fast prototyping
of human-robot interaction processes using Nao. The application uses a set of predefined
interaction patterns as basic building blocks to generate more complex interactive processes
also sequenced in a time-line fashion. These patterns have been selected by observing differ-
ent human-human interactions in typical, social settings, e.g., conversations, collaborations,
instructions, interviews or storytelling. The main capability exhibited by Interaction Blocks
is an easy integration between human-robot interaction patterns and text-to-speech, speech
recognition and appropriate gaze behaviors for robots. However, this tool is not available on-
line. The original authors of Interaction Blocks have considered the lessons learned during its
development for the design of RoVer [217].

5.5.2 Block-based Interfaces

The Programming Cognitive Robot (ProCRob) environment [203] is a full-fledged software
architecture designed to support the development and customization of applications in which
social robots are used by teachers and therapists. The architecture has been applied mainly
to support innovative therapies for children suffering from the Autistic Spectrum Disorder
(ASD) by means of a ROS-based humanoid robot called QT. The ProCRob’s architecture is
composed of three layers: the first is a functional layer implemented in ROS or YARP [85]
made up of software components enabling such basic social skills as gesture expression, text-to-
speech, as well as speech, face and object recognition; the second is a middleware embedding a
domain-specific language called Robot Agent Programming Language (RobAPL), which uses
a Prolog-style rule- and logic-based approach to define goal-oriented behaviors using high-level
abstractions and the Belief-Desire-Intention (BDI) model [218]; the third is a front-end VPE
based on Google Blockly. ProCRob allows its users to represent and manage robot plans based
on a set of tasks organized sequentially or in parallel on the basis of a priori commands or
external events. The basic workflow unit is called play, which is represented by a behavioral
block embedding text, audio, face expressions, and body animations. However, ProCRob is not
available online.

CustomPrograms/Codeit! [198] is a Google Blockly and web-based interface designed to
reproduce the expressiveness of general-purpose programming languages by the use of low-level
constructs such as loops, variables, math utilities and functions. Built on top of Node.js and
roslibjs [75], it also provides a set of high-level programming abstractions denoted as primi-
tives. However, it is explicitly mentioned in [219] that the use of general-purpose programming
language constructs, while they can be easily and intuitively used by experienced program-
mers, require more training and generate more complex systems when used by inexperienced
programmers. CustomPrograms/CodeIt! has been used for a series of end-user applications
with mobile service robots in exhibitions, hotels [219], and for STEM-based training programs
[220]. It is noteworthy that one of the main advantages of this interface is its compatibility
with ROS-based software modules. However, one of its strongest drawbacks is the impossibility
of reusing code due to the limitations of the default features of the Google Blockly library. A

52



study evaluating the ease-of-use and expressiveness of CustomPrograms/CodeIt! is reported in
[219]. This framework is available open source [198].

OpenRoberta [199] is a block-based VPE mainly used for educational aims. However, this
VPE has also been used in end-user applications [221]. OpenRoberta is based on Google Blockly,
and enables software development for a variety of toy robots, single-board micro-controllers,
and the social robot Nao. Unlike most VPEs analyzed in this article, OpenRoberta comes in
two versions. In the first version, it can be run as a browser app connected to the Internet
using a cloud-based server as a back-end. This option simplifies to a great extent installation
and setup. In the second version, it is based on an offline, Java-based and cross-platform local
server. However, due to its mainly educational-oriented target, OpenRoberta exploits many
low-level development abstraction primitives, which must be grounded to the use of classical
programming abstractions. This approach is in fact more suitable for educational purposes.

Robokol [200] is oriented to non-programmers, and is focused particularly on the develop-
ment of applications in support for ASD-related therapy. The Robokol’s interface is powered
by Snap! [180, 222], and enables cross-platform support. Such support is possible by connect-
ing external devices to a data exchange server (e.g., a remote computer running ROS). This
connection can be established by a plug-and-play approach (i.e., the device advertises its own
description rather than requiring a user-specific setup) via websockets using the ROSbridge
protocol and suite [75]. Experimental settings where Robokol has been adopted are related
to the use of the Ono social robot, as well as a therapeutic device called the Sensory Sleeve
[200]. Like CodeIt!, Robokol uses general-purpose programming language abstractions. The
framework does not seem to be available online.

The Block-based End-user programming tool for SMart Environments (BEESM) [201] is
a VPE framework based on Google Blockly. The application allows for rapid prototyping of
applications involving smart environments, microcontrollers and mobile robots. Like Robokol
and CodeIt!, the back-end is based on ROS, and the whole framework mainly adopts low-level
general-purpose programming notations. This low-level abstraction enables the users to learn
PHP and how to code with Arduino boards, which is required to program smart environments
and mobile robots with the supported middlewares and libraries of this interface. It also
includes a 2D simulator for smart environments and mobile robots. It is reported that the
BEESM interface will be evaluated in usability tests soon. However, BEESM is not available
online yet.

The Robot Interfaces from Zero Experience (RIZE) framework [202] is a cross-platform,
block-, form- and web-based interface enabling remote control and the generation of intelligent
authoring behaviors for different robots. This VPE is one of the main outcomes of this thesis.
Therefore, a deep description of this VPE is performed in chapter 6. Unlike a majority of
block-based interfaces based on Google Blockly, RIZE does not adopt general-purpose software
development abstractions. On the contrary, it uses a modular approach based on the definition
of independent behaviors that can be easily reused in other RIZE-based programs. Robot
behaviors are encoded as behavior trees, i.e., a meta-architecture for the generation of reactive,
modular, and complex agents [147], and are executed by a decision-making engine. RIZE has
been used for the remote control and the generation of intelligent behaviors using a ROS-based
Turtlebot Burger robot, Nao and Pepper humanoid robots, as well as a robot manipulator
built with Dynamixel servomotors and controlled in Matlab/Simulink. Real-world applications
include museum exhibitions and theater performance [21], child-robot interaction [20, 223],
long-term human-robot interaction experiments in home settings and research in emotional
intelligence for robots [224]. RIZE is available online [202].

53



Name EUP approach AAI approach Programming primitives
CodeIt! block-based Scripting Hardware, Algorithm, Social
OpenRoberta block-based Scripting Hardware, Algorithm, Social
Robokol block-based Scripting Hardware, Algorithm, Social
BEESM block-based Scripting N.A
RIZE block-based Behavior-based Social
ProCRob block-based Behavior-based Social, Emergent
MRD data-flow N.A Hardware, Algorithm
Choregraphe data-flow State-based Hardware, Algorithm, Social
TiViPE data-flow State-based Hardware, Algorithm, Social
Interaction Composer data-flow State-based Hardware, Algorithm, Emergent
RoboStudio data-flow State-based N.A
RRP-VPE data-flow Behavior-based Hardware, Algorithm
RoVer data-flow State- and rule-based Social
Interaction Blocks data-flow State-based Emergent
English2NAO form-filling State-based N.A
PersRobIoTE form-filling Rule-based Social

Table 5.8: Comparison between AAI approaches using in VPEs (RQ3)

5.5.3 Form-filling Interfaces

English2NAO [208] is an EUP tool in which programming inputs can be set both by natural
language processing and with a form-filling interface for enabling the therapists to create pro-
grams for NAO robot. This interface is developed as a web-based application using Django
[225], and runs on top of the TiViPE engine. This EUP tool was developed to overcome some
of the usability problems presented by TiViPE [208]. Online availability of this English2NAO
has not been reported.

PersRobIoTE [171] is a web-based, form-filling interface. It adapts the Trigger-Action Pro-
gramming (often used in EUD tools for IoT scenarios) paradigm for enabling the creation
applications with Pepper robot. Users of PersRobIoTE need to define a set of rules mainly com-
posed of triggers (conditions concatenated by and/or Boolean operators) and actions. These
rules are encoded in the JavaScript Object Notation (JSON), which are created and managed
by a decision-maker module called the Rule Manager. Moreover, it uses backboard-like mod-
ules, referred to as their authors, such as Context Manager to handle perceptual inputs from
both Pepper robot and IoT devices. Communication between these modules is performed using
the Server Sent Events (SSE) [226]. However, PersRobIoTE is not available online yet.

5.6 Modeling Intelligent Behaviors (RQ3)

In this section, research question RQ3 was addressed. RQ3 aims to discover and analyze the
AAI tools used for supporting EUP and EUD in Social Robotics. RQ3 is addressed in three
ways: (i) presenting a general description as well as advantages and drawbacks of those AAI
tools for supporting VPEs; (ii) analyzing the modular capabilities of these AAI tools and (iii)
identifying the abstraction levels (programming primitives) generally used in these approaches..
The values of dimensions used in RQ3 are shown in Table 5.8. This table also includes the
dimension RQ2-D2 (EUP approach) for comparative purposes.

5.6.1 Scripting-based

As shown in Table 7, most block-based programming VPEs, such as Open-Roberta, Robokol,
and CodeIt! use general purpose scripting to enable the creation of applications with social
robots. In this approach, end users need to become familiar with classical scripting approaches

54



Figure 5.2: Example of a block-based programming environment using general purpose pro-
gramming notations using Google Blockly, end-user code is converted to real code in some
programming language

such as if-else conditional statements, for loops, creating variables and functions, and using low-
level mathematical and logical operations. The acquisition of these low-level programming skills
is a major objective of STEM educational courses. However, the suitability of this approach
for enabling the creation of intelligent robots by end users can be hindered by usability and
code reusability issues. As described in [156], the Cognitive Dimension framework suggests that
using too many low-level programming notations may produce usability problems associated
with high viscosity (i.e., users need to manipulate many elements to accomplish a task), and
may require hard mental operations and distant mapping to the problem domain of social
interaction. Moreover, using general descriptions for programming agents may produce code
that is hard to reuse and maintain [147].

5.6.2 Rule-based

First computer games and robots used programming and modeling systems using rules (e.g.,
if-this-then-that) for building intelligent agents. This approach is simple to implement and
presents a uniform method of representation, which can be intuitively used by non-programmers
[227]. However, these systems also present many relevant drawbacks. While non-programmers
can easily grasp the approach of using individual rules for programming robots, they face diffi-
culty in going beyond the declarative approach based on using rules. They also have difficulty
in understanding the implications of multiple rules, some of which may conflict. Moreover, the
lack of structure in rule-based systems often leads to (i) maintainability issues and error-prone
handling of programming elements (rules) in complex systems [148], and (ii) unstable and un-
expected behaviors when creating very large and complex programs [3]. While programming
approaches using disjoint and priority-based rules are currently very popular for developing IoT
applications, they have been widely replaced by more structured and robust AI architectures,
such as Finite State Machines and Behavior Trees, in areas requiring a development of more
complex, social and interactive agents, such as game developing and robotics. As shown in Ta-
ble 5.8, VPEs using rules as the main modeling tool are generally developed using form-filling
interfaces. The approach used on PersRoboIoTE is similar to EUD solutions for IoT systems,
such as IFTTT [228], where a list of disjoint rules must be filled. Figure 5.3 shown a simple

55



Figure 5.3: Simplest notation used in a rule-based VPEs

Figure 5.4: Example of spaghetti code in a dataflow-based VPE (example taken from [2].

visual notation for systems using rule-based systems and form-filling. For these VPEs, the main
programming task of end users is to select a condition or set of conditions (concatenated with
logical operators AND/OR) that will trigger some robot action.

5.6.3 State-based

By including the notations of states and transitions (i.e., some decision logic that told the system
to change from one state to other), as well as adding a structure to a set of disjointed rules,
a rule-based system turns into a state-based method. Most popular method used to model
state-driven systems are Finite State Machines (FSMs). FSMs are represented as directed
graphs, where each node of the graph represents a state. In an FSM, each transition to a new
state represents an event. These events can trigger the execution of some specific script or
sequence of robot actions. In general, FSMs are robust and easy to understand even for novice
end users [229]. However, the use of FSMs inherently implies some reactivity and modularity
issues, which are analogous to those associated with goto statement [148]. Both the goto
statement and FSM can be considered as a ”one-way” control” transfer (i.e., the control flow
jumps to another section of the program), which is described in [148, 230] as “too much an
invitation to make a mess of one’s program”. As described in [148], this leads to a trade-
off between reactivity and modularity of the programming system. To create a reactive and
complex social interactive application, a program built using FSMs requires too many one-way
control transitions between visual elements. As shown in figure 5.4, this requires the creation of
very tangled diagrams where the modification or removal of some element may need checking
every transition and state associated with that component.

56



Figure 5.5: a) In state-based methods, each state requires the definition of the decision logic that
indicates the decision-making system how to change to another specific state; b) Behavior-based
approaches separate decision logic from behavior code enabling a hierarchical and modular
representation (adapted from [3])

5.6.4 Behavior-based

By hierarchically organizing and separating the decision logic from the behavior code, a state-
based system turns into a behavior-based approach. Figure 5.5 shows the main difference
between state-based and behavior-based modeling methods.

As proved in [174, 148] most behavior-based modeling methods used in robotics can be
generalized by a Behavior Tree (BT). Unlike FSM, BT is considered a “two-way” control transfer
— after the execution of an event or function, the control flow returns to the part of the
program in which is called — which enhances modularity [148]. A typical BT implementation
is composed of two types of nodes: operators and terminal nodes. Figure 5.6 shows an example
of a simple BT. While operator nodes (in white) are used to perform control flow and behavior
selection, terminal nodes (in blue and gray) define and check preconditions and execute the
proper agent behaviors. More basic operators in a BTs are Sequence and Selector. Functionality
of these and other common operators in BTs are described in [148]. The execution of a BT
follows a classical “depth-first” traversal order from the root node to some terminal node.
After the activation of a node (when the BT traversal algorithm reached the node), this node
is assigned a status. This status can be “success”, “failure” or “running” depending on the
type of node. Each iteration of the BT traversal algorithm performs decision-making tasks
depending on the status of these nodes. BTs are also, by definition, modular and reusable [174]
as each branch of a BT can be considered as an independent module. Figure 5.6 shows four
possible modules that can be easily reused in other programs. Unlike FSMs, BTs have just
started to gain attention in robotics. Therefore, available software frameworks supporting this
AAI approach are less mature [21, 148]. Moreover, concepts involved in the creation of BT
can be difficult to understand by end users, as it is required to learn the “depth-first” traversal
graph search and many low-level operators for performing decision-making. An alternative
aimed to enable the use of BTs for end users is proposed in RIZE by changing the way BTs are
modeled. In the approach proposed in RIZE, rather than allowing the end user to build and
execute BTs using a tree structure and low-level operators, the end user build their programs

57



Figure 5.6: Example of behavior tree

by concatenating a set of BT modules or sub-BT in a declarative way using a Google Blocky
environment. These high-level modules or social primitives are built by expert programmers
using a low-level domain-specific language. More details are described in [21].

5.7 Tools, technologies and evaluation methods used in

VPEs for Social Robotics (RQ4)

As shown in Table A.1, Web technologies, such as HTML and Node.js (Javascript), are preferred
to build VPEs for Social Robotics. However, only OpenRoberta is built as a Web service.
Instead, other VPEs using Web technologies are designed to be executed on a desktop using
server-side frameworks such as Node.js and Django. For building block-based programming
environments, the preferred tool is Google Blockly [181], which provides more features and
flexibility than similar tools such as Snap [180] and Scratch [179]. As was described in Sections
5.3 and 5.6, some block-based VPEs using Google Blockly (specifically RIZE and ProCBob)
use this tool as a domain-specific language, where the code is executed in a more advanced
AI architecture (BTs in the case of RIZE and BDI in the case of ProCBob), rather than in
a general purpose programming tool. Moreover, older VPEs, such as Choregraphe, TiViPe,
and MRD were built as desktop-based tool for developing user interfaces such as Visual Studio
and Qt. The only recent VPE reported to be built as a classical desktop-based interface is
Rover, which was implemented in Java version 8. Table A.1 shows that many recent VPEs use
some Component-Based Software Engineering (CBSE) frameworks, with ROS. In this approach,
software modules are seen as isolated processes or nodes that are executed in parallel and that
can be written in different programming languages. This approach enables an easy reuse of
many open-source software tools developed by the robotics community thereby creating more
robust and complex robotic systems. However, most of these recent VPEs, such as CodeIt!,
Robokol and BEESM, require the execution of a server module or node in a computer with
the right version of Ubuntu installed. This can be a barrier to their adoption by the end users
for use-time design activities. This is due to a steep learning curve of ROS frameworks [24].
Drawbacks of ROS for EUD were described by the creators of TiViPE in [73] as: (i) most of

58



the end users are Windows users and require easy-to-install software tools; and (ii) they hardly
understand (without training) many of the concepts required to use ROS. Therefore, a high-
tech scribe skilled in the ROS framework is often required for the installation and execution
of the web server and for maintaining or extending these VPEs, which can be performed by
launching additional ROS nodes. These issues are still not solved with ROS 2.0, as it requires
following complex steps for its installation in Windows 10 and training for their use. Due
to these issues, interfaces such as TiViPE, MRD, and Choregraphe have been developed as
monolithic applications that are easy to install for the average end user , and where software
modules are executed in different threads. This can explain why only VPEs that have easy-to-
use wizard installers have been reported as enabling both the creation of applications at design
time and their redesign at use-time by the real end users. To communicate with external
modules, VPEs build as monolithic applications generally use simple POSIX sockets for some
limited tasks. From Table A.1, it is possible to see that most popular method used to validate
the suitability of these VPEs is the System Usability Scale (SUS) [231], which allows a reliable
and valid evaluation of usability for a wide variety of products and services such as hardware,
software, websites, and applications. Another method used to detect usability problems is the
Cognitive Dimension Framework, which was described in Section 5.2. The NASA Task Load
Index (NASA-TLX) and Cyclomatic complexity metric have been also been used to measure
perceived workload and complexity when creating programs for social robots. However, these
evaluation methods are often used to obtain subjective data. In the case of Codeit!, objective
and quantitative evaluations, such as the time and number of successful tasks, have been
performed.

5.8 Open Challenges of EUD for Social Robotics (RQ5)

This section discusses and summarizes current issues and open challenges characterizing VPE-
based authoring tools for social robots. These are related to accessibility to external devices
and resources, modularity of the human-robot interaction primitives, scalability when large
programs are needed, level of abstraction, benchmarking, explainability and control of the
resulting robot behaviors, support for distributed robot frameworks, as well as simulation and
debugging.

5.8.1 Accessibility to External Devices and Resources

This open challenge is based on the data obtained from dimensions RQ4-D3 (Accessibility),
RQ4-D4 (Operating Systems), and RQ4-D5 (Easy-to-install and execute). An analysis of these
dimensions reveals a number of accessibility issues in recent VPEs analyzed. From the point
of view of non-technical end users, such as UX/UI designers, an accessible VPE requires (i)
accessibility for their use or evaluation (RQ4-D3), (ii) compatibility with end-users devices
(RQ4-D4), and (iii) user-friendly installation and configuration (RQ4-D5).

Accessibility for their use or evaluation . As shown by the values obtained in dimension RQ4-
D3 (Accessibility) Table A.1, more than half of the presented VPEs are not available online,
even though many of them are built with open source tools. This hinders a proper evaluation
of them and denies opportunities to obtain feedback from both the robotics community and
end users.

Compatibility with end-user devices. In many professional environments and in the Academia
Linux-based systems have a good reputation and impact. However, end users who are not tech-
nically trained often assume the availability of software designed and developed for Microsoft
Windows or OSX, which have a bigger market share compared to Linux-based systems for
the general consumer market. While this issue is well-known and deeply understood by most

59



commercial VPEs, such as Choregraphe and TiViPE, it is mainly ignored by most community
or open source VPEs, therefore jeopardizing their ability to gain widespread use. A common
argument used to justify cross-platform support is to design the VPE’s architecture as a (pos-
sibly web-based) front-end running on Microsoft Windows or OSX coupled with a back-end
typically running on a Linux-based system, which is done by Robokol and the offline version of
OpenRoberta. However, such an architecture still requires the server side to be configured on
a Linux-based platform.

User-friendly installation and configuration. The first impression an end user has about
any software tool is based on the installation and configuration phases. Therefore, these phases
must be as easy and simple to complete as possible. On the one hand, such commercial VPEs as
MRDS, Choregraphe, and TiViPE can be installed via user-friendly wizards. However, they are
characterized by a huge memory footprint. On the other hand, most community-oriented, open
source interfaces require the expertise of professional software developers for installation and
configuration, which is mainly due to the necessity to setup a Linux-based system to run the
server, install the third-party software from the command line, and build the required binaries.
An option that enables cross-platform support and reduces the installation and configuration
efforts, as well as the required memory footprint, is to run the VPE in a cloud-based server, as
it is done in such educational-oriented interfaces as OpenRoberta. However, such a possibility
requires a stable, permanent connection to the Internet as it depends on the online availability
of the server itself. Values in dimension RQ3-D4 and RQ3-D5 in appendix A reveal the poor
attention that open-source projects have received in the creation of native and cross-platform
applications that can be launched and used by end users even if they do not have access to
the internet or a Linux server. Solving these issues is relevant for enabling end users to bring
robots outside the laboratory, where it is often hard to have a stable internet connection, and
where the support of high-tech scribes is not always possible.

5.8.2 Modularity of Human-Robot Interaction Primitives

In Computer Science, and in particular, as far as a software architecture for robots is concerned,
the word modularity is ambiguous and can be related to concepts present at different levels of the
architecture and granularity scales. For this work, I consider two different meanings associated
with the notion of modularity, namely operational and structural modularity. The formulation
of this open challenge is based on the data obtained from dimension RQ3-D1 (Communication)
in Table A.1, which is related with operational modularity, and the analysis presented in Section
5.6 about modular and reusable capabilities of each AAI method used for modeling social robot
behaviors, which is related to structural modularity.

Operational modularity. While a few authors consider modularity in VPEs as a simple
encapsulation of function calls or a set of related functions, others aim at integrating higher-
level modular abstractions, such as the Separation of Concerns design principle in independent
processes (also denoted as nodes) and/or software packages, as it is done for instance in ROS
[67]. Recently, the latter approach has been the most successful, being considered as the best
practice for Robotics-related software development [232], and one that provides an increased
quality in software applications. According to this approach, and as far as VPEs for Robotics-
related applications are concerned, data exchange between processes is managed on the basis
of a number of well-defined inter-process communication patterns [233].

Based on these concepts, and the values of dimension RQ4-D1 in Table A.1, it is possible
to classify VPE interfaces as having low, tight, or high operational modularity. In the first
case, modules are just considered as a set of function calls. In this approach, most of the
robot’s sensory, perceptual, decision-making and control tasks are carried out as parts of a
single process. VPEs that exhibit low operational modularity include Interaction Blocks and

60



RoVer. In the second case, the overall robot functionality is split in different modules, and var-
ious modules communicate with each other using a Request-Process-Reply (or Client/Server)
design pattern [234] through POSIX sockets. VPEs adopting this operational modularity type
are MRDS, Choregraphe, TiViPE, Interaction Composer, and OpenRoberta. In the third case
(also referred to as loose coupling), the principles of reusability, extensibility, maintainabil-
ity, and robustness are enforced by the use of non-blocking and asynchronous communication
design patterns, such as Publish/Subscribe and Observer. VPEs in this class are RRP-VPE,
RobotStudio, ProCRob, CustomPrograms/CodeIt!, Robokol, BEESM, RIZE.

Structural modularity. One of the main drawbacks associated with most of the analyzed
VPEs, particularly those based on the flowchart concept of FSMs, is the lack of modular-
ity, intended as a clear subdivision of roles within the resulting architecture. Such a lack of
modularity-enforced design is due to the mainstream approach to organize internal workflow
(i.e., mostly corresponding to the overall robot decision-making capabilities) as a single, one-
way, data transfer from inputs to outputs. In a sense, such approaches replicate the somewhat
classical Sense-Plan-Act architecture for robot perception, planning and control [235]. The re-
sult is characterized by issues similar to what happens with the use of the much critiqued goto
statement, which is considered unstructured and a cause of unreliable behavior [236, 148]. As
a consequence, dataflow-based VPEs tend to generate spaghetti code (Figure 5.4) and visual
programs difficult to understand, maintain, reuse, and scale [26]. As described in [237] and
reported in [26], VPEs using dataflow present three key issues : (i) their programs tend to
be very large requiring the creation of too many nodes even for trivial and low-level tasks; (ii)
each node requires too many inputs and links between them producing highly tangled programs
(referred to as spaghetti code), such as shown in the example in Figure 5.4; and (iii) confusing
iteration: the program is difficult to follow or even understand. To deal with these drawbacks,
a viable solution could be to develop truly independent and modular systems based on two-
way data exchange, e.g., the adoption of block-based interfaces capable of using service-like
approaches based on events and handle functions, on rule-based systems and/or hierarchical
decision-making engines like the Behavior Trees [238].

5.8.3 Scalability in Large Applications

In most cases, designers and developers of VPE-based authoring tools advertise use cases in
which their frameworks are adopted to design simple human-robot social interaction patterns
requiring the use of few primitive behavioral blocks and connections. Like many virtual agents
[30], the development of more complex or long-term applications to be delivered in everyday
scenarios, such as those described in [49, 239, 240], can require the integration of a large
number of behaviors, as well as a possibly intricate logic to coordinate their orchestration. This
requirement implies a rapid increase in the difficulty in following the application’s control flow,
and in searching for appropriate primitive robot behaviors. Module or component encapsulation
is a widely-adopted approach used in dataflow-based VPEs to deal with these issues. In many
cases, however, encapsulation reduces the mess of dataflow-based workflow only to a limited
extent [148]. Suitable design patterns to deal with these issues are rare in block-based interfaces.

5.8.4 Correct Abstraction Levels and Programming Notations

As analyzed in [156] and according the values obtained in dimension RQ4-D2 (Programming
primitives) in Table 5.8, many of the VPE-based frameworks discussed in this article are charac-
terized by unbalanced abstraction levels in selecting robot behavioral primitives and program-
ming notations. In fact, typical issues are related to the presence of primitives with low-level
and varying abstraction levels, and to the consequence of the overall VPE usability [153].

61



As far the abstraction level is concerned VPEs, such VPEs as Choregraphe, OpenRoberta,
TiViPE and Interaction Composer are characterized by several issues in usability and in the
cognitive dimension, due to the fact that they incorporate various low-level programming ab-
stractions, which are denoted in [156] as hardware and algorithm primitives. On the one hand,
VPEs including hardware primitives use graphical elements which enable users to obtain raw
data (e.g., position, velocity, sound and images) from sensory devices or actuators. On the
other hand, VPEs including algorithm primitives require that users be able to provide the data
generated by the hardware primitives as inputs of low-level perceptual and control modules
(e.g., sound source localization, inverse kinematics, keyframe animation and face tracking).
However, raising the level of programming abstraction too high, as it is done for example in
Interaction Blocks, can reduce the flexibility of VPEs and therefore the capability to create
complex behaviors with robots. An alternative approach allowing for a good trade-off between
the usability and flexibility of VPEs and robot programming software aimed at generating so-
cial interactions is also described in [156]. The correct level of abstraction for developing social
interaction behaviors with robots requires the use of reusable and atomic domain-specific social
primitives (e.g., related to speaking, gestures, gaze, facial expressions and animations).

5.8.5 Benchmarking

The evaluation of interfaces with real end users is a key task that enables to show the appli-
cability of VPEs as well as to obtain valuable data to validate or improve usability. These
evaluations require data collection from both objective and subjective approaches. The collec-
tion of objective data is based on facts rather than opinions or interpretations (e.g., how many
times the user makes an error, the number of times that a user has required help, and task com-
pletion time). This type of data is generally collected and analyzed by those VPEs reporting
usability evaluations. From the values obtained in dimension RQ4-D7 (Evaluation methods)
in Table A.1, it is possible to observe that authors of TiViPe and CodeIt!/CustomPrograms
have used, to different degrees, the Cognitive Dimension Framework (CDF) as a main tool to
perform subjective data analysis. This framework is always used to identify usability trade-offs
in early stages of designs and make decisions about those trade-offs for posterior iterations
[241]. While the CDF has emerged as the predominant framework for analyzing VPL, some
researchers have identified some serious theoretical and practical limitations of CDF for its use
in the evaluation and design of visual notations [242]. Some of the main issues of CDF described
in [242] are: (i) confusion or misinterpretation when interpreting and applying dimensions, (ii)
lack of evaluation procedures or metrics, (iii) and the omission of issues around whether the
visual notations chosen are “good” or “bad” ones. A complementary approach for addressing
CDF issues is to follow guidelines and the principles of the Physics of Notation [242], which
are valuable tools for evaluating and designing visual notations. However, these guidelines and
principles are often omitted in most of the VPEs reviewed. A well-accepted subjective data col-
lection approach in Human-Computer Interaction (HCI) is the use of standard questionnaires
[243] such as the System Usability Scale (SUS) [244] and the NASA Task Load Index (TLX)
[245]. From the VPEs reviewed in this chapter, only Interaction Blocks (using SUS), RRP-VPE
(using TLX), and RoVer (using both SUS and TLX) have performed subjective data collection
using standard questionnaires. However, only the designers of Interaction Blocks have reported
usability evaluations using real novice end users, rather than expert programmers.

A comparative evaluation among interfaces, using objective and subjective data, is a valu-
able task in modern HCI research. This evaluation enhances the analysis and validates the
suitability of proposed VPEs. However, this task is often omitted by the designers and devel-
opers of most VPEs presented in this work. Exceptions using the NAO robot are presented
in [205] and [208]. Issues that limit performing such comparative evaluations are related to

62



the facts that (i) some of the presented VPEs are not available online, and (ii) they support
different robots and target user groups. Recently, a shift of emphasis in many areas of HCI to
user experience has become a central focus for interfaces design and evaluation [246]. However,
most UX-related aspects [247], except usability, have generally been omitted in the reviewed
VPEs.

5.8.6 Explainability and Generation of Robot Social Behaviors

Depending on the specific use case involved in the target end-user applications, robot behaviors
(which can be conformed by a simple action or a set of parallel robot actions requiring syn-
chronization) used for social purposes in the papers analyzed for this survey can be classified
into the following classes:

C1 repetitive, robot behaviors that do not require any specific form of high-level intelligence
nor cognitive capabilities;

C2 scripted sequences of basic robot behaviors, the execution of which always follows a pre-
defined list of actions and occasionally requires user-provided input, e.g., using keyboards,
joysticks, touch or speech, to continue execution;

C3 state- or event-based dynamic behaviors that do not allow for any interruption nor pre-
emption until the current behavior is completed;

C4 state- or event-based reactive and dynamic behaviors enabling interruption, state change
or preemption on the basis of predefined priorities;

C5 hybrid reactive/deliberative, intelligent behaviors that require the robot to correctly in-
terpret and react to external and internal stimuli, and to make decisions about which
actions to perform next in view of a certain goal.

While most of the VPEs reviewed in this paper can generate behaviors belonging to classes
C1, C2, and C3, very few are capable of generating robot behaviors which can be classified as
C4 or C5. An exception that can be considered as a basic approach towards C4 is Interaction
Composer, which exhibits a dataflow interruption mechanism, where an interrupt could monitor
some perceptual input and trigger another behavior sequence [193]. Another exception towards
C4 is TiViPE, the latest release of which includes a textual robot language that can be used
to set the execution priorities of a set of serial and parallel actions. However, this low-level
textual approach mixed with TiViPE has been reported in [208] to be complex for being used
by end users. More advanced approaches towards C4 have been proposed by RRP-VPE and
RIZE, using Reactive Programming and Behavior Trees, respectively. However, it is apparent
that neither RRP-VPE nor RIZE have been used with non-programmers, while their adoption
by expert software developers and academics has been reported. However, it is noteworthy
that while moving from C1 to C5 in the behavior classification, the resulting robot actions
may be considered progressively less understandable by and explainable for humans. This is
because the composition of many simple behaviors in an intertwined chain of planned actions
and reactions to certain events can lead to widely different outcomes, even when there are only
small differences in the (sequences of) inputs [248, 249]. It is not surprising that, as far as
human-robot interaction is concerned, social robots exhibiting predictable behaviors are to be
preferred given the state-of-the-art knowledge in Robotics.

63



5.8.7 Simulation and Debugging

The benefits of simulation and debugging capabilities in any software development toolkit are
quite obvious and do not need to be emphasized. However, human-robot interaction and the
use of social robots in the wild are characterized by specific requirements as far as simulation
and debugging are concerned. These are mostly related to the dynamic and often unpredictable
nature of human-robot interaction processes and social relationships:on the one hand, it is nec-
essary to always ensure predictable robot behavior, as well as to guarantee that the overall
architecture workflow does not enter into unsafe states; on the other hand, for the robot be-
havior to be engaging at the social level and to ground high-quality human-robot interaction
experiences, it is of the utmost importance to carry out time-consuming robot-based tests and
evaluation before the final application is deployed.

Unfortunately, in many cases these goals are not possible or easy to attain, because of prac-
tical reasons related to robot unavailability or incomplete technical development. Therefore,
being able to access and leverage a high-quality, accurate, and faithful simulation of the robot
behavior is crucial.

Cross-platform, easy-to-use and easy-to-setup simulators are the key to increase the over-
all usability of VPE-based development. Values obtained from dimension RQ4-D6 (Liveness
and Simulation) in Table A.1, show that most of the VPEs discussed in this article lack any
robot behavior and human-robot interaction simulation capabilities, the only exceptions be-
ing Choregraphe, which provides a 3D simulation for the robots commercialized by Softbank
Robotics, BEESM, which includes a 2D simulator for smart environments, and OpenRoberta,
which provide 2D web simulators of toy robots. Values obtained from dimension RQ4-D6 also
indicate that less than half VPEs provide on-demand feedback or debugging (liveness 3), and
only Choregraphe provides live feedback capabilities (liveness 4). The concept of liveness was
discussed in Section 5.4.1 in the definition of research question RQ4.

5.9 Conclusions

In this chapter, it is presented a survey of different VPE-based frameworks to enable a EUD-
based development of social robots and human-robot interaction scenarios. A structured com-
parison of these frameworks has been carried out from an operational point of view, classi-
fying them as dataflow-based, block-based and form-filling. Findings indicate that there is a
need for more accessible, adaptable, modular, extendable and flexible tools and technologies
to support and enable end users to become end-user developers of their system. I note that
many recent VPEs are built on top of CBSE and distributed robotics frameworks for enabling
enhanced modularity and flexibility. However, the inherent complexity of most distributed
robotics frameworks produces some accessibility and usability barriers that make it difficult to
create EUD tools promoting an independence between end users and high-tech scribes. This is
because most distributed robotics frameworks were originally designed for supporting academic
projects, and tended to have steep learning curves for their use even for expert developers. Solv-
ing these issues is necessary to enable end users to develop and redesign their applications “in
the wild” (at use time and outside laboratory settings). A possible direction can be the use of
more lightweight, simple robotics frameworks that (i) are adapted to the skills and resources
of end users, and (ii) can be used as glue between different software modules developed by the
robotics community and different distributed robotics middlewares. Moreover, findings of this
chapter point to the poor attention most authors of VPEs give towards the performance and
comparative evaluation of these tools with real end users, and the need for more user studies
and objective analysis of these tools using both quantitative and qualitative data. Finally,
some efforts is recently being made to overcome limitations of classical approaches using rules,

64



scripting, and data-flow programming, thereby providing end users with more reliable, reusable
and reactive programming tools to enable the creation of more complex behavior for social
robots. Unlike other information technology areas, where end-to-end black-box AI architec-
tures are currently trending (e.g. Deep Neural Networks), AI architectures for enabling EUD
of social robots mostly focus on the use of AI tool with authoring and explainable behaviors.
This situation is similar to the one facing the game developers, where the creation of robust,
explainable and suitable behaviors (in many cases defined by UX/UI designers) is more valuable
than learning capabilities. However, the creation of more complex robotics systems will require
Social Robots to learn from its environment.

65



66



Chapter 6

Designing RIZE End-User
Development Framework

This chapter presents design considerations and main features of RIZE (Robot Interface from
Zero Expertise), a EUD tool oriented to support interdisciplinary HRI research activities. RIZE
is mainly a block-, form- and web-based programming environment which enables end-users to
intelligent social robots. RIZE was designed to overcome many of the issues of VPEs for
robotics, which was presented in chapter 5. For this, the use of NEP as a robotic distributed
framework plays a relevant role.

6.1 Usability and UX in HCI

Two key concepts in HCI research are usability and UX. On the one hand, usability goals
are generally regarded to ensure that interactive products are easy to learn, easy to remember,
effective, efficient, and safe. On the other hand, UX goals are generally regarded as the design of
more subjective goals such as fun, enjoyable, pleasurable and aesthetically pleasing interfaces.
In order to develop interfaces that provide high usability and UX, researchers in HCI have
proposed some design guidelines. One of the most known is described in [250]. However, these
guidelines always require to deal with some trade-offs [251], and their correct implementation
will depend on the application. Guidelines used for designing RIZE are shown in table 6.1.
An important concept used to improve subjective UX is aesthetics. Interface with a careful
aesthetics design not only provide satisfaction and pleasure to the users but also can influences in
numerous factors, such as a user’s first impression, perceived usability and interface performance
[252]. Therefore, interfaces developed in this thesis are designed using modern web-based
technologies (described in chapter 3) and design approaches (such as flat, minimalism, and
material design). This is done with the objective to develop usable, modern, attractive and
beautiful user interfaces. This approach highly contrasts with most state-of-art EUP and EUD

Table 6.1: Usability guidelines used for the design of the NEP interface
Guideline Description
Consistency Use accepted standards or conventions to avoid confusions
Feedback Clearly shown the current state of the system and avoid mode errors
Recovery Users must be easily recognized and recover from errors
Minimal design Reduce information overload
Simplicity Create as simple as possible task-oriented interfaces
Aesthetics Users perceive more usable and valuable aesthetically products that ugly ones
Documentation Help resources must be task-oriented and well organized

67



Figure 6.1: Home interface of RIZE

tools for robotics as well as interfaces available in distributed robotics frameworks which are
developed using classical tools for build user interfaces and older design paradigms such as
skeuomorphism.

6.2 Design

The RIZE interface was oriented to be aesthetically-pleasing in order to convey an aesthetic-
usability phenomena [253] (i.e. beautiful design are considered more usable and valuable that
ugly ones). Therefore, rather than use classical tools for developing user interfaces in Desk-
top applications, such as Visual Studio and Qt, RIZE was developed using modern web-based
technologies (described in chapter 3). The design of RIZE is based on Vuetify.js [254], which
is a material design frameworks based in Vue.js. This open source library enable the creation
of intuitive and beautiful digital experiences. As described in [255] material design is group of
“guidelines, components, and tools that support the best practices of user interface design”.
Guidelines of material design were originally proposed by Google, which uses this design ap-
proach in all their products. Examples are Gmail, Google Docs, Google Translator, Google
Maps, interfaces in Android and Google Search. These are in fact highly used tools and in-
terfaces widely used by the general people in their everyday life. Therefore, the use of this
design approach not only enable the creation of more beautiful and modern users interfaces
but also more familiar and consistent with the conventions often used by end users. RIZE
uses a minimal and flat design in the buttons, programming and other interface elements to
reduce the information noise presented in skeuomorphic interfaces. In order to reduce cognitive
load and preserve consistency RIZE uses standard icons as well as tooltips that indicates the
functionalities of each button. Figure 6.1 shows the home tab of RIZE. Interfaces in RIZE have
a top toolbar where users can use a set of buttons on the left side to create new projects, load
a project and save the current project (1). This menu shows in the center the name of the
project (2). On the right side (3), a set of a button with more advanced features is displayed.

68



Figure 6.2: Alert displayed when the robot is not able to be connected

A set of tabs can be used to navigate between interfaces of RIZE (4). These interfaces are
composed of a home page, and four programming pages representing the main types of robot
behaviors that the end user can edit. Figure 6.1 shows a Pepper oriented interface. Connection
with Pepper robot can be performed pressing button shown in (6). This connection button
is inside a graphical element know as alert, where the connection status of robot is displayed.
This element can have different colors and instructions. An example is shown in figure 6.2,
where a warning message is displayed when the robot was not able to be connected.

A foot menu is used to start, pause and stop a RIZE program (7) and show the status of
the interface and robot (8). For Pepper robot, an additional button must be pressed to stop
all default robot behaviors (9) just after this robot is turning-on. This step is relevant, as
many functions of Pepper are by default blocked. Therefore, the button shown in (9) is used
to unblock Pepper functions. One of the most relevant usability issues in dataflow and block-
based VPL is to deal with very large programs that require the use of many graphical elements
to create complex systems. As the end-users program becomes larger and more complex, it
increases the difficulty for someone (even the project owners) to read the program or search it
for a particular piece of code. Even if end-users try to organize their programs to not overlap
graphical elements, these are often displayed in only one workspace. Therefore, behaviors are
often very difficult to read and search. Moreover, most EUD and EUP tools for robotics do not
offer any searching features; if someone editing or reading a block-based or data-flow program
needs to find a particular robot behavior or module, he/she must look through all graphical
elements of the entire program to find it. In order to overcome this problem robot behaviors
in RIZE are organized in lists with separated workspaces. Each robot behavior or item in a
list is composed of an identifier (ID) and a comment, which end users can provide to explain
the general functionality of each behavior. With this approach, end-users can easily search
for specific robot behavior using their ID and comments. Comments are can also be used by
end-users to give some hints of the functionality of each behavior to new users. An example
of how robot behaviors are organized in RIZE is shown in figure 6.3. For element of the list,
buttons enabling the edition of the robot’s behaviors and their comments as well as enabling
them to delete them are also provided.

When opening each behavior a programming environment, such as shown in figure 6.4, is
opened. In this interface, end-users can design and edit the desired robot behaviors. Pro-
gramming interfaces in RIZE provide mechanisms of error prevention and recovery, such as
confirmation options before performing some destructive action, undo and redo buttons. The
menu in the bottom is used to execute and debug the robot behaviors as well as see the code
generated (in the JSON format) for each behavior.

69



Figure 6.3: Organization of robot behaviors

Figure 6.4: Programming environment

70



Figure 6.5: Component diagram of RIZE software architecture

6.3 Software architecture

RIZE is a cross-platform desktop application developed with modern web technologies. RIZE is
based in electron, which combines node.js (an event-driven and asynchronous Javascript runtime
used to create server-side applications) and Chromium (a lightweight open source browser) to
enables the creation of cross-platform desktop application which can be installed from user-
friendly desktop installers (i.e., .dmg, .exe, and .deb). This avoids the use of command line and
source code compilation tasks.

The component diagram in Figure 6.5 shows how the final software architecture of RIZE
works. Components in the RIZE architecture are mostly communicated using the classical
Publish-Subscribe (P/S) pattern. Messages between nodes are serialized using the Javascript
Object Notation (JSON). Applications using electron, as is the case of this thesis, are basically
composed of a main process and one or more render processes. While the main process is
in charge of creates and executes the render processes, the render processes create Chromium
windows in which any web-based content can be executed. These electron processes can also
access to system files and spawn other processes using node.js features. The current version
of RIZE is composed of two render processes, the first one providing the robot programming
environment and the second one enabling the logging and monitor of the robot perception
and actions detected in a memory system denoted as blackboard. Nodes composing the robot
software and external sensory devices are launched from the render process using the provided
interfaces.

When the RIZE application starts its execution, the main process launches the NEP master
server and ROS master server (only in ROS 1.0 compatible OS). These nodes are required to
communicate the building blocks of robot architectures. Another component launched by the
main process is the RIZE cognitive system, which is composed of a blackboard system denoted
as SHAred Robot Objects (SHARO) and a Behavior Three Engine (BTE). Blackboard systems
are behavioral design patterns mainly used in the video game industry to enable the collabora-
tion of the multiple modules involved in the creation of intelligent agents. This collaboration is
done by saving the output data of knowledge generators (i.e., perceptual and action modules)

71



Figure 6.6: Schematic overview of the processes involved in the generation of new functional
requirements for the RIZE environment

and sharing this data to other cognitive processes. Information saved and shared on blackboard
systems often requires the definition of its elements using some data structure or format. A
suitable way of defining this data is using key-value pairs. While a key is a string that indi-
cates the name of the data variable, a value can be represented by any data type (e.g., list,
dictionary, string, float, string). For this we select JSON, which is a popular and open-standard
file format used in many programming languages and libraries to transmit and save data ob-
jects represented in key-value pairs. On the other, the BTE decodes and executes the robot
behaviors, which are encoded as BTs and are defined by end-users via the RIZE programming
environment. Decision-making in BTs performs on base the data available in the blackboard
and the status of current nodes in execution. Finally, the module denoted as Action Engine
(AE) manages the execution of the robot actions that are specified to be executed by the BTE.
Finally configuration of robot and external devices are also saved as JSON files.

6.4 Automatic Generation of Behavioral Blocks and Code

In order to reduce the difficulty of supporting new functional requirements in EUD environments
for Robotics, it was created a Python tool allowing for easy maintenance of visual elements in
the RIZE interface. The main idea is to define a set of usable and flexible social abstraction
primitives for robot programming. The specification of these primitives is made in JSON files.
These files are read by a script that generates the JavaScript and HTML code that defines the
design and the form interfaces and of each visual blocks, this script also defines the Python
and JavaScript code that must be generated when the user drag and drop each block in the
visual programming environment, and updates the needed XML and JavaScript files needed to
compile the Google Blockly library. As shown in figure 6.6, developers which require to add
new functions to the RIZE programming environment must define the main attributes of these
functionalities using the JSON format. These specifications are then read by a Python script
that auto-generates the JavaScript and HTML code defining the design and functionalities of
each behavioral block in the Google Blockly environment. The Python tool also update the
databases and toolbox of RIZE programming environment.

As an example, let’s suppose that a developer needs to add the speech capability shown in
figure 6.7 to the RIZE interface. After developing the nodes needed to support this capability in

72



(a) Form interface

(b) Programming element

Figure 6.7: Example of auto-generated graphical elements

a component-based framework such as ROS, the developer can specify the parameters of social
skill such as is shown in listing ??. In the JSON notation, the developer defines an intuitive
title for the social skills, which will be visualized in a block element. In this case, the speech
capability is denoted as an imperative action say. Then the developer needs to specify the type
of social skill as input (perception) or output (action). Developers can also add a description
of the block’s functionality to help users. This description will be dynamically shown when
the user selects the respective block. The input file is used to specify the main parameter of
the block, in this case, a string that indicates the text to be said for the robot. The developer
can also specify a set of optional inputs which are parsed to generate the respective HTML
and JavaScript code that creates a form-based interface for each primitive. An example of
the auto-generated form-based interface for the say primitive is shown in figure 6.7.a. Form-
based interfaces can be opened by the end-user pressing the button in the primitive’s block.
Form elements that can be automatically generated are sliders for numerical inputs, a textbox
for string inputs, checkboxes for Boolean inputs, drop-down lists for the selection of database
elements (e.g. a list of emotional expressions, sounds, or animations that are available in the
robot), among others.

6.5 Graphical elements

This section describes the main graphical elements that RIZE provides for their use by end-
users.

6.5.1 Definition of robot actions

Robot action primitives can be executed and debugged using the action block presented in figure
6.8. This block presents a input field for primitives and other for robots. In the primitives field

73



Figure 6.8: Example of an action in RIZE

Figure 6.9: Example of a pattern block

the user can concatenate a set of primitives in a list, this send the message to execute the
primitives in parallel. The robot field can also takes a list of robot to perform the defined
action in multiple robots at the same time. When the user press the button in the action block,
this launch a signal to execute the defined action. Therefore, the end-user can execute all the
program or only an specific part of the program developed for testing proposes.

6.5.2 Interaction patterns

In order to avoid hard mental operations, the definition of classical interaction patterns [207],
[256] is done with the help of some pre-defined blocks denoted as behaviors. An example is
shown in figure 6.9, which shows the block that is used to define a question-wait-answer pattern
[207]. In this block a set of actions can be selected to ask something to the human, then some
time defined by the user is selected to enable the response of the human, finally, the response
can be processed in base the detected human speech.

6.5.3 Modules

In RIZE a list of actions or behaviors can be encapsulated in modules. These modules can
execute all their elements in sequence or only execute one of their elements randomly. These
decision-making operations correspond to the Selector and Random composite nodes in a BT.
An example of a module is shown in figure 6.10. This module is composed of two actions that
are set to be executed in descendent order.

74



Figure 6.10: Sequence module blocks example

Figure 6.11: Reaction block example

6.5.4 Definition of robot reactions

These modules are small sub-BT which can be activated after the presence of a particular
social stimulus. An example modeled using the RIZE interface is shown in figure 6.11. In this
example, the action of text to speech is defined to be executed every time the robot is touched
in the head (the trigger condition). The proposed approach not only enables the creation
of Trigger-Action Programming like [171] (if-then) behaviors but also enables to define the
priority of these behaviors. This priority value is also used to preempt other modules that are
in execution.

6.5.5 Definition of robot goals

Authoring plans are defined as sequences of actions, or other complex behaviors. A goal is
activated or canceled if some sets of conditions are true. Unlike reactions, goals can continue
its execution after their preemption by some reaction with higher priority. In the proposed
approach only one goal or one reaction can be executed at the same time. A simple example
of goal behavior is shown in figure 6.12. In this example, the goal is activated until the speech
recognition system detects the phrase ”what is a robot?”. Then, the robot executes the main
behavior (a set of 4 actions composed of say social primitives) until all the actions are completed
or until the condition to cancel this behavior is met. In this when the behavior is canceled
the robot will say ”Ok, I will stop”. Moreover, if this behavior is preempted to attend a high
priority reaction, the flow of the program can return to the goal and continue with its execution.
Furthermore, before executing the missing actions of the goal, the robot can execute some action
to notify humans that he will continue with the original goal. In the example shown in figure
goal block, this return behavior is modeled as a say action with the text ”As I was saying”.
This relatively complex behavior is surprisingly very difficult to model in data-flow interfaces
such as Choregraphe [190].

The approach used to execute reactions and goals is similar to the BT with memory method
[148]. However, the proposed approach uses the FSM defined in the high-level layer of the
proposed BTE to enable reactivity. For this, a register of the conditions that activate or cancel
the defined reactions or goals as well as their priorities is first done. A program in RIZE
maintains its execution in the idle state until a set of social primitives that activate some goal

75



Figure 6.12: Goal block example

or reaction is detected in the blackboard (see figure 7). If a reaction is activated (RA is true),
the state of the FSM changes to reaction running. Then, the sub-BT which corresponds to
the active reaction is executed until its tree returns success or failure. The execution of this
reaction can be preempted if another reaction with higher priority is triggered. In the proposed
approach, conditions that activate reactions or goals with the same and lower priorities of the
behavior in execution are not checked. When a goal is active (GA is true), the FSM state
changes to the goal running state. If a goal is preempted by a reaction before completed (RA
is true when GA is true), this goal can continue its execution after the reaction that caused the
preemption finishes its execution (RF is true and GA is true). If the current goal completes its
execution (GF is true) or the goal is canceled (GC is true) the interaction state changes to idle.

Figure 6.13: Proposed hybrid FMS and BT engine approach

76



6.6 Summary

This chapter describes guidelines, features and software architecture of RIZE, a modular VPE
for “in the wild” human-robot interaction research. Proposed architecture enables the creation
of intelligent and autonomous social robots, which can be designed by both expert program-
mers and domain expertise users using modular and easy to use software tools. The proposed
method enables the modeling and execution of reactive behaviors robot behaviors. Moreover,
the proposed hybrid approach avoids some of the disadvantages when only using pure FSM or
BT decision-making engines. Finally, developers can easily add more robotic functions using
proposed tools for generating code and visual elements.

77



78



Chapter 7

Long-term Human-Robot Interaction
in Domestic Scenarios

This chapter presents an example of an interdisciplinary HRI research project supported by
the two main software tools proposed in this thesis. First, the motivations and objectives
of this project are briefly defined in section 7.1. Then, section 7.2 describes the proposed
software architecture, which is based in NEP. Section 7.3 describes the experimental sessions
summarize some relevant HRI data obtained from implemented robot perceptual capabilities.
Finally, section 7.4 concludes presenting: (i) advantage of the proposed software, (ii) difficulties
when performing experiments in domestic environments and (iii) limitations of the proposed
implementation.

7.1 Objectives and motivations

Unlike experiments in most service and public spaces (e.g. stores, hotels, hospitals or theaters)
where people and robots share the same space in short-term interactive sessions (e.g. 5 minutes,
1 hour), experiments in home environments require that robots can be able to play complex
social roles in long-term, interrupted and unsupervised sessions (e.g. one day, one week or one
month). Robots in domestic environments must coexist in the intimacy of the experimental
subject’s homes. Therefore, the option of sending researchers to the experimental settings
to perform data collection and direct monitoring of the robot and experiments disrupt the
dynamics and naturalness of the presented interactions [257]. Moreover, the use of video or
audio streaming to enable Wizard of OZ approaches for controlling the robot behaviors, such
as presented in [258, 259], can be tedious or even unethical tasks. Therefore, novel methods
for data collection and generation of intelligent and autonomous robot interactions must be
explored.

Recently, some efforts have been done to bring social intelligent robots in homes. Some
of them have focused on the development or integration of high-performance and complex
robot functions, such as, navigation, object recognition, manipulation, among others. Relevant
examples are [260, 261]. However, most of these experiments have been designed by only expert
programmers and mainly oriented to be evaluated in simulated environments (i.e. virtual,
exhibition, competitive or laboratory settings) rather than in real scenarios. While experiments
in simulated environments are useful to demonstrate and validate the possible capabilities of
social robots, they often provide poor information about those HRI aspects able to enhance
the acceptance of social robots. Some of the most relevant are usability and user experience
[262, 257]. These types of experiments cannot be used to fully understand the challenges that
involve really coexisting with robots in homes [257].

In order to provide valuable insights about those non-functional and design aspects able to
provide enjoyable and valuable user experiences, social HRI experiments in domestic environ-

79



ments need: (i) to be designed by cross-disciplinary teams rather than only expert programmers
and (ii) be performed in real home environments rather than in simulated settings. Even with
the current advances in sensory, perception, navigation and control algorithms, only very few
studies of long-term social interaction in real homes have been reported [239, 263, 264]. In fact,
this type of studies requires time-consuming developing, experimental setup (e.g. recruiting
participant, perform interviews and transportation of equipment), design and testing processes
before implementing the real experiment. From the few multidisciplinary teams that have per-
formed “in the wild” experiments in homes, most researchers agree that “research robots are
not robust enough to be used in prolonged experimental sessions without expert supervision”
[265, 239]. Therefore, most of these studies have used limited functionalities and structures,
robot toys or commercial robot vacuum cleaners. Examples are described in [266, 267]. Very
few works recently presented in [268, 269, 264] have used more complex robots. However,
works reporting the use of component-based, open, robot independent, user-friendly software
tools that enable cooperation between domain specific experts and robot experts for performing
HRI research in domestic research are still rare.

The objective of this project is to provide more valuables insight towards the development
of companions robots. This project was proposed by experts in design and user experience.
The work done in this project was mainly focused on supporting these domain specif experts
and enable them to develop their desired applications with social robots. For this, an initial
version of RIZE was used.

7.2 Software architecture

Figure 7.1: Proposed software architecture used in experiments performed in domestic environ-
ments

The proposed software architecture is basically composed of perceptual modules, a Black-
board system, a Behavior Three Engine (BTE), an Action Engine (AE) and the RIZE pro-
gramming interface. Figure 7.1 shows how these basic modules interact together to create
robot applications. We use the Publish/Subscribe pattern to broadcast perceptual information
using an event-based approach. In the proposed approach, perceptual nodes obtain the low
abstraction data as inputs and generate output values as social primitives or skills [156]. These
outputs are encoded using the JSON format and sent to the blackboard systems, which tem-
porally save the data for posterior processing. Included perceptual features, such as speech

80



recognition, detect people and obtain data form touch sensors were implemented using the offi-
cial development kit of Pepper robot. As introduced in chapter 6, a blackboard is a behavioral
design pattern often used to create intelligent virtual agents in video games. The developed
blackboard has two main tasks: (i) collect output published by perceptual nodes and share
this relevant information with the decision-making engine (ii) save and send these perceptual
outputs by email for remote supervising the state of the robot. End-users modeled the robot
behaviors using an early version of RIZE. The design of this version is shown in figure 7.2.
In this initial version of RIZE behaviors were organized in two Workspaces separating main
available types of behaviors: goals and reactions. These types of behavior were defined in chap-
ter 6. This version only included some basic options enabling users to create, load, save and
download their program. Rather than use electron, Vue.js and Node.js (web technologies used
in the final version of RIZE and described chapter 3), this interface was developed using: (i)
Flask, a server-side library written in Python that enables to load HTML, CSS and Javascript
code in some browser; and (ii) Boostrap, a Javascript and HTML framework containing a set
of templates enabling the creation of button, forms, labels, checkboxes and others elements
for the design of the interface of a web application. Finally, an early version of the proposed
decision-making and action execution nodes were used. Unlike the final version described in
chapter 6, which was developed in JavaScript, this pilot version was develop in Python. Com-
munication between the the decision-making and action-making nodes was performed using the
Survey pattern [270]. This pattern is similar to Publish/Subscribe in that a process, denoted
as Surveyor, can broadcast messages (not aimed at a particular peer) to a group of processes.
However, each process in that group, denoted as Responder nodes, can call back to Surveyor
process. Unlike Client/Server, this pattern is non-blocking, which avoids the occurrence of
deadlock issues. The Survey pattern allows easy development of applications where a query of
the state of a large number of components is needed. This is, in fact, the same nature needed
for executing BTs, where the Surveyor (i.e., a BT-based program) performs queries to some
Responder (i.e, a process in charge to execute the robot behaviors) each time a tick signal is
generated. This Responder must return success, failure, or running depending of the execution
status in a non-blocking way. This patter is only available in the nanomsg message-library.
However, this library can be very difficult to install in OSX and Linux and in some comput-
ers with Windows. Therefore, the approach used to communicate decision-making and action
execution nodes were replaced by that presented in chapter 6.

Figure 7.2: Initial version of RIZE

81



Figure 7.3: Example of “in the wild” scenarios used for experimental sessions

7.3 Validation “in the wild”

In order to meet the research objectives of interaction designers as well as to test the suitability
of the proposed architecture and, some experimental sessions in real Japanese domestic envi-
ronments were performed. Functionalities integrated for this application were text to speech,
gesture expression, touch detection, speech recognition, reproduce video in the tablet, take
pictures, show weather, show news, show TV schedule, change of led colors, distance detection,
overheating detection, people detection, sound reproduction, among others. Navigation skills
were not allowed by the experimental subjects due to the dimension of the robot used and the
small space in most of the real homes tested. Images of the real home experimental settings
are shown in figure 7.3. Robot’s intelligent behaviors were defined by an interaction design
expert using RIZE rather than an expert programmer. Examples of activities developed by the
end-user are: perform together with the exercises, give some information about some specific
topics, take a break and meditate with the robot, shown new and weather, take pictures among
others. Figure 7.4 shows the total times experimental subjects utilized each of the robot’s
functions.

7.4 Discussion

Even when this project was performed using a very early version of NEP and RIZE, experi-
mental results proved the technological suitability of the proposed software. This chapter only
presented the operational features of the proposed architecture, which enabled a humanoid
robot to perform in real domestic scenarios. These experiments are part of a long-run project
involving experimental sessions that aim to be performed not only in Japanese but also in
French homes for cross-cultural comparisons and analysis. This project is mainly conducted

82



Figure 7.4: Total usage of robot most used functions over the course of the three sessions

by social researchers. Therefore, the description of their objectives and findings is out of the
scope of this thesis. However, this chapter proved how RIZE can be used for users enabling
end-users to conduct their own experiments and research activities in HRI.

83



84



Chapter 8

EUD of Children-Robot Interaction
Applications using RIZE

Robots are no longer confined to work in laboratories, they are also becoming an essential tool
for social Human-Robot Interaction (HRI) in real-world and every-day environments [21]. In
this context, one current trend is Children-Robot Interaction (CRI). This topic is especially
popular in the areas of Robot-Assisted Therapy (RAT) and to deal with other health issues.
Examples are shown in [271, 272, 273]. Most CRI studies reported in the literature perform in
highly structured, controlled and static scenarios inside laboratories. This approach makes data
collection more manageable and avoids many of the technical issues often presented when robots
perform in open, uncertain and highly dynamic environments. However, the HRI community
has recently expressed the necessity to move towards natural, open, everyday environments: an
approach referred to as “HRI in the wild” [49, 50]. The importance of “in the wild” research is
in the acquisition of more valuable quantitative and qualitative information, which can be used
to improve the design of robots and their applications, therefore increasing their economic and
social value [51].

This chapter shows how NEP and RIZE can be used to develop more robust, easy-to-use
and re-usable robot software and applications for CRI that are able to perform “in the wild”.
Experimental validations of the proposed tools are performed in open, noisy and dynamic
scenarios (kindergarten and public events) using Pepper and NAO humanoid robots. For this,
four different tasks (storytelling, dance, game, and autonomous interaction) were designed and
programmed by a real end-users.

8.1 Software architecture

The used software architecture is an updated version of that presented in chapter 7. This new
version was modified to provide some remote-controlled functionalities. This is done to deal
with some of the required interactive tasks, which are hard to develop with the current state-of-
art perceptual algorithms and due to the highly dynamic and noisy nature of the environments
of these CRI projects addressed. As shown in figure 8.1, a node that acquires and processes
data from a game controller is used as an additional perceptual output. This data is obtained
by the blackboard node for their posterior processing by the decision-making engine. Modeled
behaviors executed in the decision-making engine are defined using RIZE. Unlike the approach
used in application performed in home environments (chapter 7) and the final version of the
RIZE software architecture, the decision-making and action-making (robot controller) nodes are
connected using the Client-Server pattern. This approach enables the easy install of RIZE but
sometimes produced deadlocks, which requires to restart the control architecture. However,
these issues were only presented few times in pilot tests and not in the final experimental

85



Figure 8.1: Software architecture diagram used for supporting Children-Robot Interaction
(CRI) applications

evaluations. In order to improve the robustness of the system the final software architecture of
RIZE only used the Publish/Subscribe pattern as presented in chapter 6.

8.2 Activities designed by end-users

This section briefly describes the activities designed and developed by end-users for supporting
their research and professional goals. Figure 8.2 shows an example of how end-users used RIZE
for developing their own applications with social robots.

8.2.1 Storybook reading

For this activity, the robot had to be able to execute a sequence of audio and speech actions
accompanied by images displayed on its tablet as part of two distinct storybooks. These
storybooks were peppered with questions designed to engage the children, modeled after an
experiment held previously at another preschool. Rather than only enable the execution of
a script, reactive behaviors can be activated autonomously based on stimuli detected by the
robot’s sensors and the decision-making performed by the cognitive node. Examples of reactive
behaviors are actions like say “please step back to hear the story” when children draw too close
to the robot, or “please don’t touch me now; I’m telling a story” when someone touches the
robot. After launching one reactive behavior, the robot can then continue from the last action
in the interrupted sequence. These types of behaviors, which are cumbersome to model in
dataflow interfaces, can be easily defined in a modular way using the RIZE interface. Figure
3.a shows the implementation of this activity. For this activity a set of images from kindergarten
story books were displayed in the tablet attached to the robot.

8.2.2 Game

The Japanese version of the game “Red Light, Green Light” was programmed to be performed
by the robot. In this game, the children initially form a line side-by-side approximately 10
meters away and facing the robot. The objective of the players is to touch the robot. However,

86



Figure 8.2: Example of real end users designing and programming a ”in the wild” Human–Robot
Interaction (HRI) scenario using current prototype of the RIZE robot End-User Development
(EUD) interface for social robots

players can only move at certain points in the game. In the Japanese version of this game,
the player at the front of the room typically turns around and utters the phrase, “Daruma-san
ga koronda”, only turning to face the other players once the phrase has been completed. Any
player who is seen moving by this player is out. After a beta-test with the robot moving its head
to look up or down proved to be too slow and therefore confusing, we adapted it so that instead
of looking away, the color of the robot’s LEDs changes to indicate to the player when it is okay
to move. When a player touches the robot, the game is over. For this game, the robot had
to explain the rules, change the tempo of the phrase uttered, and indicate when a player has
moved at the wrong time and is therefore out of the game. This activity presents a combination
of autonomous and remote-controlled behaviors due to the non-structured environment. Figure
8.3.b shows the implementation of this activity.

8.2.3 Dance

Rather than execute improvised and creative movements by the robot (such as proposed in
[274, 275]), this activity was designed to follow a sequence of well-defined movements so that
the robot could take part in a dance with which the children were already familiar. This
scenario differs from typical CRI settings, where the children must repeat a set of movements
taught to them by the robot in a sequence that can be controlled by the Wizard of Oz method,
such as [276]. Because the robot is participating in a dance that the children already know, the
children would notice if the robot were to fall out of sync with them in the dance. For this, we
adopted a semi-autonomous approach, where synchronization is remotely assisted by a human.
The movements selected for the dance were defined by kinetic teaching as a set of primitives
which are concatenated as a sequence of elements in a BT, and which can be easily reused for
future experiments and other dances. These motion primitives can also be easily configured to
optimize the execution time, which is the most relevant parameter for this application. Figure
8.3.c shows the implementation of this activity.

8.2.4 Other activities

End-users developed a set of relatively simple but relevant activities with Pepper and NAP robot
that enable these robots to conduct research experiments in CHI. Some variants of storytelling
activities were implemented. In these variants Pepper did not use the tablet (figure 8.4.a) or
were implemented in NAO 8.4.b. Another end-user activities required the use of Wizard of OZ

87



(a) Storytelling (b) Game (c) Dance

Figure 8.3: Example of activities designed by end-users using RIZE for a kindergarten event

(a) Storytelling using NAO robot (b) Storytelling without using the
tablet

Figure 8.4: Example of variant of dance and storytelling activities used in other events

paradigm for remote control the robot and response questions done by children (figure 8.5.a),
shows specific poses to observe the children reactions (figure 8.5.b), and conduct interactive
activities (figure 8.5.c and 8.5.d).

8.3 Experimental insights

While most of data obtained from experiments were collected by end-users for their research
goals in social science. One of these experiments was conducted by PhD students of GVlab.
In this application a questionnaire was handed out to parents, requesting their comments and
their children’s opinions of the experience. Out of the 30+ children present, 12 questionnaires
were filled out and returned, representing 15 children of ages ranging from 1 to 6 (mean 4,
median 4, mode 3). The responses were largely positive, with many parents expressing that
their children were delighted that the robot was able to dance a familiar dance with them.
Negative comments mostly revolved around children being disillusioned about the autonomy
of the robot due to the interaction not being natural enough (i.e., they expected to be able to
run around freely with the robot and converse with it naturally), or due to seeing the robot
being controlled with the laptop.

The questionnaire contained the question, “How does your child perceive the robot?” with
answer options being “Another child”, “A toy”, “A pet” or “Other”. 7 respondents said “A
toy”, with one respondent adding that this particular child felt that someday he could be
friends with Pepper; of the remaining respondents, 1 replied “Another child (a friend)”, 1
replied “Other (a presenter)”, 1 replied “Other (a robot)”, and 1 replied “Other (scary)”.

88



(a) Children asking questions to Pepper (b) Error activity, reaction of children

(c) Pepper conducting drawing activity (d) Children showing their drawings to Pepper

Figure 8.5: More popular messaging patterns

89



Technical issues

Tests performed in open and semi-open air spaces (such as was the case for this event) with
a large number of subjects increases the technical challenges of experimental settings. One
unexpected issue was the voice volume of the Pepper robot, which even at maximum volume
was inaudible in the experiment environment. Due to this, an external microphone had to be
held up to one of the robot speakers. As a result, many children seemed to become fixated
on the thought that “Pepper speaks with its ears” (as speakers are located on each side of its
head).

Strong rays of sunlight made it impossible to see the light changing colors in the robot’s
eyes. Due to this, no child moved in the first attempt at the game, and this parameter had to
be hastily changed to the LEDs on the robot’s shoulders: they would turn on when the children
could move, and off when the children could not. Nevertheless, whether because it was still
difficult to see or because they were not used to the participant at the front of the room not
looking away, the children did not seem to use the lights as an indicator of when to move. They
moved only while the robot was uttering words, and when the robot paused in the middle of a
phrase, they paused their movements as well. Only after several interested children had played
the game multiple times did they start daring to move during these pauses in the phrase.

The effect of novelty

During the first storybook reading, the children seemed utterly uninterested in anything Pepper
was saying. There was no reaction to any of the robot’s behaviors meant to initiate interaction;
the children instead seemed more intent on touching and feeling the robot. Due to a combination
of the volume problem mentioned above and poor timing of the microphone being pulled away
from the robot’s speakers and a measure added to the program to prevent the robot from
repeating itself and therefore becoming annoying, the robot’s request for the children to step
away and stop touching it went unheard. After a minute so had gone by and the robot’s request
for space was audible, not one child reacted. Even adults trying to convince the children to
back up a few steps only gained a begrudging ten centimeters or so of space. Therefore, the
first storybook functioned more like a session for the children to touch the robot and become
familiar with it.

After having had some time to touch the robot, and having played the game with the robot,
the children were a little more receptive to the robot during the second storybook. They still
did not react to the robot’s interactive phrases designed to engage them; however, this time,
when the robot would state that they were too close and could they please back up, the children
would obey instantly without the need for human intervention.

8.4 Discussion

This chapter described some of the most relevant CRI applications developed using RIZE.
Unlike similar applications and approaches found in literature, developed applications were
performed in by real end-users and executed in open, public, unstructured, dynamic and noise
environments. Examples shown in this chapter can be used to ask the research question RQ8.
This examples proved the suitability of RIZE for enabling the creation and execution of CRI
applications performed “in the wild”. Feedback from end-users and presented technical issues
in pilot tests were used to improve the presented software architecture of RIZE. Finally, data
obtained from one of the experiments prove the suitability of proposed activities which can
be considered as an initial step towards the creation of more valuable experiences with social
robots.

90



Chapter 9

Building Emotional Intelligent Robots
with NEP and MATLAB

In order to convey a sense of believability in social contexts, new interactive robots may be able
to express dynamic expressive states and to adapt to different situations. This chapter presents
an example of an advanced control architecture for generating expressive motion in robots.
The proposed architecture was developed using NEP and updated for different demonstrations
performed in laboratory settings by several students and researchers working in the Gentiane
Venture lab (GVlab). Therefore, some of the contributions reached by researchers involving this
project are not detailed. Instead, this chapter only describes those contributions done as part of
this doctoral work. In this context, the main focus of this chapter is to prove the technological
suitability of NEP for MATLAB/OCTAVE for supporting advanced research projects focused
on developing novel control architectures for robots. As an additional contribution, this chapter
presents a novel and adaptive scheme for modeling emotions in robots based on Fuzzy Logic,
which uses both information from humans and the environment to change the internal and
expressive robot states.

9.1 Emotional modelling using dimensional values

Emotions and mood are important elements in affective computing. While emotions are gener-
ally expressed using instantaneous behaviors such as, facial expressions or gestures, moods are
longer-lived and affect the performance of the human behaviors [277]. A well known model used
in affective computing for encoding both emotions and moods is the PAD (Pleasure-Arousal-
Dominance) dimensional model [278], [279]. In this 3D model, general mood types are divided
in eight octants and emotional states are represented as moving vectors with the current plea-
sure, arousal and dominance values. The pleasure component of the PAD model represents an
affective balance and varies from positive to negative. The arousal component indicates the
degree of physical activity and varies from exited to calm. Finally, the dominance component
represents the degree of control or influence over the environment and varies from weak to
strong [280]. Figure 9.1 shows how some emotional states are mapped in the PAD model.

9.2 General software Architecture

The objective of this project is the creation of a robotics system that can be able to adapt
their expressive states (postures/motions) to the presented HRI scenarios and the current en-
vironment. This section describes a general system architecture, which use NEP to connect
robot components performing perception, cognition and robot control. A relevant requirement
was the connection of sensory, cognition and perceptual component with the action making

91



Figure 9.1: PAD emotional model, from [4]

Figure 9.2: General cognitive and adaptive architecture for emotional robots

module, which is written in MATLAB. This MATLAB module use optimal predictive, and
robust motion-controllers to generate expressive motions in arm robots (presented in chap-
ter 3). The interaction between these modules is summarized in figure 9.2. The main parts
of the architecture includes: i) A set of data acquisition modules obtaining sensory informa-
tion from the real-world; ii) Perceptual modules, which subscribe and transform the low-level
sensory data into high-level representations (e.g, gestures, human actions, behaviors, and emo-
tions); iii) A module that manages decision-making using high-level knowledge; iv) The robot
controller (written in MATLAB), which continuously receives information from sensory, per-
ceptual and decision-making modules thought different NEP topics; and v) a web-based user
interface displaying sensory, perception, and cognitive states. This user interface is based in the
same software technologies used to create RIZE (explained in chapter 3). We use continuous
and dimensional values of emotions to adapt parameters of robot controllers (enabling more
emotional reactions and expressions).

92



Figure 9.3: Control Architecture for expression of emotional states in robot arm

9.3 Emotional modelling using Fuzzy Logic

Affective states are always defined in natural conversation with linguistic variables. In fact,
one often says things like: ”you are very happy” or ”he seems a little bit sad”. Moreover, these
linguistic variables have unclear boundaries between them and can vary depending the human
personality and the environment or the context. A powerful approach that can be used to model
this uncertainty is the fuzzy logic [281]. The advantage of this technique is that it allows to
define the solution of a problem in terms of unclear linguistic variables. This makes that human
experience can be easily modeled. Therefore, an emotional modelling approach based in Fuzzy
Logic was presented as an additional contribution in this project. The proposed Adaptive Fuzzy
Inference System (FIS) is used to represent the perception and making decision in cognitive
controllers. Input values of this FIS is based on the dimensional modelling of emotions using
the PAD dimensional model (section 9.1). The PAD is created with the human, environment
interaction and robot internal states. These inputs and adaptive parameters affect directly the
standard deviation of the Fuzzy membership functions, moving the final PAD for generating
the robot expressive motions.

Figure 9.3 shows the scheme of the Adaptive Fuzzy Emotional Model (AFEM) proposed.
This approach is composed of two Fuzzy Inference System (FIS). These blocks model the
influence that the environmental conditions and the human activities have on the affective states
of the robot. These blocks are Environmental Fuzzy Inference System (E-FIS) and Human-
Interaction Fuzzy Inference System (HI-FIS), respectively. In the E-FIS, the environment
temperature, humidity and brightness were used as inputs. Linguistic variables used as inputs
are cold, comfort or hot for the temperature input; dry, comfort and wet for humidity; and
low or high for brightness. The ranges of these linguistic variables are defined based on [?]
and [?]. The outputs of the E-FIS are values of the PAD model (Pleasure, Dominance and
Arousal), which can take the values of low, neutral or high. The range of each PAD axis is
from -10 to 10. Gaussian distributions are used for the modeling of the membership functions.
The number of rules defined in the E-FIS are 18. This E-FIS system uses an adaptive function,
which is modified according to the robot temperature. The output of this adaptation changes
the membership functions in E-FIS generating new PAD values that produce a suitable robot
motion. The main idea of this approach is to replicate in the robot the influence that the
body temperature affects the perception of the thermal comfort of humans [282], which is a
physiological value that can be linked to affective states.

For the HI-FIS, the input is the distance between the human and the robot. The definition
of the linguistic values were defined in studies of human proxemics [283]. This variable can take

93



Figure 9.4: Examples of applications preformed using the proposed architectures for develop-
ment of social intelligent robots

values of personal, social, and public. As the E-FIS, the PAD values are used as outputs of the
HI-FIS. However, for the HI-FIS, the human state inputs detected by distance sensors (Kinect,
ultrasonic or Intel Real sense) are used in order to change the parameters of the membership
functions in the output variables. A total of 3 rules were used in the HI-FIS model.

The outputs of the E-FIS and HI-FIS are represented by the vector PADenv = [Penv, Aenv, Denv]
T

and PADhi = [Phi, Ahi, Dhi]
T respectively. The current PAD value is calculated as:

Pc = αPhi + βPenv

Ac = αAhi + βAenv

Dc = αDhi + βDenv

(9.1)

where the Pc, Ac and Dc indicate the current value of Pleasure Arousal and Dominance
respectively. The values of α and β are parameters that can be used to personalize the influence
of the the human actions and environmental conditions, and they affect the internal affective
model of the robot. For this design, the values were set to α=1 and β=0.5.

The current value of the PAD vector PADc is used to classify the current affect using the
K-NN ( k-nearest neighbors) algorithm [284]. In the proposed approach, the K-NN algorithm
is trained assigning to each affect a vector value inside of the 3-axis PAD space. In K-NN, an
unlabeled vector is classified by assigning the label which is most frequent among the k training
samples nearest to that query point. Using a value of k=1, a given PAD vector input can be
assigned to a class (affect) of it single nearest neighbor.

9.4 Examples of application and discussion

This chapter briefly presents an example of the Human-Robot Interaction research project
empowered by NEP. Several demonstrations and versions of the proposed architecture were
done using different types of sensory devices. Examples of these applications are shown in figure
9.4. In the left figure, a human change values detected by environmental sensors (temperature,
humidity, and brightness) as well as robot sensors (touch and distance) to change the emotional
states of the robot. In the right figure, a human select an object using a Leap Motion sensor.
Then, robots must decide whether or not to grasp the selected object in base their emotional
state. The connection and re-use of sensory, perceptual, and control modules involving these
applications were possible due to NEP. Applications performed demonstrates the suitability of
NEP for connecting recent MATLAB/Octave versions with other programming languages (i.e.
Python and Node.js).

94



Chapter 10

Human–Robot Interaction at an
International Robot Exposition

This chapter briefly explains the software architecture developed using NEP and ROS for en-
abling HRI between an industrial robot and the visitors of an international robot exposition.
Moreover, result and discussion about questionnaires applied to evaluate the proposed applica-
tion are also presented.

10.1 Software architecture

The software architecture of this application is shown in Figure 10.1. This application required
the integration of several sensory devices, computational expensive Deep Learning algorithms,
as well as cognitive and robot control modules. Due to the complexity of the system, this
architecture was distributed in 3 different computers. Modules in this architecture are mainly
connected using the NEP libraries presented in this thesis.

The PC 2 is composed of 4 modules. The module denoted as Face States is composed of
a set of Python 3 nodes that uses the images obtained from the camera in the head of the
robot to obtain the position, emotions and states (i.e., is human interested or distracted) of the
closest human to the robot. The Object Recognition module uses the cameras in the robot’s
hands to recognize and localize objects organized in a layout and for manipulation purposes.
Information from these two perceptual modules is sent to another Blackboard node denoted
as Blackboard Vision. Images after being processed using OpenCV are sent using a NEP
publisher to a GUI designed to display relevant information to users. This GUI was developed
using modern web technologies and Javascript libraries, such as Node.js, HTML, CSS, and
Vue.js. This module uses output images from the Face States module to display the current
emotions and states of the human interacting with the robot. Output images obtained from
the Object Recognition module are used to show which is the current manipulation objective
of the robot. The programmed interactive scenario includes some playful activities requiring
the Leap Motion information. These two interactive activities are: (i) hand tracking, where the
robot hand position is remotely controlled by humans; and (ii) selection of an object, where a
human selects the desired object (a chocolate, a pencil or an eraser) in a shop window by finger
pointing. This object is later given by the robot to the human as a gift if a human is detected
as happy and interested. Leap Motion information is streamed by the Blackboard Motion in
PC 1 and read by the other two computers in the network for helping in the decision-making
process (in PC 3) and visualize objects selected by humans in the GUI of PC 2. Finally, the
PC 3 is a Ubuntu PC with ROS 1.0 installed. The main objective of the nodes in this PC is
to perform high-level decision making and low-level robot tasks. On the one hand, decision
making is performed using the data obtained from the Blackboard systems in PC 1 and PC

95



Figure 10.1: General software architecture of the HRI application performed in the International
Robot Exhibition (IREX) 2019

Figure 10.2: Example of interaction between a ROS-based robot and humans in a international
robot exposition

2. On the other hand, robot movements are performed using ROS libraries for direct and
inverse kinematics as well as path planning. Module in PC 3 also sends the interaction and
robot status as messages to the GUI in PC 2 to update the elements displayed in the interface.
Figure 10.2 shows images of the Open NextStage robot performing pick-and-place and HRI
tasks in a real-world setting. This robot using the proposed software architecture developed
with NEP and ROS was used for a demonstration in the IREX International Robot Exhibition
2019, which was held in the Tokyo Big Sight, Tokyo, Japan [285].

10.2 Experimental Validation

In order to evaluate the suitability of the proposed HRI application we grasp Kansei of visitor
using a Semantic difference questionnaire. Kansei is an ambiguous term coined in Japan
and brought to the west [286]. Like some other popular Japanese terms, such as manga and
tsunami, the word kansei is nowadays adopted in many languages. However, this term does
not have an exact translation in English [286]. Closest meanings include sensitivity, affection,

96



Figure 10.3: People feeling about the HRI scenario

aesthetics, emotion, want, need, and feeling [286, 287]. A more complete definition is expressed
in [287] as “the feeling felt by the receiver of stimuli contained in the atmosphere of a situation”.
This reaction to stimuli (kansei) is highly influenced by the past experiences of users and a
combination of sensory modalities (especially eyesight) [287].

Kansei Engineering is a consumer-oriented technology [288] and suitable human-centered
design and ergonomic approach for the development of products and services. This research
area was founded in 1970 by Mitsuo Nagamachi and its applicability has been expanded beyond
design and manufacturing areas [110]. Historically, this research area has been widely explored
in Asian countries such as South Korea, Japan, China, and Malaysia. However, it has also
gained popularity in some occidental countries [289]. The main goal of Kansei Engineering
is to improve the quality of life, comfort and enjoyment of people [286] by the development
of novel emotion-based products using a human-oriented (i.e., oriented to the human mind)
approach [287]. For this, is keystone to understand and grasp the human kansei, which is
done by sensing facial expressions, eyes, spoken works and other human reactions [289]. This
information can be analyzed using psychological, ergonomic and engineering methods for its
posterior translation into design specifications. These specifications or design items can be
integrated in the final product to: (i) stimulate the user’s emotions or kansei ; and (ii) meet
needs and implicit expectations of consumers [286, 287, 290].

A key step in Kansei Engineering Type I (KE Type I), which methodology is described
in [291, 292, 293] is to identify a set of relevant Kansei words able to describe subjective
feelings about the product. Few examples are: modern, elegant, old, dynamic, cute, happy
and angry. The selection of these words is often done from a survey in state-of-art articles or
by consulting experts in the area where the product will be applied. These words are then
arranged in a semantic differential (SD) scale [294] to enable data collection in experimental
sessions. Experimental sessions in this type of Kansei Engineering basic methodology often
imply: (i) to present of the product to users; and (ii) to grasp the user’s feelings, impressions
or reactions about each sample of the products presented. This data is obtained using the
corresponding SD scale sheet (where the Kansei words previously selected for the experimental
session are displayed). Results and interpretations from questionnaires can be used to validate
the feasibility of some product or service or help in the creation of new emotional products.

For this project KE Type I was used to validate the feasibility the proposed HRI scenario by
grasping emotional reactions of visitors. Kensei word were selected after analysing state-of-art

97



Figure 10.4: People feeling about the robot’s design intelligence and anthropomorphism

works in HRI. These words are grouped in two categories: (1) people feeling when interacting
with the robot (2) people feeling about the design and behavior of the robots. Words involved in
group 1 are: happy/unhappy, safe/danger, relaxed/anxious, interested/boring, confused/clear,
disappointed/amused. Words involved in group 2 are: cute/ugly, modern/old, attractive/u-
nattractive, smart/stupid, lifelike/unreal, emotional/emotionless. Results from questionnaires
are shown in figures 10.3 and 10.4.

10.3 Discussion of results

Results from kansei questionnaires show that in general people had very positive feelings when
interacting with the robot. Feeling such as happy, safe, and interested got very high scores.
As shown in figure 10.3 the actions of the robot were in general clear and most of the visitors
were amused about the application. Figure 10.4 shows that people considers the design of
the Open-Next Stage robot as cute, modern and attractive. Even when people consider robot
behaviors as smart, visitors still consider this robot as a machine and not a living creature with
few emotional intelligence capabilities. This can be due to the lack of emotional expressivity
in the robot motions.

98



Chapter 11

Conclusions, Limitations and Future
Work

This chapter summarizes, discusses and concludes the research findings and contributions of
this thesis, which are grounded by the objectives and research questions defined in chapter 1.

11.1 Discussion summary

Chapter 2 focused to ask research question RQ1. The findings of this chapter indicate that there
is a need for a more user-friendly distributed robotics framework. Therefore, the first objective
of this thesis was to propose a novel and user-friendly distributed robotics framework, which
referred to in this thesis as NEP. Chapter 3 briefly described the main libraries and frameworks
used in the development of the software tools proposed in this thesis. Chapter 4 described the
main libraries created and features of NEP, which development is done for satisfy objective O1
(defined in chapter 1). Findings in this chapter indicate that NEP can be used not only to
create usable software artifacts for robotics in human-centered research tasks and applications,
but also as a low latency option for academic-oriented projects; therefore, answering RQ7.
Chapter 5 focused on provides a wide vision of current VPEs for EUD of social and service
robots for adult and nonskilled end-users in every-day and social research scenarios rather than
industrial settings. This chapter was used to ask research questions RQ2, RQ3, RQ4, and
RQ5. For this, a systematic review was performed. The analysis is done in this chapter also
includes an early version of RIZE, the EUD tool developed in this thesis for meet objective
O2. This chapter solved RQ2, RQ3 and RQ4 by presenting a in depth overview of VPE tools
for the development of social and service robots. Special attention was given in the analysis of
technologies and AI modelling methods used in this tools. The findings of this chapter indicate
that there is a need for more accessible, adaptable, modular, extendable and flexible tools and
technologies to support and enable end users to become end-user developers of their system.
This chapter also highlights the inherent complexity of most distributed robotics frameworks.
This produces some accessibility and usability barriers that make it difficult to create EUD tools
promoting independence between end users and high-tech scribes. A set of challenges were also
identified. These are related to accessibility to external devices and resources, modularity of
the human-robot interaction primitives, scalability when large programs are needed, level of
abstraction, benchmarking, explainability and control of the resulting robot behaviors, support
for distributed robot frameworks, as well as simulation and debugging. The final version of
RIZE was the focus in overcoming some of the most critical challenges identified. Features of
the final version of RIZE are described in chapter 6. This chapter also presented usability and
UX guidelines, design approaches and final software architecture of RIZE. This final version is
the result of several iterations after getting feedback from real end-users were used the different
versions to create their own applications. These applications were executed and tested “in the

99



wild” scenarios; therefore, satisfying objective O3. I realized that the successfully performing
of this type of experiment is much more complex than those only implemented in laboratory
settings where most factors are ideal and controlled. However, experiments “in the wild” also
provides much richer insights form the technical and usability point of view. Many academic
and end-user in projects HRI, CRI, affective computing, industrial robots, and biomechanics
were supported using NEP and RIZE. However, this thesis presented the 3 most relevant,
which mainly influenced in the improvement of the proposed framework. These projects were
presented chronologically in chapters 7, 8, 9 and 10. The project of chapter 7, was the first
major challenge addressed. Even when the proposed frameworks were in a very early stage of
development, end-users were able to design and execute their desired application. Usability
issues when installing and executing RIZE in this project indicated a need to base this tool in
more advanced software libraries that enable the creation of more accessible and user-friendly
software. Therefore a shift from Flask to Node.js, Vue.js, and electron was performed. This
approach enables end-users to install software with the simplicity of commercial and usable
oriented software products. Several applications and projects of CRI were also supported in this
doctoral work. These were presented in chapter 8. Examples presented in this chapter proved
the suitability of RIZE for enabling the creation and execution of CRI applications performed
“in the wild” (answering RQ8). Feedback from end-users and presented technical issues in pilot
tests was used to improve the final software architecture of RIZE. Finally research questions
RQ6 and RQ8 are answered in chapters 9 and 10. An advanced HRI system is presented in
this chapter. This robotics system integrates many robotics components written in different
programming languages and executed in different computers. Moreover, feedback obtained in
questionnaires from visitors validates the suitability of the interactive scenario developed.

11.2 Limitations and future work

This section presents the current limitations of the presented research as well as how this
limitation can be addressed in future research projects.

Integration of RIZE with simulators for robotics

Chapter 8 prove the applicability and suitability of RIZE, enabling end users to create their
own HRI applications. The development, debugging, and execution of these applications was
directly applied by end users in the real robots. In some cases, end users can require to use a
virtual robot before implementing their application in the real robot. As described in chapter
5 one of the most relevant challenges identified in VPEs for EUD of robotics is the availability
or interoperability with user-friendly simulators for enabling offline programming of robots.
However, the creation of a simulation environment is, in fact, a complex and time-consuming
task. Therefore, this activity can be addressed in future research projects. Two alternatives
enabling the creation of user-friendly and cross-platform 3D environments are Unity (a popular
game engine) and three.js (a Javascript library for the creation of 3D scenarios). These two
3D modeling and simulation tools can be easily communicated with RIZE using the Javascript
and C# versions of NEP.

Hosting RIZE as a website

RIZE is a web-application developed in node.js (which enables the execution of Javascript code
outside the browser) and electron (described in chapter 3). This approach enables the instal-
lation and execution of RIZE as any other native desktop application. With few modifications
is possible to host RIZE in a local or web server as any web-page. This can enable the use

100



of RIZE from smart-devices or any other device with a web browser. However, POSIX and
ZeroMQ sockets in Javascript only work in environments executed on top of node.js. To com-
municate RIZE interface with a local or web server the use HTTP requests, Websockets or
Server-Sent-Events is required. Future projects will include the creation of local servers for
ROS users. Publication of RIZE as a web-page accessible via the internet is also a suitable
option to explore.

Creation of a bridge server for NEP and ROS

In the proposed approach code developed with NEP can be reused in ROS as JSON messages
sent in strings. Users of NEP only require to change a flag in the definition of the nodes
to select the desired communication option (ROS, ROS 2.0, and ZeroMQ). However, many
academic projects using ROS can require the use of ROS standard messages for performing
low-level tasks. The creation of a proxy/bridge module able to directly communicate messages
from ZeroMQ to ROS, ZeroMQ to ROS 2.0 or ROS and ROS 2.0 using standard ROS message
can be a relevant contribution to the ROS community. This bridge server can be integrated
into the NEP Discovery Service Master Node (described in 4).

Exploration of novel End-User Programming approaches

The RIZE framework has been designed to be modular. Therefore, the EUP approach supported
by RIZE can be easily extended, modified, or substituted. In this context, two projects are left
as future work: (i) to substitute Google Blockly by an authoring programming environment
developed in Javascript for enabling more flexibility, robustness as well as the integration of more
advanced HRI aspects, such as emotions; (ii) to extend RIZE using kinesthetic teaching. Motion
skills learned using this approach can be saved and reproduced in RIZE as new animations.

Integration of emotions and a utility system

By using a more flexible alternative to Google Blockly it can be possible to explore novel
programming alternatives enabling end user to generate robots with advanced emotional intel-
ligence. Rather than be managed by static priorities, robot behaviors modeled as BTs can be
controlled in the highest cognitive level by a utility system taking into account the robot’s emo-
tions, personality, desires, goals, and other HRI factors. This approach can be used to generate
more believable social intelligent robots able to display more engaged and dynamic behaviors
that adapt to the current HRI scenario. Unlike end-to-end and black-box decision-making ap-
proaches, this approach can provide a good trade-off between performance and explainability.
This is due that robot behaviors will be always explained as BTs. These BTs can also be
learned from interactions. Moreover, emotional values can be used to affect the trajectories or
control parameters in those modules executing the motions of the robot, such as presented in
[224, 295].

11.3 Conclusions

This thesis presented two robotics software frameworks (NEP and RIZE) aimed to improve the
usability and flexibility of robotics systems. On the one hand, NEP is a distributed robotic
framework constituted by a set of libraries in Python, Java, C#, and JavaScript. NEP enables
the integration of sensory, perceptual, cognitive and control systems for robotics as well as the
creation of cross-platform and user-friendly applications. We prove the technological suitability
of NEP briefly describing the general software architectures of several real-world applications

101



where robots require to interact with humans in “the wild” settings rather than laboratories.
NEP can be used as a glue software enabling the integration of state-of-art robotics research
frameworks and modules, with human-centered software interfaces. NEP have also been de-
signed to be easy-to-implemented by the application programmer and easy-to-install by the
end user. The presented study proved technically superiority (lower latency) of the proposed
approach in both local-host and LAN communication against the state-of-art approach for com-
municating robotics written in programming languages and launched form operating systems
not fully supported by ROS. Findings indicate that NEP can be used not only to create usable
software artifacts for robotics in human-centered research tasks and applications, but also as
a low latency option for academic-oriented projects connecting ROS with non-ROS enabled
modules or devices. Moreover, ZeroMQ and nanomsg sockets are present in almost all pro-
gramming languages and devices such as Android and iOS smartphones. Therefore, supporting
a new programming language becomes a trivial issue. Current NEP libraries are accessible to
developers as free to use and open source in [129]. On the other hand, RIZE is a EUD solution.
RIZE is embedded in a is a web-based interface that is executed a desktop application. This
approach is proposed to support HRI “in the wild”, were have a stable and robust internet con-
nection is in many cases not possible. The evolution of software architecture and applications
were presented. These interactions were updated in the base of the need of real end users. The
main contributions of this thesis are described bellow:

• A systematically identification and analysis of relevant VPEs for enabling the EUD
paradigm and creation with social and service robots

• An in-depth understanding of the behavior modeling approaches currently used by these
EUD tools for enabling the creation of social intelligent robots

• Development and evaluation of a set of inter-process communication libraries for sup-
porting the design of complex software architectures for robotics composed of modules
written in modern programming languages and executed in different OS

• Development of a modular and reactive behavior modelling and execution engine for
design intelligent robotics systems

• Design and evaluation of a novel VPE using modern web technologies and good practices
for development of robotics applications.

• Development and validation of a several distributed control architecture enabling the
social robots to perform in HRI “in the wild” applications.

102



Publications

The publications listed below were produced and accepted during this doctoral work.

• Coronado, E., Mastrogiovanni, F. Indurkhya, B. , Venture, G. (2020). Visual program-
ming environments for end-user development of intelligent and social robots: a systematic
review. Journal of Computer Languages (Accepted).

• Coronado, E., Venture, G. Yamanobe N. (2020). Applying Kansei/Affective Engineer-
ing Methodologies in the Design of Social and Service Robots: A Systematic Review.
International Journal of Social Robotics (Accepted).

• Coronado, E., Rincon, L., Venture, G. (2020). Connecting MATLAB/Octave to percep-
tual, cognitive and control components for the development of intelligent robotic systems.
In ROMANSY 23–Robot Design, Dynamics and Control (Accepted).

• Coronado, E., Venture, G. (2020). Towards IoT-Aided Human–Robot Interaction Using
NEP and ROS: A Platform-Independent, Accessible and Distributed Approach. Sensors
2020, 20, 1500.

• Coronado, E., Indurkhya, X., Venture, G. (2019). Robots Meet Children, Development
of Semi-Autonomous Control Systems for Children-Robot Interaction in the Wild. In 2019
IEEE 4th International Conference on Advanced Robotics and Mechatronics (ICARM)
(pp. 360-365). IEEE.

• Coronado, E., Mastrogiovanni, F., Venture, G. (2018). Development of intelligent be-
haviors for social robots via user-friendly and modular programming tools. In 2018 IEEE
Workshop on Advanced Robotics and its Social Impacts (ARSO) (pp. 62-68). IEEE.

• Coronado, E., Mastrogiovanni, F., Venture, G. (2018). Design of a human-centered
robot framework for end-user programming and applications. In ROMANSY 22–Robot
Design, Dynamics and Control (pp. 450-457). Springer, Cham.

Other publications produced and using the developed software tools for supporting different
HRI research activities are:

• Rida, F., Rincon, L., Coronado, E., Nait-ali, A., Venture, G. (2020). From Motion to
Emotion Prediction: A Hidden Biometrics Approach. In Hidden Biometrics (pp. 185-
202). Springer, Singapore.

• Rincon L., Fillol F., Coronado E., Shi Y., Chen Y., Bourguet M. Venture G. (2019).
Adaptive Optimal Predictive Control System For Cognitive Manipulator Robots Based
On Human Engagement/Intention And Deep Dynamic Perception, 25 Japan IFToMM
Conference, pp. 23-30, Tokyo, Japan.

103



• Pattar, S. P., Coronado, E., Rincon, L. R., Venture, G. (2019). Intention and En-
gagement Recognition for Personalized Human-Robot Interaction, an integrated and Deep
Learning approach. In 2019 IEEE 4th International Conference on Advanced Robotics
and Mechatronics (ICARM) (pp. 93-98). IEEE.

• Rincon, L., Coronado, E., Law, C., Venture, G. (2019). Adaptive cognitive robot using
dynamic perception with fast deep-learning and adaptive on-line predictive control. In
IFToMM World Congress on Mechanism and Machine Science (pp. 2429-2438). Springer,
Cham.

• Indurkhya X., Coronado E., Izui T. , Zguda P., Indurkhya B., Venture G. (2019),
Creating a robust vocalization-based protocol for analyzing CRI group studies in the wild,
ACM/IEEE International Conference on Human Robot Interaction, Daegu, Korea.

• Rincon, L., Coronado, E., Hendra, H., Phan, J., Zainalkefli, Z., Venture, G. (2019).
Adaptive Fuzzy and Predictive Controllers for Expressive Robot Arm Movement during
Human and Environment Interaction. International Journal of Mechanical Engineering
and Robotics Research, 8(2).

• Rincon, L., Coronado, E., Hendra, H., Phan, J., Zainalkefli, Z., Venture, G. (2018).
Expressive states with a robot arm using adaptive fuzzy and robust predictive controllers.
In 2018 3rd International Conference on Control and Robotics Engineering (ICCRE) (pp.
11-15). IEEE.

Results from publications show the technological feasibility of NEP and RIZE for the support
of advanced and interdisciplinary and research activities in robotics.

104



Appendices

105





Appendix A

Tables

107



N
a
m
e

C
o
m
m
u
n
ic
a
ti
o
n

S
o
ft
w
a
re

A
cc
es
si
b
il
it
y

O
p
er
a
ti
n
g

S
y
s-

te
m
s

E
a
sy
-t
o
-i
n
st
a
ll

a
n
d
ex

ec
u
te

R
ep

o
rt
ed

li
v
en

es
s

E
v
a
lu
a
ti
o
n

m
et
h
o
d
s

P
a
rt
ic
ip
a
ti
o
n

o
f

en
d

u
se
rs

C
o
d
eI
t!

(2
0
1
7
)

R
O
S
,
ro
sb

ri
d
g
e

B
lo
ck

ly
,

N
o
d
e.
js
,

H
T
M
L

o
n
li
n
e

se
rv
er

in
L
in
u
x

re
q
u
ir
e
su

p
p
o
rt

o
f

h
ig
h
-t
ec
h
sc
ri
b
es

L
ev

el
3

Q
u
a
n
ti
ta
ti
v
e

en
g
in
ee
ri
n
g

st
u
d
en

ts
a
n
d
en

d
u
se
rs

a
t
d
es
ig
n

ti
m
e

O
p
en

R
o
b
er
ta

(2
0
1
4
)

P
O
S
IX

so
ck
et

B
lo
ck

ly
,
H
T
M
L

o
n
li
n
e

in
te
rn

et
-

d
ep

en
d
en

t
n
o
in
st
a
ll
a
ti
o
n
re
-

q
u
ir
ed

L
ev

el
2
/
2
D

si
m
u
la
to
r

n
o
n
e

ch
il
d
re
n
a
t
ru

n
ti
m
e

R
o
b
o
k
o
l
(2
0
1
6
)

R
O
S
,
ro
sb

ri
d
g
e

S
n
a
p
,
H
T
M
L

N
.A

se
rv
er

in
L
in
u
x

N
.A

L
ev

el
3

n
o
n
e

N
.A

B
E
E
S
M

(2
0
1
8
)

R
O
S
,
ro
sb

ri
d
g
e

B
lo
ck

ly
,
H
T
M
L

N
.A

se
rv
er

in
L
in
u
x

N
.A

L
ev

el
2
/
2
D

si
m
u
la
to
r

n
o
n
e

N
.A

R
IZ

E
(2
0
1
9
)

N
E
P

B
lo
ck

ly
,

N
o
d
e.
js
,

H
T
M
L
,
V
u
e.
js

o
n
li
n
e

W
in
d
o
w
s,

O
S
X
,

L
in
u
x

en
d
-u
se
r

w
iz
a
rd

s
in
st
a
ll
er
s

L
ev

el
3

n
o
n
e

co
m
ed

ia
n
s,

in
te
ra
ct
io
n

d
es
ig
n
er
s
a
t
u
se

ti
m
e

P
ro
C
R
o
b

(2
0
1
7
)

R
O
S
,
Y
A
R
P

B
lo
ck

ly
,
H
T
M
L

N
.A

se
rv
er

in
L
in
u
x

N
.A

L
ev

el
2

n
o
n
e

en
d
u
se
rs

a
t
ru

n
ti
m
e

M
R
D

(2
0
0
7
)

P
O
S
IX

so
ck
et

V
is
u
a
l
S
tu

d
io

d
is
co

n
ti
n
u
ed

W
in
d
o
w
s

en
d
-u
se
r

w
iz
a
rd

s
in
st
a
ll
er
s

L
ev

el
3

n
o
n
e

N
.A

C
h
o
re
g
ra
p
h
e

(2
0
0
9
)

P
O
S
IX

so
ck
et

P
y
th

o
n

o
n
li
n
e

W
in
d
o
w
s,

O
S
X
,

L
in
u
x

en
d
-u
se
r

w
iz
a
rd

s
in
st
a
ll
er
s

L
ev

el
4
/
3
D

si
m
u
la
to
r

n
o
n
e

in
te
ra
ct
io
n
d
es
ig
n
er
s
a
t

u
se

ti
m
e

T
iV

iP
E

(2
0
1
1
)

P
O
S
IX

so
ck
et

Q
t

o
n
li
n
e

W
in
d
o
w
s,

L
in
u
x

en
d
-u
se
r

w
iz
a
rd

s
in
st
a
ll
er
s

N
.A

n
o
n
e

in
te
ra
ct
io
n
d
es
ig
n
er
s
a
t

u
se

ti
m
e

In
te
ra
ct
io
n

C
o
m
p
o
se
r

(2
0
1
2
)

P
O
S
IX

so
ck
et

N
.A

N
.A

N
.A

N
.A

N
.A

n
o
n
e

N
.A

R
o
b
o
S
tu

d
io

(2
0
1
7
)

R
O
S
,
R
O
C
O
S
,

O
p
en

R
T
M

N
.A

N
.A

N
.A

N
.A

N
.A

n
o
n
e

N
.A

R
R
P
-V

P
E

(2
0
1
7
)

N
.A

N
o
d
e.
js
,
H
T
M
L

o
n
li
n
e

N
.A

re
q
u
ir
e
su

p
p
o
rt

o
f

h
ig
h
-t
ec
h
sc
ri
b
es

L
ev

el
3

N
A
S
A
-T

L
X

en
g
in
ee
ri
n
g
st
u
d
en

ts
a
t

d
es
ig
n
ti
m
e

R
o
V
er

(2
0
1
8
)

N
.A

J
a
v
a

a
n
d

P
ri
sm

M
o
d
el

C
h
ec
k
er

o
n
li
n
e

O
S
X

a
n
d
L
in
u
x

re
q
u
ir
e
su

p
p
o
rt

o
f

h
ig
h
-t
ec
h
sc
ri
b
es

L
ev

el
2

S
U
S

en
g
in
ee
ri
n
g
st
u
d
en

ts
a
t

d
es
ig
n
ti
m
e

In
te
ra
ct
io
n

B
lo
ck

s
(2
0
1
4
)

N
.A

N
.A

N
.A

N
.A

N
.A

N
.A

S
U
S

in
te
ra
ct
io
n

d
es
ig
n
-

er
s

a
n
d

en
g
in
ee
ri
n
g

st
u
d
en

ts
a
t
d
es
ig
n
ti
m
e

E
n
g
li
sh

2
N
A
O

(2
0
1
8
)

N
.A

D
ja
n
g
o
,

H
T
M
L
,

S
Q
L
it
e

N
.A

N
.A

N
.A

N
.A

C
y
lo
m
a
ti
c

co
m
p
le
x
it
y,

C
o
g
n
it
iv
e

D
im

en
si
o
n

th
er
a
p
is
ts

a
t

d
es
ig
n

ti
m
e

P
er
sR

o
b
Io
T
E

(2
0
1
9
)

S
er
v
er

S
en

t
E
v
en

ts
H
T
M
L
,
Io
T

N
.A

N
.A

N
.A

L
ev

el
2

S
U
S

en
d
u
se
r
a
t
d
es
ig
n
ti
m
e

T
ab

le
A

.1
:

D
im

en
si

on
s

u
se

d
fo

r
an

sw
er

R
Q

4

108



Appendix B

Code examples

B.1 nep.js package

1 {
2 "name": "nep -js",
3 "version": "0.1.1",
4 "description": "",
5 "main": "nep/nep.js",
6 "umd:main": "nep/nep.umd.js",
7 "module": "nep/nep.mjs",
8 "source": "src/nep.js",
9 "scripts": {

10 "test": "jest",
11 "build": "microbundle",
12 "prepublish": "npm run build"
13 },
14 "keywords": [],
15 "author": "Enrique Coronado <enriquecoronadozu@gmail.com > (https

:// enriquecoronadozu.github.io/NEP/)",
16 "license": "ISC",
17 "dependencies": {
18 "zeromq": "^6.0.0 - beta.6"
19 },
20 "devDependencies": {
21 "@babel/preset -env": "^7.4.5",
22 "babel -jest": "^24.8.0",
23 "eslint": "^5.16.0",
24 "eslint -config -prettier": "^4.3.0",
25 "eslint -plugin -prettier": "^3.1.0",
26 "husky": "^2.4.1",
27 "jest": "^24.8.0",
28 "lint -staged": "^8.2.1",
29 "microbundle": "^0.11.0",
30 "prettier": "^1.18.2"
31 },
32 "husky": {
33 "hooks": {
34 "pre -commit": "npm test"
35 }
36 },
37 "files": [
38 "nep",
39 "index.d.ts",
40 "package.json"
41 ]
42 }

Listing B.1: Package configuration file for nep.js library

109



B.2 RIZE package

1 {
2 "name": "rize_social",
3 "version": "0.0.1",
4 "productName": "RIZE Social",
5 "description": "Robot Interface From Zero Experience",
6 "main": "main.js",
7 "scripts": {
8 "postinstall": "install -app -deps",
9 "start": "npm install && electron .",

10 "pack": "build --dir",
11 "dist": "build"
12 },
13 "build": {
14 "appId": "RIZE Social",
15 "extraResources": "python_scripts",
16 "dmg": {
17 "contents": [
18 {
19 "x": 110,
20 "y": 150
21 },
22 {
23 "x": 240,
24 "y": 150,
25 "type": "link",
26 "path": "/Applications"
27 }
28 ]
29 },
30 "linux": {
31 "target": [
32 "AppImage",
33 "deb"
34 ]
35 },
36 "win": {
37 "target": "NSIS",
38 "icon": "images/rize2.png"
39 }
40 },
41 "author": "Enrique Coronado",
42 "license": "ISC",
43 "dependencies": {
44 "axios": "^0.19.0",
45 "fix -path": "^2.1.0",
46 "jquery": "^3.4.1",
47 "nep -js": "0.0.8",
48 "vue": "^2.6.11",
49 "vuetify": "2.2.1",
50 "zeromq": "^6.0.0 - beta.6"
51 },
52 "devDependencies": {
53 "electron -builder": "^20.44.2",
54 "electron": "^7.1.7"
55 }
56 }

Listing B.2: Package configuration file for RIZE

110



Bibliography

[1] https://vuejs.org/, 2020.

[2] P. Harwood, “Multi modal human robot interaction interface,” Master’s thesis, Ecole
Central of Nantes, 2016, 6 2016.

[3] D. Mark, “Ai architectures: A culinary guide,” Game Developer Magazine, vol. 19, no. 8,
pp. 7–12, 2012.

[4] L. R. Ardila, E. Coronado, H. Hendra, J. Phan, Z. Zainalkefli, and G. Venture, “Adaptive
fuzzy and predictive controllers for expressive robot arm movement during human and
environment interaction,” International Journal of Mechanical Engineering and Robotics
Research, vol. 8, no. 2, 2019.

[5] F. Dimeas, F. Fotiadis, D. Papageorgiou, A. Sidiropoulos, and Z. Doulgeri, “Towards
progressive automation of repetitive tasks through physical human-robot interaction,” in
Human Friendly Robotics. Springer, 2019, pp. 151–163.

[6] H. Canbolat, Robots Operating in Hazardous Environments. BoD–Books on Demand,
2017.

[7] L. Pu, W. Moyle, C. Jones, and M. Todorovic, “The effectiveness of social robots for
older adults: a systematic review and meta-analysis of randomized controlled studies,”
The Gerontologist, vol. 59, no. 1, pp. e37–e51, 2019.

[8] E. Coronado, J. Villalobos, B. Bruno, and F. Mastrogiovanni, “Gesture-based robot con-
trol: Design challenges and evaluation with humans,” in 2017 IEEE International Con-
ference on Robotics and Automation (ICRA), May 2017, pp. 2761–2767.

[9] M. A. Goodrich and A. C. Schultz, “Human-robot interaction: a survey,” Foundations
and Trends in Human-Computer Interaction, vol. 1, no. 3, pp. 203–275, 2007.

[10] J. A. Adams and M. Skubic, “Introduction to the special issue on human–robot inter-
action,” IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and
Humans, vol. 35, no. 4, pp. 433–437, 2005.

[11] D. Mariette and B. S. Meyerson, “Top 10 Emerging Technologies 2019,” World Economic
Forum, Tech. Rep., 06 2019.

[12] M. Niemelä, P. Heikkilä, H. Lammi, and V. Oksman, “A social robot in a shopping mall:
studies on acceptance and stakeholder expectations,” in Social Robots: Technological,
Societal and Ethical Aspects of Human-Robot Interaction. Springer, 2019, pp. 119–144.

111

https://vuejs.org/


[13] J. Lindblom and R. Andreasson, “Current challenges for ux evaluation of human-robot
interaction,” in Advances in ergonomics of manufacturing: Managing the enterprise of
the future. Springer, 2016, pp. 267–277.

[14] C. Lutz, M. Schöttler, and C. P. Hoffmann, “The privacy implications of social robots:
Scoping review and expert interviews,” Mobile Media & Communication, vol. 7, no. 3,
pp. 412–434, 2019.

[15] E. Fosch-Villaronga, C. Lutz, and A. Tamò-Larrieux, “Gathering expert opinions for
social robots’ ethical, legal, and societal concerns: Findings from four international work-
shops,” International Journal of Social Robotics, pp. 1–18, 2019.

[16] M. F. Lohmann, “Liability issues concerning self-driving vehicles,” European Journal of
Risk Regulation, vol. 7, no. 2, pp. 335–340, 2016.

[17] K. Yogeeswaran, J. Z lotowski, M. Livingstone, C. Bartneck, H. Sumioka, and H. Ishiguro,
“The interactive effects of robot anthropomorphism and robot ability on perceived threat
and support for robotics research,” Journal of Human-Robot Interaction, vol. 5, no. 2,
pp. 29–47, 2016.

[18] J. Smids, S. Nyholm, and H. Berkers, “Robots in the workplace: a threat to—or oppor-
tunity for—meaningful work?” Philosophy & Technology, pp. 1–20, 2019.

[19] D. Brugali and A. Shakhimardanov, “Component-based robotic engineering (part ii),”
IEEE Robotics & Automation Magazine, vol. 17, no. 1, pp. 100–112, 2010.

[20] E. Coronado, X. Indurkhya, and G. Venture, “Robots meet children, development of
semi-autonomous control systems for children-robot interaction in the wild,” in IEEE
International Conference on Advanced Robotics and Mechatronics (ICARM). IEEE,
2019.

[21] E. Coronado, F. Mastrogiovanni, and G. Venture, “Design of a human-centered robot
framework for end-user programming and applications,” in ROMANSY 22–Robot Design,
Dynamics and Control. Springer, 2019, pp. 450–457.

[22] P. Simoens, M. Dragone, and A. Saffiotti, “The internet of robotic things: A review
of concept, added value and applications,” International Journal of Advanced Robotic
Systems, vol. 15, no. 1, p. 1729881418759424, 2018.

[23] E. Tsardoulias and P. Mitkas, “Robotic frameworks, architectures and middleware com-
parison,” arXiv preprint arXiv:1711.06842, 2017.

[24] L. Joseph and J. Cacace, Mastering ROS for Robotics Programming: Design, build, and
simulate complex robots using the Robot Operating System. Packt Publishing Ltd, 2018.

[25] G. Fischer, “End user development and meta-design: foundations for cultures of participa-
tion,” in End-User Computing, Development, and Software Engineering: New Challenges.
IGI Global, 2012, pp. 202–226.

[26] D. F. Glas, T. Kanda, and H. Ishiguro, “Human-robot interaction design using inter-
action composer eight years of lessons learned,” in 2016 11th ACM/IEEE International
Conference on Human-Robot Interaction (HRI), March 2016, pp. 303–310.

112



[27] H.-L. Cao, G. Van de Perre, J. Kennedy, E. Senft, P. G. Esteban, A. De Beir,
R. Simut, T. Belpaeme, D. Lefeber, and B. Vanderborght, “A personalized and platform-
independent behavior control system for social robots in therapy: development and ap-
plications,” IEEE Transactions on Cognitive and Developmental Systems, 2018.

[28] P. G. Esteban, P. Baxter, T. Belpaeme, E. Billing, H. Cai, H.-L. Cao, M. Coeckelbergh,
C. Costescu, D. David, A. De Beir et al., “How to build a supervised autonomous system
for robot-enhanced therapy for children with autism spectrum disorder,” Paladyn, Journal
of Behavioral Robotics, vol. 8, no. 1, pp. 18–38, 2017.

[29] M. Coeckelbergh, C. Pop, R. Simut, A. Peca, S. Pintea, D. David, and B. Vanderborght,
“A survey of expectations about the role of robots in robot-assisted therapy for children
with asd: Ethical acceptability, trust, sociability, appearance, and attachment,” Science
and engineering ethics, vol. 22, no. 1, pp. 47–65, 2016.

[30] G. N. Yannakakis and J. Togelius, Artificial intelligence and games. Springer, 2018,
vol. 2.

[31] A. Fiske, P. Henningsen, and A. Buyx, “Your robot therapist will see you now: Ethical
implications of embodied artificial intelligence in psychiatry, psychology, and psychother-
apy,” Journal of medical Internet research, vol. 21, no. 5, p. e13216, 2019.

[32] F. E. Ritter, G. D. Baxter, and E. F. Churchill, “User-centered systems design: a brief
history,” in Foundations for designing user-centered systems. Springer, 2014, pp. 33–54.

[33] N. B. Hansen, C. Dindler, K. Halskov, O. S. Iversen, C. Bossen, D. A. Basballe, and
B. Schouten, “How participatory design works: mechanisms and effects,” in Proceedings
of the 31st Australian Conference on Human-Computer-Interaction, 2019, pp. 30–41.

[34] A. D. Frederiks, J. R. Octavia, C. Vandevelde, and J. Saldien, “Towards participatory
design of social robots,” in IFIP Conference on Human-Computer Interaction. Springer,
2019, pp. 527–535.

[35] E. Efthimiou, S.-E. Fotinea, A. Vacalopoulou, X. S. Papageorgiou, A. Karavasili, and
T. Goulas, “User centered design in practice: adapting hri to real user needs,” in Pro-
ceedings of the 12th ACM International Conference on PErvasive Technologies Related to
Assistive Environments, 2019, pp. 425–429.

[36] G. Fischer, D. Fogli, and A. Piccinno, “Revisiting and broadening the meta-design frame-
work for end-user development,” in New perspectives in end-user development. Springer,
2017, pp. 61–97.

[37] F. Paternò and V. Wulf, New Perspectives in End-User Development. Springer, 2017.

[38] B. R. Barricelli, F. Cassano, D. Fogli, and A. Piccinno, “End-user development, end-user
programming and end-user software engineering: A systematic mapping study,” Journal
of Systems and Software, vol. 149, pp. 101–137, 2019.

[39] G. Fischer, E. Giaccardi, Y. Ye, A. G. Sutcliffe, and N. Mehandjiev, “Meta-design: a
manifesto for end-user development,” Communications of the ACM, vol. 47, no. 9, pp.
33–37, 2004.

[40] G. Fischer, “End-user development: from creating technologies to transforming cultures,”
in International Symposium on End User Development. Springer, 2013, pp. 217–222.

113



[41] L. Baillie, C. Breazeal, P. Denman, M. E. Foster, K. Fischer, and J. R. Cauchard, “The
challenges of working on social robots that collaborate with people,” in Extended Abstracts
of the 2019 CHI Conference on Human Factors in Computing Systems, 2019, pp. 1–7.

[42] A. J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett, M. Erwig, C. Scaffidi,
J. Lawrance, H. Lieberman, B. Myers et al., “The state of the art in end-user software
engineering,” ACM Computing Surveys (CSUR), vol. 43, no. 3, pp. 1–44, 2011.

[43] Z. Zhu and H. Hu, “Robot learning from demonstration in robotic assembly: A survey,”
Robotics, vol. 7, no. 2, p. 17, 2018.

[44] J. Huang and M. Cakmak, “Programming by demonstration with user-specified percep-
tual landmarks,” arXiv preprint arXiv:1612.00565, 2016.

[45] C. Ding, J. Wu, Z. Xiong, and C. Liu, “A reconfigurable pick-place system under robot
operating system,” in International Conference on Intelligent Robotics and Applications.
Springer, 2018, pp. 437–448.

[46] K. Fischer, F. Kirstein, L. C. Jensen, N. Krüger, K. Kukliński, M. V. aus der Wieschen,
and T. R. Savarimuthu, “A comparison of types of robot control for programming by
demonstration,” in 2016 11th ACM/IEEE International Conference on Human-Robot
Interaction (HRI). IEEE, 2016, pp. 213–220.

[47] D.-Q. Zhang and K. Zhang, “On the design of a generic visual programming environment,”
in Proceedings. 1998 IEEE Symposium on Visual Languages. IEEE, Sep. 1998, pp. 88–89.

[48] P. P. Ray, “A survey on visual programming languages in internet of things,” Scientific
Programming, vol. 2017, 2017.

[49] M. Jung and P. Hinds, “Robots in the wild: A time for more robust theories of human-
robot interaction,” 2018.

[50] ibug. (2016) Special issue on behavior analysis ”in-the-wild”. [Online]. Available:
http://ibug.doc.ic.ac.uk/resources/SI-HBAW/

[51] S. Sabanovic, M. P. Michalowski, and R. Simmons, “Robots in the wild: Observing
human-robot social interaction outside the lab,” in 9th IEEE International Workshop on
Advanced Motion Control, 2006. IEEE, 2006, pp. 596–601.

[52] F. Alaieri and A. Vellino, “Ethical decision making in robots: Autonomy, trust and
responsibility,” in International conference on social robotics. Springer, 2016, pp. 159–
168.

[53] T. Tangiuchi, D. Mochihashi, T. Nagai, S. Uchida, N. Inoue, I. Kobayashi, T. Naka-
mura, Y. Hagiwara, N. Iwahashi, and T. Inamura, “Survey on frontiers of language and
robotics,” Advanced Robotics, vol. 0, no. 0, pp. 1–31, 2019.

[54] T. Kanda and H. Ishiguro, Human-robot interaction in social robotics. CRC Press, 2016.

[55] M. Mast, M. Burmester, B. Graf, F. Weisshardt, G. Arbeiter, M. Španěl, Z. Materna,
P. Smrž, and G. Kronreif, “Design of the human-robot interaction for a semi-autonomous
service robot to assist elderly people,” in Ambient Assisted Living. Springer, 2015, pp.
15–29.

[56] C. Clabaugh and M. Matarić, “Escaping oz: Autonomy in socially assistive robotics,”
Annual Review of Control, Robotics, and Autonomous Systems, vol. 2, pp. 33–61, 2019.

114

http://ibug.doc.ic.ac.uk/resources/SI-HBAW/


[57] A. Zaraki, L. Wood, B. Robins, and K. Dautenhahn, “Development of a semi-autonomous
robotic system to assist children with autism in developing visual perspective taking
skills,” in 2018 27th IEEE International Symposium on Robot and Human Interactive
Communication (RO-MAN). IEEE, 2018, pp. 969–976.

[58] M. van Steen and A. S. Tanenbaum, “A brief introduction to distributed systems,” Com-
puting, vol. 98, no. 10, pp. 967–1009, 2016.

[59] M. Hailperin, Operating Systems and Middleware: Supporting Controlled Interaction.
Max Hailperin, 2007.

[60] Transport and Middleware Layers. Boston, MA: Springer US, 2007, pp. 65–75. [Online].
Available: https://doi.org/10.1007/978-0-387-39023-9 5

[61] T. Noergaard, Embedded systems architecture: a comprehensive guide for engineers and
programmers. Newnes, 2012.

[62] A. Shakhimardanov, N. Hochgeschwender, M. Reckhaus, and G. K. Kraetzschmar, “Anal-
ysis of software connectors in robotics,” in Intelligent Robots and Systems (IROS), 2011
IEEE/RSJ International Conference on. IEEE, 2011, pp. 1030–1035.

[63] R. Otap, “Development of a robotic testbed infrastructure with dynamic service discov-
ery,” 2013.

[64] http://pypl.github.io/PYPL.html, 2020.

[65] U. Bhandari, T. Neben, K. Chang, and W. Y. Chua, “Effects of interface design factors on
affective responses and quality evaluations in mobile applications,” Computers in Human
Behavior, vol. 72, pp. 525–534, 2017.

[66] M. Thüring and S. Mahlke, “Usability, aesthetics and emotions in human–technology
interaction,” International journal of psychology, vol. 42, no. 4, pp. 253–264, 2007.

[67] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y.
Ng, “Ros: an open-source robot operating system,” in ICRA workshop on open source
software, vol. 3, no. 3.2. Kobe, 2009, p. 5.

[68] https://design.ros2.org/articles/why ros2.html, 2019.

[69] http://wiki.ros.org/ROS/Introduction, 2019.

[70] R. Toris, J. Kammerl, D. V. Lu, J. Lee, O. C. Jenkins, S. Osentoski, M. Wills, and S. Cher-
nova, “Robot web tools: Efficient messaging for cloud robotics,” in 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE, 2015, pp.
4530–4537.

[71] http://wiki.ros.org/melodic, 2020.

[72] https://www.ros.org/reps/rep-0003.html, 2020.

[73] http://www.tivipe.com/TVPeducation/TVPuse.pdf, 2019.

[74] E. Barakova, J. Gillesen, B. Huskens, and T. Lourens, “End-user programming archi-
tecture facilitates the uptake of robots in social therapies,” Robotics and Autonomous
Systems, vol. 61, no. 7, pp. 704 – 713, 2013.

115

https://doi.org/10.1007/978-0-387-39023-9_5
http://pypl.github.io/PYPL.html
https://design.ros2.org/articles/why_ros2.html
http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/melodic
https://www.ros.org/reps/rep-0003.html
http://www.tivipe.com/TVPeducation/TVPuse.pdf


[75] C. Crick, G. Jay, S. Osentoski, B. Pitzer, and O. C. Jenkins, Rosbridge: ROS for Non-
ROS Users. Springer, 2017, pp. 493–504.

[76] http://wiki.ros.org/rosbridge suite, 2019.

[77] D. Kortenkamp, R. Simmons, and D. Brugali, “Robotic systems architectures and pro-
gramming,” in Springer Handbook of Robotics. Springer, 2016, pp. 283–306.

[78] C. Ciliberto, “Connecting yarp to the web with yarp. js,” Frontiers in Robotics and AI,
vol. 4, p. 67, 2017.

[79] C. S. V. Gutiérrez, L. U. S. Juan, I. Z. Ugarte, and V. M. Vilches, “Towards a distributed
and real-time framework for robots: Evaluation of ros 2.0 communications for real-time
robotic applications,” arXiv preprint arXiv:1809.02595, 2018.

[80] https://www.ros.org/reps/rep-2000.html, 2020.

[81] T. Sumalan, E. Lupu, and R. Arsinte, “Real time operating system options in connected
embedded equipment for distributed data acquisition,” Carpathian Journal of Electronic
and Computer Engineering, vol. 11, no. 2, pp. 35–58, 2018.

[82] https://index.ros.org/doc/ros2/Tutorials/Real-Time-Programming/, 2020.

[83] I. C. Bertolotti and G. Manduchi, Real-time embedded systems: open-source operating
systems perspective. CRC press, 2017.

[84] G. Tong and C. Liu, “Supporting soft real-time sporadic task systems on uniform het-
erogeneous multiprocessors with no utilization loss,” IEEE Transactions on Parallel and
Distributed Systems, vol. 27, no. 9, pp. 2740–2752, 2015.

[85] G. Metta, P. Fitzpatrick, and L. Natale, “Yarp: yet another robot platform,” Interna-
tional Journal of Advanced Robotic Systems, vol. 3, no. 1, p. 8, 2006.

[86] G. Metta, G. Sandini, D. Vernon, L. Natale, and F. Nori, “The icub humanoid robot: an
open platform for research in embodied cognition,” in Proceedings of the 8th workshop on
performance metrics for intelligent systems. ACM, 2008, pp. 50–56.

[87] D. C. Schmidt, “The adaptive communication environment: An object-oriented network
programming toolkit for developing communication software,” 1993.

[88] S.-G. Chitic, J. Ponge, and O. Simonin, “Are middlewares ready for multi-robots sys-
tems?” in International Conference on Simulation, Modeling, and Programming for Au-
tonomous Robots. Springer, 2014, pp. 279–290.

[89] http://wiki.ros.org/catkin, 2020.

[90] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, and W.-K. Yoon, “Rt-middleware: dis-
tributed component middleware for rt (robot technology),” in 2005 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. IEEE, 2005, pp. 3933–3938.

[91] G. Magyar, P. Sinčák, and Z. Krizsán, “Comparison study of robotic middleware for
robotic applications,” in Emergent Trends in Robotics and Intelligent Systems. Springer,
2015, pp. 121–128.

[92] https://rfc.zeromq.org/spec/15/, 2019.

116

http://wiki.ros.org/rosbridge_suite
https://www.ros.org/reps/rep-2000.html
https://index.ros.org/doc/ros2/Tutorials/Real-Time-Programming/
http://wiki.ros.org/catkin
https://rfc.zeromq.org/spec/15/


[93] http://https://nanomsg.org/, 2018.

[94] A. Dworak, F. Ehm, P. Charrue, and W. Sliwinski, “The new cern controls middleware,”
in Journal of Physics: Conference Series, vol. 396, no. 1. IOP Publishing, 2012, p.
012017.

[95] M. Al-Turany, P. Buncic, P. Hristov, T. Kollegger, C. Kouzinopoulos, A. Lebedev, V. Lin-
denstruth, A. Manafov, M. Richter, A. Rybalchenko et al., “Alfa: The new alice-fair
software framework,” in Journal of Physics: Conference Series, vol. 664, no. 7. IOP
Publishing, 2015, p. 072001.

[96] L. Mirabito, “Zdaq, a light data acquisition framework based on zeromq,” Journal of
Instrumentation, vol. 14, no. 10, p. C10007, 2019.

[97] E. Babaians, M. Tamiz, Y. Sarti, A. Mogoei, and E. Mehrabi, “Ros2unity3d; high-
performance plugin to interface ros with unity3d engine,” in 2018 9th Conference on Ar-
tificial Intelligence and Robotics and 2nd Asia-Pacific International Symposium. IEEE,
2018, pp. 59–64.

[98] https://nodejs.org/en/, 2020.

[99] C. Anderson, “The model-view-viewmodel (mvvm) design pattern,” in Pro Business Ap-
plications with Silverlight 5. Springer, 2012, pp. 461–499.

[100] M. Street, A. Passaglia, and P. Halliday, Complete Vue. js 2 web development: practical
guide to building end-to-end web development solutions with Vue. js 2. Packt Publishing
Ltd, 2018.

[101] https://www.electronjs.org/docs/tutorial/about, 2020.

[102] https://keras.io/, 2019.

[103] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard et al., “Tensorflow: A system for large-scale machine learning,” in
12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
16), 2016, pp. 265–283.

[104] J. Bergstra, F. Bastien, O. Breuleux, P. Lamblin, R. Pascanu, O. Delalleau, G. Desjardins,
D. Warde-Farley, I. Goodfellow, A. Bergeron et al., “Theano: Deep learning on gpus with
python,” in NIPS 2011, BigLearning Workshop, Granada, Spain, vol. 3. Citeseer, 2011,
pp. 1–48.

[105] J. L. Rebelo Moreira, L. Ferreira Pires, and M. Van Sinderen, “Semantic interoperability
for the iot: Analysis of json for linked data,” Enterprise Interoperability: Smart Services
and Business Impact of Enterprise Interoperability, pp. 163–169, 2018.

[106] K. Douzis, S. Sotiriadis, E. G. Petrakis, and C. Amza, “Modular and generic iot manage-
ment on the cloud,” Future Generation Computer Systems, vol. 78, pp. 369–378, 2018.

[107] P. Agarwal and M. Alam, “Investigating iot middleware platforms for smart application
development,” arXiv preprint arXiv:1810.12292, 2018.

[108] P. P. Ray, “Internet of robotic things: Concept, technologies, and challenges,” IEEE
Access, vol. 4, pp. 9489–9500, 2016.

117

http://https://nanomsg.org/
https://nodejs.org/en/
https://www.electronjs.org/docs/tutorial/about
https://keras.io/


[109] https://netmarketshare.com/operating-system-market-share.aspx?id=
platformsDesktopVersions, 2019.

[110] H. Shiizuka and A. Hashizume, “The role of kansei/affective engineering and its expected
in aging society,” in Intelligent Decision Technologies. Springer, 2011, pp. 329–339.

[111] A. Jaimes, N. Sebe, and D. Gatica-Perez, “Human-centered computing: a multimedia
perspective,” in Proceedings of the 14th ACM international conference on Multimedia.
ACM, 2006, pp. 855–864.

[112] L. Bannon, “Reimagining hci: toward a more human-centered perspective,” interactions,
vol. 18, no. 4, pp. 50–57, 2011.

[113] J. Kuffner, “Cloud-enabled robots in: Ieee-ras international conference on humanoid
robots,” Piscataway, NJ: IEEE, 2010.

[114] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A survey of research on cloud robotics
and automation,” IEEE Transactions on automation science and engineering, vol. 12,
no. 2, pp. 398–409, 2015.

[115] G. Mohanarajah, D. Hunziker, R. D’Andrea, and M. Waibel, “Rapyuta: A cloud robotics
platform,” IEEE Transactions on Automation Science and Engineering, vol. 12, no. 2,
pp. 481–493, 2014.

[116] M. Beetz, M. Tenorth, and J. Winkler, “Open-ease,” in 2015 IEEE International Con-
ference on Robotics and Automation (ICRA). IEEE, 2015, pp. 1983–1990.

[117] S. P. Pattar, E. Coronado, L. R. Ardila, and G. Venture, “Intention and engagement
recognition for personalized human-robot interaction, an integrated and deep learning
approach,” in 2019 IEEE 4th International Conference on Advanced Robotics and Mecha-
tronics (ICARM). IEEE, 2019, pp. 93–98.

[118] P. Fankhauser, M. Bloesch, D. Rodriguez, R. Kaestner, M. Hutter, and R. Siegwart,
“Kinect v2 for mobile robot navigation: Evaluation and modeling,” in 2015 International
Conference on Advanced Robotics (ICAR). IEEE, 2015, pp. 388–394.

[119] V. H. Andaluz, W. X. Quevedo, F. A. Chicaiza, J. Varela, C. Gallardo, J. S. Sánchez, and
O. Arteaga, “Transparency of a bilateral tele-operation scheme of a mobile manipulator
robot,” in International Conference on Augmented Reality, Virtual Reality and Computer
Graphics. Springer, 2016, pp. 228–245.

[120] C. Bartneck, M. Soucy, K. Fleuret, and E. B. Sandoval, “The robot engine—making the
unity 3d game engine work for hri,” in 2015 24th IEEE International Symposium on
Robot and Human Interactive Communication (RO-MAN). IEEE, 2015, pp. 431–437.

[121] I. Pakrasi, N. Chakraborty, and A. LaViers, “A design methodology for abstracting char-
acter archetypes onto robotic systems,” in Proceedings of the 5th International Conference
on Movement and Computing. ACM, 2018, p. 24.

[122] M. E. Segura, E. Coronado, M. Maya, A. Cardenas, and D. Piovesan, “Analysis of recov-
erable falls via microsoft kinect: Identification of third-order ankle dynamics,” Journal
of Dynamic Systems, Measurement, and Control, vol. 138, no. 9, p. 091006, 2016.

[123] https://www.newtonsoft.com/json, 2019.

118

https://netmarketshare.com/operating-system-market-share.aspx?id=platformsDesktopVersions
https://netmarketshare.com/operating-system-market-share.aspx?id=platformsDesktopVersions
https://www.newtonsoft.com/json


[124] M. T. Jones, BSD sockets programming from a multi-language perspective. Charles River
Media, Inc., 2003.

[125] S. Sechrest, “An introductory 4.4 bsd interprocess communication tutorial,” Computer
Science Research Group, Department of Electrical Engineering and Computer Science,
University of California, Berkeley, 1986.

[126] E. Coronado, F. Mastrogiovanni, and G. Venture, “Development of intelligent behaviors
for social robots via user-friendly and modular programming tools,” in Advanced Robotics
and its Social Impacts (ARSO), 2018 EEE International Workshop on. IEEE, 2018.

[127] P. Corke, “Integrating ros and matlab [ros topics],” IEEE Robotics & Automation Mag-
azine, vol. 22, no. 2, pp. 18–20, 2015.

[128] Y. Hold-Geoffroy, M.-A. Gardner, C. Gagné, M. Latulippe, and P. Giguere, “ros4mat: A
matlab programming interface for remote operations of ros-based robotic devices in an
educational context,” in 2013 International Conference on Computer and Robot Vision.
IEEE, 2013, pp. 242–248.

[129] https://enriquecoronadozu.github.io/NEP/, 2020.

[130] Y. Maruyama, S. Kato, and T. Azumi, “Exploring the performance of ros2,” in Proceed-
ings of the 13th International Conference on Embedded Software, 2016, pp. 1–10.

[131] H. Friedrich, S. Münch, R. Dillmann, S. Bocionek, and M. Sassin, “Robot program-
ming by demonstration (rpd): Supporting the induction by human interaction,” Machine
Learning, vol. 23, no. 2, pp. 163–189, May 1996.

[132] S. Calinon, F. Guenter, and A. Billard, “On learning, representing, and generalizing a
task in a humanoid robot,” IEEE Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics), vol. 37, no. 2, pp. 286–298, April 2007.

[133] J. F. Gorostiza and M. A. Salichs, “Natural programming of a social robot by dialogs.”
in AAAI Fall Symposium: Dialog with Robots, 2010.

[134] B. R. Barricelli and S. Valtolina, “A visual language and interactive system for end-user
development of internet of things ecosystems,” Journal of Visual Languages & Computing,
vol. 40, pp. 1–19, 2017.

[135] P. E. Dickson, J. E. Block, G. N. Echevarria, and K. C. Keenan, “An experience-based
comparison of unity and unreal for a stand-alone 3D game development course,” in Pro-
ceedings of the 2017 ACM Conference on Innovation and Technology in Computer Science
Education. ACM, 2017, pp. 70–75.

[136] I. Sagredo-Olivenza, P. P. Gómez-Mart́ın, M. A. Gómez-Mart́ın, and P. A. González-
Calero, “Combining neural networks for controlling non-player characters in games,” in
International Work-Conference on Artificial Neural Networks. Springer, 2017, pp. 694–
705.

[137] R. Francese, M. Risi, and G. Tortora, “Iconic languages: Towards end-user programming
of mobile applications,” Journal of Visual Languages & Computing, vol. 38, pp. 1–8, 2017.

[138] J. M. Mota, I. Ruiz-Rube, J. M. Dodero, and I. Arnedillo-Sánchez, “Augmented reality
mobile app development for all,” Computers & Electrical Engineering, vol. 65, pp. 250–
260, 2018.

119

https://enriquecoronadozu.github.io/NEP/


[139] D. Budgen and P. Brereton, “Performing systematic literature reviews in software en-
gineering,” in Proceedings of the 28th international conference on Software engineering.
ACM, 2006, pp. 1051–1052.

[140] B. Kitchenham, “Procedures for performing systematic reviews,” vol. 33, pp. 1–26, 2004.

[141] D. Tetteroo and P. Markopoulos, “A review of research methods in end user development,”
in International Symposium on End User Development. Springer, 2015, pp. 58–75.

[142] M. G. Maceli, “Tools of the trade: a survey of technologies in end-user development
literature,” in International Symposium on End User Development. Springer, 2017, pp.
49–65.

[143] F. Paternò, “End user development: Survey of an emerging field for empowering people,”
ISRN Software Engineering, vol. 2013, 2013.

[144] M. Santos and M. L. B. Villela, “Characterizing end-user development solutions: A sys-
tematic literature review,” in International Conference on Human-Computer Interaction.
Springer, 2019, pp. 194–209.

[145] F. Paternò and C. Santoro, “End-user development for personalizing applications, things,
and robots,” International Journal of Human-Computer Studies, vol. 131, pp. 120 – 130,
2019.

[146] A. Bellucci, A. Vianello, Y. Florack, L. Micallef, and G. Jacucci, “Augmenting objects
at home through programmable sensor tokens: A design journey,” International Journal
of Human-Computer Studies, vol. 122, pp. 211 – 231, 2019.

[147] K. Dill, “Structural architecture-common tricks of the trade,” Game AI Pro: Collected
Wisdom of Game AI Professionals, p. 61, 2013.

[148] M. Colledanchise and P. Ögren, Behavior Trees in Robotics and Al: An Introduction.
CRC Press, 2018.

[149] A. Hentout, A. Maoudj, and B. Bouzouia, “A survey of development frameworks for
robotics,” in 2016 8th International Conference on Modelling, Identification and Control
(ICMIC). IEEE, 2016, pp. 67–72.

[150] F. A. Bravo, A. M. González, and E. González, “A review of intuitive robot programming
environments for educational purposes,” in 2017 IEEE 3rd Colombian Conference on
Automatic Control (CCAC), Oct 2017, pp. 1–6.

[151] M. E. Karim, S. Lemaignan, and F. Mondada, “A review: Can robots reshape k-12 stem
education?” in 2015 IEEE International Workshop on Advanced Robotics and its Social
Impacts (ARSO), June 2015, pp. 1–8.

[152] G. Golovchinsky, “Cognitive dimensions analysis of interfaces for information seeking,”
arXiv preprint arXiv:0908.3523, 2009.

[153] T. Green and M. Petre, “Usability analysis of visual programming environments: A
‘cognitive dimensions’ framework,” Journal of Visual Languages & Computing, vol. 7,
no. 2, pp. 131 – 174, 1996.

[154] J. Dagit, J. Lawrance, C. Neumann, M. Burnett, R. Metoyer, and S. Adams, “Using cog-
nitive dimensions: advice from the trenches,” Journal of Visual Languages & Computing,
vol. 17, no. 4, pp. 302–327, 2006.

120



[155] T. Green and A. Blackwell, “Cognitive dimensions of information artefacts: a tutorial,”
in BCS HCI Conference, vol. 98, 1998.

[156] J. Diprose, B. MacDonald, J. Hosking, and B. Plimmer, “Designing an API at an ap-
propriate abstraction level for programming social robot applications,” Journal of Visual
Languages & Computing, vol. 39, pp. 22–40, 2017.

[157] A. Carf̀ı, J. Villalobos, E. Coronado, B. Bruno, and F. Mastrogiovanni, “Can human-
inspired learning behaviour facilitate human–robot interaction?” International Journal
of Social Robotics, vol. 1, pp. 1 – 14, 2019.

[158] C. Paxton, A. Hundt, F. Jonathan, K. Guerin, and G. D. Hager, “Costar: Instructing col-
laborative robots with behavior trees and vision,” in 2017 IEEE International Conference
on Robotics and Automation (ICRA), May 2017, pp. 564–571.

[159] D. Weintrop, D. C. Shepherd, P. Francis, and D. Franklin, “Blockly goes to work: Block-
based programming for industrial robots,” in 2017 IEEE Blocks and Beyond Workshop
(B B), Oct 2017, pp. 29–36.

[160] F. Steinmetz, A. Wollschläger, and R. Weitschat, “Razer–a human-robot interface for
visual task-level programming and intuitive skill parametrization,” IEEE Robotics and
Automation Letters, vol. 3, no. 3, pp. 1362–1369, 2018.

[161] E. Bilotta and P. Pantano, “Some problems of programming in robotics,” in Proceedings
of the 12th Annual Workshop of the Psychology of Programming Interest Group, 2000,
pp. 209–220.

[162] G. Serafini, “Teaching programming at primary schools: Visions, experiences, and long-
term research prospects,” in Informatics in Schools. Contributing to 21st Century Educa-
tion, I. Kalaš and R. T. Mittermeir, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 143–154.

[163] D. Weintrop and U. Wilensky, “To block or not to block, that is the question: Students’
perceptions of blocks-based programming,” in Proceedings of the 14th International Con-
ference on Interaction Design and Children, 2015, pp. 199–208.

[164] D. S. Touretzky and C. Gardner-McCune, “Calypso for cozmo: Robotic ai for everyone
(abstract only),” in Proceedings of the 49th ACM Technical Symposium on Computer
Science Education, 2018, pp. 1110–1110.

[165] J. Shin, R. Siegwart, and S. Magnenat, “Visual programming language for thymio ii
robot,” in Conference on Interaction Design and Children (IDC’14). ETH Zürich, 2014.

[166] M. F. Costabile, D. Fogli, G. Fresta, P. Mussio, and A. Piccinno, “Software environments
for end-user development and tailoring.” PsychNology Journal, vol. 2, no. 1, pp. 99–122,
2004.

[167] I. Zubrycki, M. Kolesiński, and G. Granosik, “Graphical programming interface for en-
abling non-technical professionals to program robots and internet-of-things devices,” in
International Work-Conference on Artificial Neural Networks. Springer, 2017, pp. 620–
631.

[168] T. Fong, I. Nourbakhsh, and K. Dautenhahn, “A survey of socially interactive robots,”
Robotics and Autonomous Systems, vol. 42, no. 3, pp. 143 – 166, 2003, socially Interactive
Robots.

121



[169] Y. Oishi, T. Kanda, M. Kanbara, S. Satake, and N. Hagita, “Toward end-user program-
ming for robots in stores,” in Proceedings of the Companion of the 2017 ACM/IEEE
International Conference on Human-Robot Interaction. ACM, 2017, pp. 233–234.

[170] F. Corno, L. De Russis, and A. Monge Roffarello, “My iot puzzle: Debugging if-then rules
through the jigsaw metaphor,” in End-User Development. Cham: Springer International
Publishing, 2019, pp. 18–33.

[171] N. Leonardi, M. Manca, F. Paternò, and C. Santoro, “Trigger-action programming for
personalising humanoid robot behaviour,” in Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems. ACM, 2019, p. 445.

[172] F. Corno, L. De Russis, and A. Monge Roffarello, “Empowering end users in debugging
trigger-action rules,” in Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems. ACM, 2019, p. 388.

[173] S. Gaudl, “Building robust real-time game ai: simplifying & automating integral process
steps in multi-platform design.” Ph.D. dissertation, University of Bath, 2016.

[174] M. Colledanchise and P. Ögren, “How behavior trees modularize hybrid control systems
and generalize sequential behavior compositions, the subsumption architecture, and de-
cision trees,” IEEE Transactions on Robotics, vol. 33, no. 2, pp. 372–389, April 2017.

[175] J. Bohren and S. Cousins, “The smach high-level executive [ros news],” IEEE Robotics
& Automation Magazine, vol. 17, no. 4, pp. 18–20, Dec 2010.

[176] D. D. Hils, “Visual languages and computing survey: Data flow visual programming
languages,” Journal of Visual Languages & Computing, vol. 3, no. 1, pp. 69 – 101, 1992.

[177] D. Weintrop and U. Wilensky, “Comparing block-based and text-based programming in
high school computer science classrooms,” ACM Transactions on Computing Education
(TOCE), vol. 18, no. 1, pp. 1–25, 2017.

[178] D. Weintrop, “Block-based programming in computer science education,” Communica-
tions of the ACM, vol. 62, no. 8, pp. 22–25, 2019.

[179] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond, K. Brennan,
A. Millner, E. Rosenbaum, J. Silver, B. Silverman et al., “Scratch: programming for all,”
Communications of the ACM, vol. 52, no. 11, pp. 60–67, Nov. 2009.

[180] D. Garcia, L. Segars, and J. Paley, “Snap!(build your own blocks): tutorial presentation,”
Journal of Computing Sciences in Colleges, vol. 27, no. 4, pp. 120–121, 2012.

[181] https://developers.google.com/blockly/, 2018.

[182] E. Pasternak, R. Fenichel, and A. N. Marshall, “Tips for creating a block language with
blockly,” in 2017 IEEE Blocks and Beyond Workshop (B&B). IEEE, 2017, pp. 21–24.

[183] T. Schulz, J. Torresen, and J. Herstad, “Animation techniques in human-robot interac-
tion user studies: A systematic literature review,” ACM Transactions on Human-Robot
Interaction (THRI), vol. 8, no. 2, pp. 1–22, 2019.

[184] A. R. Martin and S. Colton, “Towards liveness in game development,” in 2019 IEEE
Conference on Games (CoG). IEEE, 2019, pp. 1–4.

122

https://developers.google.com/blockly/


[185] P. Rein, S. Ramson, J. Lincke, R. Hirschfeld, and T. Pape, “Exploratory and live, pro-
gramming and coding: A literature study comparing perspectives on liveness,” arXiv
preprint arXiv:1807.08578, 2018.

[186] M. Campusano and J. Fabry, “Live robot programming: The language, its implemen-
tation, and robot api independence,” Science of Computer Programming, vol. 133, pp.
1–19, 2017.

[187] S. L. Tanimoto, “Viva: A visual language for image processing,” Journal of Visual Lan-
guages & Computing, vol. 1, no. 2, pp. 127–139, 1990.

[188] L. D. Riek, “Wizard of oz studies in hri: a systematic review and new reporting guide-
lines,” Journal of Human-Robot Interaction, vol. 1, no. 1, pp. 119–136, 2012.

[189] S. Anjomshoae, A. Najjar, D. Calvaresi, and K. Främling, “Explainable agents and robots:
Results from a systematic literature review,” in Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent Systems. International Foundation
for Autonomous Agents and Multiagent Systems, 2019, pp. 1078–1088.

[190] E. Pot, J. Monceaux, R. Gelin, and B. Maisonnier, “Choregraphe: a graphical tool for
humanoid robot programming,” in RO-MAN 2009 - The 18th IEEE International Sym-
posium on Robot and Human Interactive Communication, Sep. 2009, pp. 46–51.

[191] http://tools.seobook.com/general/keyword-density/, 2019.

[192] H. Zhang, M. A. Babar, and P. Tell, “Identifying relevant studies in software engineering,”
Information and Software Technology, vol. 53, no. 6, pp. 625–637, 2011.

[193] D. Glas, S. Satake, T. Kanda, and N. Hagita, “An interaction design framework for social
robots,” in Robotics: Science and Systems, vol. 7, 2012, p. 89.

[194] S. Keele et al., “Guidelines for performing systematic literature reviews in software engi-
neering,” Technical report, Ver. 2.3 EBSE Technical Report. EBSE, Tech. Rep., 2007.

[195] K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for conducting systematic map-
ping studies in software engineering: An update,” Information and Software Technology,
vol. 64, pp. 1–18, 2015.

[196] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil, “Lessons from ap-
plying the systematic literature review process within the software engineering domain,”
Journal of systems and software, vol. 80, no. 4, pp. 571–583, 2007.

[197] J. Jackson, “Microsoft robotics studio: A technical introduction,” IEEE Robotics Au-
tomation Magazine, vol. 14, no. 4, pp. 82–87, Dec 2007.

[198] https://github.com/hcrlab/code it, 2018.

[199] B. Jost, M. Ketterl, R. Budde, and T. Leimbach, “Graphical programming environments
for educational robots: Open roberta - yet another one?” in 2014 IEEE International
Symposium on Multimedia, Dec 2014, pp. 381–386.

[200] I. Zubrycki and G. Granosik, “Designing an interactive device for sensory therapy,” in
2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI),
March 2016, pp. 545–546.

123

http://tools.seobook.com/general/keyword-density/
https://github.com/hcrlab/code_it


[201] M. Seraj, S. Autexier, and J. Janssen, “Beesm, a block-based educational programming
tool for end users,” in Proceedings of the 10th Nordic Conference on Human-Computer
Interaction, ser. NordiCHI ’18. ACM, 2018, pp. 886–891.

[202] https://enriquecoronadozu.github.io/RIZE/, 2018.

[203] P. Ziafati, F. Lera, A. Costa, A. Nazarikhorram, L. Van Der Torre, and A. Nazarikhor,
“Procrob architecture for personalized social robotics,” in Robots for Learning Workshop@
HRI, 2017, pp. 6–9.

[204] C. Datta and B. A. MacDonald, “Architecture of an extensible visual programming envi-
ronment for authoring behaviour of personal service robots,” in 2017 First IEEE Inter-
national Conference on Robotic Computing (IRC), April 2017, pp. 156–159.

[205] F. Erich, M. Hirokawa, and K. Suzuki, “A visual environment for reactive robot program-
ming of macro-level behaviors,” in Social Robotics. Springer, 2017, pp. 577–586.

[206] D. Porfirio, A. Sauppé, A. Albarghouthi, and B. Mutlu, “Authoring and verifying human-
robot interactions,” in Proceedings of the 31st Annual ACM Symposium on User Interface
Software and Technology, ser. UIST ’18. ACM, 2018, pp. 75–86.

[207] A. Sauppé and B. Mutlu, “Design patterns for exploring and prototyping human-robot
interactions,” in Proceedings of the 32Nd Annual ACM Conference on Human Factors in
Computing Systems, ser. CHI ’14. ACM, 2014, pp. 1439–1448.

[208] N. Buchina, S. Kamel, and E. Barakova, “Design and evaluation of an end-user friendly
tool for robot programming,” in 2016 25th IEEE International Symposium on Robot and
Human Interactive Communication (RO-MAN). IEEE, 2016, pp. 185–191.

[209] http://https://www.qt.io/, 2018.

[210] M. H. Lee, H. S. Ahn, K. Wang, and B. MacDonald, “Design of an API for integrating
robotic software frameworks,” in Proceedings of the 2014 Australasian Conference on
Robotics and Automation (ACRA 2014), vol. 2, no. 3.2, 2014, p. 1.

[211] H. Bruyninckx, “Open robot control software: the orocos project,” in Proceed-
ings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat.
No.01CH37164), vol. 3, May 2001, pp. 2523–2528 vol.3.

[212] C. Datta, H. Y. Yang, I. Kuo, E. Broadbent, and B. A. MacDonald, “Software plat-
form design for personal service robots in healthcare,” in 2013 6th IEEE Conference on
Robotics, Automation and Mechatronics (RAM), Nov 2013, pp. 156–161.

[213] S. Tilkov and S. Vinoski, “Node.js: Using javascript to build high-performance network
programs,” IEEE Internet Computing, vol. 14, no. 6, pp. 80–83, Nov 2010.

[214] E. Bainomugisha, A. L. Carreton, T. v. Cutsem, S. Mostinckx, and W. d. Meuter, “A
survey on reactive programming,” ACM Computing Surveys (CSUR), vol. 45, no. 4, p. 52,
Aug. 2013.

[215] https://github.com/FlorisE/RRP, 2018.

[216] M. Kwiatkowska, G. Norman, and D. Parker, “Prism 4.0: Verification of probabilistic
real-time systems,” in Computer Aided Verification. Berlin, Heidelberg: Springer, 2011,
pp. 585–591.

124

https://enriquecoronadozu.github.io/RIZE/
http://https://www.qt.io/
https://github.com/FlorisE/RRP


[217] https://github.com/Wisc-HCI/RoVer, 2018.

[218] A. Haddadi and K. Sundermeyer, “Foundations of distributed artificial intelligence,”
G. M. P. O’Hare and N. R. Jennings, Eds. John Wiley & Sons, Inc., 1996, ch. Belief-
desire-intention Agent Architectures, pp. 169–185.

[219] J. Huang, T. Lau, and M. Cakmak, “Design and evaluation of a rapid programming
system for service robots,” in 2016 11th ACM/IEEE International Conference on Human-
Robot Interaction (HRI), March 2016, pp. 295–302.

[220] V. Paramasivam, J. Huang, S. Elliott, and M. Cakmak, “Computer science outreach with
end-user robot-programming tools,” in Proceedings of the 2017 ACM SIGCSE Technical
Symposium on Computer Science Education, ser. SIGCSE ’17. ACM, 2017, pp. 447–452.

[221] B. Wulff, A. Wilson, B. Jost, and M. Ketterl, “An adopter centric api and visual pro-
gramming interface for the definition of strategies for automated camera tracking,” in
2015 IEEE International Symposium on Multimedia (ISM), Dec 2015, pp. 587–592.

[222] https://snap.berkeley.edu/, 2018.

[223] X. Indurkhya, I. Takamune, E. Coronado, P. Zguda, B. Indurkhya, and G. Venture,
“Creating a robust vocalization-based protocol for analyzing cri group studies in the
wild,” in International Conference on Human Robot Interaction. ACM/IEEE, 2018.

[224] L. Rincon, E. Coronado, H. Hendra, J. Phan, Z. Zainalkefli, and G. Venture, “Expressive
states with a robot arm using adaptive fuzzy and robust predictive controllers,” in 2018
3rd International Conference on Control and Robotics Engineering (ICCRE), April 2018,
pp. 11–15.

[225] J. Forcier, P. Bissex, and W. J. Chun, Python web development with Django. Addison-
Wesley Professional, 2008.

[226] S. Vinoski, “Server-sent events with yaws,” IEEE internet computing, vol. 16, no. 5, pp.
98–102, 2012.

[227] T. J. Bench-Capon, Knowledge representation: An approach to artificial intelligence.
Elsevier, 2014, vol. 32.

[228] B. Ur, E. McManus, M. Pak Yong Ho, and M. L. Littman, “Practical trigger-action
programming in the smart home,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, 2014, pp. 803–812.

[229] M. Dawe, S. Garolinski, L. Dicken, T. Humphreys, and D. Mark, “Behavior selection
algorithms: an overview,” Game AI Pro: Collected wisdom of game ai professionals.
CRC Press, S, pp. 47–60, 2014.

[230] E. W. Dijkstra, “Letters to the editor: go to statement considered harmful,” Communi-
cations of the ACM, vol. 11, no. 3, pp. 147–148, 1968.

[231] K. Finstad, “The system usability scale and non-native english speakers,” Journal of
usability studies, vol. 1, no. 4, pp. 185–188, 2006.

[232] R. Bischoff, T. Guhl, E. Prassler, W. Nowak, G. Kraetzschmar, H. Bruyninckx,
P. Soetens, M. Haegele, A. Pott, P. Breedveld et al., “Brics-best practice in robotics,” in
Robotics (ISR), 2010 41st International Symposium on and 2010 6th German Conference
on Robotics (ROBOTIK). VDE, June 2010, pp. 1–8.

125

https://github.com/Wisc-HCI/RoVer
https://snap.berkeley.edu/


[233] R. Rajkumar, M. Gagliardi, and Lui Sha, “The real-time publisher/subscriber inter-
process communication model for distributed real-time systems: design and implementa-
tion,” in Proceedings Real-Time Technology and Applications Symposium, May 1995, pp.
66–75.

[234] A. S. Tanenbaum and M. Van Steen, Distributed systems: principles and paradigms.
Prentice-Hall, 2007.

[235] A. Orebäck and H. I. Christensen, “Evaluation of architectures for mobile robotics,”
Autonomous Robots, vol. 14, no. 1, pp. 33–49, Jan 2003. [Online]. Available:
doi.org/10.1023/A:1020975419546

[236] W. Gellerich, M. Kosiol, and E. Ploedereder, “Where does goto go to?” in International
Conference on Reliable Software Technologies. Springer, 1996, pp. 385–395.

[237] P. Janssen, “Visual dataflow modelling-some thoughts on complexity,” 2014.

[238] E. Coronado, F. Mastrogiovanni, and G. Venture, “Development of intelligent behav-
iors for social robots via user-friendly and modular programming tools,” in 2018 IEEE
Workshop on Advanced Robotics and its Social Impacts (ARSO), Sep. 2018, pp. 62–68.

[239] I. Leite, C. Martinho, and A. Paiva, “Social robots for long-term interaction: A survey,”
International Journal of Social Robotics, vol. 5, no. 2, pp. 291–308, Apr 2013.

[240] S. Wang and H. I. Christensen, “Tritonbot: First lessons learned from deployment of a
long-term autonomy tour guide robot,” in 2018 27th IEEE International Symposium on
Robot and Human Interactive Communication (RO-MAN), Aug 2018, pp. 158–165.

[241] A. F. Blackwell, C. Britton, A. Cox, T. R. G. Green, C. Gurr, G. Kadoda, M. S. Kutar,
M. Loomes, C. L. Nehaniv, M. Petre, C. Roast, C. Roe, A. Wong, and R. M. Young,
“Cognitive dimensions of notations: Design tools for cognitive technology,” in Cognitive
Technology: Instruments of Mind. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001,
pp. 325–341.

[242] D. Moody, “The “physics” of notations: toward a scientific basis for constructing visual
notations in software engineering,” IEEE Transactions on software engineering, vol. 35,
no. 6, pp. 756–779, 2009.

[243] A. Assila, H. Ezzedine et al., “Standardized usability questionnaires: Features and quality
focus,” Electronic Journal of Computer Science and Information Technology: eJCIST,
vol. 6, no. 1, 2016.

[244] J. Brooke et al., “Sus-a quick and dirty usability scale,” Usability evaluation in industry,
vol. 189, no. 194, pp. 4–7, 1996.

[245] “Development of nasa-tlx (task load index): Results of empirical and theoretical re-
search,” in Human Mental Workload, ser. Advances in Psychology, P. A. Hancock and
N. Meshkati, Eds. North-Holland, 1988, vol. 52, pp. 139 – 183.

[246] A. P. O. S. Vermeeren, E. L.-C. Law, V. Roto, M. Obrist, J. Hoonhout, and K. Väänänen-
Vainio-Mattila, “User experience evaluation methods: Current state and development
needs,” in Proceedings of the 6th Nordic Conference on Human-Computer Interaction:
Extending Boundaries, ser. NordiCHI ’10. ACM, 2010, pp. 521–530.

[247] https://www.usability.gov/what-and-why/user-experience.html, 2018.

126

doi.org/10.1023/A:1020975419546
https://www.usability.gov/what-and-why/user-experience.html


[248] F. Mastrogiovanni, A. Sgorbissa, and R. Zaccaria, “A system for hierarchical planning
in service mobile robotics,” in Proceedings of the Eight Conference on Intelligent Au-
tonomous Systems (IAS-8), Amsterdam, The Netherlands, March 2004.

[249] A. Capitanelli, M. Maratea, F. Mastrogiovanni, and M. Vallati, “On the manipulation
of articulated objects in human–robot cooperation scenarios,” Robotics and Autonomous
Systems, vol. 109, pp. 139 – 155, 2018.

[250] D. A. Norman, “Design principles for human-computer interfaces,” in Proceedings of the
SIGCHI conference on Human Factors in Computing Systems. ACM, 1983, pp. 1–10.

[251] J. Johnson, Designing with the mind in mind: simple guide to understanding user inter-
face design guidelines. Elsevier, 2013.

[252] A. Altaboli and Y. Lin, “Objective and subjective measures of visual aesthetics of website
interface design: the two sides of the coin,” Human-computer interaction. Design and
development approaches, pp. 35–44, 2011.

[253] D. A. Norman, Emotional design: Why we love (or hate) everyday things. Basic Civitas
Books, 2004.

[254] https://vuetifyjs.com/, 2020.

[255] https://material.io/design/, 2020.

[256] P. H. Kahn, N. G. Freier, T. Kanda, H. Ishiguro, J. H. Ruckert, R. L. Severson, and S. K.
Kane, “Design patterns for sociality in human-robot interaction,” in Proceedings of the
3rd ACM/IEEE international conference on Human robot interaction. ACM, 2008, pp.
97–104.

[257] E. Cha, J. Forlizzi, and S. S. Srinivasa, “Robots in the home: Qualitative and quantita-
tive insights into kitchen organization,” in Proceedings of the Tenth Annual ACM/IEEE
International Conference on Human-Robot Interaction. ACM, 2015, pp. 319–326.

[258] P. Uluer, N. Akalın, and H. Köse, “A new robotic platform for sign language tutoring,”
International Journal of Social Robotics, vol. 7, no. 5, pp. 571–585, 2015.

[259] E. Jochum, E. Vlachos, A. Christoffersen, S. G. Nielsen, I. A. Hameed, and Z.-H. Tan,
“Using theatre to study interaction with care robots,” International Journal of Social
Robotics, vol. 8, no. 4, pp. 457–470, 2016.

[260] F. Jumel, J. Saraydaryan, R. Leber, L. Matignon, E. Lombardi, C. Wolf, and O. Simonin,
“Context aware robot architecture, application to the robocup@ home challenge,” in
RoboCup symposium, 2018.

[261] M. de Jong, K. Zhang, A. M. Roth, T. Rhodes, R. Schmucker, C. Zhou, S. Ferreira,
J. Cartucho, and M. Veloso, “Towards a robust interactive and learning social robot,” in
Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent
Systems. International Foundation for Autonomous Agents and Multiagent Systems,
2018, pp. 883–891.

[262] B. Alenljung, J. Lindblom, R. Andreasson, and T. Ziemke, “User experience in social
human-robot interaction,” International Journal of Ambient Computing and Intelligence
(IJACI), vol. 8, no. 2, pp. 12–31, 2017.

127

https://vuetifyjs.com/
https://material.io/design/


[263] M. M. de Graaf, S. Ben Allouch, and J. A. van Dijk, “A phased framework for long-
term user acceptance of interactive technology in domestic environments,” New Media &
Society, p. 1461444817727264, 2017.

[264] M. Dziergwa, M. Kaczmarek, P. Kaczmarek, J. Kkedzierski, and K. Wadas-Szyd lowska,
“Long-term cohabitation with a social robot: a case study of the influence of human
attachment patterns,” International Journal of Social Robotics, vol. 10, no. 1, pp. 163–
176, 2018.

[265] M. M. de Graaf, S. B. Allouch, and J. A. van Dijk, “Long-term evaluation of a social
robot in real homes,” Interaction studies, vol. 17, no. 3, pp. 462–491, 2017.

[266] Y. Fernaeus, M. H̊akansson, M. Jacobsson, and S. Ljungblad, “How do you play with a
robotic toy animal?: a long-term study of pleo,” in Proceedings of the 9th international
Conference on interaction Design and Children. ACM, 2010, pp. 39–48.

[267] J. Fink, V. Bauwens, F. Kaplan, and P. Dillenbourg, “Living with a vacuum cleaning
robot,” International Journal of Social Robotics, vol. 5, no. 3, pp. 389–408, Aug 2013.
[Online]. Available: https://doi.org/10.1007/s12369-013-0190-2

[268] S. Frennert, H. Eftring, and B. Östlund, “Case report: Implications of doing research on
socially assistive robots in real homes,” International Journal of Social Robotics, vol. 9,
no. 3, pp. 401–415, 2017.

[269] M. Vincze, M. Bajones, M. Suchi, D. Wolf, L. Lammer, A. Weiss, and D. Fischinger,
“User experience results of setting free a service robot for older adults at home,” in
Service Robots. InTech, 2018.

[270] M. Sustrik, “Distributed Computing: The Survey Pattern,” http://250bpm.com/blog:5,
2018, [Online; accessed 01-06-2018].

[271] A. A. Ramirez-Duque, A. Frizera-Neto, and T. F. Bastes, “Robot-assisted diagnosis for
children with autism spectrum disorder based on automated analysis of nonverbal cues,”
in 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics
(Biorob). IEEE, 2018, pp. 456–461.

[272] M. Alemi, A. Ghanbarzadeh, A. Meghdari, and L. J. Moghadam, “Clinical application
of a humanoid robot in pediatric cancer interventions,” International Journal of Social
Robotics, vol. 8, no. 5, pp. 743–759, 2016.

[273] D. O. David, C. A. Costescu, S. Matu, A. Szentagotai, and A. Dobrean, “Developing joint
attention for children with autism in robot-enhanced therapy,” International Journal of
Social Robotics, pp. 1–11, 2018.

[274] H. Peng, J. Li, H. Hu, C. Zhou, and Y. Ding, “Robotic choreography inspired by the
method of human dance creation,” Information, vol. 9, no. 10, p. 250, 2018.

[275] I. Infantino, A. Augello, A. Manfré, G. Pilato, and F. Vella, “Robodanza: Live per-
formances of a creative dancing humanoid,” in Proceedings of the Seventh International
Conference on Computational Creativity, 2016.

[276] R. Ros, M. Nalin, R. Wood, P. Baxter, R. Looije, Y. Demiris, T. Belpaeme, A. Giusti, and
C. Pozzi, “Child-robot interaction in the wild: advice to the aspiring experimenter,” in
Proceedings of the 13th international conference on multimodal interfaces. ACM, 2011,
pp. 335–342.

128

https://doi.org/10.1007/s12369-013-0190-2
http://250bpm.com/blog:5


[277] J. Zhang, J. Zheng, and N. Magnenat-Thalmann, “Modeling personality, mood, and
emotions,” in Context Aware Human-Robot and Human-Agent Interaction. Springer,
2016, pp. 211–236.

[278] J. A. Russell and A. Mehrabian, “Evidence for a three-factor theory of emotions,” Journal
of research in Personality, vol. 11, no. 3, pp. 273–294, 1977.

[279] M. Karg, A.-A. Samadani, R. Gorbet, K. Kühnlenz, J. Hoey, and D. Kulić, “Body move-
ments for affective expression: A survey of automatic recognition and generation,” IEEE
Transactions on Affective Computing, vol. 4, no. 4, pp. 341–359, 2013.

[280] M. M. Bradley and P. J. Lang, “Measuring emotion: the self-assessment manikin and the
semantic differential,” J. of behavior therapy and experimental psychiatry, vol. 25, no. 1,
pp. 49–59, 1994.

[281] A. Van Der Heide, D. Sánchez, and G. Trivino, “Computational models of affect and
fuzzy logic,” in Proceedings of the 7th Conference of the European Society for Fuzzy Logic
and Technology. Atlantis Press, 2011, pp. 620–627.

[282] C. J. Willemse, D. K. Heylen, and J. B. van Erp, “Warmth in affective mediated inter-
action: Exploring the effects of physical warmth on interpersonal warmth,” in Affective
Computing and Intelligent Interaction (ACII), 2015 Int. Conf. on. IEEE, 2015, pp.
28–34.

[283] J. C. Baxter, “Interpersonal spacing in natural settings,” Sociometry, pp. 444–456, 1970.

[284] N. S. Altman, “An introduction to kernel and nearest-neighbor nonparametric regres-
sion,” The American Statistician, vol. 46, no. 3, pp. 175–185, 1992.

[285] https://biz.nikkan.co.jp/eve/irex/english/, 2019.

[286] A. Hashizume and M. Kurosu, “Kansei engineering as an indigenous research field origi-
nated in japan,” in International Conference on Human-Computer Interaction. Springer,
2016, pp. 46–52.

[287] M. Nagamachi, Kansei/affective engineering. crc press, 2016.

[288] ——, “Kansei engineering: a new ergonomic consumer-oriented technology for product
development,” International Journal of industrial ergonomics, vol. 15, no. 1, pp. 3–11,
1995.

[289] M. Nagamachi and A. M. Lokman, Innovations of Kansei engineering. CRC Press, 2016.

[290] Z. Yahya and M. Y. Shafazand, “Kansei design customization based on personality
modelling,” in International Conference on Kansei Engineering & Emotion Research.
Springer, 2018, pp. 399–407.

[291] N. Mitsuo, “Perspectives and new trend of kansei/affective engineering,” in 1st European
Conference on Affective Design and Kansei Engineering & 10th QMOD Conference, Uni-
versity of Linkoping and Lund University, Helsingborg, 2007.

[292] M. Nagamachi, M. Tachikawa, N. Imanishi, T. Ishizawa, and S. Yano, “A successful sta-
tistical procedure on kansei engineering products,” in 11th QMOD Conference. Quality
Management and Organizational Development Attaining Sustainability From Organiza-
tional Excellence to SustainAble Excellence; 20-22 August; 2008 in Helsingborg; Sweden,
no. 033. Linköping University Electronic Press, 2008, pp. 987–995.

129

https://biz.nikkan.co.jp/eve/irex/english/


[293] A. M. Lokman, M. B. C. Haron, S. Z. Z. Abidin, N. E. A. Khalid, and S. Ishihara,
“Prelude to natphoric kansei engineering framework,” Journal of Software Engineering
and Applications, vol. 6, no. 12, p. 638, 2013.

[294] J. Al-Hindawe et al., “Considerations when constructing a semantic differential scale,”
La Trobe papers in linguistics, vol. 9, no. 7, pp. 1–9, 1996.

[295] J.-A. Claret, G. Venture, and L. Basañez, “Exploiting the robot kinematic redundancy
for emotion conveyance to humans as a lower priority task,” Int. J. of social robotics,
vol. 9, no. 2, pp. 277–292, 2017.

130


	Introduction
	Development of Social Intelligent Robots
	Advanced Robot Programming
	End-User Development for Robotics
	Human-Robot Interaction ``in the Wild"

	Motivations, Contributions, and Research Questions
	Organization

	Distributed Robotic Frameworks
	A brief introduction to distributed systems
	Are distributed robotics frameworks user-friendly?
	Distributed frameworks for robotics
	Robot Operating System (ROS 1.0)
	ROS 2.0
	Yet Another Robot Platform (YARP)
	OpenRTM-aist

	Discussion

	Software and Hardware
	ZeroMQ and nanomsg
	Web-technologies
	Node.js
	Vue.js
	Electron

	Robot platforms
	Nao and Pepper
	Robot arms controlled by MATLAB
	Kawada Nextage


	The NEP Robotics Framework
	What is NEP?
	NEP for Python
	NEP for Javascript
	NEP for C#
	NEP for MATLAB and Octave

	Discovery Service Master Node
	Performance Evaluation of NEP
	Evaluation in Python and Node.js
	Evaluation in MATLAB and OCTAVE


	Visual Programming Environments for End-Users of Social Robots
	Motivations for performing a systematic review
	Appropriate Abstraction Level for Programming Social Robots
	Visual Programming Environments in Robotics
	Methodology
	Research questions
	Search Process
	Selection of Papers
	Limitation of the study
	Reporting of results

	VPEs for Social Robotics (RQ2)
	Dataflow-based Interfaces
	Block-based Interfaces
	Form-filling Interfaces

	Modeling Intelligent Behaviors (RQ3)
	Scripting-based
	Rule-based
	State-based
	Behavior-based

	Tools, technologies and evaluation methods used in VPEs for Social Robotics (RQ4)
	Open Challenges of EUD for Social Robotics (RQ5)
	Accessibility to External Devices and Resources
	Modularity of Human-Robot Interaction Primitives
	Scalability in Large Applications
	Correct Abstraction Levels and Programming Notations
	Benchmarking
	Explainability and Generation of Robot Social Behaviors
	Simulation and Debugging

	Conclusions

	Designing RIZE End-User Development Framework
	Usability and UX in HCI
	Design
	Software architecture
	Automatic Generation of Behavioral Blocks and Code
	Graphical elements
	Definition of robot actions
	Interaction patterns
	Modules
	Definition of robot reactions
	Definition of robot goals

	Summary

	Long-term Human-Robot Interaction in Domestic Scenarios
	Objectives and motivations
	Software architecture
	Validation ``in the wild"
	Discussion

	EUD of Children-Robot Interaction Applications using RIZE
	Software architecture
	Activities designed by end-users
	Storybook reading
	Game
	Dance
	Other activities

	Experimental insights
	Discussion

	Building Emotional Intelligent Robots with NEP and MATLAB
	Emotional modelling using dimensional values
	General software Architecture
	Emotional modelling using Fuzzy Logic
	Examples of application and discussion

	Human–Robot Interaction at an International Robot Exposition
	Software architecture
	Experimental Validation
	Discussion of results

	Conclusions, Limitations and Future Work
	Discussion summary
	Limitations and future work
	Conclusions

	Publications
	Appendices
	Tables
	Code examples
	nep.js package
	RIZE package

	Bibliography

